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Studying a manifold with a certain geometric structure becomes an interesting

topic in differential topology when such a structure has some stability. The local sta-

bility of symplectic and contact structures, the Darboux theorem, is a fundamental

property for symplectic and contact topology. There is a well-known global stability

theorem for contact structures, the Gray theorem (see [G]): a one-parameter defor-

mation of a contact structure on a compact orientable manifold can be pursued by

using a global isotopy of the manifold. We obtain a theorem of this type for dis-

tributions of higher coranks. We consider distributions of corank greater than one

each of which has the tangent bundle of the underlying manifold as its first derived

distribution. Furthermore, comparing the stability of distribution of corank greater

than one and that of distribution of corank one, we obtain a generalization of the

Gray theorem.

First we obtain the following theorem:

Theorem 1. Let Dt, t ∈ [0, 1], be a one-parameter family of distributions of corank

k > 1 on a compact orientable manifold M . Suppose, for any t ∈ [0, 1]:

(1) the first derived distributions coincide with the tangent bundle of M : D2
t =

TM ,

(2) there exists a constant integrable subdistribution K ⊂ Dt of corank one.

Then, there exists a family ϕt : M → M , t ∈ [0, 1], of global diffeomorphisms which

satisfies ϕ0 = id and (ϕt)∗D0 = Dt for any t ∈ [0, 1].

A distribution D on a manifold M is a subbundle of the tangent bundle TM . We

use the same symbol D for the sheaf of cross-sections of D ⊂ TM . A derived

distribution D2 of D is a sheaf of vector fields generated by D and the Lie bracket

[X, Y ] of vector fields X,Y ∈ D.

Further, we observe the relationship of Theorem 1 with the Gray theorem. As a

result, we obtain a generalization of the Gray theorem (Theorem 3 bellow).

Before stating Theorem 3, we introduce a generalization of the Gray theorem due

to R. Montgomery and M. Zhitomirskĭı [MZh]. The Gray theorem deals with contact
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structures. Their generalization deals with some degeneration of non-integrability of

distribution. In order to state the result, we need the following notion. The Cauchy

characteristic distribution L(D) of a distribution D is defined pointwise as follows

(see [BCG3], [Y]),

L(D)p = {X ∈ Dp | [X, Y ] ∈ Dp, for any Y ∈ Dp},
= {X ∈ Dp | Xydω|Dp = 0, for any ω ∈ S(D)},

where S(D) is a Pfaffian system annihilating D. The distribution L(D) is integrable

according to the Frobenius theorem. Now, a generalization, due to R. Montgomery

and M. Zhitomirskĭı, of the Gray theorem is described as follows.

Theorem 2 (Montgomery-Zhitomirskĭı). Let Dt, t ∈ [0, 1], be a one-parameter

family of distributions of corank k = 1 on a compact orientable manifold M . It is

assumed that Dt has the Cauchy characteristic distribution L(Dt) ≡ L constant for

any t ∈ [0, 1]. Then, there exists a family of global diffeomorphisms ϕt : M → M ,

t ∈ [0, 1], which satisfies ϕ0 = id and (ϕt)∗D0 = Dt for any t ∈ [0, 1].

We can regard Theorem 1 as a further generalization of the generalized Gray

theorem due to R. Montgomery and M. Zhitomirskĭı. For this observation, we need

some notions and notation. First of all, we define a certain subdistribution K(D)

of a distribution D. It is defined in terms of the Pfaffian system S(D). We define a

covariant system associated to a Pfaffian system S ⊂ T ∗M according to A. Kumpera

and J. L. Rubin (see [KRb]), as follows. The bundle map δ : S → ∧2(T ∗M/S)

defined on local sections of S as δ(ω) = dω (mod S) is called the Martinet structure

tensor (see [KRz], [Ma]). We define the polar space Pol(S)p of S at p ∈ M as

Pol(S)p :=
{
w ∈ T ∗

p M/Sp | w ∧ δ(ω) = 0, for any ω ∈ S}
.

When the polar space Pol(S)p has a constant rank on M , we define the covariant

system Ŝ associated to S as Ŝ := q−1(Pol(S)), where q : T ∗M → T ∗M/S is the

quotient map. For a distribution D ⊂ TM , let K(D) denote the subdistribution

of D which is annihilated by the covariant system Ŝ(D) associated to the Pfaffian

system S(D).

Example. We give an example of the polar space and the covariant system. Let

D0 = {ω1 = 0, . . . , ωk = 0}, where ωi := dx2i−1 + x2idt, be a distribution on R2k+1

with the standard coordinates (x1, . . . , x2k, t). When k > 1, the distribution of polar

spaces of S(D0) is obtained as follows:

Pol(S(D0)) = {w ∈ T ∗M/S(D0) | w ∧ dx2i ∧ dt ≡ 0 (mod S(D0)), i = 1, 2, . . . , k}
= {dt}.
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Then the covariant system is obtained as follows:

Ŝ(D0) = {ω1, . . . , ωk, dt} = {dx1, dx3, . . . , dx2k−1, dt}.

Then we have K(D0) = 〈∂/∂x2, ∂/∂x4, . . . , ∂/∂x2k〉. They are clearly integrable.

When k = 1, D0 = {dx1− x2dt = 0} is the standard contact structure on R3. Then

we have Pol(S(D0)) = {dx2, dt}, Ŝ(D0) = {dx1, dx2, dt}, and K(D0) = 〈0〉.

In terms of the covariant distribution K(D), we obtain the following theorem.

It should be noted here that the following theorem includes the case where k = 1,

although Theorem 1 deals with the case where k > 1.

Theorem 3. Let Dt, t ∈ [0, 1], be a one-parameter family of distributions of corank

k ≥ 1 on a compact orientable manifold M . Suppose, for any t ∈ [0, 1]:

(1) the first derived distributions coincide with the tangent bundle of M : D2
t =

TM ,

(2) each Dt has the constant covariant distribution K(Dt) ≡ K ⊂ TM , which is

integrable.

Then, there exists a family of global diffeomorphisms ϕt : M → M , t ∈ [0, 1], which

satisfies ϕ0 = id and (ϕt)∗D0 = Dt for any t ∈ [0, 1].

We describe a rough sketch of the proof of Theorem 3.

When k = 1, we obtain the result from the generalization above of the Gray

theorem (Theorem 2). In fact, for each t ∈ [0, 1], the covariant distribution K(Dt)

coincides with the Cauchy characteristic distribution L(Dt) if k = 1. We remark

that the Cauchy characteristic distributions are integrable from the definition and

the Frobenius theorem. Then a one-parameter family Dt of distributions of corank 1

which satisfies the assumption of Theorem 3 satisfies automatically the assumption

of Theorem 2. Therefore, Theorem 3 can be regarded as a generalization of a result

of R. Montgomery and M. Zhitomirskĭı, and further, as a generalization of the Gray

theorem.

In what follows, we consider the case where k > 1. A. Kumpera and J. L. Rubin

studied in [KRb] distributions whose first derived distributions coincide with the

tangent bundles of the underlying manifolds. By using their results, we can induce

from the assumption of Theorem 3 that of Theorem 1. In other words, for such

distributions Dt as in Theorem 3, K(Dt) ⊂ D is a subdistribution of corank 1 if

it is integrable. Thus we obtain Theorem 3. We remark that the assumptions of

Theorems 1 and 3 turn out to be equivalent if k > 1.
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Examples of distributions
In the following part, we give examples of distributions whose first derived distribu-

tions are the tangent bundles of the underlying manifolds: the standard distribution

on the jet bundle J1(1, k), and the generalized E. Cartan prolongation.

Example 1. Let D0 = {ω1 = 0, . . . , ωk = 0}, where ωi := dx2i−1 + x2idt, be a

distribution on R2k+1 with coordinates (x1, . . . , x2k, t), k > 1. In other words, D0

is the standard distribution on the jet bundle J1(1, k). This form also appears in

the study of distributions whose first derived distributions coincide with the tangent

bundle of the underlying manifolds by A. Kumpera and J. L. Rubin. They show in

[KRb] the following.

Proposition 4 (Kumpera-Rubin). Let D be a distribution of corank k > 1 on

a manifold M whose derived distribution coincides with the tangent bundle: D2 =

TM . If the distribution K(D) is integrable, then at each point p ∈ M the distribution

D admits the following local normal form: D = {ω1 = 0, . . . , ωk = 0},

ω1 = dx1 + x2dt, ω2 = dx3 + x4dt, . . . , ωk = dx2k−1 + x2kdt,

where the coordinates xi, t vanish at p ∈ M .

Example 2. An important example of distributions of the type discussed in this

talk is constructed by the method of the generalized Cartan prolongation (see [Y],

[Mor]). We belive that this construction is one of starting points of some applications

of the results in this talk. Let us introduce the method. Let M be an n-dimensional

manifold. We consider the Grassmannian bundle J(M, 1) on M , which consists of

1-dimensional contact elements of M . We set

J(M, 1) :=
⋃

p∈M

Gr(TpM, 1), (1)

where Gr(TpM, 1) denotes the Grassmannian manifold consisting of all the lines

through the origin in TpM . The total space J(M, 1) is a (2n − 1)-dimensional

manifold. J(M, 1) has a canonical distribution D of rank n constructed as follows.

Let π : J(M, 1) → M be the projection of the bundle. A point q ∈ J(M, 1) can be

regarded as a line ` in TpM , where p = π(q). We set Dq := (dπ)−1` ⊂ Tq(J(M, 1)).

Dq is described as the standard distribution on the jet bundle J1(1, n−1) introduced

in Example 1, by using certain local coordinates, as follows. Let (x1, . . . , xn−1, t)

be local coordinates at a point of M . A line ` in TpM is characterized by slopes

zi := dxi/dt, i = 1, 2, . . . , n−1, if it is not parallel to xi-axis. Therefore, (z1, . . . , zn−1)

can be considered as local coordinates of fibres. The distribution D is described by
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these local coordinates (x1, . . . , xn−1, t, z1, . . . , zn−1) as {dx1− z1dt = 0, . . . , dxn−1−
zn−1dt = 0}. It is the standard distribution on the jet bundle J1(1, n− 1). Last of

all, we remark that when we take S3 as the manifold M , we obtain a distribution

of this type on a closed manifold J(S3, 1) ∼= S3 × RP2 or S3 × S2.
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[MZh] R. Montgomery, M. Zhitomirskĭı, Geometric approach to Goursat flags, Ann.
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