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Abstract

In this paper we classify the singular fibres of a stable maps from a closed 4-manifolds
to a 3-manifolds up to the right-left equivalence. Furthermore, we obtain several results
on the co-existence of the singular fibres of such maps. As a consequence, we show that
Euler characteristic of the source 4-manifold with the suitable condition, has the same
parity as the total number of specified singular fibres. In orientable case, the crucial result
is obtained by O.Saeki [14]. The main theorem of this paper is a generalization of his
theorem.
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1 Introduction

As pioneer, L..Kushner, H.Levine and P.Port studied the singular fibres of stable maps from a
closed 3-manifold to plane, in [6]. But it seems that they did not state clearly the definition of
singular fibre and equivalence relation among the fibres. Recently, in the paper [14], O.Saeki
stated the precise definition of singular fibres, introduced the equivalence relation among singu-
lar fibres and classified the singular fibres of a stable map from a closed orientable 4-manifolds
to a 3-manifolds. Moreover he proved the following: For any stable map f: M* — N? from an
orientable closed 4-manifold M* to a connected 3-manifold N?, the number of singular fibre as
in Figure 1 and Euler characteristic of M* are of the same parity.

Figure 1:

Then naturally we ask:
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Are there any formula of same type when source manifold i1s non-orientable ?

In this paper we give the classification of singular fibres including non-orientable cases, for a
stable maps from a closed 4 manifolds to a 3-manifolds; Figure 6, 7. Moreover we present a
partial answer to the above question; Theorem 1.1.

Theorem 1.1 Let [ : M* — N? be a stable map from a closed 4-manifold M* to a connected
3-manifold N°. If f satisfies either Hy(N,Z3) =0 or f.[S(f)] =0 € H3(N,Z,), then we have

X(M) = [UI22(f) T2 2(F) [T 2( ) [+ [T ( )]
+ [+ ()] + I f)]
)|

+[IIE(H)] +ITP(f)] +IT2(f)] +II(f
+ L) (mod 2)

where S(f) C M denotes the singular points set of f, x(M) denotes Euler characteristic of M
and, each |IIT*(f)| is the number of the singular fibre of III" type in Figure 6 and 7.

We note that f(S(f)) is an embedded 2 dimensional simplicial complex in N. Now N is
stratified by the fibre of types of the right-left equivalence. Then the set of regular values
N\ f(S(f)) consists of 3-strata while the set of singular values f(S(f)) consists of 2, 1 and
0-strata. Then we assign each 3-strata in N\ f(S(f)) the number of connected components of
fibres. We note that the number is constant at any point on each stratum.

On the other hand, the assumption of Theorem 1.1, H{(N,Z3) = 0 or f.[S(f)] = 0 €
H3(N,Zs), is a two colorable condition for N\ f(.S(f)). Under this assumption, for any point
in f(S(f)), we notice that the coloring of 3-strata which are adjacent to the point. We combine
the color of the adjacent 3-strata and the corresponding number of connected components of
the fibres. Then we can further divide several classes of singular fibres by right-left equivalence
into 2 types A, B.

We note that the number of the singular fibre of III'? type is even for an arbitrary stable
maps f : M* — N? between as above manifolds. Consequently, |III(f)| and |[III5'(f)| has
same parity. Therefore in Theorem1.1 we may replace III'?(f) by I (f). If M is orientable
then f.[S(f)] always vanishes, namely the assumption of theorem is automatically fullfiled.
Then the singular fibres of I11%22, 111132, [11%22 111%7, 11157, 111%8, I11%7, T11*3, T11'® 1119, 111%°
and I11%® types never appear. Thus Theorem 1.1 gives the O.Saeki’s result when the source
manifold is orientable. It seems to be interesting to remark that just the singular fibre of I11'*
type are labeled A (or B), in our formula.
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Figure 2: The interesting singular fibre II1I** in Theorem 1.1

In the paper [5], M.Kobayashi constructed the stable map ¢ : CP? — R whose ¢(5(g))
has two triple points, each of them is IT1%%° or I1I*?. Theorem 1.1 implies that y(CP?) is odd



number. In fact CP? is orientable and y(CP?) = 3. In the paper [12], O.Saeki constructed a
non-orientable closed 4-manifold £ and a fibration p : £ — RP? whose fibre is RP? He also
constructed the stable map h : E — R® whose h(S(h)) has 27 triple points. They consist of 8
II1%99 points, 12 I119%% points, 6 111%%? points, and one I111*%? point. Theorem 1.1 show that
X(E) must be an odd number.

This paper is organized as follows. In §2., we give definitions of the equivalence relations
among the fibres of a stable map. In §3, we classify the singular fibres up to C'"* equivalence,
and give the tables of the singular fibres for the stable maps from a closed 4-manifolds to a
3-manifolds. In §4, we give some co-existence relation of singular fibres for the stable maps from
a closed 4-manifolds to a 3-manifolds. In §5, we show that Euler characteristic of the source
manifold have the same parity of the total number of the specified singular fibres, Theorem 1.1,
and Proposition 5.4.

Throughout this paper, all manifolds and maps are C'* class unless state otherwise, and
denote Euler characteristic and, for finite set X we denote by | X| the number of its elements.
In this paper, we call the connected elements of stratification stratum.

The author would like to thank Professor Osamu Saeki for his valuable comments and
constant encouragement. The author would like to thank Professor Go-o Ishikawa for continusly
encouragement and advice.

2 Preliminaries

Let us begin by some fundamental definitions. They will be very important for the classification
of the singular fibres of a stable map f: M — N such that dimM > dimN.

Definition 2.1 Let M; be smooth manifolds and A; be subsets of M;, i=0,1. A continuous
map g : Ag — Ay is said to be smooth if for every point ¢ € Ag, there exists a smooth map

g:V — M defined on a neighborhood V' of q in My such that §lvaa, = glvaa,.- And, a smooth
map g : Ao — A1 is a diffeomorphism if it is a homeomorphism and its inverse is also smooth.

Let f; - M; — N; be smooth maps, i=0,1. For ¢; € N;, we say that the fibres over qo and ¢,
are diffeomorphic if (fo) ' (qo) C Mo and (f1)™*(q1) C My are diffeomorphic in the above sense.
Furthermore, we say that the fibres over qo and q; are C*° equivalent or right-left equivalent, if
for some open neighborhood U; of q;, there exist diffeomorphisms ® : (fo) ' (Uo) — (f1)"H(Uh)
and @ : Uy — Uy which make the following diagram:

((fo) ™" (Uo), (fo) ™M (q0)) ——= ((f)"M(U1), (f1) " (a))

o i

(Uo, qo) — (Ui, 1)
18 commutative.

If ¢ € N is a regular value of a differential map f: M — N between manifolds, we call f~!(q)
a reqular fibre; otherwise, a singular fibre.



3 Singular fibres of stable map from 4-manifold to 3-
manifold

In this section we recall the characterization of the stable maps from a closed 4-manifolds to a
3-manifolds. In general, we say f € C*(M, N) is stable if A-orbit of f is open in C*(M, N)
with respect to the Whitney C'*-topology. Here A-orbit of f € C*°(M, N) means as follows.
Let Diff( V) denote the group which consists of all diffeomorphisms W : N — N. Then Diff(M)
x Diff(N) acts on C*°(M, N) as (®,¥)f = Wo fod~! where (®,¥) € Diff(M) x Diff(N) and
feC<(M,N). Then A-orbit of f € C*(M, N) is the orbit through f.

Proposition 3.1 A differential map f: M — N from a closed 4-manifold M to a 3-manifold
N s C*-stable if and only if the following conditions are satisfied.
1. (local condition) For every p € M, there exist local coordinates (x,y,z,w) and (X,Y, 7)

around p € M and f(p) € N respectively such that one of the following holds:

(Xof.Yof Zof)

(x,y,z ) p : reqular point
(, y,z + w?) p : definite fold
) (@, 2 = w?) p : indefinite fold
B (x,y,z —I—:L'Z—w2) P cusp
(v,y, 2 + 222 + yz + w?)  p: definite swallow-tail
(v,y, 2 + 222 + yz — w?)  p:indefinite swallow-tail

2. (global condition) Set S(f) = {p € M | rank df, < 3}, which is a closed 2-dimensional
submanifold of M under the above local condition. Then, for every q € f(S(f)), f~'(¢)N

S(f) consists of at most three points and the multi-germ

(flsery, S7H @) N S(S))

is right-left equivalent to one of the six multi-germs as described in Figure 3, this figures
represent local form of f(S(f)) in N: (1) corresponds to a single fold point, (2) and (3)
represent normal crossings two and three immersion germs, respectively, each of which
corresponds to a fold point, (4) corresponds to a cusp point, (5) represents a transverse
crossing of a cuspidal edge as in (4) and an immersion germ corresponding to a fold point,
and (6) corresponds to a swallow-tail.

Proposition 3.1 is proved similarly as [2, 3, §].

Let p be a singular point of the stable map f : M — N from a closed 4-manifold M to a
3-manifold N. Then, based on the local normal condition of Proposition 3.1 1, it is easy to
determine the diffeomorphism type of the neighborhood of p in f~'(f(p)).

Lemma 3.2 Fvery singular point p of a stable map f : M — N from a closed 4-manifold
M to a 3-manifold N has one of the following neighborhood in its corresponding singular fibre

=Y f(p)) (see Figure 4):



Figure 3: Multi-singularities of f|5(f)
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Figure 4: Neighborhood of a singular point in a singular fibre

1. isolated point diffeomorphic to {(x,y) € R? | 2* + y* = 0}, if p is a definite fold point,

2. union of two transverse arcs diffeomorphic to {(z,y) € R?* | 2* —y? = 0}, if p is an
indefinite fold point,

3. cuspidal arc diffeomorphic to {(z,y) € R?* | 2° —y* =0}, if p is a cusp point,
4. isolated point diffeomorphic to {(z,y) € R? | 2* 4+ y* =0}, if p is a definite swallowtail,

5. union of two tangent arcs diffeomorphic to {(x,y) € R? | 2*—y* = 0}, if p is an indefinite
swallowtail point.

We note that in Figure 4, both the black dot (1) and the black square (4) represent isolated
points which are diffeomorphic but not right-left equivalent each other; we use the distinct
symbols in order to distinguish them. And we note that each singular point p € M, except for
definite fold and definite swallow-tail points, is adjacent to some 1 dimensional simplexes in its
neighborhood in f~'(f(p)). We call these 1 dimension simplexes hand appeared from p. For
the local nearby fibres, we have the following.

Lemma 3.3 Let f: M — N be a stable map from a closed 4-manifold M to a 3-manifold N

and p € S(f) be a singular point such that f~'(f(p)) N S(f)={p} . Then the local fibres near
p are deseribed in Figure 5:



1. p is a definite fold point,
p s an indefinite fold point,
p is a cusp point,

p is a definite fold point,

p s an indefinite fold point,

where each 1-dimensional object represents a portion of the fibre over the corresponding point
in the target and each 2-dimensional object represents f(S(f)) C N near f(p).
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Figure 5: Local degeneration of fibres

Then, based on the global condition of Proposition 3.1 2, we join each hands appeared from
each singular points in f~!(f(p)) and classify them. We have following,.

Theorem 3.4 Let [ : M — N be a stable map from a closed 4-manifold M to a 3-manifold
N. Then, every singular fibre of f is O equivalent to the disjoint union of one of the fibres
as in Figure 6,7 and finite number of circles.

In Figure 6 and 7, k denotes the codimension of the set of points in N whose corresponding
fibres are '™ equivalent to the relevant one.

Let f : M — N be as above. We note that, for every point ¢ € N, the map of germ
(f, 7 *(q)) is right-left equivalent to (f,idpz) : S x D? = I x D? where S is 2-manifold with
boundary, [ is closed interval and f, = f(,t) : S — [ is degenerate Morse function. We call S
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Figure 6: List of singular fibres; 1
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Figure 7: List of singular fibres; 2

Figure 8: Left hand side is punctured Mobius band, right is Klein bottle with three holes



a transverse surface corresponding to the singular fibre f~'(¢). For every singular fibre, there
is stable map from a open 4-manifold My to R? which has certain singular fibre in this sense.
Then we can extend the map to a smooth map from closed 4-manifold M containing My to R
Perturbing the extended map slightly, we obtain a desired stable map. Theorem 3.4 is proved
by constructing these transverse surface, see O.Saeki [14].

If the source 4-manifold is orientable then the transverse surface for an any singular fibre
is orientable. On the other hand, if the source 4-manifold is non-orientable then there must be
the singular fibre of I? type. And the transverse surface which corresponds to the singular fibre
of 12 type is punctured Mébius band, namely Mobius band with 1-hole; Figure 8.

We remark that for a stable map f : M — N from an orientable closed 4-manifold M to
a 3-manifold N, the singular fibres of the following types never appear since these fibres have
non-orientable surface as corresponding transverse surface. 12, 11%2, 112, 1I°, 116, II7, III%%2,
[1%22, 111222, 1Ish2, 1h22, 1195, 10196, 100%7, 10, IS, 7, 1122, 1134, 1125, 11128,
17, 1113, TI1Y, T11%5, T11%6, D017, 100'8, TD1'9, I11%°, D002%, Q1002 11023, D01%4, I01%° 111%5, I11%,
ITI°, and I11¢. For example, the transverse surface which corresponds to the singular fibre of
II1'% type is Klein bottle with three holes; Figure 8.

4 Relations among the numbers of singular fibres

Let f: M* — N? be a stable map from a closed 4-manifold M* to a 3-manifold N3. In this
section, we consider a natural stratification of N® induced by the C*° equivalence classes of
fibres of f, and obtain some relations among the numbers of singular fibres of codimension
three.

Let f : M* — N° be as above map, and F be the C* equivalence class of one of the
singular fibres appearing in Figure 6, 7. We define F(f) to be the set of points ¢ € N* such
that the fibre f~!(q) over ¢q is '™ equivalent to the union of F and some circles. Then we
obtain stratification of V. This stratification consists of F(f) and N\ f(S(f)) where F runs all
C* equivalence of singular fibres in Figure 6, 7. Furthermore, we define F(f), (resp. F(f).)
to be the subset of F(f) consisting of the points ¢ € F(f) such that the number of connected
components of the fibre is odd (resp. even). We denote the closures of F(f), F(f), and F(f).
in N by W, F(f)o and F(f)e, respectively. It is easy to see that each m, F(f), and
F(f)e is a (3 — k) dimensional simplicial complex in N? where & is the codimension of F.
In particular if the codimension x is equal to two, then F(f), and F(f). are finite graphs
embedded in N?. Their vertices correspond to points over which a singular fibre with x=3 lies.
For a equivalence class of the singular fibre G of k=3, the degree of the vertex corresponding

to G(f), (or G(f).) in the graph F(f), is given by Table 1, 2, 3. These tables are obtained by
the description of nearby fibres as in Figure 5. We note that the degrees in the graph F(f).
can be obtained by interchanging G(f), with G(f). in the table. In these tables, most upper
row %, denotes II*(f),.

The lemma of the classical graph theory The handshake lemma claims that in the finite
graph the total number of degree through all vertices is equal to the double of the total number
of all edges.

We apply this lemma to the graphs II™%(f)o, U*°(f)e, I (f)o, L™ (f)es I (f)o, T (f)e,

T2 (f)oy T2 (F)es T2 (F Joo TT2(F ), T2 (F)o, T2 (F ey TP(F )or TP (F)es TTH(F)oy TTH( S )es T ( )
1P (F)e, TO(f)oy TE(F)e, T (Foy TT7(f)e, TI%(f), and I1%(f).. Then we obtain 23 co-existence




relations among the number of x = 3 singular fibres G(f), and G(f).. Then we eliminate the
term of the forms |G(f),| and |G(f)c|. Thus we obtain the following.

Proposition 4.1 Let f: M — N be a stable map from a closed 4-manifold M to a 3-manifold
N. Then the following numbers are always even.

1.

~
=

11.

SR S R T R N

[T f)] + [T )

[TI*(f)] + [T ()] + [T ()|

[LI(f)] + [T (£)]

I (f)] + ()

I (f)] + ()

L)

IE()] + T + [T ()] + [T ()] + [T (f)]
L)+ TP + T )]+ [HIE())
[IT()] + [T )]+ [T ( )]

L) + [T f)]

I (f)] + [T f)]

It is easy to see that the 11 numbers appearing in Proposition 4.1 are all even if and only
if the following arguments fold.

1.

AN AN S S

T4 (f)] = I /)] (mod 2)

[T (f)] = [IIB(f)] (mod 2)

102 (f)] = [IF(f)] = [IM()] (mod 2)

III%(f)] = 0 = |UP(f)] (mod 2)

L) + U]+ [TV ()] + HE()] = 0 (mod 2)
[T (f)] + [I(f)] + [IP(f)] = 0 (mod 2)

We note that the left hand side of congruence 6 is nothing but the total number of swallow-
tail points. And the left hand side of congruence 3 and 6 imply that the total number of
multi-germ of cusp and fold is always even.

We combine above 23 co-existence relations among singular fibres G(f), and G(f). well.
Thus we obtain following co-existence formula.

[TOO0(F)] 4TI (F) TN ) [T )| T2 )+
(TIPS IO U220 [HIA()| +IIA(p)| 4T
T [IPO()HIB()] P+
T (TS| +IIIO(f)] ()] I )
+IE(f),| = 0 (mod 2)

(/)14 )]
() |+ ()]
HIT )|+ ()] 4TI ()]
FIITACF)] 4TI (F)e| I (F)o)

We call this formula (7'), and we will use this relation in the next section.
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0,00 0,10 1,10 0,20 1,20 2,20 30 40| 5o 6o 7To ao
2
2
2 1
2 1
3
3
2
2
4 1
1
6
2 2
2
4 1
1
2 1 1
1 1
2 1
2 1
4 1
1
2 2 1
1
2 1 1
1 1
1
1
2 1
2 1
4 1
1
2 2 1
1
2 1 1
1 1
4 1
1
2 2
2
4 2
2 2 2
2 1 2

Table 1: Degree of each vertex in the graphs
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0,00 0,10 1,10 0,20 | 1,20 2,20 30 40| 5o 6o 7To «ao
1
4 2
1 1
1 1
1 1
1 1
1 2
1
3
1 2
3
3
4 1
1
3 3
6
1] 4 1
1 2 2
1
2 1 2 1 2
1
2 2 2
3 3
4 1
1
4 1
1
4 1
1
113 2
2 4
2 2
2
2 2
2
6
6

Table 2: Degree of each vertex in the graphs

12



0,00 0,10 1,10 0,20 | 1,20 2,20 30 40| 5o 60 7To ao
1 (f), 1 1
11 (f). 1 1
11 (f), 1 2
T (f). 1
e (f), 2
me(fe | 1
11 (£), 1 2
111 (f).
1 (f), 1
1Y (f). 2
119 (f), 1 2
119 (f).

Table 3: Degree of each vertex in the graphs

5 Parity of the Euler characteristic

In this section we study the relation between the total number of specified singular fibres and
Euler characteristic of the source 4-manifold, based on the co-existence results among singular
fibres obtained in the previous section.

Let f : M — N be a stable map from a closed 4-manifold to a 3-manifold, we recall that
we obtained the stratification of N in the previous section. We can further subdivide this
stratification in the following way. We define O, (f) be the set of points in N\ f(S(f)) such
that the number of connected components of the fibre is n. Then we obtain second stratification
of N. This stratification consist of F(f) and O,(f) where F runs all of C'* equivalence class of
singular fibres in Figure 6, 7 and n runs all of natural numbers. Thus the set of regular values
N\ f(S(f)) consists of 3-strata O, (f) (n =0,1,2,---) while the set of singular values f(5(f))
consists of 2, 1 and 0 strata. Throughout this section, stratification means this stratification
of N, not that of §4. Then we assign each 3-stratum the number of connected components of
fibre. We replace the Number of Connected Components of the Fibre with the NCCF.

Let X be a 2 dimensional simplicial complex embedded in a connected 3-manifold Y. We
say Y\ X has two color decomposition if there exist non-empty disjoint open subset R, B of YV’
such that Y\ X = RUB and R = 0B = X. We call a pair (R, B) two color decomposition for
Y\ X if R and B satisfied the above condition. In the following we study when N\ f(S(f))
has two color decomposition for a stable map f: M* — N3 from a closed 4-manifold M to a
connected 3-manifold N.

Let f: M* — N? be as above, and we define A(f), (resp. A(f):) be the set of points in
N\ f(S(f)) such that the NCCF is odd (resp. even). Then A(f), and A(f). are the union of
3-strata of the above stratification. It is easy to see that they are disjoint open subsets of V.
Furthermore, the closure A(f), (resp. A(f)e) of A(f), (resp. A(f)e) is compact since M is

compact. If M is orientable then we have

A(f)o N A(f)e = aA(f)o = aA(f)e = f(S(f))v

since the difference of the NCCF of two 3-strata which adjoint each other is always one. (Where
“two 3-strata adjoint each other” means that the closure of these strata contain 2-stratum as a
part of common boundary.) Namely if M is orientable then the pair (A(f),,A(f)e) is two color
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decomposition for N\ f(S(f)). But if M is non-orientable then the NCCF of adjoined two
3-strata might be same. In fact if S C f(5(f)) is a 2 dimensional object whose corresponding
fibre is I? type then the NCCF of two 3-strata which are adjacent to S is same, Figure 9. And
if M is non-orientable, I? type fibre always appear. Hence, we have

(D [o] D
©

Figure 9: Degeneration of I? type fibre

Ao VA(f)e = 0A(f)o = OA(f)e # F(S(S))-

Thus if M is non-orientable then the pair (A(f),,A(f)e) never be two color decomposition for
N\ f(S(f)). Next Lemma claims that N\ f(S(f)) has two color decomposition under suitable
condition .

Lemma 5.1 (J.J. Nuno Ballesteros-O. Saeki) Let g : X — Y be a stable map from a
closed 2-manifold X to a connected 3-manifold Y such that either Hi(Y,Z3) = 0 or ¢.[X] =
0 € Hy(Y,Z3). Then Y \ g(X) has two color decomposition pair (R, B).

We note that the map f|ss) @ S(f) = IV is a topologically stable surface, where f : M — N
is as above. The smooth surface g : X? = Y3 is topologically stable surface when there exists
C>stable surface § : X? — Y3, and homeomorphism ¢ : X — X, ¢ : ¥ — Y such that
1 og=go¢. We note that Lemma 5.1 is useful for topological stable surface. Thus we can
apply this Lemma to f|s(s). For a stable map f: M — N which is as above, if we assume that
flsery = S(f) = N satisfied f.[S(f)] =0 € H*(N,Z;) or H'(N,Z3) = 0 then there exists two
color decomposition pair (R, B) for N\ f(S(f)). In the following we call the assumption that
g : X* — Y? satisfies either H,(Y,Zs) = 0 or ¢.[X] =0 € Hy(Y,Zs), two colorable condition.

Next theorem is very important tool to connect our singular fibres and topology of source
manifold.

Theorem 5.2 (J.J. Nuiio Ballesteros-O. Saeki) Let g : X — Y be a stable map from a
closed 2-manifold X to a connected 3-manifold Y such that g satisfies two colorable condition.
Then we have;

T(g) + > nlg.g) =x(X),

q:whitney umbrella

where T(g) is total number of triple point of f, and n(q,q) is the index of Whitney umbrella
point g conveniently defined by around two color decomposition of q as Figure 10.

The swallow-tail point of f is correspond to a Whitney umbrella point of f|s(s), and Theorem
5.2 is also useful for topologically stable surface.
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Figure 10: Left hand side is indexed by 1, and right is 0

On the other hands, if we assign no condition for f : M* — N3 then we do not know how
indexed to Whitney umbrella point of f|g(s). However if f: M — R? is a stable map from a
closed 4-manifold to R? which has no swallow-tail points then we see that

() = x(5(f)) (mod 2),

by Theorem 5.2 or Banchofl result; For any (generic) immersion f : X? — R? from closed
surface X? to R? the number of triple points of immersion f and Euler characteristic of the
surface X? are of the same parity.

We combine the co-existence of singular fibres (T'), acquired in section 4, and this Banchoff
result. Then we obtain,

[TOO2(F)] [T T2 TS () T2 )4 T2 )] T2 [T )|
[T (f) [T T2 )] )] HTIEO)] A+ + I )] 40|
T L)) ()] =\(S(f) (mod 2).

On the other hand we have,

Theorem 5.3 (T.Fukuda, O.Saeki) Let h : V — N be a stable map from a closed n-
manifold V to a 3-manifold N. Then we have

X(V) = x(5(h)) (mod 2).

Thus we obtain the following proposition.

Proposition 5.4 Let f: M — R? be a stable map from 4-manifold to R® which has no swallow
tail points. Then we have

V(M) = (LI ) {2 )4 [T f) 4 (L2 ) [0
()] P2 ()] TS|+
LI I )| +TIT()] -+
LI P )]+ (mod 2

hi
hi
)l
).

Secondly we consider a stable map f: M — N from a closed 4-manifold M to a connected
3-manifold N, and suppose f|s(s) satisfies two colorable condition. Then, based on two color
decomposition (R, B) for N '\ f(S5(f)), we divide several singular fibres of x = 1,2,3 into two
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types A, B. At first, for any class € of k = 1, E(f) is defined in §4, E(f) is adjacent to two
3-strata. If £ is 1Y or I' then the difference of the NCCF of the two 3-strata which are adjacent
to £(f) is always one. (Where “F(f) adjacent to n 3-strata” means that for any point ¢ in F(f)
and any sufficiently small open neighborhood U of ¢ in N, U intersects n 3-strata.) Thus if the
3-strata whose corresponding number is higher is colored by R then we define corresponding
singular fibre is I%, otherwise I§ (here * = 0 or 1). If £ is I then the difference of the NCCF
of the two 3-strata which are adjacent to E(f) is always zero; Figure 9. We can not divide I?
types into type A and B. In next, for any equivalence class F of k = 2, except for II*, F(f) is
adjacent to four 3-strata. Now we combine the NCCF and the color for each 3-strata which are
adjacent to F(f). Then we can divide 2 types A or B as following way. If the NCCF of two
red parts are differ (resp. same) then we define corresponding singular fibre is II% (resp. 11%),
Figure 11, 12. In this way we see 11%°(f), TI!(f), TIMY(f), TI3(f), TI*(f), and II°(f) have two
types A and B. But 11%2, IIV2, 1122, 11°, 1I” don not divide into 2 type, Figure 13. As same
way as I° or 1!, the singular fibre of II* type has 2 types A and B.

Figure 12: Type A, B of II°

In Figure 11, 12, 13, 14, 15 and 16, we note that some number in 3-strata is the NCCF of
each 3-strata, when the centered singular value has no circle in its fibre.

In last £ = 3 we see ITIO0O(f), TIIO%L(f), TN f), TITNNE(f), TIIOA(f), TIIO4(f), TT19%,
(), T ), TI5(F), L), T1P(F), L9 ), T p), T2 ), L), (), T ),
2L f), T ( f), TR f), TP f), TI4(f), THE(f), T/ () and I119( f) have type A, B, by the
similary way as k = 2; Figure 14, 15, and 16. The singular fibre of other types do not have
type A, B.

Let f: M* — N? be as above and f|s(s) satisfy two color condition. And let F be the
equivalence class of one of the singular fibres appearing in Figure 6 of k = 2. If F has types
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Figure 13: These type have only one type

4
I 1%

\III}32

Figure 14: Type A, B of I11'2

A, B then we define F(f)a (resp. F(f)p) be the set of points ¢ € F(f) such that around ¢
colored as A-type (resp. B-type). If F do not have type A, B then we consider just F(f).
Then F(f)a, F(f)p and F(f) are finite graphs embedded in N. Their vertices correspond to

points over which lies a singular fibre with x = 3.

We again apply classical graph theory lemma to the graphs I1%°(f)a, I®°(f)g, 11> (f)4,

HOJ(f)Bv HLl(f)Av HLl(f)Bv Hoa(f)v HLz(f)v HZZ(f)v HS(f)A, HS(f)B7 H4(f)A7 H4(f)B7 HS(f)Av
1 (f)g, I8(f), 7 (f), I*(f) and 11*(f)g. Then we obtain 18-th co-existence relation among

singular fibres.

Proposition 5.5 Let f: M — N be a stable map from a closed 4-manifold M to a connected
3-manifold N. Suppose f|sy) salisfied two color condition. Then the following numbers are
always even;

LTI )] + [T (F)] o+ [TP20F)] A+ [T (f ) a] + [TI(f)
2 [IIPPO0)| + [T ()| + [TI2(f)] + [T (f) 5] + [T1(/) 5]

3. IO (F)al + [TV (F)al + TP (F) ] + [HIS(F)| 4+ |THOR2(f)]
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10.

11.

Figure 16: Type A, B of I1IY

()| + [T ()] + [T (f)5| + TC(F)] + [T f)]

IS N)] + IO+ T2+ [T+ [TE(F) B[+ [T (f) 4l
IS NO] + [P 4 T2+ [T+ [TE(f)al + [T () 5]
[T (f)] + [T )]

L)+ [T ()

L)

[T (F) [ T2 F )| [T (F ) [+ [T f ) [ TIECF) [ [ TIT () [T CF) [ TIT ()|
[T (F)] A+ [P CF)] 4 [TI(f)al + [T (f) 4]

[T F) [+ T2 F )| [T 2 (O )|+ [T f ) [T (F) [T () [+ [T ()T f ) [+
[T (F)] + [TPCF)] + [T (f)B] + [T (f) 5
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12.

15.

14

15.

16.

1

<

18.

A+ [IAF)] + [TIA)] + [TEOC)] + [Tl + P 5]+ [T (f)a] +
L2 (f)] + [T f) ]

A+ TITAH] + TIAN)] + )]+ ()] + TPl + [T (f)s] +
L2 (f)] + [T ) a

T2 ()| [T () [+ (T2 ()[4 [T (F) [+ [TIEECF) |+ T () a [T ) [T ()
T2 ()| [T (F) | T2 (F) [+ [T () |+ T CF) | [T () A [T () [T () |
L) + [T f)]

I (f)] + [T f)]

[TI*(f)] + [T ()] + [T ()|

We eliminate the terms of the forms |III*( f) 4| and |IIT*(f) 5| in previous modulo 2 relations.
Then we obtain the completely same co-existence relation of singular fibres as Proposition 4.1.

We add the items (1), (3), (5), (9), (10), (13), and (15) of Proposition 5.5, then we obtain

[HOOO(F)] 4P+ ) [T ) LT U)o )

[T |4T
(TS |4 T
I )]+ )] I )] U] +HIE)] -+ ()]
T [T (f)] + {11 ) f) f)

+ |IIE(f) 4 |=0(mod 2).

)+
)+t

| |II1%°
EEIE

Ol A2 HIAF)] I (f)]
Ol AP HIP)] ()]

=

(f)
(f)

— —

| I + ) a] T (F)al +TE(f) ]+ (f) 4]

We call this relation (S).
We recall that Theorem 4.2 claims that

XS =T + ), ind(gf) (mod 2).

g:whitney umbrella

We add (S) to right hand side of above formula, then we obtain

X(S(f)) = [LO22(F) [T 2(F) [+ I 22(F)] -+ (f) |+ ()]
+ [IEE(N] AT HIA)] I+ (f)]
+ IO HIPN] HITEN)]T HIE )]+ ()

+ IO+ ()] +) ind(g; f) (mod 2).
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Finally, we recall that

Y ind(gf) = Ul + )l + [T (f)al + [T ()l

g:whitney umbrella

and Theorem 5.3 then we obtain our Theorem 1.1.
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