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Abstract. Let (zn) be a sequence of points in the open unit disc D and ρn =∏
m6=n |(zn− zm)(1− z̄mzn)−1| > 0. Let a = (aj)

∞
j=1 be a sequence of positive numbers and

`s(a) = {(wj) ; (ajwj) ∈ `s} where 1 ≤ s ≤ ∞. When 1 ≤ p ≤ ∞ and 1/p + 1/q = 1, we
show that {(f(zn)) ; f ∈ Hp} ⊃ `s(a) if and only if there exists a finite positive constant γ

such that

{ ∞∑

n=1

(anρn)−t(1− |zn|2)t|f(zn)|t
}1/t

≤ γ‖f‖q (f ∈ Hq), where 1/s+1/t = 1. As

results, we show that {(f(zj)) ; f ∈ Hp} ⊃ `1(a) if and only if sup
n

(anρn)−1(1−|zn|2)1/p <

∞, and {(f(zn)) ; f ∈ H1} ⊃ `∞(a) if and only if
∑
n

(anρn)−1(1 − |zn|2)δzn is finite

measure on D. These are also proved in the case of weighted Hardy spaces.
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§1. Introduction

Hp (0 < p ≤ ∞) denotes the usual Hardy space in the open unit disc D. In this

paper, we assume that a sequence (zj) in D satisfies that
∞∑

j=1

(1− |zj|) < ∞, that is, there

exists a Blaschke product

B(z) =
∞∏

j=1

− z̄j

|zj|
z − zj

1− z̄jz
.

Let

ρk,n =
n∏

j=1
j 6=k

∣∣∣∣∣
zk − zj

1− z̄jzk

∣∣∣∣∣ , 1 ≤ k ≤ n,

ρk =
∞∏

j=1
j 6=k

∣∣∣∣∣
zk − zj

1− z̄jzk

∣∣∣∣∣ .

Then ρk,n ≥ ρk,n+1 and lim
n→∞ρk,n = ρk for k ≥ 1. We assume that ρk > 0 for k = 1, 2, · · ·.

For a positive sequence a = (aj), `s(a) denotes {(wj) ; wj ∈ 6C and
∞∑

j=1

(aj|wj|)s <

∞} and `∞(a) denotes {(wj) ; wj ∈ 6C and sup
1≤j<∞

aj|wj| < ∞}. In this paper, we

study the following problem : Find a necessary and sufficient condition on (zj) so that
{(f(zj)) ; f ∈ Hp} ⊃ `s(a) where 1 ≤ p ≤ ∞ and 1 ≤ s ≤ ∞.

Suppose aj = 1 for all j ≥ 1. When p = s = ∞, this was solved by L. Carleson
[1]. That is, {(f(zj)) ; f ∈ H∞} ⊃ `∞ if and only if inf

j
ρj > 0. (zj) is called a

uniformly separated sequence when inf
j

ρj > 0. When p = ∞ and 1 ≤ s < ∞, A. K.

Snyder [13] (cf. [7],[11]) proved that {(f(zj)) ; f ∈ H∞} ⊃ `s if and only if inf
j

ρj > 0.

A. K. Snyder [13] and P. L. Duren and H. S. Shapiro [3] showed that there exists a
sequence (zj) which is not uniformly separated, that is, inf

j
ρj = 0 and has the property

: {(f(zj)) ; f ∈ Hp} ⊃ `∞ when p 6= ∞. B. A. Taylor and D. L. Williams [14] showed
that for 1 ≤ p ≤ ∞ {(f(zj)) ; f ∈ Hp} ⊃ `∞ if and only if there exists a positive finite

constant γ such that
∞∑

j=1

1

ρj

(1− |zj|2)|g(zj)| ≤ γ‖g‖q for all g in Hq and 1/p + 1/q = 1.

Suppose 1 ≤ p = s ≤ ∞. When aj = (1 − |zj|2)1/p for all j ≥ 1, this was solved
by H. S. Shapiro and A. L. Shields [11]. That is, {(f(zj)) ; f ∈ Hp} ⊃ `p(a) if and only
if inf

j
ρj > 0. When aj = ρ2

j for all j ≥ 1, J. P. Earl [4] showed that {(f(zj)) ; f ∈ H∞}
contains `∞(a) always. This was pointed out by A. M. Gleason (see [6]). On the other
hand, when aj = ρj for all j ≥ 1, T. Nakazi [10] showed that {(f(zj)) ; f ∈ H∞} ⊃ `∞(a)
if and only if (zj) is the union of a finite number of uniformly separated sequences. For a
general weight a = (aj), J. D. McPhail [9] gave a necessary and sufficient condition about
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(zj) that {(f(zj)) ; f ∈ Hp} ⊃ `p(a). In fact, he studied such a problem in weighted
Hardy spaces.

In §2, we give a necessary and sufficient condition about (zj) for that {(f(zj)) ; f ∈
Hp} ⊃ `s(a) where 1 ≤ p ≤ ∞, 1 ≤ s ≤ ∞ and a = (aj) is arbitrary weight . As a result,

we show that {(f(zj)) ; f ∈ H1} ⊃ `s(a) if and only if
∞∑

j=1

(ajρj)
−t(1 − |zj|2)t < ∞

where 1/s + 1/t = 1. Moreover, when 1 < p ≤ ∞ and a = (ρ−1
j ), we show that

{(f(zj)) ; f ∈ Hp} ⊃ `p(a) if and only if (zj) is a finite sum of uniformly separated
sequences. This is a generalization of a result in [10] for p = ∞.

In §3, when 1 ≤ p ≤ ∞, we show that {(f(zj)) ; f ∈ Hp} ⊃ `1(a) if and only if
sup

j
(ajρj)

−1(1 − |zj|2)1/p < ∞. As a result, a theorem of A. K. Snyder [13] follows, that

is, {(f(zj)) ; f ∈ H∞} ⊃ `s if and only if inf
j

ρj > 0.

In §4, we give a necessary and sufficient condition about (zj) for that {(f(zj)) ; f ∈
Hp} ⊃ `∞(a). Put µ =

∞∑

j=1

(ajρj)
−1(1− |zj|2)δzj

. Then {(f(zj)) ; f ∈ H1} ⊃ `∞(a) if and

only if µ is a finite measure on D, and {(f(zj)) ; f ∈ H∞} ⊃ `∞(a) if and only if µ is a
Carleson measure on D.

In §5, we give a necessary and sufficient condition about (zj) for that {(s(zj)f(zj))

; f ∈ Hp(W )} ⊃ `p, where Hp(W ) is a weighted Hardy space and s(zj) = inf{
∫
|f |pWdθ/2π

; f(zj) = 1}. We assume only that log W is in L1. J.D.McPhail [9] studied such a problem
when W satisfies the (Ap)-condition of Muckenhoupt.

Our interests in this paper are in the differences between interpolations for `1(a)
and `∞(a) and in the interpolation problems for weighted Hardy spaces. For example,
it is very easy to prove that {(f(zj)) ; f ∈ H∞} ⊃ `1 if and only if {zj} is uniformly
separated.

§2. General results

In this section, we obtain a general result for interpolation problems for `s(a) (1 ≤
s ≤ ∞) by Hp (1 ≤ p ≤ ∞). For 1 ≤ j ≤ n, let

Bn(z) =
n∏

j=1

z − zj

1− z̄jz
and Bnj(z) = Bn(z)

1− z̄jz

z − zj

.

If we put bnj = Bnj(zj), then

ρj,n = |bnj| (1 ≤ j ≤ n).

Suppose for n = 1, 2, · · ·
fn(z) =

n∑

j=1

b−1
nj wjBnj(z).
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Then fn is in H∞ and fn(zj) = wj (1 ≤ j ≤ n). Lemma 1 is essentially known.

Lemma 1. Let 1 ≤ p ≤ ∞ and 1/p + 1/q = 1. Suppose wj is a complex number
for j = 1, 2, · · ·. There exists a function f in Hp such that f(zj) = wj for j = 1, 2, · · · if
and only if there exists a positive finite constant γ such that for any n ≥ 1 and for all g
in Hq, ∣∣∣∣∣∣

n∑

j=1

wj

bnj

(1− |zj|2)g(zj)

∣∣∣∣∣∣
≤ γ‖g‖q.

Proof. Put for n ≥ 1

mp,n(w) = inf{‖fn + Bnh‖p ; h ∈ Hp}.
Then by [2, p142],

mp,n(w) = sup





∣∣∣∣∣∣

n∑

j=1

wj

bnj

(1− |zj|2)g(zj)

∣∣∣∣∣∣
; g ∈ Hq and ‖g‖q ≤ 1



 .

There exists a function f in Hp such that f(zj) = wj for j = 1, 2, · · · if and only if
sup

n
mp,n(w) < ∞ because the unit ball of Hp is compact in the weak topology or the

weak ∗ topology. This implies the lemma.

Theorem 1. Let 1 ≤ p ≤ ∞ and 1 ≤ s ≤ ∞. {(f(zn)) ; f ∈ Hp} ⊃ `s(a) if and
only if there exists a finite positive constant γ such that

{ ∞∑

n=1

(anρn)−t(1− |zn|2)t|f(zn)|t
}1/t

≤ γ‖f‖q

for f in Hq, where 1/p + 1/q = 1 and 1/s + 1/t = 1.
Proof. For the ‘only if’ part, since {(f(zj)) ; f ∈ Hp} ⊃ `s(a), by Lemma 1 there

exists a positive finite constant γ such that for any n ≥ 1

sup
w∈`s(a)

‖w‖≤1

∣∣∣∣∣∣

n∑

j=1

wj

bnj

(1− |zj|2)g(zj)

∣∣∣∣∣∣
≤ γ‖g‖q (g ∈ Hq)

where w = (wj) and ‖w‖ =



∞∑

j=1

|wjaj|s



1/s

. Hence for any n ≥ 1





∞∑

j=1

(ajρn,j)
−t(1− |zj|2)t|g(zj)|t





1/t

≤ γ‖g‖q (g ∈ Hq).

Assuming ‖g‖q = 1,
∞∑

j=1

(ajρn,j)
−t(1− |zj|2)t|g(zj)|t ≤ γt.
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For any ε > 0, there exists a positive integer nj for each j such that for all n ≥ nj

(ajρn,j)
−t(1− |zj|2)t|g(zj)|t − ε

2j
≤ (ajρn,j)

−t(1− |zj|2)t|g(zj)|t

because ρj,n ≥ ρj,n+1 and lim
n→∞ρj,n = ρj. Thus, {(f(zj)) ; f ∈ Hp} ⊃ `s(a) if and only if

for any ε > 0 and any n ≥ max(n1, · · · , nn)

n∑

j=1

(ajρj)
−t(1− |zj|2)t|g(zj)|t − ε ≤

n∑

j=1

(ajρj)
−t(1− |zj|2)t|g(zj)|t ≤ γt

This implies the ‘only if’ part.
For the ‘if’ part, by Lemma 1 it is sufficient to show that there exists a finite

positive constant γ such that for all n ≥ 1

sup
w∈`s(a)

‖w‖≤1

sup
‖g‖q≤1

∣∣∣∣∣∣

n∑

j=1

wj

bnj

(1− |zj|2)g(zj)

∣∣∣∣∣∣
≤ γ < ∞.

In fact, for all n ≥ 1

sup
w∈`s(a)

‖w‖≤1

sup
‖g‖q≤1

∣∣∣∣∣∣

n∑

j=1

wj

bnj

(1− |zj|2)g(zj)

∣∣∣∣∣∣

≤ sup
‖g‖q≤1





n∑

j=1

(ajρj,n)−t(1− |zj|2)t|g(zj)|t




1/t

≤ sup
‖g‖q≤1





∞∑

j=1

(ajρj)
−t(1− |zj|2)t|g(zj)|t





1/t

< ∞

Corollary 1. Let 1 ≤ s ≤ ∞. {(f(zn)) ; f ∈ H1} ⊃ `s(a) if and only if

∞∑

n=1

(anρn)−t(1− |zn|2)t < ∞

where 1/s + 1/t = 1. Hence, when a = (an) = (ρ−1
n ) it is always true that {(f(zn)) ; f ∈

H1} ⊃ `s(a).
Proof. The first part is clear by Theorem 1. When a = (ρ−1

n ), {(f(zn)) ; f ∈
H1} ⊃ `s(a) if and only if

∞∑

n=1

(1− |zn|2)t < ∞. This implies the second part.

Corollary 2. Let 1 ≤ p ≤ ∞, 1 ≤ s ≤ ∞ and a = (ρ−1
n ). {(f(zn)) ; f ∈ Hp} ⊃

`s(a) if and only if there exists a finite positive constant γ such that

{ ∞∑

n=1

(1− |zn|2)t|f(zn)|t
}1/t

≤ γ‖f‖q
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for f in Hq, where 1/p + 1/q = 1 and 1/s + 1/t = 1. When 1 < p ≤ ∞, {(f(zn)) ; f ∈
Hp} ⊃ `p(a) if and only if (zn) is a finite sum of uniformly separated sequences.

Proof. The first part is clear by Theorem 1. The second part follows from the
first one and [8].

In Corollary 2, when 1 < p ≤ ∞ and 1 < s ≤ ∞ and s > p, if {(f(zn)) ; f ∈
Hp} ⊃ `s(a) then (zn) is a finite sum of uniformly separated sequences but the converse
is not true. When s < p, if (zn) is a finite sum of uniformly separated sequences then
{(f(zn)) ; f ∈ Hp} ⊃ `s(a) but the converse is not true.

§3. Interpolations for `1(a)

`1(a) is the smallest sequence space among `p(a) (1 ≤ p ≤ ∞) for the same
a = {aj}. Then the inlerpolations for `1(a) are very special as the following shows.

The case of p = ∞ in Corollary 3 was proved by A.Snyder [13] (see [7], [11]).
Corollary 4 is due to O. Hatori [7].

Theorem 2. Let 1 ≤ p ≤ ∞. {(f(zn)) ; f ∈ Hp} ⊃ `1(a) if and only if

sup
n

(anρn)−1(1− |zn|2)1/p < ∞.

Proof. By Theorem 1, {(f(zn)) ; f ∈ Hp} ⊃ `1(a) if and only if there exists a
finite positive constant γ such that

sup
n

(anρn)−1(1− |zn|2)|f(zn)| ≤ γ‖f‖q

for all f in Hq. For each n, sup
‖f‖q=1

|f(zn)| = (1− |zn|2)−1/q by [2, p144] and so the theorem

follows.

Corollary 3. Let 1 ≤ p ≤ ∞. {(f(zn)) ; f ∈ Hp} ⊃ `1 if and only if sup
n

1

ρn

(1−
|zn|2)1/p < ∞. Hence if p = ∞, {(f(zn)) ; f ∈ H∞} ⊃ `1 if and only if inf

n
ρn > 0.

Corollary 4. Let 1 ≤ p ≤ ∞. {((1− |zn|2)1/pf(zn)) ; f ∈ Hp} ⊃ `1 if and only
if inf

n
ρn > 0.

Proof. Note that {((1−|zn|2)1/pf(zn)) ; f ∈ Hp} ⊃ `1 if and only if {(f(zn)) ; f ∈
Hp} ⊃ `1(a) and a = ((1− |zn|2)1/p).

Corollary 5. Let 1 ≤ p ≤ ∞. For any (zn), {(f(zn)) ; f ∈ Hp} ⊃ `1(a) where
a = (ρ−1

n ).
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Let (bj) be a uniformly separated sequence in D such that 0 < Rebj ↗ 1 and Im
bj ↘ 0. For j ≥ 1, put z2j−1 = bj and z2j = b̄j. Let B be the Blaschke product associated
with {zn}. Then for each j

B =
z − bj

1− b̄jz

z − b̄j

1− bjz
B1jB2j

where B1j (or B2j) is a Blaschke product with zeros {b`}` 6=j (or {b̄`}` 6=j). Then

ρ2j−1 =

∣∣∣∣∣
bj − b̄j

1− b̄jbj

∣∣∣∣∣
∏

` 6=j

∣∣∣∣∣
bj − b`

1− b̄`bj

∣∣∣∣∣
∏

` 6=j

∣∣∣∣∣
bj − b̄`

1− b`bj

∣∣∣∣∣

and

ρ2j =

∣∣∣∣∣
b̄j − bj

1− b̄j b̄j

∣∣∣∣∣
∏

`6=j

∣∣∣∣∣
b̄j − b`

1− b̄`b̄j

∣∣∣∣∣
∏

` 6=j

∣∣∣∣∣
b̄j − b̄`

1− b`b̄j

∣∣∣∣∣ .

Hence ρ2j−1 = ρ2j for j ≥ 1 and

δ2 |b̄j − bj|
1− |bj|2 ≤ ρ2j = ρ2j−1 ≤ |b̄j − bj|

1− |bj|2 (j ≥ 1)

where

0 < δ = min



inf

j

∏

` 6=j

∣∣∣∣∣
bj − b`

1− b̄`bj

∣∣∣∣∣ , inf
j

∏

` 6=j

∣∣∣∣∣
bj − b̄`

1− b`bj

∣∣∣∣∣



 .

Hence
(1− |zn|2)1+1/p

|zn − z̄n| ≤ (1− |zn|2)1/p

ρn

≤ δ−2 (1− |zn|2)1+1/p

|zn − z̄n| .

Thus {(f(zn)) ; f ∈ Hp} ⊃ `1 if and only if sup
n

(1− |zn|2)1+1/p/|zn − z̄n| < ∞.

§4. Interpolations for `∞(a)

`∞(a) is the largest sequence space among `p(a) (1 ≤ p ≤ ∞) for the same
a = (aj). Then the interpolations for `∞(a) are special as the following shows. The case
of p = ∞ of Corollary 6 is known in [10].

Theorem 3. Let 1 ≤ p ≤ ∞ and 1/p + 1/q = 1, {(f(zn)) ; f ∈ Hp} ⊃ `∞(a) if
and only if there exists a finite positive constant γ such that

∑
n

(anρn)−1(1− |zn|2)|f(zn)| ≤ γ‖f‖q

for all f in Hq. When p = 1, {(f(zn)) ; f ∈ H1} ⊃ `∞(a) if and only if µ =∑
n

(anρn)−1(1− |zn|2)δzn is a finite measure on D. When p = ∞, {(f(zn)) ; f ∈ H∞} ⊃
`∞(a) if and only if µ =

∑
n

(anρn)−1(1− |zn|2)δzn is a Carleson measure on D.
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Corollary 6. Let 1 ≤ p ≤ ∞ and 1/p + 1/q = 1 and a = (ρ−1
n ). {(f(zn)) ; f ∈

Hp} ⊃ `∞(a) if and only if there exists a finite positive constant γ such that

∑
n

(1− |zn|2)|f(zn)| ≤ γ‖f‖q

for all f in Hq.
(1) When p = 1, for any (zn), {(f(zn)) ; f ∈ H1} ⊃ `∞(a).
(2) When p = ∞, {(f(zn)) ; f ∈ H∞} ⊃ `∞(a) if and only if (zn) is a finite

union of uniformly separated sequences.
(3) When 1 < p < ∞, there exists a sequence (zn) in D such that {(f(zn)) ; f ∈

Hp} ⊃ `∞(a) and (zn) is not a union of finitely many uniformly separated sequences. If
∞∑

n=1

(1− |zn|2)1/p < ∞, then {(f(zn)) ; f ∈ Hp} ⊃ `∞(a).

Suppose that (zn) is the sequence in D which was used in the end of Section 3,

and 1 ≤ p < ∞. If 0 < γ1 ≤ (1− |zn|2)1+1/p−ε

|zn − z̄n| ≤ γ2 < ∞ for some 0 < ε < 1/p, then

{(f(zn)) ; f ∈ Hp} ⊃ `∞. This was proved by B. A. Taylor and D. L. Williams [14].

§5. Weighted Hardy space

Let W be a nonnegative function in L1 with log W ∈ L1 and 1 ≤ p < ∞. Hp(W )
denotes the closure of the set of all analytic polynomials in Lp(W ) = Lp(Wdθ/2π). Hp(W )
is called a weighted Hardy space. For b ∈ D, put

s(b) = s(b, p, W ) = inf
{∫

|f |pWdθ/2π ; f(b) = 1
}

.

Let h be an outer function in Hp such that |h|p = W .

Lemma 2. For 1 ≤ p < ∞ and b ∈ D,

s(b, p, W ) = (1− |b|2) exp(log W )∼(b)

= (1− |b|2) |h(b)|p,

where (log W )∼(b) denotes the Poisson integral of log W at b.

Proof. It is well known (cf. [5, p136]) that s(0, p, W ) = exp
∫ 2π

0
log Wdθ/2π. It

is easy to show the lemma using f(b) = f◦φb(0), where φb(z) = (z + b)/(1 + b̄z).

Lemma 3. Suppose (zj) is a sequence of points in D. For 1 ≤ p < ∞ and
1 ≤ s < ∞, {(s(zj, p, W )1/pf(zj)) ; f ∈ Hp(W )} ⊃ `s if and ony if {(F (zj)) ; F ∈
Hp} ⊃ `s(a), where a = (aj) and aj = s(zj)

1/p/h(zj).

9



Proof. Since Hp(W ) = h−1Hp, f ∈ Hp(W ) if and only if f = h−1F and F ∈ Hp.
For each j, s(zj)

1/pf(zj) = wj if and only if F (zj) = h(zj)wj/s(zj)
1/p if and only if

F (zj) = ζj, wj = ajζj. (wj) ∈ `p if and only if (ζj) ∈ `s(a). Now the lemma follows.

Theorem 4. Let 1 ≤ p < ∞, 1 ≤ s ≤ ∞, and 1/p+1/q = 1/s+1/t = 1. Then,
{(s(zn, p, W )1/pf(zn)) ; f ∈ Hp(W )} ⊃ `s if and only if

{ ∞∑

n=1

1

ρt
n

s(zn)t/q|g(zn)|t
}1/t

≤ γ‖g‖Hq(W )

for g in Hq(W ).
Proof. By Lemma 3, {(s(zn)1/pf(zn)) ; f ∈ Hp(W )} ⊃ `s if and only if {(F (zn)) ; F ∈

Hp} ⊃ `s(a), where an = s(zn)1/p/|h(zn)|. By Theorem 1, this is equivalent to saying that
there exists a finite positive constant γ such that

{ ∞∑

n=1

1

ρt
n

1

at
n

(1− |zn|2)t|G(zn)|t
}1/t

≤ γ‖G‖q

for G ∈ Hq. Since Hq(W ) = h−p/qHq, g ∈ Hq(W ) if and only if g = h−p/qG and G ∈ Hq.
Hence ‖g‖Hq(W ) = ‖G‖Hq and for each n ≥ 1

a−t
n (1− |zn|2)t|G(zn)|t
= s(zn)−(t/p)|h(zn)|t(1− |zn|2)t|h(zn)|pt/q|g(zn)|t
= s(zn)−(t/p)(1− |zn|2)t|h(zn)|t(q+p)/q|g(zn)|t
= s(zn)−(t/p)s(zn)t|g(zn)|t
= s(zn)t/q|g(zn)|t.

This implies the theorem.

Corollary 7. Let 1 < p < ∞ and 1/p+1/q = 1. Then {(s(zn, p, W )1/pf(zn)) ; f ∈
Hp(W )} ⊃ `1 if and only if inf

n
ρn > 0.

Proof. By Theorem 4, {(s(zn, p, W )1/pf(zn)) ; f ∈ Hp(W )} ⊃ `1 if and only if

sup
n

1

ρn

s(zn, p, W )1/ps(zn, q, W )−1/q < ∞.

Now Lemma 2 implies the corollary.
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