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Abstract

We propose a framework of neurocognitive experiments that clarifies the mathematical struc-

ture of experiments and can be used to analyze experimental results and to determine the

limitation of their possible interpretation. In contrast to the conventional analysis that em-

ploys simple Boolean logic, the present analysis treats classification in terms of higher-order

functions. We also predict the existence of a previously unidentified type of neuron.

Keywords: observation space; interpretation; discrimination; multi-dimensional task; parti-

tion lattice; deductive process.
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1 Introduction

The scientific method consists of a process of repeated observation, induction, deduction

and verification (see Fig. (1)). In this process, one observes objects or phenomena using

a certain tool (a) and then attempts through inductive manner to construct a theory that

can account for the experimental data (b). Next, predictions regarding other behavior are

derived from the theory using deductive methods (c), and the theory is verified or refuted by

comparing these predictions with the experimental data (d). The present study is motivated

by the observation that this conventional scientific method has been applied to cognitive-

neural systems by tacit agreement, although it has apparently been realized that there is

a difficulty involved in the construction and application of theories and experiments that

are capable of providing a clear understanding of such systems. Specifically, this difficulty

stems from the problems involved in designing experiments that can extract information that

effectively elucidates cognitive processes. This limitation is not a technical one, but intrinsic

to the object of study itself, because the brain is a self-modifying [7] or constantly adapting

system that is open to the environment in the sense of both energetics and informatics. This

limitation appears, in particular, when one studies internal cognitive states.

–Fig. 1–

One can endeavor to observe the brain’s neural activities and from such observations

attempt to describe cognitive functions, but there is no simple correspondence between these

observed states with the internal states. The underlying limitation inherent in this process is

due to several factors: the finite precision of measurements, the lack of an effective method

of measurement and experimental devices, the fact that there is few proved neural correlates
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of cognitive process, the fact that there is no language common to the observer and the

observed (animal), the relative nature of the observer’s description and the internal states

of the observed system, and so on. In addition, it is often difficult to properly interpret

experimental data, and its misinterpretation can lead to serious misunderstanding. This

difficult situation leads to the following general and well-known, but still important question:

How could an external observer obtain a formal description of unknown internal processes of

an intellectual system such as inference and reasoning?

From the above considerations, it is clear that in the study of cognitive-neural systems

what we need is a formal theory that can explicitly distinguish observed states from internal

states and describe not only experimental data but also the potential range of observation,

that is, an “observation space.” Such a formal theory would be capable of determining the

boundary representing the limit of possible interpretations of the neural data associated with

a cognitive experiment. Our aim is to define the concept of the observation space and then

consider the development of neurocognitive theory from this point of view.

Definition When the definite design of an experiment and a formalized description of

its result are given, the observation space in the framework of the experiment consists of

the entire set of both the experimental and theoretical results that the experimenter can

potentially describe.

As a first step toward the construction of such a general theory, we attempt to develop the

formalization of a typical neurocognitive experiment with monkeys as a case study. Though

we here treat only a series of experiments conducted by Sakagami et al., we believe that our
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theory may reveal generic properties of this kind of observation space.

In §2, we briefly explain the essence of the experiment and present a set-theoretical formu-

lation of this type of experiment. Despite the fact that the brain of a live animal is essentially

open even during the experiment, in which the behavioral task to be carried out defines a

limited environment, in this type of experiment, its observables are reduced to a finite set of

relations. The finite observation space characterizing this kind of experiment is formalized

in §3. The construct of the observation space allows for implicit assumptions behind the

experiments to be made more explicit, and this makes the construction of successful theories

and experiments more feasible. In §4, we formalize a potential deductive process that can

be carried out as an internal process of the animal under study and derive the concept of

discrimination of stimuli that it can perform. Section 5 is devoted to discussion of the im-

plications of this case study. We discuss, in particular, the relationship between deductive

inference and the deductive process that is derived “externally” from our formalization.

2 A case study for conditional discrimination tasks

with multi-dimensional visual stimuli

2.1 The conditional discrimination tasks of Sakagami et al.

Sakagami et al. conducted a series of experiments on macaque monkeys performing certain

behavioral tasks [10], [11], [12]. The animals were trained to discriminate between different

types of multi-dimensional visual stimuli, that is, stimuli with multiple attributes, such as

color, shape and motion. While the animals performed this task of discrimination, Sakagami

et al. made single-unit recordings from the dorsolateral prefrontal cortex (DLPFC) [10], [11]

and from the ventrolateral prefrontal cortex (VLPFC) [12]. As we see below, the task of dis-
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crimination can be formalized as a composition of two operations: the operation of selection,

made according to the attributes of the stimuli, and the operation of transformation, carried

out in accordance with the behavioral meaning. The attention process carried out by the

animal during the performance of task is analyzed with this formalization. Before proceeding

to the description of our theory, we explain the task that Sakagami and Tsutsui used in the

experiments [11].

–Fig. 2–

The task employed by Sakagami and Tsutsui, which we here refer to as “ST task”, is

schematically depicted in Fig. (2). In each trial, two visual stimuli are displayed successively

on a monitor placed in front of the monkey. One of these stimuli, called the target stimulus

(TS) is a multi-dimensional stimulus, possessing multiple attributes, such as color, direction

of motion, and shape. The TS consists of random colored dots presented in a fixed area

(aperture) of a certain shape. All the dots move in a single direction within this aperture.

Another stimulus, the cue stimulus (CS), is presented at the center of the monitor as a

fixation spot. The color of the CS indicates the attribute of the TS which the monkey should

attend during a given trial. In other words, the monkey has to “understand” the meaning of

the color of the CS in each trial. In each trial, the monkey is presented a pattern. Each such

pattern is in general characterized by the attributes of, for instance, motion, color and shape,

but for a given trial, only one of them is “meaningful.” The meaningful attribute is specified

by the color of the fixation spot, namely, the color of the CS. The condition represented

by the color of the CS is called the attending condition. (More specifically, the attending

condition is fixed during a block, consisting of 32–64 successive trials.) For instance, if this
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color is yellow, then the meaningful attribute is color and the attending condition in this

situation is called the color condition, if it is purple, the meaningful attribute is motion and

hence the motion condition, and if it is red, the meaningful attribute is shape and hence

the shape condition. The monkey is then trained to act in the manner described below, in

accordance with the identity of the meaningful attribute.

The monkey initiates a trial by pressing a lever, and the CS then appears. There are

two types of responses that the monkey can make, “go” and “no go”, which are executed

by continuing to press the lever and releasing the lever, respectively. The correct response

depends on both the attending condition (the color of the CS) and the attributes of the TS.

The correspondence between the set of stimuli and the correct response type is fixed for each

monkey. For each attribute, certain states correspond to the go response, and other states

correspond to the no go response. For example, red means go, and right-directed motion

means no go. Thus if a red, right-moving pattern is presented, the correct response is go

under the color condition and no go under the motion condition.

After the monkeys were trained to perform the task with sufficient capability, which

were assured with a probe test (see Ref. [10]), a measurement of neuronal activity during the

performance of the task was made in an attempt to identify a neural correlate with perception

and behavior. The activities of over 500 neurons were recorded with a single microelectrode

in the DLPFC. The average frequencies of neuron spikes over a number of trials (mean firing

rates) were calculated for each neuron and for each kind of stimulus. The measured neurons

were classified into certain groups according to the statistical significance of the difference

between the mean firing rates.
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2.2 Formulation of a multi-dimensional task

Here, we make the first formulation of the ST task studied by Sakagami and Tsutsui [11].

Although in this section we restrict ourselves to the formulation of the task that the monkeys

actually performed in the experiment, the theory we present can be applied to other types

of experiments that involve conditional discrimination tasks with multi-dimensional stimuli.

Let the set X = {m, c} represent the attending conditions, where m and c denote the

motion and the color conditions, respectively. All the kinds of TS are denoted by Y = Ym×Yc,

where Ym and Yc represent the sets of motion and color attributes, respectively. The set Ym

consists of two directions of motion, motion to the left (l) and motion to the right (r),

and Yc consists of two colors, purple (p) and yellow (y); i.e. Ym = {l, r} and Yc = {p, y}.

For simplicity, we call a given combination of stimuli (i.e. an element of X × Y ) a stimulus

condition. Further, we denote the set of responses as Z = {g, n}, where g represents “go”and

n represents “no-go”.

In a given trial, the appropriate response is uniquely determined by a pair of stimuli, the

CS and the TS. This relation from the stimulus to the response can be represented by a map

f : X × Y → Z. (1)

It is natural to consider the map f(x, y) ∈ Z as representing the behavioral meaning of the

stimulus condition (x, y) ∈ X × Y .

Here, the map f has the special property that if the attending condition is fixed to m or

c, the relation of the corresponding attribute Ym or Yc, to the appropriate behavior Z is also

a map. Thus f is a map that consists of multiple maps from each attribute to a response.

These maps depend on the value of X. Let fi : Yi → Z be such a map of the attribute Yi
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(i ∈ {m, c}). Then, f can be expressed as

f(x, (ym, yc)) =

{
fm(ym) if x = m (motion condition),

fc(yc) if x = c (color condition).
(2)

2.3 Classification of neurons

Now we consider the process of recording the neuronal activity. When the activity during a

trial of the task is recorded, the relations among the stimulus condition (x, y) ∈ X ×Y , the

behavioral meaning z ∈ Z, and the activity of a cell are treated. Because the data presented

in Ref. [11] were analyzed only for “correct” responses (i.e. the case z = f(x, y)), the

reported results are obtained in reference only to each stimulus condition (x, y) ∈ X × Y .

A statistical test of the mean firing rate of each cell was introduced to determine whether

or not the activity differs between the stimulus conditions. The recorded neurons considered

in Ref. [11] can be classified into 16 classes, as determined using the analysis of variance

(ANOVA) with respect to two factors, Ym and Yc. In Appendix A detailed analysis is given

to determine the kind of information that can be obtained with this particular statistical

test.

–Fig. 3–

Among these 16 classes, Sakagami and Tsutsui determined 5 classes through their mea-

surements and statistical tests, which we refer to as MI, CI, M, C and CM, as cell types

displaying prominent activity (Fig. (3)). The classes we refer to as MI and CI in Ref. [11]

are called motion-intrinsic and color-intrinsic cells, respectively. The cells in the classes MI

and CI recognize the motion attribute Ym and the color attributes Yc of the TS, respectively,

under both attending conditions m and c. The M cells recognize the motion attribute Ym only
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under the motion condition, m, while the C cells recognize the color attribute Yc only under

the color condition, c. The CM cells recognize the motion attribute Ym under the motion

condition, m, while they recognize the color attribute Yc under the color condition, c.

In Ref. [11], the responses of M, C and CM cells were also investigated in the case that

the “shape” attribute was added as a factor of the multi-dimensional stimulus (TS). This

shape attribute corresponds to the shape of the aperture, which consisted of stripes or a

diamond in their experiments. In this case, X and Y can be redefined as X = {m, sh, c}

and Y = Ym × Ysh × Yc, where sh and Ysh = {s, d} denote the shape condition and the set

of shape attributes, respectively, and s and d denote stripes and a diamond, respectively.

An asymmetry in the responses among the cell types was observed. It was found that the

activities of most of the C cells are correlated with the behavioral response, i.e. g or n under

the shape condition, whereas the M cells do not respond under the shape condition. It was

also found that the CM cells exhibit a high correlation in their responses with the behavioral

meaning Z under the shape condition, as well as under the color and motion conditions.

–Fig. 4–

It is well known that visual information concerning color and shape is processed in the

ventral pathway, while that concerning motion is processed in the dorsal pathway. Thus the

above cited results suggest that the C cells express behavioral meaning, through the ventral

pathway, under both of color and shape conditions, while the M cells express behavioral

meaning, through the dorsal pathway, under the motion condition. Taking this into account,

we reorganize the cell classes as in Fig. (4).

–Fig. 5–
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Based on an analysis of the latency of cell activity, the contralateral spatial preference of

activity, and the projection relations between cortical areas, Sakagami and Tsutsui reported

that the activity of M and C cells precedes that of CM cells, and process information through

the ventral and dorsal pathways, respectively. They also reported that this information may

be integrated in the activity of CM cells. A possible scenario for the entire process is depicted

in Fig. (5).

In the next section, we further formalize, in a more generalized way, the stimulus-response

relations of a subject who performs behavioral tasks that have already been learned, and also

the situation that the activity of the brain is recorded. This allows us to define the concept of

discrimination and show that the set of all discriminations can be considered the observation

space of the task under consideration. We assert that with this formalization, it may also be

possible to describe both the actual and potential results of such an experiment much more

reliably than in the case of the conventional theory, and therefore that such a formalization

will allow for relevant and testable predictions.

3 Observation space: A framework for the interpreta-

tion of the experimental results

3.1 S-R-A: stimulus, response and activity

Here we focus on a learning task that can be expressed by mapping relations from stimulus

to response, that is, we consider the idealized situation in which the subject’s behavior is

determined only by external stimuli. Let S and R be a finite set of stimuli and a finite

set of responses (or behavior), respectively. Then, the experimenter induces the subject to

perform action that can be represented by a map f : S → R. Furthermore, let A denote
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a set of neural activity that can be recorded from the subject’s brain. Thus, in each of N

trials of the experiment, the experimenter records a triplet of quantities consisting of the

stimuli, response and activity: (si, ri, ai) ∈ S × R × A (i = 1, 2, ..., N). As a simplification,

usually in this kind of experiment, it is assumed that any correlations between trials can be

ignored, and thus each trial is considered to be independent. The distributions of quantities

of (s, r, a) ∈ S × R × A are then analyzed. Although there can be many relations among

elements of this triplet, we here restrict ourselves to a map from a pair consisting of the

stimulus and the response to the neural activity: F : S ×R → A, taking into account of the

experiment to be concerned in this paper. This means that we can only study activity with

respect to the product space of stimulus and response, S ×R.

Because it is practically impossible to describe the state of the entire nervous system,

measurements are taken from certain specific parts of the nervous system, focusing only on

certain specific quantities. For example, the activity is measured as the mean firing rate of a

single neuron, which we consider to be elementary unit. Here we refer to such an elementary

unit a measurement unit, or simply a unit.

3.2 Discrimination of stimulus-response through activity

If the neurons are classified, on the basis of some kind of the statistical significance of the

difference between the average activities for all stimulus and response pairs, forming S ×R,

we can consider this classification of neurons to be represented by the partition of the space

of S×R. Under this assumption, let us consider what kind of information regarding the pair

consisting of the stimulus and response could be represented by the behavior of a certain

part or parts of the nervous system.
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In our framework, the focus is not the neuronal activity itself, but, rather, the “discrim-

ination” realized in the product space, S × R, through the measured activity of a unit. To

represent this properly, we define the concept of discrimination induced by a map.

Definition For a given map φ : U → V , a discrimination on the domain U induced by the

map φ is an equivalence relation Dφ ⊆ U × U such that

Dφ = {(a, b) ∈ U × U | φ(a) = φ(b)}. (3)

(In standard terminology, such an equivalence relation is referred to as a “classification”.)

According to this definition, Dφ is a quotient set U/Rφ, where Rφ is an equivalence relation

on U such that aRφb if and only if φ(a) = φ(b). The equivalence relation Rφ discriminates

U into disjoint subsets, i.e. the equivalence classes of U .

Though the range set V (or the image φ(U) ⊆ V ) may have some algebraic structure

(for example, order), this definition of the discrimination does not take any such structure

into account. This concept of the discrimination represents all the information that can be

described if only the equality between elements of the set is taken into account. Thus, given

a map between sets, that which can be realized on the domain set is represented by this

discrimination. Moreover, note that the correspondence between a map and a discrimination

is not one-to-one.

In the case that φ is a map from the product space of the stimulus and response to the

observed activity of a measurement unit, only the discrimination induced by the map provides

a method to extract meaningful information within the present framework. More precisely,

for a map F : S × R → A that represents the activity of a unit with regard to stimulus and

response, the discrimination DF on S ×R induced by F represents the distinctions between
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the elements of S × R that can be obtained from A. Before continuing, we note here that

the above definition can also be applied to the case of multiple measurement units. (Note

that a discrimination realized in the case of multiple measurement units is a refinement of a

discrimination realized with any single one of these units (see §3.3).)

If only “correct” responses are considered, as in the case of the previously studied ST

task, according to the map f : S → R, the activity that we study here can be expressed as

a map from S only. The measurement of such activity is considered to be a discrimination

induced by a map F̃ : S → A, where F̃ (s) = F (s, f(s)) (s ∈ S). Although it is an interesting

problem to investigate what happens if we also include “incorrect” responses, here we treat

only correct responses.

3.3 Partition lattice as an observation space for finite S-R relations

The set of all discrimination on a finite domain U (i.e. all quotient sets on U) constitutes a

partially ordered set ordered by refinements. This partially ordered set is called a partition

lattice [3] (Fig. (6)).

–Fig. 6–

Definition Let U be a finite set. For any equivalence relations D and D′ on U , D is a

refinement of D′ if and only if,

(a, b) ∈ D ⇒ (a, b) ∈ D′ for all a, b ∈ U. (4)

Definition Let U be a finite set containing k = |U | elements. The partition lattice Πk of

length k−1 of U is the partially ordered set of all equivalence relations (i.e. all discriminations)
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on U ordered according to refinements. That is, for any equivalence relations Dφ and Dψ on

U , Dφ 6 Dψ if and only if Dφ is a refinement of Dψ.

A partially ordered set in which for any two elements there exists a meet (or greatest lower

bound) and a join (or least upper bound) is called a lattice (see, e.g. Ref. [3]). The partition

lattice Πk is a lattice whose meet Dφ∧Dψ is identified to the discrimination Dφ∩Dψ ⊆ U×U

(where ∩ represents set intersection) and the join Dφ ∨ Dψ is the transitive closure of the

relation Dφ ∪ Dψ (where ∪ represents set union). Here, the transitive closure of a relation

R ⊆ U × U is the minimal equivalence relation of U that contains R. The bottom (or the

least element) of Πk is the partition that differentiates all elements of U , and the top (or the

greatest element) induces no differentiation of U .

As the number of elements of the domain set k = |U | increases, the number of possible

partitions B(k) = |Πk| increases rapidly. (The number B(k) is known as the Bell number.

Its recurrence formula is given by B(k + 1) =
∑k

i=0 ( k
i )B(i) (k = 0, 1, ...), provided that

B(0) = 1.) In the case of the ST task with 2 attending conditions (§2.2, |X| = 2), there are

k = |X| · 2|X| = 8 stimulus conditions, and hence the number of all the possible partitions is

B(8) = 4140, whereas in the case |X| = 3 (§2.3), k = 24 and B(24) ≈ 4 · 1017.

Because we can consider a discrimination for a finite relation defined by a map from S×R

to A, the neuronal activity observed in an experiment can be placed at a certain point in

the partition lattice. Thus the observation space of such an experiment can be considered

the partition lattice when this discrimination constitutes all the information that can be

obtained in the experiment.

Considering the scheme described in Fig. (1), the concept of the observation space helps us

construct a framework on the space of observed data (the upper-right box in the figure) with
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respect to which the experiment is characterized. In actual experiments, however, information

regarding an internal process of the subject is obtained not only through discrimination of

the activity but through other observables as well, including the latency, the power spectrum,

correlations, mutual information and anatomical structure. We ignore such other factors in

the present formalization, in order to extract important information derived from the behavior

of observables that have been treated in conventional neurophysiological experiments.

3.4 Deductive process and intermediate expression

In the present paper, we use the term deductive process in an operational or behavioral sense;

that is, we do not take into account purely internal inference processes (including unconscious

processes), but we do take into account the process of the subject’s response to externally im-

posed conditions. Let us consider the situation in which the selection process of the response

R given certain stimuli S consists of multiple stages. In this case, the deductive process

should consist of a composition of sub-processes representing some intermediate stages.

With the above operational definition, we regard a deductive process as an application of

some externally observable rule, which is expressed by a map φ from a set of inputs (stimuli)

S to a discrimination Dφ. Thus, when an input S is given, the deductive process is identified

with a discrimination on S. Similarly, for any finite set T , a process associated with any

map ψ : T → T ′ (where T ′ is an arbitrary set) is expressed as a discrimination Dψ on T .

Hence, an intermediate stage of the process is also identified with a discrimination on S by

an external observer who treats only “correct” trials whose responses are expressed by a map

of S. We call this discrimination of an intermediate stage an intermediate expression.

The following propositions relate a process with multiple stages to the partial order rela-
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tion of a partition lattice.

Proposition 1 For any finite sets U and W and any set V , let a map φ : U → V be a

composition of two maps, ψ : U → W and ψ′ : W → V ; i.e. φ = ψ′ ◦ ψ. Then, the interme-

diate expression (the discrimination at the intermediate stage) Dψ on U is a refinement of

the discrimination Dφ on U . Thus on the partition lattice Π|U |,

Dψ 6 Dφ. (5)

Proof Because φ = ψ′ ◦ ψ, obviously ψ(a) = ψ(b) ⇒ φ(a) = φ(b) for any a, b ∈ U , and

thus (a, b) ∈ Dψ ⇒ (a, b) ∈ Dφ. ¤

Roughly speaking, Proposition 1 implies that any deductive process defined in an opera-

tional sense is described as “climbing up” toward a coarser element on the partition lattice.

Apparently, an external observer describing the activity resulting from the stimuli S can only

treat the discrimination on S, so that the amount of information on S that the observer can

obtain should monotonically “decrease” as the process proceeds to later stages. The next

proposition asserts that the integrated information of concurrently processed sub-processes

corresponds to the meet of these discriminations on the lattice.

Proposition 2 Given φ1 : U → V1 and φ2 : U → V2, for any finite set U and any sets

V1 and V2, let φ be a tuple of φ1 and φ2, i.e. φ : U → V1 × V2, φ(u) = (φ1, φ2)(u) =

(φ1(u), φ2(u)) (u ∈ U). Then, the discrimination Dφ is the meet of the discriminations Dφ1

and Dφ2. Thus, on the partition lattice Π|U |,

Dφ = Dφ1 ∧ Dφ2 . (6)

Proof The equivalence φ(a) = φ(b) holds iff φ1(a) = φ1(b) and φ2(a) = φ2(b) for any

a, b ∈ U. Thus (a, b) ∈ Dφ implies (a, b) ∈ Dφ1 and (a, b) ∈ Dφ2 ; i.e. Dφ 6 Dφ1 ∧ Dφ2 . Next,
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note that for any ψ : U → W , if Dψ 6 Dφ1 ∧Dφ2 then ψ(a) = ψ(b) implies φ1(a) = φ1(b) and

φ2(a) = φ2(b). Hence, we have the equivalence relation φ(a) = φ(b), and thus (a, b) ∈ Dψ

implies (a, b) ∈ Dφ, i.e. Dψ 6 Dφ. Therefore, Eq. (6) follows. ¤

An intermediate expression as a partition is defined in reference to only the stimulus set,

which the experimenter can only partially obtain from actual internal processes. What can

be described is, however, just the partition of the stimuli when the activity of a unit belonging

to an intermediate stage is measured. Therefore, the deductive process should necessarily be

described as a transition between discriminations.

4 Theories and verification: possibilities for the deduc-

tive process and derived discriminations

4.1 Two possibilities that express the deductive process

Let us denote the set of the attending conditions by X (n = |X|), the set of multi-dimensional

stimuli by the product of the attributes of stimuli, Y =
∏

x∈X Yx, and the set of responses

by Z. In this case, the inference process that the subject is to carry out in the experiment

can be expressed as the map,

f : X × Y → Z, (1)

which represents the “correct” correspondence of the stimuli to the responses.

In order to understand the potential substructure of f , we consider higher-order maps

with one argument corresponding to f (this process is called the “Currying”). We adopt here

two higher-order maps that can be obtained directly from f on the domain represented by
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the product X × Y :

g : X → ZY , g(x)(y) = f(x, y) (7)

h : Y → ZX , h(y)(x) = f(x, y). (8)

The map g is described as that which chooses a map (Y → Z) from |X| = n maps, in a

manner that depends on X, whereas the map h is described as that which chooses a map

(X → Z) from |Y | =
∏

x∈X |Yx| maps, in a manner that depends on Y . As mentioned in

§2, the inference process intended in the experiments conducted by Sakagami et al. is of the

type Eq. (7). Therefore, f is restricted to express a conditional map such as Eq. (2). Then a

domain determined by g(x) can be restricted to the corresponding attribute of the stimulus.

In other words, for any x ∈ X, there is a map fx : Yx → Z such that

fx(px(y)) = g(x)(y), (9)

where px denotes the projection of the product Y to Yx. By contrast, h is not restricted in

this way. Under the map h, the mapping of the conditions to the response is carried out

in parallel (i.e., simultaneously and independently) for all stimulus attributes. Although the

internal processes of the subject may proceed in this manner, the inference process induced

by the experimental condition used by Sakagami et al. seems to be represented by the process

Eq. (7) rather than the process Eq. (8). For this reason, we consider the case Eq. (7) in the

following, although we cannot deny the possibility that there exist parallel processings like

that described by Eq. (8), as well as others, even for conditional tasks.

We can further decompose g(x) : Y → Z into two maps representing the transformation

process and the selection process. The transformation process consists of the conversion from

a stimulus to a behavioral meaning Z, which is expressed by fx (x ∈ X) in Eq. (9), and the
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selection process consists of the projection of an attribute in accordance with the attending

condition x ∈ X. If each of these processes is carried out as one stage of the total process,

then there are two possibilities for this total process, one in which the selection process is

first and the transformation process is second and one in which this order is reversed. These

two cases are expressed as follows:

g(x) = ε ◦ πε
x, Y −→

πε
x

Y−→
ε

Z, (10)

g(x) = πλ
x ◦ λ, Y −→

λ
Z−→

πλ
x

Z. (11)

Here Y is the sum (disjoint union) of Yx (x ∈ X) (i.e., Y =
∐

x∈X Yx), Z is the product of Z

over all x ∈ X (i.e., Z =
∏

x∈X Z = Zn), and

πε
x(y) = yx (x ∈ X), (12)

ε(y) = 〈f1, ..., fn〉(y), (13)

λ(y) = (f1, ..., fn)(y), (14)

πλ
x(z) = zx (x ∈ X), (15)

where y = (y1, ..., yn), z = (z1, ..., zn), (f1, ..., fn) : Y → Z is the tuple of f1, ..., fn, i.e.,

process of selective attention (cf., e.g., Ref. [6]).

Note that the manner of decomposing the process f adopted here is not unique. In

fact, there are infinitely many possible ways to decompose this process. For example, it

is clear that the number of intermediate stages of the process can be arbitrarily increased

by means of inserting any injection (injective or one-to-one map) at any stage. Thus, the

pair of decompositions Eq. (10) and Eq. (11) is merely a simplified such set among infinite

possibilities.
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4.2 The possibility of verification through the observation of neu-
ral activity

If the experimenter could observe the neural activity A of the brain in a suitable manner,

the discrimination DF induced by the map from the stimuli to the observed activity, F :

X × Y → A, should be identified with an intermediate expression described in §3.4. In

order to understand this more clearly, let us consider the relation between two kinds of

processes obtained theoretically, the early selection process and the late selection process,

with the process derived from the experiment of Sakagami and Tsutsui [11]. In other words,

the relationship between the classification of neuron groups given in §2.2 and the scenario

suggested by latency analysis (Fig. (5)) is the subject to be considered here.

–Fig. 7–

In early selection represented by Eq. (10), the intermediate expression of the stimuli at

the intermediate stage, Y , is the discrimination on the stimuli due to the selection process

πε
x; that is, the intermediate expression should be given by Dπε

x
, whereby just an attribute

for each attending condition is discriminated. In late selection represented by Eq. (11), the

intermediate expression at the intermediate stage, Z, after the transformation process λ gives

the discrimination Dλ. This discrimination divides n behavioral meanings based only on Y ,

which is independent of X. One example of each of the intermediate expressions Dπε
x

and Dλ

in the case that X consists of three attributes (X = {m, sh, c}), is depicted in Figs. (7a) and

(7b), respectively.

–Fig. 8–
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Let us consider the implications of the cell types found in experiments. Though there is

an arbitrariness in defining the resulting classes as intermediate stages directly according to

the scenario of Fig. (5), we regard the union of MI, SI and CI, i.e. MI + SI + CI, as the

first stage, the union of M and C, i.e. M + C, as the second stage, and the CM class as the

third stage. In this case, it turns out that MI + SI + CI discriminates the stimulus space as

shown in Fig. (8a). Similarly, M + C gives the discrimination shown in Fig. (8b).

Although the discrimination given by MI + SI + CI (Fig. (8a)) is identical to the

discrimination given by the transformation from the multi-dimensional stimuli Y to the multi-

dimensional action Z, as shown in Fig. (7b), it cannot be determined whether MI + SI + CI

expresses the activity after or before the process of transformation to behavioral meaning,

because all the maps fc, fsh, and fm were injections in the experiment under consideration [11].

In other words, the discrimination induced by Y itself and that induced by Z were identical

in that experiment. To clarify this point, further experiments employing many-to-one maps

(see below) can be carried out. In the case that MI + SI + CI expresses activity after

transformation to behavioral meaning, it can be concluded that late selection is suitable for

the entire process. In this case, the transformation process should be carried out through

the union of the intrinsic cells’ activity, MI + SI + CI, and the successive selection process is

regarded as being divided into multiple stages, with the intermediate stage M + C. In the case

that the union MI + SI + CI expresses activity before the transformation process, but the

other union, M + C, expresses activity after transformation, MI + SI + CI merely expresses

the discrimination of the TS, Y , whereas the process between MI + SI + CI and M + C

may consist not only of the transformation process but also of a part of the selection process,

because the intermediate expression Dπε
x

differs from the discrimination computed with M
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+ C. The particular asymmetric property of C cells, whose responses are correlated with

both the color and the shape conditions, suggests that the behavioral responses under these

attending conditions are partially selected in each C cell if these cells express the already

converted behavioral meaning under these attending conditions. In fact, in a different paper

by Sakagami et al. [12], it is reported that 76% of C cells (out of 25 C cells) found in the

VLPFC also recognize the color attribute under the color condition for a different set of target

stimuli. Because the transformation process from the TS was not an injection in Ref. [12],

this result suggests that the C cells (at least in most cases) express the behavioral meaning

that has already been converted.

Now, suppose there exist other types of cells, C′ cells and S cells, with C′ cells reacting to

the color attribute only under the color condition, and S cells reacting to the shape attribute

only under the shape condition. We obtain the discrimination induced by the union M + S

+ C′. This is displayed in Fig. (8c). This discrimination is identical to the discrimination

Dπε
x

induced by the projection displayed in Fig. (7a). These supposed classes, C′ and S, and

the stage M + S + C′ construct one possible stage that may intervene between the stages

MI + SI + CI and M + C.

To decide which process, early or late selection, provides a plausible interpretation of

neural activity correlated with behavior, it is sufficient to check whether MI, SI and CI cells

are correlated with the behavioral response under corresponding conditions. If MI, SI and

CI are correlated with the behavioral response, in which case the discrimination induced by

MI + SI + CI is the intermediate expression Dλ, the late selection is suitable. If MI, SI,

CI and M, as well as the supposed classes S and C′, are all uncorrelated with the response,

in which case the discrimination induced by MI + SI + CI is identical to that induced by
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Y , and the discrimination induced by M + S + C′ is identical to Dπε
x
, the early selection is

suitable. Actually, the possibility that the intermediate stage Dπε
x

consists of the supposed

stage M + S + C′ cannot be ruled out. However, it is likely that the process as a whole

is late selection, because the results of experiment reported in Ref. [12] indicates that most

of the C cells respond to the behavioral meaning. Even in this case, the selection process

would likely be carried out in multiple stages intervened by M + C. Thus, the selection

process would be divided into a process executed along the ventral pathway (for the color

and the shape conditions) and a process executed along the dorsal pathway (for the motion

condition). Again, note that the splitting of the selection process into these two selection

sub-processes is merely one among an infinite number of possibilities. However, our approach

provides a suitable framework to compare and analyze such possibilities, rather than to derive

a conclusion regarding this specific case.

4.3 Applicability of the theory

In the theory presented in this paper, for a certain behavioral task, we introduced the concepts

of stimuli S, responses R, and activity A expressed as an S-R map relation, and we related

them to intermediate expressions.

We associated the sets X×Y and Z with the stimuli S and responses R, respectively, and

we also provided the correspondence between the discriminations statistically differentiated

by the firing rates of neurons averaged over trials and the discriminations differentiated by

intermediate expressions. The classification of the sets X × Y and Z directly reflects the

assumptions that we made. Furthermore, it is evident that information regarding the mean

firing rate alone is not sufficient to obtain a useful description of the activity of neurons (e.g.,
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Refs. [1],[2],[5],[13],[14],[19]). Our present framework itself is, however, independent of neural

representations, such as various types of temporal coding.

Whenever an observer attempts to obtain a correspondence between the formalization of

some phenomenon and the phenomenon itself, the ambiguity that stems from the observer’s

arbitrariness of discrimination is inevitable. Hence the results obtained from the present

theory—as those of any theory—must be considered to be dependent on the hidden condi-

tions, namely the tacit assumptions. Conversely, one of the most important advantages of

the present formalization is to reveal such tacit assumptions.

5 Discussion

We constructed in the present paper a formal theory of tasks in neurocognitive experiments.

This formal theory can provide an appropriate description of conditions that are applied to

experiments and extract the structure of internal cognitive process in relation with neuron’s

activity. Our approach has provided a new classification of discrimination at an animal’s

“cognitive” level. Conventional theories provide merely an identification in terms of Boolean

logic, which is typically seen in association tests with pigeons, and other identifications using

simple stochastic renewals of maps, which is typically seen in experiments on reinforcement

learning in T-shaped mazes with rats. The present theory, on the other hand, provides

another more dynamic identification in terms of higher-order maps.

In general, brain sciences should work to bridge the gap between the neuronal level and the

functional level. Physiological approaches, which usually give rise to the reduction of function

to neuronal characters, possess predictive ability concerning behavior at the neuronal level but

lack, in general, explanatory power with regard to cognitive functions. On the other hand,
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cognitive approaches, whose extreme example is simple behaviorism, possess explanatory

capability regarding cognitive function but lack predictive power concerning neuronal level

phenomena [18]. Thus, physiological and cognitive levels provide descriptions at two opposite

extremes.

The present theory provides a description at intermediate levels between these two ex-

tremes. To describe neural systems at various levels, a variety of dynamical models have been

adopted. The present theory can be viewed as a dynamical model in the sense of clarifying

animal cognitive behavior and related neuronal activity by providing various types of map-

pings and their relations restricted to a given neurocognitive experimental task. The present

results thus represent an attempt to reveal the underlying mechanism. We actually demon-

strated a method to formulate a cognitive experiment. Formulating the measurement and

analysis of the task, we elucidated the “observation space.” As one example, we associated

two formal processes with early and late selection. This approach allows us to classify exper-

imental situations systematically from an operational point of view. Furthermore, this work

may also provide a framework for further experiments which may be capable of clarifying a

mathematical structure of the process of discrimination of stimuli and that of transformation

process of cognition to behavior.

Thus, the present theory may provide a concrete method for the interpretation of cognitive

function in terms of brain activity, namely a scheme of hermeneutic device [4]. Such a

formalization of the experimental context would make tacit assumptions explicit. If this

scheme were sufficiently powerful, it would then be possible not only to use it in analyzing

existing neurocognitive experiments but also in devising new experiments.

Although the present framework is predictive, it is “static” in the sense that it does not
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treat more complex dynamics of the brain and mind. As stated in a previous paper [17],

the dynamics of a description can be formulated using a certain type of functional map (see

also Refs. [8],[15],[16]). The use of such a map may provide a direction for the development

of the present framework. In addition, if the formal language is sufficiently potent, it may

provide a tool to describe the function of the system itself at another cognitive level. Such a

capability is related to Rosen’s “relational biology” [9]. These extensions of our framework

are left to a future study.
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A Appendix

A.1 Discrimination derived using ANOVA

Sakagami and Tsutsui [11] classified measured cells according to the results of 2-factor analysis

of variance (ANOVA) with repeated measures on factors Ym and Yc (attributes of TS) under

several attending conditions. (Tests for factor X were not carried out.) In this analysis, for

a pair of levels (i, j) ∈ Ym × Yc, a random variable of the activity of cell Aij is expressed as a

linear model,

Aij = µ + αi + βj + γij + εij, (16)

where µ is a constant, αi and βj are the main effects of the factors Ym and Yc, respectively

(αl + αr = βp + βy = 0), and γij is the Ym–Yc interaction (γlp + γly + γrp + γry = 0). The

error term εij is an independent random variable following Gaussian distribution with mean

0 and variance σ2, N(0, σ2). Then, for each attending condition x ∈ X, there are three null

hypotheses,

Hxm : αl = αr (= 0),

Hxc : βp = βy (= 0),

Hxi : γlp = γly = γrp = γry (= 0).

Therefore, for two attending conditions (m and c), there are six hypotheses in all. Because

the effect of the interaction, however, was not considered as criterion in their classification,

we consider only four hypotheses regarding the main effects, Hmm, Hmc, Hcm and Hcc. A cell

is then classified into one of 24 = 16 classes, as shown in Fig. (3), according whether or not

each of these four hypotheses is rejected (i.e., these classes form a Boolean lattice 24). We

call these 16 classes statistically distinct classes, or simply classes. Let H̃ be the proposition
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“A null hypothesis H is rejected by the test with a given significance level,” and let
◦
H be

the negation of H̃, but it should be noted here that not rejecting H does not imply that H

is true.

Using this notation, the classes CI and MI are represented as the cases
◦
HmmH̃mc

◦
HcmH̃cc and

H̃mm

◦
HmcH̃cm

◦
Hcc, respectively. (For simplicity, the logical product is denoted by juxtaposition.)

Similarly, the class C corresponds to
◦
Hmm

◦
Hmc

◦
HcmH̃cc, the class M to H̃mm

◦
Hmc

◦
Hcm

◦
Hcc, and the

class CM to H̃mm

◦
Hmc

◦
HcmH̃cc.

How precisely do these classifications for measured cells reflect the information concern-

ing stimulus conditions that the cells carry? If we can ignore error of the first kind (that

is, statistical error arising in the case that a hypothesis is rejected when it is in fact true),

rejecting a hypothesis on the basis of a main effect implies discrimination of the stimulus

conditions in the corresponding factor. On the other hand, because we can never confirm a

hypothesis in a definite sense, and therefore even if there is no rejection of a hypothesis, it

cannot be concluded with certainty that there is no discrimination in those stimulus condi-

tions for that cell. Theoretically, even if a hypothesis is true, the nonexistence of a difference

between the stimuli is never guaranteed, due to a more general problem: Measured quantities

may not sufficiently reflect the information concerning stimuli that a cell may carry. If there

is interaction between the factors, there are generally more complex relationships between

the dependence of the cell behavior on the various stimuli (however, see A.2). Furthermore,

nothing definite can be stated about the statistical difference between the activities for differ-

ent attending conditions, because no test for X has been carried out. Sakagami and Tsutsui,

however, demonstrated that the activity patterns of all observed CM cells correspond to the

behavioral response Z, and hence, it appears possible that CM cells discriminate stimulus
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conditions in a manner similar to the behavioral response.

A.2 Correspondence with discriminations

Now, let us reconsider the statistical method and the results of the ST task described in §2.3

from the viewpoint introduced in §3. The 16 statistically distinct classes obtained using the

2-factor ANOVA (Ym and Yc), displayed in Fig. (3), do not have a simple correspondence

with discriminations.

As mentioned in A.1, because it cannot be claimed that there is no difference between

any two stimulus conditions, the possible correspondence between statistically distinct classes

and discriminations must contain all the refinements of the discriminations. In other words,

letting Π be the partition lattice consisting of all discriminations on some domain, and letting

Γ be the subset of Π corresponding to a class, Γ must be a down-set of Π, that is, for any

Dφ ∈ Γ and Dψ ∈ Π, Dψ ≤ Dφ ⇒ Dψ ∈ Γ.

A concrete correspondence is derived using the statistical model Eq. (16). Let us denote

the statement that a hypothesis H itself is true by the same symbol H, and its negation (i.e.,

the statement that H is false) by H̄. If we assume that no error of the first kind occurs,

◦
H implies H or H̃, while H̄ implies H̃ only. Though the Ym–Yc interaction was not taken

into account when classifying the results of the neuronal activity in the experiment, the

correspondence between H̄ and H̃ is not affected by whether or not there is an interaction,

because each subset in the case without an interaction contains the subset in the case with

an interaction.

Finally, if the domain Y is merged with another factor that was not statistically tested

in the ST experiment, such as the attending condition X, the correspondence between the
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classes and the discriminations becomes more complex. In this case, the correspondence

between the classes and all possible relations between discriminations for different attending

conditions should be considered.
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(Genista, Tübingen, 2001).

[18] Tsuda, I. Toward an interpretation of dynamic neural activity in terms of chaotic dy-

namical systems, Behavioral and Brain Sciences 24 (2001) 793–847.

[19] Tsukada, M. A proposed model of the hippocampal-cortical memory system and tem-

poral pattern sensitivity of LTP in hippocampal neurons. Concepts in Neuroscience 3

(1992) 213–224.

33



Figure Captions

Fig. 1. The circular process involved in the construction of scientific theories: (a) Observation

of an object or phenomenon in the real world produces observed data; (b) from the observed

data, a formal theory or hypothesis is constructed; (c) deducing from the theory, predictions

regarding other phenomena are made; (d) comparing these predictions with newly gathered

data, the theory can be verified or refuted. The inductive process (b) itself cannot be for-

malized, and in any theory, a hypothesis remains until it is rejected. This scientific process

often confronts difficulty in the treatment of complex and open systems.

Fig. 2. The behavioral task investigated by Sakagami and Tsutsui [11]. (a) A schematic

depiction of the task. Two visual stimuli, a cue stimulus (CS) and a target stimulus (TS),

were presented on a computer monitor to a monkey. The CS specified the attending condition,

i.e. the attribute of the TS to which the monkey should pay attention. The CS was also used

as a fixation spot. The TS was a multi-dimensional visual stimulus, which appeared at one

of four locations at random. The monkey responded by releasing or continuing to press a

lever. Neural activity in the prefrontal cortex was recorded with a microelectrode. (b) Time

sequences of trials for “go” and “no-go” responses. When the monkey pressed the lever, a

trial started, and the CS was presented. After 1–2 s, the TS was presented for 200 ms. After

1–2 s from the stop of TS presentation, the light expressing CS was dimmed and remained

dimmed during 1.2 s. In the case of “go” response, the monkey has to release the lever within

this dim period. In the case of “no-go” response, the monkey has to continue pressing the

lever during this period.
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Fig. 3. Sixteen possible classes statistically distinguished via the analysis of variance, taking

two factors, Yc and Ym into consideration. These classes are arranged on a Boolean lattice

24. The activity of each class is represented by eight boxes, which correspond to the stimulus

conditions X×Y . The arrangement of the stimulus conditions in these boxes is displayed in

the lower-right inlet. Also, the “correct” behavioral responses Z are depicted in this frame

for reference. In each row (corresponding to the attending condition), boxes drawn by the

same pattern imply “identical” in the sense that it cannot be said that all activity of cells

responding to a corresponding stimulus is not statistically identical. The classes labeled MI,

CI, M, C and CM are those examined by Sakagami and Tsutsui. MI and CI cells discriminate

Ym and Yc factors, respectively, under both attending conditions. M discriminates Ym under

the motion condition, m, only, and C discriminates Yc under the color condition, c, only. CM

cells discriminate Ym under the motion condition, m, and Yc under the color condition, c. The

numbers in the figure indicate the number of cells belonging to the corresponding classes

among the total of 523 cells in the dorsolateral prefrontal cortex. The significance level of

the statistical test was 0.01. (See Appendix A.1 for statistical analyses.)

Fig. 4. Statistical discriminations of M, C and CM cells in the case that the shape con-

dition is included (the middle row). C cells exhibit discrimination that corresponds to the

behavioral meaning Z for the color and shape conditions, whereas the discrimination of M

cells corresponds to the behavioral meaning for the motion condition only. CM cells exhibit

discrimination that is equivalent to the behavioral meaning Z under all conditions (see the

right inlet).

35



Fig. 5. A possible scenario of information processing, based on the work of Sakagami and

Tsutsui [11], for multi-dimensional visual stimuli. Information regarding the color and shape

of the multi-dimensional stimulus is processed along the ventral pathway (via the temporal

cortex), and that regarding the motion is processed along the dorsal pathway (via the parietal

cortex). Actually, Sakagami and Tsutsui found evidence suggesting the existence of M, C

and CM cells (and small numbers of MI and CI cells, too) in the dorsolateral prefrontal

cortex. MI, SI and CI cells are assumed to act in the early stage of the process. There is

evidence that C cells integrate information from CI and SI cells, whereas M cells are organized

directly from MI cells. CM cells integrate the information of M and C cells and this makes

a determination of behavior.

Fig. 6. An example of a Hasse diagram for a partition lattice: a partition lattice of length 3

(Π4). Π4 orders all partitions of four components, that is, all possible (B(4) = 15) equivalence

relations of a set consisting of four components. In this ordering the least element segregates

each component, and the greatest element segregates no components. The partial order

represents refinements of the components; i.e. a lower element connected by line(s) refines

those above it.

Fig. 7. Intermediate expressions of two hypotheses concerning the internal process. (a)

The case of early selection. The selection process is responsible for the discrimination of

the stimulus space. Hence, each attribute is discriminated under the respective attending

conditions. (b) The case of late selection. The transformation process is responsible for the

discrimination of the stimulus space. In other words, the transformation process decides the
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behavioral meaning for each element of Y .

Fig. 8. Discriminations at the intermediate stages displayed in Fig. 5. (a) The union of cell

types, MI, SI and CI discriminates each column of Y , but it is impossible to decide whether

this discrimination is associated with the stimulus or the behavioral meaning. (b) The

discrimination derived from the union of cell types M and C. Because the cell type C responds

to the behavioral meaning of the color and shape conditions, the behavioral meanings for

these two attending conditions are not discriminated. (c) The discrimination derived from

the union of cell types M and S, and the supposed cell type C′ which is assumed to respond

to the color attribute only under the color condition. (See Fig. 4 for the arrangement of

partitions representing the stimuli.)
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Figure 6. [upside ←]
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