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Abstract. We study the smoothing effect in space and asymptotic behavior in time of
solutions to the Cauchy problem for the nonlinear Schrödinger equation with interaction
described by the integral of the intensity with respect to one direction in two space
dimensions. A detailed description is given on the phase modification of scattering
solutions by taking into account the long range effect of the interaction.

§1. Introduction

We study the nonlinear Schrödinger equation

i∂tu +
1
2
∆u = f(u), (1.1)

where u is a complex-valued function of time and space variables denoted respectively
by t ∈ R and (x, y) ∈ R2, ∂t = ∂/∂t, ∆ is the Laplacian in space R2, and f(u) is the
nonlinear interaction given by

(f(u)) (t, x, y) = λ

(∫ x

−∞
|u(t, x′, y)|2dx′

)
u(t, x, y) (1.2)

with λ ∈ R. The equation (1.1) with integral type nonlinearity (1.2) appears as a
model of the propagation of laser beams under the influence of a steady transverse
wind along the x-axis [1,4,32] and as a special case of the Davey-Stewartson system
where the velocity potential is independent of y-variable [2,6-8,13,14,16,22,28].
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In spite of a large literature on the nonlinear Schrödinger equations (see for in-
stance [5,9,23,24] and references therein), there are few results on the equation (1.1)
with a special nonlinearity (1.2) [1,4,21]. The existence and uniqueness of global solu-
tions to the Cauchy problem for (1.1) is proved in the usual Sobolev spaces Hm(R2)
with m ≥ 1 [4] and in the Lebesgue space L2(R2) [21]. It is also noticed that a smooth-
ing effect takes place only in y-variable when measured by the spatial integrability
properties [21]. The existence of modified wave operators is proved on a dense set of
small and sufficiently regular asymptotic states [21] (see also [10-12,15,17,20,31]).

The purpose of this paper is to describe smoothing properties of solutions to the
Cauchy problem for (1.1) in terms of the generators of Galilei transformations and
large time asymptotics of small solutions in terms of the free propagator with phase
modifications.

To state our results precisely, we introduce the following

Notation. Lp
xLq

y = Lp(Rx; Lq(Ry)), Lq
yLp

x = Lq(Ry; Lp(Rx)) with norms

‖u;Lp
xLq

y‖ = ‖‖u; Lq
y‖; Lp

x‖, ‖u; Lq
yLp

x‖ = ‖‖u;Lp
x‖;Lq

y‖.
Lp = Lp(R2) = Lp

xLp
y = Lp

yLp
x. Similarly, Lp

xḢα
y = Lp(Rx; Ḣα(Ry)), Lp

yḢα
x =

Lp(Ry; Ḣα(Rx)), where Ḣα(Rx) = (−∆x)−α/2L2(Rx), Ḣα(Ry) = (−∆y)−α/2L2(Ry),
and (−∆x)α/2 and (−∆y)α/2 are fractional powers of minus Laplacians −∆x in
Rx and −∆y in Ry with α > 0, respectively. Ḣα,β = L2

yḢα
x ∩ L2

xḢβ
y with norm

‖u; Ḣα,β‖ = Max(‖u; L2
yḢα

x ‖, ‖u;L2
xḢβ

y ‖). Fourier transform of functions on R2 with
the associated partial Fourier transforms Fx and Fy is given by

Fu(ξ, η) = û(ξ, η) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
exp(−iξx− iηy) u(x, y) dxdy

= (2π)−1/2

∫ ∞

−∞
exp(−iξx)Fy u dx = (2π)−1/2

∫ ∞

−∞
exp(−iηy)Fx u dy.

U(t) = exp(i(t/2)∆) = exp(i(t/2)∆x) exp(i(t/2)∆y) denotes the free propagator
acting on functions on R2, which is realized as the Fourier multiplier with symbol
exp

(−i(t/2)(ξ2 + η2)
)

and is factorized as

U(t) = M(t)D(t)FM(t) (1.3)

for t 6= 0, where M(t) = exp
(
i(x2 + y2)/(2t)

) · and D(t) is the dilation operator
defined by

(D(t)ψ) (x, y) = (it)−1ψ(t−1x, t−1y).

A natural factorization associated with (1.3) in x and y directions is given re-
spectively by means of partial multiplications Mx(t) = exp

(
ix2/(2t)

) · ,My(t) =
exp

(
iy2/(2t)

) · , partial dilations given by

(Dx(t)ψ) (x, y) = (it)−1/2ψ(t−1x, y),

(Dy(t)ψ) (x, y) = (it)−1/2ψ(x, t−1y),
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and partial Fourier transforms Fx,Fy as

Ux(t) = exp (i(t/2)∆x) = Mx(t)Dx(t)FxMx(t),

Uy(t) = exp (i(t/2)∆y) = My(t)Dy(t)FyMy(t).

The generators of Galilei transformations are denoted by J = (Jx, Jy) = (x +
it∂x, y + it∂y) = (x, y) + it∇.

The operators J are represented as

J = (Ux(t)xUx(−t) , Uy(t)yUy(−t))

= (Mx(t)it∂xMx(−t) , My(t)it∂yMy(−t)) .

We use explicit formulas for the fractional powers |Jx|α and |Jy|α as

|Jx|α = Ux(t)|x|αUx(−t) = Mx(t)
(−t2∆x

)α/2
Mx(−t),

|Jy|α = Uy(t)|y|αUy(−t) = My(t)
(−t2∆y

)α/2
My(−t)

with α > 0 [19].
We consider the Cauchy problem for (1.1) with data u(t0) = φ at time t0 in the

form of the corresponding integral equation

u(t) = U(t− t0)φ− i

∫ t

t0

U(t− t′)f (u(t′)) dt′. (1.4)

The integral equation (1.4) is studied by a contraction argument in a closed ball of
the following function space

X(I) = C
(
I; L2

) ∩
⋂

0≤2/q=1/2−1/r≤1/2

Lq
t

(
I; L2

xLr
y

)

for [t0 − T, t0 + T ] with T > 0. We use related function spaces defined by

X = C
(
R; L2

) ∩
⋂

0≤2/q=1/2−1/r≤1/2

Lq
(
R;L2

xLr
y

)
,

Xloc = C
(
R;L2

) ∩
⋂

0≤2/q=1/2−1/r≤1/2

Lq
loc

(
R; L2

xLr
y

)
,

Y α,β(I) = {u ∈ X(I); |Jx|αu ∈ X(I), |Jy|βu ∈ X(I)},
Y α,β = {u ∈ X; |Jx|αu ∈ X, |Jy|βu ∈ X},
Y α,β

loc = {u ∈ Xloc; |Jx|αu ∈ Xloc, |Jy|βu ∈ Xloc}.
We now state basic existence and uniqueness results.
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Theorem 1. Let t0 ∈ R and let φ ∈ L2. Then the equation (1.4) has a unique
solution u ∈ Xloc. Moreover, u satisfies the conservation law of the L2 norm :
‖u(t); L2‖ = ‖φ; L2‖ for all t ∈ R.

Theorem 2. Let j, k be nonnegative integers. Let φ ∈ L2 satisfy |x|jU(−t0)φ,
|y|kU(−t0)φ ∈ L2. Then the solution u of (1.4) given by Theorem 1 satisfies u ∈ Y j,k

loc .

Remark 1. The Cauchy problem in L2 has been studied in [21]. The function space
Xloc is smaller than that used in [21].

Remark 2. Theorem 2 describes the smoothing properties of solutions in terms of
the generators of Galilei transforms. No regularity assumption is made on the Cauchy
data.

To describe the large time behavior of solutions of (1.4) with small Cauchy data,
we introduce modified free dynamics for φ± ∈ L2 ∩ F(L2

xL∞y )

v±1 (t) = U(t) exp (−iS±(t,−i∇)) φ±,

v±2 (t) = U(t)M(−t) exp (−iS±(t,−i∇))φ±

= M(t)D(t) exp (−iS±(t, ·)) φ̂±,

v±3 (t) = exp
(−iS±(t, t−1x, t−1y)

)
U(t)φ±

= M(t)D(t) exp (−iS±(t, ·))FM(t)φ±,

where
S±(t, x, y) = ±λ

∫ x

−∞
|φ̂±(x′, y)|2 dx′ log |t|.

For ρ, ρ0 > 0, we define B (ρ, ρ0) = {φ ∈ L2∩F(Ḣα,β); ‖φ; L2‖ ≤ ρ0, ‖φ̂; Ḣα,β‖ ≤ ρ}.

Theorem 3. Let α and β satisfy 0 < α < 1/2, β ≥ 0. Let φ ∈ L2 satisfy
|x|αU(−t0)φ, |y|βU(−t0)φ ∈ L2. Then :

(1)The equation (1.4) has a unique solution u ∈ Y α,β
loc .

(2)Let 0 < α < 1/2 < β < 1 and let t0 = 0. For any ρ0 > 0 there exists ρ > 0
with the following property: For any φ ∈ B (ρ, ρ0) the solution given by (1) satisfies
u ∈ Y α,β and

‖u(t); L2
xL∞y ‖ = O(|t|−1/2) as t → ±∞.

(3)Let u be the solution given by Part (2). Then, there exist unique φ± ∈ L2 ∩
F(L2

xL∞y ) such that for sufficiently small ε > 0

‖FU(−t)u(t)− exp (−iS±(t, ·)) φ̂±;L2 ∩ L2
xL∞y ‖ = O(|t|−ε) as t → ±∞.
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Moreover, u satisfies

‖u(t)− v±j (t); L2‖ = O(|t|−ε) as t → ±∞,

for j = 1, 2, and

‖u(t)− v±3 (t); L2‖ −→ 0 as t → ±∞.

Remark 3. No regularity assumption is made on the Cauchy data.

Remark 4. In Part (2), smallness assumption on the Cauchy data is made with
respect to its homogeneous weights. The L2 norm of the Cauchy data need not be
small, while its homogeneously weighted norm should be relatively and sufficiently
small. For instance, data of the form ε−1ψ(ε−1x, ε−1y) with ε > 0 sufficiently small
fall within the scope of Part (2). The available literature, however, does not cover
those data since the L2 norm of the data is also required to be small [15,17,18].

We prove Theorem 1 in Section 3. The method is almost the same as in [21]
except that L2

xL∞y norm is used instead of weaker norm L∞y L2
x, since the former is

necessary for Theorem 3. We prove Theorem 2 in Section 4. The method depends
essentially on that of Theorem 1 with regularity in terms of Galilei transforms. We
prove Theorem 3 in Sections 5,6, and 7, following basically the method of Hayashi
and Naumkin [15,16,17] (see also [18]). The following ingredients are new and nec-
essary to provide improvements, however. First, our method depends exclusively on
a contraction argument and is independent of a contradiction argument in [15-18].
Secondly, our method depends exclusively on the generators of Galilei transforms
and is independent of the usual regularity argument. This enables us not to impose
any regularity assumption on the Cauchy data. Thirdly, our argument treats the L2

norm and weighted norms separately for the Cauchy data as well as for solutions.
This enables us not to impose smallness of the L2 norm of the Cauchy data. Lastly,
asymptotic formulas in Part (3) are simpler than those in [15] and uniqueness of
asymptotic states in those formulas is also proved.

§2. Preliminary Estimates

In this section we collect some basic estimates of the free propagator U(t) and the
nonlinear term f(u) in the anisotropic space.
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Lemma 2.1. U(t) satisfies the following estimates:
(1) Let r and δ satisfy 2 ≤ r ≤ ∞, δ = 1/2− 1/r. Then for t 6= 0

‖U(t)φ; L2
xLr

y‖ ≤ (2π|t|)−δ ‖φ; L2
xLr′

y ‖. (2.1)

(2) For any (q,r) with 0 ≤ 2/q = 1/2− 1/r ≤ 1/2

‖U(·)φ; Lq(R; L2
xLr

y)‖ ≤ C‖φ; L2‖. (2.2)

(3) For any (q1, r1) and (q2, r2) with 0 ≤ 2/qj = 1/2 − 1/rj ≤ 1/2, j = 1, 2, for
any interval I ⊂ R which may be unbounded, and for any t0 ∈ I the operator Gt0

defined by

(Gt0u) (t) =
∫ t

t0

U(t− t′)u(t′)dt′ (2.3)

satisfies the estimate

‖Gt0u; Lq1
(
I; L2

xLr1
y

) ‖ ≤ C‖u;Lq
′
2(I; L2

xL
r
′
2

y )‖, (2.4)

where C is independent of I and t0.

Proof. See [21], where the lemma is stated in a weak form, though the proof there
works with slight modifications. For a general framework, see [5,9,23,24,34]. QED

Lemma 2.2. Let rj, 0 ≤ j ≤ 3, satisfy 1 ≤ rj ≤ ∞ and 1/r0 = 1/r1 + 1/r2 + 1/r3.
Then

(1)

‖ψ1

∫ x

−∞
(ψ2ψ3)(x′, y)dx′;Lr0

y L2
x‖ ≤

3∏

j=1

‖ψj ; Lrj
y L2

x‖.

(2) For any α with 0 < α < 1/2

‖ψ1

∫ x

−∞
(ψ2ψ3)(x′, y)dx′; Lr0

y Ḣα
x ‖ ≤ C‖ψ1; Lr1

y Ḣα
x ‖

3∏

j=2

‖ψj ; Lrj
y L2

x‖.

(3) For any β with 0 < β < 1

‖ψ1

∫ x

−∞
(ψ2ψ3)(x′, y)dx′; L2

xḢβ
y ‖ ≤ C

3∑

j=1

‖ψj ; L2
xḢβ

y ‖
∏

k 6=j

‖ψk;L2
xL∞y ‖
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Proof. For Part (1), see [21]. To prove Part (2), let

ϕ(x, y) =
∫ x

−∞
(ψ2ψ3)(x′, y)dx′

and we estimate the product ψ1ϕ in Ḣα
x using Leibniz’ rule [25] as

‖ψ1ϕ; Ḣα
x ‖ ≤ ‖(−∆x)α/2(ψ1ϕ)− ψ1(−∆x)α/2ϕ− ϕ(−∆x)α/2ψ1;L2

x‖
+ ‖ψ1(−∆x)α/2ϕ; L2

x‖+ ‖ϕ(−∆x)α/2ψ1; L2
x‖

≤ C‖ϕ; L∞x ‖ ‖(−∆x)α/2ψ1; L2
x‖+ ‖ψ1(−∆x)α/2ϕ; L2

x‖.

The first term on the RHS of the last inequality is bounded by

‖ψ2; L2
x‖ ‖ψ3; L2

x‖ ‖ψ1; Ḣα
x ‖,

while the second term is represented in terms of the Hilbert transform H as

‖ψ1H(−∆x)(α−1)/2(ψ2ψ3); L2
x‖,

which is estimated by the generalized Hölder inequality in the Lorentz spaces [29,30]
as

C‖ψ1; L2/(1−2α),2
x ‖ ‖H(−∆x)(α−1)/2(ψ2ψ3); L1/α,∞

x ‖.
We now use the boundedness of the Hilbert transform and the Riesz potentials in
the Lorentz spaces:

(−∆x)−α/2 : L2
x = L2,2

x −→ L2/(1−2α),2
x ,

(−∆x)−(α−1)/2 : L1
x −→ L1/α,∞

x ,

H : L1/α,∞
x −→ L1/α,∞

x

(see [27,35] for instance). Collecting these estimates above, we obtain

‖ψ1ϕ; Ḣα
x ‖ ≤ C‖ψ1; Ḣα

x ‖
3∏

j=2

‖ψj ; L2
x‖.

Then, Part (2) follows from the Hölder inequality in y-variable. We now prove Part
(3). We estimate ψ1ϕ in Ḣβ

y using Leibniz’ rule [25] as above to obtain

‖ψ1ϕ; Ḣβ
y ‖ ≤ C‖ϕ; L∞y ‖ ‖ψ1; Ḣβ

y ‖+ C‖ψ1(−∆y)β/2ϕ; L2
y‖

This implies that

‖ψ1ϕ; L2
xḢβ

y ‖ ≤ C‖ϕ; L∞‖ ‖ψ1; L2
xḢβ

y ‖+ C‖ψ1(−∆y)β/2ϕ;L2‖.
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For the first term on the RHS of the last inequality, we estimate

‖ϕ;L∞‖ ≤ ‖
3∏

j=2

‖ψj ;L∞y ‖; L1
x‖ ≤

3∏

j=2

‖ψj ;L2
xL∞y ‖,

while the second term is estimated as

‖ψ1(−∆y)β/2ϕ;L2‖ ≤ ‖‖ψ1; L2
x‖ ‖(−∆y)β/2ϕ; L∞x ‖;L2

y‖
≤ ‖ψ1;L∞y L2

x‖ ‖(−∆y)β/2(ψ2ψ3); L2
yL1

x‖
≤ ‖ψ1;L2

xL∞y ‖ ‖(−∆y)β/2(ψ2ψ3); L1
xL2

y‖
≤ C‖ψ1;L2

xL∞y ‖ ‖‖ψ2; L∞y ‖ ‖(−∆y)β/2ψ3; L2
y‖; L1

x‖
+ C‖ψ1; L2

xL∞y ‖‖‖ψ3; L∞y ‖‖(−∆y)β/2ψ2;L2
y‖;L1

x‖

≤ C

2∏

j=1

‖ψj ; L2
xL∞y ‖ · ‖(−∆y)β/2ψ3;L2‖

+ C
∏

j 6=2

‖ψj ; L2
xL∞y ‖ · ‖(−∆y)β/2ψ2; L2‖,

where we have used the Hölder and Minkowski inequalities and Leibniz’ rule [25].
Collecting these inequalities yields Part (3). QED

§3. Proof of Theorem 1

For T > 0 we define X(I) with I = [t0 − T, t0 + T ] as in the introduction and
equip X(I) with norm

|||u||| = ‖u; L∞(I;L2)‖+ ‖u; L4(I;L2
xL∞y )‖.

For φ ∈ L2 and u ∈ X(I) we define

(Φ(u)) (t) = U(t− t0)φ− i (Gt0f(u)) (t). (3.1)

By Lemmas 2.1 and 2.2, we obtain

|||Φ(u)||| ≤ C‖φ;L2‖+ C‖f(u); L4/3(I;L2
xL1

y)‖
≤ C‖φ;L2‖+ C‖f(u); L4/3(I;L1

yL2
x)‖

≤ C‖φ;L2‖+ CT 1/2‖u;L∞(I; L2
yL2

x)‖2 · ‖u; L4(I; L∞y L2
x)‖

≤ C‖φ;L2‖+ CT 1/2|||u|||3, (3.2)
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where we have used the Minkowski and Hölder inequalities. Similarly, for u, v ∈ X(I)
we obtain

|||Φ(u)− Φ(v)||| ≤ CT 1/2(|||u|||2 + |||v|||2) |||u− v|||. (3.3)

By a contraction argument with (3.2) and (3.3), for any φ ∈ L2 there exists T > 0
depending only on ‖φ;L2‖ such that (3.1) has a unique fixed point u ∈ X(I). The
rest of the proof proceeds in the standard way as in [5,9,24,33] and is omitted. QED

§4. Proof of Theorem 2

Let φ ∈ L2 satisfy |x|jU(−t0)φ ∈ L2 with j ≥ 1. For any T with 0 < T ≤ 1 we
define Y j,0(I) with I = [t0−T, t0+T ] as in the introduction and equip the closed ball
BR of Y j,0(I) with radius R > 0 and center at the origin with the metric associated
with the norm ||| · ||| in the proof of Theorem 1. By the argument in [23,24] it suffices
to show that Φ leaves BR invariant for some R > 0. Let u ∈ BR and let

g(u) = λ

∫ x

−∞
|u(t, x′, y)|2dx′. (4.1)

Then, by the relation Jj
x = Mx(it∂x)jM−1

x , we obtain

Jj
x (f(u)) = g(u)Jj

xu

+ itλ
∑

k1+k2+k3=j−1

j! (−1)k2

(j − k3)k1! k2! k3!
Jk1

x u · Jk2
x u · Jk3

x u. (4.2)

We estimate the RHS of (4.2) in L4/3(I; L1
yL2

x). By Lemma 2.2, the first term is
estimated as

‖g(u)Jj
xu; L4/3(I; L1

yL2
x)‖

≤ CT 1/2‖u; L∞(I;L2)‖2 ‖Jj
xu; L4(I;L∞y L2

x)‖ ≤ CT 1/2R3. (4.3)

If k1 + k2 + k3 = j − 1 ≥ 0, then by the Hölder and Gagliardo-Nirenberg inequalities
we have

‖Jk1
x u · Jk2

x u · Jk3
x u;L2

x‖ ≤
3∏

l=1

‖Jkl
x u;L2(j−1)/kl

x ‖

≤ C

3∏

l=1

‖u; L2
x‖1−δl ‖Jj

xu; L2
x‖δl = C‖u; L2

x‖2 ‖Jj
xu; L2

x‖, (4.4)

where δl = kl

j − kl

2j (j−1) + 1
2j . This yields

‖Jk1
x u · Jk2

x u · Jk3
x u;L4/3(I; L1

yL2
x)‖

≤ CT 1/2‖u; L∞(I;L2)‖2 ‖Jj
xu; L4(I;L∞y L2

x)‖ ≤ CT 1/2 R3. (4.5)
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By Lemma 2.1, (4.3), (4.5), we have

|||Jj
xΦ(u)||| ≤ C‖|x|jU(−t0)φ;L2‖+ CT 1/2 R3, (4.6)

which implies that BR is invariant under Φ for some R > 0, as was to be shown.
We now let φ ∈ L2 satisfy |y|kU(−t0)φ ∈ L2 with k ≥ 1. For any T > 0 we define

Y 0,k(I) with I = [t0 − T, t0 + T ] as in the introduction and equip the closed ball BR

of Y 0,k(I) with the metric induced by ||| · |||. We prove that Φ leaves BR invariant
for some R > 0. For u ∈ BR we have

Jk
y (f(u)) = λ

∑

j1+j2+j3=k

k! (−1)j2

j1! j2! j3!

∫ x

−∞
Jj1

y u · Jj2
y u dx′ · Jj3

y u. (4.7)

We estimate the RHS of (4.7) in L1(I; L2). By the Gagliardo-Nirenberg and Hölder
inequalities, we obtain with δl = jl/k

‖Jk
y (f(u)) ; L2

y‖ ≤ C
∑

j1+j2+j3=k

‖
2∏

l=1

‖Jjl
y u; L2k/jl

y ‖;L1
x‖ ‖Jj3

y u;L2k/j3
y ‖

≤ C
∑

j1+j2+j3=k

‖
2∏

l=1

‖u; L∞y ‖1−δl ‖Jk
y u; L2

y‖δl ; L1
x‖ · ‖u;L∞y ‖1−δ3 ‖Jk

y u; L2
y‖δ3

≤ C
∑

j1+j2+j3=k

2∏

l=1

‖u; L2
xL∞y ‖1−δl ‖Jk

y u; L2‖δl · ‖u; L∞y ‖1−δ3 ‖Jk
y u;L2

y‖δ3 ,

from which we obtain

‖Jk
y (f(u)) ; L1(I; L2)‖

≤ C
∑

j1+j2+j3=k

‖
3∏

l=1

‖u;L2
xL∞y ‖1−δl ‖Jk

y u; L2‖δl ; L1(I)‖

≤ C‖‖u;L2
xL∞y ‖2‖Jk

y u; L2‖;L1(I)‖
≤ CT 1/2‖u; L4(I;L2

xL∞y )‖2 ‖Jk
y u;L∞(I; L2)‖ ≤ CT 1/2 R3. (4.8)

By Lemma 2.1 and (4.8), we have

|||Jk
y Φ(u)||| ≤ C‖|y|kU(−t0)φ;L2‖+ CT 1/2 R3,

which implies that BR is invariant under Φ for some R > 0, as was to be shown.
QED
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§5. Proof of Theorem 3, Part (1)

For any T > 0 we define Y α,β(I) with I = [t0−T, t0+T ] as in the introduction. As
in the preceding sections it suffices to show that Φ leaves the closed ball BR of Y α,β(I)
with radius R > 0 invariant for some R. Let u ∈ BR. We estimate |Jx|α (f(u)) in
L4/3(I; L1

yL2
x). By Lemma 2.2 with ψ1 = ψ3 = M−1

x u and ψ2 = M−1
x u, we have

‖|Jx|α (f(u)) ; L4/3(I;L1
yL2

x)‖
= ‖(−t2∆x)α/2

(
f(M−1

x u)
)
; L4/3(I;L1

yL2
x)‖

≤ CT 1/2‖u;L∞(I; L2)‖2 ‖|Jx|αu;L4(I; L∞y L2
x)‖ ≤ CT 1/2 R3. (5.1)

Similarly, we estimate |Jy|β (f(u)) in L1(I; L2) as

‖|Jy|β (f(u)) ; L1(I; L2)‖
= ‖(−t2∆y)β/2

(
f(M−1

y u)
)
; L1(I; L2)‖

≤ CT 1/2 ‖u; L4(I;L2
xL∞y )‖2 ‖|Jy|βu; L∞(I; L2)‖ ≤ CT 1/2 R3. (5.2)

Then Part (1) follows from Lemma 2.1, (5.1), and (5.2). QED

§6. Proof of Theorem 3, Part (2)

Throughout this section we fix α and β as 0 < α < 1/2 < β < 1 and we put
θ = 1/2β, so that 0 < θ < 1. Moreover, we consider the case t > 0 only since the
case t < 0 may be treated similarly. We first prove the following lemma.

Lemma 6.1. For any t ≥ 1, the following estimates hold.

‖Fu; L2
xL∞y ‖ ≤ C‖Fu;L2

xḢβ
y ‖θ‖u;L2‖1−θ. (6.1)

‖FU−1u; L2
xL∞y ‖ ≤ C‖FU−1u;L2

xḢβ
y ‖θ‖u;L2‖1−θ. (6.2)

‖FMU−1u;L2
xL∞y ‖ ≤ C‖FU−1u; L2

xḢβ
y ‖θ‖u; L2‖1−θ. (6.3)

‖(M − 1)U−1u;L2‖ ≤ Ct−α/2‖FU−1u; Ḣα,β‖. (6.4)

‖F(M − 1)U−1u; L2
xL∞y ‖ ≤ Ct−(1−θ)α/2‖FU−1u; Ḣα,β‖. (6.5)

‖u; L2
xL∞y ‖ ≤ Ct−1/2‖FU−1u;L2

xL∞y ‖+ Ct−1/2−(1−θ)α/2‖FU−1u; Ḣα,β‖. (6.6)

Proof. For (6.1) we apply the Gagliardo-Nirenberg inequality in y-variable, the
Hölder inequality in x-variable, and the unitarity of the Fourier transform in L2 to
obtain

‖Fu; L2
xL∞y ‖ ≤ C‖‖Fu; Ḣβ

y ‖θ‖Fu;L2
y‖1−θ; L2

x‖
≤ C‖Fu; L2

xḢβ
y ‖θ‖u;L2‖1−θ.
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Estimate (6.2) follows from (6.1) and the unitarity of the free propagator U(t). For
(6.3), we apply (6.1) to obtain

‖FMU−1u;L2
xL∞y ‖

≤ C‖FMU−1u;L2
xḢβ

y ‖θ‖MU−1u; L2‖1−θ

= C‖|y|βMU−1u;L2‖θ‖u;L2‖1−θ

= C‖|y|βU−1u;L2‖θ‖u;L2‖1−θ = C‖FU−1u; L2
xḢβ

y ‖θ‖u; L2‖1−θ.

For (6.4), we use the estimate

|M(t)− 1| = |Mx(t)(My(t)− 1) + (Mx(t)− 1)|
≤ |My(t)− 1|+ |Mx(t)− 1|
≤ Min

(
2, t−1|y|2) + Min

(
2, t−1|x|2)

≤ Ct−β/2|y|β + Ct−α/2|x|α

≤ Ct−α/2
(|x|α + |y|β)

to obtain

‖(M − 1)U−1u; L2‖ ≤ Ct−α/2
(‖|x|αU−1u; L2‖+ ‖|y|βU−1u; L2‖)

≤ Ct−α/2‖FU−1u; Ḣα,β‖.

For (6.5), we use (6.1) and (6.4) to obtain

‖F(M − 1)U−1u;L2
xL∞y ‖

≤ C‖F(M − 1)U−1u; L2
xḢβ

y ‖θ‖(M − 1)U−1u; L2‖1−θ

≤ C‖|y|βU−1u; L2‖θ‖(M − 1)U−1u;L2‖1−θ

≤ C‖FU−1u; Ḣα,β‖θ
(
t−α/2‖FU−1u; Ḣα,β‖

)1−θ

= Ct−(1−θ)α/2‖FU−1u; Ḣα,β‖.

For (6.6), we estimate u in L2
xL∞y in the form

u = MDFU−1u + MDF(M − 1)U−1u

as
‖u; L2

xL∞y ‖ ≤ t−1/2‖FU−1u; L2
xL∞y ‖+ t−1/2‖F(M − 1)U−1u;L2

xL∞y ‖,
where we estimate the second term on the RHS by (6.5). QED



13

Let ρ0 > 0 be given. For ε, ρ > 0 to be determined later, we define the following
set Xε (ρ, ρ0) of functions over the time interval [1,∞) as

Xε (ρ, ρ0) = {u ∈ C
(
[1,∞); L2

)
;FU(−t)u(t) ∈ L2

xL∞y ∩ Ḣα,β a.e. t,

‖u;L∞(1,∞; L2)‖ ≤ ρ0, |||u|||ε ≤ ρ},

where

|||u|||ε = Max(Ess. Supt≥1 ‖FU(−t)u(t); L2
xL∞y ‖,

Ess. Supt≥1 t−ε‖FU(−t)u(t); Ḣα,β‖).

Let φ̃ ∈ L2 satisfy ‖φ̃;L2‖ ≤ ρ0 and FU(−1)φ̃ ∈ Ḣα,β and let u ∈ Xε (ρ, ρ0). We
consider the integral equation

v(t) = U(t− 1)φ̃− i

∫ t

1

U(t− s)g (u(s)) v(s)ds, (6.7)

where
g (u(t)) = λ

∫ x

−∞
|u(t, x′, y)|2dx′.

As in the arguments in [34] and in the preceding section, the equation (6.7) has a
unique solution v ∈ Y α,β

loc .

Proposition 6.1. Let ρ0 > 0. Let ε satisfy 0 < ε < (1− θ)α/ (2(2 + θ)). Then there
exists ρ1 > 0 with the following property: For any ρ with 0 < ρ ≤ ρ1 and any φ̃ ∈ L2

with ‖φ̃; L2‖ ≤ ρ0 and ‖FU(−1)φ̃; Ḣα,β‖ ≤ ρ/2, v ∈ Xε (ρ, ρ0).

Proof. Applying U(−t) to both sides of (6.7), we have

U(−t)v(t) = U(−1)φ̃− i

∫ t

1

U(−s)g (u(s)) v(s)ds. (6.8)

Differentiating both sides of (6.8) in t, we have

∂t(U(−t)v(t)) = −iU(−t)g (u(t))u(t).

This implies

d

dt
‖U(−t)v(t); L2‖2 = 2Re (∂t(U(−t)v(t)), U(−t)v(t))

= 2 Im (U(−t)g (u(t)) v(t), U(−t)v(t))

= 2 Im (g(u(t))v(t), v(t))
= 0
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and therefore

‖v(t); L2‖ = ‖U(−t)v(t); L2‖
= ‖U(−1)v(1);L2‖ = ‖φ̃; L2‖ ≤ ρ0. (6.9)

Applying U(−t)|Jx|α = |x|αU(−t) to both sides of (6.7), we have

U(−t)|Jx|αv(t) = |x|αU(−1)φ̃− i

∫ t

1

U(−s)|Jx|α (g(u)v) (s)ds. (6.10)

Differentiating both sides of (6.10) in t, we have

U(−t)|Jx|αv(t) = −iU(−t)|Jx|α (g(u)v) (t).

This implies

d

dt
‖|Jx|αv(t); L2‖2 =

d

dt
‖U(−t)|Jx|αv(t); L2‖2

= 2 Im (|Jx|α (g(u)v) , |Jx|αv)

≤ C‖|Jx|αu;L2‖‖u; L2
xL∞y ‖‖v; L2

xL∞y ‖‖|Jx|αv; L2‖,

where we have used Part (2) of Lemma 2.2 with the relation
|Jx|α = Mx(t)(−t2∆x)α/2Mx(−t). Since u ∈ Xε (ρ, ρ0), we have

d

dt
‖|Jx|αv; L2‖ ≤ Cρ2t−1/2+ε‖v; L2

xL∞y ‖

and therefore

‖|Jx|αv(t); L2‖ ≤ ‖|x|αU(−1)φ̃; L2‖+ Cρ2

∫ t

1

s−1/2+ε‖v(s); L2
xL∞y ‖ds. (6.11)

Similarly, we obtain

‖|Jy|βv(t); L2‖ ≤ ‖|y|βU(−1)φ̃; L2‖+ Cρ2

∫ t

1

s−1/2+ε‖v(s); L2
xL∞y ‖ds. (6.12)

By (6.11), (6.12), and (6.6), we have

‖FU(−t)v(t); Ḣα,β‖ ≤ ‖FU(−1)φ̃; Ḣα,β‖

+ Cρ2

∫ t

1

s−1+ε‖FU(−s)v(s); L2
xL∞y ‖ds

+ Cρ2

∫ t

1

s−1+ε−(1−θ)α/2‖FU(−s)v(s); Ḣα,β‖ds.
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Since (1− θ)α/2− ε > 0, Gronwall’s inequality yields

‖FU(−t)v(t); Ḣα,β‖
≤ exp

(
Cρ2

) ‖FU(−1)φ̃; Ḣα,β‖

+ C exp
(
Cρ2

)
ρ2

∫ t

1

s−1+ε‖FU(−s)v(s); L2
xL∞y ‖ds. (6.13)

We now consider FU(−t)u(t) in L2
xL∞y . Taking the Fourier transform on both sides

of (6.8), we have

FU(−t)v(t) = FU(−1)φ̃− i

∫ t

1

FU(−s)g (u(s)) v(s)ds. (6.14)

Differentiating both sides of (6.14) in t and making use of the factorization
U = MDFM , we compute

i∂t

(FU−1v
)

= FU−1 (g(u)v)

= FM−1F−1D−1M−1 (g(u)v)

= FM−1F−1D−1
(
g(M−1u)M−1v

)

= t−1FM−1F (
g(D−1M−1u)D−1M−1v

)

= t−1FM−1F (
g(FMU−1u)FMU−1v

)

= t−1
(
g(FU−1u)FU−1v + I + II

)
, (6.15)

where

I = g(FMU−1u)F(M − 1)U−1v +
(
g(FMU−1u)− g(FU−1u)

)FU−1v,

II = F(M − 1)F−1
(
g(FMU−1u)FMU−1v

)
.

By (6.15),

i∂t

(
exp(i

∫ t

1

g(FU−1u)s−1ds)FU−1v

)

= exp
(

i

∫ t

1

g(FU−1u)s−1ds

)
t−1 (I + II) . (6.16)
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By Lemmas 2.2 and 6.1, we estimate I in L2
xL∞y as

‖I; L2
xL∞y ‖ ≤ ‖FMU−1u; L2

xL∞y ‖2‖F(M − 1)U−1v;L2
xL∞y ‖

+ ‖F(M − 1)U−1u; L2
xL∞y ‖‖FMU−1u; L2

xL∞y ‖‖FU−1v; L2
xL∞y ‖

+ ‖FU−1u; L2
xL∞y ‖‖F(M − 1)U−1u; L2

xL∞y ‖‖FU−1v; L2
xL∞y ‖

≤ C
(
‖FU−1u;L2

xḢβ
y ‖θ‖u;L2‖1−θ

)2

‖F(M − 1)U−1v;L2
xL∞y ‖

+ Ct−(1−θ)α/2‖FU−1u; Ḣα,β‖‖FU−1u; L2
xḢβ

y ‖θ‖u;L2‖1−θ‖FU−1v; L2
xL∞y ‖

≤ Cρ2θρ2−2θ
0 t2θε−(1−θ)α/2‖FU−1v; Ḣα,β‖

+ Cρ1+θρ1−θ
0 t(1+θ)ε−(1−θ)α/2‖FU−1v; L2

xL∞y ‖. (6.17)

Similarly, we estimate II in L2
xL∞y as

‖II; L2
xL∞y ‖ ≤ Ct−(1−θ)α/2‖g(FMU−1u)FMU−1v; Ḣα,β‖,

‖g(FMU−1u)FMU−1v;L2
yḢα

x ‖
≤ C‖FMU−1u; L2

xL∞y ‖2‖FMU−1v;L2
yḢα

x ‖
≤ Cρ2θρ2−2θ

0 t2θε‖FU−1v;L2
yḢα

x ‖,

‖g(FMU−1u)FMU−1v; L2
xḢβ

y ‖
≤ C‖FMU−1u; L2

xḢβ
y ‖‖FMU−1u;L2

xL∞y ‖‖FMU−1v; L2
xL∞y ‖

+ C‖FMU−1u; L2
xL∞y ‖2‖FMU−1v;L2

xḢβ
y ‖

≤ Cρ1+θρ1−θ
0 t(1+θ)ε‖FU−1v;L2

xḢβ
y ‖θ‖v;L2‖1−θ

+ Cρ2θρ2−2θ
0 t2θε‖FU−1v;L2

xḢβ
y ‖

to obtain

‖II;L2
xL∞y ‖ ≤ Cρ2θρ2−2θ

0 t2θε−(1−θ)α/2‖FU−1v; Ḣα,β‖
+ Cρ1+θρ1−θ

0 t(1+θ)ε−(1−θ)α/2‖FU−1v; Ḣα,β‖θ‖v; L2‖1−θ.
(6.18)

Integrating (6.16) over the time interval [1, t] and estimating the resulting time inte-
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gral in L2
xL∞y with (6.17) and (6.18), we obtain

‖FU−1v; L2
xL∞y ‖

= ‖ exp
(

i

∫ t

1

g(FU−1u)s−1ds

)
FU−1v; L2

xL∞y ‖

≤ ‖FU(−1)φ̃; L2
xL∞y ‖+

∫ t

1

s−1‖I + II; L2
xL∞y ‖ds

≤ ‖FU(−1)φ̃; L2
xL∞y ‖

+ Cρ1+θρ1−θ
0

∫ t

1

s−1−(1−θ)α/2+(1+θ)ε‖FU−1v;L2
xL∞y ‖ds

+ Cρ2θρ2−2θ
0

∫ t

1

s−1−(1−θ)α/2+(1+θ)ε‖FU−1v; Ḣα,β‖ds

+ Cρ1+θρ1−θ
0

∫ t

1

s−1−(1−θ)α/2+(1+θ)ε‖FU−1v; Ḣα,β‖θ‖v; L2‖1−θds.

Since (1− θ)α/2− (1 + θ)ε > 0, Gronwall’s inequality yields

‖FU−1v; L2
xL∞y ‖

≤ exp
(
Cρ1+θρ1−θ

0

) ‖FU(−1)φ̃; L2
xL∞y ‖

+ C exp
(
Cρ1+θρ1−θ

0

)
ρ2θρ2−2θ

0

∫ t

1

s−1−(1−θ)α/2+(1+θ)ε‖FU−1v; Ḣα,β‖ds

+ C exp
(
Cρ1+θρ1−θ

0

)
ρ1+θρ1−θ

0

·
∫ t

1

s−1−(1−θ)α/2+(1+θ)ε‖FU−1v; Ḣα,β‖θ‖v; L2‖1−θds.
(6.19)

The last integral on the RHS of (6.19) is bounded by
∫ t

1

s−1−(1−θ)α/2+(1+θ)ε‖FU−1v; Ḣα,β‖θ ρ1−θ
0 ds

≤ Cρ0 + C

∫ t

1

s−1−(1−θ)α/2+(1+θ)ε‖FU−1v; Ḣα,β‖ds, (6.20)

where we have used (6.9). The last integral on the RHS of (6.20) is the same as the
first integral on the RHS of (6.19). We substitute (6.13) into the last integral on the
RHS of (6.20) to obtain

∫ t

1

s−1−(1−θ)α/2+(1+θ)ε‖FU−1v; Ḣα,β‖ds

≤ C exp
(
Cρ2

) ‖FU(−1)φ̃; Ḣα,β‖

+ C exp
(
Cρ2

)
ρ2

∫ t

1

s−1−(1−θ)α/2+(2+θ)ε‖FU−1v;L2
xL∞y ‖ds. (6.21)
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Collecting (6.19), (6.20), and (6.21), we have

‖FU−1v; L2
xL∞y ‖

≤ C exp
(
Cρ1+θρ1−θ

0

) (
‖FU(−1)φ̃; L2

xL∞y ‖+ ρ1+θρ2−θ
0

)

+ K‖FU(−1)φ̃; Ḣα,β‖

+ Kρ2

∫ t

1

s−1−δ‖FU−1v; L2
xL∞y ‖ds, (6.22)

where δ = (1 − θ)α/2 − (2 + θ)ε and K = C exp
(
C(ρ2 + ρ1+θρ1−θ

0 )
)
(ρ2θρ2−2θ

0 +
ρ1+θρ1−θ

0 ). Since δ > 0, Gronwall’s inequality yields

‖FU−1v; L2
xL∞y ‖

≤ C exp
(
C(Kρ2 + ρ1+θρ1−θ

0 )
) (
‖FU(−1)φ̃; Ḣα,β‖θρ1−θ

0 + ρ1+θρ2−θ
0

)

+ C exp
(
CKρ2

)
K ‖FU(−1)φ̃; Ḣα,β‖, (6.23)

where we have used (6.1).
Substituting (6.23) into (6.13) and denoting by R the RHS of (6.23), we have

‖FU−1v; Ḣα,β‖ ≤ exp
(
Cρ2

) ‖FU(−1)φ̃; Ḣα,β‖+ C exp
(
Cρ2

)
ρ2 R tε. (6.24)

The proposition follows from (6.23) and (6.24) by taking ρ sufficiently small. QED

For u1, u2 ∈ Xε (ρ, ρ0) we define

d(u1, u2) = Supt≥1 t−ε‖u1(t)− u2(t); L2‖.

Proposition 6.2. Xε (ρ, ρ0) is a complete metric space with respect to d.

Proof. Let {un} ⊂ Xε (ρ, ρ0) be a Cauchy sequence with respect to d. For any
δ > 0 there exists N such that for any m,n with m, n ≥ N , d(um, un) < δ. For any t,
{un(t)} is a Cauchy sequence and has a limit u(t) in L2. For any n ≥ N , t−ε ‖un(t)−
u(t); L2‖ ≤ δ. This implies that d(un, u) → 0. Moreover, ‖u(t); L2‖ ≤ ρ0. Since
t−ε ‖FU(−t)un(t); Ḣα,β‖ ≤ ρ, for a.e. t, t−ε ‖FU(−t)u(t); Ḣα,β‖ ≤ ρ. By Lemma
6.1, FU(−t)u(t) ∈ L2

xL∞y for a.e. t. Let ψ ∈ L2 ∩L2
xL1

y satisfy ‖ψ; L2
xL1

y‖ ≤ 1. Then
|(FU(−t)u(t), ψ)| = limn→∞ |(FU(−t)un(t), ψ)| ≤ Supn≥1 ‖FU(−t)un(t); L2

xL∞y ‖
≤ ρ and therefore ‖FU(−t)u(t); L2

xL∞y ‖ ≤ ρ. This proves u ∈ Xε (ρ, ρ0). QED
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Proposition 6.3. Let ε and ρ1 be as in Proposition 6.1. Then for any ρ with
0 < ρ ≤ Min

(
ρ1, ε

1/2/C0

)
for some constant C0 > 0, the map u 7→ v is a contraction

on Xε (ρ, ρ0) with respect to d.

Proof. Let u1, u2 ∈ Xε (ρ, ρ0) and let v1, v2 ∈ Xε (ρ, ρ0) be solutions of (6.7). Then

v1(t)− v2(t) = −i

∫ t

1

U(t− s) (g(u1)v1 − g(u2)v2) (s)ds.

In the same way as in the proof of Proposition 6.1, we obtain

d

dt
‖v1 − v2;L2‖2 =

d

dt
‖U−1(v1 − v2); L2‖2

= 2 Re
(
∂t(U−1(v1 − v2)), U−1(v1 − v2)

)

= 2 Im (g(u1)v1 − g(u2)v2, v1 − v2)

= 2 Im ((g(u1)− g(u2))v1, v1 − v2)

≤ C
(‖u1;L2

xL∞y ‖+ ‖u2; L2
xL∞y ‖

) ‖u1 − u2;L2‖‖v1;L2
xL∞y ‖‖v1 − v2;L2‖

≤ Cρ2t−1‖u1 − u2; L2‖‖v1 − v2; L2‖.

This implies

‖v1(t)− v2(t); L2‖ ≤ Cρ2

∫ t

1

s−1‖u1(s)− u2(s); L2‖ds

≤ Cρ2 ε−1 tε d(u1, u2)

and therefore
d(v1, v2) ≤ Cρ2 ε−1 d(u1, u2).

This proves the proposition with C0 > C1/2. QED

Proof of Theorem 3, Part (2).
It follows from Propositions 6.1, 6.2, and 6.3 that for any φ̃ ∈ B (ρ/2, ρ0) there

exists a unique solution ũ ∈ Xε (ρ, ρ0) of the integral equation

ũ(t) = U(t− 1)φ̃− i

∫ t

1

U(t− s)g(ũ)ũ(s)ds. (6.25)

It follows from Part (1) of Theorem 3 that for any φ ∈ L2 ∩ F(Ḣα,β) there exists a
unique solution u ∈ Y α,β

loc of the integral equation

u(t) = U(t)φ− i

∫ t

0

U(t− s)g(u)u(s)ds. (6.26)
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Let ρ0 = ‖φ; L2‖. In the same way as in the proof of Proposition 6.1, we see that the
solution u of (6.26) satisfies

d

dt
‖u(t); L2‖2 =

d

dt
‖U(−t)u(t); L2‖2 = 0, (6.27)

d

dt
‖FU(−t)u(t); L2

xḢβ
y ‖2 ≤ C‖u; L2

xL∞y ‖2‖FU(−t)u(t); L2
xḢβ

y ‖2, (6.28)

d

dt
‖FU(−t)u(t); L2

yḢα
x ‖2 ≤ C‖u; L2

xL∞y ‖2‖FU(−t)u(t); L2
yḢα

x ‖2. (6.29)

By (6.27),
‖u(t); L2‖ = ρ0. (6.30)

By (6.28) and (6.29),

‖FU(−t)u(t); Ḣα,β‖ ≤ ‖φ̂; Ḣα,β‖ exp
(
Ct1/2 ‖u; L4(0, t; L2

xL∞y )‖2
)

, (6.31)

where we have used Gronwall’s inequality and the Hölder inequality in t. In partic-
ular, we have from (6.30), (6.31)

‖u(1);L2‖ = ρ0, (6.32)

‖FU(−1)u(1); Ḣα,β‖ ≤ ‖φ̂; Ḣα,β‖ exp
(
C‖u;L4(0, 1;L2

xL∞y )‖2) . (6.33)

By the argument in the proof of Theorem 1, we note that ‖u;L4(0, 1; L2
xL∞y )‖ depends

on the data only through ‖φ;L2‖ = ρ0. Hence there exists ρ > 0 such that for any
φ ∈ B (ρ/4, ρ0) , u(1) ∈ B (ρ/2, ρ0). Taking ρ smaller if necessary, with data φ̃ = u(1)
we have the solution ũ of (6.25). We define v(t) = u(t) for t ∈ [0, 1] and v(t) = ũ(t)
for t ∈ [1,∞). Then v satisfies

v(t) = U(t− 1)φ̃− i

∫ t

1

U(t− s)g(v)v(s)ds

= U(t− 1)u(1)− i

∫ t

1

U(t− s)g(v)v(s)ds

= U(t)φ− i

∫ 1

0

U(t− s)g(u)u(s)ds− i

∫ t

1

U(t− s)g(v)v(s)ds

= U(t)φ− i

∫ t

0

U(t− s)g(v)v(s)ds.

By uniqueness for (6.26), we have u = v, so that u ∈ Xε (ρ, ρ0). This proves Part (2)
by changing ρ in the statement of the theorem. QED
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§7. Proof of Theorem 3, Part (3)

Let α, β, θ, ε be as in the preceding section. Let δ ≡ (1 − θ)α/2 − (2θ + 1)ε > 0.
Let u be the solution given by Part (2). Therefore u ∈ Xε (ρ, ρ0) on the time interval
[1,∞). We consider the asymptotic behavior of FU(−t)u(t) in L2 ∩L2

xL∞y . For that
purpose we define

w(t) = exp
(

i

∫ t

1

g(FU−1u)s−1ds

)
FU(−t)u(t). (7.1)

In the same way as in (6.16), we have

i∂tw(t) = exp
(

i

∫ t

1

g(FU−1u)s−1ds

)
t−1 (I + II) , (7.2)

where

I = g(FMU−1u)FMU−1u− g(FU−1u)FU−1u,

II = F(M − 1)F−1g(FMU−1u)FMU−1u.

In the same way as in (6.17) and (6.18), we have

‖I; L2
xL∞y ‖+ ‖II; L2

xL∞y ‖ ≤ Ct−δ. (7.3)

Here and hereafter, we omit explicit dependence of constants on ρ and ρ0. Similarly,
we have

‖I;L2‖+ ‖II; L2‖ ≤ Ct−δ. (7.4)

Integrating both sides of (7.2) in t and estimating the resulting time integral in
L2 ∩ L2

xL∞y , we obtain from (7.3) and (7.4)

‖w(t)− w(s); L2 ∩ L2
xL∞y ‖ ≤ Cs−δ (7.5)

for any t, s with t > s ≥ 1. It follows from (7.5) that there exists w+ ∈ L2 ∩ L2
xL∞y

such that
‖w(t)− w+; L2 ∩ L2

xL∞y ‖ ≤ Ct−δ (7.6)

for all t ≥ 1. We now define

ψ(t) =
∫ t

1

(g(w(s))− g(w(t))) s−1ds. (7.7)

Then we have for t > s ≥ 1

ψ(t)− ψ(s) =
∫ t

s

(g(w(τ))− g(w(t))) τ−1dτ − (g(w(t))− g(w(s))) log s (7.6)
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and therefore

‖ψ(t)− ψ(s); L∞‖

≤ C

∫ t

s

(‖w(τ); L2
xL∞y ‖+ ‖w(t); L2

xL∞y ‖
) ‖w(τ)− w(t); L2

xL∞y ‖ τ−1dτ

+ C
(‖w(t); L2

xL∞y ‖+ ‖w(s); L2
xL∞y ‖

) ‖w(t)− w(s); L2
xL∞y ‖ log s

≤ C

∫ t

s

τ−1−δdτ + Cs−δ log s ≤ Cs−δ(1 + log s), (7.7)

where we have used (7.5). It follows from (7.7) that there exists ψ+ ∈ L∞ such that

‖ψ(t)− ψ+;L∞‖ ≤ Ct−δ(1 + log t) (7.8)

for all t ≥ 1. By (7.6), (7.7), and (7.8), we obtain

‖
∫ t

1

g(w(s))s−1ds− g(w+) log t− ψ+; L∞‖
= ‖(ψ(t)− ψ+) + (g(w(t))− g(w+)) log t; L∞‖
≤ ‖ψ(t)− ψ+; L∞‖+ C

(‖w(t); L2
xL∞y ‖+ ‖w+;L2

xL∞y ‖
) ‖w(t)− w+; L2

xL∞y ‖ log t

≤ Ct−δ(1 + log t) (7.9)

for all t ≥ 1. Since g(FU−1u) = g(w), we have from (7.6) and (7.9)

‖FU(−t)u(t)− exp (−ig(w+) log t− iψ+)w+; L2 ∩ L2
xL∞y ‖

≤ ‖w(t)− w+; L2 ∩ L2
xL∞y ‖

+ ‖w+ − exp
(

i

(∫ t

1

g(w(s))s−1ds− g(w+) log t− ψ+

))
w+;L2 ∩ L2

xL∞y ‖

≤ Ct−δ + C‖w+;L2 ∩ L2
xL∞y ‖‖

∫ t

1

g(w(s))s−1ds− g(w+) log t− ψ+; L∞‖

≤ Ct−δ(1 + log t) (7.10)

for all t ≥ 1. We define
φ+ = F−1 (w+ exp(−iψ+)) . (7.11)

Then φ+ ∈ L2 ∩ F(L2
xL∞y ) and (7.10) is rewritten as

‖FU(−t)u(t)− exp
(
−ig(φ̂+) log t

)
φ̂+; L2 ∩ L2

xL∞y ‖ ≤ Ct−δ(1 + log t), (7.12)

from which existence of φ+ for the first asymptotic formula follows. We now prove
the uniqueness. let Φ+ ∈ L2 ∩ F(L2

xL∞y ) satisfies the asymptotic formula

‖FU(−t)u(t)− exp
(
−ig(Φ̂+) log t

)
Φ̂+; L2 ∩ L2

xL∞y ‖ −→ 0 (7.13)
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as t →∞. Then by (7.12) and (7.13),

‖ exp
(
−ig(φ̂+) log t

)
φ̂+ − exp

(
−ig(Φ̂+) log t

)
Φ̂+; L2 ∩ L2

xL∞y ‖ −→ 0 (7.14)

as t →∞. This implies

‖|φ̂+|2 − |Φ̂+|2; L1‖
= ‖| exp

(
−ig(φ̂+) log t

)
φ̂+|2 − | exp

(
−ig(Φ̂+) log t

)
Φ̂+|2; L1‖

≤
(
‖φ̂+; L2‖+ ‖Φ̂+;L2‖

)
‖ exp

(
−ig(φ̂+) log t

)
φ̂+ − exp

(
−ig(Φ̂+) log t

)
Φ̂+; L2‖

−→ 0

as t →∞, which implies |φ̂+| = |Φ̂+| and hence g(φ̂+) = g(Φ̂+). Therefore, by (7.14)

‖φ̂+ − Φ̂+; L2‖ = ‖ exp
(
−ig(φ̂+) log t

)(
φ̂+ − Φ̂+

)
;L2‖

= ‖ exp
(
−ig(φ̂+) log t

)
φ̂+ − exp

(
−ig(Φ̂+) log t

)
Φ̂+;L2‖ −→ 0

and hence φ+ = Φ+, as required.
Finally, we prove other asymptotic formulas. By unitarity, we have

‖u(t)− v+
1 (t); L2‖

= ‖u(t)− U(t)F−1 exp
(
−ig(φ̂+) log t

)
Fφ+; L2‖

= ‖FU(−t)u(t)− exp
(
−ig(φ̂+) log t

)
φ̂+; L2‖ ≤ Ct−δ(1 + log t),

where we have used (7.12). We use the last decomposition in the proof of Lemma
6.1 to write

u(t)− v+
2 (t)

= MD
(
FU(−t)u(t)− exp

(
−ig(φ̂+) log t

)
φ̂+

)
+ MDF(M − 1)U(−t)u(t).

By (7.12) and (6.4), we obtain

‖u(t)− v+
2 (t); L2‖ ≤ ‖FU(−t)u(t)− exp

(
−ig(φ̂+) log t

)
φ̂+; L2‖

+ Ct−α/2‖FU(−t)u(t); Ḣα,β‖
≤ Ct−δ(1 + log t) + Ctε−α/2.
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We write u(t)− v+
3 (t) as

u(t)− v+
3 (t) = U(1−M−1)U−1u + MD

(
FU−1u− exp

(
−ig(φ̂+) log t

)
φ̂+

)

+ MD exp
(
−ig(φ̂+) log t

)
F(1−M)φ+.

This implies

‖u(t)− v+
3 (t); L2‖ ≤ ‖(1−M−1)U−1u; L2‖
+ ‖FU−1u− exp

(
−ig(φ̂+) log t

)
φ̂+; L2‖+ ‖(1−M)φ̂+; L2‖ −→ 0

as t → ±∞, as was to be shown. QED
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C.R.Acad.Sci.Paris 284 (1977), 939-942.

[2] D.J.Benney and G.L.Roskes, Wave instabilities, Stud.Appl.Math. 48 (1969), 377-385.
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