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Introduction 6	

Glioblastoma (previously called glioblastoma multiforme, GBM) is the most common 7	

malignant primary brain tumour in adults. Despite multimodality treatment comprising 8	

maximal safe resection, radiotherapy and concomitant (chemo-RT) and adjuvant 9	

chemotherapy, the best median survival is in the range of 14-18 months.1,2 Efficacy of 10	

therapy may be evaluated by patient survival, though image-based criteria to evaluate 11	

disease response exist. Macdonald et al.3 developed criteria for assessing the response of 12	

supratentorial GBM based on the area of contrast enhancement (CE) on computed 13	

tomography (CT), subsequently adapted for MRI, in conjunction with clinical assessment and 14	

steroid use.  15	

By the Macdonald criteria, progressive disease is determined by a 25% or greater increase 16	

in the product of the perpendicular diameters of the largest area of contrast enhancement. 17	

Increasingly, transient treatment-related changes on imaging mimicking progressive disease 18	

are being recognised. An increase in the enhancing area on MRI can be induced by a 19	

variety of nontumoural processes such as post-surgical changes, radiation effects and 20	

ischaemia4,5. These “pseudoprogression” cases, which are generally not associated with 21	

clinical deterioration, stabilize or resolve without any change in treatment (figure 1).  22	

Figure 1 23	

Pseudoprogression has been observed in multiple studies and is estimated to occur in about 24	

20% of patients following GBM treatment.6–10 In a large study by Taal et al.11 50% of patients 25	

treated with chemoRT for GBM with worsening MRI features on early MRI actually showed 26	

stabilization or resolution of those MRI features without any change in treatment.  Wrongly 27	

diagnosing pseudoprogression as true tumour progression on gadolinium-enhanced MRI 28	

could lead to an inappropriate change in therapy and errors in assessing the efficacy of 29	

novel treatments. This was addressed in the updated response assessment criteria 30	

developed by the Response Assessment in Neuro-Oncology Working Group (RANO) which 31	



suggests that in the first 12 weeks after therapy, when pseudoprogression is more prevalent, 32	

progression can only be diagnosed if there is new enhancement outside the radiation field 33	

(image 1).12 More advanced MRI techniques and molecular imaging are showing promise in 34	

differentiating responders to treatment from non-responders at an early stage and will allow 35	

more judicious treatment administration and early termination of ineffective treatment plans. 36	

Table 1. RANO criteria for high-grade gliomas 37	

The purpose of this review is to outline the current research into radiological assessment of 38	

GBMs, specifically the differentiation between pseudoprogression and true tumour 39	

progression. 40	

It should be noted that pseudoprogression and radiation necrosis (late-delayed radiation 41	

effects) are not interchangeable terms.14 Pseudoprogression typically occurs earlier (within 6 42	

months of chemo-RT) and the histopathology is not completely understood.15 For the 43	

purpose of this review studies that include patients with apparent progression on imaging 44	

occurring within six months of treatment have been categorised as pseudoprogression. 45	

Literature search 46	

A broad search was conducted between April 2014 to November 2014 on PubMed (National 47	

Library of Medicine, http://www.ncbi.nlm.nih.gov) using “ALL FIELDS” and entering 48	

“GLIOBLASTOMA” AND “PSEUDOPROGRESSION”. Abstracts were hand searched and 49	

those that were not on topic excluded. Electronic copies of the relevant studies were 50	

accessed via secure access to the hospital library.  51	

The exclusion criteria applied included laboratory only studies; non-human studies; non-52	

english language studies; paediatric population; and newly diagnosed glioblastoma patients.  53	

Overall, 69 publications met the criteria. These included five focusing on conventional MRI; 54	

16 on diffusion weighted MRI (DWI); 13 on perfusion MRI; 13 on MR spectroscopy (MRS); 55	



18 on positron emission tomography (PET); 12 on single photon emission computed 56	

tomography (SPECT); and eight on serial studies and multimodality imaging. 57	

Imaging techniques  58	

Conventional MRI 59	

Tissue signal intensity appearances on T2-weighted MRI (T2W) and T1-weighted 60	

gadolinium-enhanced MRI (T1WGd) do not reliably distinguish pseudoprogression from 61	

tumour progression as both can show new enhancement on T1WGd next to the resection 62	

cavity and progressive enlargement with mass effect.4,16 Some distinguishing features of 63	

tumour progression include corpus callosum involvement, subependymal spread, and 64	

multiple lesions.17 A larger 3D volume has been used to predict a worse prognosis.18  65	

In a more recent study the MRI scans of 321 patients were retrospectively analysed based 66	

on 11 MRI signs.19 Only subependymal enhancement (figure 2) was predictive for true 67	

tumour progression (p = 0.001) with 93.3% specificity, though the sensitivity and negative 68	

predictive values were only 38.1% and 41.8% respectively. The poor predictive value of 69	

subependymal enhancement is reflected in the earlier retrospective study of Kumar et al.4 70	

which found that radiation necrosis showed a predilection for the periventricular white matter 71	

within the radiation portal. They found that a “Swiss cheese” enhancement pattern more 72	

frequently showed radiation necrosis on histopathology.  73	

Figure 2 74	

Conventional MRI is, therefore, inadequate for differentiating tumour progression from 75	

pseudoprogression except in the situation in which new enhancement occurs outside the 76	

radiation field.20  77	



Diffusion-weighted MRI 78	

The signal created in DWI depends upon the self-diffusion of tissue water. The presence of 79	

cell walls and other tissue structures restricts water diffusion leading to increases in the DWI 80	

signal. However, the DWI signal is a complex function of many parameters and high signal 81	

can also be caused by elevated T2 values (the T2 shine-through artefact). If is therefore 82	

usual to calculate an apparent diffusion coefficient (ADC) map from the DWI signal. Low 83	

ADC values unambiguously identify restricted diffusion of water molecules caused by 84	

increased cellularity or changes in the cytoarchitecture of cells in tumours.  85	

GBMs are highly cellular structures causing restricted diffusion of water. Diffusion signal 86	

characteristics are already being used to diagnose and grade cerebral gliomas.21–23 87	

Hein et al.24 investigated the use of DWI in differentiating pseudoprogression from tumour 88	

progression. ADC maps were obtained starting one month after the treatment of GBM in 89	

patients with newly enhancing lesions. MRI Recurrence was established by clinical course or 90	

histological examination in combination with imaging studies. The mean ADC value of newly 91	

enhancing lesions was significantly lower in the tumour progression group than in the 92	

pseudoprogression group (p < 0.006). ADC ratios (ADC of enhancing lesion to ADC of 93	

normal contralateral white matter) were also lower (p < 0.001).  94	

This result was repeated in other prospective studies showing that the maximal ADC values 95	

were significantly lower for the recurrence group than for the pseudoprogression groups 96	

(maximal ADC 2.30 ± 0.73 for radiation group and 1.68 ± 0.37 for tumour progression)25 and 97	

that the minimum ADC value was significantly lower in the recurrent tumour group than in 98	

the radiation-injuries group26 based upon non-progression on follow-up and histology. 99	

Limitations 100	

There are several limitations of DWI in post-treatment GBM due to spatial and temporal 101	

sampling errors.  102	



Like any quantitative measurement of a dynamically evolving pathological process like a 103	

GBM, ADC measurements will change over time so that obtaining a “characteristic” value at 104	

a single time point is not possible.  105	

Spatially there are three issues. Firstly, the ADC value measured will differ depending on the 106	

relative amounts of tumour, peritumoural oedema, and necrosis included in the sample. The 107	

area sampled is usually determined by regions of enhancement on T1WGd – which has a 108	

poor specificity for differentiating between different pathological features – and ADC has 109	

been shown to be poor in differentiating tumour from peritumoural oedema.21,27 Secondly, a 110	

potential pitfall is inter-observer variance in drawing the region of interest (ROI) and, 111	

therefore, measuring inconsistent ADC values.28 Finally, the diffusion anisotropy of different 112	

areas of normal brain varies considerably and care must be taken to compare the fractional 113	

anisotropy (FA) values of the ROI to an area as similar as possible in the contralateral 114	

hemisphere.29 115	

It should be noted that these limitations are not unique to DWI but are shared with most of 116	

the techniques described below. 117	



Susceptibility weighted imaging with DWI 118	

Susceptibility weighted imaging (SWI) is an alternative to T1WGd that may better identify 119	

areas suitable for ADC measurements. SWI is a 3D gradient echo technique that provides 120	

images that are sensitive to subtle variations in susceptibility caused by deoxyhaemoglobin. 121	

SWI has been shown to be more sensitive than T1WGd for showing the heterogeneity of 122	

tissue pathology in brain tumours.30–32 Also, gadolinium-enhanced SWI (SWI-Gd) can 123	

provide clinically useful information on altered tumour microvascularity and cellular density33; 124	

the degree of intratumoural necrosis34; and the presence of abnormal enhancement around 125	

the tumour post-contrast suggesting a breakdown in the blood-brain barrier.35  126	

Targeting areas for ADC analysis using SWI-Gd instead of T1WGd has shown promise.36 127	

ADC measurements taken from enhancing areas on SWI-Gd were significantly reduced in 128	

10 out of 11 patients with tumour recurrence. ADC values also fell over time. Conversely, 129	

ADC measures taken from enhancing areas on T1WGd were significantly reduced in only 130	

three of 11 patients and actually increased in four of 11 patients.  131	

In the same study, ADC measurements of enhancing areas on SWI-Gd were increased in 132	

four out of six patients with pseudoprogression and increased further over time. The findings 133	

are promising but more data is required to assess the validity of using SWI-Gd and DWI. 134	

Although identification of enhancing regions by SWI-Gd has only been applied to DWI 135	

measurements it could in principle be combined with any of the MRI methods described 136	

below and may thus improve their performance. 137	

Diffusion-tensor imaging 138	

Diffusion-tensor imaging (DTI) is an extension of DWI that samples water motion in at least 139	

six non-collinear directions to provide additional information about the direction of water 140	

motion. This data can then be used to compute maps of fractional anisotropy (FA) showing 141	

the preferential direction of water diffusion along white matter tracks as well as computing 142	



the ADC map. Confusingly, ADC is usually called mean diffusivity (MD) in the DTI literature 143	

but the two are essentially identical. Since the direction of diffusion is largely determined by 144	

the presence of white matter tracts DTI provides a sensitive means of detecting alterations in 145	

the integrity of white matter structures and hence a means of detecting infiltrating tumour.  146	

In a prospective study the mean ADC ratio in new enhancing areas on T1WGd was 147	

significantly lower and the mean FA ratio significantly higher in patients with tumour 148	

recurrence compared to those with pseudoprogression.37 Neither the mean ADC ratio nor 149	

the FA ratio in the areas of oedema showed any significant difference. They suggested that 150	

an ADC ratio of less than 1.65 or an FA ratio greater than 0.36 in the enhancing lesion 151	

suggested tumour recurrence. However, with this cutoff three patients with recurrent tumour 152	

and two with radiation injury were misclassified.  153	

A later study supported these findings.38  An ADC ratio cut-off value of 1.27 could 154	

differentiate recurrence from treatment-induced necrosis with 65% sensitivity and 100% 155	

specificity. However, DTI was found to be inferior to both dynamic susceptibility contrast MRI 156	

and brain SPECT in differentiating tumour recurrence from necrosis.  157	

ADC ratios may also be useful in assessing perilesional oedema as it has been shown to 158	

differentiate recurrent tumour from pseudoprogression.39 159	

Limitations 160	

The low sensitivity of DTI means that it is not an ideal method for assessing recurrence post-161	

treatment. One area it may be useful in is in predicting the pattern of glioma recurrence.40 162	

Also, the cutoff values proposed by authors have differed which may be due to different MRI 163	

sequence protocols and equipment.   164	

Perfusion MRI 165	

The most common perfusion MRI technique to assess glioma is T2* echo-planar dynamic 166	

susceptibility contrast imaging (DSC-MRI). DSC-MRI provides estimates of absolute cerebral 167	



blood flow (CBF), cerebral blood volume (CBV), and relative CBV (rCBV). Radiation necrosis 168	

is typically a diffuse process with fibrinoid necrosis of small vessels, endothelial thickening 169	

and hyalinization, and vascular thrombosis leading to reduction of perfusion to the brain. By 170	

contrast, active glioma growth is tightly coupled with angiogenesis leading to increased 171	

perfusion. DSC-MRI could therefore provide a valuable means of differentiating the two 172	

based on the vascularity of the imaged areas (figure 3)41. 173	

Figure 3  174	

Pre-operative DSC-MRI images were obtained of 13 patients with new enhancing lesions on 175	

MRI following treatment for GBM and in whom further resection was planned.42 The rCBV 176	

values of the biopsied sites were compared with the histopathology by recording stereotactic 177	

biopsy locations and co-registering these to the perfusion images. rCBV values higher than 178	

0.71 indicated tumour progression with a sensitivity of 91.7% and a specificity of 100%. 179	

However, co-registration is imperfect due to brain movement during biopsy and DSC-MRI 180	

images are of low resolution. This has been supported by other studies that found a higher 181	

rCBV in patients with recurrent tumour than in patients with radiation necrosis. However, 182	

patients received only dendritic cell immune therapy and surgery43 or external beam 183	

radiotherapy44. A study also found a negative correlation between rCBV and median 184	

survival.45 185	

The percentage change in rCBV one month following treatment was found to be the variable 186	

that had the most significant correlation with median survival.46 Those with an increase in 187	

rCBV had a significantly lower median survival than those with a decrease in rCBV.  188	

Determination of the O-6-methylguanin-DNA methyltransferase (MGMT) status of patients 189	

may be necessary for accurate interpretation of the significant difference between 190	

pseudoprogression and true progression. GBMs that show methylation of the MGMT gene 191	

promoter have been associated with an improved response to chemotherapeutics.47 The 192	

significance was greater in patients with unmethylated MGMT than in those with 193	



hypermethylated MGMT (p = 0.003)31 and not significant at all in patients with methylated 194	

MGMT (p = 0.258).48  195	

An alternative technique, dynamic contrast enhanced (DCE) T1-weighted perfusion MRI has 196	

not been as commonly investigated as DSC-MRI. Analysis of the mean area under the curve 197	

(AUC) of signal-intensity over time histograms (calculated as the initial AUC (at 0-30 198	

seconds) divided by the final AUC (at 320-250 seconds)) using DCE-MRI showed a 199	

significant difference between pseudoprogression and true progression (p = <0.001).49  200	

Limitations  201	

The imaging resolution of perfusion MRI studies is low making small areas of enhancement 202	

more difficult to assess. Analysis alongside high-resolution T1-weighted (T1W) or T2W 203	

imaging may help to alleviate this although partial volume effects are likely to remain. DSC-204	

MRI is also degraded by susceptibility artefacts making imaging of the posterior fossa less 205	

reliable.  206	

Spatially, care needs to be taken when using DSC-MRI to analyse tumours. Many lesions 207	

post-treatment are often intermingled tumour and necrotic tissue. rCBV may incorrectly 208	

estimate the lesion size due to contrast leak into necrotic tissue, a phenomenon which is 209	

discussed later. Also, the rCBV in the normal cortex is higher than in white matter.50 Different 210	

proportions of grey and white matter influence rCBV values independently of underlying 211	

pathology. 212	

Contrast Leak 213	

Because of the small molecular size of gadolinium (Gd), it rapidly crosses defects in the 214	

blood brain barrier (BBB). The BBB is frequently disrupted after chemoradiotherapy, as well 215	

as by the angiogenesis incited by tumours. Thus, gadolinium is rapidly cleared from the 216	

circulation. This leads to a contrast leak causing a reduction in T1. However, DSC-MRI 217	

calculations of CBV and CBF are only accurate if T1 remains unchanged. Several methods 218	



have been proposed to overcome this problem.51 For example, a software leak correction to 219	

values has been found to result in more accurate grading of gliomas.52 Alternatively, a 220	

contrast agent with a larger molecular size that does not readily cross a disrupted BBB can 221	

be used. Several groups have investigated ferumoxytol, an iron oxide nanoparticle with a 222	

modified carbohydrate coating that has a longer half-life and remains in the intravascular 223	

space longer than Gd. A pilot study found lesions that enhance on T1WGd and have low 224	

rCBV on ferumoxytol-DSC-MRI are more likely to represent pseudoprogression.53 225	

Gahramanov et al.54 found that ferumoxytol-based measurements of rCBV measurements 226	

that correlate better with median survival than leak corrected Gd-based measurements.  227	

Ferumoxytol also allows the use of steady-state imaging methods which can produce high 228	

resolution and distortion free maps of CBV.55  229	

In conclusion, perfusion MRI has the potential to be a very useful adjunct in assessing post-230	

treatment gliomas. However, optimum cutoff rCBV values reported in the literature vary 231	

widely and require further study.14 Similarly, the use of software leak correction and 232	

alternative intravascular contrast agents needs to be investigated further.  233	

MR spectroscopy 234	

MRS can identify various metabolic compounds in the imaged tissue including choline (Cho), 235	

creatin (cr), N-acetylaspartate (NAA) lactate, and lipids.  Although absolute quantification of 236	

metabolite concentrations is possible, it is normal to express measurements at the ratio of 237	

the metabolite signal to that of creatine, since the latter is largely unchanged with disease. 238	

Tumours demonstrate high Cho/Cr ratios due to an increased number of cells and increased 239	

synthesis of cell membranes, and low NAA/Cr ratios due to neuronal loss or damage. 240	

Necrotic tissue shows elevated lactate, a marker for anaerobic glycolysis, and elevated lipids 241	

in keeping with cell membrane degradation. MRS can be potentially used to distinguish 242	

tumour progression from radiation injury since the former will demonstrate higher Cho/Cr 243	

ratios and lower NAA/Cr ratios.56  244	



Single-voxel MRS used in early studies found significant differences in the Cho/Cr and 245	

NAA/Cr ratios between neoplastic, non-neoplastic lesions and contralateral normal brain.57 246	

However, single-voxel MRS proved problematic as lesions are often heterogeneous and 247	

sampling results in partial voluming and cross-contamination of metabolic ratios.58 Some 248	

studies suffered from a small sample size and being non-blinded.59–61  249	

Figure 4 250	

Figure 5 251	

Multivoxel spectroscopic imaging – 2D or 3D chemical shift imaging (CSI-MRS) – is now 252	

commonplace and enables coverage of a larger volume as well as investigation of multiple 253	

regions of the lesion and surrounding tissue, although voxels are still large.  Using 2D CSI-254	

MRS an elevated Cho/NAA ratio62 and NAA/Cr ratio63 have been found to correlate with 255	

recurrent tumour (figure 4 and 5)64. There is also the potential of applying cutoff values to 256	

assist in diagnosis as in a retrospective study of 29 patients (24 of whom had GBM) 2D CSI-257	

MRS which was used to assess areas of new enhancement at the site of previously treated 258	

brain neoplasm.56 A cut-off value of 1.8 for both Cho/Cr and Cho/NAA ratios correctly 259	

categorised 27 out of 28 patients as either recurrent/residual tumour or radiation injury. A 260	

similar study found that a Cho/Cr value greater than 1.79 gives a sevenfold increased 261	

likelihood of being pure tumour than pure necrosis.65 Using 3D-MRS gives slightly different 262	

cut-off values of 1.71 for both Cho/Cr and Cho/NAA ratios with a sensitivity of 94.1%, a 263	

specificity of 100%, and a diagnostic accuracy of 96.2%.66 Several studies support these 264	

findings but only included patients who had not received chemotherapy.67–69 265	

Limitations 266	

Potential pitfalls for the application of MRS are the susceptibility to artefact, especially for 267	

imaging the posterior fossa;56 low spatial resolution; the decreased specificity for 268	

heterogeneous tissue; and the difficulty in applying ratios universally due to the different MRI 269	

strengths, imaging protocols and algorithms used in different centres. 270	



Positron emission tomography imaging 271	

Theoretically, PET imaging should be useful in diagnosing tumour progression as these are 272	

metabolically active lesions with greater utilisation of glucose and, therefore, exhibiting 273	

greater uptake. However the application of PET in differentiating between tumour 274	

progression and pseudoprogression has not been straightforward. 275	

18F-labelled fluorodeoxyglucose (18F FDG-PET) is the most commonly used. Early studies 276	

into the use of 18F FDG-PET for differentiating between tumour progression and 277	

pseudoprogression were promising but suffered from very small samples, limited correlation 278	

with pathology, and only investigating patients who had been treated with radiation with or 279	

without surgery and with no concomitant chemotherapy.70–72  280	

Although a pilot study73 and an early study74 supported the use of 18F FDG-PET subsequent 281	

studies have shown that the sensitivity and specificity rates are too low to be clinically useful.  282	

A retrospective study of 31 patients correlated PET appearance with histological diagnosis.  283	

Histologically, 22 patients had tumour recurrence, eight radiation necrosis and one gliosis. 284	

16 patients with recurrence and seven patients with radiation necrosis had hypermetabolic 285	

PET scan. This study misidentified a large number of lesions as tumour progression (nine 286	

out of 30, 29%) due to radiation necrosis being of unexpectedly high FDG uptake.75   287	

There are also issues particular to imaging of the brain that makes FDG-PET problematic in 288	

assessing post-treatment gliomas. Firstly, subclinical seizure activity may increase uptake 289	

temporarily and mimic a hypermetabolic lesion.76 Secondly, tracer uptake is compared to the 290	

contralateral hemisphere, which is used as a control, but in whole brain irradiation the 291	

contralateral brain may demonstrate post-radiation changes in uptake. Thirdly, the brain, 292	

especially grey matter, has high background glucose metabolism making subtle focal 293	

increases in uptake difficult to see.  294	



Glucose loading has been used to better distinguish between tumour and brain tissue but 295	

this method is complicated by the need for constant glucose monitoring.77 Alternatively, 296	

delayed FDG-PET scanning, in which scanning takes place 180-480 mins after isotope 297	

injection, resulted in better delineation of the high uptake of cerebral tumours relative to grey 298	

matter, whole brain, or white matter.78  In this study, however, a range of pre- and post-299	

treatment gliomas of different grades were included. Also, the ability to differentiate between 300	

tumour progression and pseudoprogression was not addressed.  301	

Amino Acid Biomarkers 302	

Novel radiolabelled amino acid biomarkers are currently being investigated as a means of 303	

improving tumour identification by PET. These include 11C-methionine (C-Met), O-(2-304	

[18F]fluoroethyl)-L-tyrosine (18F-FET) and 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine 305	

(18F-FDOPA). These show a lower uptake in normal brain tissue in comparison to 18F-306	

FDG-PET. 307	

Most research has been conducted using 11C-Met-PET (figure 6)79. This biomarker has 308	

been found to show increased uptake in a range of cerebral malignancies when compared to 309	

benign lesions (including radiation necrosis) with a sensitivity of 92% and a specificity of 310	

100%.80 It has also been shown to be more sensitive than 18F-FDG-PET.81 However, 311	

studies into whether 11C-Met-PET is useful for differentiating between tumour progression 312	

and pseudoprogression have been contradictory or suffered from a small patient sample.82 A 313	

study of 26 patients with glioma found that although the standardised uptake values for 314	

recurrent tumour was higher than for necrosis, the sensitivity and specificity were only 315	

75%.83 However, metastatic brain tumours and gliomas were included in the study and 316	

patients had been treated with radiotherapy but not concomitant chemotherapy or surgery. A 317	

more recent and larger study found 11C-Met-PET to be superior to 18F-FDG-PET in 318	

diagnosing tumour progression versus pseudoprogression with a sensitivity of 95% and a 319	

specificity of 89% but, it was found to be inferior to DWI.84 A further study found no 320	



significant difference with 11C-MET-PET between recurrent tumour and 321	

pseudoprogression.85 322	

Figure 6 323	

A limiting factor is the short half-life of 11C-methionine requiring on-site cyclotron facilities 324	

and, therefore, limiting clinical use. 18F labelled aromatic amino acid analogues, including 325	

18F-FET and 18F-FDOPA, have now been developed which have a longer half-life. 326	

A study showed 18F-FET-PET had a sensitivity of 100% and specificity of 93% in diagnosing 327	

tumour progression in patients with subsequent clinical or histological confirmation.86 328	

Interestingly, these values were higher than for T2W, T1W and T1WGd MRI (sensitivity of 329	

50% and specificity of 94%). A subsequent prospective study with 18F-FET-PET and 330	

subsequent biopsy results available found a positive-predictive value of 84%.87 331	

18F-FDOPA is believed to rely on active transport mechanisms rather than, as in 332	

gadolinium-enhanced MRI, depending on BBB breakdown. In preliminary studies 18F-333	

FDOPA-PET has been shown have a greater contrast between tumour tissue and normal 334	

tissue than with 18F-FDG-PET and also  showed a sensitivity of 97% and specificity of 86% 335	

for true progression.88 The same group also investigated 18-F-FDOPA-PET/MRI fusion to 336	

improve resolution and localisation and proposed that FDOPA-PET may detect recurrence 337	

earlier than MRI and also better differentiate non-enhancing tumour from other causes of 338	

T2W signal change such as oedema.89 339	

Limitations 340	

In the studies on FDG-PET usage in post-treatment gliomas patients have been scanned at 341	

different intervals making correlation difficult. Although amino acid tracers are promising the 342	

degree of amino acid uptake in radiation necrosis is not well known and more research is 343	

needed to justify their use clinically. 344	



Single positron emission computed tomography 345	

SPECT is a 3D nuclear medicine technique. Thallium-201 (201Tl) has been shown to be 346	

useful in differentiating pseudoprogression from true progression with a sensitivity from 84% 347	

to 100% and a specificity from 50% to 100%.90–93 Yamamoto et al found a potential for 348	

cutoffs to be applied.93 The addition of 99mTechnetium-hexamethyl-propyleneamine oxime 349	

(99mTc-HMPOA) has been proposed as differentiating between pseudoprogression and true 350	

progression in intermediate cases.94 However, 201Tl has a low spatial resolution and a 351	

relatively high radiation dose. This also results in an insensitivity to small or thinly rim-352	

enhancing lesions.95 353	

99mTechnetium (99mTc) based radiotracers have a better photon flux resulting in greater 354	

spatial resolution and lower radiation doses. 99mTc-sestamibi is the most commonly used 355	

technetium-based tracer and has a sensitivity of 95% and a specificity of 60% in 356	

differentiating pseudoprogression from tumour progression in patients who had only received 357	

radiotherapy.96 However, unlike 201Tl, 99mTc shows uptake in normal tissues such as the 358	

choroid plexus. 359	

Other 99mTechnetium-based tracers have also been studied. 99mTc-tetrofosmin does not 360	

cross the BBB meaning there is no uptake in normal brain tissues and it shows greater 361	

uptake in tumour relative to the background than 201Tl.97 Similarly, 99mTc-glucoheptonate 362	

provided more information on recurrent tumour including the tumour margins, extent and 363	

intratumoural necrosis.98 364	

Limitations 365	

201Tl studies have a low spatial resolution and a relatively high radiation dose. Despite 366	

having a greater photon flux 99mTc-sestamibi radiotracer shows uptake in normal tissues of 367	

the choroid plexus and pituitary gland, which limits the sensitivity. It also has poor sensitivity 368	

for posterior fossa tumours. Although 99mTc-tetrofosmin does not cross the BBB and 99mTc-369	



glucoheptonate provides more information on the extent and intratumoural necrosis of 370	

recurrent tumour, the availability is limited and more studies are required to establish the 371	

sensitivity and specificity.97,98 372	

Sequential imaging and combination of techniques  373	

So far each technique has been assessed individually with imaging mainly at one point in 374	

time. In practice techniques are often combined and changes assessed over time to give a 375	

greater overview of pathology.  376	

Combining MRS with DWI99, perfusion MRI100 or both101 has been shown to improve the 377	

sensitivity and specificity of differentiating true progression from tumour progression. 378	

Similarly, combining 18F-FET-PET and MRS with conventional MRI increased the accuracy 379	

of detecting brain tumours from 68% to 97%.102 380	

Performing DSC-MRI before treatment and one month after treatment showed that in 381	

pseudoprogression there was a 41% mean decrease in rCBV whereas tumour progression 382	

showed a 12% increase in rCBV.46 This was supported by a later study.103  383	

ADC measurement decreased at follow-up with tumour progression but increased in those 384	

with pseudoprogression when performing DTI at two time-points after treatment.36 385	

A recent study that performed DWI and perfusion MRI at two time points after treatment 386	

found the analysis that gave the most accurate differentiation between pseudoprogression 387	

and tumour progression was the mode of the rCBV on a multiparametric subtracted 388	

histogram. This was created by combining the ADC and rCBV histograms then subtracting 389	

the histogram of the initial MRI from the follow-up MRI.104 390	

Limitations to imaging with multiple techniques over time are high cost, lengthy scan times 391	

and patients having to attend several appointments. Also, centres may not have access to 392	

certain imaging methods leading to patients having to travel for further scans.  393	



Summary 394	

Imaging Method Supporting 

Studies 

Pattern 

associated 

with 

progression 

Strengths Weaknesses 

Conventional MRI 

and T1WGd 

4,16–19 Subependymal 

spread 

Corpus 

callosum 

involvement 

Readily available Large overlap of 

features meaning 

inadequate 

differentiation of 

tumour recurrence 

from 

pseudoprogression  

Diffusion 

weighted MRI 

24–26,36,66 ADC ratio and 

mean ADC 

lower 

Readily available 

Assesses pathology at 

microscopic level 

Confounded by 

temporal and spatial 

variation 

Improved by using SWI 

to select appropriate 

enhancing area to 

sample 36 

Diffusion Tensor 

Imaging 

37–40 Mean ADC 

lower and 

mean FA ratio 

higher 

Potentially could apply 

cut-off values 

Inferior to DSC-MRI 

and brain SPECT 

Low sensitivity  

Perfusion MRI 

(DSC-MRI) 

31,42–46,48,51–

55 

Higher rCBV High rates of sensitivity 

and specificity 

Low resolution 

Prone to susceptibility 

artefacts 



Contrast leak – may be 

overcome by 

alternative contrast 

agent 53,54 

Perfusion MRI 

(DCE-MRI) 

49 Increase in 

area under 

curve 

histogram 

analysis  

Less susceptible to 

artefacts than DSC-

MRI 

Potentially could apply 

cut-off values 

Not commonly used 

technique 

Requires more 

research 

MR Spectroscopy 56–63,66–69 Higher Cho/Cr 

ratios and 

lower NAA/Cr 

ratios 

Potentially could apply 

cut-off values 

High sensitivity and 

specificity 

Susceptible to artefact 

Low spatial resolution 

Difficulty in imaging 

mixed tumour/necrotic 

tissue 

FDG-PET 

imaging 

70–75,77,78 Considerable 

overlap 

Readily available High background 

signal – could be 

improved by delayed 

imaging 

Unacceptably low 

sensitivity and 

specificity 

C-Met-PET 80,82–85 Higher SUV  Lower background 

activity than FDG-PET 

Short half-life limits 

availability 

FET-PET and 

FDOPA-PET 

86–89 Higher SUV Could give higher 

sensitivity and 

Still in early research 

stages 



specificity than 

conventional MRI 

Greater contrast 

between tumour and 

normal brain tissue 

SPECT 90–94,96–98 Higher SUV 99mTc-glucoheptonate 

and 99mTc-tetrofosmin 

show high sensitivity 

and specificity 

99mTc-sestamibi 

crosses the BBB and is 

poor for posterior fossa 

tumours 

Limited availability of 

99mTc-glucoheptonate 

and 99mTc-tetrofosmin 

 395	

Discussion 396	

Currently the criteria for assessing tumour progression after GBM treatment is based upon 397	

an increase in the 2D area of contrast enhancement. However, up to 20% of patients may 398	

show transient sub-acute reactions usually within 6 months of treatment that mimic 399	

progression.6–10,15 Distinguishing tumour progression from pseudoprogression is important in 400	

the ongoing management of patients after treatment of GBMs and in accurately investigating 401	

treatment response in clinical trials. Both have overlapping features on radiology that make 402	

differentiation difficult. In this review the current literature on the use of different imaging 403	

modalities and their limitations has been outlined. Conventional T2W, T1W and T1WGd MRI 404	

has been shown to be inadequate in correctly differentiating true progression from 405	

pseudoprogression but more advanced MRI sequences, as well as molecular imaging, are 406	

proving promising.  407	



No single technique is able to reliably differentiate between pseudoprogression and tumour 408	

progression and in practice a combination of different modalities and comparison of images 409	

over time may prove more useful. Anatomical imaging (conventional MRI), imaging of 410	

histological properties of tissue (DWI, SWI, DTI and MRS) and imaging of functional 411	

properties of tissue (perfusion MRI and PET) may be combined to provide a more complete 412	

assessment of post-treatment gliomas. The comparison of follow-up images over time also 413	

provides valuable information. Further investigation is required into the individual techniques 414	

and into combinations of techniques to provide a more robust framework for clinicians and 415	

radiologists in the evaluation of post-treatment gliomas. 416	
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Figure Legends 705	

Figure 1.  706	

A patient with GBM with a a) post-surgical MRI showing progression on MRI at b) 1 months 707	

and c) 4 months post-radiotherapy. However, there was subsequent stabilisation at c) 7 708	

months post-radiotherapy indicating pseudoprogression.  709	

Figure 2.  710	

The images are of a patient with recurrent GBM, as proven by clinical deterioration, at two 711	

time-points after treatment. Images show early subependymal enhancement 1 month after 712	

treatment on the T1WGd 1A) coronal and 1B) axial images with further subependymal 713	

enhancement at 4 months after treatment on the T1WGd 2A) coronal and 2B) axial images.  714	

Figure 3. 715	

Glioblastoma multiforme in a 65-year-old woman. Axial T2-weighted (a) and T1-weighted 716	

post contrast (b) images demonstrate a right temporal lesion with surrounding edema and 717	

ring-shaped enhancement. On the DW-image the lesion presents low signal 718	

intensity(c) resulting in higher intratumoral ADC (d), lower intratumoral FA (e), and high 719	

peritumoral rCBV (f), reflecting tumor infiltration in the surrounding parenchyma. Reproduced 720	

from Cancer Imaging, Biomed Central Ltd. 721	

Figure 4. 722	

Radiation injury in a 46-year-old man who underwent surgery, radiotherapy, and 723	

chemotherapy for a left insular lobe glioblastoma multiforme (N-acetylaspartate, NAA; 724	

choline-containing compounds, Cho; creatine, Cr). (A) The first contrast-enhanced axial T1-725	

weighted image which volume of interest for MR spectroscopy is placed on. (B) 3D proton 726	

MR spectroscopy of contrast-enhancing region which shows pathologic spectra (Cho/NAA, 727	

1.35; Cho/Cr, 1.63; NAA/Cr, 1.21). (C) The contrast-enhanced T1-weighted image at 15-728	



month follow-up after 3D proton MR spectroscopy which reveals marked regression of 729	

enhancement area. With kind permission from Springer Science and Business Media. 730	

Figure 5. 731	

Tumor recurrence in a 32-year-old woman who underwent surgery and radiotherapy for a 732	

right temporal lobe anaplastic astrocytoma (N-acetylaspartate, NAA; choline-containing 733	

compounds, Cho; creatine, Cr). (A) The contrast-enhanced axial T1-weighted image which 734	

volume of interest for MR spectroscopy is placed on. (B) 3D proton MR spectroscopy of 735	

contrast-enhancing region in right hippocampus which shows pathologic spectra (Cho/NAA, 736	

2.91; Cho/Cr, 2.63; NAA/Cr, 0.90). (C) Photomicrograph (hematoxylin-eosin stain; original 737	

magnification, 400×) which shows a hypercellular astrocytic neoplasm. With kind permission 738	

from Springer Science and Business Media. 739	

Figure 6. 740	

An example of a target planned for a hypofractionated stereotactic radiotherapy using 741	

intensity modulated radiation therapy. (A) Contrast-enhanced T1-weighted magnetic 742	

resonance imaging. (B) 11C-methionine positron emission tomography (MET-PET). Gross 743	

tumor volume was defined as the region with high MET uptake (yellow line). The threshold 744	

for increased MET uptake was set to ≥1.3 in the contiguous tumor region. Reproduced from 745	

Radiation Oncology, Biomed Central Ltd. 746	


