SMOOTHING EFFECT AND LARGE TIME BEHAVIOR
OF SOLUTIONS TO SCHRODINGER EQUATIONS
WITH NONLINEARITY OF INTEGRAL TYPE

Dedicated to Professor Sigetoshi Kuroda

on the occasion of his seventieth birthday

T.OZAWA AND Y.YAMAZAKI®)

Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan

ABSTRACT. We study the smoothing effect in space and asymptotic behavior in time of
solutions to the Cauchy problem for the nonlinear Schrédinger equation with interaction
described by the integral of the intensity with respect to one direction in two space
dimensions. A detailed description is given on the phase modification of scattering
solutions by taking into account the long range effect of the interaction.

§1. INTRODUCTION

We study the nonlinear Schrédinger equation
, 1
z@tu+§Au:f(u), (1.1)

where u is a complex-valued function of time and space variables denoted respectively
by t € R and (z,y) € R?,0; = 9/0t, A is the Laplacian in space R?, and f(u) is the
nonlinear interaction given by

x
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lu(t, ', y)|2dx’> u(t,z,y) (1.2)

with A € R. The equation (1.1) with integral type nonlinearity (1.2) appears as a
model of the propagation of laser beams under the influence of a steady transverse
wind along the z-axis [1,4,32] and as a special case of the Davey-Stewartson system
where the velocity potential is independent of y-variable [2,6-8,13,14,16,22,28].
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In spite of a large literature on the nonlinear Schrodinger equations (see for in-
stance [5,9,23,24] and references therein), there are few results on the equation (1.1)
with a special nonlinearity (1.2) [1,4,21]. The existence and uniqueness of global solu-
tions to the Cauchy problem for (1.1) is proved in the usual Sobolev spaces H™(R?)
with m > 1 [4] and in the Lebesgue space L?(R?) [21]. It is also noticed that a smooth-
ing effect takes place only in y-variable when measured by the spatial integrability
properties [21]. The existence of modified wave operators is proved on a dense set of
small and sufficiently regular asymptotic states [21] (see also [10-12,15,17,20,31]).

The purpose of this paper is to describe smoothing properties of solutions to the
Cauchy problem for (1.1) in terms of the generators of Galilei transformations and
large time asymptotics of small solutions in terms of the free propagator with phase
modifications.

To state our results precisely, we introduce the following

Notation. LEL] = LP(Ry; LY(Ry)), LELE = L9(Ry; LP(R,)) with norms
o LG = s 241 Z21, Nos L3221 = s £21): 25

LP = LP(R?) = L2LP = LPLP. Similarly, LEHS = LP(R,; H*(Ry)), LPHS =
Lp(Ry;HaoRx))a where Ha(Rm> = (_Aw)_a/2L2(Rw)’Ha(Ry) = <_Ay)_a/2L2<Ry>a
and (—A;)*/? and (—A,)*/? are fractional powers of minus Laplacians —A, in
R, and —A, in R, with a > 0, respectively. H*# = LgHg‘ N LgHg with norm
l|u; HP|| = Max(||u; LZH;‘H, || LgHgH) Fourier transform of functions on R? with
the associated partial Fourier transforms F, and F, is given by

Fulen) i) =5 [ [ ew(-ige — iny) u(w.y) dudy

= (27?)1/2/ exp(—iéx) Fyudr = (2%)1/2/ exp(—iny) Fr udy.

U(t) = exp(i(t/2)A) = exp(i(t/2)A;) exp(i(t/2)A,) denotes the free propagator
acting on functions on R?, which is realized as the Fourier multiplier with symbol
exp (—i(t/2)(¢% +n?)) and is factorized as

U(t)= M(t)D(t)FM{(t) (1.3)
for t # 0, where M (t) = exp (i(z® +y*)/(2t)) - and D(¢) is the dilation operator
defined by

(D)) (z,y) = (i) "t a, t™1y).

A natural factorization associated with (1.3) in = and y directions is given re-
spectively by means of partial multiplications M, (t) = exp (iz?/(2t)) -, My (t) =
exp (iy?/(2t)) -, partial dilations given by

(Da()y) (x,y) = (i) 2(t 2, y),
(Dy ()9 (,y) = (it) "2, 1),



and partial Fourier transforms F,, F, as

U (t) = exp (i(t/2)As) = My (t) Dy () Fou My (t),
Uy<t) = exp (i(t/Q)Ay) = My(t)Dy(t)fyMy(t)-

The generators of Galilei transformations are denoted by J = (Jg,J,) = (x +
it0y,y + it0y) = (x,y) + itV.
The operators J are represented as

J = (Ua(O)2Ux(—t) , Uy (t)yUy (1))
= (M (t)itOp My (—t), M,(t)itd,M,(—t)).
We use explicit formulas for the fractional powers |J,|* and |J,|* as

‘Jx|a — Ux(t)‘x’aUa,;(—t) _ Mx(t) (—t2Am)a/2

T, = Uy (O)ly]*Uy (=) = My (1) (—2A,) " M,(~1)

Ml‘(_t)7

with o > 0 [19].
We consider the Cauchy problem for (1.1) with data u(ty) = ¢ at time ¢o in the
form of the corresponding integral equation

u(t) = U(t — to) — z/t Ut — ) (ult')) dt’ (1.4)

The integral equation (1.4) is studied by a contraction argument in a closed ball of
the following function space

X(I)=C(I;L*)n ﬂ L (I LLy)
0<2/q=1/2—1/r<1/2

for [to — T,to + T] with T'> 0. We use related function spaces defined by

X =C(R;L*) N N LY (R; LLy),
0<2/q=1/2—1/r<1/2
Xioe = C (R; L*) N M L,
0<2/q=1/2—1/r<1/2

YP(I) = {u e X(I);|J.|%u € X(I), |J,|Pu e X(I)},
VP = {u € X;|J,|% € X, |J,|Pu e X},
V2P = fu € Xioe; [ Jo]u € Xioe, |y u € Xjoe}-

loc

(RyL7Ly),

We now state basic existence and uniqueness results.
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Theorem 1. Let tg € R and let ¢ € L?>. Then the equation (1.4) has a unique
solution w € Xjo.. Moreover, u satisfies the conservation law of the L? norm :
[u(t); L?|| = [|¢; L?|| for all t € R.

Theorem 2. Let j, k be nonnegative integers.  Let ¢ € L? satisfy |x|/U(— to)qb,
ly|*U (—to)¢ € L2. Then the solution u of (1.4) given by Theorem 1 satisfies u € Y

loc

Remark 1. The Cauchy problem in L? has been studied in [21]. The function space
Xioe 18 smaller than that used in [21].

Remark 2. Theorem 2 describes the smoothing properties of solutions in terms of
the generators of Galilei transforms. No regularity assumption is made on the Cauchy
data.

To describe the large time behavior of solutions of (1.4) with small Cauchy data,
we introduce modified free dynamics for ¢ € L2 NF (LiL;O)

() = U(t) exp (—iS«(t, —iV)) o,
vy (t) = U()M(~t) exp (=iSx(t, —iV)) p
= M(t)D(t) exp (=iSx(t,")) P,
vE(t (t) = exp (—iSe(t,t 'z, t7'y)) Ut)
= M(t)D(t) exp (—iS+(t,-)) FM(t) o,

where
xT

Su(t,z,y) = £\ / 1B (', ) da’ log 1]

—

For p, po > 0, we define B (p, po) = {¢ € L2NF(H*P); ||¢; L*|| < po, [|¢; H*?|| < p}.

Theorem 3. Let o and 3 satisfy 0 < a < 1/2, 3 > 0. Let ¢ € L? satisfy
2T (~t0)¢, [y|"U(~to)¢ € L*. Then :
(1)The equation (1.4) has a unique solution u € Yl'gc’ﬁ.

(2)Let 0 < a < 1/2 < B <1 and let tg = 0. For any py > 0 there exists p > 0

with the following property: For any ¢ € B (p, po) the solution given by (1) satisfies
uwe Y and
lu(t); L2L | = Ot 7%)  as ¢ — +o0.

(3)Let u be the solution given by Part (2). Then, there exist unique ¢+ € L? N
f(LiL;O) such that for sufficiently small € > 0

| FU(—t)u(t) — exp (—iS4(t, ) dr; L2 N LiL;oH =O(|t|™9) as t — +o0.



Moreover, u satisfies
lu(t) = v (0 L2 = O(lt ™) as ¢ — Foo,
for j =1,2, and

|u(t) — vi(t); L2|| — 0 as t — +oo.

Remark 3. No regularity assumption is made on the Cauchy data.

Remark 4. In Part (2), smallness assumption on the Cauchy data is made with
respect to its homogeneous weights. The L? norm of the Cauchy data need not be
small, while its homogeneously weighted norm should be relatively and sufficiently
small. For instance, data of the form e Y(e 1z, e ty) with e > 0 sufficiently small
fall within the scope of Part (2). The available literature, however, does not cover
those data since the L? norm of the data is also required to be small [15,17,18].

We prove Theorem 1 in Section 3. The method is almost the same as in [21]
except that L?CLEO norm is used instead of weaker norm L;OLQ%, since the former is
necessary for Theorem 3. We prove Theorem 2 in Section 4. The method depends
essentially on that of Theorem 1 with regularity in terms of Galilei transforms. We
prove Theorem 3 in Sections 5,6, and 7, following basically the method of Hayashi
and Naumkin [15,16,17] (see also [18]). The following ingredients are new and nec-
essary to provide improvements, however. First, our method depends exclusively on
a contraction argument and is independent of a contradiction argument in [15-18].
Secondly, our method depends exclusively on the generators of Galilei transforms
and is independent of the usual regularity argument. This enables us not to impose
any regularity assumption on the Cauchy data. Thirdly, our argument treats the L?
norm and weighted norms separately for the Cauchy data as well as for solutions.
This enables us not to impose smallness of the L? norm of the Cauchy data. Lastly,
asymptotic formulas in Part (3) are simpler than those in [15] and uniqueness of
asymptotic states in those formulas is also proved.

§2. PRELIMINARY ESTIMATES

In this section we collect some basic estimates of the free propagator U(t) and the
nonlinear term f(u) in the anisotropic space.
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Lemma 2.1. U(t) satisfies the following estimates:
(1) Let r and 6 satisfy 2 <r < oo, 6 =1/2—1/r. Then fort # 0

T =6 r’
U ()¢ Lz Lyl < 2xt)) ™" llgs L2 Ly, |- (2.1)

(2) For any (q,r) with 0 <2/q=1/2—1/r <1/2

IU(-)¢; LY(R; L3 Ly)|| < Cl¢; L. (2.2)

(8) For any (qi,71) and (q2,7r2) with 0 < 2/q; =1/2-1/r; <1/2, j =1,2, for
any interval I C R which may be unbounded, and for any tq € I the operator Gy,
defined by

(Guoou) (£) = / Ut — ¢ )u(t)dt! (2.3)

to

satisfies the estimate
|Grou; LD (I; L2L) || < Cllus L2 (I; L Ly | (2.4)
where C' is independent of I and ty.

Proof. See [21], where the lemma is stated in a weak form, though the proof there
works with slight modifications. For a general framework, see [5,9,23,24,34]. QED

Lemma 2.2. Letr;, 0 <j <3, satisfy 1 <r; < oo and 1/ro =1/r1 +1/ra + 1/73.
Then

1
(1) m 3
I / (o08) (&' y)da’s Lo L2)| < T s L7 121

—0

J=1

(2) For any o with 0 < av < 1/2

x 3
or [ (aba)a' )da's L 2| < Clons Ly 2 T g 7 Z2).
_Oo 1

(8) For any 8 with 0 < § < 1

x 3
o [ (o) @' )da’s L2 < O3 g L2085 T s 2L
—o0 =1 k£



Proof. For Part (1), see [21]. To prove Part (2), let

ooy = | " (o) (@, y)da’

and we estimate the product ;¢ in HY using Leibniz’ rule [25] as
lr0s HE Il < (=20)2(410) = 91(=20) %0 — (= 20) y1; LY

+ |1 (—A)* 20 L2|| + [Jo(— Ay )/ 2qp1; L2 ||
< Ollg; LN (= Ag)® by L2 + [lobn (—As) ¥ %0; L2

The first term on the RHS of the last inequality is bounded by
93 L3N lbs; L2 lr; Hel,
while the second term is represented in terms of the Hilbert transform H as
[ H (= 20) D72 (i) L,

which is estimated by the generalized Holder inequality in the Lorentz spaces [29,30]
as
Clliprs L2/ 0202 | H (=8,) D/ (ipa); LY/

We now use the boundedness of the Hilbert transform and the Riesz potentials in
the Lorentz spaces:

(—Am)—a/Q : Li — L%Q N Li/(l—2o¢),27
(—Am)_(a—l)/2 : L; N L;/a,oo,
H: LYoo . pl/ee

(see [27,35] for instance). Collecting these estimates above, we obtain
. . 3
lorps H || < Clloo; H || [T s L211
j=2

Then, Part (2) follows from the Holder inequality in y-variable. We now prove Part
(3). We estimate 1 in Hg using Leibniz’ rule [25] as above to obtain

lvor; HY | < Cllps L || lvh1; HY | + Cllvbr (—Ay)* 205 L]
This implies that

lrs L2H || < Cllgs L2 |9n; L2 H || + Cllior (=) 2 L2
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For the first term on the RHS of the last inequality, we estimate
3 3
s L2 < TT Ihess L2l L2l < T s 22257
j=2 j=2

while the second term is estimated as
o1 (=2y)720; L2 < lltpn; L2 I(=Ay) 205 L2 L |
< llbas L LI (=) 72 (hatps); L Lo |
< s LIL N 1(=Ay) 72 (ota); Ly L |
< Cllprs LEL I 02 L2 I(=2y) 24a; L |1; Ly |
+ Cllons LILZ w35 Ly [11(=Ay) P 243 L |l; Ly |

2

< O T s LELP I 11(=Ay)724s; L2
j=1

+C T I LR - I1(=2y) 7 2uas 12,
#2

where we have used the Holder and Minkowski inequalities and Leibniz’ rule [25].
Collecting these inequalities yields Part (3). QED

§3. PROOF OF THEOREM 1

For T' > 0 we define X (I) with I = [to — T,to + 1] as in the introduction and
equip X (/) with norm

ull[ = flu; L2 (5 L) + us LT LLLE) -
For ¢ € L? and u € X (I) we define
(@(u)) (t) = U(t —to)d — i (G, f(u)) (£). (3.1)
By Lemmas 2.1 and 2.2, we obtain

@)l < Cllg; L?|| + C|I f (w); L>(I; LEL,)|

< Cl¢s L + C||f (u); LY*(I; L, L2)|

< Cll¢s L + CTY?|jus L (I; LL2)|1 - |lu; L*(1; LY L2) |

< Cllg; L2|| + CTV?||[ul|?, (3.2)



9

where we have used the Minkowski and Holder inequalities. Similarly, for u,v € X (1)
we obtain

[1@(u) — @@)[I| < CTY2(Illulll + [[o]]1*) [[[u = olll- (3-3)

By a contraction argument with (3.2) and (3.3), for any ¢ € L? there exists T > 0
depending only on ||¢; L?|| such that (3.1) has a unique fixed point u € X (I). The
rest of the proof proceeds in the standard way as in [5,9,24,33] and is omitted. QED

4. PROOF OF THEOREM 2

Let ¢ € L? satisfy |2]7U(—tg)¢ € L? with j > 1. For any T with 0 < T' < 1 we
define Y70(I) with I = [to—T,to+T] as in the introduction and equip the closed ball
Bpr of Y79(I) with radius R > 0 and center at the origin with the metric associated

with the norm ||| -||| in the proof of Theorem 1. By the argument in [23,24] it suffices
to show that ® leaves Bg invariant for some R > 0. Let u € Bgr and let
o) = [ Jult.a' )P (@.1)

Then, by the relation JJ = M, (itd,)? M1, we obtain
T3 (f(w) = g(u) J{u

+ A Z j!(—l)kQ Jklu.m.JICBu (4 2)
) — 1 ool 150 T 2 U )
k1+ko+ks=75—1 (] kS)kl kQ. ]{,‘3,

We estimate the RHS of (4.2) in L*/3(I; L,L?). By Lemma 2.2, the first term is
estimated as

lg(u)Ju; L3 (15 Ly L2)|
< CT"?|lu; L (1; L?)||? || Jiu; L*(I; LPL2)|| < CTY/2R3. (4.3)
If k1 + ko + ks =7 —1 >0, then by the Holder and Gagliardo-Nirenberg inequalities

we have

- 3
|75 TEa- TRy L2 < T 15w L20-D/4)|

1=1
3 . .
< C T s L0 (1w L2 = Cllus L3 (|J5u; L, (4.4)
=1
where §; = % — 5 (];'l_1) + % This yields

|5 - i - Jysu; LY3(1; Ly L2)|
< CTY?|ju; L*°(1; L?)||* || J2u; L*(I; L L2)|| < CTY? R, (4.5)
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By Lemma 2.1, (4.3), (4.5), we have
2@ < ClllelU(=to)¢; L?|| + CT*/? R?, (4.6)

which implies that Bp is invariant under ® for some R > 0, as was to be shown.

We now let ¢ € L? satisfy |y|*U(—t¢)¢ € L? with k > 1. For any T > 0 we define
YO*(I) with I = [to — T,to + T as in the introduction and equip the closed ball Br
of YOF(I) with the metric induced by ||| - |||. We prove that ® leaves Bg invariant
for some R > 0. For u € Br we have

k(=12 (= . — |
Te(fw)=x > TZ,;S,/ Jiu- JPuda' - JPu. (4.7)
Jitjatis=k < ST I0T MTO0

We estimate the RHS of (4.7) in L!(I; L?). By the Gagliardo-Nirenberg and Hélder
inequalities, we obtain with §; = j;/k

2
||Jg]f (f(u); LY <C Z I H ||J§lu;L§k/Jl||; LY |32 Lik/m”
Jitje+is=k =1
2
<C 3T T B s 31 s L3 s L
Jitjetis=k 1=1

2
<C Y Tl L2210 ([T L)% - ffus L2 || || TFus L)1,
J1+je+is=k I=1

from which we obtain

175 (f(u)); LN (I; L?))|

3
<C > N s L2Lg I 0 [ ws L2 LA ()|
Jitje+is=k =1
< Clllw; LZLE |2 Ty w; L2 L) |
< CTY2||u; LA(I; LI L) ||y w; L(1; L)|| < CTV? R (4.8)

By Lemma 2.1 and (4.8), we have
117y @(w)ll| < Cllly/*U(~to)s L*|| + CT*/* R?,

which implies that Bp is invariant under ® for some R > 0, as was to be shown.
QED
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§5. PROOF OF THEOREM 3, PART (1)

For any T > 0 we define Y*#(I) with I = [tg—T,to+T] as in the introduction. As
in the preceding sections it suffices to show that ® leaves the closed ball Bg of Y (I)
with radius R > 0 invariant for some R. Let u € Br. We estimate |J,|* (f(u)) in

LA3(I; LLL%). By Lemma 2.2 with ¢y = ¢3 = M ' u and 1, = Mz ' u, we have

1Tl (f (u)); L2 (1 Ly L)

= [(=#22,)%2 (F(M; " w)) s LY3(1; L L2) |

< CT2||u; L (L3 L)|* ||| T “us L*(I; Ly L) | < CT'/? RP. (5.1)
Similarly, we estimate |J,|? (f(u)) in L*(I; L?) as

11917 (f (w)) s LM L2

= [I(=£24,)°" (F(M, * w)) s LY(1; L2)]

Y
< CT2 ||u; LI LR L)1 (1 7y 1P L(I; L2)|| < OT/? R, (5.2)
Then Part (1) follows from Lemma 2.1, (5.1), and (5.2). QED

§6. PROOF OF THEOREM 3, PART (2)

Throughout this section we fix & and § as 0 < a < 1/2 < < 1 and we put
0 = 1/20, so that 0 < # < 1. Moreover, we consider the case ¢ > 0 only since the
case t < 0 may be treated similarly. We first prove the following lemma.

Lemma 6.1. For any t > 1, the following estimates hold.
1Fus LELY? || < C||Fus LIH || [fus L7
| FU L, LiL;OH < O||FU 1 u; L2H5||9||u; L2+,
IFMU s LY L < Ol FU s L HY||fu; L2
(M — 1)U u; L)) < Ct 2| FU  uy HP).
|F(M — 1)U s L2L°|| < Ot~ =002 7U—Lu; HP||.
lus L2L° || < Ct V2| FU s L2L? || + Ct /2= =002 7y —tu; B,

Proof. For (6.1) we apply the Gagliardo-Nirenberg inequality in y-variable, the
Holder inequality in a-variable, and the unitarity of the Fourier transform in L? to
obtain

1Fu; LI | < Ol Fu; Hy |1°|Fus Ly |~ L3 |
< C||Fu; L2H |1 flus L],
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Estimate (6.2) follows from (6.1) and the unitarity of the free propagator U(t). For
(6.3), we apply (6.1) to obtain

|FMU s LILY |

< C|FMU s LZHY||* | MU~ u; L2170

= O|lly|” MU u; L2||° |ju; L2||*°

= Clllyl°U s 2| |lus L2~ = C|FU s LEH | flus L2

For (6.4), we use the estimate

[M(t) =1 = [Mz(t)(My(t) = 1) + (M () = 1)|
< My () = 1| + |Mq(t) — 1]

< Min (2,¢"[y[?) + Min (2,¢|z|?)

< CtPPRy)P 4 Ot/ |z

< Ot/ (|2]* + [y°)

to obtain
(M = 1)U s L2 < O (||| *U ™ s L2+ |||yl U~ s L2]])
< Ot~ FU Yu; HYA).
For (6.5), we use (6.1) and (6.4) to obtain
|F(M = 1)U s LILY |

< CI|F(M = 1)U s LY |°)|(M — 1)U s L2
< ClllylP U™ s 27| (M = 1)U s L2
1-6
)

< O|FU u; HBP (t—a/2\|fU—1u;Haﬁ

= Ot~ =02 FU~ uy HP|.
For (6.6), we estimate u in L2L:° in the form
uw=MDFU 'u+ MDF(M — 1)U tu

as
Jus L2L32 | < 672 FU~ s L2LE2 | + ¢ 2| F(M = 1)U~ ws 2L

where we estimate the second term on the RHS by (6.5). QED
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Let pg > 0 be given. For €, p > 0 to be determined later, we define the following
set X¢ (p, po) of functions over the time interval [1,00) as
Xe(p,po) ={u e C([1,00); L?) ; FU(—t)u(t) € L7L° N HYP ae. t,
[l L (1, 005 L2)I| < po, [[[ullle < o},

where

[ul]le = Max(Ess. Sup, s, | FU(—t)u(t); L2Ly|,
Ess. Sup;>, N FU(—t)u(t); HO‘BH)

Let ¢ € L? satisfy ||¢; L?|| < po and FU(=1)¢p € H*P and let v € X (p, po). We
consider the integral equation

o(t) = Ut — 1)§ — z/l Ut — )g (u(s)) v(s)ds, (6.7)

where
X

g (u(t)) = A / fut, o/, )P’

— 00
As in the arguments in [34] and in the preceding section, the equation (6.7) has a

3 3 Oé,ﬁ
unique solution v € Y )".

Proposition 6.1. Let pg > 0. Let € satisfy 0 < e < (1 —0)a/ (2(2+ 0)). Then there
exists p1 > 0 with the following property: For any p with 0 < p < p1 and any ¢ € L?
with ||¢; L?|| < po and | FU(=1)¢; H*?|| < p/2, v € Xc (p, po)-

Proof. Applying U(—t) to both sides of (6.7), we have

Differentiating both sides of (6.8) in ¢, we have

Oy (U(=t)o(t)) = —iU(=t)g (u(t)) u(t).

This implies

%HU(—t)v(t); L?||* = 2Re (0:(U (=t)u(t)), U(=t)v(t))
= 2Im (U(=t)g (u(t)) v(t), U(=t)v(t))

= 2Im (g(u(t))v(t), v(t))
=0
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and therefore

lo(®); L2[| = 1T (=t)v(t); L?|
= [|U(=1)o(1); L*|| = ||é; L*|| < po.

Applying U(—t)|J|* = |z|*U(—t) to both sides of (6.7), we have

t
U (=), *0(t) = 2] (~1)§ — i / U(=8)|Ju|" (g(u)o) (s)ds.
Differentiating both sides of (6.10) in ¢, we have
U (=) |*0(t) = iU (—0)|Ja]* (g(u)o) (2).
This implies
D Talo(); L2 = L0 (=) 2l 0); L)1
dt xT bl dt X 9

= 2Im (|J|* (g(w)v) , [J2]"v)
< Ol o] L2|[||u; L2 LgE ([[Jo; LELGE (112103 L2,

where we have used Part (2) of Lemma 2.2 with the relation
| T | = M, (t)(—t2A,)*/2 M, (—t). Since u € X, (p, po), we have

d
Sl 2] < Cp*t =12 ||, L2LS°|

Y

and therefore

Y

t
17210 (®); 2] < [T (=1)¢; L +Cp2/ s~ u(s); LILy® | ds.
1

Similarly, we obtain
t
117 1Po(2); L2 < ly|°U(~1); L] +CP2/1 sV o(s); L3 Ly || ds.
By (6.11), (6.12), and (6.6), we have
IFU(=t)o(t); HP|| < | FU(=1)d; HP|

t
+ Cp? /1 s FU(—s)v(s); LiL;oHds

t
Lo /1 e (0072 £U (_g)o(s); || ds.

(6.9)

(6.10)

(6.11)

(6.12)
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Since (1 — #)a/2 — e > 0, Gronwall’s inequality yields

|FU(—t)u(t); H*P|
< exp (Cp?) |FU(-1)$; H*P

t
+ Cexp (C’pQ)pz/l sTINFU (—s)v(s); LL:Y|ds. (6.13)

We now consider FU(—t)u(t) in L3 L3°. Taking the Fourier transform on both sides
of (6.8), we have

FU(=t)v(t) = FU(-1)p — z/l FU(—s)g (u(s)) v(s)ds. (6.14)

Differentiating both sides of (6.14) in ¢ and making use of the factorization
U= MDFM, we compute

i0y (FU ) = FU ! (g(u)v)
= FM*F DM (g(u)v)
=FM ' F D7 (g(M ™ u)M 1)
=t '"FM ' F (9(D'M ') D' M)
=t '"FM ' F (g(FMU 'w)FMU 'v)
=t (g(FU ') FU v+ 1+ 1), (6.15)

where

I=g(FMU T W)F(M — 1)U v+ (g(FMU 'u) — g(FU 'u)) FU ',

I=FM-1)F " (g(FMU ') FMU 'v).
By (6.15),
t
0% (exp(i/ g(}"U_lu)s_lds)}"U_lv)
1

= exp (z /lt g(fU—lu)s—lds) NI+ 1). (6.16)



16

By Lemmas 2.2 and 6.1, we estimate [ in L%L;O as

|1 I2L | < | MU~ 2L || F (M — 1)U~ s 2L
FIFO = U~ s L2 | FMU— s 2L || FU~ s 2L
FIFU s L |F(M — DU s 2L [ FU~ 0 L2L|

< & (1P~ s LD us L21°) | — U~ 0 L2
+ Ot~ (=992 FU—ty; A8
< Cp20 220420 (1=0)0/2) T7 =1y fod|

|1 FU u; L2HE )| Ju; L2~ FU o L2LY||

Y

+ Cp1+0pg.]—9t(1+9)6—(1—9)@/2 ||f'U—1U; LiLOOH

> (6.17)
Similarly, we estimate I in L?CL;O as
| L2L3°|| < Ot =0902) | g(FMU u) FMU oy HP||,
Hg(fMU—lu)fMU—lv;LngH
< CO|FMU 'y LI ||| FMU ™ LjH;;H
< Cp*py | FUT o LY H ),
||g(fMU—1u)fMU—1v;L§H5H
< CI|FMU LinH |FMU s LZL° || FMU ™ o; L2LY?|
+ C|FMU s L2LP ||\ FMU s L2ZHY |
< Cp' 0yt FU v L2ZHP||||v; L2
+Cp? g | FU o L2 HY |
to obtain
|3 L2LY || < Cp* pg 2020 (=002 FU—1y; P
+ C’p1+9,0(1)_9t(1+9)6_(1_9)0‘/2||}"U_1v; Ha,ﬁ”@H,U; L2||1_9.
(6.18)

Integrating (6.16) over the time interval [1,¢] and estimating the resulting time inte-
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gral in L2L3° with (6.17) and (6.18), we obtain
|FU oy L2LYY |

= || exp (z/l g(fU_lu)s_lds> ]:U_lv;LiLgoH
t

< \|fU(—1)¢;L§L;°||+/ I+ I L3 LY || ds

< [|FU(-1)¢; L3LY||

+ Cpl—i-@pé—Q / S—l—(l—@)oz/Q—i—(l—l—@)eHJT'U—1U; LiL;O ||d8
1

t
+Cp20 2— 29/ S—l—(l—@)a/2+(1+0)6Hf'U—lv;HayﬁHds
1

[*llvs L'~ ds.

t
+ Cp1+9p(1)9/ S—l—(l—@)a/Q—i—(l—‘,—G)e||f~U—1U; Hoz,ﬂ
1

Since (1 — 0)a/2 — (1 + 0)e > 0, Gronwall’s inequality yields
|FU s LL:Y||
<exp (Cp'py ™) | FU(-1)e; LEL ||
+ Cexp (Cp1+9p(1) 9) p29p(2) 29/ 8_1_(1_0)a/2+(1+9)€HfU_IU; Hoz,ﬁHdS
1

+ Cexp (CptT0p=%) pt+0pg=*

t
/ s_l_(l_e)a/2+(1+9)€H]—"U‘lv;Ho"ﬁ|\9Hv;L2Hl_9ds.
1

(6.19)
The last integral on the RHS of (6.19) is bounded by
t
/ S—l—(1—6)a/2+(1+0)eHfU—lv;I_'[a,ﬁHGpé—BdS
1
t
< Cpo + C/ s 1= (1=0)a/24A+0)e) Trr—1y: FB||ds, (6.20)
1

where we have used (6.9). The last integral on the RHS of (6.20) is the same as the
first integral on the RHS of (6.19). We substitute (6.13) into the last integral on the
RHS of (6.20) to obtain
¢
/ 8—1—(1—9)a/2+(1—|—9)e||FU—1U; Ha,BHdS
1
< Cexp (Cp?) |FU(-1)d; H*|

t
+ Cexp (Cp?) p? /1 s 1= (1=0)a/24(240)e) Fr =1y, LiLonds. (6.21)
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Collecting (6.19), (6.20), and (6.21), we have
|FU oy LILYY|
< Cexp (Cp' ™) (IFU(=1)d 2L || + p 40 p3 ")
+ K[| FU(=1); H*7|

t
+Kp2/ s_l_‘sH]:U_lv;LiLZOHds, (6.22)
1

where § = (1 — 0)a/2 — (2 + 0)e and K = Cexp (C(p? + ptt0ps” 9)) (p*0p2~2% +

p't?p™?). Since § > 0, Gronwall’s inequality yields

|FU— e L2L
< Cexp (C(Kp* + p 00§ ™)) (IFU (=165 12|70 4+ 1+ g3~
+ Cexp (CKp?) K |FU(-1)¢; H*P||, (6.23)

where we have used (6.1).
Substituting (6.23) into (6.13) and denoting by R the RHS of (6.23), we have

|FU oy H*P|| < exp (Cp?) |FU(=1)¢; H*P|| + C exp (Cp*) p* Rt (6.24)

The proposition follows from (6.23) and (6.24) by taking p sufficiently small. QED

For uq,us € X (p, po) we define

d(ui,uz) = Supysy t°Jur(t) — ua(t); L.

Proposition 6.2. X, (p,po) is a complete metric space with respect to d.

Proof. Let {u,} C Xc(p,po) be a Cauchy sequence with respect to d. For any
9 > 0 there exists N such that for any m,n with m,n > N, d(uy,,u,) < d. For any t,
{un,(t)} is a Cauchy sequence and has a limit u(t) in L?. For any n > N, t=¢ |ju, (t) —
u(t); L?|] < §. This implies that d(u,,u) — 0. Moreover, |u(t); L?|| < pg. Since
t || FU(=t)un (t); H¥B|| < p, for a.e. t, t= || FU(=t)u(t); H*?|| < p. By Lemma
6.1, FU(—t)u(t) € L3L° for a.e. t. Let 1 € L* N L2 L} satisfy ||¢; L2L}|| < 1. Then
(FU(=t)u(t), )] = iy o [(FU(—H)un(8), 0)] < Supy [FU(—t)un (£); 2L
< p and therefore || FU(—t)u(t); LZL°|| < p. This proves u € Xc (p, po)- QED
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Proposition 6.3. Let ¢ and p1 be as in Proposition 6.1. Then for any p with
0 < p < Min (pl, 61/2/00) for some constant Cy > 0, the map u — v is a contraction
on X (p, po) with respect to d.

Proof. Let uy,us € Xc (p, po) and let vi,vy € X, (p, po) be solutions of (6.7). Then

v1(t) —wva(t) = —i/l Ut —s) (g(ur)vy — guz)ve) (s)ds.

In the same way as in the proof of Proposition 6.1, we obtain

d d .._
Sl = vas AP = U (0 = wa)s L2

= 2Re (ﬁt(Ufl(vl — ), U vy — 7))

= 2Im (g(u1)v1 — g(uz)ve,v1 — v2)

=2Im ((g(u1) — g(uz))v1,v1 — v2)

< O (llur; LLPN| + lluz; L L) llur — was L2 [loas LELGE [ [lor — va; L2|
< CpPt™Hur — ua; L2||[lor — was L.

This implies

t
lvr (8) = w2 (t); L] < sz/ s Jui(s) — uz(s); L?||ds
1
< sz 6_1 t€ d(ul,ug)

and therefore
d(vi,v2) < Cp? e d(ur, uy).

This proves the proposition with Cy > C'/2. QED

Proof of Theorem 3, Part (2). )
It follows from Propositions 6.1, 6.2, and 6.3 that for any ¢ € B (p/2,po) there
exists a unique solution o € X, (p, pg) of the integral equation

at)=U(t—1)¢p — z/l Ut — s)g(@)a(s)ds. (6.25)

It follows from Part (1) of Theorem 3 that for any ¢ € L? N F(H*P) there exists a
unique solution u € Yl';c”g of the integral equation

w(t) = U(t)p — i /O Ut — )g(uw)u(s)ds. (6.26)
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Let po = ||¢; L?||. In the same way as in the proof of Proposition 6.1, we see that the
solution u of (6.26) satisfies

d L T2112 d o L T2112

Dty 212 = S U (-tu(e): 222 = 0 (6.27)
d . . .
EH]:U(—t)U(t);LiﬂfHQ < Cllu; L2L? P | FU (—t)u(t); L2 H] |12, (6.28)
d ge 0o ro
%HfU(—f)u(t);Lf,Hx 12 < Cllu; YL |IP| FU (= t)u(t); L2 H |, (6.29)

By (6.27),
[u(t); L*|| = po- (6.30)

By (6.28) and (6.29),

|FU(—tyu(t); HP|| < ||g; HP

Jexp (CH12Jus LY0,6 L2LT) ), (6.31)

where we have used Gronwall’s inequality and the Holder inequality in ¢. In partic-
ular, we have from (6.30), (6.31)

lu(1); L2[| = po, (6.32)

IFU(=1)u(1); H*?)| < s H* |l exp (Cllus L*(0,1; LILY) ) - (6.33)

By the argument in the proof of Theorem 1, we note that ||lu; L*(0, 1; L L;°)|| depends
on the data only through ||¢; L?|| = po. Hence there exists p > 0 such that for any
¢ € B(p/4,po), u(l) € B(p/2,po). Taking p smaller if necessary, with data ¢ = u(1)
we have the solution 4 of (6.25). We define v(t) = u(t) for t € [0,1] and v(t) = a(t)
for ¢t € [1,00). Then v satisfies

o(t) = Ut — 1)&—1'/1 Ut — $)g(v)o(s)ds
— Ut —1)u(1) — i /1 Ut — $)g(v)o(s)ds
=U(t)p — @'/O Ut —s)g(u)u(s)ds — 1/1 U(t — s)g(v)v(s)ds

=U(t)p — i/o U(t — s)g(v)v(s)ds.

By uniqueness for (6.26), we have u = v, so that u € X (p, po). This proves Part (2)
by changing p in the statement of the theorem. QED
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§7. PROOF OF THEOREM 3, PART (3)

Let a, 3,0, € be as in the preceding section. Let § = (1 — 0)a/2 — (20 + 1)e > 0.
Let u be the solution given by Part (2). Therefore u € X, (p, po) on the time interval
[1,00). We consider the asymptotic behavior of FU(—t)u(t) in L? N L2L°. For that
purpose we define

w(t) = exp <Z /1 t g(fU—lu)s—lds> FU(—t)ut). (7.1)

In the same way as in (6.16), we have

t
i0yw(t) = exp (z/ g(fU_lu)s_lds> tHI+ 1), (7.2)
1
where

I =g(FMU'W)FMU u — g(FU ) FU tu,
I=FM-1)F gFMU w)FMU  u.

In the same way as in (6.17) and (6.18), we have

|13 2L+ 15 L2 < O, (7.3)

xT

Here and hereafter, we omit explicit dependence of constants on p and pg. Similarly,
we have

|1 L2 + |1 L7 < . (7.4)

Integrating both sides of (7.2) in ¢ and estimating the resulting time integral in
L? N L2L:°, we obtain from (7.3) and (7.4)

|w(t) —w(s); L2 N LiL;OH <(Cs? (7.5)

for any t,s with ¢ > s > 1. Tt follows from (7.5) that there exists wy € L* N L2L°
such that
lw(t) —wi; L2 N L2LYC| < Ot° (7.6)

for all t > 1. We now define

@b(t):/l (9(w(s)) = g(w(t))) s~ ds. (7.7)

Then we have fort > s> 1

P(t) —(s) = / (g(w(r)) = g(w(t))) 7~ dr — (g(w(t)) — g(w(s))) logs  (7.6)
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and therefore
[9(t) = (s); L]
<c / leo(r); 2L + w(); L2L5E ) wo(r) — w(t); 2L 7~ dr
+C () L L || + lw(s); LLLE ) lw(t) — w(s); LILyY || log s
< C/t7_1_5d7+ Cs%logs < Cs°(1+logs), (7.7)

where we have used (7.5). It follows from (7.7) that there exists ¢, € L such that
I (t) = @5 L] < Ct° (1 + log ) (7.8)
for all t > 1. By (7.6), (7.7), and (7.8), we obtain

I [ oo~ ds = gttt — 51
= (&) = ¥4) + (9(w(t)) — g(wy)) logt; L]
< () = s L) + C (lw(t); LILY|| + [lws; LILEN) lw(t) — wys LILY|| log ¢
< Ct7%(1+logt) (7.9)
for all t > 1. Since g(FU tu) = g(w), we have from (7.6) and (7.9)
IFU(~tyu(t) — exp (—ig(wy) logt — ity ) wy; L2 N LILYE |
< Jlw(t) — wy; L2 N LZLY |
¢
e = exp (i ([ atwto)s s gl loge - w2 ) ) wii 22 22257
1

<cr 6+cr|w+,L2mL2L°ouu/ s~Lds — glw, ) logt — w45 L
< Ct7°(1 +logt) (7.10)

for all t > 1. We define
¢ = F " (wy exp(—itpy)) . (7.11)
Then ¢4 € L> N F(L;L;°) and (7.10) is rewritten as

|FU (—t)u(t) — exp ( ig(é4) log t) b L2NIALP| < Cto(1 +logt),  (7.12)

from which existence of ¢ for the first asymptotic formula follows. We now prove
the uniqueness. let &, € L* N F(L2L;°) satisfies the asymptotic formula

|FU(—t)u(t) — exp < ig(®y)log t) L% N L2LY| — 0 (7.13)
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as t — oo. Then by (7.12) and (7.13),

exp (~ig(d1)logt) ¢+ — exp (—ig(d)logt) b1 L2 N LZLE| — 0 (T.14)
as t — oco. This implies
112 — 4 2 LY
= ||| exp (—ig(<5+) log t) 1 * — | exp (—ig(@) log t) EA
< (1645 221 + 145 L21)) | exp (—ig(6+) logt) by — exp (—ig(d+) logt) b5 L7
—> 0

as t — oo, which implies |¢| = |@,| and hence g(¢,) = g(D). Therefore, by (7.14)

164 — b1 L2 = [[exp (—ig(ds)logt) (b — b2 ) i L7
9(d

= [lexp (—ig(¢3+) logt> ¢4 — exp ( )logt) by L2 — 0

and hence ¢, = @, as required.
Finally, we prove other asymptotic formulas. By unitarity, we have

Ju(t) v (8); 2|
= u(t) = UF " exp (~ig(dy) logt) For; L7

= |FU(=)u(t) - exp (~ig(ds)logt) dy; L] < Ct7(1 + log),

where we have used (7.12). We use the last decomposition in the proof of Lemma
6.1 to write

u(t) —v3 (t)

— MD (J-"U(—t)u(t) —exp (—ig(g?m log t) g£+) + MDF(M — 1)U (—t)uft).
By (7.12) and (6.4), we obtain
() — 5 (1): 2] < | FU(t)u(t) - exp (~ig(dy) logt) dy: 17|

+ Ct=2|| FU (=t)u(t); HYP||
< Ct7%(1 4 logt) + Ot/
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We write u(t) — v (t) as

ut) —vi () =U(1 - M YU u+ MD <.7-"U_1u — exp <—z’g(¢3+) logt> q?>+>

+ M D exp <—ig(q5+) log t) F(l—M)py.

This implies

Ju(t) —vg (8); L2 < [|[(1 = MU s L2
+ [|[FU u — exp (—ig(<5+) logt) b4 L)+ (1= M)dy; L?|| — 0

as t — +oo, as was to be shown. QED
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