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Abstract. We prove endpoint Strichartz estimates for the Klein-Gordon and wave equa-

tions in mixed norms on the polar coordinates in three spatial dimensions. As an applica-

tion, global wellposedness of the nonlinear Dirac equation is shown for small data in the

energy class with some regularity assumption for the angular variable.

1. Introduction

Let us consider the Klein–Gordon equation in three spatial dimensions :

∂2
t u−∆u + m2u = 0, (1.1)

where u : R1+3 → C and m ≥ 0 is the mass constant. The endpoint Strichartz

estimate

‖u‖L2
t L∞x . E(u)1/2 (1.2)

is known to be false in general [4, 16], where E(u) is the conserved energy defined

by

E(u) = E(u; t) :=

∫

R3

|∂tu|2 + |∇u|2 + m2|u|2dx (= E(u; 0)). (1.3)

Moreover, Montgomery-Smith [8] has shown that even if we replace the L∞ norm

in (1.2) by BMO, the estimate does not hold. On the other hand, Klainerman and

Machedon [4] proved that the estimate (1.2) holds if u is radial and m = 0. Then a

natural question arises: To what extent does the endpoint estimate depend on the

radial symmetry? Our theorem below answers that it is very little. We denote the

polar coordinates by x = rθ, r = |x|, θ ∈ S2.

Theorem 1.1. (I) For any m ≥ 0, any 1 ≤ p < ∞ and any finite energy solution

u of (1.1), we have

‖u‖L2
t L∞r Lp

θ
≤ C(pE(u))1/2, (1.4)

where C is a positive absolute constant.

(II) The power p1/2 in (1.4) is optimal in the following sense: For any m ≥ 0 and
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any ε > 0, there exists a finite energy solution u of (1.1) satisfying

lim
p→∞

‖u‖L2
t L∞r Lp

θ
/p1/2−ε = ∞. (1.5)

(III) For any finite energy solution u of the wave equation (1.1) with m = 0, we have

‖u‖
L2

t L∞r H
3/4
θ
≤ CE(u)1/2, (1.6)

where C is a positive absolute constant.

The first statement implies that if the initial data has slight additional regularity

for rotation Hε
θ , ε > 0, then the endpoint Strichartz L2

t L
∞
x is recovered by the

Sobolev embedding Hε,p
θ ↪→ L∞θ , p > 2/ε. Notice that the optimal power p1/2 in

(1.4) is the same as in the critical Sobolev embedding H1
θ ↪→ p1/2Lp

θ.

We do not know if H
3/4
θ in (1.6) can be improved to higher Sobolev norm Hs

θ .

However we can show an upper bound s ≤ 5/6 (Theorem 5.1), and so the Lp
θ estimate

(I) for p > 12 can not be recovered from Hs
θ and the Sobolev embedding.

We remark that as for the Schrödinger equation in two spatial dimensions, Tao

[15] proved the following endpoint estimate:

‖u‖L2
t L∞r Hs

θ
. ‖u(0)‖L2

x
, (1.7)

for some small s > 0. In this case we have an upper bound s ≤ 1/3 (Theorem 5.1),

and so Lp
θ estimate for p > 6 can not be obtained by the Sobolev embedding. It

seems open if we can replace Hs
θ by Lp

θ for all p < ∞ in the Schrödinger case (1.7).

Our primary motivation for the above endpoint estimates was application to non-

linear wave equations. Indeed, the lack of the endpoint estimate causes in some

cases serious difficulties to prove wellposedness; the following Cauchy problem for

the nonlinear Dirac equation is a good example.

3∑
α=0

iγα∂αu−mu = λ(γ0u, u)u,

u(0, x) = ϕ(x),

(1.8)

where ϕ(x) : R3 → C4 is the given, u(t, x) : R1+3 → C4 is the unknown function,

m ≥ 0 and λ ∈ C are given constants, (∂0, ∂1, ∂2, ∂3) = (∂t,∇x) is the space-time

derivatives, (·, ·) denotes the inner product on C4, and γα ∈ GL(C, 4) (α = 0, 1, 2, 3)

denote the Dirac matrices given by

γ0 =

(
I 0
0 −I

)
, γk =

(
0 σk

−σk 0

)
, (1.9)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.10)

In [7] we proved existence of global solution with small Hs data ϕ ∈ Hs for s > 1

and m > 0. Local existence was proved by Escobedo and Vega in Hs, s > 1 [3].
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Here the value s = 1 is the scaling critical exponent for m = 0, see the introduction

in [3].

There are similar situations for nonlinear wave equations with derivative nonlin-

earity. Lindblad [5] constructed counterexamples to disprove local wellposedness in

H1 of the following equation:

∂2
t u−∆u + (∂tu− ∂1u)u = 0, (1.11)

while it is easy to prove its local wellposedness in H1+ε by using non-endpoint

Strichartz estimates (cf. [11]). Lindblad’s counterexample of the initial data is

concentrated in one direction. Our endpoint estimates imply that if the data had

regularity for the angular variable Hε
θ , ε > 0, then the blowup could not occur.

Notice that radial symmetry is not preserved for most equations including the

above examples, and so the endpoint estimate (1.2) for radial solutions is not directly

applicable. But our estimates can be applied without any consideration on special

symmetries of given systems.

For the nonlinear Dirac equation, we have the following global existence for small

H1 data with a slight regularity for angular variables.

Theorem 1.2. Let m ≥ 0, λ ∈ C and s > 0. Then there exists δ > 0 such that if

ϕ ∈ H1(R3) satisfies

‖ϕ‖H1(Hs
θ ) := ‖ϕ‖L2

r(Hs
θ ) + ‖∇ϕ‖L2

r(Hs
θ ) < δ (1.12)

then we have a unique global solution u of (1.8) satisfying u(0) = ϕ and

u ∈ Ct(R; H1(Hs
θ )) ∩ L2

t (R; L∞). (1.13)

In the case of m = 0, we may replace the above norm of H1(Hs
θ ) with its homogeneous

version, namely ‖∇ϕ‖L2
r(Hs

θ ).

We prove Theorem 1.2 by the standard fixed point arguments using the above

endpoint estimates that hold uniformly on any time interval. Hence we can easily

obtain global wellposedness and scattering for small data, as well as local existence

for large data by the standard arguments (see, e.g., [3]).

The rest of this paper is organized as follows. In Section 2, we introduce the

notations and basic estimates on the fractional Sobolev spaces on the sphere S2. In

Section 3, we prove our endpoint Strichartz estimates. In Section 4, we prove the

global wellposedness for the nonlinear Dirac. In Section 5, we make a number of

remarks.

Throughout this paper, we often use the notation A . B and D ∼ E which mean

A ≤ CB and D/C ≤ E ≤ CD, respectively, where C is some positive constant.

We denote 〈x〉 := (1 + |x|2)1/2. We identify any set with its characteristic function.

Thus for any set A, A(x) = 1 if x ∈ A and A(x) = 0 otherwise.
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2. Fractional Sobolev spaces on the sphere

In this section, we recall some basic facts that we need on the fractional Sobolev

spaces on the unit sphere S2. See [14, 17] for more general information. We denote

the polar coordinates x = rθ, r = |x| and θ ∈ S2. Let ∆θ denote the Laplace-

Beltrami operator on S2. For any function f(rθ), we have

∆θf(x) = |x×∇|2f(x). (2.1)

The Lebesgue and Sobolev spaces on S2 are defined by the norms

‖f‖Lp
θ

=
(∫

S2

|f(θ)|pdθ
)1/p

, ‖f‖Hs,p
θ

= ‖(1−∆θ)
s/2f‖Lp

θ
. (2.2)

Throughout this paper, we will use these norms in the mixed form:

‖f(x)‖Lp
r(Xθ) =

(∫
‖f(rθ)‖p

Xθ
r2dr

)1/p

. (2.3)

The fractional power of ∆θ can be written explicitly by introducing the spherical

harmonics. Let F k
ν (x) be a homogeneous polynomial of degree ν satisfying ∆F k

ν (x) =

0, such that {F k
ν (θ)}ν,k makes a complete orthonormal basis of L2(S2). Then any

function f(rθ) can be decomposed as

f(rθ) =
∞∑

ν=0

N(ν)∑

k=1

ak
ν(r)F

k
ν (θ), (2.4)

where ak
ν(r) are determined by f , and

(1−∆θ)
s/2f =

∑

ν,k

(1 + ν(ν + 1))s/2ak
ν(r)F

k
ν (θ), (2.5)

where we used ∆θF
k
ν (θ) = −ν(ν + 1)F k

ν (θ). In the case p = 2, we may use the

orthogonality to deduce that

‖f‖2
L2

r(Hs,2
θ )

∼
∑

ν,k

〈ν〉s‖ak
ν‖2

L2
r
. (2.6)

For nonlinear estimates, we use the equivalent norms defined through local coordi-

nates. Let {(Oj, Ψj)}N
j=1 be a system of coordinate neighborhoods, and {λj} be a

smooth partition of unity subordinate to {Oj}. Let {χj} ⊂ C∞
0 (R2) satisfy χj = 1

on Ψj(supp λj) and supp χj ⊂ Ψj(Oj). Then, for any functions f : S2 → C and

h : (R2)N → C, we define Sf : (R2)N → C and Rh : S2 → C by

(Sf)j(x) := (λjf)(Ψ−1
j (x)), Rh(y) :=

N∑
j=1

(χjh)(Ψj(y)). (2.7)

Then we can define the Sobolev norms by

‖f‖Hs,p(S2) = ‖Sf‖(Hs,p(R2))N . (2.8)
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This gives an equivalent norm of Hs,p
θ for 1 < p < ∞ (see [17]). We do not deal with

the cases p = 1 or ∞ in this paper.

It is easily seen that RSf = f and SR is bounded from (Hs,p(R2))N into itself, and

so, R is a retraction from (Hs,p(R2))N to Hs,p(S2) with a coretraction S. Therefore

we have the same embeddings and interpolations for Hs,p(S2) as on R2. We may

introduce another equivalent norm

(S ′f)j(x) := χj(x)f(Ψ−1
j (x)), ‖S ′f‖(Hs,p(R2))N ∼ ‖Sf‖(Hs,p(R2))N .

(2.9)

Then the Hölder inequality and the Leibniz rule easily transfers from the Euclidean

case as follows. Let s ≥ 0 and 1/p = 1/q1 + 1/r1 = 1/q2 + 1/r2, 1 < p < ∞, q1 6=
∞, r2 6= ∞. We have

‖fg‖Hs,p(S2) ∼
∑

j

‖(Sf)j(S
′g)j‖Hs,p(R2)

.
∑

j

(‖(Sf)j‖Hs,q1(R2)‖(S ′g)j‖Lr1 (R2) + ‖(Sf)j‖Lq2 (R2)‖(S ′g)j‖Hs,r2 (R2)

)

. ‖f‖Hs,q1(S2)‖g‖Lr1(S2) + ‖f‖Lq2 (S2)‖g‖Hs,r2 (S2),

(2.10)

where we used the standard estimate on pointwise multiplication on R2 on the second

line.

Finally we check the equivalence of the following norms,

‖(1−∆θ)
s/2f‖H1 ∼ ‖f‖H1(Hs

θ ), (2.11)

where the right hand side was introduced in (1.12). Note that ∇ and ∆θ are not

commutative. Since (2.11) is obvious if we replace H1 by L2, it suffices to prove the

homogeneous version, i.e., for Ḣ1
x. Since |∇| = √−∆ commutes with ∆θ, the above

equivalence (2.11) reduces to the following one:

‖|∇|f‖L2
r(Hs

θ ) ∼ ‖∇f‖L2
r(Hs

θ ), (2.12)

which is equivalent to the boundedness of the Riesz operators:

∇/|∇| : L2
r(H

s
θ ) → L2

r(H
s
θ ) bounded. (2.13)

This is easily checked when s is an (even) integer by computing the commutators of

x×∇ and ∇. Then the remaining case is covered by interpolation.

3. Endpoint Strichartz estimates

In this section, we consider the endpoint Strichartz estimate. Although one might

expect that the estimates in Theorem 1.1 were easier for the Klein-Gordon (m >

0) because of the faster decay (t−3/2), the estimate for the Klein-Gordon actually

implies that for the wave. In fact, suppose that we have an estimate of the form:

‖u‖L2
t L∞r Xθ

≤ CE(u)1/2 (3.1)
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for a fixed m = m0 > 0. Then we obtain the same estimate for all m > 0 just

by rescaling u 7→ u(tm/m0, xm/m0). Taking the limit m → 0, we obtain the same

estimate for m = 0 as well. On the other hand, it is not trivial to extend such an

estimate from m = 0 to m > 0.

The rest of this section is devoted to the proof.

3.1. Sharpness of
√

p. First we prove the optimality of
√

p in (1.5). Let m = 0.

We consider the function given by

g(x) = χA(x)g0(x),

g0(x) = |x|−2(1 + | log |x||)−α,
(3.2)

where α ∈ (1/2, 1), χA is the characteristic function of A = K \B, K is a sufficiently

large cube, and B is a ball tangent to the boundary of K from its inside at the origin:

K := [0, 10]× [−5, 5]× [−5, 5],

B := {x ∈ R3 | |x− e1| < 1}, (3.3)

where e1 = (1, 0, 0). This function is a slight modification of that given by T. Tao

[16] as a counterexample for the endpoint Strichartz estimate

‖u‖L2
t L∞x . ‖g‖L2

for free solutions with data u(0) = 0 and ∂tu(0) = g. In fact, by a simple calculation

we know that the above function g satisfies g ∈ L2 but the free solution, which is

given by

u(t, x) =
t

4π

∫

S2

g(x + tθ′)dθ′, (3.4)

satisfies u(t, te1) = ∞ for all 1 < t < 2. This function also shows sharpness of

our Lp
θ estimate as we see in the following. Let 0 < t − 1 ¿ 1 and x = tθ with

` := |θ − e1| < ε ¿ 1. We want to estimate u(t, x) given by (3.4) from below.

First we consider the restriction on the integral region of θ′ due to the cut-off χA.

Let y = x + tθ′ and we denote the region for y by S := {x + tθ′ | θ′ ∈ S2}. It is

easily seen that y ∈ S is contained in the cube K when |y| & `. Since the radius

of S is greater than that of B, it is clear that R3 \ B contains at least one of the

hemispheres of S divided by a plane containing 0 and x. Thus we can estimate, by

taking the integral with respect to ρ = |y|,

u(t, x) &
∫ 1

C`

g0(ρ)ρdρ &
∫ | log `|/2

0

s−αds & | log `|1−α, (3.5)
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where we changed the integral variable as s = − log ρ. Then we estimate the Lp
θ

norm for sufficiently large p with x = tθ, ` = |e1 − θ| as

‖u(t, tθ)‖p
Lp

θ
&

∫ ε

0

| log `|(1−α)p`d` &
∫ ∞

− log ε

s(1−α)pe−2sds

& p(1−α)p

∫ ∞

p

e−2sds = (p(1−α)e−2)p/2,

(3.6)

where we changed the integral variable as s = − log ` and assumed that p > − log ε.

Therefore we have

‖u(t, tθ)‖Lp
θ

& p1−α (3.7)

for any α > 1/2 and large p. This completes the proof of (1.5) for m = 0.

Next we consider the Klein-Gordon case m > 0. Fix m > 0, ε > 0 and suppose

that we have the estimate of the form

sup
p>1

‖u‖L2
t L∞r Lp

θ
/p1/2−ε ≤ CE(u)1/2. (3.8)

Then by the rescaling argument at the beginning of this section, we have the same

estimate for m = 0, which we have just disproved. Therefore (3.8) is false, which

means that there exists a finite energy solution for which the left hand side is infi-

nite.

3.2. TT ∗ argument. Now we start to prove the main Strichartz estimates. First of

all, we convert them into the TT ∗ versions. Our desired estimates can be rewritten

as

‖ω−1
m e±iωmtϕ‖L2

t L∞r Xθ
. ‖ϕ‖L2

x
, ωm :=

√
m2 −∆, (3.9)

where Xθ denotes some Banach space (Lp
θ for (I) and Hs

θ for (III)). We apply the

TT ∗ argument to the operators T± := ω−1
m (eiωmt ± e−iωmt). We have

T±T ∗
±u = 2

∫

R
ω−2

m {cos(ωm(t− s))± cos(ωm(t + s))}u(s)ds. (3.10)

Hence, by time reversibility, it suffices to prove
∥∥∥
∫

R
ω−2

m cos ωm(t− s)u(s)ds
∥∥∥

L2
t L∞r Xθ

. ‖u‖L2
t L1

rX∗
θ
, (3.11)

where X∗
θ denotes the L2 dual of Xθ. It is important for our later argument that

we do not have ‘sin’ but ‘cos’ above. We denote the operator in (3.11) by Lm(t) :=

ω−2
m cos(ωmt) and its kernel function by

Lm(t, x) = F−1〈ξ〉−2
m cos 〈ξ〉mt, 〈ξ〉m :=

√
|ξ|2 + m2. (3.12)
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We use the following TT ∗ version of the Hardy–Littlewood maximal operator as

the key estimate on (t, r). In the lemma below, we forget about the polar coordinates

and so Lp
r denotes the standard Lp((0,∞); dr) without weights.

Lemma 3.1. Let g(r) be a nonnegative nonincreasing integrable function on (0,∞).

Then the following estimate holds
∥∥∥∥
∫ ∞

0

∫

R

1

r ∨ l
g
( |t− s|

r ∨ l

)
h(s, l)dsdl

∥∥∥∥
L2

t L∞r

. ‖g‖L1
r
‖h‖L2

t L1
r
. (3.13)

where r ∨ l = max(r, l).

Proof. The Hardy-Littlewood maximal function theorem shows the boundedness of

the operator

Mϕ(t, r) =
1

r

∫

|t−s|<r

ϕ(s)ds : L2
t → L2

t L
∞
r . (3.14)

So MM∗ is bounded

MM∗ : L2
t L

1
r → L2

t L
∞
r , (3.15)

and it is written explicitly by

MM∗h(t, r) =

∫ ∞

0

∫

R

1

rl
I(|t− s|, r, l)h(s, l)dsdl, (3.16)

where

I(t, r, l) =





2 min(r, l), (t < |r − l|),
r + l − t, (|r − l| < t < r + l),

0, (r + l < t).

(3.17)

Denote the operator in (3.13) by M(g, h). Since

1

rl
I(t, r, l) ≥ 1

r ∨ l
{0 < t < r ∨ l}, (3.18)

the boundedness of MM∗ implies the desired estimate forM([0, 1], h), and by rescal-

ing, for any interval M([0, a], h). (Remember that we identify any set with its

characteristic function.) Then the general case follows by slicing g into intervals:

‖M(g, h)‖L2
t L∞r =

∥∥∥∥
∫ ∞

0

−g′(a)M([0, a], h)da

∥∥∥∥
L2

t L∞r

.
∫ ∞

0

−g′(a)a‖h‖L2
t L1

r
da = ‖g‖L1

r
‖h‖L2

t L1
r
.

(3.19)

¤
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3.3. Lp
θ estimate (3.9) for the wave. We fix t and estimate L0(t) pointwise. By

symmetry, we may assume that t > 0. Using the well known formula for the funda-

mental solution, we obtain

L0(t) =

∫ ∞

t

ω−1
0 sin ω0sds,

L0(t, x) =

∫ ∞

t

1

4πs
δ(s− r)ds =

1

4πr
{t < r}.

(3.20)

Here again we identify the set with its characteristic function. Using the polar

coordinates we may write it as

L0(t)ϕ =

∫ ∞

0

Ω[ϕ(lθ)l2]dl, (3.21)

where Ω is an operator on S2 defined by

Ωϕ(θ) =

∫

S2

F (|rθ − lα|)ϕ(α)dα, F (r) = (4πr)−1{t < r}. (3.22)

We estimate the Lp
θ norm of Ω as follows. First we have the trivial L∞θ bound:

‖Ωϕ‖L∞θ ≤ ‖F (|rθ − lα|)‖L∞α ‖ϕ‖L1
θ

. t−1{t < r + l}‖ϕ‖L1
θ
. (3.23)

For the L2
θ estimate, we apply the Young inequality for the convolution on SO(3).

Using the identity ∫

S2

f(θ)dθ = C

∫

SO(3)

f(Ae)dA, e ∈ S2, (3.24)

we estimate

‖Ωϕ‖L2
θ
∼

∥∥∥∥
∫

SO(3)

F (|re− lBe|)ϕ(ABe)dB

∥∥∥∥
L2

A

. ‖ϕ(Ae)‖L2
A

∫

SO(3)

F (|re− lBe|)dB

∼ ‖ϕ‖L2
θ

∫

S2

F (|re− lθ|)dθ,

(3.25)

where we changed the variables as θ 7→ Ae and α 7→ ABe. The last integral of F is

dominated by

{t < r + l}
∫

S2

|re− lθ|−1dθ . {t < r + l}(r ∨ l)−1. (3.26)

Interpolating these estimates, we obtain

‖Ωϕ‖Lp
θ

. t2/p−1(r ∨ l)−2/p{t < r + l}‖ϕ‖
Lp′

θ

, (3.27)

for 2 ≤ p ≤ ∞, where p′ = p/(p − 1) is the dual exponent. Plugging this estimate

into L0(t), we obtain

‖L0 ∗ f(t, rθ)‖Lp
θ

.
∫

R

∫ ∞

0

1

r ∨ l
gp

( |t− s|
r ∨ l

)
‖f(s, lθ)l2‖

Lp′
θ

dlds,
(3.28)
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where

gp(t) = t2/p−1{0 < t < 2}. (3.29)

Then the desired Lp
θ estimate (1.4) for m = 0 follows from Lemma 3.1 together with

the estimate ‖gp‖L1 . p. The case p < 2 is covered by the embedding L2
θ ↪→ Lp

θ.

3.4. Lp
θ estimate (3.9) for the Klein-Gordon. Next we extend the above result

to the Klein-Gordon m > 0. Since our estimate is global in time and the large time

behavior is essentially different between the wave and the Klein-Gordon, it seems

meaningless to approximate the latter by the former. Nevertheless, we will show

that the TT ∗ operator Lm(t) for the Klein-Gordon can be dominated by the wave

correspondence and a “dispersive” part, which is smooth and decays fast in time.

By the rescaling argument, it suffices to prove the estimate for m = 1. We may

assume t > 0 by symmetry. We calculate the kernel Lm by writing the Fourier

transform in the polar coordinates as

Lm(t, x) = C

∫ ∞

0

∫

S2

〈ρ〉−2
m cos(t〈ρ〉m)eirθ·ραρ2dαdρ

= C

∫ ∞

0

∫ 1

0

〈ρ〉−2
m cos(t〈ρ〉m) cos(rρλ)ρ2dλdρ

= C

∫ ∞

0

cos(rν)

∫ t〈ν〉m

∞

cos l

l
dldν,

(3.30)

where we changed the variables as λ = cos(θ · α), ν = ρλ and l = t〈ρ〉m. Then we

obtain a uniform bound

|L1(t, x)− L0(t, x)| .
∫ ∞

0

∫ t〈ν〉

tν

dl

l
dν . 1. (3.31)

Integrating by parts after changing the variable l 7→ l/〈ν〉m, we further rewrite (3.30)

as

Lm(t, x) = Ct−1Km(t, x) + C

∫ t

∞
Km(l, x)l−2dl, (3.32)

where Km(t) denotes the one-dimensional fundamental solution of the Klein-Gordon.

When m = 1, we have

K1(t, r) = C

∫ ∞

0

〈ν〉−1 sin(t〈ν〉) cos(rν)dν = CJ0(
√

t2 − r2){r < t}

.
〈√

t2 − r2
〉−1/2

{r < t}, (3.33)
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where J0 is the Bessel function of order 0 and we used the estimate |J0(s)| . 〈s〉−1/2

[12, p. 98]. Hence we have for t < r,

|L1(t, x)| .
∫ ∞

r

(l2 − r2)−1/4l−2dl . r−3/2. (3.34)

When t/2 < r < t, we estimate |K1(t, r)| . 1 and

|L1(t, x)| . t−1 +

∫ ∞

t

l−2dl . t−1 . r−1. (3.35)

When r < t/2, we have
√

t2 − r2 & t and so

|L1(t, x)| . t−3/2 + t−1/2

∫ ∞

t

l−2dl . t−3/2. (3.36)

Gathering the estimates (3.20), (3.31), (3.35) and (3.36), we conclude

|L1(t, x)| . L0(t/2, x) + 〈t〉−3/2. (3.37)

Thus we have reduced the desired estimate for m = 1 to that for m = 0 and the

L2
t L

∞
x estimate for the dispersive part 〈t〉−3/2, which follows simply from the Young

inequality.

3.5. H
3/4
θ estimate (1.6) for m = 0. First we derive an expression of L0(t) re-

stricted to each spherical harmonic (2.4), using the identities (3.20). Since we have

∆(a(r)Hν(θ)) = (∆νa(r))Hν(θ), ∆ν = ∆− ν(ν + 1)r−2 (3.38)

for any spherical harmonic Hν(θ) of order ν, we have the same relation for any

function of ∆, and in particular

ω−1
0 sin ω0t(a(r)Hν(θ)) = (K0ν(t)a(r))Hν(θ) (3.39)

with a certain operator K0ν(t) on radial functions. Choosing Hν(θ) = Pν(e · θ) [9,

Theorem 3] , where Pν(s) = (2νν!)−1[(d/ds)ν(s2 − 1)ν ] is the Legendre polynomial,

and then letting θ = e and using that Pν(1) = 1, we obtain

K0ν(t)a(r) =
1

4πt
δ(t− r) ∗ (a(r)Pν(e · θ))(re)

=
1

2r

∫

4(l,t,r)

Pν(cos β)a(l)ldl,
(3.40)

where 4(l, t, r) denotes restriction to the region where a triangle holds with side

lengths l, t and r, i.e. 2 max(l, t, r) ≤ l + t + r, and the respective opposite angles

are denoted by α, β and γ.

α

γβ

r t

l
Figure. 4(l, t, r)
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Hence we have by (3.20)

L0(t)(a(r)Hν(θ)) = (L0ν(t)a(r))Hν(θ),

L0ν(t)a(r) :=
1

2

∫ ∞

t

∫

4(l,s,r)

Pν(cos β)a(l)l2
s

rl
dl

ds

s
.

(3.41)

The TT ∗ argument (3.11) and the orthogonal decomposition (2.4) reduce our desired

estimate to ∥∥∥
∫

R
L0ν(|t− s|)v(s)ds

∥∥∥
L2

t L∞r
. 〈ν〉−3/2‖v(t, r)‖L2

t L1
r
, (3.42)

where we used the time symmetry of L0ν(t). Since the estimate for ν = 0 follows

from the endpoint estimate (1.4) with p = 2, we assume that ν ≥ 1 as well as t > 0

in the following.

In order to derive the decay in ν, we exploit the oscillatory property of the Le-

gendre polynomial in (3.41). We integrate by parts for the variable s. Using the

identity ν(ν + 1)Pν(x) = ((x2 − 1)P ′
ν(x))′ and the relation s2 = r2 + l2 − 2rl cos β

by the triangle, we obtain
∫

4(l,s,r)

Pν(cos β)h(s)
sds

rl
=

∫

4(l,s,r)

sin2 β

ν(ν + 1)
P ′

ν(cos β)h′(s)ds, (3.43)

where we put h(s) = 1/s{s > t}, hence h′(s) = δ(s− t)/t− 1/s2{s > t}. Applying

the classical estimate (see [6])

| sin β|3/2|P ′
ν(cos β)| . ν1/2 (3.44)

and the sine theorem ∣∣∣sin β

s

∣∣∣ =
∣∣∣sin α

l

∣∣∣ =
∣∣∣sin γ

r

∣∣∣ ≤ 1

r ∨ l
, (3.45)

we dominate (3.43) by

ν−3/2

∫

4(l,s,r)

√
s

r ∨ l
|h′(s)|ds . ν−3/2{t < r + l}√

t(r ∨ l)
. (3.46)

In conclusion we have

|L0ν(t)a(r)| . 〈ν〉−3/2

∫ ∞

0

{t < r + l}√
t(r ∨ l)

a(l)l2dl (3.47)

and the desired (3.42) follows from Lemma 3.1 with g(t) = t−1/2{0 < t < 2}.

4. Global solutions for the nonlinear Dirac equation

In this section, we prove Theorem 1.2. We rewrite the equation (1.8) as the

following integral equation:

u = Um(t)ϕ +

∫ t

0

Um(t− s)F (u(s))ds, (4.1)
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where F (u) = −iλγ0(γ0u, u)u and Um(t) denotes the propagator of the free Dirac

equation given by

Um(t) = cos(ωmt)− γ0(
3∑

j=1

γj∂j + im)ω−1
m sin(ωmt), (4.2)

where ωm =
√

m2 −∆. We set Φu = R.H.S of (4.1) and apply the contraction

mapping theorem.

For the linear term, we use the Strichartz estimates (1.4). We see from (4.2) that

ω−1
m Um(t) is a linear combination of ω−1

m e±iωmt with bounded Fourier multipliers. So

we have estimates for m ≥ 0, 1 ≤ p < ∞ as

‖Um(t)ϕ‖L2
t L∞r Lp

θ
. ‖ϕ‖H1 . (4.3)

Moreover, from the fact that ∆ is commutative with ∆θ, it follows that

‖Um(t)ϕ‖L2
t L∞r Hs,p

θ
. ‖(1−∆θ)

s/2ϕ‖H1 ∼ ‖ϕ‖H1(Hs
θ ). (4.4)

Therefore putting X = L∞t H1(Hs
θ ) ∩ L2

t L
∞
r Hs,p

θ with p sufficiently large as p > 2/s,

we have

‖Φu‖X . ‖ϕ‖H1(Hs
θ ) +

∫ ∞

0

‖Um(t− s)F (u(s))‖Xds

. ‖ϕ‖H1(Hs
θ ) + ‖F (u)‖L1

t H1(Hs
θ ).

(4.5)

By (2.10), we estimate the nonlinear term F (u) as

‖F (u)‖Hs
θ

. ‖u‖2
L∞θ
‖u‖Hs

θ
,

‖∇F (u)‖Hs
θ

. ‖u‖Hs,p
θ
‖u‖L∞θ ‖∇u‖Lq

θ
+ ‖u‖2

L∞θ
‖∇u‖Hs

θ

(4.6)

with 1/p + 1/q = 1/2. By the embeddings Hs,p
θ ↪→ L∞θ for s > 2/p, Hs

θ ↪→ Lq
θ for

s ≥ 2/p, and the Hölder inequality for variables t and r, we have

‖F (u)‖L1
t H1(Hs

θ ) . ‖u‖2
L2

t L∞r Hs,p
θ
‖u‖L∞t H1(Hs

θ ). (4.7)

Analogously we have

‖Φu− Φv‖X . (‖u‖2
X + ‖v‖2

X)‖u− v‖X . (4.8)

Therefore Φ is a contraction map on a small closed ball in X.

For the uniqueness of solutions in the class of (1.13), we consider the L∞t L2
x metric.

By the L2 invariance of U(t), we have

‖u− v‖L∞t L2
x

. (‖u‖2
L2

t L∞x
+ ‖u‖2

L2
t L∞x

)‖u− v‖L∞t L2
x
. (4.9)

We can conclude u = v time locally, so that for the entire time interval by the

repetition.
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5. Discussion

Theorem 1.2 implies that if the initial data is spherically symmetric and small in

H1, then the solution is global. For another examples, we can find some of studies

on the following form of solutions for Dirac equations in [1], [2], [13] etc.,

u(t, x) =




f(t, r)

0

g(t, r) cos ω

g(t, r) sin ωeiφ




,





x1 = r sin ω cos φ,

x2 = r sin ω sin φ,

x3 = r cos ω.

(5.1)

We can apply Theorem 1.2 to this type solution, namely, if the initial data takes

the form ϕ = (f0(r), 0, g0(r) cos ω, g0(r) sin ωeiφ) and ‖f0‖H1(R3), ‖g0‖H1(R3) are suf-

ficiently small, then there exists a global solution of the form (5.1). Indeed, since

Um(t) and the nonlinear term (γ0u, u)u preserve the form of (5.1), the functions

given by the iteration argument which starts from the free solution Um(t)ϕ have the

form and the limiting function which is the solution of (1.8) also has the form.

Moreover, our argument also applies to nonlinear Klein-Gordon equations of the

form

utt −∆u + m2u + F (∂u, mu) = 0, (5.2)

where ∂ denotes the space-time derivatives. We can deduce local wellposedness in

H1(Hs
θ ) for F = u∂u, global wellposedness for small data in H1(Hs

θ ) for F = u2∂u,

local wellposedness in H2(Hs
θ ) for F = (∂u)2, global wellposedness for small data in

H2(Hs
θ ) for F = (∂u)3, etc. Compare with [5],[11]. Notice that systems of nonlinear

wave equations in most cases do not possess radial symmetric solutions but have a

certain class of solutions with the Lorentz covariance, just as in the above case of the

nonlinear Dirac. The radial endpoint Strichartz estimate does not simply apply to

such classes, since the reduced equations for the radial part of solutions would have

terms of the form u/r2. But one can apply our argument directly to such classes

to have wellposedness, say in H1, without even knowing algebraic properties of the

symmetry.

Finally we give upper bounds for s in the L2
t L

∞
r Hs

θ estimate for both the Klein-

Gordon (on R3) and the Schrödinger (on R2). This implies that we can not recover

the Lp
θ estimate for all p < ∞ from Hs

θ estimate and the Sobolev embedding.

Theorem 5.1. (i) Let m ≥ 0, s ∈ R and suppose that we have the estimate of the

form

‖u‖L2
t L∞r Hs

θ
. E(u)1/2, (5.3)

for any finite energy solution u of the Klein-Gordon equation (1.1). Then we have

s ≤ 5/6.
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(ii) Let s ∈ R and suppose that we have the estimate for the Schrödinger equation

on R2 of the form

‖eit∆ϕ‖L2
t L∞r Hs

θ
. ‖ϕ‖L2(R2). (5.4)

Then s ≤ 1/3.

Proof. First we consider the Klein-Gordon case. By the scaling argument, we may

assume m = 0 without loss of generality. Then by the Strichartz estimate and the

duality we have

|(ψ(x)f(t), ω−1
0 e−itω0ϕ(x))t,x| . ‖ψ‖L1

rH−s
θ
‖f‖L2

t
‖ϕ‖L2

x
, (5.5)

where (·, ·)t,x denotes the L2 inner product on R1+3. We can rewrite the inner

product by using the Plancherel for (t, x)

(ψ̃(x)f̃(|x|), |x|−1ϕ̃(x))x, (5.6)

where ψ̃ denotes the Fourier transform of ψ, and (·, ·)x denotes the inner product

on R3. Thus we obtain

|(ψ̃(x), r−1f(r)ϕ(x))x| . ‖ψ‖L1
rH−s

θ
‖f‖L2

t
‖ϕ‖L2

x
. (5.7)

We can decompose any g ∈ L1
rL

2
θ as

g(rθ) = r−1f(r)ϕ(x), f(r) = ‖g(rθ)‖1/2

L2
θ
r, (5.8)

then we have

‖g‖L1
rL2

θ
= ‖f‖L2

t
‖ϕ‖L2

x
. (5.9)

Plugging this into (5.7), we obtain

|(ψ̃(x), g(x))x| . ‖ψ‖L1
rH−s

θ
‖g‖L1

rL2
θ
. (5.10)

Hence the Plancherel and the duality imply that

‖g̃‖L∞r Hs
θ

. ‖g‖L1
rL2

θ
. (5.11)

Now let g(rθ) = a(r)Hν(θ) where Hν(θ) is a spherical harmonic of order ν. Then

we have

g̃(rθ) = CHν(θ)i
ν

∫ ∞

0

a(ρ)Jν(rρ)ρ2dρ, (5.12)

where

Jν(r) = r−1/2Jν+1/2(r), (5.13)

and Jν(r) denotes the Bessel function (see [10, p. 164]). Then (5.11) implies that
∥∥∥∥
∫ ∞

0

a(ρ)Jν(rρ)ρ2dρ

∥∥∥∥
L∞r

. ν−s‖a‖L1
r
, (5.14)
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which is equivalent by duality to

‖Jν(r)‖L∞r . ν−s. (5.15)

By choosing r = ν + 1/2 and using the asymptotic behavior of the Bessel function

Jν(ν) ∼ ν−1/3 for ν →∞ [19, p. 231], we conclude that s ≤ 5/6.

The proof in the Schrödinger case is almost the same. By the same argument we

obtain instead of (5.7)

|(ψ̃(x)f(r2), ϕ(x))x| . ‖ψ‖L1
rH−s

θ
‖f‖L2

t
‖ϕ‖L2

x
, (5.16)

on R2. By using the following decomposition for any g ∈ L1
rL

2
θ:

g(rθ) = f(r2)ϕ(rθ), f(r2) = ‖g(rθ)‖1/2

L2
θ
, (5.17)

and the duality, we arrive at the same estimate as above

‖g̃‖L∞r Hs
θ

. ‖g‖L1
rL2

θ
. (5.18)

Again we assume g is a spherical harmonic g(rθ) = a(r)eiνθ. In this case we have

g̃(rθ) = Ceiνθiν
∫ ∞

0

a(ρ)Jν(rρ)ρdρ, (5.19)

and (5.18) implies that

‖Jν(r)‖L∞r . ν−s. (5.20)

Then we obtain s ≤ 1/3 by the asymptotic of Jν(ν). ¤
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