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OBSERVATION ON THE WEIGHT ENUMERATORS FROM CLASSICAL INVARIANT
THEORY

By MANABU OURA!

The purpose of this paper is to collect computations related to the weight enumerators and to
present some relationships among invariant rings. The latter is done by combining two maps, the
Broué—Enguehard map and Igusa’s p homomorphism. For the completeness of the story, some
formulae are given which are not necessarily used in the present manuscript. Sections 1 and 2

contain no new result.

1. Classical Invariant Theory. In this section we recall classical invariant theory. For the

detail we refer to [17]. We consider a homogeneous polynomial

n
5 (o
i=0

of degree n in 2 variables x, y. The group SL(2,C) operates on the variable space and, if we
require that the above form is invariant, the same group operates on the coefficient space. In
this way, we get an irreducible representation of SL(2,C) of degree n + 1. We consider the
graded ring of polynomials in the ug, uq, ..., u, with coefficients in C and operate SL(2,C) on
this graded ring using its action on its homogeneous part of degree one defined by the above
representation. Then, the invariant subring S(2,n) is a graded, integrally closed, integral domain
over C. In the present note we deal with S(2,4) and S(2,6). The structure theorems of those
rings are established in the 19th century and we shall describe them. The invariant ring S(2,4)
is generated by P, (), which are algebraically independent. The explicit forms are

2
P = uouq — 4duyus + 3us,

Uup U1 U2
Q=det |u; wus wus

U2 U3 Ugq

and the dimension formula of S(2,4) is

1
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in which the coefficient of t* denotes the dimension of degree k-part of S(2,4). The invariant
ring S(2,6) is generated by Jo,Jy, Js, J10, J15. We give the definitions of Js,...,Ji5 in the
appendix, taken from [17]. Among them Js, Jy, Jg, J1o are algebraically independent. The ring
ClJa, Ju, Jg, J10] contains JZ but not Ji5. We also give the explicit formula for JZ in the
appendix. The dimension formula of S(2,6) is given by

1441
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2. Weight Enumerators and Siegel Modular Forms. In this section we recall coding
theory and Siegel modular forms. For the details we refer to [1], [14] for coding theory and to
[3] for Siegel modular forms. Let Fg be the field of two elements. A linear code (a code for
short) of length n is a subspace of F4. The vector space F§ equips with the inner product
x -y =Y. z;y;. We define the weight wt(v) of a vector v € F§ by the number of the non-zero
coordinates of v. We shall define special classes of codes. If a code C' coincides with its dual
code C+ = {x € F¥|(z,y) = 0, Yy € C}, it is called self-dual. We observe that the dimension
of the self-dual code is a half of its length. If the weight of any element in C' is divisible by 4, it
is called doubly-even. In this manuscript we will focus on the self-dual doubly-even codes. We
shall next define a homogeneous polynomial of the code which is on the title of this paper. The

weight enumerator Wég ) of the code C' in genus ¢ is defined by

Wég) = Wég) (xq:a € FY) = Z H e (V1ve)

V1,..Vg a€EFY

where nq(v1, ..., v4) denotes the number of ¢ such that a = (vis,...,vg;). If we need the ordering
of the elements of F§, we fix F§ = {0---00, 0---01, 0---10,...,1---1}. We sometimes use
the symbols z,y, 2, ... instead of the z,’s for simplicity. The weight enumerator in genus 1 is

interpreted as
1 n—wt(v wi(v
W((;)sz t(0) ywt(v)
velC

where n denotes the length of the code C'. In this case the weight enumerator of a self-dual
doubly-even code is a symmetric polynomial in the variables x,y. The examples are
1) _ .8 4,4 | 8
We(g)fx + 14x™y" + °,
W = g2 4 759x10y® 4+ 25762 2y12 + 75928y16 + 424,

g24

where eg denotes the extended Hamming code and go4 the extended Golay code. We omit the
definitions of eg, go4 as well as d,} appearing below and refer to the references cited above. In
the case when g = 2 the weight enumerator of a self-dual doubly-even code is also symmetric in

the variables x, y, z, w. We have
2
W = (8) + 14(4,4) + 168(2,2,2,2),
W2 = (24) + 759(16,8) + 2576(12, 12) + 212520(12, 4, 4,4) 4 340032(10,6,6,2)
+22770(8, 8,8) + 1275120(8, 8, 4,4) + 4080384(6, 6, 6, 6),
where (8) = 28 + % + 28 + w®, (12,4,4,4) = 212y 2%w* + 22y 22%0* + 2ty? 220 + 2yt 2tw!?,
etc. For an arbitrary positive integer n, n =0 (mod 8), we have
n/2
2 o
W= 3 | 2 D) e
B,7€FZ \a€F2Z

We note that, for g > 3, the weight enumerator of a self-dual doubly-even code is not symmetric
in general. We shall next view the weight enumerator from invariant theory of some finite group.
Let Hy (g > 1) be a finite subgroup of GL(29, C) generated by

1+i\? b . (+Slal. g _t
< > > ((—1) )a,bEF37 diag (z ;a € FQ) , S ="5 € Matgyy(Z),



where A[B] = ‘BAB for matrices A, B of suitable sizes. H, has a normal subgroup N, &
Z /47 2?29 such that Hy/N, = Sp(g,F2), where x denotes the central product and 2?29 the
extra special 2-group of order 1+2g of “+” type. The finite group H, has an order 29°+29+2 (49 —
1)(4971 —1)--- (4 — 1). We define another finite group G, which is generated by H, and the
primitive eighth root of unity. The group G4 contains H, as a subgroup of index 2. We have
defined two finite groups so far. The group which directly concerns the weight enumerators
is G4. Indeed the weight enumerator of any self-dual doubly-even code is invariant under the
action of Gj. Moreover the invariant ring of G4 can be generated by the weight enumerators
of the self-dual doubly-even codes for any g (c¢f. [4], [6], [2], [5], [16], [10], [20]). Therefore we
may regard the invariant ring Clz,;a € Fg]GEI as the ring of weight enumerators of the self-dual
doubly-even codes in genus g.

Igusa’s homomorphism is, under some condition, one from the ring A(T'y) of Siegel modular
forms to the ring S(2,2g + 2) of projective invariants of a binary form of degree 2g + 2 (see [7]).
We recall that that the ring A(T'y) is the graded ring generated by holomorphic functions ) on

the Siegel upper-half space &, in genus g satisfying the functional equation
Y(M - 1) = det(cr + d)F - (1)

for every M in 'y = Sp(g,Z) (plus a condition at infinity for g = 1). In order to construct Siegel
modular forms, we introduce the theta-constants. Theta-constants 6,/ (7) are defined by
Ot (T) = Z ex 27r\/_1<17' { + ml] +* ( + m’) m”)
m’m =, P D) p 2 p D) 5
in which m/ and m” are the column vectors in RY. If we put f,/(7) = 0m0(27). The Broué-
Enguehard map T'h is defined by z, — f,. A modular form is called a cusp form if it is in the
kernel of Siegel’s ®-operator which maps a modular form of genus g to a modular form of genus
g— 1.
The structures of the invariant rings and of Siegel modular forms in small genera are known.
We shall describe the cases g = 1, 2. First suppose that g = 1. The groups Hy, G; are finite
unitary reflection groups of order 96, 192, respectively (No.8, No.9 in the list of [18]). We have

Clz,y)™ = CW PV, 1{Y],  Cla,y® = W, Wi,

es eg 924
where

h(112) — 12 _ 33x8y4 - 33x4y8 + y12.
The dimension formulae of these invariant rings are given by

1 1
(1—t3)(1—t12)" (1—1¢8)(1—¢>4)’

The map Th induces the isomorphisms? Clz,y]" = A(T'y) and Clz, y]* = A,
Here we remark that A(T';) = A(T';)®). The invariant ring C[z,y]¢" is a subring of Clz,y]"

and we observe that
1) _ —19—2 1)3 —19—2/7(1)\2
Wi =11-271372(WD)? +7-271372(h}))>

2If S is a graded ring composed of homogeneous parts S, with k running over non-negative integers and if d
is a positive integer, then S(4) = Dr>05dk-




The isomorphisms above are given by
Th(WE)) = ¢4(w),

Th(h{y) = ¢6(w),
Th(W) = 11-271372(¢4(w))® + 7- 271372 (¢6(w))?,

where ¢ (w) denotes the normalized Eisenstein series of weight k: ¢p(w) =1+ ---.

We shall next discuss the case when g = 2. The group Hs is a finite unitary reflection group of
order 46080, No.31 in the list of [18]. The invariant ring of Hs is generated by the four elements
W W

€g 24

h'2 = (12) — 33(8,4) + 330(4, 4, 4) + 792(6,2, 2, 2),
Fao = (20) — 19(16,4) — 336(14,2,2,2) — 494(12,8) + 716(12, 4, 4)
+1038(8, 8, 4) + 7632(10, 6,2, 2) + 106848(6, 6,6, 2) + 129012(8, 4, 4, 4).

The dimension formula of this ring is

1

= 18412 4116 4 2420 1 3424 1 2428 L 4432 1 4130 5410 .
=)0 = 91— @)1 — 2 + 8+t 104 2670 4 362 4 2020 4 4172 + 470 + 5t +

The group G2 contains Hy by index 2 and is not a finite unitary reflection group. The invariant
ring is generated by We(f), Wg(224), W w? and WP The four elements We(sz), Wg(224), w® w

dy,’ " d dio’ dy,” " di
are algebraically independent and the square of Wﬁ) is written by the polynomial in V[/'e(g2 ), Wg(fg ,
32

Wﬁ) , Wﬁ) as follows:
24 40

(W) = —113-32621 - 3745717724171 (W D)8

d3
8 —4p—1r—291— - 2 2
— 2560289 - 37451721141 (W2 )P w2
+24821477- 3745 17 1 4 (W @) )

d24
+2-751- 37277 L1 (W)Y
32
3 —1m— _ 2
= 201173705 T L (WP

+2M163 - 3747211241 (W) (W D)2

924
1 —4m—197—247—1 2\2147(2) 117 (2)
+2173.79. 3747 11241 (W) WéJWdL
— 20107499 - 374117241 (W2 )2 (W )2
24
8 —2m—1q1—=141—111/(2 2 (2)
— 28389 372771117141 W§S>W$§23Wd§2

+ 24519737211 1w @ w D2
€8 d24 32
924

+ 21231517141~y @y (2)
d40

i 99315141~ 117y

d;—4 dz—o )
The dimension formula of this invariant ring C[z, y, 2z, w]%? is

1 +t32
(1—8)(1 — £24)2(1 — t19)

=148 +¢'0 +3t%* + 472 + 5640 + 8¢%8 +10¢°% + 12¢54 + - -



The elements W(?, Wﬁ), W(i) can be written by the generators of C[z,y, z, w]? as follows:
40

2 ‘ — 2
Wi = 11232 (WD) 232 E)? - 2 W,
Wﬁ =43-53- 377 (W)t + 245 23 3‘511‘1Wé§)(h§22))2
32
— 204337277 1L WOW®R 4+ 253502 By,

924

2 2
Wézj =3-19- 7 (WP) +2.5.7-557-3 11 (WD) (hD)?
—235.19- 7M1 (W)W P + 20523 TW DR Fyg + 225 - 41 - 37T F,.
We give a comment on the paper [9]. In that paper, Maschke determined the invariant ring of
some finite group G. G is a subgroup of SL(4,C) and has an order 46080 which is the same as

our Hs. G is a subgroup of our G2, which is of an order 2 - 46080 = 92160. H, is generated by

three elements

2

)

(1+i)2 ((_1)a-b)ab F2 , diag (1,1, V-1, ‘/_) diag (1,1,1,-1),

and Go by Hy and 1'” , while G is generated by

(1;@)2((_1)(1.1))&7})6%7%-diag(l 1LvV-1,v-1), T diag (1,1,1,-1).

The dimension formula of Clx,y, z, w] is given by

14152 4190 4-¢%2
(1—18)(1 —t24)2(1 — t40)"

From the dimension formulae, for example, we can read off the differences among the invariant
rings of the said groups.
We continue our discussion on our case. We shall recall that A(T'3) is generated over C by five

elements and they are3

22. Py = Z (em)g )
2% qpg = Z + (emlemaem2)4’

syzygous
-2 x10 = H (gm)Qv
2173 *X12 = Z (6m1 eYnz U 9“’1/6)4 ’

23953/ T - yg5 — (H em) ( 3 i(emlemem)z’(’) .

azygous

In the second symmetrization, the monomial (6,,0m,0m,)" with ‘m; = (0,0,0,0), tmy =
(0,0,0,1), ‘'m3 = (0,0,1,0) has +1 as its coefficient. In the definition of Y12, the summa-
tion is extended over fifteen complements of syzygous quadruples. In the definition of xs3s,
the symmetrization of = (6,0, 0m,)>" is taken by the stabilizer of [6,, in Sp(2,Z) modulo

335 is not used in Section 3.



the stabilizer of (0,0, 0m,)>° with ‘m; = (0,0,0,0),'my = (0,0,0,1),*ms = (0,1,0,0). The

Broué-Enguehard map gives rise the following:

Th(WS) = ¢,
Th(h% ) = Vs,
Th(Fx) = thatbs + 273 x10,
Th(W2) =11-27137 25 + 7271372 — 219327 - 11x12.

These can be obtained by comparing the Fourier coefficients (¢f. [15], [13], [12]). There have
been extensive studies on Fourier coefficients of Siegel modular forms, however, in our case we
do not need a deep theory of Fourier coefficients. Since there is a misprint in the definition of F}
in [8], we reproduce the formulae which are useful for our computations of Fourier coefficients.

In the case when g = 1, we shall use w instead of 7. If we put

(oo} oo
7“):274’2, r):Zr(p_l/Q)z,
p=1 p=1
in which r = exp mv/—1w, then we have

900(&)) =1+ QF()(T), 901(&)) =1+ QF()(—?“), 910(0)) = 2F1(7’).

In the case when g = 2 if we put

Fo(r1,m2) = Fo(r1) + Fo(ra) E Ap, p27"1 7”2 5
p1,p2=1
P (p2—1/2)?
Fi(ry,7r2) = Fi(ra) § By, pa1' T3 )
p1,p2=1
Fy(r1,r2) = Fi(rz, 1),
1/2)2 1/2)2
y(r1, ) }: Cpy ot (:01 /2) (P2 /)
p1,p2=1
(;01 1/2)? (Pz 1/2)*
7“177“2 E D;IJl,;DQ )
p1,p2=1

in which 1 = exp wv/—171,79 = exp wv/—172, q12 = exp 2wy/—1712, and

Apypr = 4057 + 4192,

By, p, = qﬁ(m_m) + ql_2101(102—1/2)7

Cprpy = qYél‘l/Q)(m—l/Q) + (11—2(171—1/2)(1;2—1/2)7

Dy, p, = (—1)Pl+p2—1q£’2’1*1/2)(1)271/2) + (_1)171_172q172(p1*1/2)(p271/2)7



then we will have

Bo000(7) = 1+ 2Fy(r1,72), Oo001(7) = 1+ 2Fy(ry, —12),
Oo010(7) = 1+ 2Fp(—71,72), Bo011(7) = 1+ 2Fy(=711, —72),
o100(7) = 2F1(r1,72), Oo110(7) = 2F1 (=711, 72),
61000(T) = 2F5(r1,12), 61001 (T) = 2F5(r1, —12),
01100(7) = 2F5(r1,72), 01111 (7) = 2Fy(r1,72).

Cusp forms can be written by Eisenstein series as follows:

X10 = —43867 - 271237557277 153 71 (yy0hg — o) ,
Y12 = 131593271337 757377233771 (327%¢% + 2 5% — 6914h12) .

We note that there is a misprint in the formula of x19 at p.102 in [15].

3. The Broué-Enguehard map and Igusa’s homomorphism. Before proceeding to
Igusa’s homomorphism studied in [7], we go back to the invariant rings S(2,4), S(2,6). In
addition to the generators of them given in Section 1, we give the different generators in irrational

forms. If we decompose a binary form into linear factors as

n

Z <TZ> uit" 'y’ = g H(x —&iy),
i=1

i=0
then we have

. " n\ Un -
_(1>u_o:;€ia (2) =2 4G, (n)u_o:i[[l&'

1<j

Preparing this, we consider each case separately*. We put Pagio(x) = ug(z —&1)(x — &) -+ (w—
&2g+2). Suppose that g = 1. In [7], Igusa takes Io(Py(x)), I3(Ps(z)) as the generators of S(2,4),

given as follows:

L(Py(z)) = uf Y (12)*(34)*

three

=ug {(12)%(34)> + (13)*(24)* + (14)*(23)*},
Is(Py(z)) = uf > _(12)%(34)°(13)(24)

six

= uj {(12)%(34)* {(13)(24) + (14)(23)} + (13)*(24)*{(12)(34) — (14)(23)} +
(14)*(23)*{=(12)(34) — (13)(24)} } .

Here (i7) is an abridged notation for & —&;. We already gave the generators of S(2,4) in Section

1 and these two sets of the generators are related each other by

L(Py(z)) = 233P,  I3(Pi(z)) = 2*3%Q.

4We note that the case when g = 1 is roughly sketched in [11].



Igusa’s homomorphism p gives the isomorphism p : A(T';) =N S(2,4), where

Combining two maps Th and p to denote p, we have the isomorphism Clx, y]* =8 (2,4) given
by

W) =27 o (Pa(a)),

phiy) = 27 Ia(Pa(a)).

If we use P, @Q defined in Section 1, then
pW)) =2%3P,
p(hy) = 2°3°Q.

We also get

Cle, gl = 5(2,4)®),
where

W) = 11274372 (Py(2))® + 7 - 27337213 (Py(2))*
=273 (11P* 4+ 3%7Q%)..
We shall next consider the case when g = 2. In [7] the following elements® are used as the

generators of S(2,6).

A(Ps(2)) = uj Y (12)°(34)%(56)%,

fifteen
B(Ps(x)) = uj y_(12)%(23)*(31)*(45)%(56)*(64)°,
C(Ps(z)) = ug Z(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2,
D(Ps(x)) = ug” (12)°(13)* - (56)°,

fifteen

I & +& &ié
E(Ps(z)) =uf® J] det [1 &+& &4
fifteen 1 &+8& 658

There hold the following relations.

A(Ps(z)) = =213 - 5.5,

B(Ps(z)) = 2°3'5 (J3 — 2°5° ) |

C(Ps(z)) = 2%3%5 (—2*13J5 + 203252 JoJy + 5% J5) ,

D(Ps(z)) = 2°3 (22571J3 + 2°3%5° J5 J, + 2251 J3 Jg — 20355 15 J5 + 2°3°5° 1,5 — 3°5°J10)
E(Ps(x)) = 22395107,

5We note that we do not need E in this paper.



We do not need the formula of E? in this paper, however, since it is not contained in [7], we give

the explicit formula of E2. This is derived from the formula of JZ in the appendix, or directly.

E? = (1/2'13%) (A"B* — 2?3A°B*C — 2°3°A°B*D
+2-3-134°B% +2-334°B2C? + 233° A’ BCD + 2230 4° D?
—223237AYBYC — 2232394 B3 D — 2233 A*BC3 — 2237 A*C? D
—3.53A%B% +2.3% . 1143B3C? + 2°3°7A3B2CD + 2°375%11 A BD?
+ 314301 + 253342 B°C + 2'3'457A%BYD — 26331742 B%C3
— 24355 . 5342 BC?D — 273853 A2CD? 4 2*5AB" — 2°337AB*C?
— 26355 . 61AB3CD — 26375%29AB?D? + 2*3*37ABC* + 253752AC3 D
_ 273360 _ 2934B5D 4 2833B3C3 + 2936523202D
+293%5*BCD? — 273°C° 4 2'13°5° D) .

This induces the expression for x3 in [7]. Igusa’s p-homomorphism is given by

p(s) =272B,
p(ihe) = 27°(AB - 3C)
= 3°5 (=2°19J3 + 2°3°5° )5 Js — 5% J)
p(x10) = —27"D,
p(x12) = 271737 AD
=335.2719(—22571J% — 253253 3 J, — 2252 5 Jg + 203455 J2 7
— 233255 1,0, Js + 335° Ty 1),
p(xss) = —2739/—1D*E.

This homomorphism is injective (Theorem 5 in [7]). If we shall denote by p the combination of

the Broué-Enguehard map and Igusa’s p-homomorphism, we will have
WD) = p(tha)
=272B,
ARTD) = p(v)
=273(AB - 30),
p(Fa0) = p(taths + 2"23*x10)
=27 (AB* - 3BC - 2°3'D)
=37 (—2%523J3 + 275%53.J3 Jy — 5*13J3 Jg — 283%5° Jo I} — 225°11J4J6 + 2 - 3%5° Jh0) |
PWE) = p(11- 271372y + 727137 2y¢ — 210327 - 11y12)
=277372(7A’B? —2-3-TABC — 3°7-11AD + 11B* + 3*7C?)
= 3%5.271(2064323.J5 — 2235317 - 3975 J4 + 28547 - 11T Js
+ 2435551223277 — 243°557Jy 04 ds — 2 - 34557 - 110550
— 263058112 + 577.J2).



Using these formulae, we know the p image of the generators (except I/Ve(g2 ), Wéi) ) of Clz, y, z, w] &2

as follows:

PWE) = p1P3 72T (WD) +2-372(hy)) — 2T W)
270372(—2A42B? + 2?3ABC + 2°3°11AD + 11B® — 2. 32C?)
= 3%5(—409 - 1549J8 — 223354597374 — 275*13.J3 Js + 2*3°55463.J3 J7
— 203355 Jo Jy Jg + 2334551105010 — 2630581105 — 2. 57.72),
W) = (43533717 (WD) +2'5 23 3P 11 W (b))
— 20433727 11T W O WP 4 253703 Fao)
=278373(-2'A?B® + 2°3AB?C + 2°3° ABD + 43B* — 2*3? BC? + 2°33CD)
= 3°5(—286322081.J5 4+ 24325231 - 59 - 5477J5J, — 2115317 - 83.J5 Js
+ 2536597 . 4375 7 4 29335513 - 61730406 + 2033557 - 23375 J1o
—28305737. 239022 — 245713272 — 2'13°57 0,03 Js — 283°57167 05410
+ 2838511437} + 26325841.7,J2 — 273358 J6.J10),
ﬁ(Wgz) =5(3-19- 7 WD) +2.5.7-557- 3711 (WP)2(h3)?
— 23519 7M1 Y (W)W R 4 20523 TW D) Fyg + 225 - 41 - 37TFR)
=2719372(—2.5A42B* + 2?3 . 5AB®*C + 2*3'5AB?D + 19B°
—2.325B2C? + 2%3'5BCD + 2°3%5 - 41D?)
= 375(—4129 - 5298991.J1° 4+ 223253157 - 8119907.J5.J, — 26517 - 2517171 J¢
— 25355513 - 409 - 3121.J8.J7 + 26325573 - 44887.J5 J4.J + 233355397 - 1867.J5 J10
— 27395867 - 631.J5.J3 +2- 5811 - 1103J5J2 — 2°3*5%23609.J5 .73 J¢
— 2035582257173 1, J10 + 283%51055901.72.] + 2*325°5639.J3.J4.J2
— 24335973372 J6 J10 + 2193°510379.15.J3 Js + 273751017 - 163.J5.02 J10
— 2103115141975 — 253151023 . 1817772 + 2035519610, Js J10 + 2*3°51041.7%,).

We observe that the p images of A(T'5)?), A(T'2)® are strictly smaller than S(2,6)), S(2,6)),
respectively. On the other hand, it is known that the Broué-Enguehard map gives the isomor-
phisms Clz,y, z, w]? = A(T'5)? and C[z,y, z,w]?> = A(I'y)*). Therefore the p images of the
rings C[z,vy, z, w]#2, Clx,y, 2z, w]? are strictly smaller than S(2,6)), S(2,6)™), respectively.

Summing up,

THEOREM. Let p be the combination of the Broué-Enguehard map and Igusa’s p-homomorphism.

(1) In the case when g = 1, p gives rise to the isomorphisms from Clz,y|"* onto S(2,4), and
from Clz,y]%* onto S(2,4)?).

(2) In the case when g = 2, p transforms injectively Clz,y, z, w2 and Clz,y, z,w]%? into
S(2,6). The p images of these invariant rings are strictly smaller than S(2,6)), S(2,6)®,
respectively.

The explicit p-images of the generators of each invariant ring are given above in two ways
each.
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We give remarks.

(1) Since Igusa’s p homomorphism increases the weight or the degree by a %g ratio, our p
increases the degree by a %g ratio. This remark holds in the arbitrary genus g. Here we note
that Siegel modular forms we are considering are always of even weights.

(2) The weight enumerator of a code has non-negative integers as its coefficients(in arbitrary
genus). We shall consider the case when g = 1. The p image of the weight enumerator has

negative coefficients as the polynomials in Clug, u1, us, ug, u4] in general. For example, we have

ﬁ(We(sl)) = 223(uouy — 4ujuz + 3u3),

ﬁ(Wg(i)) = 2°3 (11ujui — 132uduiusud + 288ufusul — 378udusuius + 189ufu;
— 378u0u%uQui + 906u0u%u§U4 — 36u0u1u§U3u4 — 756u0u1u2u§
— 8lugujuy + 378uguiui + 189ujus — 756uSususuy — 704uius

+ 378uiulus +2340uujul — 1944u ujus + 486uS) .

It would be interesting if we interpret this from coding theoretical or combinatorial point of view.

(3) We mention the paper [19] in which Shioda discussed the close relationship of the ring
S(3,4) of projective invariants to the invariant theory for the Weyl groups W (E7) and W (Es).
We omit the details.
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Appendix. We give the generators of S(2,6) from [17]. We also give the expression for JZ.

Jo = upug — 6urus + 15usuyg — 10’(1,%,

upg U1 U2 U3

Js = det U U2 U3 U4 :
Uz U3 Ug Uz
uz U4a Uy Ug
bo b1 bo

Jo=det | by by b3 |,
ba b3 by

Jio = ug ¢ — 6uy bc® + 3ug(ac 4 4b*)c — 4us(3abe + 2b%) + 3uy aac + 4b%) — 6us a®b 4 ug a®,

Chp C1 € C3 C4

Ci C2 C3 C4 Ch
J15 = det Cya C3 C4 Cy5 Cg |

€3 C4 C5 Cg Cr

€4 C5 Cg C7 C8

where

by = 6(UOU,4 — 4duquz + 3’(1,3),
b1 = 3(uous — 3urug + 2usus),
by = ugug — Yusuy + 8u§7
by = 3(u1u6 — 3usus + 2’U/3U4),
b4 = G(UQUG — 4U3U5 + 3113),
a = 2(ugugug — 3ugusus + 2u0ui - U%UG + 3uqugus — Ui U3UL — 3u§u4 + 2u2u§),
b = upusug — UgUslUs — ULUUg — SULUIUS + 9u1ui + 9u§U5 — 1Tusuguy + 8u§,
¢ = 2(upuqug — uoug — 3uqusug + 3uiusus + 2u§u6 — UgU3Us — 3U2U421 + 2u§u4),
co = 8(u(2)u5 — buguiug + 2ugusus + 8u%u3 — 6u1u§),
c1 = u%uG + 2uguius — 19uguouy + 8u0u§ — 6ufu4 + 44uqusuz — SOug,
ca = 2(uguiue — 2uguatis — 2ugustiy — Juiugtg + 16u1u§ — 1OU%U3),
c3 = ugUag — dugusus — 2u0u?1 + QU%UG — bujusus + 24uquzug — 15u§u4,
cq = 4(—uguqus + uugue + 3u1u?1 — 3u§u5),
C5 = —UgUqUg — 2u0u§ + duqusue + 6urugus + 2u§u6 — 24ususgus + 15uQuZ,
ce = 2(—ugusus + 2uiuaus + 2uzuzug + Jugtgts — 16u§U5 + 10usu?),
cr = —uoug — 2uqusug + 19usugsug + 6uzu§ — 8u§u6 — 44uguqus + 30ui,

cg = 8(—uqug + Sugusug — 2uzusug — Suzul + 6uius).
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Ji = 273710705 1297 . 378 33 0, — 2737 - 3712 3% g
— 27 370 g g2 4 215379 710 7, 05 + 2737703001
+2185.7.371 903 — 2829 . 37127972 — 2115. 3748 J2 J;
—295.370 8 JyJio — 21°5 - 7372 g + 21011 - 378 g1 2
+ 2737501 JJ10 + 215 - 11 - 375 I8 T3 0 4 2125 - 373J8 J2 010
—287.37 W8 g8 42173 . 703 0 — 2M 33 IS IR
— 210537575 JyJe Jio + 2°3 73T I, — 21°5 - 173730y I} Js
— 2537 3 T3 o + 2123783 Iy I8 + 2737603 2 T
— 2193277378 4 21°31 - 37 C I3 3 2 4 21111 - 373 T3 T2 s 1o
— 28371 3, J2, — 2713 - 3712 3 08 4+ 22002 70 6
+ 2193 .52  Jio — 2M37PJ2 T2 T3 — 295 - 370 2 4 J2 Jio
+ 29373 J2 Je I3y 4+ 22134 Jo ) — 2157 - 373 0,01 2
— 237 L 3 Js 10 + 29300 03 2 + 29370 00 Jy I
+ 2737 Ty J3 J10 — 21978 Js — 217335 Jho
— 213376 7373 4 211373 72 72 T + 2737 Vs Js I,
— 27371278 2573 .
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