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Abstract 

The atmospheric deposition of both macro- and micronutrients plays an important role in 

driving primary productivity, particularly in the low latitude ocean.  We report aerosol major 

ion measurements for five ship-based sampling campaigns in the western Pacific from ~25oN 

to 20oS and compare the results with those from Atlantic meridional transects (~50oN to 

50oS) with aerosols  collected and analysed in the same laboratory, allowing full 

incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus 

(P) and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are 

evident over both basins with the northern hemisphere more impacted by terrestrial dust 

sources and anthropogenic emissions and the North Atlantic apparently more impacted than 

the North Pacific. We estimate the atmospheric supply rates of these nutrients and the 

potential impact of the atmospheric deposition on the tropical western Pacific. Our results 

suggest that the atmospheric deposition is P-deficient relative to the needs of the resident 

phytoplankton. These findings suggest that atmospheric supply of N, Fe and P increases 

primary productivity utilising some of the residual excess phosphorus (P*) in the surface 

waters to compensate for aerosol P-deficiency. Regional primary productivity is further 

enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and 

P*. Our stoichiometric calculations reveal that a P* of 0.1µmol l-1

  

 can offset the P-deficiency 

in atmospheric supply for many months. This study suggests that atmospheric deposition may 

sustain ~10% of primary production in both the western tropical Pacific . 
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Index Terms: Aerosols, Biogeochemical Cycles, Phytoplankton, Nutrient Stoichiometry, 

Photosynthesis 

Keypoints 

Atmospheric N, P & Fe deposition estimated from shipboard sampling in the western Pacific. 

Deposition is P-deficient relative to Redfield with lower fluxes than in the Atlantic. 

Deposition increases primary production by 10%, mainly by stimulating N2 fixation.  
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1. Introduction 

Primary productivity is primarily limited by the availability of nutrients (macro- and micro-) 

and light within the surface ocean. Atmospheric supply of both macro- and micronutrients 

therefore play an important role in setting primary productivity in some ocean areas (Ward et 

al., 2013, Moore et al., 2013).  Specifically, nitrogen (Duce et al., 2008), iron (Jickells et al., 

2005)  and phosphorus (Mahowald et al., 2008) can individually enhance primary 

productivity, but to fully understand the effects of atmospheric deposition, it is important to 

consider these three nutrients together (e.g. Baker et al., 2003, Okin et al., 2011, Ward et al., 

2013).  Knowledge of the stoichiometry of nutrient supply from aerosols can then be 

compared with the stoichiometry of ambient surface ocean nutrients, and the stoichiometric 

requirements of the resident phytoplankton (Boyd et al., 2010, Moore et al., 2013) to estimate 

the impact of the atmospheric deposition on phytoplankton primary production.  

Nitrogen, iron and phosphorus have diverse sources to the atmosphere. Nitrogen is mainly 

released by anthropogenic emissions from agriculture (as reduced nitrogen, ammonium) and 

combustion processes (as nitrogen oxides, which are processed in the atmopshere to yield 

nitric acid and nitrate) plus an organic nitrogen fraction of rather uncertain origin (Duce et al., 

2008, Cape et al., 2011). Iron and phosphorus are associated with crustal dust and, to a lesser 

extent, anthropogenic and (for P) biogenic sources (Jickells et al., 2005, Mahowald et al., 

2008, Sholkovitz et al., 2012). 

There have been numerous studies of atmospheric aerosol concentrations over the Pacific 

Ocean, particularly the North Pacific, including studies of dust and iron transport (Uematsu et 

al., 2003, Matsumoto et al., 2004, Moffet et al., 2012, Prospero, 1989, Wagener et al., 2008), 

nitrogen (Savoie et al., 1989, Jung et al., 2011, Nakamura et al., 2006, Miyazaki et al., 2010, 

Miyazaki et al., 2011, Zhang et al., 2011, Ooki et al., 2007), as well as contaminants 
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(Uematsu et al., 2010, Moffet et al., 2012), but fewer studies of phosphorus (Furutani et al., 

2010, Hsu et al., 2010). Together, these studies emphasise the general patterns of atmospheric 

transport over the Pacific (discussed further below) with high concentrations of dust (and 

associated iron), anthropogenically-derived metals and nitrogen in the Asian plume passing 

over the N. W. Pacific, particularly in spring.Much lower concentrations of all these 

components are found over the central and S. Pacific, and particularly low concentrations in 

the S. E. Pacific. Despite this rich literature on atmospheric deposition, many of these studies 

focussed only on individual nutrients, and somewhat different methods have been used to 

estimate atmospheric nutrient supply. This can complicate the task of comparing trends in 

atmospheric deposition between ocean basins, and for the assessment of the N:P:Fe 

stoichiometry of atmospherically supplied nutrients.  

The biological effects of atmospheric deposition depends both on the magnitude of 

atmospheric deposition and on the biogeochemical signature of the receiving waters. In 

surface ocean waters that are deficient in particular nutrients, atmospheric deposition of these 

deficient nutrients can directly stimulate primary production by alleviating this limitation, 

something that has been inferred to take place with nitrogen deposition to tropical waters and 

iron deposition to HNLC waters (Duce et al., 2008, Jickells et al., 2005). In some ocean 

areas, nitrogen fixation has been suggested to be a particularly important source of nitrogen 

for the phytoplankton community (e.g.Moore et al., 2013). Nitrogen fixation, a key process in 

the global nitrogen cycle and a mechanism by which phytoplankton communities can escape 

from nitrogen limitation, requires both iron and phosphorus ((Mills et al., 2004). Hence, 

atmospheric iron supply may play a pivotal role in regulating nitrogen fixation along with the 

utilisation of excess phosphorus in surface waters to meet phosphorus requirements (e.g. 

(Mahaffey et al., 2005, Kitajima et al., 2009, Behrenfeld et al., 2009, Somes et al., 2010, 

Dutkiewicz et al., 2012, Ward et al., 2013) . 
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Atmospheric deposition in the Atlantic is strongly P-deficient relative to phytoplankton 

requirements (Baker et al., 2003, Baker et al., 2010), and models suggest this is the case over 

most ocean areas (Okin et al., 2011). Over the Atlantic Ocean strong north (high) to south 

(low) gradients in the atmospheric deposition of both iron and nitrogen 

(ammonium+nitrate+organic nitrogen) lead to gradients in the influence of atmospheric 

deposition on rates of primary production and nitrogen fixation (Baker et al., 2003). The iron 

deposition has been shown to result in the stimulation of nitrogen fixation in the tropical 

North Atlantic leading to extreme surface water phosphorus depletion (Moore et al., 2009, 

Ward et al., 2013), and low (~0.1 µmol l-1

Deutsch et al., 2007

) values of P* (the excess of phosphorus relative to 

nitrate compared to Redfield stoichiometry ( ), indicating surface waters 

with a relatively small excesses of phosphorus relative to phytoplankton requirements. The 

tropical western Pacific is a region of generally low ambient surface concentrations of 

essential phytoplankton nutrients (nitrogen, phosphorus and iron) and low rates of primary 

productivity  (Deutsch et al., 2007, Ward et al., 2013, Behrenfeld et al., 2009). P* values in 

the surface waters of the western Pacific increase from 0.1 µmol l-1 in the north to 0.2 µmol l-

1 Deutsch et 

al., 2007

 in the south, indicating a north-to-south increase in P availability relative to N (

). The potential importance of atmospheric nitrogen deposition in setting rates of 

primary production in this region has been reported (Kim et al., 2011).  

Here we consider the west Pacific (Figure 1), focussing particularly on the tropical region and 

report data for aerosol nitrogen and phosphorus concentrations, together with aerosol dust 

and iron concentrations estimated from non-seasalt (nss) calcium. We use these data sets to 

investigate the biogeochemical and stoichiometric effects of the concurrent deposition of 

these nutrients on Pacific marine biogeochemistry using comparable approaches to those we 

employed in the Atlantic Ocean (Baker et al., 2003).  
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2. Aerosol climatology of the western Pacific 

Given its importance to subsequent data interpretation, we begin by briefly describing the 

climatology of atmospheric transport over the Pacific. We later discuss the results of air-mass 

back trajectory analysis for individual aerosol samples collected which can then be compared 

to the average climatology. 

The atmospheric climatology of the Pacific and the associated transport of aerosols was first 

comprehensively described in publications from The SEa/AiR EXchange SEAREX 

Programme (Merrill, 1989). Emissions from the Asian continent are generally entrained 

within a westerly flow over the North Pacific. This flow can turn southward moving around 

the North Pacific subtropical high pressure system and bringing Asian emissions into the 

tropical central Pacific region within the North East Trade Winds. The merger of moisture-

laden trade winds in the tropical Pacific leads to the formation of the convergence zones (CZ) 

(Merrill, 1989). The inter-tropical convergence zone (ITCZ) of the equatorial North Pacific is 

the most persistent of the convergences in the Pacific Ocean lying between 2-12°N, crossing 

the breadth of the Pacific Ocean and forming a strong barrier to inter-hemisphere transport. 

The ITCZ and South Pacific Convergence Zone (SPCZ) merge together in an area of the 

Western Pacific called the warm pool, but further east they separate with the SPCZ extending 

to the southeast towards the southern tropics and finally the open South Pacific Ocean. The 

boundaries of zone B and C and C and D in Figure 2 approximate to the ITCZ and SPCZ 

respectively, although the exact positions are seasonally variable. The main air flow patterns 

discussed above that are relevant to our data sets are also shown schematically in Figure 2 

The constant deep atmospheric convection and high precipitation rates associated with the 

convergence zones make accurate back trajectory analysis difficult once the wind has entered 

a CZ (Merrill, 1989). The SPCZ is thought to form a weaker transport barrier than the ITCZ. 
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It fluctuates in strength seasonally, with major atmospheric circulation changes associated 

with El Niño/Southern oscillation (ENSO) events, and  may also be sensitive to  future 

climate change (Cai et al., 2012). The atmospheric transport paths in the South Pacific are 

less well understood than those in the North Pacific. In the equatorial south west Pacific 

region sampled in the work reported here, the climatological atmospheric flow is from the 

south east associated with the South Easterly Trade Winds. South of the SPCZ (~10°

Dust is a useful tracer for continental aerosol over the North Pacific with the main dust 

sources being in Northern China (

S for the 

ocean regions covered by the sampling campaigns considered here) the air flow is 

predominantly from the south including transport from the southwest which may cross 

Australia. 

Xuan and Sokolik, 2002). The strength of dust transport 

from the region is determined by the amount of dust entering the westerly air stream above 

Asia, particularly influenced by dust storms, and the acceleration of winds towards Western 

North America (Song et al., 2008) which, together with low rainfall, contribute to a seasonal 

maximum in dust transport in the spring (Xuan and Sokolik, 2002, Merrill et al., 1985, 

Merrill, 1989, Natsagdorj et al., 2003). Westerly flows carry this dust over areas of major 

anthropogenic emissions from China and eastwards towards the North Pacific, where at least 

some of this material is deposited (e.g. Prospero, 1989, Prospero and Uematsu, 1989b, 

Huebert et al., 2003, Arimoto et al., 2004, Uematsu et al., 2003). Although the equatorial 

Pacific region under the influence of the North Easterly Trade Winds has much lower dust 

concentrations, the SEAREX programme reported a small spring increase in dust 

concentrations over the central equatorial Pacific derived from Asian desert sources. The 

estimated transit times from the Asian continent to the tropical North Pacific island sites, 

such as Enewetak, was of the order of 10 days (Merrill, 1989), with much of the continental 

aerosol lost from the air mass by mixing and deposition during transport. North American 
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emissions can also become entrained within these easterly trade wind flows (Merrill, 1989). 

In the south Pacific the dominant dust source is the Australian continent and the dust is 

mainly transported either westerly towards the Indian Ocean, or south easterly towards the 

Southern Ocean and as far as Antarctica (Revel-Rolland et al., 2006), and hence does not 

usually cross our sampling route. This pattern of dust emission and transport leads to a strong 

gradient in dust deposition over the Pacific with high concentrations over the N.W. Pacific 

and a strong inter-hemispheric gradient over much of the Pacific although, in the western 

Pacific, models suggest similar deposition rates to those seen in the North Pacific  (e.g. 

Jickells et al., 2005). 

 

3. Methods 

3.1 Sampling 

The data presented here were collected on four campaigns (labelled here as TF5-1, 2, 3 and 5) 

by scientists on board the commercial vessel Transfuture 5 operating between Nelson (New 

Zealand) and Osaka (Japan) as part of the Ship of Opportunity programme of the Centre for 

Global Environment Research of the National Institute for Environmental Studies Ibaraki 

Japan led by Dr Nojiri (http://soop.jp/index.html, (Nara et al., 2011). Samples were also 

collected during the TransBrom campaign on board the RV Sonne from Tomakomai (Japan) 

to Townsville (Australia) (Krüger and Quack, 2013). The campaigns all followed a similar 

route, although TransBrom travelled in a southerly direction and only as far as 14.5°S (Figure 

1). 

Aerosol sampling procedures were similar to those described previously (Baker et al., 2006a). 

The aerosol samples were collected onto Whatman 41 cellulose filter paper using a high 
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volume (TF5 ~ 48m3 hr-1; TransBrom ~ 66m3 hr-1) aerosol collector. Sampling was usually 

for 1 (24hr) day. The average speed of Transfuture 5 is 35.5 km hr-1, so samples are collected 

over ~ 852 km of voyage track. There was no sector control employed on the aerosol 

sampler, as it was deployed ~40 m forward of the location of the ship’s emissions, and at 

these speeds we consider contamination from ship emissions to be highly unlikely, and there 

is no evidence for such contamination in any of our data. To test this further, it is possible to 

interrogate the 10 minute average of the continuous atmospheric CO2 sampling system on 

board the Transfuture (http://soop.jp/) to evaluate the potential for contamination from ship 

based sources, assuming these would give rise to elevated and variable CO2 concentrations. 

Such variability in CO2 is periodically evident in the dataset, but is most commonly 

associated with the ship passing relatively close to islands in the Tongan arc region where we 

see other evidence to suggest volcanic sources are important as discussed later. Otherwise the 

variability in atmospheric CO2

 The sampling on the RV Sonne was similarly arranged to avoid any influence of ship 

emissions. The speed of this research ship was much less than the commercial vessel 

Transfuture 5 and distances travelled during daily sampling (average ~400km) were therefore 

less. Sampling was routinely monitored by ship board scientific personnel to ensure no 

possibility of contamination from ship sources, with sampling stopped if apparent wind 

direction became such as to threaten contamination. A Sierra-type cascade impactor was 

employed for TransBrom to separate the aerosol into coarse and fine modes at a boundary of 

~1µm aerodynamic diameter (

 concentrations recorded is small and does not appear to be 

associated with anomalies in aerosol concentrations, suggesting no ship based contamination 

of the aerosol samples. We therefore retain all of the data and evaluate later if the results are 

consistent with other published data. 

Baker et al., 2006a), whereas the TF5 cruises used bulk filter 

collection only.  
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3.2 Analysis 

The analysis methods used are only summarised here, with full details being reported 

previously (e.g. Baker et al., 2007, Baker et al., 2006a, Yeatman et al., 2001). Extraction of 

the aerosol from the filter paper was in ultrapure water (Purite 18.2MΩ) for most components 

and 1 mM NaHCO3

Blank filters were analysed and all results reported are blank corrected. Overall detection 

limits are shown in Table 2. When samples were below detection, a situation that occurred 

for some phosphorus analyses (n=4) and for almost no other analytes, 75% of the detection 

value was used as a concentration for samples below the limit of detection (lod) for averaging 

purposes. Because these lod results were only a small proportion of the total data set, this 

substitution has very little effect on the median values we report. In Table 2 and subsequently 

we focus on the key nutrient analytes of interest and hence do not report the results for 

sodium, chloride or magnesium concentrations. Our analysis methods only measure 

phosphate and related soluble and reactive forms of phosphorus, subsequently referred to as 

soluble inorganic phosphorus (SIP). Baker et al. (2006b) estimate that SIP is about one third 

of total P, and Furutani (

 solution for phosphorus, via ultrasonic agitation for 1 hour, followed by 

filtration (minisart) at 0.2 µm. Analytical methods are summarised in Table 1. 

2010) report a similar distribution. Much of the remaining 

phosphorus may be bound to  organic matter of uncertain bioavailability or tightly bound 

within mineral phases such as aluminosilicate lattices and hence probably not bioavailable. 

Phosphorus was not analysed on the samples from the TransBrom cruise. 

We also report the water soluble organic nitrogen component of our aerosol extracts, WSON, 

as the difference between measurements of total soluble N and the inorganic N measured as 

nitrate and ammonium (Cape et al., 2001). i.e. 

    WSON = TN – (NO3
- + NH4

+) 
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WSON concentration estimates can have a relatively large uncertainty and even negative 

concentrations associated with the compounded uncertainties from using three analytical 

results in its calculation (Cape et al., 2011, Cornell et al., 2003, Lesworth et al., 2010). 

However, in this data set we only had 2 negative WSON concentrations in 52 results and we 

therefore utilise the entire WSON data set available.  

We use nss-K+ e.g. Allen and Miguel, 1995 as a tracer for biomass burning  ( ), nss-Ca2+

e.g. Kline et al., 2004

 as a 

tracer for mineral dust  ( ), and non-sea-salt sulphate (SO4
2-

Keene et al., 1986

) as a tracer 

of volcanic, biogenic and anthropogenic sulphur emissions, as discussed below. For these 

tracers we report the nss concentrations ( ) using Na+

Stumm and Morgan, 1996

 as the sea salt tracer 

and seawater major ion composition ( ). As with WSON, these 

derived non-sea-salt concentrations have increased analytical uncertainties, but for nss-SO4
2- 

we report no negative values, and for nss-Ca2+ only 3 in 52, while for nss-K+ where 

concentrations are rather low we find 5 negative concentrations in 52. We retain all negative 

values when calculating descriptive statistics in order to avoid a positive bias in average 

concentrations. As with the inclusion of lod estimates described above, the low number of 

negative values in our data sets will lead to very little effect on the medians of these 

populations and we therefore consider medians to be more reliable than arithmetic means. We 

use nss-Ca2+

Air mass origin for the samples collected was assessed using 5-day air mass back trajectories 

obtained from the NOAA HYSPLIT model (

 to estimate concentrations of dust and soluble Fe, as described below. 

Draxler and Rolph, 2003). 

Wet and dry atmospheric deposition rates depend on aerosol particle size. We use the average 

aerosol size distribution for each species (discussed below) together with deposition 

velocities of 0.1 cm s-1 and 2 cm s-1 Baker et 

al., 2003

 for fine and coarse mode aerosol respectively (

) to derive a weighted average deposition velocity for each nutrient and multiply this 
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by the median aerosol concentration to estimate the dry deposition flux (FD

We estimate wet deposition using scavenging ratios (S) of 240 for ammonium 

(predominantly fine mode) and 358 for nitrate (predominantly coarse mode) based on an 

average of Bermuda and Barbados scavenging ratios (

).  

Galloway et al., 1993). For WSON and 

dust which are 45% fine mode, we use a weighted average of the scavenging ratios (i.e. 

0.45x240+0.55x358 = 305). We do not have water soluble inorganic phosphorus particle size 

distributions for these west Pacific aerosols, but we assume it is similar to WSON and dust, 

as it is in the Atlantic (Baker et al., 2010). Scavenging ratios are then used to calculate 

rainfall concentrations from aerosol concentrations (CA) which are converted to wet 

deposition using a density of air of 1.17 kg m-3 Galloway et al., 1993 ( ) and an estimated 

rainfall rate (P) of 4 mm d-1 Xie and 

Arkin, 1997

, derived from maps of long term average precipitation (

), although we note rainfall is higher within the ITCZ itself. Hence, we estimate 

wet deposition flux (FW

F

) from the equation 

W = [(CA

4. Results and Discussion 

 x S)/1.17] x P 

4.1 Atmospheric transport paths sampled 

To synthesise the data collected we have used air mass back trajectories to help describe the 

area over which the air has passed 5 days prior to being sampled. The trajectories were taken 

at 12 hour intervals to give an indication of the air at both the mid sampling point as well as 

the start/end of each sampling interval. These trajectories were then used to classify the 

samples according to their likely aerosol source regions. 

We selected 5 potential airmass back trajectory origin classifications A-E (Figure 2) based on 

climatologies discussed in section 2. However, in practice we sampled no air masses 
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associated with zone E and only 2 air masses sampled had approached the Australian 

continent (zone D). In neither case did these trajectories traverse the central desert regions of 

Australia and we have therefore included these two samples within trajectory class C to avoid 

creating trajectory groupings with very small numbers of samples. The major air transport 

pathways and the trajectories for samples collected allow us to therefore identify 3 distinct 

zones; 

• Zone A: Air flows associated with eastward flow off the Asian continent with the 

potential to be influenced by industrial and domestic emissions and Asian dust 

sources.  

• Zone B: Air flows in a westerly direction over the tropical Pacific Ocean towards S.E. 

Asia associated with the N.E. Trade winds. These air masses have spent many days 

over the open ocean, but as discussed in the earlier climatology section, long range 

transport from Asian and North American sources can reach this region. 

• Zone C: Air flow follows the SPCZ associated with the South Easterly Trade Winds. 

This air flow has spent many days over the Southern Ocean but may also be 

influenced by emissions from the Micronesian islands, New Zealand and coastal 

Australia. 

The air mass back trajectories at particular latitudes were very similar for each voyage and 

consistent with the climatology of the Pacific described earlier, suggesting our data should be 

broadly representative of the region. The major air flows seen in the back trajectories are very 

similar to those laid out in SEAREX (Merrill, 1989), although the air flow from Australia 

they describe was rarely encountered during the sampling campaigns discussed here, as noted 

above. Air flowing from zone A was only encountered north of 14°N and samples with air 



©2014 American Geophysical Union. All rights reserved. 

from zone C were encountered south of 2°S. Although our sampling campaigns took place at 

different times of year, the number of samples we have collected is too small to allow us to 

realistically consider seasonality, and so we report statistics for all of the voyages in Table 3. 

Given the consistency of air mass trajectories, we subsequently treat each zone in Figure 2 as 

a separate ocean province influenced by air travelling from that region and adjoining 

continental areas. 

4.2 Aerosol average composition and comparison to other studies 

Average concentration results (mean, standard deviation and median) for the various sectors 

are presented in Table 3. The mean is included as the majority of other studies in the Pacific 

report this average value, and hence it is useful for comparisons between data sets which 

were collected at different times and using slightly different methods.  

The size distribution results obtained from the TransBrom samples are consistent with those 

seen previously in this region (Matsumoto et al., 2004) and elsewhere  (e.g. Baker et al., 

2003). Nitrate was found predominantly in the coarse mode fraction (mean 84% coarse 

mode) reflecting its association with dust and sea-salt particles. By contrast, aerosol 

ammonium and non-sea salt sulphate, which have gas phase precursors, are primarily 

associated with the fine mode aerosol (mean 75 and 73% fine mode respectively), while 

WSON and nss-Ca2+

Matsumoto et al., 2004

 both have on average about 45% of their concentration associated with 

the fine mode. This is similar to the proportions reported by ( ) for nss-

Ca2+

Nakamura et al., 2006

 in this region. WSON was reported to be predominantly associated with fine mode 

aerosol in samples collected in the north west Pacific using a 2.5µm size cut off between fine 

and coarse mode ( ), while others report WSON to be split more or less 

equally between coarse and fine mode aerosol, in samples collected in Taiwan and over the 

Atlantic, respectively, for samples collected with a ~1 µm coarse/fine mode cut off (Chen et 
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al., 2010, Lesworth et al., 2010). In the following discussion we report the sum of TransBrom 

fine and coarse mode concentrations for comparability with the other data. 

The nitrate and ammonium concentrations we report here are consistent with other data from 

the western Pacific and generally higher than those seen further east (i.e. east of 160°E) in the 

Pacific (Jung et al., 2011). This lateral gradient is consistent with dilution and deposition of 

terrestrial-origin aerosol during eastward transport and is also evident in model estimates (e.g. 

Duce et al., 2008). The concentrations we report here for the air masses crossing zone A are 

higher than those reported by Jung et al. (2011) probably reflecting differences in the 

magnitude of the impact of industrial emissions from Asian sources on samples of air masses 

with somewhat different trajectories over that region. Our results are consistent for this region 

with those from sampling on island stations in the N. W. Pacific such as Chichi-jima 

(Matsumoto et al., 2004). In our data, and in the other for this region (Jung et al., 2011), 

aerosol ammonium concentrations are higher than nitrate. Liu et al. (2013) have noted that 

the ammonium/nitrate ratio in atmospheric deposition in China is increasing, reflecting faster 

growth in ammonia emissions from agriculture than NOx emissions from combustion 

sources. Nitrate and ammonium in our data set are well correlated but with a non-zero 

ammonium intercept (Fig. 3), consistent with a background marine ammonia emission (Jung 

et al., 2011). Sulphate is also well correlated with both nitrate and ammonium reflecting 

common sources on the Asian continent 

There is little published data on WSON in this region. The results reported here are higher 

than reported for WSON (and nitrate and ammonium) for samples collected further east than 

our samples (Miyazaki et al., 2011),  but lower than those reported from Taiwan (Chen et al., 

2010) and for the northwest Pacific close to Japan (Nakamura et al., 2006). WSON is 

correlated with TN in our data set, 
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WSON = 0.16 (±0.03) TN + 1.6 (±0.6)  R2

suggesting on average about 16% of the total N is WSON, a broadly similar proportion to 

that found by others in the Pacific region (

=0.44 n=49 

Chen et al., 2010, Miyazaki et al., 2011, Nakamura 

et al., 2006), and consistent with that reported for global data sets (Cape et al., 2011).  

The published literature on aerosol phosphorus concentrations is much more limited than for 

the other components considered here, but we can compare our results to reported average  

soluble phosphorus concentrations over the central N. Pacific of ~0.01 nmol m-3 (total P 0.08 

nmol m-3 Furutani et al., 2010) ( ). These values are somewhat lower than the median of our 

results for air masses from zones B and C. These workers (Furutani et al., 2010) report higher 

soluble phosphorus concentrations in regions impacted by Asian emissions (average 

concentration about 0.1 nmol m-3

Furutani 

et al., 2010

) comparable to, but somewhat higher than, observed here. 

The aerosol soluble phosphorus concentrations we and others report are very low and 

approach our detection limits, and hence we do not attempt to interpret the regional 

variability we see in detail, noting only that the soluble phosphorus concentrations are rather 

variable and do not correlate particularly well with other aerosol components. It is not 

straightforward to attribute observed phosphorus concentrations to known sources (

), a finding consistent with the diversity and uncertainty in potential P sources to 

the atmosphere (Mahowald et al., 2008) , although globally dust is the main source. Recent 

studies over the Bay of Bengal (Srinivas and Sarin, 2012), a region strongly impacted by 

desert dust and anthropogenic emissions, report concentrations of soluble phosphorus more 

than tenfold greater than those reported here. Clearly more work is required to understand 

atmospheric phosphorus transport to the oceans. 

Nss-Ca2+ 

Suzuki and Tsunogai, 1988

has been widely used as a tracer of crustal dust particularly in the Pacific region and 

also to quantitatively estimate dust concentration (e.g. , Kline et 
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al., 2004, Arimoto et al., 2004). Such conversions from nss-Ca 2+

Kline et al., 2004

 to dust are necessarily 

uncertain because both the calcium content of dust and its solubility vary. Here we use the 

approach of Kline ( ) who estimated water soluble nss-Ca2+to be 5% of dust 

by mass in the Asian dust plume. These authors suggest that their resulting conversion factor 

for nssCa2+ Kline et al., 2004 has an uncertainty of at least a factor of 2 ( ). Within this 

uncertainty, this percentage nssCa2+

Suzuki and Tsunogai, 1988

 is consistent with other estimates from the Pacific region 

( , Arimoto et al., 2004) and with estimates for the Saharan dust 

plume (Savoie and Prospero, 1980).  

The results of these estimates of dust concentrations are presented in Table 4. Although this 

data set covers a large ocean area, it is necessarily restricted in time and we compare the 

results to those collected at island stations over campaigns lasting many months or longer to 

test the representativeness of the data. The nss-Ca2+

Matsumoto et al., 2004

 data we report in zone A are very similar 

to that reported for Chinchi jima in the north west Pacific ( ). As shown 

in Table 4, our dust concentration estimates are consistent with the extensive compilation of 

Duce (Duce, 1995). There is a general west to east gradient in concentrations in the Pacific 

reflecting transport distances from the Asian source  (e.g. Uematsu et al., 2003, Jickells et al., 

2005). Hence the dust concentrations we find in the S.W. Pacific (0.6 µg m-3 zone C) are 

markedly higher than those reported in the S.E. Pacific (~ 10 ng m-3 Wagener et al., 2008) ( ). 

While even higher dust concentrations >20 µg m-3

Uematsu et al., 2003

 are found in Zone A near the Japanese 

coast ( ). The natural variability of dust concentrations dominates the 

uncertainties in dust and iron concentrations. To estimate soluble iron flux from the dust flux 

we assume the dust is 3.5% Fe (Jickells et al., 2005) and an iron solubility of 5% for aerosols 

which is appropriate for this atmospheric dust loading (Baker and Jickells, 2006), and 14% 

for iron in rainwater (Jickells and Spokes, 2001), although these estimates have substantial 

uncertainties of at least a factor of 2. 
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4.3 Geographic pattern of aerosol concentrations 

The concentrations we report in Tables 3 and 4 conform to a rather simple broad geographic 

pattern with zone A air masses higher than zones B and C for all components, except nss-

SO4
2-

e.g. Prospero, 1989

 as discussed below. The geographical pattern in average dust concentrations we find is 

entirely consistent with that reported by others in the Pacific ( ), and is 

likely the result of long range transport from Asia over the North Pacific and from Australia 

over the South Pacific (Prospero, 1989). The geographic patterns we report for nitrate and 

ammonium are also similar to those reported by others (Jung et al., 2011, Savoie et al., 1989, 

Ooki et al., 2007). These authors again argue that the distribution of nitrate and ammonium 

reflects long range transport from primarily Asian sources overlain on a natural background 

derived from lightning and tropospheric exchange for aerosol nitrate, and marine emissions 

of ammonia for aerosol ammonium. The consistency of our data and that of Savoie analysed 

with similar methods, suggests that increasing Asian emissions in recent decades  (e.g. Liu et 

al., 2013, Zhang et al., 2007) is not yet having a major impact on the central Pacific Ocean 

region.  

The overall pattern we see for nss-SO4
2-

Savoie et al., 1989

 is similar to that reported by others, of decreasing 

concentrations along transport pathways from Asia and Australia with additional sulphate 

sources from the emissions of DMS from seawater ( , Ooki et al., 2007). 

However, our nss-SO4
2- data also show higher average concentrations in air masses 

associated with Zone C due to a few samples with particularly high concentrations, amongst a 

data set with otherwise low concentrations (see Figure 4); 3 of 52 samples have nss-SO4
2- 

concentrations >40 nmol m-3 while the remaining samples have concentrations <15 nmol m-3. 

All of the samples with higher nss-SO4
2- concentrations are collected in the northern part of 

zone C and are associated with trajectories passing over, or close to, the Tongan and Vanuatu 
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islands. We suggest that the high nss-SO4
2- aerosol concentrations in these samples are 

derived from emissions from the numerous volcanoes in this region. The concentrations of 

nss-SO4
2- we find in these samples are comparable to those reported for samples influenced 

by SO2 Uematsu et al., 

2004

 emissions from volcanoes in Japan collected in the northwest Pacific (

) .  

4.4 Comparison of aerosol concentrations between the West Pacific and the Atlantic 

Ocean 

We have previously reported results of similar sampling of aerosols along an extensive 

meridional transect in the Atlantic Ocean  (e.g. Baker et al., 2006a, Baker et al., 2010, Baker 

et al., 2006b). We now compare and contrast the results from those Atlantic transects to those 

reported here for the western Pacific, recognising that sample numbers in individual regions 

for the W. Pacific samples are relatively small.  

Pacific aerosol samples collected in Zone A in this study are potentially impacted by both 

dust and anthropogenic emissions from Asian continental regions. We therefore compare 

Zone A to North Atlantic air masses influenced by European emissions (Eur, Fig. 4) and to 

air over the subtropical North Atlantic, which is impacted by Sahara desert dust sources and 

by anthropogenic emissions from North Africa and southern Europe (Sahara, Fig. 4). In 

making this comparison we acknowledge that our transect in the Pacific only passes through 

a part of the Asian outflow, which extends further north than our sampling. This, combined 

with different patterns of emissions, contributes to some of the differences that are evident in 

Figure 4. The concentrations we report for Zone A samples in the Pacific are lower than 

reported for the European outflow, but comparable to the Saharan outflow for nitrate and 

ammonium, although over the North Atlantic nitrate to ammonium ratios are about 1.4 while 

in Zone A samples they are about 0.8. This reflects the increasing relative importance of NH3 
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over NOx emissions in China compared to the situation in Europe (Liu et al., 2013). Non-sea-

salt sulphate concentrations were higher in zone A than in the NAtl-Rem and Eur groups in 

the Atlantic, probably reflecting different patterns of relative emissions of the nitrate, 

ammonium and non-sea-salt sulphate precursors in Asia and Europe. The most striking 

feature evident from this comparison is the very high non-sea-salt calcium in the Saharan air 

flow compared to all other sampled air-masses. This reflects the proximity and strength of the 

Saharan dust sources relative to the sampling transect in the Atlantic, and that the Sahara 

desert is globally much the strongest source of dust to the oceans (Jickells et al., 2005).  

We compare air masses from Pacific Zones B and C with, respectively, air masses that spent 

at least 5 days over the remote North (NAtl-Rem) and South (SAtl-Rem) Atlantic, assuming 

that these had similar histories of terrestrial contamination and ageing over the ocean. Nitrate 

concentrations were comparable in our Zone B and C samples to those in SAtl-Rem samples, 

but lower than those of NAtl-Rem samples. This may be partly due to the much longer 

oceanic transport pathways for the Pacific samples. Ammonium concentrations in the remote 

South Atlantic were somewhat lower than observed in Zones B and C and ammonium 

concentrations in the remote Pacific were approximately double those of nitrate (Table 3). 

Dust concentrations (represented by nss-Ca2+

4.5 Influence of aerosol chemical composition on ocean biogeochemistry 

) were lower in zone B and C samples than in 

their equivalent remote air masses over the Atlantic. Non-sea-salt sulphate concentrations in 

zones B and C were comparable to those observed over the remote North Atlantic, but higher 

than over the remote South Atlantic. 

We now attempt to estimate the impacts of atmospheric deposition on the western Pacific. 

Our approach is similar to that used by us in the Atlantic (Baker et al., 2003), and that 

employed recently for global scale estimates of the impacts of atmospheric deposition (Duce 



©2014 American Geophysical Union. All rights reserved. 

et al., 2008) and Okin et al.(2011). We will make these calculations for the area B, 

approximately 0-15oN and 150-180o

The Pacific aerosol results we report suggest N:P ratios vastly in excess of the ratio required 

by phytoplankton (the Redfield ratio of ~16:1 on a molar basis). A similar situation has also 

been reported for the Atlantic (

E. This is the region for which we have most data, but 

because aerosol concentrations and surface water nutrient (and P* see below) status in zone C 

are very similar to zone B, this analysis is appropriate for zone C as well.  

Baker et al., 2003) and is apparently prevalent across all the 

world oceans (Okin et al., 2011). The entire Pacific region considered here is characterised by 

low nitrate concentration surface waters according to the criteria used by Duce et al. (Duce et 

al., 2008)and Okin et al. (Okin et al., 2011), with average nitrate concentrations <4 µmol l-1, 

and indeed concentrations are generally <1 µmol l-1 Levitus, 1982 (( , Levitus, 2010) also see 

http://iridl.ldeo.columbia.edu/SOURCES/.LEVITUS94/ accessed July 2013). Based on the 

P* (excess P with respect to N compared to Redfield ratio) mapping approach (see Deutsch et 

al., 2007, Key et al., 2004, Ward et al., 2013) all the ocean waters in zone B have rather small 

values of P* (about 0.1 µmol l-1 in Zone B and 0.2 µmol l-1

2013

 in zone C) which are similar to 

those seen in the North Atlantic, indicating that surface water P concentrations are low with a 

small excess relative to N. The waters are SPD (surplus phosphate with diazotrophs) in the 

new classification of Ward et al ( ).   

We therefore assume that the receiving ocean waters in this Western Pacific region are N-

limited, consistent with the assumptions of others (Okin et al., 2011, Dutkiewicz et al., 2012). 

Direct nutrient addition experiments in this region also suggest that primary production is 

limited by macronutrient supply in the W Pacific, although the addition of iron can also 

stimulate diatom growth in a community that is otherwise dominated by small phytoplankton 

(Ditullio et al., 1993). This assumption of N-limitation requires that water column sources 
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can supply enough phosphorus to utilise the atmospherically delivered iron and, in the case of 

non-nitrogen fixers such as pico-prokaryotes, atmospherically delivered nitrogen and iron. 

The nitrogen supply from the atmosphere includes both nitrate and ammonium and some 

phytoplankton species such as Prochlorococcus cannot readily utilise nitrate (Moore et al., 

2002) and so the proportions of the N species supplied may have some biogeochemical 

consequences. We note that the mechanisms of efficient surface water phosphorus supply to 

sustain positive values of P* are currently uncertain (e.g. Mills and Arrigo, 2010, Moore et 

al., 2009, Monteiro and Follows, 2012, Palter et al., 2011, Ward et al., 2013), although Palter 

et al. (Palter et al., 2011) have demonstrated that P transport from the margins into the gyre 

may be the dominant source in the North Atlantic. Thus P* represents a quasi-steady-state 

controlled by supply and utilisation of P 

We also assume nitrogen fixation rates are iron-limited in this region consistent with the 

assumptions of others (Okin et al., 2011, Dutkiewicz et al., 2012, Ward et al., 2013). Nitrogen 

fixation is potentially inhibited by the presence of dissolved nitrate or ammonium in the water 

column, but only at relatively high concentrations of ~10 µmol l-1 Duce et al., 2008, ( ) with 

little or no inhibition at concentrations < 1µmol l-1 Holl and Montoya, 2005, ( ), i.e. much 

higher concentrations than found in these W Pacific surface waters (see earlier). Individual 

atmospheric deposition events will probably not push the surface waters across this surface 

water nitrate and ammonium concentration threshold because, based on the data in Table 5, 

and assuming at a minimum a surface mixed layer depth of 10m, the impact of daily nitrogen 

deposition will on average increase surface water nitrate+ammonium concentrations by only 

about 3 nmol l-1 

To assess the impact of atmospheric deposition, we first calculate atmospheric deposition 

fluxes using the approach detailed in the methods (

.  

Baker et al., 2003). The results are 
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presented in Table 5. The nitrogen deposition estimates are similar to those of others (Duce et 

al., 2008, Jung et al., 2011) and the dust deposition model estimates for this region (Jickells et 

al., 2005). Our calculations suggest wet and dry deposition are approximately comparable for 

total nitrogen, with all three nitrogen components contributing approximately equally, 

reflecting the importance of the faster deposition of coarse mode components particularly 

nitrate, despite their lower concentrations, as noted previously (Jung et al., 2011). For dust 

deposition, wet and dry deposition rates are comparable, but wet deposition dominates the 

supply of soluble iron because of the estimated higher solubility of iron in wet deposition. 

The uncertainties in the parameterisation of deposition rates and of iron solubility dominate 

the uncertainties in these calculations.  

To estimate the impact of this deposition on ocean primary productivity (Box 1) we use a 

similar approach to that of Baker et al. (Baker et al., 2003, Baker et al., 2007) and Okin et al. 

(Okin et al., 2011). We first estimate the magnitude of primary productivity that can be 

sustained by the atmospheric nitrogen deposition and multiply this by the Redfield C:N molar 

ratio of 6.6:1. We assume all of the atmospheric aerosol nitrogen is bioavailable, although we 

note that the bioavailability of WSON is very uncertain (Seitzinger and Sanders, 1999, Cape 

et al., 2011). We then estimate the iron requirement associated with this atmospheric nitrogen 

fuelled productivity using a molar C:Fe ratio of 7x105 Okin et al., 2011and references 

therein

 (

) , and consistent with Boyd and Ellwood (2010). We subtract these iron requirements 

from the atmospheric iron supply to estimate the residual atmospheric iron supply. We then 

assume this residual atmospheric iron supply can stimulate nitrogen fixation, and that much 

of the nitrogen fixed is subsequently released, probably as DON (Mulholland, 2007), which is 

assumed here to become available for non- nitrogen fixing primary producers (Sohm et al., 

2011). The principles and outcome of these calculations is summarised in Figure 5. 
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We estimate nitrogen fixation rates based on our estimated residual iron supply rate and the 

N:Fe ratio reported for Trichodesmium, as discussed below. Trichodesmium is only one of 

many nitrogen-fixing organisms in ocean waters (Moisander et al., 2010, Zehr et al., 2008), 

but it is probably the best characterised (Mahaffey et al., 2005) and so we choose here to use 

its elemental composition in subsequent calculations. As noted previously (Baker et al., 

2007), the iron requirements of nitrogen-fixing phytoplankton are known to be higher than 

other photosynthetic phytoplankton due to the iron-rich nitrogenase enzyme used for nitrogen 

fixation, but otherwise are very poorly constrained. To convert iron supply to nitrogen 

fixation rates we use published N:Fe (or Fe:C and C:N) ratios for Trichodesmium reported by 

various authors as discussed below. We note the large variability in these reported ratios 

reflecting, at least in part, variations in iron availability which has been shown to influence 

Trichodesmium N:Fe ratios (Berman-Frank et al., 2001), with the potential for these 

organisms to engage in luxury iron uptake (Chen et al., 2011). Our approach probably 

represents an upper bound of estimated nitrogen fixation rates, since these may be limited by 

environmental factors other than iron supply and also because some of the products of 

nitrogen fixation such as diatom-diazotroph assemblages may be exported to depth, and 

hence not utilised by phytoplankton in surface waters (Mulholland, 2007).  

The N:Fe ratio in Trichodesmium is a key term in this calculation and is very uncertain. 

Estimates of N:Fe derived from laboratory and field measurements vary by around an order 

of magnitude (~400 – 4000 mol mol-1 Baker et al., 2007), as discussed by Baker et al. ( ). This 

range of reported Fe:N ratios may reflect uncertainties in measurements and/or real 

environmental variability since the ratio is known to vary systematically, for instance, with 

iron concentrations. Recently N:Fe ratios have been estimated from an optimised fit of a 

global biogeochemistry model at 1333 mol mol-1 for a model based on Trichodesmium (and 

arguing that including other nitrogen-fixing organisms within the model did not require a 
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significantly different ratio) (Monteiro et al., 2010). We note also that it is now clear that 

even the Redfield ratio itself is not constant, but rather varies systematically in surface waters 

between ocean provinces (Martiny et al., 2013) 

The global model N:Fe estimate (Monteiro et al., 2010) falls between the values reported by 

field and laboratory studies and may represent a plausible long-term large-scale average value 

for the oceans. We therefore utilise the Monteiro et al. ratio in subsequent calculations, 

noting that there is an uncertainty of at least 3 fold around this value based on a comparison 

to the laboratory and field data. The results of this calculation are presented in Box 1. Our 

estimated rates of nitrogen supply from nitrogen fixation are of the same order as the 

measured nitrogen fixation rates of (Kitajima et al., 2009) for this region and at the upper 

bound of other published estimates  (e.g. Capone, 2001, Montoya et al., 2004, Moore et al., 

2009), although recent work suggests that some published estimates of nitrogen fixation rates 

may be underestimated due to methodological issues (Grosskopf et al., 2012).  

In this calculation we assume that all residual atmospheric iron supply, in excess of that 

required by phytoplankton growth stimulated by atmospheric nitrogen supply, is available for 

nitrogen fixation. However, the primary production in this region associated with other 

nutrient sources, such as supply from underlying waters, will also require an iron supply and 

this will be met in part from the atmospheric dust supply. We can estimate an upper limit on 

this iron requirement from the estimated rates of primary production in this area of 20 mmol 

C m-2 d-1 Antoine et al., 1996 ( , Behrenfeld et al., 2009) and the phytoplankton C:Fe ratio of 

7x105 noted earlier, assuming that the entire iron requirement is met from the atmospheric 

supply. This yields an Fe requirement for primary production of 29 nmol Fe m-2 d-1, 

equivalent to 12% of the atmospheric iron supply, and this suggests that the estimates of 

nitrogen fixation in Box 1 would be overestimated by 12%, which is small compared to the 
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other uncertainties.  

The results in Box 1 and Figure 5 suggest that the main impact of atmospheric deposition in 

the western Pacific on primary production is via stimulation of nitrogen fixation, rather than 

by direct stimulation of non-diazotrophic phytoplankton. The atmospheric iron supply allows 

marine diazotrophs to utilise the surface water P* leading to nitrogen fixation and ultimately 

enhance primary production by the whole euphotic zone community. The overall primary 

productivity stimulated by atmospheric deposition of N and Fe is estimated to be 1.8 mmol C 

m-2 d-1 (Box 1). This can be compared with estimates of primary production for this region of 

the order of 20 mmol C m-2 d-1 Behrenfeld et al., 2009 ( , Antoine et al., 1996), and estimates 

of global “new” production (that sustained by nutrient sources from outside the euphotic 

zone) which are of the order of 20% of total primary production in oligotrophic waters (Laws 

et al., 2000). Such calculations therefore suggest that atmospheric nutrient delivery may be a 

very significant contribution to new primary production, and that a potentially important 

route for such impacts is via the stimulation of nitrogen fixation by iron deposition.  

These conclusions, based on direct estimates of atmospheric deposition fluxes scaled to 

primary productivity by phytoplankton stoichiometry, are consistent with recent model 

simulations for the tropical Pacific (Dutkiewicz et al., 2012, Ward et al., 2013), and the 

tropical Atlantic (Ye et al., 2012) and measurements of nitrogen fixation rates in the region 

(Kitajima et al., 2009). The results are also consistent with the classification of 

biogeochemical provinces in the Atlantic and Pacific using observed surface water 

stoichiometry, for instance the P* approach. Thus for instance, Ward et al. (2013)suggest, 

based on models and theoretical considerations that atmospheric deposition of ~10 µmol m-2 

yr-1 is required for nitrogen fixation to significantly deplete dissolved phosphorus 

concentrations and hence to create an SPD biogeochemical region. The atmospheric supply 



©2014 American Geophysical Union. All rights reserved. 

of soluble iron we find in the zone B and C exceeds this value, as it does in the tropical North 

Atlantic and our calculations using these fluxes support the conclusions of Ward et al. that the 

P* data for this region could arise because of atmospheric dust (iron) deposition stimulating 

nitrogen fixation and allowing the draw-down of excess phosphorus (P*). Based on the data 

in Box 1 and assuming an N/P ratio of about 28 as found in field samples (e.g. Kustka et al., 

2003) the P* would become depleted rather slowly (400-500 days assuming no resupply). 

5. Conclusions 

Atmospheric nutrient deposition to the western Pacific may be responsible for about 10% of 

primary production and a greater fraction of export production. The atmospheric deposition is 

highly P deficient and its utilisation will require consumption of some of the excess P (P*) in 

these waters. The atmospheric N deposition rates are small enough that they are unlikely to 

inhibit nitrogen fixation or to allow small non-diazotrophic phytoplankton to consume the 

atmospheric Fe or water column P* supply. We calculate that the main impact of atmospheric 

deposition on primary production is via stimulation of nitrogen fixation, although this 

conclusion is very sensitive to the value of N:Fe for nitrogen fixation. The dust and iron 

fluxes we report for the western Pacific are substantially lower than those in the tropical 

North Atlantic, which would suggest that the amounts of nitrogen fixation stimulated should 

be less, but greater than seen in the tropical South Atlantic, if atmospheric dust supply and 

stoichiometry is the main control on nitrogen fixation. Model estimates of dust and nutrient 

deposition suggest a strong gradient of decreasing atmospheric deposition moving from west 

to east in the South Pacific, whereas the whole tropical North Pacific appears to receive 

sufficient atmospheric iron to allow biogeochemically significant amounts of nitrogen 

fixation. Throughout this region there is a small P* excess in surface waters that is sufficient 

to allow the utilisation of atmospheric deposition of N and Fe thereby increasing overall 
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productivity.  
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Table 1: Extraction and analysis methods employed for analysis of various aerosol 
components. 

 

Analyte Extract Analysisa 

Major cationsb Ultra pure water ICP-OES 

Major anionsc Ultra pure water IC 

NH4
+ Ultra pure water AA 

Total soluble nitrogen Ultra pure water HT Cat. Ox. 

Soluble phosphorus 1mM NaHCO3, pH 7 Spectroph. 

 

aICP-OES-inductively coupled plasma-optical emission spectroscopy, IC-ion 
chromatography, AA-auto analyser using the indophenol blue reaction, HT Cat. Ox.-High 
temperature catalytic oxidation, Spectroph.-spectrophotometry. 

bMajor cations-Na+, Ca2+, Mg2+, K+. 

cMajor anions-Cl-, SO4
2-, NO3

-

 

. 
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Table 2: Aerosol collection substrate blank values and limits of detectiona for aerosol soluble 
nutrient and selected tracer species. 

 Substrate blanks (nmol /filter) Detection limits (nmol m-3) 

Analyte TF5-1 & 
2 

TF5-3 TF5-5 TransBrom TF5-1 
& 2 

TF5-
3 

TF5-
5 

TransBrom 

NO3
- 190 153 530 280

<110

b 

c 

0.03 0.05 0.43 0.09

0.10

b 

c 

NH4
+ 1100 1110 2890 3400

530

b 

c 

0.18 0.11 1.73 0.28

0.15

b 

c 

TN 2390 2230 2600 6400

<4200

b 

c 

0.31 0.19 1.83 1.68

3.74

b 

c 

PO4
3- 14 10 14 nd 0.004 0.003 0.008 nd 

Na+ 3030 3100 2900 2400

1500

b 

c 

0.36 0.54 0.32 0.69

0.68

b 

c 

Ca2+ 189 181 289 510

510

b 

c 

0.02 0.05 0.15 0.08

0.33

b 

c 

SO4
2- 540 530 550 140

57

b 

c 

0.03 0.03 0.03 0.04

0.17

b 

c 

K+ 100 102 240 80

64

b 

c 

0.03 0.05 0.19 0.04

0.04

b 

c 

a Calculated using 3σ of the blank and an assumed equivalent air volume of 1100 m3 for TF5 
and 1500 m3 for TransBrom (sampling times of ~24 hrs and 23 hrs respectively) 

b Fine mode 

c 

“nd“ not determined 

Coarse mode 
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Table 3.  

Average concentration (mean, standard deviation and median all as nmol m-3

 

) for the various 
zones 

Zone NO3 NH- 4 WSON + SIP nss-Ca a nss-K2+ nss-
SO

+ b 
4

2- 

A (n=9)        

Median 15 18 7.2 0.058 1.8 0.5 32 

Mean 17 21 8.1 0.062 2.4 0.8 26 

s.d. 11 13 5.7 0.046 1.7 0.5 19 

B (n=21)        

Median 2.9 7.1 4.3 0.022 0.8 0.4 5.3 

Mean 3.9 6.8 4.3 0.041 0.9 0.7 7.1 

s.d. 3.0 3.7 1.7 0.053 0.6 0.8 5.3 

C (n=22)        

Median 3.6 7.3 3.5 0.014 0.7 0.6 8.1 

Mean 3.8 7.4 3.5 0.018 1.0 0.5 16 

s.d. 2.1 3.2 2.3 0.016 0.8 1.2 22 

 

a zone A n= 6, zone B n=15, zone C n= 18 

b nss-K+ 

 

for zone B n =17 
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Table 4   Estimated median dust concentrations (µg m-3

Zone  

) in air mass zones sampled in this 
study compared to other literature values for long term stations from the same region.  

All samples, this 
study 

Other Published Data, derived in part from the 
compilation of Duce et al.,(1995) 

A 1.4 N W Pacific 1.7 (a), Chinchijima 4.4 (b), Shemya 
0.9 (c),  

B 0.6  Enewetak  0.3 (d), Nauru 0.1 (e), W Pacific 1.2 (f) 

C 0.6 Norfolk Island 0.4 (g), New Caledonia 0.2 (h) 

(a) (Tsunogai and Kondo, 1982) (b) (Tsunogai et al., 1985) (c) (Uematsu et al., 1983) (d) 
(Uematsu et al., 1983) (e) (PROSPERO and UEMATSU, 1989a) (f) (Zhou et al., 
1992) (g) (Duce, 1995) (h) (Prospero et al., 1989) 
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 Table 5 Atmospheric Deposition Estimation for Zone B  

a weighted deposition velocity = (fine fraction x 1 + coarse fraction  x 20) mm s-1 
b sum of dry and wet deposition 
c µg m-3 
d mg m-2 d-1 
e mg kg-1 

f assuming Fe is 3.5% of dust mass and has a solubility of 5%  
g

 
 assuming Fe is 3.5% of dust mass and has a solubility of 14% 

 
 
 

Species C % fine 
mode 

A vd Fa S D C FR FW % 
wet 

T b 

 nmol m  -3 mm s µmol m-1 -

2 d
 

-1 
µmol kg µmol m-

1 
-2 

d
µmol 

m-1 -2 d
 

-1 

NO3 2.9 - 16 17 4.3 358 0.9 3.6 7.9 46 

NH4 7.1 + 75 5.8 3.5 240 1.5 6.0 9.5 63 

WSON 4.3 45 11.5 4.2 305 1.1 4.4 8.6 51 

Total N    12   14 26 54 

SIP 0.022 45 11.5 0.020 305 0.006 0.024 0.043 56 

Dust 1.9 45 c 11.5 1.9 305 d 0.5 2.0 e 3.9 d 51 d 

Soluble 
Fe 

   0.06  f  0.175 0.24 g 73 
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Box 1 Impact of atmospheric deposition on the western Pacific Ocean  

 

Total atmospheric N deposition of 26 µmol m-2 d-1 stimulates new primary production rates 
of 172 µmol C m-2 d-1

This deposition will require 0.25 nmol Fe m

, assuming Redfield stoichiometry. 

-2 d-1

The residual soluble atmospheric iron supply can then sustain nitrogen fixation and we 
estimate this by multiplying the atmospheric soluble iron supply by N:Fe ratios of 1333 to 
estimate the potential amount of nitrogen fixation that could be stimulated by the atmospheric 
deposition at 280 µmol m

, which is ~0.1% of the calculated soluble 
iron supply. 

-2 d-1

If this fixed nitrogen is then utilised for primary production with Redfield stoichiometry, the 
estimated stimulated new primary production is 1848 µmol C m

. 

-2 d-1

  

. 
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Figure 1: Sample start positions for the four Transfuture 5 (TF5) (black dots) and TransBrom 

(purple dots) cruises. Cruise dates were: TF5-1 May/June 2007; TF5-2 April/May 2008; TF5-

3 August/September 2008; TF5-5 October/ November 2009; TransBrom October 2009. 
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Figure 2: Classification of air mass back trajectory zones. Zone A: Asia. Zone B: Open 

Pacific. Zone C: Indonesia/Micronesia/New Zealand and Southern Ocean. Zone D: Australia. 

Zone E: Southern Asia. Main air flow regimes of relevance to this paper are indicated. 
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Figure 3 Plots of a) nss-sulphate and b) nitrate against ammonium concentrations for the 

Pacific data presented here (filled squares) and for Atlantic data from Baker et al. [2010] 

(open diamonds). Panels also show enlargements of the lower concentration regions of each 

plot indicated on the main panels with dashed lines. 
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Fig 4 Box and whisker plots showing the distribution of nitrate, ammonium, SIP, nssCa and 

non-sea-salt sulphate (panels a – e) for zones A, B and C in the Pacific sampled here. Panels f 

– j show distributions of these species in equivalent air masses sampled in the Atlantic ocean 

(data from Baker et al. [2010]). Note that 2 negative points for nss-Ca2+ and nss-SO4
2-

  

 are 

excluded from these plots. The Saharan flow regime data is highlighted to aid comparison to 

other regions. 
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Figure 5 Summary of calculated impacts of atmospheric deposition of nitrogen (blue), iron 

(red) phosphorus (green) on water column net primary production (NPP) (all rates are as 

µmol m-2 d-1) with a water column P* of 0.1 µmol l-1, and hence P* inventory (P*) as µmol 

m-2

 

 for a 50 m surface mixed layer. See text for details. 

 
 


