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Abstract 

Asthma is a respiratory disease that affects 2.5-3 million Canadians. This 

condition is characterized by a Th2-driven immune response that implicates the 

infiltration of eosinophils and remodelling of the airways. In the last decade, 

airway smooth muscle cells (ASMC) have became the subject of intense research 

in the field of inflammatory lung diseases including asthma. It is known that 

ASMC respond to a wide variety of inflammatory mediators such as cytokines 

and chemokines. Function of ASMC in the context of asthma has extended 

beyond its traditional role of a structural cell. Indeed, it is believed that they can 

participate in the initiation and the perpetuation of the inflammatory response that 

takes place in the airway of asthmatic subjects. The general aim of this work was 

to investigate the role of ASMC in the pathogenesis of asthma. More specifically, 

we studied the expression of two C-C chemokine receptors, CCR3 and CCR1 in 

the context of asthma. 

For the first time, this work describes the expression of chemokine receptors by 

ASMC. We have shown that eotaxin, an important chemokine in asthma, induces 

migration of ASMC through the activation of CCR3. Although CCR3 expression 

is not regulated by Th2 cytokines in vitro, ASMC isolated from asthmatic patients 

expressed intrinsically higher levels of the surface receptor when compared to 

controls. We also describe the expression of CCR1 by ASMC, a receptor involved 

in airway remodelling in an animal model of asthma. We reported the expression 

of CCR1 mRNA in biopsies obtained from mild, moderate and severe asthmatics 

and showed that mild group express the highest level of CCR1. We also 
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confirmed that ASMC express the receptor in vivo and showed that stimulation of 

this receptor with its ligands induces intra-cellular calcium mobilization, which 

confirms its functionality. Regulation of CCR1 on ASMC was also assessed using 

proinflammatory, Thl and Th2 cytokines. We found that TNF-a and to a lesser 

extent, IFN-y, upregulated CCR1 mRNA and protein expression, while Th2 

cytokines had no effect. The effect of these two cytokines was totally suppressed 

by either dexamethasone or mithramycin. 

Collectively, our results demonstrate the expression of functional C-C chemokine 

receptors by ASMC. Interestingly, we have shown that CCR3 activation mediates 

ASMC migration and provides a new possible mechanism for the increased 

smooth muscle mass observed in asthmatic patients. Although the exact function 

of the CCR1 expressed by ASMC is unknown, our results suggest an involvement 

in asthma pathogenesis, possibly through airway remodelling. 
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Sommaire 

L'asthme est une maladie respiratoire qui affecte 2.5-3 millions de canadiens et 

qui semble en constante progression. Elle est caracterisee par une reponse 

immunitaire a profil Th2, associee a un remodellage des voies respiratoires et une 

infiltration d'eosinophiles. Au cours de la derniere decennie, un interet 

grandissant s'est manifeste en vers les cellules musculaires lisses respiratoires 

(CMLR), particulierement dans le contexte de certaines maladies inflammatoires, 

dont l'asthme. II est maintenu reconnu que ces cellules peuvent produire une 

grande variete de mediateurs inflammatoires, incluant des cytokines et des 

chimiokines, ainsi qu'une vaste panoplie de recepteurs. La perception du role des 

CMLR dans la pathologenie de l'asthme a evolue considerablement au cours des 

dernieres annees. La fonction de cette cellule est davantage que la stricte cellule 

structurale chez qui Ton se limitait a etudier les proprietes contractiles. II semble 

maintenant evident qu'elle participe a 1'initiation et au maintien de la reaction 

inflammatoire qui survient dans les voies respiratoires des patients lors de la 

survenu d'une crise d'asthme. L'objectif general de cette these consistait a 

investiguer le role que joue la CMLR dans la reaction inflammatoire asthmatique. 

Plus specifiquement, nous avons etudie l'expression des recepteurs aux 

chimiokines CCR1 et CCR3 par cette cellule, dans le contexte de l'asthme. 

Cette these rapporte pour la premiere fois l'expression de recepteurs aux 

chimiokines chez les CMLR. Nous avons demontre que l'eotaxin, une chimiokine 

de type C-C tres importante dans la pathogenie de l'asthme, induit la migration 

des CMLR par 1'activation du CCR3. Bien que nos travaux ont demontre que les 

cytokines de type Th2 n'avaient aucune effet sur l'expression du recepteur in 
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vitro, nous avons observe que le TNF-a augmentait la presence du CCR3 a la 

surface des cellules. De plus, nous avons observe que les CMLR isoles a partir de 

biopsies obtenues chez des patients asthmatiques exprimaient davantage du 

recepteur que celles des patients non affectes par la maladie. 

Dans le cadre de cette these, nous avons aussi demontre l'expression du CCR1 par 

les CMLR. Par le biais d'etudes realisees chez les modeles experimentaux 

d'asthma, il a ete demontre que ce recepteur semblait implique dans le 

remodellage des voies respiratoires survenant chez les asthmatiques. Nous avons 

compare l'expression de l'ARNm codant pour le CCR1 dans des biopsies 

obtenues chez des patients controles et chez des asthmatiques legers, moderes et 

severes. Bien que tous les groupes d'asthmatiques demontraient des niveaux 

superieurs d'ARNm que chez le groupe controle, le groupe exprimant le plus 

grand niveau de CCR1 etait surprenamment le groupe d'asthmatiques legers. Afin 

de prouver l'expression du recepteur in vivo, nous avons confirme sa presence 

dans les voies respiratoires humaines. La fonctionalite du recepteur a aussi ete 

prouve par l'induction de calcium intracellulaire suite a 1'administration de deux 

ligands du CCR1. Nous avons aussi observe que le TNF-a et, a un niveau 

moindre, l'lFN-y, augmentaient l'expression du CCR1. Par l'utilisation de 

dexamethasone et de mythramycine, il etait possible d'inhibier totalement cet 

effet des deux cytokines, fournissant ainsi une explication possible aux resultats 

obtenus avec les biopsies d'asthmatiques. 

En conclusion, nos resultats demontrent l'expression de deux recepteurs aux 

chimiokines fonctionels chez les CMLR, soit le CCR1 et le CCR3. Alors que role 
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du CCR1 chez les asthmatiques demeure incertain, celui du CCR3 pourrait etre lie 

a 1'augmentation de la masse musculaire lisse typiquement retrouvee chez gens 

souffrant de cette maladie. 

9 



Table of contents 

Acknowledgements 3 
Abstract 5 
Abstract (French) 7 
Table of contents 10 
List of figures and tables 13 
List of Publications during PhD training 15 
Contributions of authors 17 
List of abbreviations 19 

CHAPTER I: INTRODUCTION 21 
1.0 Definition of asthma 21 
1.1 Epidemiology of asthma 22 
1.2 Etiology of asthma 23 

1.2.1 Genetic factors 24 
1.2.2 Atopy 25 
1.2.3 Airway hyperresponsiveness 25 
1.2.4 Gender and race 26 
1.2.5 Environmental factors 26 

1.3 Pathogenesis of asthma 28 
1.3.1 Airway inflammation 29 
1.3.2 Eosinophils 32 
1.3.3 Mast cells 33 
1.3.4 Lymphocytes 34 
1.3.5 Structural cells 35 

1.4 Airway remodelling 36 
1.4.1 Thickening of the recticular basement membrane 38 

1.4.2 Increased number of goblet cells and mucous glands 3 8 
1.4.3 Increased airway smooth muscle mass 39 

1.5 Airway smooth muscle cells 41 
1.5.1 Origin of airway smooth muscle 41 
1.5.2 Phenotype ofASMC 41 
1.5.3 Synthetic functions ofASMC 43 
1.5.4 Cytokine production 44 
1.5.5 Chemokine production 49 
1.5.6 Production of extracellular matrix proteins 49 
1.5.7 Expression of receptors by ASMC 51 
1.5.8 Increase in smooth muscle mass in asthma 52 

1.5.8.1 Hyperplasia 52 
1.5.8.2 Hypertrophy 53 
1.5.8.2 Migration ofASMC 54 

1.5.9 Signalling pathways involved in the migration ofASMC 55 
1.6 Chemokines 56 

1.6.1 Chemokine nomenclature 56 
1.6.1.1 Chemokine classification and structure 57 

1.6.2 Chemokine receptors 59 

10 



1.6.3 Functions of chemokines 62 
1.6.4 Chemokine and chemokine receptors in asthma 64 
1.6.5 Cytokines and chemokine in airway hyperreactivity 67 
1.6.6 Cellular sources of chemokines 67 
1.6.7 Chemokines and chemokine receptors in ASMC 69 

CHAPTER II: CCR3 Expression and Function in Asthmatic Airway Smooth 
Muscle Cells 
2.0 Prologue 71 
2.1 Abstract 73 
2.2 Introduction 74 
2.3 Materials and Methods 

2.3.1 Cell culture 76 
2.3.2 Cell stimulation 77 
2.3.3 RNA extraction and RT-PCR 11 
2.3.4 Immunohistochemistry 79 
2.3.5 Western blotting 80 
2.3.6 Flow cytometric analysis 81 
2.3.7 Immunofluorescence detection of CCR3 in B/TSMC 82 
2.3.8 Measurement of intracellular free Ca++ 83 
2.3.9 Chemotaxis Assay 84 
2.3.10 Statistical analysis 85 

2.4 Results 86 
2.5 Figure 1 90 
2.6 Figure 2 91 
2.7 Figure 3 92 
2.8 Figure 4 93 
2.9 Figure 5 94 
2.10 Figure 6 95 
2.11 Discussion 96 
2.12 Acknowledgments 101 
2.13 Footnotes 102 

CHAPTER III: Expression and Regulation of CCR1 by ASMC in asthma 
3.0 Prologue 103 
3.1 Abstract 105 
3.2 Introduction 106 
3.3 Materials and Methods 

3.3.1 Cell culture 108 
3.3.2 Cell stimulation 108 
3.3.3 RNA extraction 109 
3.3.4 RNA extraction from human airway biopsies 109 
3.3.5 RNase Protection Assay 110 
3.3.6 PCR and Preparation of standards 110 
3.3.7 Quantitative real-time PCR 111 
3.3.8 Immunohistochemistry 112 
3.3.9 Flow cytometric analysis 113 

11 



3.3.10 Lasercapture microdissection ofASMC 
3.3.11 Measurement of intracellular free Ca++ 115 
3.3.12 Statistical analysis 116 

3.4 Results 117 
3.5 Figure 1 121 
3.6 Figure 2 122 
3.7 Figure 3 123 
3.8 Figure 4 124 
3.9 Figure 5 125 
3.10 Figure 6 126 
3.11 Discussion 127 
3.12 Acknowledgments 133 
3.13 Footnotes 134 

CHAPTER IV: DISCUSSION 135 
4.1 CCR3 expression and functions in asthmatic ASMC 136 
4.2 Expression and regulation of CCR1 by ASMC in asthma 140 
4.3 Perspectives and future directions 

12 



List of figures and tables 

CHAPTER I AND DISCUSSION 

Figure 1 Cells involved in asthma pathogenesis 

Figure 2 Features of airway remodelling 

Figure 3 Synthetic potential of ASMC 

Figure 4 Representation of chemokine receptor 

Figure 5 CCL11 and ASMC migration in asthma 

Figure 6 Production of extracellular matrix proteins by ASMC 

Page 

29 

34 

44 

58 

140 

144 

Table I Chemokine nomenclature 

Table II Effects of cytokines in asthma 

Table III Structural classification of chemokine families 

CHAPTER II: ASMC and CCR3 in asthma 

Figure 1 Detection of CCR3 in ASMC 

Figure 2 Expression of CCR3 in ASMC in vivo 

Figure 3 Regulation of CCR3 expression 

Figure 4 Expression of CCR3 in asthmatic ASMC 

Figure 5 Measurement of calcium in ASMC 

Figure 6 ASMC migration in response to eotaxin 

46 

48 

59 

90 

91 

92 

93 

94 

95 

13 



CHAPTER III: Expression and regulation of CCR1 by ASMC in asthma 

Figure 1 CCR1 mRNA expression in asthmatic biopsies 121 

Figure 2 Detection of CCR1 expression in ASMC 122 

Figure 3 Expression of CCR1 in vivo 123 

Figure 4 Effects of cytokines on CCR1 expression 124 

Figure 5 Effects of mithramycin and dexamethasone on TNF-a and IFN-y-

induced CCR1 mRNA expression 125 

Figure 6 Measurement of calcium in ASMC 126 

14 



Publications during PhD training 

1. Joubert P, Cordeau ME, Boyer A, Silversides DW, Lavoie JP. Cytokine 
expression by peripheral blood neutrophils from heaves-affected horses 
before and after allergen challenge. The Veterinary Journal 2007; In press. 

2. Joubert P, Lajoie-Kadoch S, Welman M, Dragon S, Letuve S, Tolloczko 
B, et al. Expression and Regulation of CCR1 by ASMC in asthma. Journal 
of Immunology 2007; Paper submitted. 

3. Dewachi O, Joubert P, Hamid Q, Lavoie JP. Expression of interleukin 
(IL)-5 and IL-9 receptors on neutrophils of horses with heaves. Vet 
Immunol Immunopathol 2006; 109:31-6. 

4. Lajoie-Kadoch S, Joubert P, Letuve S, Halayko AJ, Martin JG, Soussi-
Gounni A, et al. TNF-alpha and IFN-gamma inversely modulate 
expression of the IL-17E receptor in airway smooth muscle cells. Am J 
Physiol Lung Cell Mol Physiol 2006; 290:L1238-46. 

5. Lavoie JP, Pasloske K, Joubert P, Cordeau ME, Mancini J, Girard Y, et 
al. Lack of clinical efficacy of a phosphodiesterase-4 inhibitor for 
treatment of heaves in horses. J Vet Intern Med 2006; 20:175-81. 

6. Plante S, Semlali A, Joubert P, Bissonnette E, Laviolette M, Hamid Q, et 
al. Mast cells regulate procollagen I (alpha 1) production by bronchial 
fibroblasts derived from subjects with asthma through IL-4/IL-4 delta 2 
ratio. J Allergy Clin Immunol 2006; 117:1321-7. 

7. Debrue M, Hamilton E, Joubert P, Lajoie-Kadoch S, Lavoie JP. Chronic 
exacerbation of equine heaves is associated with an increased expression 
of interleukin-17 mRNA in bronchoalveolar lavage cells. Vet Immunol 
Immunopathol 2005; 105:25-31. 

8. Joubert P, Hamid Q. Role of airway smooth muscle in airway 
remodeling. J Allergy Clin Immunol 2005; 116:713-6. 

9. Joubert P, Lajoie-Kadoch S, Labonte I, Gounni AS, Maghni K, 
Wellemans V, et al. CCR3 expression and function in asthmatic airway 
smooth muscle cells. J Immunol 2005; 175:2702-8. 

10. Cordeau ME, Joubert P, Dewachi O, Hamid Q, Lavoie JP. IL-4, IL-5 and 
IFN-gamma mRNA expression in pulmonary lymphocytes in equine 
heaves. Vet Immunol Immunopathol 2004; 97:87-96. 

11. Desjardins I, Theoret C, Joubert P, Wagner B, Lavoie JP. Comparison of 
TGF-beta 1 concentrations in bronchoalveolar fluid of horses affected with 

15 



heaves and of normal controls. Vet Immunol Immunopathol 2004; 
101:133-41. 

12. Hajoui O, Janani R, Tulic M, Joubert P, Ronis T, Hamid Q, et al. 
Synthesis of IL-13 by human B lymphocytes: regulation and role in IgE 
production. J Allergy Clin Immunol 2004; 114:657-63. 

13. Nguyen LH, Manoukian JJ, Tewfik TL, Sobol SE, Joubert P, Mazer BD, 
et al. Evidence of allergic inflammation in the middle ear and nasopharynx 
in atopic children with otitis media with effusion. J Otolaryngol 2004; 
33:345-51. 

14. Bergeron C, Page N, Joubert P, Barbeau B, Hamid Q, Chakir J. 
Regulation of procollagen I (alpha 1) by interleukin-4 in human bronchial 
fibroblasts: a possible role in airway remodelling in asthma. Clin Exp 
Allergy 2003; 33:1389-97. 

16 



Contributions of authors 

1. Joubert P, Lajoie-Kadoch S, Labonte I, Gounni AS, Maghni K, Wellemans 

V,Chakir J, Laviolette M, HamidQ and Lamkhioued B.CCR3 Expression and 

Function in Asthmatic Airway Smooth Muscle Cells. J Immunol 2005; 175:2702-

8. 

2. Joubert P, Lajoie-Kadoch S, Welman M, Dragon S, Letuvee S, Tolloczko B, 

Halayko AJ, Soussi-Gounni A, Maghni K, Hamid Q. Expression and Regulation 

of CCR1 by ASMC in asthma. Submitted to Journal of Immunology. 

1. P. Joubert was responsible for this project. He developed the experimental 

design, produced most of the results, and wrote the manuscript. S. Lajoie-

Kadoch assisted with most of the experiments. He significantly 

participated in developing the theory and the experimental design of this 

project. He also played an important role in the writing of the manuscript. 

I. Labonte, M. Laviolette and J. Chakir provided the human cells used in 

these experiments. They isolated ASMC from the biopsies, and cultured 

them until the reached a sufficient number to be analyzed. K. Maghni 

performed the immunofluorescence experiments. V. Wellemans helped 

with the ASMC migration assay and for the Western Blot. Q. Hamid 

provided the facilities and the materials required for the study. He also 

supervised the work and corrected the manuscript. B. Lamkhioued 

supervised the work and provided scientific advice. He also put forth the 

hypothesis that ASMC could express CCR3. 

17 



2. P. Joubert was responsible for this project. He developed the experimental 

design, produced most of the results, and wrote the manuscript. S. Lajoie-

Kadoch assisted in most of the experiments. He significantly participated 

in developing the theory and the experimental design of this project and 

played an important role in the writing of the mansucript. M. Welman and 

K. Maghni participated in the modifications required by the reviewers 

following paper submission by carrying out flow cytometry and western 

blot experiments. S. Dragon and A. Soussi-Gounni produced a significant 

amount of results that were not included in the final version of the paper. 

B. Tolloczko performed the calcium experiments and participated in the 

writing of the manuscript. Dr Hamid provided all the facilities and the 

materials required for this project. As the senior author, he oversaw the 

work and the manuscript preparation. 

18 



List of abbreviations 

AC: Adenylate cyclase 

ADAM: A disintegrin and metalloprotease 

AHR: Airway hyperresponsiveness 

cAMP: cyclic adenosine monophosphate 

ASMC: Airway smooth muscle cell 

BAL: Bronchoalveolar lavage 

BSA: Bovine serum albumin 

B/TSMC: Bronchial/tracheal smooth muscle cell 

CCR: C-C chemokine receptor 

CD: Cluster of differentiation 

CK: chemokinesis 

CMLR: Cellules musculaire lisses respiratoires 

COPD: Chronic obstructive pulmonary disease 

CREB: cAMP response element binding 

CRTH2: chemoattractant receptor-homologous molecule expressed on Th2 

DMEM: Dulbecco's modified Eagle's medium 

DNA: Desoxyribonucleic acid 

ECM: Extracellular matrix 

ECMP: Extracellular matrix protein 

EDTA: Ethylenediaminetetraacetic acid 

EGF: Epidermal growth factor 

ERK: Extracellular signal-regulated kinase 

FACS: Fluorescence activated cell sorter 

FBS: Fetal bovine serum 

FEV1: Forced expiratory volume in one second 

FGF: Fibroblast growth factor 

FITC: Fluorescein isothiocyanate 

FSC: Forward scattered 

GPCR: G-protein-coupled receptor 

GM-CSF: Granulocyte/Monocyte colony stimulating factor 

19 



HBSS: 

IL: 

IFN: 

IGF: 

JNK: 

LT: 

MAP: 

MCP: 

MMP: 

NF: 

OVA: 

PBS: 

PCR: 

PDGF: 

PE: 

PK: 

QPCR: 

RANTES: 

RNA: 

ROCK: 

RT: 

RT-PCR: 

Shh: 

SSC: 

STAT: 

Th: 

TNF: 

TGF: 

VEGF: 

VSMC: 

Hank's buffered salt solution 

Interleukin 

Interferon 

Insulin growth factor 

c-Jun kinase 

Leukotriene 

Mitogen activated protein 

Monocyte chemoattractant protein 

Matrix metalloproteinase 

Nuclear factor 

Ovalbumine 

Phosphate buffered saline 

Polymerase chain reaction 

Platelet-derived growth factor 

Phycoerythrin 

Protein kinase 

Quantitative PCR 

Regulated upon activation normal T cells expressed and secreted 

Ribonucleic acid 

Rho-associated coil forming protein kinase 

Room temperature 

Reverse transcription PCR 

Sonic hedgehog 

Side scattered 

Signal transducers and activation of transcription 

T helper 

Tumor necrosis factor 

Transforming growth factor 

Vascular endothelial growth factor 

Vascular smooth muscle cell 

20 



CHAPTER I: INTRODUCTION 

1.0 Definition of asthma 

Asthma is a disease of the respiratory system which generally appears 

during childhood, but can also develop later on in life. It was first described 3500 

years ago in an Egyptian manuscript called Ebers Papyrus. The word is of Greek 

origin and literally means «to exhale with open mouth, to pant». It was first used 

to describe an illness 500 years later by Hippocrates4. In 1662 the Belgian 

physician Jean van Helmont, who suffered from the disease, provided a detailed 

account of the asthma phenotype and offered one of the first pathophysiologic 

mechanisms of asthma: "the lungs are contracted or drawn together"5. Since then, 

several definitions of asthma have been proposed in attempts to describe the 

disease at both the pathological and functional levels. However, the lack of 

understanding of the exact mechanisms underlying the disease has made the task 

difficult. In 1997, The National Heart, Lung and Blood Institute (NHLBI's) 

published a definition of asthma that considers the inflammatory components and 

their functional consequences6: 

" Asthma is a chronic inflammatory disorder of the airways in which many 

cells and cellular elements play a role. The chronic inflammation causes 

an associated increase in airway hyperresponsiveness (AHR) that leads to 

recurrent episodes of wheezing, breathlessness, chest tightness, and 

coughing, particularly at night or in the early morning. These episodes are 

usually associated with widespread but variable airflow obstruction that is 

often reversible either spontaneously or with treatment." 
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The current view is that there are three main defining features of asthma: AHR, 

airway obstruction -generally reversible- and airway inflammation. In earlier 

years, bronchospasm, oedema and hypersecretion were considered the basic 

characteristics of asthma. Later on evidence of bronchial inflammation came from 

studies using bronchoalveolar lavage, bronchial biopsies, induced sputum and 

post-mortem examination of asthmatic lungs. Another pathological hallmark of 

this disease is the series of structural changes that occur over time and is referred 

to as airway remodelling. Although the concept of airway remodelling has been 

described for sometime, its implication in the pathogenesis as a cause rather than 

a consequence of airway inflammation and/or AHR remains unclear. In recent 

years, it became clearer that the importance of airway remodelling in the 

development and the persistence of the disease extends beyond what was initially 

thought' . The clinical manifestations of asthma consist of recurrent episodes of 

wheezing, shortness of breath, chest tightness, and coughing. This is mainly due 

to airway narrowing, AHR and airflow obstruction that occur in the airways of 

affected patients. 

1.1 Epidemiology of asthma 

Several epidemiological studies have reported an increase in the incidence 

of asthma in the past 30 years. In Canada and the United States, the prevalence of 

asthma symptoms and diagnosed asthma is among the highest in the world for 

both children and adults . Based on the recent data published in 2004, the mean 

prevalence of clinical asthma in North America is 11.2%. According to the 

Canadian Institute for Health Information, over two million Canadians are 
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currently affected by asthma . In the United States, the prevalence of the disease 

has increased by 25-75% per decade since 1960. Although no equivalent data are 

available, we can assume that a similar phenomenon has been observed in 

Canada. 

Based on data obtained in 1993, the Canadian asthma mortality rate of 

0.25 per 100000 people is farily low. However, asthma worldwide accounts for 

about 1 in every 250 (rate of 4) deaths. The economical burden associated with 

the disease is considerable. In United States alone, the direct and indirect costs 

associated with asthma were estimated to be over US $12 billion in 199811. 

Moreover, this disease is one of the most common causes of disability among the 

workforce12. 

1.2 Etiology of asthma 

Asthma is a heterogeneous disorder of unknown etiology. However, many 

risk factors have been identified and they may be classified into two main 

categories: 1) genetic and 2) environmental factors. While genetic factors are pre

determined by the host, the environmental factors influence the susceptibility to 

the development of asthma in predisposed individuals. Genetic factors include: 

gender, race, presence of atopy and airway responsiveness. Environmental factors 

include: exposure to allergens and air pollution, respiratory or parasitic infection, 

smoke, obesity and socioeconomic status. In the following paragraphs, we will 

focus on risk factors for asthma that have received the most attention in the recent 

years. 
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1.2.1 Genetic factors 

Regardless of the specific nature of changing environmental influences, it 

is most probable that changes in environmental exposures have led to the 

expression of asthmatic phenotypes in genetically susceptible individuals. Family 

and twin studies have provided evidence that asthma has a strong heritable 

component. Studies have estimated the heritability of asthma to be 36-79%13'14. 

The difficulty in defining inheritance patterns have led to the conclusion that 

asthma is a complex genetic disorder15"17. Using multiple genome-wide linkage 

studies, several loci located on different chromosomes have so far been linked to 

an increased susceptibility to asthma18. In particular, human chromosomes 5q23-

31, 6p24-21, llql3-21, 12q21-24, 13ql2-14, 17pll-qll and 20ql3 have received 

the greatest attention because they contain a large number of genes relevant to 

asthma, including interleukin (IL)-4, IL-5, IL-9 and IL-12, IL-13, 

granulocyte/monocyte-colony stimulating factor (GM-CSF) cytokine cluster, CC 

chemokine cluster, CRTH2 (chemoattractant receptor-homologous molecule 

expressed on Th2)and STAT6 (signal transducer and activator of transcription-

6)18. Because of the limited precision of the genetic tools used for these studies, 

the exact identification of the genes involved and their functional polymorphisms 

remain unknown. The recent availability of large scale genotype technology has 

led to the identification of novel loci related to asthma. In 2002, a disintegrin and 

metalloprotease (ADAM) family members, ADAM33, was reported by Van 

Eerdewegh et al.19. Although later studies have successfully replicated the 

original finding20, they failed to identify a single-nucleotide polymorphism that 

was associated across all populations. 
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1.2.2 Atopy 

Atopy is defined as the production of abnormal amounts of IgE antibodies 

in response to common environmental allergens. It is one of the most important 

91 

host factors for the development of asthma . The literature suggests that the 

prevalence of asthma in the atopic population is about 50%. Of note, this 

association between asthma and atopy seems to be age-dependent. Most children 

who become sensitized during the first three years of life will develop asthma, 

while children who become sensitized after the age of 8 to 10 years have a similar 
99 

risk of developing asthma to children who do not become sensitized . 

1.2.3 Airway hyperresponsiveness 

AHR is a state of abnormal sensitivity of the airways to a wide range of 

stimuli, including cold air, irritants and smooth muscle agonists. Subjects with 

asymptomatic AHR more frequently develop asthma symptoms than 

9^ 

normoresponsive subjects . The condition has been shown to correlate with the 

levels of total serum IgE, suggesting a link between the presence of atopy and the 

development of AHR. Moreover, a gene governing the development of AHR is in 

close association with a major locus that regulates serum IgE levels on 

chromosome 524, also highlighting the genetic component of AHR. 
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1.2.4 Gender and race 

The prevalence of childhood asthma is higher in males than in females. This 

phenomenon can be attributed to the higher bronchial muscle tone, narrower 

airways and higher levels of IgE present in boys compared to girls25. 

There is no evidence in the literature that ethnicity or race affects asthma 

prevalence. In fact, the socioeconomic status and environmental factors related to 

the geographic context most likely explain the differences documented by some 

authors when evaluating the prevalence of asthma in different countries and 

26,27 

races 

1.2.5 Environmental factors 

Increasing evidence suggests that the interactions between genes and 

environment might play a critical role in the pathogenesis of asthma, which 

illustrates a heritable component but do not follow Mendelelian laws1 . As 

previously mentioned, environmental factors are likely to explain the differences 

observed in asthma prevalence among people of the same ethnicity located in 

different parts of the world. The importance of environmental factors in the 

development of asthma has been emphasized in recent years with the emergence 

of new theories, to explain the increase in asthma in the last three decades. The 

hygiene hypothesis states that allergy is a consequence of reducing infectious 

stressors during early childhood. Mechanistic explanations for this hypothesis 

involve the Thl/Th2 balance and the production of anti-inflammatory cytokines 

such as IL-1028. One of the major influences on the Thl/Th2 balance is the 

exposure to infectious agents. The improvement in our lifestyle, including the 
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preparation of food and personal hygiene, has led to a diminished stimulation of 

our Thl immune system with bacteria and viruses during childhood, hence 

favouring an unopposed Th2 development . Antibiotic use during the first two 

years of life is also associated with a pronounced, dose-dependent increase in the 

risk of developing allergic diseases , since it decreases the infectious burden of 

young children. Recent studies have proposed that IL-10 might be a key cytokine 

regulating the stimulation/suppression phenomenon that occurs during a Thl/Th2 

response31. This cytokine is released in large amounts, following infections with 

bacteria, viruses or parasites and seems to be expressed at lower levels in 

asthmatics compared to normal controls32. Although appealing, the hygiene 

hypothesis will require further experimental testing since the presence of 

conflicting results has prevented scientists from drawing any firm conclusions ' 

34 

The increase in prevalence of obesity in industrialized countries follows a 

similar pattern than the evolution of asthma. Most of the existing epidemiological 

studies show a consistently positive association of obesity with both the 

prevalence and incidence of asthma in children and adults35. The dose-response 

relationship is demonstrated by the finding that the greater the obesity, the greater 

the effect on asthma36. This topic is currently the focus of extensive research 

worldwide in an effort to identify molecules that could potentially link these two 

conditions and perhaps explain the phenomenon. 

The relationship between asthma and respiratory infections is complex. It has 

been shown that respiratory infection early in life protects from asthma, whereas 

later in life respiratory infections herald the onset of exacerbations. Many 
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infectious agents have been linked with development of asthma, including 

Chlamydia pneumoniae, rhinoviruses and parainfluenza viruses37. However, the 

mechanisms underlying this association seem complex and still remain to be 

elucidated. 

Several others environmental factors may be involved in the development of 

asthma, including pollution, exposure to allergens, tobacco smoke, etc. The 

implication of several of these factors is possibly responsible for the initiation and 

perpetuation of the disease and it emphasizes its multi-etiological character. 

1.3 Pathogenesis of asthma 

The pathogenesis of asthma can be regarded as a two-step process. The 

first step consists of sensitization to an aeroallergen involving the development of 

a specific subset of T cells, namely Th2 lymphocytes. The second step consists of 

targeting the Th2-driven allergic inflammation to the airways. This inflammatory 

response is orchestrated and regulated by a complex network of mutually 

interacting immune mediators, including cytokines, chemokines and growth 

factors that are produced by inflammatory and structural cells (see Figure 1). The 

resulting chronic inflammatory process is believed to lead to remodelling of the 

airways, resulting in specific structural alterations that consequently affect the 

mechanical properties of the lung and the respiratory function . Moreover, there 

are reports suggesting that airway inflammation and remodelling are events that 

happen in parallel rather than sequentially . The following paragraphs will focus 

on these two components of asthma, namely airway inflammation and airway 

remodelling. 
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Figure 1. Figure representing the major cells involved in asthma pathogenesis. Tii2 
lymphocyte represents the cornerstone of the immune response characterizing the 
disease. Several mediators ha%re been shown to be involved, including Th2 cytokines 
and C-C chemokines. 

1.3.1 Airway inflammation 

The earliest reports of the histopathology of asthma came from post-mortem 

evaluation of asthmatic individuals who died of status asthmaticus40. With the 

development of less invasive tools for the evaluation of the airways procedures, 

such as fiberoptic bronchoscopy, sputum evaluation and bronchial biopsies, it 

made it possible to characterize the airways of asthmatic subjects during periods 

of disease activity. It is clear that inflammation is an important feature of 

asthmatic airways41. Furthermore, through the development of 

immunocytochemical markers for inflammatory cells and electron microscopy, it 

has been possible to further describe the type and the intensity of the 

inflammatory process. 
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Typically, asthmatic airways are characterized by the presence of 

occlusive mucous plugs within the bronchi, infiltration of the airway wall with 

mostly eosinophils and CD4+ lymphocytes, increase in the amount of smooth 

muscle cells, and thickening of the reticular basement membrane42. The 

inflammatory reaction seen in asthma occurs in both acute and chronic phases. 

The early-phase reaction usually follows the inhalation of an allergen and 

can be explained by the rapid activation of cells bearing allergen-specific IgE, 

more specifically mast cells and basophils43. The activated cells immediately 

release vasoactive and proinflammatory mediators, including histamine, 

eicosanoids and reactive oxygen species. This induces contraction of airway 

smooth muscle cells and vasodilatation, resulting in the airway narrowing and 

obstruction defining acute onset of asthma episode44. During the early-phase, 

inflammatory cells also release preformed chemotactic agents such as chemokines 

and cytokines that recruit inflammatory cells within the airways, a few hours after 

the inhalation of the allergen. This phase, which is also called the late-phase 

reaction, is characterized by the activation of Th2 lymphocytes, which are widely 

considered as the cornerstone of the immune response that takes place in the 

airways of asthmatic subjects44. 

As the primary orchestrator of the specific immune response, Th2 cells 

were implicated in the pathogenesis of human asthma in the early 90's45'46, a few 

years after the first description of their existence by Mosmann and Coffmann47. 

This landmark paper classified two CD4+ lymphocytes subsets in mice, based on 

their profile of expression of cytokines. While Thl lymphocytes mainly express 

IFN-yand IL-2, Th2 lymphocytes predominantly produce IL-4, IL-5, IL-9 and IL-
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13 " . Although the phenomenon of Thl/Th2 polarization is not as clear in 

humans as it is in mice, its existence has been confirmed in vivo in human in the 

context of diseases such as atopy, asthma, rheumatoid arthritis and autoimmune 

diseases50. At the functional level, Thl lymphocytes appear to be critical in the 

development of cell-mediated immunity, whereas Th2 lymphocytes stimulate the 

production of IgE, mucosal mastocytosis, and eosinophilia and seem important in 

the humoral response as well as in protection against parasites51. Thl and Th2 

lymphocytes are derived from the same precursor cells (also called ThO 

lymphocytes or Thp) and acquire their specific subset during the maturation 

process. Among the factors that influence the outcome of the lymphocyte during 

this process are the dose and nature of antigens, strength of signals through the T 

cell receptor, nature of the antigen presenting cells and the cytokine milieu52. The 

differentiation of uncommitted T cell precursors into Th2 cells is largely driven 

by IL-4 via Stat6, while Thl maturation requires IL-12 and IFN-y through the 

activation of Stat453. 

A considerable body of literature has demonstrated that Th2 lymphocytes 

are major players in the initiation and the perpetuation of the inflammation found 

in asthmatic airways. However, it is important to mention that the Thl/Th2 

cytokine imbalance is not necessarily pathognomonic for asthma. Several studies 

have shown that IFN-y positive T cells are increased in asthmatic blood and 

airways while Birkisson suggests that a decrease in Thl type cytokines is unlikely 

in asthma 54"59. While studies in animal models show that overexpression of 

specific Th2-type cytokines reproduce some of the features of human asthma, 
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studies in which IFN-y is overproduced has led to contradictory results . 

However, it is clear that the increased production of Th2 cytokines such as IL-4, 

IL-5 and IL-13 drive the immune response that take place in the asthmatic 

airways. This occurs by affecting various population of cells, including leucocytes 

but also structural cells. The following section will focus on the most important 

population of cells involved in asthma pathogenesis. 

1.3.2 Eosinophils 

Eosinophils are derived from the CD34+ stem cells in the bone-marrow. 

They mature and migrate towards tissues under the influence of GM-CSF, IL-3 

and IL-5 and many C-C chemokines61. Under normal circumstances, eosinophils 

are generally found in low numbers in both peripheral blood and tissues, 

accounting for less than 1% of the total leucocytes. However, following allergen 

challenge or acute exacerbation of asthma, they rapidly migrate within the 

airways in high numbers, in both airway tissues and lumen. The mature eosinophil 

possesses intra-cellular granules that contain inflammatory proteins, including 

major basic protein, peroxidase and cationic protein. Eosinophils also have the 

capability to produce a wide variety of mediators, including pro-fibrotic cytokines 

and growth factors such as transforming growth factor (TGF)-p\ IL-11, IL-17A, 

fibroblast growth factor (FGF)-2, vascular endothelial growth factor (VEGF) and 

angiogenin62, and bronchoactive mediators such as leukotrienes63. Although the 

presence of eosinophils at sites of allergic inflammation has been recognized for 

more than two centuries, the involvement of these cells in the pathogenesis of 

asthma has been a matter of debate for many years64. Recent studies using mice in 
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which the eosinophil lineage was ablated have addressed the contribution of 

eosinophils to the pathogenesis of asthma. One group showed that eosinophils 

were necessary for AHR and mucus accumulation, while the other group showed 

fie srs 

that these cells were required for airway remodelling ' . Although both papers 

had contradictory results, the overall conclusion strengthened by previous 

studies, suggests that eosinophils are important in the pathophysiology of 

asthma67' 68. In humans, the administration of a monoclonal antibody directed 

against IL-5 markedly reduced the presence of eosinophils in both the blood and 

the sputum of asthmatics69. Despite this significant effect, there was no reduction 

in the allergen-induced late asthmatic response or postallergen AHR, which 

suggested the involvement of other populations of cells in these responses69. 

The finding that eosinophils can produce growth factors and pro-fibrotic 

cytokines in addition to the findings of Humbles et al, directed attention to their 

potential role in airway remodelling . Furthermore, a paper published by Flood-

Page et al. revealed that the use of an antibody directed against IL-5 in human not 

only reduced the amount of eosinophils within the airways of asthmatic subjects, 

but also diminished some features of airway remodelling such as the deposition of 

extra-cellular matrix proteins, apparently through the decreased production of 

TGF-(3170. 

1.3.3 Mast cells 

Mast cells arise in the bone marrow, enter the circulation as CD34+ 

mononuclear cells and acquire their final phenotype only after migration into 

tissue, under the influence of locally derived growth factors and cytokines71. Mast 
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cells are widely distributed throughout the body in both connective tissue and 

mucosal surfaces. In the airways, mast cells are located in the lumen, bronchial 

epithelium, submucosa and lung parenchyma. They have the ability to produce 

several cytokines, including Th2-type cytokines such as IL-4 and IL-572. Mast 

cells are implicated in the early-phase of asthma through the release of vasoactive 

mediators such as histamine and leukotrienes following the cross-binding of IgE 

to their high-affinity receptors. They also produce a wide variety of chemotactic 

factors that attract the inflammatory cells responsible for the prolonged late-phase 

reaction occurring 6 to 8 hours after inhalation of the allergen73. A recent study 

published by Wardlaw et al. has put the mast cells firmly back on the asthma 

stage74. By analyzing eosinophilic bronchitis, a condition that shares many 

similarities with asthma -except for the presence of AHR-, the authors found that 

the only striking difference between the two conditions was the presence of mast 

cells infiltrating the smooth muscle layer in asthma. They concluded that the 

asthma phenotype is caused by an abnormality of airway smooth muscle cell 

physiology, in part, because of mast cell myositis. Whether or not this 

phenomenon really plays a role in the development of AHR in human asthma has 

yet to be determined and requires further examination. 

1.3.4 Lymphocytes 

As we previously mentioned in this chapter, Th2 lymphocytes are the 

cornerstone of the immune response that takes place in asthmatic airways. They 

are roughly classified into two distinct families according to the presence of 

specific markers; those expressing the CD4 antigen and mainly involved in the 
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humoral immunity and those expressing the CD8 antigen and responsible for the 

cell-mediated response75. Evidence from literature indicates that lymphocytes are 

critical for the development of asthma and are found in the airways of asthmatics 

in proportion with the severity of the disease76'77. Furthermore, the lymphocytes 

found within the airways are activated according to the expression of the IL-2R 

(CD25)78. The function and contribution of lymphocytes to asthma is 

multifactorial and mainly centers on their capacity to release cytokines. 

1.3.5 Structural cells 

Structural cells in asthmatic airways have long been regarded as having a 

limited functional role. For example, epithelial cells serving as a protective 

barrier, airway smooth muscle as the contractile element of the airways and 

fibroblasts as the major source of extracellular matrix (ECM) components. 

However, in the last decade, these cells have drawn the attention to their many 

other functions in physiology and pathology. In asthma, airway smooth muscle 

cells, fibroblasts and epithelial cells are of particular interest since all exhibit 

potent immune and inflammatory functions. Epithelial cells for instance, express 

leukocyte-associated antigen and present antigen44. They also have the capability 

to produce a wide variety of inflammatory cytokines and chemokines as well as 

their receptors79"81. Similarly, fibroblasts and smooth muscle cells have been 

implicated in many aspects of the pathogenesis of asthma, including immune 

regulation, AHR and airway remodelling ' . Fibroblasts are a potent source of 

extra-cellular matrix protein and pro-fibrotic cytokines84. In animals, they have 
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been shown to differentiate into myofibroblasts following an allergic challenge . 
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Furthermore, they increase their production of procollagen-ocl in response to IL-

486. The role of ASMC and their potential effect on airway remodelling through 

the release of inflammatory mediators will be discussed in later sections. 

1.4 Airway remodelling 

Airway remodelling is a process describing tissue repair and the 

subsequent structural changes occurring in the airways in response to acute injury 

or inflammation87. These structural changes in asthmatic airways were extensively 

reviewed 39 '88 and include thickening of the lamina reticularis, hypertrophy and 

hyperplasia of goblet cells and mucous glands, and increased amount of airway 

smooth muscle (see figure 2). 

Figure 2. Features of airway remodelling. Asthmatic airways are characterized by: 1) 
Hyperplasia of goblei cells 2)Epithelial shedding 3) Thickening of lamina reticularis 
and 4) Increased smooth muscle mass. All these structural changes contribute to airway 
narrowing and t>pical asthmatic symptoms. 

Although some have found no significant differences between the integrity of the 

epithelium obtained in control subjects versus severe asthmatic subjects, epithelial 
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shedding has been included for several years as a prominent feature of airway 

remodelling89. These structural modifications in the structure of the airways may 

be in part responsible for the narrowing characterizing the asthmatic airways as 

well as the alteration of the pulmonary mechanics of these patients87. 

For decades, asthma has been considered a condition of reversible airway 

obstruction. However, it has been recently pointed out that in some individuals, 

even after optimal treatment with corticosteroids, residual obstruction remains, 

possibly as a consequence of airway remodelling, and resulting in permanent 

airflow obstruction90' 91. Other evidence indicating the involvement of airway 

remodelling in changing the biophysical properties of the airways, comes from 

elderly individuals who have had persistent asthma for decades. When their 

respiratory function is compared with those with asthma of short duration, they 

have a significantly lower forced expiratory volume in one second (FEV1), 

suggesting that long-standing asthma is characterized by a greater degree of 

decline lung functions92. 

Different cellular and molecular mechanisms are potentially involved in 

the pathogenesis of airway remodelling. It is possible that the inflammation 

process characterizing asthmatic airways, both through the humoral and cellular 

effectors, plays a major role in the initiation and the perpetuation of the different 

features of airway remodelling. It is also likely that inflammation and remodelling 

occur in parallel rather than cause and effect39. There is little known about the 

individual functions of inflammatory cells and mediators in the overall picture of 

the structural changes occurring in the airways. In the next paragraphs, we will 
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review what is known about the most important characteristics of airway 

remodelling. 

1.4.1 Thickening of the recticular basement membrane 

One of the most characteristic features of asthma in pathology is the 

deposition of excess connective tissue beneath the airway epithelium93" . 

Although thickening of the reticular basement membrane is found in the airways 

of most asthmatics, it is also associated with other respiratory diseases such as 

chronic obstructive pulmonary disease (COPD). Increased deposition of several 

proteins including collagen I and III, fibronectin and proteoglycans such as 

lumican and versican has been reported by different groups93' 96"98. Furthermore, 

Huang et al. reported that there was a close relation between the amount of 

proteoglycans immunoreactivity and the degree of airway responsiveness, 

highlighting another possible link between airway remodelling and the 

development of symptoms in asthmatic individuals . These proteins are produced 

by activated myofibroblasts that migrate from peripheral circulation and that lay 

underneath the membrane and resident fibroblasts85'99. 

1.4.2 Increased number of goblet cells and mucous glands 

The increase in the number of goblet cells in the airway epithelium as well 

as the number of submucosal glands is another hallmark of asthma pathology. 

Widespread plugging of the airways lumen with mucus is observed at necropsy in 

cases of fatal asthma100. Studies have shown an increased number of goblet cells 

in subjects with asthma and submucosal glands100"102. These results suggest that 
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the overproduction of mucus is an important aspect of asthma pathogenesis, 

particularly in cases of fatal asthma. 

Previous studies have shown that the production of mucus by goblet cells 

and submucosal glands might be influenced by inflammatory mediators103' 104. 

Cytokines such as IL-4, IL-6, IL-9 and TNF-a have been shown to induce the 

release of mucous, mainly through their effects on goblet cells105"107. The 

functional relevance of mucus overproduction comes from its implication at two 

levels in the pathogenesis of asthma: airway obstruction and AHR. The airway 

obstruction is associated with the formation of mucus plugs within the airways, 

particularly in the small airways, which are more easily clogged by mucus 

hypersecretion. Studies have also shown that an overproduction of mucus can lead 

to hyperresponsiveness of the airways. However, the mechanisms underlying this 

phenomenon are still unknown108. 

1.4.3 Increased airway smooth muscle mass 

Increase in airway smooth muscle mass has been recognized as a central 

feature of asthma for many years, although the initial studies were thought to have 

overestimated the amount of airway smooth muscle due to a lack of a reliable 

methods of measurement109' U0. However, later data obtained with more precise 

methods confirmed the initial observations89' n i . As previously mentioned, the 

remodelling process can modify the behaviour of the ASMC through a 

combination of different alterations of airway mechanics112. An increase in the 

amount of smooth muscle, with normal contractile properties, might be enough by 
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itself to induce AHR. It is still unclear whether the phenomenon is due to 

fundamental changes in the phenotype of the smooth muscle, or caused by 

alterations in the relationship of the airway wall with the surrounding lung 

parenchyma. 

Different hypotheses have been postulated in order to explain the increase 

in smooth muscle mass in asthma. Both hypertrophy and hyperplasia could 

contribute to this increase, although conflicting results do not allow any definitive 

conclusion89'113. In atherosclerosis, an inflammatory disease of the blood vessels, 

migration of vascular smooth muscle cells from peripheral circulation has been 

described in order to explain the increase of these cells in the atherosclerosis 

plaques114. A similar phenomenon has never been reported in asthma, although 

recent evidence suggests that such events could be possible115"117. Mediators such 

as cytokines, chemokines, leukotrienes and growth factors could modify smooth 

muscle cells behaviour and/or phenotype118"120, and thus induce changes in 

proliferation and apoptosis, cytokine release, adhesion molecules and receptors 

expression, production of extracellular matrix proteins (ECMP), and contractility. 

Several mediators have been shown to be upregulated in asthmatic airways and 

could affect ASMC growth. Among them, are epidermal growth factor (EGF), 

histamine, platelet-derived growth factor (PDGF) and leukotrienes D4 (LTD4) 

which are all mitogens for ASMC in vitro121'123. Intrinsic alteration of ASMC 

phenotype has also been postulated as a potential explanation for the increase in 

smooth muscle mass since Johnson and co-worker have observed that ASMC 

obtained from asthmatic subjects grow faster than cells obtained from normal 

subjects124. These results suggest that the cells are capable of growing faster 
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throughout multiple passages in vitro, even when removed from their in vivo 

environment. Whether one or, more likely, a combination of factors are 

responsible for the increase of smooth muscle mass still requires further 

investigations. 

1.5 Airway smooth muscle cells 

1.5.1 Origin of airway smooth muscle 

Appearance of ASMC in the lung occurs shortly after the maturation of 

the epithelium, following initiation of branching of the lung from the 

laryngotracheal bud125. The ASMC differentiation seems to be initiated by stimuli 

coming from the epithelium and the basement membrane. Work carried out in 

mice has demonstrated that ASMC is derived from undifferentiated mesenchymal 

cells that undergo further maturation following stimulation with sonic hedgehog 

(Shh), produced by the lung epithelial layer . Furthermore, exposure to the 

basement membrane laminins as well as to the positive pressure applied in the 

airway lumen also seems to trigger maturation of ASMC127. 

1.5.2 Phenotype of ASMC 

Heterogeneity in function and responsiveness of ASMC is emerging as a 

relevant topic in the context of asthma. It describes the presence of different types 

of ASMC occurring at the same or different sites in the lung. This was described 

in vascular smooth muscle cells (VSMC) and seems to exist in ASMC ' . For 

example, in the wall of the pulmonary artery, the media contains at least four 
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phenotypically heterogenous populations of smooth muscle cells . In human 
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airways, the functional consequences of the presence of different ASMC 

phenotypes have not yet been elucidated. Some authors hypothesized that in 

asthma, an imbalance between the different phenotypes may alter the contractile 

and proliferative properties of the tissue, thus favouring the development of 

hypercontractile airways130'131. 

In culture, two main phenotypes of ASMCs have been identified: 

contractile and synthetic-proliferative. As suggested by its name, cultured ASMCs 

of contractile phenotype have the ability to respond to specific contractile agonists 

132. Maintenance of the specific phenotype in cultured ASMC is dependent upon 

a number of factors, including cell density, absence of fetal bovine serum and 

presence of heparin ' . Following the exposure to a mitogenic stimulus such as 

fetal bovine serum, the ASMC undergoes a reversible modification of its 

phenotype from contractile to synthetic, which is characterized by a loss of the 

contractile apparatus, such as myosin heavy chain and a-smooth muscle actin, and 

the expression of other proteins such as protein kinase C (PKC) and CD44. 

Contractile cells are characterized by a high density of contractile proteins and 

few biosynthetic intracellular organelles and do not divide in their resting state. 

Synthetic ASMCs have a low density of contractile proteins and high fraction of 

biosynthetic organelles. They actively divide but they lose their ability to contract 

in response to spasmogens135'13 . Although it is accepted that in the airway wall 

the function of the contractile smooth muscle phenotype is dedicated to the 

regulation of airway calibre, the existence and function of the synthetic-

proliferative phenotype is unclear. In atherosclerosis, this phenotype is believed to 
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be central to the pathogenesis of the disease through recruitment and activation of 

inflammatory cells, production of ECMP and vascular calcification137. Data 

obtained from Leguillette et al. suggests that an increased presence of regulatory 

proteins involved in the contraction of human ASMC might explain the 

hyperreactive airways found in asthmatic subjects130. The role played by the 

synthetic-proliferative phenotype in the pathogenesis of asthma is still unclear, 

although several studies have provided clear evidence that ASMC can produce a 

wide variety of mediators. In the next section of this chapter, we will review the 

potential of ASMC to release cytokines, chemokines and other mediators found in 

asthmatic airways in greater detail. 

1.5.3 Synthetic functions of ASMC 

As we previously mentioned, ASMC plays a pivotal role in the 

pathogenesis of asthma in different ways. The shortening of these cells is at the 

root of the symptoms of asthma. The width/area of the smooth muscle bundles 

examined on transverse sections of airways is increased by 50-200% in fatal and 

25-55% in non-fatal asthma, compared with control cases138. The increase in 

smooth muscle mass is also one of the major contributors to airway narrowing and 

AHR84'139. However, early work in asthma provided evidence that the functions 

of ASMC could extend beyond their structural and contractile properties. It has 

been recently recognised that the synthetic function of ASMC may be related to 

the perpetuation and intensity of airway wall inflammation. A number of studies, 

the majority being in vitro, demonstrated that ASMC is also a rich source of 

biologically active cytokines, chemokines and growth factors (see figure 3), 
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which can regulate airway inflammation through chemotactic, autocrine and 

paracrine effects. 

CHEMOKINES 

GROWTH RELATED FACTORS 

PDGF 
PGE.Z 

IGF-1 
Arginase 
SCF 
VEGF 
ADAM 

LIPID MEDIATORS 

PGE2 
PIA 

Figure 3. Synthetic potential of ASMC. Chemokiiies. cytokines, growth factors and 
lipid mediators release by ASMC. GM-CSF: granulocyte-macrophage colony 
stimulating factor, PDGF: platelet-derived growth factor, PGE2: prostaglandin E2, 
EGF: Epidermal growth factor, SCF: stem cell factor, VEGF: vascular endothelial 
growth factor. ADAM: A disintegjin and metalloprotemase domain PLA: 
phosphoiipase A. K \ 

1.5.4 Cytokine production 

As discussed in section 1.3.1, asthmatic airway inflammation is 

orchestrated and regulated by a complex network of mediators, including 

cytokines which display a wide array of effects (see figure 1). In 1996, a report by 

Berkman et al. reported positive immunohistochemical staining for CCL5 (see 

table I for chemokine nomenclature) in the smooth muscle layer present in 
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bronchial biopsies from both normal and asthmatic subjects140. These results were 

rapidly confirmed when a second paper was published, demonstrating the release 

of GM-CSF and its regulation by dexamethasone in the same population of 

cells141' 142. Since then, ASMC has been shown to produce a wide variety of 

cytokines and chemokines, including pro-inflammatory mediators such as IL-1(3 

and IL-6143'144. These two cytokines exert several pro-inflammatory effects such 

as the release of ECMP, the activation of leukocytes and other structural cells, B 

cell maturation, the upregulation of IL-4 dependent IgE production and mucus 

hypersecretion145. 

ASMC have also been shown to produce Thl and Th2 cytokines, which in 

turn have the potential to influence airway inflammation and the development of 

airway remodelling. IFN-y, IL-2 and IL-12 are the three key-cytokines of the Thl 

response that are produced by ASMCs146'147. According to Hakonarson and co

workers, these cytokines may play a protective role in the asthmatic airways147. 

Production of Th2-related cytokines by ASMC has also been reported, as ASMC 

release GM-CSF and low levels of IL-5142' 147. GM-CSF is an important factor 

required for the maturation, the activation and the survival of eosinophils, while 

IL-5 is also involved in the maturation and the recruitment of eosinophils, as well 

as in diverse aspects of the Th2 response145'148. 
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Systematic Human 
Name 

C Family 

XCL1 

XCL2 

Ligand 

Lptn 

SCM-1B 

CX3C Family 

CX3CL1 

CC Family 

CCL1 

CCL2 

CCL3 

CCL4 

CCL5 

CCL6 

CCL7 

CCL8 

CCL9/10 

CCL11 

CCL12 

CCL13 

CCL15 

CCL15 

CCL16 

CCL17 

CCL18 

CCL19 

CCL20 

CCL21 

CCL22 

CCL23 

CCL24 

CCL25 

CCL26 

CCL27 

CCL28 

CC Family 

CXCL1 

Fractalkine 

1-309 

MCP-1 

MlP-la 

MIP-1B 

RANTES 

MIP-ip 

MCP-3 

MCP-2 

Eotaxin 

MCP-4 

HCC-1 

MIP-18 

HCC-4 

TARC 

PARC 

MIP-3B 

MIP-3a 

6Ckine 

MDC 

MPIF 

Eotaxin-2, 

TECK 

Eotaxin-3 

CTACK 

CCL28 

GROa 

Human Aliases 

SCM-la, AT AC 

ABCD-3 

MCAF,HC11 

LD78a, LD786, GOS19, Pat464 

pAT744, ACT-2, G-26, HC21 

HC14 

CkBlO, NCC-1 

MCIF, CkBl, NCC-2.CCL 

CC-2, MIP-5, HCC-2, NCC-3 

LEC, EJNK, NCC-4, LEC, LMC 

Dendrokine 

DC-CK1, AMAC-1, CkB7, MIP-
4 

ELC, Exodus-3, CkBll 

LARC, Exodus-1 

Exodus-2, SLC, TCA-4, CKB9 

CkB8, CkB8-l, MIP-3, MPIF-1 

MPIF-2, CkB6 

CkBl 5 

MHMoc, 1MAC, TSC-1 

ILC, PESKY, ESkine, Skinkine 

MEC 

MGSA, GRO!,NAP-3 

Receptor 

XCR1 

XCR1 

CX3CR1 

CCR8 

CCR2 

CCR1, CCR5 

CCR5 

CCR1, CCR3, CCR5 

CCR5 

CCR1.CCR2, CCR3 

CCR1,CCR2, CCR3, 
CCR5 

CCR1 

CCR3 

CCR2 

CCR1,CCR2,CCR3 

CCR1 

CCR1, CCR3 

CCR1 

CCR4, CCR8 

CCR7 

CCR6 

CCR7 

CCR4 

CCR1 

CCR3 

CCR9 

CCR3 

CCR10 

CCR10 

CXCR2 
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CXCL2 

CXCL3 

CXCL4 

CXCL5 

CXCL6 

CXCL7 

CXCL8 

CXCL9 

CXCL10 

CXCL11 

CXCL12 

CXCL13 

CXCL14 

CXCL15 

CXCL16 

GROB 

GRO? 

PF4 

ENA-78 

GCP-2 

NAP-2 

IL-8 

MIG 

IP-10 

I-TAC 

SDF-la/6 

BCA-1 

BRAK 

In mouse only 

CXCL16 

MIP-2a, GR02 

MIP-2B, GR03 

CTAPIII, 6-Ta, PEP 

NAP-l.MDNCF, GCP-1 

6-R1, H174, IP-9 

PBSF 

SRPSOX 

CXCR2 

CXCR2 

CXCR3 

CXCR2 

CXCR2 

CXCR2 

CXCR1,CXCR2 

CXCR3 

CXCR3 

CXCR3 

CXCR4 

CXCR5 

? 

CXCR6 

Table I. New and old nomenclature for chemokines and their receptors. BCA-1, B-
cell-attracting chemokine 1; CTACK, cutaneous T-cell-attracting chemokine; DC-CK1, dendritic 
cell-derived CC chemokine 1; ELC, EBL-1-ligand chemokine; ENA-78, epithelial-cell-derived 
neutrophil attractant 78; GCP, granulocyte chemotactic protein; GRO, growth-related oncogene; 
HCC, haemofiltrateCC chemokine; IL, interleukin; IP-10, interferon-inducible protein 10; I-TAC, 
interferon-inducible T-cell alpha chemoattractant; LARC, liver- and activation-regulated 
chemokine; LEC, liver-expressed chemokine; LCC-1,liver-specific CC chemokine-1; Lkn-1, 
leukotactin; MCP, monocyte chemoattractant protein; MDC, macrophage-derived chemokine; 
MEC, mammary-enriched chemokine; Mig, monokine induced by interferon y; MIP, macrophage 
inflammatory protein; MPIF, myeloid progenitor inhibitory factor; NAP,neutrophil-activating 
peptide; PF4, platelet factor 4; RANTES, 'regulated on activation, normally T-cell expressed and -
secreted'; SCM-la/p, single C motif-1 a/P; SDF, stromal-cell-derived factor; SLC, secondary 
lymphoid tissue chemokine; TARC, thymus- and activation-regulated chemokine; TECK, thymus-
expressed chemokine. 

Among the other relevant products released by ASMC, it is noteworthy to 

mention a few growth factors such as PDGF, VEGF and insulin-growth-factor 

(IGF). These mediators have been involved in the proliferation and the survival of 

structural cells and leukocytes in the context of an inflammatory response. VEGF 

has been implicated in the angiogenesis process that takes place in asthmatic 

airways149' 15°. ASMC has also been shown to constitutively produce TGF-(3151, 

which is a potent pro-fibrotic cytokine possessing the ability to stimulate the 
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synthesis of collagen I, III and V, fibronectin, tenascin and several proteoglycans 

while 

Cytokine 
GM-CSF 

IL-1 

IL-2 
IL-5 

IL-6 

IL-11 

IL-12 

IFN-y 

Chemokine 
CCL2 

CCL5 

CCL7 

CCL8 

CCL11 

CCL17 
CCL19 
CXCL1 
CXCL8 

Main target cells 
Eosinophils 

Inflammatory cells 
Structural cells 
T cells 
Eosinophils, Mast cells, 
T cells 
Inflammatory cells 
Structural cells 

Structural cells 
Plasma cells 
T cells 

T cells 
Inflammatory and 
structural cells 

Monocytes > 
Eosinophils 
Eosinophils 
T cells 
Monocytes 
Eosinophils 
Monocytes 
Eosinophils > 
Monocytes 
T cells 
Eosinophils 
Th2 cells 
Vascular smooth 
muscle cells 
Th2 cells 
T cells 
Neutrophils 
Neutrophils 

Main effects 
Priming and increases survival of eosinophils 
Increases maturation of granulocyte lineage 
Activation of several cytokines and chemokines genes, 
AHR 
Proliferation of Thl lymphocytes 
Activation and priming of eosinophils, recruitment of 
eosinophils, increases survival of target cells, AHR 
Activation of structural cells (fibroblasts) 
Activation of pro-inflammatory genes 
Increase proliferation of ASMC 
Airway remodelling, AHR 

Promote Thl cells 
Inhibits Th2 cells and IgE synthesis 
Inhibits Th2 cells and IL-4, IL-13 and IgE production 
Activation of pro-inflammatory genes 

Recruitment 
Angiogenesis 
Recruitment and activation 

Recruitment 

Recruitment 

Recruitment within tissues and activation 
AHR 

Recruitment and AHR 
Recruitment 
Recruitment 
Activation and recruitment 

Table II. Main target cells and effects of cytokines and chemokines produced by 
ASMC in the context of asthma. 42'152 

downregulating synthesis of matrix metalloproteinase (MMP). Although the 

relative importance of the release of these cytokines by ASMC remains to be 

evaluated, it raises the possibility that they contribute to the complex network of 
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cytokines characterizing the pathogenesis of asthma. Table II summarizes the 

different effects of the mediators released by ASMC in the context of asthma. 

1.5.5 Chemokine production 

Chemokine biology and their involvement in asthma will be discussed further as 

they represent a key component of this manuscript. Several papers reported the 

production of chemokines by ASMC . Interestingly, many of the chemokines 

produced by ASMC are involved in the recruitment of inflammatory cells within 

the asthmatic airways, suggesting that the importance of ASMC in the 

inflammatory process might also be associated with the attraction and the 

activation of leukocytes. However, the exact contribution of ASMC to the 

recruitment of inflammatory cells in the context of asthma remains to be 

evaluated. 

1.5.6 Production of extracellular matrix proteins 

The term ECM includes both basement membrane connective and 

interstitial connective tissues. It provides support to the airways and its cellular 

components including ASMC. The ECM also influences distribution, activation 

status, survival and adhesion of inflammatory cells. The interstitial cellular matrix 

is composed of different proteins including collagen, laminin, lumican, 

fibronectin and versican. Furthermore, it interacts with ASMC in a bidirectional 

way: ASMC has the capacity to produce and modify the composition of the 

surrounding matrix, while the matrix itself influences ASMC proliferation, 

migration and synthetic capabilities118' 153. In asthma, it has been demonstrated 
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that the profile of ECM is altered. The deposition of collagen 1,111,V, fibronectin, 

tenascin, hyaluronan, versican and laminin a2/(32 is increased, whereas the 

deposition of collagen IV and elastin is decreased154"156. This altered ECM 

composition in asthmatic airways could be due to increased synthesis of ECM 

proteins or decreased activity of its degrading enzyme, the MMP. Some have 

reported the effects of TGF-J3 and leukotriene D4 on the modulation of collagen I 

and IV, fibronectin, elastin and biglycan . 

The influence of the ECM on ASMC behaviour has been documented at 

different levels. Hirst et al. reported that some of the components of the ECM 

such as collagen I, fibronectin and laminin can enhance the proliferation of 

ASMC in culture and modify the cell's phenotype, from a contractile phenotype 

towards a more proliferative phenotype158. More recently, Dekkers et al. showed 

that collagen I and fibronectin favours the synthetic-proliferative phenotype, 

while laminin can maintain the contractile phenotype 159. Parameswaran et al. 

reported that migration of ASMC was facilitated by collagen III and V and 

fibronectin116. Lastly, Freyer et al. investigated the influence of ECM proteins on 

ASMC survival. They found that when cells were grown on elastin, they had a 

reduction in their apoptotic rate through the activation of integrins160. Taken all 

together, these data demonstrate the potential impacts of the ECM composition on 

ASMC biological behaviour, as they can modulate the synthetic and the 

proliferative responses of these cells. New insights into the mechanisms 

underlying increased smooth muscle mass and airway hypresponsiveness may 

result from the discovery that ECM composition is altered in asthmatic airways. 
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1.5.7 Expression of receptors by ASMC 

The expression of different receptors by ASMC was studied in the last two 

decades in order to clarify the effects of specific mediators on cell functions. 

Several contractile agonists such as histamine, acetylcholine and leukotrienes, 

have all been widely used to study the contraction of smooth muscle, and act on 

G-protein-coupled-receptors present on the surface of ASMC. Expression of IL-

1(3 in ASMC has also been reported. This potent pro-inflammatory molecule has 

been involved in the hyperresponsiveness of ASMC observed in asthmatic 

subjects1 l' 162. More recently, the expression of Th2-cytokine receptors such as 

IL-4, IL-5 and IL-13 was detected in cultured ASMC146' 147' 163. Data from the 

literature indicate that Th2-type cytokines such as IL-5 and IL-13 also increase 

the contractile response and/or decrease relaxant responses of ASMC146, m. The 

existence of many of these receptors was inferred based on the effects of 

recombinant cytokines on ASMC functions. However, few groups have 

characterized the presence of the receptors themself 164. The three isoforms of 

TGF-p were detected using immunocytochemistry and flow cytometry, while the 

two TNF-R were demonstrated using immunostaining and western blot. 

The expression of chemokine receptors has never been shown in ASMC. 

However, expression of chemokine receptors has been reported by vascular 

smooth muscle cells in the context of atherosclerosis165"168. The different aspects 

of the expression of chemokine receptors by smooth muscle cells will be further 

elaborated in a subsequent section. 
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1.5.8 Increase in smooth muscle mass in asthma 

In the section 1.4.3 of this chapter, we briefly introduced the different 

mechanisms potentially involved in the increased smooth muscle mass that is 

observed in asthma. To date, there are three commonly accepted theories: 1) 

hyperplasia of ASMC; 2) hypertrophy of ASMC and 3) migration of ASMC. 

1.5.8.1 Hyperplasia 

Several studies have described hyperplasia in the airways of both 

asthmatic subjects and animal models of asthma113' 169~173. The augmentation in 

the ASMC number could occur through the increased rate of proliferation of the 

cells and/or through a reduced rate of apoptosis. However, some groups have 

failed to detect any marker of proliferation in airway specimens obtained from 

asthmatic subjects. In a recent study, Benayoun et al. used Ki67 as a marker of 

proliferation to assess hyperplasia in biopsies obtained from severe, moderate, 

mild asthmatics and control patients . They did not observe any significant 

differences in the proliferative state of ASMC between the groups. One 

explanation for this observation may come from the fact that the division of the 

cells occurs over a long period of time at a fairly low rate and it therefore 

becomes difficult to detect any changes at a specific time-point174. A study 

published by Johnson et al. also demonstrated that ASMC obtained from 

asthmatic lung specimens divides faster than specimens from control subjects 

when they are cultured in vitro. This finding suggests that asthmatic cells retain 

their ability to proliferate faster than normal cells, even after multiple passages, 

possibly due to an intrinsic property of the cells124. However, several research 
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groups have tried to identify a possible mediator that could promote ASMC 

proliferation in the context of asthma. Cell culture-based studies over the past 

decade have identified several potential mitogens of ASMC, some of which are 

present in increased amounts in BAL fluid or asthmatic airways, such as PDGF 

isoforms, EGF and FGF-2175"177. However, the relevance of any of these growth 

factors in situ remains to be elucidated. Although the presence of hyperplasia is 

likely to be involved in the increase in smooth muscle mass in asthma, thus far no 

studies have provided any conclusive data regarding this issue. 

1.5.8.2 Hypertrophy 

Little is known about the involvement of hypertrophy in the increase in 

ASM mass. Conflicting results report an increase in ASMC size in asthmatic 

airways. While Benayoun described the phenomenon in both moderate and severe 

asthmatics, Woodruff et al. suggested that mild and moderate asthmatic ASMC do 

not display hypertrophy '113. Mediators such as TGF-p\ cardiotrophin and IL-l(3 

have been identified as potential inducers of ASMC hypertrophy in vitro178. Ebani 

et al. also suggested the involvement of hypertrophy in the increased smooth 

muscle mass. Interestingly, using 3-D morphometry, they found that hypertrophy 

is mainly localized in large airways in asthmatic patients, when compared to 

COPD and control patients170'179. 
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1.5.8.3 Migration ofASMC 

Migration of ASMC in airways might be involved in asthma pathogenesis 

in two ways: 1) Migration of mature ASMC or progenitor cells from surrounding 

bundles or from peripheral circulation and 2) Migration of the smooth muscle 

layer towards the epithelium. The theory behind the first concept is very recent 

and seems plausible since a similar phenomenon has been extensively described 

in atherosclerosis114. However, there is no direct report that migration of ASMC 

occurs in asthma, although a recent paper demonstrated that precursor cells of 

myofibroblasts can migrate within the airways from the peripheral circulation 

following antigen challenge85. Whether or not myofibroblasts can differentiate 

and become ASMC still remains undetermined. The ability of ASMC to migrate 

was initially described by Hedges et al. in 1999180 Since then a few authors 

reported the ASMC migration in response to different stimuli, including PDGF, 

leukotrienes, IL-lp, TGF-(3 and mechanical strain115'181~183. in the context of this 

thesis, it is noteworthy to mention that the induction of migration of ASMC by 

chemokines has never been described. 

The decreased distance between the airway smooth muscle layer and the 

epithelium is a common feature of asthmatic airways. However, the mechanisms 

underlying this observation have never been elucidated. Some may argue that the 

increase in smooth muscle mass pushes the bundle towards the epithelium, 

reducing the distance between the two structures. Others suggest that this 

phenomenon is the consequence of the migration of ASMC towards the 
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epithelium, leading to modifications of the mechanical properties of the airways 

and subsequently to AHR89. 

1.5.9 Signalling pathways involved in the migration ofASMC 

Although little is known concerning the migration of ASMC, few groups 

have examined the intracellular pathways underlying the process. Similarly with 

migration of other cell populations, movement of ASMC involves members of the 

mitogen activated protein kinase (MAPK) family. So far, p38 and extracellular 

signal-regulated kinase (ERK) have been implicated in the response to PDGF and 

urokinase180' 184. When pharmacologically blocking the p38 pathway, the 

migration of ASMC towards a gradient of PDGF or urokinase is totally inhibited. 

ERK seems to be involved in the regulation of the migration, especially in 

response to urokinase, while cyclic AMP (camp), rho-kinases and protein kinase 

A (PKA) inhibit ASMC migration183. 
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1.6 Chemokines 

In order for the immune system to be effective against infections or during 

an inflammatory response, leukocytes must be able to migrate from the central 

circulation towards tissues and organs. Their movements are under the control of 

specific mediators called chemokines. The term chemokine, a short term for 

chemotactic cytokines, was coined in 1992 . The past decade has witnessed an 

explosion in research directed at understanding the contribution of these 

molecules in acute and chronic inflammation and their roles in other physiological 

responses. The importance of chemokines in dictating the migration and the 

activation of specific subpopulation of leukocytes to sites of inflammation has led 

to the development of promising therapeutic applications to regulate chemokine 

activity in the context of diseases. 

Beside their ability to induce migration, chemokines can induce 

angiogenesis, organogenesis and cell activation. They can also promote the 

migration of structural cells such as fibroblasts, keratinocytes and vascular smooth 

muscle cells ' " . In the coming sections, we will briefly review the various 

aspects of chemokine biology and we will focus of the diverse functions of these 

mediators in the context of asthma, particularly in relation with ASMC. 

1.6.1 Chemokine nomenclature 

A systematic nomenclature for chemokines and their receptors was 

adopted a few years ago in order to simplify the description and characterization 

of a constantly increasing number of them (see table I and table II)190. The 

receptors are named as CXC, CC, XC and CX3C followed by R and a number, 
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while the chemokines are defined by the same structure related acronyms, 

followed by L for ligand. The systematic nomenclature has been generally 

adopted for the receptors; however, chemokines are still mostly designated by 

their traditional names. Although this new classification system increases the 

difficulty to memorize the name of the mediators, it helps to reduce the 

complexity associated with the multiple names that have been given to a given 

chemokines (ex. CCL15 is also called leukotactin-1, MIP-18, HCC-2 or MIP-5). 

For the purpose of this thesis, we will designate the chemokines under the new 

nomenclature (see table I). 

1.6.1.1 Chemokine classification and structure 

Chemokines belong to a large family of structurally related proteins 

containing 50 members and about 30 receptors. As we previously mentioned, they 

are classified in 4 categories based on the position of the first two cysteine 

residues (N terminal) and the chromosomal location of the corresponding genes. 

Two main subfamilies, CXC and CC chemokines (also called a and (3 

chemokines, respectively) contain most of the chemokines identified to date. The 

cysteines form two disulphide bonds which confer to the chemokine's three-

dimensional folding (see figure 4). The disulphides keep two amino-terminal 

regions together, which is a primary requirement for receptor recognition and any 

biological activity of chemokines. 
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C eterrofctaw CC ctemoint CXC ctttmolirte CX3C rt»mol«r» 

CR1 CCR1-11 CXCR1-7 CXCaRl 

Figure 4. Schematic representation of chemokine receptors. Hie pink line represents 
the disuLphide bridge, while black line represents the peptide chain. TTie chernoione 
receptors are divided into four categories, based on the position of the cysteine residue, 
as illustrated above. 

A chemokine is composed of approximately 70-130 amino acids and 

usually weights between 8-12 kDa. Since most chemokines are secreted proteins, 

they are synthesized with a leader sequence of 20-25 amino acids, which is 

cleaved off before release. The three-dimensional structure of few chemokines 

have been determined using nuclear magnetic resonance191. The similarity in 

three-dimensional structure may explain the functional overlap among the 

different classes. Studies looking at the identification of chemokine domains that 

bind and activate the receptor have revealed the existence of a ELR motif (Glu-

Leu-Arg), immediately preceding the first cysteine in the CXC group192. The 

deletion of this motif results in the loss of some chemokine activities such as 

angiogenesis and recruitment of neutrophils. CC chemokines which do not display 

this motif are usually associated with recruitment of mononuclear cells, such as 

monocytes and lymphocytes. Few members of this family, including CCL15, are 

potent attractant for eosinophils193. 

The majority of the genes for the CXC and CC chemokines are clustered 

on chromosomes 4ql2-21 and 17ql 1.2-12 respectively, except for CCL19, whose 
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gene maps to chromosome 9 and CCL15 which maps to chromosome 2 

There is 20 to 50% homology among the CXC chemokines and 28 to 45% 

homology among the CC chemokines at the amino acid level. The significant 

structural homology and functional overlap suggest that the chemokine gene 

might have been created by duplication of a single ancestral gene196. 

1.6.2 Chemokine receptors 

So far, seven CXC chemokine receptors (CXCR1 to CXCR7) and eleven 

CC receptors (CCR1 to CCR11) have been cloned and characterized (see table 

II) ' . All chemokines receptors belong to the seven-transmembrane-spanning 

G-protein-coupled receptor (GPCR) superfamily. 

Receptor Agonists 
XCR1 CXCL1 

XCR2 CXCL2 

CX3CR CX3CL1 

CCR1 CCL3,CCL4,CCL5,CCL7,CCL14,CCL15,CCL16, CCL23 
CCR2 CCL2,CCL6,CCL7,CCL13,CCL16 
CCR3 CCL 5,CCL7,CCL8,CCL11,CCL13,CCL15, CCL24, CCL26,CCL28 
CCR4 CCL17,CCL22 
CCR5 CCL3,CCL4,CCL5,CCL8,CCL11,CCL 14 
CCR6 CCL20 
CCR7 CCL19,CCL21 
CCR8 CCL1.CCL16 
CCR9 CCL25 
CCR10 CCL27,CCL28 
CCR11 CCL18 
CXCR1 CXCL1,CXCL8,CXCL6 
CXCR2 CXCL1,CXCL2,CXCL3,CXCL5,CXCL8 
CXCR3 CXCL9,CXCL10,CXCL11 
CXCR4 CXCL12 
CXCR5 CXCL13 
CXCR6 CXCL16 
CXCR7 CXCL12 

Table III. Structural classification of the chemokine families. This table shows the 
lack of selectivity in ligand binding, since many chemokines can bind to different 
receptors, and vice-versa. 
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A remarkable feature of the chemokine receptors is their relative lack of 

selectivity in ligand binding (see table III). With many chemokine receptors 

binding more than one chemokine with high affinity, one single chemokine can 

bind different receptors, as illustrated by CCL5 which binds to CCR1, CCR3 and 

CCR5. This phenomenon might explain the overlapping function of many 

chemokines. 

A general model for plasma membrane insertion of the chemokine 

receptors has been suggested based on the analogy with the rhodopsin receptor, 

which is also a seven-transmembrane GPCR. Basically, the N-terminus part 

(containing the cysteine residues) of the receptor is located extracellularly, while 

the C-terminus is intracellular and initiates the intracellular cascade following the 

binding of the chemokine to its receptor. Each of the seven hydrophobic domains 

passes through the membrane, allowing three extracellular and intracellular 

loops199. Chemokine receptors are expressed on cells either constitutively or 

following stimulation. While most chemokine receptors are expressed on cells at a 

relative low number (1000 to 20000 per cell), CCR3 is highly expressed by 

eosinophils (40000 to 50000 per cell)200. 

Chemokine binding to its receptor initiates a conformational change that 

leads to a dissociation of the receptor associated hetero-trimeric G proteins into a 

and Py subunits. These proteins can then further activate various effector enzymes 

such as phospholipases, which induce inositol phosphate production, increase in 

intracellular Ca2+ and protein kinases. This activation of intracellular pathways 

culminates in the initiation of chemotaxis, phagocytosis, expression of adhesion 
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molecules, and so on. Other pathways have been shown to be triggered following 

activation of the receptor. One of them involves the activation of NF-KB through 

the activation of protein kinase C by the Goc subunit. This transcription factor is 

generally associated with the activation of proinflammatory genes such as TNF-a 

and IL-lp ZU1' . The MAPK pathways are also involved in the signalling of 

chemokines. There are three subtypes of MAPK, the ERK pathway is usually 

associated with proliferation and growth factors, while the c-Jun NH2-terminal 

kinase (JNK) and p38 pathways are more responsive to cellular stress . These 

pathways have been associated with chemokine synthesis204' 205. ERKs and p38, 

but not JNK, are also involved in the chemotaxis of eosinophils, through the 

activation of CCR3. Lastly, the regulation of adenylyl cyclase (AC) is another 

pathway, which can be either stimulated or inhibited depending on the chemokine, 

the receptor and the G protein subunit involved206. One of the direct effects of 

activation of AC is the increase of cAMP. CCL15 is a potent ligand for CCR1, 

CCR3 and CCR5 and has been shown to increase cAMP levels and subsequently 

the PKA/CREB (cAMP response element binding) pathway207. To simplify a very 

complex picture, we can state that the py subunit activates AC, while Goc inhibits 

it206. 

Another interesting aspect of chemokine receptor biology is the 

phenomenon of homo and heterodimerization following the binding of the ligand 

to its receptor. Depending on the chemokine concentration and the implicated 

receptor, chemokine receptors will either homo or heterodimerize, triggering 

different signalling pathways208. Homodimerization has been reported for 
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different receptors of the CC and CXC families, including CCR2, CCR5 and 

CXCR4209. These receptors, when stimulated, induce activation of different Janus 

activated kinase (JAK)/STAT family members. CCL5 through the stimulation of 

CCR5 promotes JAK1 and subsequently STAT5 transcriptional factor activation, 

while stimulation of CCR1 with CCL3 and CCL5 leads to the activation of 

STAT1 and STAT3 in T cells. On the other hand, heterodimerization of CCR2 

and CCR5 has the capacity to activate cells at a lower concentration of the ligand 

(10 to 100 fold lower) and to trigger cell adhesion through an alternative pathway 

which has not been clearly identified but seems to involve Gql 1, a subunit of Gq 

family proteins208. 

An interesting aspect of the chemokine receptor comes from its dynamic 

expression by leukocytes depending on the environmental milieu. Once the cells 

have been primed by the adhesion to the endothelium or by cytokines, they 

selectively upregulate or downregulate chemokine receptors. An example of this 

phenomenon is in the development and migration of eosinophils. Developed 

eosinophils usually express CCR1, CCR3 and, to a lesser extent, CXCR4. 

However, cytokine-primed eosinophils that have migrated towards inflammatory 

sites, express additional chemokine receptors such as CXCR1, CCR2 and CCR5. 

Basophils, neutrophils and monocytes also undergo a similar process. 

1.6.3 Functions of chemokines 

When added to in vitro cultures, chemokines can activate different 

leukocyte functions including chemotaxis, cytoskeletal reorganization, 

upregulation and activation of adhesion molecules and granule enzyme release by 
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myeloid cells such as neutrophils and eosinophils ' ' . CXCL8 for instance, 

is a potent chemoattractant and activator of neutrophils. It induces the secretion of 

granular enzymes such as myeloperoxidase, |3-glucuronidase, elastase, and 

gelatinase211. CXCL8 also induces the production and secretion of leukotriene B4 

and oxygen radicals. Most of these functions are associated with an increase in the 

level of intracellular Ca2+, which is commonly used as an indicator of receptor 

activation. In addition to the previous functions, chemokines can also regulate 

cell proliferation and differentiation. Indeed, they have been implicated in 

myelopoiesis (CC chemokines mainly), angiogenesis (CXC ELR+ promote while 

CXC ELR- inhibit angiogenesis), and regulation of tumor cell growth212"215. 

Appropriate migration and homing of immune cells plays a primary role in T and 

B cells development. Chemokines become crucial in that process since they drive 

and direct the movement of maturing cells towards the secondary lymphoid 

organs, sites of further maturation for both families of lymphocytes. For example, 

in CXCR4 knockout mice, the number of B cells is dramatically reduced as well 

as the number of myeloid cell progenitors in bone marrow 16. 

More importantly for us, chemokines have also been involved in T helper 

cell development. Differentiated Thl and Th2 cells display a specific set of 

chemokine receptors. Thl cells express CCR5, CXCR3 and CXCR6, whereas Th2 

cells express CCR3, CCR4 and CCR8217. It is noteworthy to mention that this 

selective expression is not absolute as there are reports which indicate overlap 

between the two lymphocyte subsets218. 
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1.6.4 Chemokine and chemokine receptors in asthma 

First evidence of the implication of chemokines in asthma pathogenesis 

comes from the description of a novel eosinophil chemotactic agent found in 

bronchoalveolar lavage (BAL) fluid of an animal model of asthma219. This 

observation was later corroborated in human asthmatics in our lab when we 

990 

demonstrated that CCL11 was increased in the BAL fluid of allergic patients . 

Since then, the expression of several other chemokines during asthmatic disease 

has been well established221. CC chemokines such as CCL2, CCL3, CCL5, CCL7 

and CCL8 have been shown to be upregulated in asthmatic airways, thereby 

highlighting the importance of these molecules to the pathogenesis of asthma222" 

. Because eosinophil infiltration within asthmatic airways is a hallmark of the 

disease, a lot of the initial work on chemokines has focused on those that have 

chemotactic activity for these cells. In addition to CCL11, which is one of the 

most potent chemokines for eosinophils225, CCL3, CCL5, CCL7 and CCL13 also 

elicit recruitment and degranulation of these cells226. CCL11, CCL7, CCL8, 

CCL2 and CCL5 are all ligands for CCR3. This receptor is expressed at high 

levels by eosinophils, but also by Th2 lymphocytes, mast cells and structural cell 

such as epithelial cells80. In addition to their effects on eosinophils migration in 

asthmatic airways, chemokines also recruit lymphocytes from the peripheral 

circulation. CCL1, CCL11, CCL17 and CCL22 have been shown to selectively 

attract Th2 lymphocytes, through the activation of CCR8, CCR3 and CCR4227. As 

previously mentioned, Th2 cells are the cornerstone of asthma pathogenesis and 

the importance of chemokines in the inflammatory process mediated by 

lymphocytes is likely to be crucial for the initiation and the perpetuation of the 

64 



disease. Several studies found that CCL11 neutralization reduces both airway 

inflammation and AHR228"230. More specifically, it has been shown that inhibition 

of CCL11 decreases trafficking of eosinophils and Th2 cells. However, in 

CCL11-/- knockout mouse, eosinophilic infiltration and allergic airway 

inflammation are not totally suppressed, highlighting the phenomenon of 

redundancy between chemokines and chemokine receptors231. 

The expression of specific chemokines at different time point of an 

allergic exacerbation suggests that there might be profiles of chemokines that 

mediate various stages of the disease. For example, the expression of CC 

chemokines such as CCL3, CCL2 and CCL5 in BAL fluid is upregulated 4 to 6 

hours following endobronchial allergen challenge, while the levels of CCL11 are 

increased as quickly as 2 hours following a similar challgen, coinciding with the 

peak of recruitment of eosinophils within the airways222'232'233. The upregulation 

of chemokines during an active inflammatory process is controlled by several 

chemokines. Inflammatory cytokines, such as TNF-oc and IL-1(3 have been shown 

to induce the expression of several chemokines, including CCL11, CCL5 and 

CCL13 . Synergism between IFN-y and TNF-a has been reported regarding the 

induction of CCL11, CCL5, CXCL10 and CXCL9235'236. IL-4 and IL-13, two Th2 

cytokines, can also regulate the production of chemokines " . More recently, 

the effect of CCL11 on the regulation of CXCL8 production was also 

demonstrated. Collectively, these data open new horizons on the multiple roles of 

chemokines in the regulation of the immune response and the influence of the 

cytokine milieu on the expression of these chemokines244. 
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The contribution of chemokine receptors has been thoroughly studied in 

asthma using gene-deficient mice. Of particular interest for this thesis, CCR1-

deficient mice in a model of allergic airway disease showed a decreased number 

of goblet cells and diminished subepithelial fibrosis, suggesting the involvement 

of this receptor in airway remodelling245. CCR3 knockout mice had a reduction in 

the number of eosinophils in the airways after allergen challenge 246. 

Unexpectedly, these animals had increased AHR, highlighting the controversial 

association between eosinophils and AHR. However, it is important to point out 

that animal models of asthma might not reflect all the components involved in the 

human disease. CCR3 null animals sensitized epicutaneously, followed by airway 

challenges with ovalbumin (OVA), showed that neither infiltration of eosinophils 

or AHR could be inhibited, suggesting that the route of sensitization may modify 

the features of the disease247. Interestingly, when CCR3-/- animals are sensitized 

systemically, the eosinophils are trapped in the subendothelial space and fail to 

reach the tissue. This suggests that CCR3-ligands are more involved in the 

recruitment of these cells within the tissues rather than out of the circulation. This 

observation implies an association between CCR3 and other chemokines or 

cytokine receptors in the whole process of eosinophil migration towards 

peripheral tissues. 

Among the other chemokine receptors that have been studied in animals, 

CCR4, CCR5 and CCR6 were revealed to be potentially involved in asthma 

pathogenesis, since the knockout of their gene leads to a decreased number of 

eosinophils and reduced AHR . All of these results indicate the involvement of 

several chemokine receptors in the recruitment of one single population of cells in 
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a specific disease, emphasizing the complexity of the chemokine network and the 

overlap of chemokine and chemokine receptor functions. 

1.6.5 Cytokines and chemokine in airway hyperreactivity 

As we highlighted in section 1.2.3, AHR is an important feature of asthma 

pathogenesis. In the last decades, researchers have attempted to identify the 

mediator(s) that could either induce bronchoconstriction of ASMC or render the 

cells more responsive to bronchoconstrictors. Several cytokines have been 

identified in animals as being potentially linked to the development of AHR in 

asthma226. When exogenously administered, IL-4, IL-5, IL-9, IL-11, IL-13 and 

GM-CSF increased the response of the airways to constrictor agonist. Two of the 

most important cytokines involved in this process seems to be IL-4 and IL-13 

since the disruption of these two genes in mice totally abrogates AHR following 

antigen challenge249"251. However, it has also been shown in different 

experimental models, that AHR can be induced in a IL-4-independent 

mechanisms252' 253. Implication of IL-5 and IL-13 in development of AHR has 

also been shown in animal models of allergic airway disease, although the 

mechanisms underlying this observation might involve IL-4254'255. 

Chemokine implication in the initiation of AHR has been supported by 

few studies. Campbell et al. showed that administration of CCL2 could induce 

AHR to metacholine in a murine model of cockroach allergen-induced airway 

disease . The effects of CCL2 on AHR in this model are possibly mediated by 

the activation of CCR2 on mast cells, as suggested by Campbell et al256. The same 

author also showed that neither CCL11 nor CCL3, when injected alone, could 
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induce AHR, although these two chemokines have been involved in AHR in other 

studies229' 257. Mattes et al. demonstrated that CCL11-deficient mice show a 

partial reduction of eosinophil numbers in the airways, while the AHR was not 

modified. However, when animals deficient for both EL-5 and CCL11 were used, 

both airway eosinophilia and AHR were totally inhibited suggesting the 

requirement of these two mediators in the induction of asthma symptoms in this 

model68. Whether the effects of chemokines on AHR are mediated through a 

direct action on ASMC or through the recruitment of inflammatory cells is still 

not clear. Evidence from literature indicates that the presence of inflammatory 

cells such as eosinophils, Th2 lymphocytes, macrophages and mast cells strongly 

correlate with AHR, while other studies have failed to establish such a 

relationship ' " . Further studies will be required in order to assess the in vitro 

effects of chemokines on ASMC contractility. 

1.6.6 Cellular source of chemokines 

Cellular sources of chemokines within the airways of asthmatic 

individuals include inflammatory cells but also structural resident cells. Activated 

macrophages and lymphocytes were believed to be the major source of 

chemokines in the airways of asthmatic subjects; however, the concept has 

evolved in the last few years, while researchers have demonstrated that epithelial 

cells, fibroblasts and airway smooth muscle also have the capacity to produce 

chemokines. For example, CCL3, CCL7 and CCL22 are released in high amounts 

by macrophages whereas CCL5, CCL 11 and CCL 13 seem to be predominantly 

produced by structural cells. 
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7.6.7 Chemokines and chemokine receptors in ASMC 

It has been postulated that chemokines released by ASMC might 

significantly contribute to the chemokine signal generated by inflammatory 

cells263. In asthma, ASMC could quickly release CC chemokines following 

allergen inhalation and then contribute to the rapid mobilization of inflammatory 

cells such as eosinophils and Th2 lymphocytes3. Expression of a wide variety of 

chemokines by ASMC has been shown in the last decade (see figure 3). They 

include CC chemokines such as CCL11, CCL5, CCL2, CCL7 and CCL8, and 

CXC chemokines such as CXCL8 264~267. These chemokines have been implicated 

in the pathogenesis of asthma, mainly through the recruitment of inflammatory 

cells such as eosinophils (CCL11, CCL5, CCL2, CCL7, CCL8 and CCL13), 

lymphocytes (CCL11, CCL5, CCL17), neutrophils (CXCL8) and monocytes 

(CCL2, CCL5, CCL7 and CCL13). Because of the increased presence of smooth 

muscle in asthma and the release of cytokines such as TNF-oc, IL1-J3, IL-4 and IL-

13, which have been shown to augment the release of CCL11, CCL5, CCL17 

CCL2, CCL7, CCL8 and CCL13, the production of chemokines by ASMC is 

likely to play an important role in the initiation and the perpetuation of the 

asthmatic inflammatory response268. 

Studies of chemokine receptor expression by structural cells are a recent 

undertaking. Among the different structural cell populations found in the lungs, 

only endothelial and epithelial cells have been shown to express chemokine 

receptors in humans. Bronchial epithelial cells have been shown to express 

CCR3, CXCR3 and CXCR480' 269' 270. While CCR3 binds mainly to CCL11, 
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CCL5, CCL7, CCL8 and CCL13, CXCR3 binds to CXCL9, CXCL10 and 

CXCL11, and CXCR4 binds to CXCL12. Although these receptors were shown 

induce an intracellular signalling on epithelial cells, their functions remain to be 

clarified. However, according to Kelsen et al, the presence of chemokine 

receptors at the surface of epithelial cells could be associated with regulating the 

migration of these cells in response to certain chemokines as well as in mediating 

events associated with airway remodelling269. Endothelial cells have also been 

shown to express chemokine receptors, including CXCR3, CXCR4 and CCR1, 

CCR2, CCR3 and CCR8271"277. Proliferation, migration and cell activation are 

among the functions associated with the presence of these receptors. 

Since the publication of our paper studying the expression of CCR3 by 

ASMC, another group showed the expression of CCR7 by these cells in the 

context of asthma278' 279. VSMC have been shown to express few CC and CXC 

chemokine receptors, including CXCR4, CCR3 and CCR5165' 168' 272' 280. The 

effects of chemokines on VSMC function comprise migration and regulation of 

cell activity166'189'273. 

70 



CHAPTER II: CCR3 Expression and Function in Asthmatic Airway Smooth 

Muscle Cells 

2.0 Prologue 

Contribution of ASMC to asthma pathogenesis is not restricted to a contractile 

cell. In chapter I, we discussed the capacity of ASMC to produce cytokines and 

chemokines and to express receptors that make them potential targets for the 

inflammatory response characterizing asthma reaction. Chemokines are important 

proteins produced by inflammatory and structural cells and are mainly associated 

with recruitment of inflammatory cells. Recently, expression of a chemokine 

receptor has been described in epithelial cells, although the significance of this 

receptor on these cells remains unknown. In the following chapter, we study the 

expression of CCR3, a receptor for CCL5, CCL7 CCL13, CCL24 and CCL26. All 

these chemokines are believed to play a role in asthma pathogenesis and have 

been shown to be upregulated in the airways of asthmatic patients. We also assess 

the functional relevance of the expression of this receptor at the surface of ASMC. 
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2.1 Abstract 

Asthma is characterized by an increase in airway smooth muscle mass and a 

decreased distance between the smooth muscle layer and the epithelium. 

Furthermore, there is evidence to indicate that ASMC express a wide variety of 

receptors involved in the immune response. The aims of this study were to 

examine the expression of the CCR3 on ASMC, to compare this expression 

between asthmatic and non-asthmatic subjects, and to determine the implications 

of CCR3 expression in the migration of ASMC. We first demonstrated that 

ASMC constitutively express CCR3 at both mRNA and protein levels. 

Interestingly, TNF-alpha increases ASMC surface expression of CCR3 from 33 to 

74%. Furthermore, using FACs analysis, we found that ASMC CCR3 is expressed 

to a greater degree in asthmatic versus control subjects (95% vs 75%). 

Functionality of the receptor was demonstrated by calcium assay; the addition of 

CCR3 ligand eotaxin to ASMC resulted in an increase in intracellular calcium 

production. Interestingly, ASMC was seen to demonstrate a positive chemotactic 

response to eotaxin. Indeed, ASMC significantly migrated towards 100 ng/ml of 

eotaxin (2.2 fold increase, compared to control). In conclusion, the expression of 

CCR3 by ASMC is increased in asthmatics, and our data shows that CCR3 ligand 

such as eotaxin induces migration of ASMC in vitro. These results may suggest 

that eotaxin could be involved in the increased smooth muscle mass observed in 

asthmatics through the activation of CCR3. 
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2.2 Introduction 

Asthma is a common, chronic, inflammatory condition of the respiratory 

system, associated with paroxysmal bronchospasm, bronchial 

981 989 

hyperresponsiveness and airway remodelling ' . Many factors, such as 

inflammatory mediators, have been implicated in the initiation and the 
99A 989 

perpetuation of airway remodelling ' , with increases in airway smooth 

muscle mass being one of the major structural changes described in the airways of 

asthmatics 139'170'283. Mechanisms responsible for this phenomenon are thought to 

be an increase in cell proliferation (hyperplasia) and/or an increase in the size of 

individual cells (hypertrophy) 124. Recently, it has been proposed that migration of 

the ASMC toward the epithelium might also contribute to this phenomenon 182' 

183. These migrating cells could originate from deep smooth muscle bundles or 

from bone marrow cells, in a similar fashion to the migration of vascular smooth 

muscle cells in vascular diseases 284. 

Airway smooth muscle was traditionally considered to be a structural cell 

involved primarily in bronchoconstriction. However, it has been recently shown 

that ASMC could play an important part in regulating local immune response. 

ASMC produce inflammatory cytokines and chemokines such as interleukin IL-

1(3, IL-6, IL-8, eotaxin and RANTES, that may act in both an autocrine and 

paracrine manner 285. ASMC also express mRNA and immunoreactivity for a 

number of cytokine receptors 147. To our knowledge, however, there has been no 

report on the expression of chemokine receptors in airway smooth muscle cells. 

CCR3 is a receptor for eotaxin-1 (CCL11), 2 (CCL24), 3 (CCL26), MCP-2 
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(CCL8), 3 (CCL7), 4 (CCL13) and RANTES (CCL5). Expression of CCR3 and 

eotaxin have been shown to be increased in asthmatic lungs and have been linked 

T o t IQH 

to the pathogenesis of asthma ' . We therefore hypothesized that ASMC 

express CCR3, and that eotaxin promotes the migration of ASMC through the 

activation of CCR3. 

The aims of this study were to demonstrate the expression of CCR3 by 

ASMC and to compare this expression between asthmatic and control subjects. In 

order to determine the presence and the functional relevance of this receptor on 

ASMC, we assessed the effect of eotaxin on ASMC function. Our results provide 

evidence for the expression of a functional CCR3 by ASMC. Furthermore, we 

have shown that ASMC migrate toward a gradient of eotaxin. This data suggests 

that the upregulation of CCR3 by ASMC in asthmatic subjects might be partly 

responsible for the increased smooth muscle mass and the airway 

hyperresponsiveness observed in such patients. 
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2.3 Materials and Methods 

2.3.1 Cell culture 

Human ASMC were obtained from two sources. B/TSMC were purchased from 

Clonetics (San Diego, CA, USA) and were positively stained for a-smooth 

muscle muscle actin, and negatively for factor VIII, CD45, and CD3, as indicated 

by the manufacturer. B/TSMC were grown in their optimal medium (SmGM-2; 

Clonetics) containing 5% FBS at 37°C in a humidified incubator with 5% CO2, as 

recommended by the supplier. The second source of ASMC was from human 

bronchial biopsies. ASMC were isolated and purified from biopsies as described 

by Labonte et al. 288. Briefly, bronchial biopsies obtained from mild steroid-naive 

asthmatic subjects (mean age: 25 years; metacholine PC20 lower or equal 4.33 

mg/ml; positive skin prick test for at least one inhaled allergen) and non-asthmatic 

non-allergic subjects (mean age: 29.3 years; metacholine PC20 higher than 24.4 

mg/ml; negative skin prick test for the inhaled allergens) underwent four 

consecutive cycles of enzymatic digestion with collagenase (Roche, Manheim, 

Germany) and/or elastase (Sigma Chemical Co., St. Louis, MO) for 20 min at 

37°C. Cells were then plated in flasks and cultured in complete DMEM-F12 

media containing 10% FBS, 20 U/ml penicillin, 20 ug/ml streptomycin, 25 ng/ml 

fungizone, 5 mg/ml insulin, 10 ng/ml epidermal growth factor, 5 ug/ml 

transferrin, 10"10M cholera toxin and 2 x 10"9M T3. The media was replaced 

every 2-3 days and cells were passaged with 0.5% trypsin and 1 mM EDTA once 

confluence was reached. Cell identity was assessed by measuring the expression 

of a-smooth muscle actin, calponin, smooth muscle myosin heavy chain (SM-1 
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and SM-2), tropomyosin, desmin and vimentin . ASMC demonstrated the 

characteristic hill and valley appearance, with an elongated and spindle shape, and 

possessing a central nucleus. 

2.3.2 Cell stimulation 

Confluent B/TSMC from Clonetics were used in passages 3-6 while ASMC from 

biopsies were used in passages 2-3. Cells were growth-arrested by FBS-

deprivation for 24 hrs prior to stimulation with cytokines. After serum-

deprivation, cells were stimulated in fresh, serum-free media, containing either 

TNF-a, IL-4, IL-13 or IFN-y ( R & D Systems, Minneapolis, MN) in a 

concentration and time-dependent manner. Cell viability was assessed by the 

Trypan blue dye exclusion test. 

2.3.3 RNA extraction and RT-PCR 

Total cellular RNA was isolated from B/TSMC, epithelial cells (calu-3), purified 

peripheral blood eosinophils and neutrophils, and CCR3-transfected Ghost-cells 

(National Institute of Health, AIDS reagent program, #3682). RNA was extracted 

using the RNeasy mini kit extraction columns (Qiagen, Mississauga, ON, Canada) 

as directed by the manufacturer. RNA was eluted in 30 jil nuclease-free water, 

and cDNA was generated in a 30 \il reaction, using 0.5 (ig of total RNA, 

oligo(dT)12-18 primers (Amersham Pharmacia Biotech, Baie d'Urfe, QC, 

Canada) and Superscript II (Invitrogen, Burlington, ON, Canada), in the presence 

of RNAguard (Amersham Pharmacia Biotech, Baie d'Urfe, QC, Canada). Genes 
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of interest were amplified using conventional PCR. The PCR mixture consisted of 

1.5 mM MgCl2, IX PCR buffer, 0.25 mM dNTP mixture, 2.5 units Taq Platinum 

polymerase (Invitrogen, Burlington, ON, Canada), 0.4 jxM of each sense and 

antisense primers, and 1 [il of cDNA. Primers for the housekeeping gene 

ribosomal protein S9 and CCR3 were commercially generated (Invitrogen, 

Burlington, ON, Canada) using the following sequences: S9 sense 5'-TGC TGA 

CGC TTG ATG AGA AG-3'; antisense 5'-CGC AGA GAG AAG TCG ATG 

TG-3'; CCR3 sense 5'-TCC TTC TCT CTT CCT ATC A AT C-3'; antisense 5'-

GGC AAT TTT CTG CAT CTG-3'. The samples were amplified in a thermal 

cycler (PTC-100, Programmable Thermal Controller, MJ Research Inc. 

Watertown, MA, USA) for 35 cycles, consisting of denaturation at 95°C, 

annealing at 57°C, and extension at 72°C. The PCR products were visualized on a 

2% agarose gel containing 0.2 ug/mL ethidium bromide and correct band size was 

determined by comparison with a 100 bp DNA ladder (Invitrogen, Burlington, 

ON, Canada). Amplicons were purified using the QIAquick PCR Purification Kit 

(Qiagen, Mississauga, ON, Canada), ligated in pGEM®-T (Promega, Madison, 

WI, USA), and used for transformation into XL-1 blue bacteria. Plasmids 

representing each insert were purified using a HiSpeed Plasmid Maxi Kit (Qiagen, 

Mississauga, ON, Canada) and commercially sequenced to confirm integrity and 

identity (Pavilion de synthese et d'analyse d'acides nucleiques, Universite Laval, 

QC, Canada). 
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2.3.4 Immunohistochemistry 

To determine whether ASMC have the capacity to produce CCR3 in vivo, 

immunohistochemistry was performed on sections of major airways (large 

bronchus) from 4 asthmatics and 4 normal subjects. The subjects were obtained 

from the Tissue Bank (MCI/Meakins-Christie Tissue Bank, McGill University). A 

clinical diagnosis of asthma was made based of the evaluation of the patient's 

medical file by a respiratory physician. Diagnostic criteria included prior 

diagnosis and treatment for asthma, documented evidence of variable airflow 

obstruction greater than 15%, and bronchial hyperresponsiveness. Immediately 

following biopsies, lung specimens were prepared for immunohistochemistry. 

Briefly, formalin-fixed tissues were paraffin-embedded and 5-nm-thick sections 

were prepared, deparaffinized in xylene, and hydrated through a graded alcohol 

series. Endogenous peroxidase was quenched by incubating the slides in 0.5% 

hydrogen peroxide in PBS for 30 min. After rinsing in PBS, sections were blocked 

with blocking solution (Dako Corporation, Carpinteria, CA) for 20 min at room 

temperature (RT). Primary Ab diluted in diluting buffer (Dako Corporation, 

Carpinteria, CA) was applied (5 (ig/ml, goat polyclonal Ab anti-CCR3; Santa 

Cruz Biotechnology, Santa Cruz, CA) and sections were incubated overnight at 

4°C. Control sections were incubated with isotype control (5 |ig/ml, normal goat 

IgG; Caltag laboratories, Burlingame, CA). After rinsing in PBS, a biotinylated 

rabbit anti-goat Ab (1:100 dilution; Dako Corporation, Carpinteria, CA) was 

applied, and sections were incubated for 60 min at RT. Sections were thoroughly 

washed in PBS and incubated with the streptavidin-HRP conjugated for 60 min at 
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RT. After PBS washes, the reaction was revealed using 0.5 mg/ml 

diaminobenzidine tetrahydrochloride (DAB) in Tris buffer (pH 7.6) as the 

chromogen and 0.05% hydrogen peroxide as the substrate for 5 min. Sections 

were counterstained with hematoxylin and mounted. 

2.3.5 Western blotting 

Cells were rinsed twice in ice-cold PBS, and incubated on ice for 30 min with 

lysis buffer (150 mM NaCl; 10 mM Tris-HCl pH 7.4; 1 mM EDTA; 1 mM 

EGTA; 1% Triton X-100; 0.5% NP40) containing a mini-complete protease 

inhibitor cocktail tablet (Roche Diagnostics, Laval, QC, Canada). Extracts were 

clarified at 14,000 x g at 4°C for 20 min, and protein concentrations were 

determined using the Bradford assay (Bio-Rad, Mississauga, ON, Canada). Using 

one-dimensional SDS-PAGE, 20 (0,g of protein extracts were resolved and 

electrophoretically transferred to Hybond polyvinylidene difluoride (PVDF) 

membranes (Amersham Pharmacia Biotech). Membrane blocking was achieved 

using 5% non-fat dry milk in TTBS (0.1% Tween-20, 10 mM Tris-buffered 

saline, pH 7.5) for 2 hr at RT, and then washing twice for 2 min with TTBS. 

Membranes were incubated for 1 hr with anti-CCR3 Ab (Santa Cruz, CA, USA; 

1/2000) after which a 1 hr incubation at RT with an alkaline phosphatase 

conjugated anti-goat Ab (1/1000) was performed. The bound secondary Ab was 

detected using the CSPD chemiluminescence detection kit (Roche Diagnostics, 

Laval, QC, Canada). Following a double rinsing with PBS the signal was 

visualized on Kodak Bio-Max X-ray. 
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2.3.6 Flow cytometric analysis 

FACS analysis was performed as follows: B/TSMC and ASMC derived from 

normal (n=4) and asthmatic subjects (n= 3) were detached from the flask by 

addition of a solution of PBS-EDTA (0.5 M) for 20 min at 37°C. Cells were 

resuspended at a concentration of 1 x 106 cells/ml, washed once with PBS, and 

then incubated with purified normal human IgG (Santa Cruz, CA, USA) at 4°C 

for 20 min to block any nonspecific binding. PE-conjugated anti-CCR3 

(FAB155P, clone 61828.111, R&D Systems, Minneapolis, MN, USA) or control 

isotype (Rat IgG2A; IC006P, clone 54447, R&D Systems, Minneapolis, MN, 

USA) Abs were incubated with the cells at 4°C for 30 min and after three washes 

with PBS-BSA 0.5%, cells were resuspended in PBS at 4°C. Cell-associated 

immunofluorescence was immediately analysed using FACS (Becton Dickinson, 

Mississauga, Canada) in order to determine the level of surface expression of 

CCR-3. At least 10000 cells were counted per analysis and ASMC were gated in 

order to include only viable cells. CCR3 was also identified using fluorochrome-

labeled eotaxin (Fluorokine; R&D Systems, Minneapolis, MN, USA), and 

analyzed via flow cytometry. As described above, B/TSMC were prepared for 

labeling and cells were labeled with a Fluorokine Kit for Human CCR3 (Cytokine 

Flow Cytometry Reagent Biotin conjugate, R&D Systems, Minneapolis, MN, 

USA) according to the manufacturer's instructions. Briefly, 10 [xl of biotinylated 

recombinant eotaxin reagent was added to 25 ul aliquots of washed cells (105) and 

incubated for 60 min on ice. Following the incubation period, 10 ul of 

streptavidin-FITC reagent was added, and cells were incubated for an additional 

30 min at 4°C in the dark. Cells were then washed twice, using the buffer 
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provided in order to remove unreacted streptavidin-FITC, resuspended in 200 |A1 

of PBS, and analyzed by flow cytometry. As a negative control, an identical 

sample of washed cells was incubated with 10 ul of biotinylated negative control 

reagent (supplied with the kit). The specificity of the reaction was assessed by 

mixing 20 ul of anti-human eotaxin blocking Ab with 10 u.1 of biotinylated 

eotaxin and incubating for 15 min at RT. The rest of the protocol is as described 

above. 

2.3.7Immunofluorescence detection ofCCR3 in B/TSMC 

B/TSMCs were cultured on glass cover-slips in a 6-wells plates until 40-50% 

confluency. Cells were then washed twice with PBS, and fixed with IntraPrep 

(Beckman-Coulter, ON, Canada) according to manufacturer direction. Cells were 

incubated overnight at 4°C with either a rat mAb anti-human CCR3 (R&D 

Systems, Minneapolis, MN, USA; 5 (xg/ml) or the control isotype Ab (Rat IgG2A; 

R&D Systems, Minneapolis, USA). After washing with PBS, cells were incubated 

for 30 min at RT with biotinylated mouse mAb anti-rat IgG2A (BD, Mississauga, 

ON, Canada; 2.5 |ig/ml), followed by subsequent washings and incubation with 

streptavidin conjugated to Alexa594 (Molecular Probes, Burlington, ON, 

Canada). After a final wash, nuclei were counterstained with DAPI (Sigma, 

Oakville ON, Canada), slides were mounted, and cells were imaged on an 

Olympus inverted-phase microscope (IX-81) using a mounted digital camera 

(CoolSnapPro CF monochrome) equipped with a CRI filter. Images were 
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analyzed using ImagePro Plus software (Carsen Group Inc. Markham, ON, 

Canada). 

2.3.8 Measurement of intracellular free Ca++ 

For calcium measurements, glass cover-slips with confluent serum-deprived 

B/TSMC were rinsed twice with pre-warmed (37°C) HEPES-buffered (lOmM, 

pH 7.4) HBSS/1% bovine serum albumin, and incubated for 1 hr at 37°C in the 

buffer containing calcium-sensitive dye, fura-2 AM (10 (AM) as previously 

described 290. Thereafter, the fura-2 loaded cultures were washed twice with 

HEPES-HBSS and then incubated in the dark at RT for 30 min prior to 

measurement of intracellular calcium. Glass slides were mounted on an inverted 

microscope (Olympus 1X70) equipped with an OlymPix TE3/A/S digital camera 

controlled through a PC workstation. Cells were alternatively exited at 340 and 

380 nm using a lambda 10 filter (Sutter Instruments; Novato, CA, USA). Emitted 

fluorescence (510 nm) was measured for 350 ms at each excitable wavelength and 

collected data were used to calculate calcium concentrations (in nM) at each pixel 

from an in vitro calibration curve of known free Ca2+ (0-1.35 u.M) and 

pentapotassium fura 2 (50 uM). An Olympus UAPO/340 20x/0.75 objective was 

used in all studies and image size was set to 540 x 540 pixels. Calcium responses 

within individual cells were determined using UltraView v4.0 software (Olympus 

LSR, Markham, ON, Canada), by circumscribing single myocytes and spatially 

averaging fura 2 fluorescence within each cell. At the beginning of each 

experiment, each chamber contained 200 |xl of HEPES-HBSS. Intracellular free 
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Ca was first recorded for 30 sec to establish a baseline, then the cells were 

stimulated by adding an equal volume of HEPES-HBSS containing either 

recombinant human eotaxin-1 or MCP-4 (both at 50 ng/ml). Intracellular free Ca2+ 

was recorded for at least 200 sec to characterize peak and plateau responses and 

Acetylcholine (Ach) was used as a positive control. Studies were performed in 

duplicate using three cell lines, each acquired from a different donor. 

2.3.9 Chemotaxis Assay 

Migration of B/TSMCs in response to different concentrations of eotaxin (1, 10, 

100 and 1000 ng/ml) was assessed in a 24-well microchemotaxis chamber 

(NeuroProbe, Cabin John, MD, USA) using a polycarbonate filter (8-^m pore 

size), as previously described 183. Briefly, B/TSMCs were resuspended in Ham's 

F-12 media supplemented with 0.1% BSA, and 5 x 104 cells were then loaded into 

the upper chambers and tested for chemoattraction to media supplemented with 

either 0.1 % BSA (negative control) or increasing doses of eotaxin. In some of the 

experiments, cells were incubated for one hour with 10 ug/ml of anti-CCR3 

antibody (MAB155, clone 61828, R&D Systems, Minneapolis, MN, USA) prior 

to the loading of the cells into the chamber. The chambers were incubated at 37°C 

in 5% CO2 for 4 hrs. Cells located on the upper surface of the filter were scraped 

off, and cells that migrated to the lower face of the membrane were stained with 

Diff-Quik. The number of migrated cells on the lower face of the filter was 

counted in five random fields using conventional microscopy. 
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2.3.10 Statistical analysis 

Statistical significance was determined using a Student's t test. P values < 0.05 

were considered statistically significant. 
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2.4 Results 

2.4.1 ASMC constitutively express CCR3 at mRNA and protein levels. 

In order to demonstrate the expression of CCR3 by ASMC at both mRNA and 

protein levels, we performed RT-PCR and western blot on RNA and proteins 

obtained from cultured ASMC, epithelial cells and CCR3-transfected cells, as 

well as from eosinophils and neutrophils purified from blood. Gel electrophoresis 

(Figure 1A) revealed bands corresponding to the expected size of the CCR3 

cDNA product (313 bp). At the protein level, western blot revealed comparable 

expressions of CCR3 by ASMC, Calu-3 epithelial cells and CCR3-transfected 

cells, while eosinophils demonstrated greater signal intensity (Figure IB). Surface 

expression of CCR3 by ASMC was confirmed using flow cytometry, and revealed 

a high percentage of unstarved serum cells expressing the receptor (see Figure 

1C). In the left panel, a PE-labeled antibody against CCR3 was used. The 

specificity of the signal was confirmed by the addition of a CCR3 ligand: FITC-

labeled eotaxin (see Figure 1C, right panel). This signal was completely 

suppressed when anti-eotaxin was added prior to eotaxin (see Figure 1C, right 

panel). Immunofluorescence was performed on unstimulated B/TSMC and 

demonstrated an increased signal compared to the isotype control. Also, a high 

percentage of cells stained positive for CCR3 (Figure ID), confirming the 

previous results obtained by flow cytometry (Figure 1C). 

2.4.2 CCR3 is expressed by ASMC in vivo. 

To further investigate the protein expression of CCR3 in human airways, 

immunocytochemistry was performed. CCR3 immunoreactivity was detected in 
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ASMC in subjects with (Figure 2A) and without (Figure 2B) asthma. In asthmatic 

specimens, CCR3 protein was localized in the smooth muscle bundles, airway 

epithelium and infiltrating cells found within the submucosa, as previously 

demonstrated (data not shown)80'286. 

2.4.3 TNF-aupregulates the expression ofCCR3 by ASMC at the protein level. 

Expression of chemokine receptors has been shown to be regulated by different 

cytokines 291. In asthma in particular, the cytokine environment is characterized 

by increased TNF-a, IL-4 and IL-13 and decreased IFN-y levels 60. We 

investigated the effects of the addition of IL-4, IL-13, IFN-y and TNF-a on 

B/TSM surface expression of the CCR3 receptor. Addition of IL-4, IL-13 and 

IFN-y downregulated surface expression of CCR3 (33±5% to 23±8% of positive 

cells for IL-4 (p=0.14); 33±5% to 13±9% for IL-13 (p=0.06); 33±5% to 25±7% 

for IFN-y (p=0.15) whereas TNF-a was shown to cause significant upregulation 

(33±5% to 74±8% of positive cells (p=0.001)) (Figure 3). The combination of 

TNF-a with either IL-4 or IL-13 did not modify the surface expression of CCR3, 

as seen with TNF-a, IL-4, IL-13 and IFN-y alone (data not shown). 

2.4.5 ASMC from asthmatics express more CCR3 than control ASMC. 

Another objective was to compare the surface expression of CCR3 on ASMC 

between asthmatic and control patients using flow cytometry. Cells were used 

soon after initial passaging (P2-3) following isolation from asthmatic and non-

asthmatic patients. From both groups, we examined the percentage of cells 

87 



expressing the CCR3 receptor as well as the intensity of this expression, via a 

mean assessment of their signal fluorescence. Our observations concluded a 

higher percentage of CCR3 expression (95±6% vs 75±2%, p<0,05), as well as a 

greater mean average fluorescence (21.5±4.3 vs 14.3±0.7, p<0,01) for ASMC 

isolated from asthmatics compared to cells isolated from non-asthmatics (Figure 

4). 

2.4.6 Addition ofCCR3 ligands induces an increase in intracellular [Ca +]. 

In order to assess the functionality of CCR3, we stimulated B/TSMC with eotaxin 

and MCP-4. We observed a sharp increase in intracellular calcium161 within 

smooth muscle cells following the addition of both eotaxin and MCP-4 (Figure 5). 

However, upon adding MCP-4 alone, we obtained a much weaker signal, 

presumably due to receptor desensitization. A similar desensitization phenomenon 

was observed when MCP-4 was used first to stimulate the cells, followed by 

addition of eotaxin, suggesting that the induction of intracellular [Ca2+] is through 

the activation of CCR3 (results not shown). 

2.4.7 Eotaxin induces migration of B/TSMC. 

Characteristic of asthma, is the increase in smooth muscle mass, and the reduction 

in the distance between the smooth muscle layer and the epithelium, suggested to 

be associated with the migration of smooth muscle cells towards the smooth 

muscle layer. Consequently, we wanted to examine whether eotaxin could 

promote the migration of B/TSMC. As shown in Figure 6, eotaxin increased the 

migration of B/TSMC in a dose-dependent manner with a maximal response at 
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100 ng/ml (2.2±0.32 fold, compared to baseline). No significant differences 

between 100 ng/ml and 1000 ng/ml (2.06±0.48 fold) were observed when these 

two doses were compared, suggesting that 100 ng/ml is the peak dose for inducing 

migration of B/TSMC. PDGF was used as a positive control and increased cell 

migration by 2.5±0.30 fold, compared to the media. Migration of B/TSMC was 

totally abrogated (1.11 ±0.07) when the cells were preincubated with blocking 

anti-CCR3. Collectively, this data demonstrates the capacity of eotaxin to induce 

the migration of B/TSMC towards an increasing gradient of eotaxin, through the 

activation of CCR3. To address whether the obtained findings were the result of 

chemotaxis or chemokinesis, eotaxin was added to both upper and lower wells, 

and migration was examined after identical conditions of stimulation. As shown 

in Figure 6, the absence of a concentration gradient did not stimulate the 

migration of B/TSMC, confirming that eotaxin acts as a chemoattractant for 

B/TSMC. In order to assess the viability of the cells, ASMC were incubated with 

the same concentrations of cytokines or anti-CCR3 for 24 hours in a 6-well plate. 

No differences in cell viability were observed between the different conditions 

used. 
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Ladder Eosino ASMC EC CCR3 + Neutro 
2.5 Figure 1 

Detection of CCR3 in B/TSMC. A, 

RT-PCR and B, Western blot 

analysis of constitutive CCR3 

expression by B/TSMC. Epithelial 

cells (EC), eosinophils (Eosino) and 

CCR3-transfected cells (CCR3 +) 

were used as positive controls, 

whereas purified neutrophils 

(Neutro) were used as a negative 

control (representative of n = 4). C, 

Determination of CCR3 surface 

expression by B/TSMC using flow 

cytometry. Confluent B/TSMC (P3-

6) obtained from Clonetics were 
Isotype lgG2A CCR3 

cultured and analyzed by flow cytometry for cell surface expression of CCR3. In 

the left panel, B/TSMC were labelled using a rat anti-CCR3 Ab and as a negative 

control, cells were labelled with isotype matched IgG2A- A representative 

experiment out of five is shown. In the right panel, biotinylated human 

recombinant eotaxin was added to cultured B/TSMC in the absence or presence of 

anti-human eotaxin blocking Ab. A representative experiment out of two is 

shown. D, Immunofluorescent staining of CCR3 in unstimulated permeabilized 

B/TSMCs. Nuclei are stained blue with DAPI. 
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2.6 Figure 2 

Expression of CCR3 in ASM 

in vivo. Cross-section of an 

intermediate airway from 

asthmatic (A) and control (B) 

subjects (representative of 

n=4 for each group) showing 

eotaxin immunoreacitivity and 

isotype control (C) in smooth 

muscle bundle (large arrows). 

Paraffin-embedded sections 

were prepared from human 

lung biopsies, and slides were 

incubated with anti-CCR3 

polyclonal Ab, the appropriate 

secondary Ab, and a tertiary 

layer of streptavidin-HRP-

conjugated. Sections were 

developed with DAB, with 

positive cells staining brown. 
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2.7 Figure 3 

Regulation of CCR3 expression by B/TSMC using flow cytometry. Confluent 

B/TSMC (P3-6) cultured in serum-free medium were stimulated with or without 

TNF-a (10 ng/ml), IL-4 (20 ng/ml), IL-13 (20 ng/ml) or IFN-y (10 ng/ml) for 24 

hrs. Expression of CCR3 was measured by flow cytometry using a rat anti-

CCR3 Ab. As a negative control, cells were labelled with isotype matched 

IgG2A and the percentage of positive cells was calculated by subtracting the 

isotype control from the specific signal. 
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2.8 Figure 4 

CCR3 expression by asthmatic and non-asthmatic ASMC. ASMC (P3) were 

obtained from Dr Michel Laviolette and Dr Jamila Chakir's group as previously 

described in Materials and Methods. CCR3 surface expression was assessed by 

flow cytometry using a rat anti-CCR3 Ab. As a negative control, cells were 

labelled with isotype matched IgG2A- The percentage of positive cells and Mean 

Fluorescence Intensity (MFI) was calculated by subtracting the isotype control 

from the specific signal. * p<0,01 (n=3 for asthmatic group and n=4 for control 

group). 
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2.9 Figure 5 

Measurement of Caz+ in cultured B/TSMC in response to eotaxin and MCP-4. 

For calcium measurements, confluent serum fed B/TSMC were loaded with 

fura-2 as described in Materials and Methods. Cells were stimulated with either 

eotaxin or MCP-4 (50 ng/ml) and intracellular Ca2+ was measured for at least 

350 s thereafter. Ach (10-60M) was used as a positive control. Data shown is 

representative of 3 experiments. 
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2.10 Figure 6 

Cellular migration of B/TSMC in response to eotaxin. B/TSMC were incubated 

in a Boyden chamber for 4 h with increasing concentrations of eotaxin (1, 10, 

100 and 1000 ng/ml). Eotaxin was loaded in both upper and lower wells to 

address whether the obtained findings were the result of chemotaxis or 

chemokinesis (CK). Platelet-derived growth factor (PDGF) was used as a 

positive control (20 ng/ml). * Significantly different from media, f significantly 

different from anti-CCR3, $ significantly different from CK; p < 0,05 (n=6, 

except for anti-CCR3 n=3). 
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2.11 Discussion 

In the last few years, studies have shown that ASMC possess properties 

that would indicate a potential involvement in airway remodelling and 

inflammation. These properties include the expression of a variety of cytokines 

and chemokines as well as their receptors. The CC and CXC chemokines are 

important chemotactic molecules that control leukocycte trafficking and 

functions. These molecules also play an important role in regulation of leukocyte 

development, expression of adhesion molecules, cell proliferation and 

angiogenesis. CCR3 is a CC chemokine receptor that has been traditionally 

associated with recruitment of inflammatory cells implicated in the 

pathophysiology of asthma 292' 293. At sites of allergic inflammation, increased 

expression of CCR3 and CCR3 ligands, such as eotaxin and RANTES, by 

inflammatory cells have been well characterized 287. However, recent work has 

demonstrated that the expression of chemokine receptors is not restricted to 

leukocytes. Stellato et al. have shown that airway epithelial cells could also 

express CCR3 80. In this study, we examined the expression of CCR3 by ASMC 

and showed that the receptor is expressed both in vivo and in vitro. Functional 

studies demonstrate that CCR3 is a functional receptor, as it transduces 

intracellular calcium mobilization and induces ASMC migration. We have also 

demonstrated that CCR3 is up-regulated in bronchial smooth muscle cells of 

individuals with asthma, as compared with normal control subjects. 

Asthma is a disease characterized by marked structural changes of the 

airway wall. Benayoun et al. 89 and Pepe et al. 354 have recently demonstrated that 

there is a decrease in the distance between the airway smooth muscle and 
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epithelial layers of asthmatic individuals. The possible migration of ASMC, either 

from the interstitial compartment or from a circulating precursor stem cell 

population, has been suggested as a possible mechanism to explain the increase in 

smooth muscle mass observed in the airways of asthmatics ' . The mediators 

involved in the migration of ASMC, however, must still be determined. We 

hypothesized that the increased levels of eotaxin in asthmatic airways could 

promote the chemotaxis of ASMC through the activation of CCR3. In the present 

study, we demonstrate that eotaxin is able to induce the migration of ASMC in a 

dose-dependent manner. Similar observations have recently been made 

concerning the migration of vascular smooth muscle cells in atherosclerosis . In 

vivo, both epithelial and airway smooth muscle cells are potent producers of 

eotaxin 234' 294' 295, and thus may be responsible for the generation of an eotaxin 

gradient, allowing migration of ASMC toward the smooth muscle bundles and the 

epithelium. To support this hypothesis, Pepe et al. 354 have recently shown that 

there is an increased production of eotaxin by ASMC in severe asthmatics 

compared to control subjects. Furthermore, this increased production of eotaxin 

was seen to correlate significantly with the amount of smooth muscle found in the 

airways of asthmatic patients. 

Recent studies strongly suggest that chemokine receptor expression in 

many cell types can be modulated by both inflammatory and anti-inflammatory 

signals 80'228'293'296. Pro-inflammatory, Thl and Th2-cytokines have been shown 

to be potent mediators regulating the expression of CCR3 in lymphocytes, 

eosinophils and neutrophils, while TNF-a was shown to augment the expression 
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of CCR3 transcripts in epithelial cells. We examined the effects of IL-4, IL-13, 

IFN-y and TNF-a on the expression of CCR3 in ASMC. Using flow cytometry 

analysis, we found that the expression of CCR3 was increased 24 hrs after 

stimulation with TNF-a. Interestingly, IFN-y, IL-4 and IL-13 acted to slightly 

downregulate the cell surface expression of CCR3, suggesting that the Th2-biased 

immunological state observed in asthmatics is not likely to play a role in the 

migration of ASMC within airways. Rather, proinflammatory cytokines, such as 

TNF-a, are more likely to control the migration of ASMC towards the epithelium. 

Vijh et al. reported that the CCR3 promoter contains several transcription factor-

907 

binding sites for AP-1 ; a transcription factor implicated in the regulation of 

genes involved in the pathogenesis of asthma 123. Also, AP-1 is strongly activated 

by TNF-a 298 and may explain the induction of CCR3 expression by ASMC. It is 

also possible that ASMC might be able to migrate toward the smooth muscle layer 

as a result of interactions between eotaxin and CCR3. 

We demonstrated in our study that a higher percentage of asthmatic 

ASMC express CCR3 compared to non-asthmatic patients. This increased 

expression by asthmatic ASMC might be an inducible phenomenon related to the 

augmented expression of TNF-a in the airways of asthmatics 72 '2". The increased 

expression of CCR3 on the cell surface attributable to an increased expression of 

TNF-a might render ASMC more responsive to the greater eotaxin levels 

observed in asthmatic airways 220. These observations suggest that the cytokine 

environment in asthma could contribute to increased CCR3 production by ASMC 

and their increased responsiveness to eotaxin. A different phenotype linked to a 
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genetic duality between asthmatics and non-asthmatics could also explain this 

increased expression of CCR3 by ASMC. 

We have also demonstrated that the addition of various CCR3 ligands, 

such as eotaxin and MCP-4, to cultured ASMC induced the release of intracellular 

calcium, suggesting efficient signalling through CCR3, as shown in epithelial 

cells 80. Eotaxin alone was able to trigger an increase in intracellular calcium, 

supporting the requirement of a GPCR for this effect . However, since 

RANTES, MCP-3 and MCP-4 are able to activate other G-protein coupled 

receptors potentially expressed by ASMC, we chose to focus our attention on 

eotaxin, which solely binds to CCR3. A decrease in the effect of a second ligand 

stimulus was also observed independent of whether the same chemokine was used 

in both instances. This phenomenon, known as desensitization, is a well-

documented feature of the GPCR response, and is an indication of receptor 

specificity since only ligands that interact with the same GPCR can desensitize its 

response 183. Further studies are under way to establish the implication of other 

intracellular pathways possibly involved in the activation of ASMC. 

The signalling pathways that mediate chemokine-induced trafficking are 

not well understood. In lymphocytes, activation of G, and release of GpY subunits 

have been shown to be crucial for induction of chemotaxis in response to a 

chemokine 300'301, while in tracheal smooth muscle, p38MAPK/HSP27 seems to be 

involved in initiating migration in response to cytokines and growth factor such as 

TNF-oc, IL-lp and PDGF 18°. In eosinophils, multiple signalling pathways 

activated by CCR3 participate in the inflammatory response and the initiation of 
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migration. Eotaxin stimulates intracellular calcium release, production of reactive 

oxygen species, and changes in actin polymerization through a pertussis sensitive 

pathway. Rho and ROCK (Rho-associated coiled coil forming protein kinase), a 

protein kinase activated by Rho, regulate actin stress fiber formation and are 

required for eosinophil chemotaxis 302. MAPK pathways are also involved in 

chemotaxis 75. However, whether one of these intracellular pathways is involved 

in the induction of ASMC migration toward a gradient of eotaxin will need to be 

investigated. 

In conclusion, we have demonstrated for the first time the expression of 

functional CCR3 by ASMC. Our results suggest that the activation of CCR3 by 

eotaxin could participate in the increased smooth muscle mass observed in the 

airways of asthmatic subjects; inducing the migration of ASMC towards the 

smooth muscle layer, and contributing to the airway hyperresponsiveness 

characterizing an episode of asthma. Further work will be required to demonstrate 

the migration of ASMC in an in vivo model of asthma, as well as to determine the 

intracellular pathways involved in the activation of CCR3 in ASMC. 
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CHAPTER III: Expression and Regulation of CCR1 by ASMC in asthma 

3.0 Prologue 

As discussed in the chapter I, one of the most important features of asthma is the 

airway remodelling occurring in asthmatic airways. Airway remodelling typically 

describes increased smooth muscle mass, thickening of the lamina reticularis, 

hypertrophy and hyperplasia of goblet cells and mucous glands and epithelial 

shedding. CCR1 is a receptor that has the ability to bind to several chemokines, 

including CCL3, CCL5, CCL7 and CCL13. These chemokines are increased in 

the bronchoalveolar lavage of asthmatic individuals. Interest in CCR1 comes from 

its implication in airway remodelling. In animal models of asthma and lung 

fibrosis, deletion of its gene resulted in a reduction in airway remodelling 

features, more particulary in the mucous production and the subepithelial ECM 

deposition. In the present chapter, we want to assess the expression of CCR1 by 

ASMC. We also look at the functional relevance of this receptor expressed by 

ASMC in the context of asthma. 
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3.1 Abstract 

C-C chemokines such as CCL11, CCL5 and CCL3 are central mediators in the 

pathogenesis of asthma. They are mainly associated with the recruitment and the 

activation of specific inflammatory cells such as eosinophils, lymphocytes and 

neutrophils. It has recently been shown that they can also activate structural cells 

such as airway smooth muscle and epithelial cells. The aims of this study were to 

examine the expression of the CCL3 receptor, CCR1 on human ASMC, and to 

document the regulation of this receptor by cytokines involved in asthma 

pathogenesis. We first demonstrated that CCR1 mRNA is increased in the airways 

of asthmatic versus control subjects. We showed for the first time that ASMC 

express CCR1 mRNA and protein, both in vitro and in vivo. Mobilization of 

calcium by CCR1 ligands confirmed its functionality on ASMC. Stimulation of 

ASMC with TNF-alpha and, to a lesser extend, IFN-gamma resulted in an up-

regulation of CCR1 expression, which was totally suppressed by both 

dexamethasone or mithrarnycin. Taken together, our data suggest that CCR1 

might be involved in the pathogenesis of asthma, through the activation of ASMC 

by its ligands. 
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3.2 Introduction 

Asthma is an inflammatory condition of the airways characterized by 

bronchial hyperresponsiveness, infiltration of inflammatory cells and airway 

remodelling281' 303' 304. Increased airway smooth muscle mass is an important 

feature of the airway remodelling and has been linked in different ways to asthma 

pathogenesis139' 283. In the last decade, several studies have shown that ASMC 

may contribute to the airway inflammation through the release of cytokines and 

chemokines such as TNF-cc, IL-lp\ CCL11 (eotaxin) and CCL5 (RANTES)285. 

ASMC were also shown to respond to a wide variety of immune mediators and to 

express receptors for several non-inflammatory cytokines143. More recently, 

expression of CCR3, a receptor for a number of C-C chemokines has been 

described in ASMC278' 279. However, little is known regarding the expression of 

other relevant C-C chemokine receptors by ASMC. 

The C-C chemokine subfamily is composed of 28 members and includes 

CCL3. This chemokine binds to CCR1 and CCR5 and has been shown to be 

increased in bronchoalveolar lavage and bronchial biopsies of asthmatic 

patients222' 231. CCL3 is principally involved in the recruitment of eosinophils, 

basophils and mast cells ' . Interest in the role of CCR1, which is one of the 

CCL3 receptors, in allergy comes from its involvement in the development of the 

airway remodelling245'306. 

The aims of this study were to examine the expression and the regulation 

of CCR1 on ASMC and to assess its expression in asthma. Our findings show that 

ASMC express CCR1 and that the receptor expression is increased by TNF-a and 
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IFN-Y while IL-4 and IL-13 have no effect. Binding of either CCL3 or CCL23 to 

CCR1 induces the release of intracellular calcium, demonstrating the functionality 

of the receptor. We have also shown that asthmatic patients express higher levels 

of CCR1, compared to controls, suggesting a potential function of this receptor in 

the pathogenesis of asthma. 
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3.3 Materials and Methods 

3.3.1 Cell culture 

Primary human airway smooth muscle cells (ASMC) were obtained from main 

bronchial airway segments (0.5-1.0 cm diameter) in pathologically uninvolved 

segments of resected lung specimens using isolation methods described 

previously307'308. Cells were then seeded at a density of 105 cells/cm2 and grown at 

37°C in a humidified incubator with 5% CO2 in Smooth Muscle Growth Medium 

(SmGm-2; Clonetics, San Diego, CA, USA). At confluence, primary human 

ASMC exhibited spindle morphology and a hill-and-valley pattern characteristic 

of smooth muscle in culture. In cultures up to passage 5, over 90% of the cells at 

confluence retained smooth muscle-specific a-actin, SM22, and calponin protein 

expression, and were able to mobilize intracellular Ca2+ in response to 

acetylcholine. Growth rate (determined by cell number) of ASMC from all lung 

resection donors was similar to that reported previously for ASMC cultures from 

healthy human transplant donors. Morphologically, the ASMC from lung resection 

donors and from healthy human transplant donors were indistinguishable. Cell 

viability was always above 95% as assessed by Trypan Blue dye exclusion. 

3.3.2 Cell stimulation 

ASMC were growth-arrested by FBS-deprivation for 24 hours prior to stimulation 

with cytokines. After starving, cells were stimulated with fresh, serum-free 

media, containing IL-4, IL-13, TNF-oc or IFN-y ( R & D Systems, Minneapolis, 

MN, USA) in a concentration and time-dependent manner. In inhibition 
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experiments, mithramycin and dexamethasone (Sigma-Aldrich, Oakville, ON, 

Canada) were added in a dose-dependent manner 1 hour prior to the stimulation of 

the cells with cytokines. 

3.3.3 RNA extraction 

Total cellular RNA was isolated from human ASMC, epithelial cells (A549), 

fibroblasts (ATCC) purified peripheral blood eosinophils, and endothelial cells 

(HUVEC; ATCC). RNA was extracted using the RNeasy mini kit extraction 

columns (Qiagen, Mississauga, ON, Canada) as directed by manufacturer. RNA 

was eluted in 35 ul nuclease-free water, and cDNA was generated in a 30 \i\ 

reaction, using 0.5 |ig of total RNA, oligo(dT)12-18 primers (Amersham 

Pharmacia Biotech, Baie d'Urfe, QC, Canada) and Superscript II (Invitrogen, 

Burlington, ON, Canada), in the presence of RNAguard (Amersham Pharmacia 

Biotech, Baie d'Urfe, QC, Canada). 

3.3.4 RNA extraction from human airway biopsies 

The biopsies were obtained from the Tissue Bank (MCI/Meakins-Christie Tissue 

Bank, McGill University). A clinical diagnosis of asthma was made based on the 

evaluation of the patient's medical file and by a respiratory physician. Individuals 

in moderate and severe asthma groups were all taking inhaled corticosteroids, 

while people in the mild group were using B2-agonist. Age and predicted FEVj 

for each group were as follows: control, 42.3 y.o., 105%±23%; mild, 40.8 

y.o.,95.5%±20%; moderate, 44.8 y.o., 86%±9%; severe, 50 y.o., 56%±20%. 
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Tissue RNA was extracted using the RNeasy micro kit extraction columns 

(Qiagen, Mississauga, ON, Canada) as directed by manufacturer. RNA was eluted 

in 12 ul nuclease-free water, and cDNA was generated as described above, using 

9 ul of extracted RNA. 

3.3.5 RNase Protection Assay 

Total RNA was extracted as previously described. 20 ug of total RNA from cell 

cultures was used. Riboprobes were synthesized using T7 RNA polymerase and 

[32P]CTP (Amersham Biosciences, Piscataway, NJ), from human multiprobe set 

(Riboquant; BD Biosciences, Mississauga, ON, Canada) containing template for 

CCR1 receptor. [32P]-labeled riboprobes were hybridized with RNA samples 

overnight at 56°C and processed using the manufacturer's protocol. Protected 

RNA fragments were separated using a 5% acrylamide gel and analyzed by 

autoradiography (Kodak, Rochester, NY). 

3.3.6 PCR and Preparation of standards 

Quantification of the housekeeping gene ribosomal protein S9 and CCR1 was 

achieved by constructing a standard curve from serial dilutions of a known 

amount of gel-purified cDNA. This latter consisted of the quantified amplicon 

extracted from a gel. To do so, studied genes were first amplified using 

conventional PCR. The PCR mixture consisted of 1.5 mM MgCl2, IX PCR 

buffer, 0.25 mM dNTP mixture , 2.5 units Taq Platinum polymerase (Invitrogen, 

Burlington, ON, Canada), 0.4 uM each of the sense and antisense primers, as well 
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as 1 \i\ of cDNA. Primers for S9 and CCR1 were generated by Invitrogen 

(Invitrogen, Burlington, ON, Canada) using the following sequences: S9 sense 5'-

TGCTGACGCTTGATGAGAAG - 3 ' ; antisense 5'-CGCAGAGAGAAG-

TCGATGTG-3'; CCR1 sense 5'- GACAAAGTCCCTTGGAACCA - 3'; 

antisense 5'- ACCAGGATGTTTCCAACCAG - 3'. Sequences of the primers 

were designed in two different exons with a big intronic sequence between the 

exons, to avoid any possible amplification of genomic contamination. The 

samples were amplified in a thermal cycler (PTC-100, Programmable Thermal 

Controller, MJ Research Inc. Watertown, MA, USA) for 40 cycles consisting of 

denaturation at 95°C, annealing at 57°, and extension at 72°C. The PCR products 

were visualized on a 1% agarose gel containing 0.2 ug/mL ethidium bromide. 

The correct band size was determined by comparison with a 100 bp DNA ladder 

(Invitrogen, Burlington, ON, Canada). Amplicons were purified using the 

QIAquick PCR Purification Kit (Qiagen, Mississauga, ON, Canada) and 10-fold 

series were prepared in Tris-HCl pH 8.0. Sequential dilutions ranged from 10"1 to 

10"10 ng/ul. 

3.3.7 Quantitative real-time PCR 

Quantification of CCR1 and S9 mRNA expression by ASMC was done by 

quantitative PCR (QPCR) using the LightCycler (Roche Diagnostics, Laval, QC, 

Canada) following reverse transcription, as previously described. The same 

primers as the ones described for preparation of standards were used. PCR 

reactions were performed in a volume of 20 |il containing 1 |il of cDNA, 0.3 (iM 
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of each primer, 10 ul of QuantiTect SYBR Green PCR Master Mix (Qiagen, 

Mississauga, ON, Canada) containing HotStarTaq DNA Polymerase, QuantiTect 

SYBR Green PCR Buffer, dNTPs and SYBR Green I. The PCR protocol 

consisted of three programs: denaturation, amplification and melting curve 

analysis for product identification. The denaturation and amplification conditions 

for both S9 and CCR1 were 95°C for 15 minutes followed by 45 cycles of PCR. 

Each cycle included denaturation at 95°C for 10 sec, annealing of 30 seconds at 

60°C and extension of 20 secondes at 72°C. The temperature transition rate was 

20°C/s, except when heating at 72°C, when it was at 5°C/s. Fluorescence was 

measured at the end of every cycle to allow quantification of cDNA. To eliminate 

the formation of primer dimers, a melting curve was obtained, after a normal 

cycle, by slowly increasing temperature of the samples to 95°C with fluorescence 

detection every 0.2°C following normal cycle. 

3.3.8 Immunohistochemistry 

To determine whether ASMC have the capacity to produce CCR1 protein in vivo, 

immunohistochemistry was performed on sections of major airways from 

asthmatic subjects. The biopsies were obtained from the Tissue Bank 

(MCI/Meakins-Christie Tissue Bank, McGill University). A clinical diagnosis of 

asthma was made based of the evaluation of the patient's medical file by a 

respiratory physician. Diagnostic criteria included prior diagnosis and treatment 

for asthma, documented evidence of variable airflow obstruction greater than 

15%, and bronchial hyperresponsiveness. Following resection of the biopsies, 

lung specimens were prepared for immunohistochemistry. Briefly, formalin-fixed 
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tissues were paraffin-embedded and 5-u.m-thick sections were prepared, sections 

were deparaffinized in xylene, and hydrated through a graded alcohol series. 

Endogenous peroxidase was quenched by incubating the slides in 0.5% hydrogen 

peroxide in PBS for 30 min. After rinsing in PBS, sections were blocked with 

blocking solution (Dako Corporation, Carpinteria, CA) for 20 min at room 

temperature (RT). Primary Ab against CCR1 diluted in diluting buffer (Dako 

Corporation, Carpinteria, CA) was applied (25 [ig/ml, MAB145, clone 53504.111; 

R & D Systems, Minneapolis, MN) and sections were incubated overnight at 4°C. 

Control sections were incubated with isotype control (25 (J,g/ml, MAB004 clone 

20116; R & D Systems, Minneapolis, MN). After rinsing in PBS, a biotinylated 

rabbit anti-mouse Ab (1:100 dilution; Dako Corporation, Carpinteria, CA) was 

applied, and sections were incubated for 60 min at RT. Sections were thoroughly 

washed in PBS and incubated with the streptavidin-HRP conjugated for 60 min at 

RT. After PBS washes, the reaction was revealed using 0.5 mg/ml 

diaminobenzidine tetrahydrochloride (DAB) in Tris buffer (pH 7.6) as the 

chromogen and 0.05% hydrogen peroxide as the substrate for 5 min. Sections 

were counterstained with hematoxylin and mounted. 

3.3.9 Flow cytometric analysis 

FACS analysis was performed as follows: ASMC were detached from the flask by 

addition of PBS containing EDTA (0.5 M) for 20 minutes at 37°C. Cells were 

resuspended at a concentration of lxlO6 cells/ml and washed once with PBS. 

ASMC were labeled with a Fluorokine Kit for Human CCR1 (Fluorokine; R&D 
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Systems, Minneapolis, MN, USA) according to the manufacturer's instructions. 

Briefly, 10 ul of biotinylated recombinant CCL3 reagent was added to 25 ul 

aliquots of washed cells (105) and incubated for 60 min on ice. Following the 

incubation period, 10 ul of streptavidin-FITC reagent was added, and cells were 

incubated for an additional 30 min at 4°C in the dark. Cells were then washed 

twice, resuspended in 200 ul of PBS, and analyzed by flow cytometry. As a 

negative control, an identical sample of washed cells was incubated with 10 ul of 

biotinylated negative control reagent (supplied with the kit). The specificity of the 

reaction was assessed by mixing 20 ul of anti-human CCL3 blocking Ab with 10 

ul of biotinylated CCL3 and incubated for 15 min at RT. CCR1 expression was 

analyzed using fluorochrome-labeled CCL3 (Fluorokine; R&D Systems, 

Minneapolis, MN, USA), and analyzed via flow cytometry (BD FACSCalibur 

System. BD Biosciences, Mississauga, ON, Canada). At least 10000 cells were 

counted per analysis. As a positive control, the same protocol as above was 

applied to CCRl-transfected Ghost-cells (National Institute of Health, AIDS 

reagent program, #3682). 

3.3.10 Lasercapture microdissection of ASM C 

In order to assess the capacity of ASMC in vivo to express CCR1 mRNA, 

lasercapture microdissection was performed on asthmatic biopsies. The biopsies 

were obtained from the Tissue Bank (MCI/Meakins-Christie Tissue Bank, McGill 

University). They were cut into 5 um sections on a cryostat and placed on charged 

slides prior to fixation in 70% ethanol. The slides were stained with hematoxylin 

and eosin, rinsed in an ethanol gradient, and dehydrated in a mixture of xylenes. 
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The smooth muscle cells bundles were carefully captured using the Pixcell laser 

capture microscope (Arcturus Bioscience, Inc., Mountain View, CA). During this 

process, cellular material was transferred to CapSure HS LCM Caps (Arcturus 

Bioscience, Inc., Mountain View, CA) and digested in RLT lysis buffer (Qiagen, 

Mississauga, ON, Canada). mRNA was extracted using RNeasy® Micro Kit 

(Qiagen, Mississauga, ON, Canada) following manufacturer's instruction. mRNA 

was eluted in 12 ul of water. Reverse transcription was performed as described 

above. Because of the low amount of RNA present in the samples, two series of 

amplification were performed on the sample. The first one consisted of 30 cycles 

of the PCR program described above. 1 ul of the PCR product of each sample was 

then re-amplified in a similar PCR reaction for 45 cycles. The PCR products were 

visualized on a 1% agarose gel containing 0.2 ug/mL ethidium bromide. 

3.3.11 Measurement of intracellular free Ca++ 

For the measurement of calcium cells were loaded with the Ca -sensitive dye, 

fura-2 AM (Molecular Probes, Eugene, OR) according to the previously described 

methods 309 and imaged using an intensified charge-coupled device camera 

(IC200) and PTI software at a single emission wavelength (510 nm) with a double 

excitatory wavelength (340 and 380 nm). Fluorescence ratio (340/380) was 

measured in cells stimulated with CCL3 or CCL23 (1, 10 and 100 ng/ml) or 

appropriate vehicle. Intracellular calcium concentration ([Ca2+]0 was calculated 

according to the formula of Grynkiewicz et al. 31°. Each experimental group 

consisted of 102-115 cells. Studies were performed using three cell lines, each 

acquired from a different donor. 
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3.3.12 Statistical analysis 

Statistical significance was determined using a Student's t test. P values < 0.05 

were considered statistically significant. 
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3.4 Results 

3.4.1 Biopsies obtained from airways of mild, moderate and severe asthmatics 

express higher levels ofCCRl compared to controls 

One of CCRl's ligand, CCL3, has been shown to be upregulated in asthma311'312, 

though, expression of this receptor in asthmatic airways has never been 

documented. We used quantitative real-time PCR to compare the levels of CCR1 

mRNA in biopsies obtained from the airways of control, mild, moderate and 

severe asthmatics. Figure 1 shows relative expression of CCR1 mRNA (expressed 

as function of S9) in the four groups. Mild and severe asthma groups showed a 

significantly increased expression (3.4x10 ±1.7x10 and 5.7x10 ±2.8x10 for mild 

and severe asthma groups respectively), while no CCR1 mRNA was detected in 

the control. Although no significant difference was seen between moderate and 

control groups, a general trend towards an increased expression of CCR1 mRNA 

was observed (p=0.10). No significant differences were observed between the 

asthmatic groups. The housekeeping gene S9 was detected in all the groups, 

confirming the presence of mRNA in all the samples processed for PCR analysis. 

3.4.2 ASMC constitutively express CCR1 at mRNA and protein levels 

In order to demonstrate the expression of CCR1 by ASMC in vitro at both mRNA 

and protein levels, RT-PCR and flow cytometry analyses were performed. PCR 

analyses were carried out on cultured ASMC and different populations of 

structural cells to assess the expression of CCR1 mRNA. Peripheral blood 

eosinophils were used as a positive control. Gel electrophoresis (figure 2A) 
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revealed bands corresponding to the expected size of the CCR1 cDNA product 

(197 bp). Surface expression of CCR1 by ASMC was confirmed using flow 

cytometry, and revealed a high percentage of unstarved serum cells expressing the 

receptor (figure 2B, upper and middle panels). This signal was completely 

suppressed when anti-CCL3 was simultaneously added (figure 2B, middle panel), 

confirming the specificity of the signal. As positive control, CCRl-transfected 

cells (CCR1+ cells) were analyzed (figure 2B, lower panel). 

3.4.3 CCR1 is expressed by ASMC in vivo 

Using immunocytochemistry, CCR1 immunoreactivity was detected in ASMC in 

bronchial biopsies obtained from subjects with asthma. CCR1 protein was mainly 

localized in the smooth muscle bundles (Figure 3A), airway epithelium and some 

inflammatory cells (data not shown). Expression of CCR1 by ASMC in vivo was 

confirmed using lasercapture microdissection. Indeed, RT-PCR analysis of 

mRNA obtained from ASMC microdissected from four severe asthmatic biopsies 

revealed the presence of the receptor (figure 3C), confirming the results obtained 

in vitro. 

3.4.4 TNF-aandlFN-y upregulate the expression ofCCRl by ASMC 

Expression of chemokine receptors has been shown to be regulated by different 

inflammatory mediators 291. In asthma, the cytokine environment is characterized 

by increased TNF-oc, IL-4 and IL-13 levels 60. However, there are conflicting 

results regarding the amount of fFN-y found in asthmatic airways54' 57' 58. We 
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therefore investigated the effects of IL-4, IL-13, IFN-y and TNF-a on ASMC 

mRNA and surface expression of the CCR1 receptor. Addition of IL-4 and EL-13 

did not modulate the expression of CCR1 (1.4±0.6 and 2.2±0.7 fold, respectively), 

while TNF-a and IFN-y significantly upregulated the expression of CCR1 at 

mRNA level (11.0+4.8 and 4.8±1.4 fold; Figure 4B) and also increased surface 

expression levels (Figure 4D) after 12 (mRNA) and 24 (surface expression) hours 

of stimulation. The combination of TNF-a with either IL-4, IL-13 or IFN-y did 

not potentiate the surface expression of CCR1, as seen with TNF-a or LFN-y alone 

(data not shown). Addition of TNF-a or IFN-y both resulted in a dose and time-

dependent augmentation of CCR1 mRNA expression with a plateau dose at 1 

ng/ml for TNF-a and 10 to 50 ng/ml for IFN-y and a maximal effect after 48 

hours of stimulation (Figure 4C). 

3.4.5 CCR1 mRNA upregulation by TNF-a and IFN-oc is sensitive to 

dexamethasone and mithramycin 

Corticosteroids are widely used for the treatment of asthma, but their exact 

mechanism of action remain unclear. However, they have been shown to inhibit 

signal transduction of pro-inflammatory cytokines through the inhibition of the 

NF-KB pathway. We therefore looked at the capacity of dexamethasone to inhibit 

TNF-a and IFN-y-induced CCR1 mRNA. We observed a significant inhibition of 

CCR1 mRNA expression at low doses of dexamethasone when cells were 

stimulated with TNF-a or IFN-y (Figure 5). The inhibition was dose-dependent 
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with a maximal effect using 0.1 jiM and 1 uM of dexamethasone for TNF-a and 

IFN-y respectively (Figure 4). 

Because the CCR1 promoter contains several binding sites for stimulatory-

protein-1 (Spl) 313 we looked at the potential involvement of this transcription 

factor in the induction of CCR1 mRNA expression with TNF-a or IFN-y. We 

used mithramycin, an inhibitor of Spl binding, and found that it completely 

inhibits TNF-a and IFN-y-induced CCR1 mRNA upregulation at concentrations 

of 100 nM and 250 nM (Figure 5B). 

3.4.6 Addition ofCCRl ligands induces an increase in intracellular [Ca +] 

In order to assess the functionality of CCR1, we stimulated ASMC with 

increasing doses of CCL3 and CCL23. CCL3 and CCL23 triggered calcium 

responses indicating that the receptors are functional. The number of cells 

responding and the magnitude of the response were concentration-dependent, with 

100 ng/ml of CCL23 causing the most pronounced response (Figure 6). However, 

even in this group, not all cells were responsive, as suggested by the results 

obtained with flow cytometry where just a percentage of cells express the 

receptor. 
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3.5 Figure 1 

CCR1 mRNA expression in asthma. Quantitative RT-PCR analysis of mRNA 

extracted from airway biopsies obtained from mild (•), moderated), severe(A) 

asthmatics and control patients (X). 
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3.6 Figure 2 

Detection of CCRl expression 

in ASMC. A, RT-PCR analysis 

of constitutive mRNA CCRl 

expression by structural cells. 

Endothelial cells (Endo), 

epithelial cells (Epith), 

fibroblasts (Fibro) and ASMC 

were examined while 

eosinophils were used as 

positive control (representative 

of n = 3). B, Determination of 

CCRl surface expression by 

ASMC using flow cytometry. 

ASMC were cultured and 

analyzed by flow cytometry for 

cell surface expression of CCRl. 

Biotinylated human recombinant 

CCL3 was added to confluent 

cultured ASMC (P3-7) in the 

absence or presence of anti-

human CCL3 blocking Ab 

(representative of n = 3). 
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3.7 Figure 3 

Expression of CCR1 in ASMC in vivo. Cross-section of an intermediate airway 

from asthmatic (A) subjects showing CCR1 immunoreacitivity and isotype control 

(B) in smooth muscle bundle (large arrows) (representative of n=3). Paraffin-

embedded sections were prepared from human lung biopsies, and slides were 

incubated with anti-CCRl monoclonal Ab, the appropriate secondary Ab, and a 

tertiary layer of streptavidin-HRP-conjugated. Sections were developed with 

DAB, with positive cells staining brown. C and D, CCR1 mRNA detection of 

microdissected ASMC from human airway biopsies, using RT-PCR. ASMC were 

captured using lasercapture microdissection from airway biopsies (D) obtained 

from four patients (1,2,3 and 4 in the figure) with severe asthma. 
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3.8 Figure 4 

Effect of cytokines on CCRI 

mRNA and protein expression by 

ASMC. Regulation of CCRI 

mRNA using A, RNase Protection 

Assay (RPA) and B, QPCR using 

TNF-a (10 ng/ml), IFN-y (50 

ng/ml), IL-4 (50 ng/ml) and IL-13 

(50 ng/ml) for 12 hours. * p<0,05 

(n=4).C, CCRI mRNA expression 

using increasing doses of TNF-a 

and IFN-y at different time points, 

using QPCR. Results are expressed 

as a ratio of housekeeping gene S9. 

* p<0,05 (n=3).D, Expression of 

CCRI was qualitatively evaluated 

by flow cytometry using a 

biotinylated human recombinant 

CCL3. As a negative control, cells 

were incubated with a biotinylated 

soybean trypsin inhibitor (supplied 

by the manufacturer). Cells were stimulated with TNF-a or IFN-y for 24 hours. 

Viable cells were gated (Rl) and analyzed (representative of n=3). 
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3.9 Figure 5 

Effects of mithramycin and dexamethasone on TNF-oc (panels A and B) and IFN-

y-induced (panels C and D) CCR1 mRNA upregulation. Confluent ASMC 

(passages 3-7) cultured in serum-free medium were stimulated with TNF-oc (10 

ng/ml) or IFN-y (50 ng/ml) for 24 hours. Increasing doses of mithramycin (panels 

B and D) or dexamethasone (panels A and C) were added 1 hour prior to 

stimulation with cytokines. mRNA expression was evaluated using QPCR. 

Results are expressed as a ratio of housekeeping gene S9 expression. * Different 

from media, p<0,05 (n=3); f Different from TNF-oc, p<0,05 (n=3). 
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3.10 Figure 6 

Measurement of Caz+ in cultured ASMC in response to three different 

concentrations of CCL3 or CCL23. For calcium measurements, confluent serum 

fed ASMC were loaded with fura-2 as described in Materials and Methods. Cells 

were stimulated with either CCL3 or CCL23 and intracellular Ca2+ was measured 

for at least 300 s thereafter. Figure shows difference between peak response and 

baseline level calcium. Histamine (10E"6M) was used as a positive control. Data 

shown are representative of 3 experiments. 
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3.11 Discussion 

In the last few years, the role of ASMC in the pathogenesis of asthma has 

considerably evolved. A large body of literature has clearly shown that functions 

of ASMC extend beyond their contractile properties. They can contribute to the 

airway inflammation through the release of inflammatory mediators, including 

cytokines and chemokines. They also express a wide variety of receptors which 

make them potential targets for the inflammatory mediators involved in the 

pathogenesis of asthma. Several C-C chemokines have been shown to be 

upregulated in the airways of asthmatic patients. Their functions are mainly 

associated with the recruitment of inflammatory cells towards the site of 

inflammation, although studies have also shown that chemokines can promote 

angiogenesis and proliferation. 

Expression of CCR1 has been described mainly in leukocytes such as 

macrophages, eosinophils, basophils and dentritic cells267 , However few studies 

have demonstrated the expression of CCR1 by cells other than leukocytes such as 

osteoclasts and platelets231'314. In the present study, we showed for the first time 

that ASMC express CCR1 both in vitro and in vivo. Using quantitative PCR 

technique, we also demonstrated that asthmatic airways contain higher levels of 

CCR1 mRNA, compared to normal airways. Functional studies revealed that the 

CCR1 ligands, CCL3 and CCL23, induce the mobilization of intra-cellular 

calcium in ASMC. Taken together, these data suggest a potential role for CCR1 

on ASMC, in the context of asthma. 
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Asthma is a disease typically characterized by an increase in Th2 versus Thl 

cytokine ratio. Th2 cytokines include IL-4, IL-5 and IL-13 while IFN-y is the 

prototypical Thl cytokine. Both Thl and Th2 cytokines seem to have the potential 

to modulate the expression of CCR1, depending on the type of cells involved 

315,316 Effects of IFN-y on CCR1 expression has been reported in monocytes and 

neutrophils, however, little is known concerning the effects of TNF-oc on cell 

populations expressing CCR1267. In the present study, we found that both TNF-oc 

and IFN-y increase CCR1 mRNA and protein while IL-4 and IL-13 had no effect. 

It is not surprising that TNF-oc induces a strong upregulation of the receptor. Such 

an effect has been reported with several chemokine receptors, including CCR3 

and CCR5278'317. CCR1 is known to be involved in host defense where high levels 

of TNF-oc are usually found. TNF-oc has also been shown to be upregulated in 

various inflammatory conditions, including asthma59 '72 '2". There is no consensus 

as to whether or not IFN-y is diminished in asthmatic airways. Recent studies 

have shown that IFN-y positive T cells are increased in asthmatic blood and 

airways 54' 57' 58. Therefore, the effect of EFN-y on CCR1 expression is not 

necessarily in contradiction to the concept of asthma pathogenesis. 

In the present work, we showed that asthmatics express higher level of CCR1 

mRNA, which could be related to the higher levels of both TNF-oc and IFN-y 

asthmatic airways. However, we have also shown that the corticosteroid 

dexamethasone strongly downregulates the expression of CCR1 mRNA by 

ASMC when stimulated with TNF-oc. Since severe and moderate asthmatic 

patients that were used in our study were all treated with corticosteroids, it is 
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possible that the level of mRNA in these patients is not reflecting the real amount 

of CCR1 in asthma. It is interesting to notice that mild asthmatics without 

corticosteroid treatment showed the highest level of CCR1 mRNA, suggesting 

that corticosteroids could downregulate the expression of CCR1 in asthma. 

Surprisingly, CCR1 mRNA was undetected in the control group. Because we have 

been able to detect CCR1 mRNA expression in normal cultured ASMC, it is 

likely that the amount of CCR1 mRNA present in the RNA extracted from the 

control airway biopsies is below our detection level. 

Using an online promoter analysis program (Consite; mordor.cgb.ki.se/cgi-

bin/CONSUE/consite/) and the published sequence of the CCR1 promoter , we 

identified several Spl binding sites. The Spl transcription factor binds to GC-rich 

sequences and is necessary for the activation of many genes, including 

cytokines318"320. In our study, we used mithramycin, a DNA-binding antibiotic 

which binds GC-rich regions, to evaluate the contribution of Spl to TNF-a and 

IFN-y-induced CCR1 upregulation. We showed that a moderate dose of 

mythramycin (10 nM for TNF-a and 100 nM for IFN-y) totally abrogates CCR1 

mRNA production, suggesting a preponderant role for Spl in activation of the 

CCR1 gene in ASMC, when stimulated with either TNF-a or IFN-y. Interestingly, 

dexamethasone, which is known to inhibit NF-kB321, also totally inhibited both 

TNF-a and IFN-y-induced CCR1 mRNA expression, suggesting an involvement 

of this pathway in CCR1 expression. It is noteworthy to mention that a 

collaboration between Spl and NF-kB pathways is required for the induction of 

CXCL2 in a macrophage cell line319, raising the possibility that a similar 
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phenomenon occurs in the induction of CCR1 mRNA expression in ASMC. This 

might explain the complete inhibition obtained with either mithramycin or 

dexamethasone. It is also possible that the inhibition of CCR1 mRNA expression 

by dexamethasone occurs through the blockade of Spl since this effect of the drug 

has been described in the expression of CD 14 by macrophages, when stimulated 

with LPS322. 

Chemokine receptors with defective signalling function have been reported 323. In 

particular, exposure of dendritic cells to IL-10 and LPS has been shown to 

suppress the intracellular signal mediated by CCR1324. In the present study, we 

have shown that the addition of CCR1 ligands induces intracellular mobilization 

of calcium, supporting the requirement of a GPCR (G-protein coupled receptor) 

for this effect 325. As expected, not all cells responded to CCR1 ligands, 

presumably because they were not expressing the receptor, as suggested by our 

flow cytometry results (Figure 2), or possibly because the receptors expressed at 

the surface of these cells were not functional or too low in number to induce the 

intracellular mobilization of calcium. 

Functions of chemokines in human diseases have been mainly associated with 

recruitment and activation of inflammatory cells. Chemokines also regulate 

angiogenesis, Thl/Th2 development and the release of cytokines ' . Two 

CCR1 ligands, CCL3 and CCL23, have been associated with recruitment of 

monocytes and T cells305, specific inhibition of myeloid progenitor cells and 

activaton of monocytes and eosinophils327. Interestingly, in a CCR1 -/- model of 

chronic allergic asthma, the airway remodelling features observed in wild-type 
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animals were greatly reduced (goblet cells hyperplasia and deposition of 

collagen), suggesting an association between CCR1 and the development of 

airway remodelling 245. These results were also strengthened by a similar study in 

which neutralization of CCR1 using antibody totally abrogated the fibrosis in an 

animal model of pulmonary fibrosis 328. In these two studies, CCL3 was suggested 

as one of the potential mediators involved in the activation of CCR1. Since 

ASMC have been shown to produce ECMP that are involved in airway 

remodelling3' 329, such as versican, lumican and collagen, we initially 

hypothesized that activation of CCR1 by CCL3 or CCL23 could induce the 

release of ECMP by ASMC. In the present work, we could not detect any effect of 

CCR1 ligands on the production of collagen-I, decorin, lumican or versican at 

mRNA level (data not shown). However, it is possible that activation of CCR1 in 

ASMC leads to the modulation of ECMP by other types of cells such as mast 

cells, fibroblasts and myofibroblasts87'306' 33°. 

In conclusion, we have demonstrated for the first time that ASMC express 

CCR1. We showed that TNF-a and, to a lesser extend, IFN-y, upregulate CCR1 

expression at both mRNA and protein levels in a Spl and NF-kB dependent 

pathways. We also documented an increased expression of CCR1 in airways of 

asthmatic patients, more particularly in patients who are not taking any 

corticosteroids. The expression of a functional CCR1 by ASMC indicates that 

CCL3, a chemokine increased in asthmatic airways, might play a role in the 

pathogenesis of the disease through the activation of ASMC. We are presently 
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investigating whether activation of CCR1 mediates synthetic, proliferating or 

migrating responses in ASMC. 



3.12. Acknowledgments 

We wish to sincerely thank Maziar Divangahi for the RNase protection assay, 

Severine Letuvee for her help with Immunohistochemistry, Elsa Schotman for 

technical support and Susan Foley for her meticulous review of the paper. We 

also thank Dr P. Ernst, Dr R. Olivenstein, Dr C. Lemiere and Dr J. Martin for 

their contribution for providing the airway biopsies. 

133 



3.13 Footnotes 

1 Source of Support: This work was supported by the CIHR grant #MOP38011 

and Richard & Edith Strauss Canadian Foundation. Philippe Joubert is supported 

by a CIHR/Canadian Lung Association/GlaxoSmithKline scholarship. Dr Hamid 

is a recipient of MUHC Strauss Chair in Respiratory Medicine. Dr. Maghni is a 

recipient of a scholarship from the Fonds de recherche en sante du Quebec 

(FRSQ). 

2 Address correspondence and reprint requests to Dr Qutayba Hamid, Meakins-

Christie Laboratories, 3626, St-Urbain, Montreal, Quebec, Canada. H2X 2P2. E-

mail address: qutayba.hamid@mcgill.ca. 

3 Abbreviations used in this paper: ASMC, airway smooth muscle cells; RT, room 

temperature; QRT-PCR, quantitative reverse transcriptase polymerase chain 

reaction. 

134 



CHAPTER IV: DISCUSSION 

The role of ASMC in asthma pathogenesis has long been regarded as a 

purely contractile element within the airways. Its main involvement was 

associated with bronchoconstriction during an asthma episode. However, in the 

last two decades, data has emerged highlighting the possible contribution of 

structural cells to inflammation in different diseases including asthma. Cells such 

as epithelial cells, fibroblasts and ASMC have been shown to produce a wide 

variety of inflammatory mediators and receptors that extends their role beyond 

their structural function. In particular, the synthetic capabilities of ASMC in the 

context of asthma have been extensively studied in the last ten years1. As 

discussed in the first chapter, it is well recognized that they can produce an 

impressive array of cytokines, chemokines, ECMP and lipid mediators. They can 

express receptors for pro-inflammatory, as well as Thl and Th2 cytokines, 

making them sensitive to the specific cytokine milieu associated with asthma. 

One of the most important features characterizing the inflammatory 

response observed in asthma is the release of certain chemokines. The function of 

these proteins is mainly associated with the recruitment of inflammatory cells 

within the airways. C-C chemokines such as CCL11, CCL3 and CCL5 have been 

implicated in the recruitment and the activation of eosinophils and Th2 cells in 

asthma. A study published by Stellato et al. showed for the first time the 

expression of a chemokine receptor, CCR3, by a structural cell in the context of 

asthma80. Although the exact function of this receptor at the surface of these cells 

was unknown, it raised the possibility that chemokines may modulate functions or 

behaviour of structural cells. The main objective of this thesis was to study the 
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expression and the function of chemokine receptors by ASMC as it related to 

asthma. We focused on two C-C receptors: CCR3 and CCR1. 

4.1 CCR3 expression and functions in asthmatic ASMC 

Among all the chemokine receptors expressed in asthma, CCR3 is 

probably the the most extensively studied. This particular interest towards CCR3 

comes from its ability to bind CCL5, CCL7, CCL8, CCL11 and CCL13, which 

have all been shown to be increased in asthmatic airways and involved in asthma 

pathogenesis. Interestingly, deletion of CCR3 in animal model of asthma has also 

been shown to be associated with a marked reduction of airway eosinophilia 246' 

331, 332 ^ e demonstrated for the first time that cultured ASMC express a 

functional CCR3. It is also expressed by smooth muscle bundles in human 

airways. Our results demonstrated that the CCR3-ligand, CCL11, was able to 

induce ASMC migration. This was indeed the first report showing the ability of a 

chemokine to induce the migration of ASMC. A similar phenomenon was 

simultaneously described in vascular smooth muscle in the context of 

atherosclerosis . Our findings provide a novel explanation for the increased 

smooth muscle mass characterizing asthmatic airways. Since the publication of 

this work, another study showed the migration of ASMC in response to a CCR7 

ligand, CCL19 279. Similarly, the authors showed that ASMC could migrate 

towards a gradient of CCL19, and suggested that this migration, in combination 

with CCL11-induced migration, could participate to increased airway smooth 

muscle mass. Another phenomenon related to migration is the recent description 

of fibrocytes, a progenitor cell sharing features of both leukocytes and 
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mesenchymal cells ' , in that they express both CD34 -a marker of 

haematopoietic cells- and collagen I. These cells were shown to migrate within 

the lung from the peripheral circulation in response to allergen challenge, and to 

mature further into myofibroblasts, assessed by their ability to express oc-smooth 

muscle actin . Although the exact nature and role of myofibroblasts remains 

unclear, they are also thought to originate from ASMC and represents an 

intermediate form between fibroblasts and ASMC99' 117. Collectively, these 

findings suggest that the increase in ASM mass may be a consequence of 

fibrocytes influx into the airway and are consistent with mechanisms proposed in 

- lac 

skin wound healing , and is analogous to the current concepts of cardiac 

myocyte progenitors contributing to cardiac repair after myocardial infarction319. 

Another possibility is that ASMC might originate from precursor cells present in 

the basal layers of the airways and following maturation with different mediators 

or physical stimuli, migrate towards the smooth muscle layer117'126. However, this 

hypothesis needs further investigation. 

Effects of cytokine milieu on chemokine production and chemokine 

receptor expression have been well described in the literature336. We showed in 

our study that TNF-oc increases the surface expression of CCR3, as assessed by 

flow cytometry. This observation may suggest that asthmatic ASMC could be 

more sensitive to the presence of eotaxin in the airways. In addition, eotaxin 

levels are much higher in asthmatic versus non-asthmatic airways 220' 337. We 

showed that ASMC migrated in a concentration-dependent manner to CCL11 

with a maximal effect at 100 ng/ml. Although the levels of eotaxin in asthmatic 
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airways were shown to be less than the one used in our study, the local 

concentration of chemokines within the tissues is likely to be higher than the one 

measured in bronchoalveolar lavage. This might be due to their ability to bind 

ECMP or other surface proteins such as syndecan-1 338. 

An important finding is the higher level of cell-surface CCR3 in ASMC is 

obtained from asthmatic airways compared to those from control. In order to 

preserve the initial phenotype of the cells, we analysed the cells at a very low 

passage and cells from both groups were always grown in identical conditions. 

This might suggest that the asthmatic ASMC were either exposed to different 

conditions in vivo or have an intrinsic difference in their expression of this 

chemokine receptor. As mentioned, it is possible that the effect of cytokines on 

ASMC in the asthmatic airways explains this difference observed in CCR3 

expression, once in vitro. To our knowledge, there is no information regarding the 

duration of chemokine receptor expression following the withdrawal of a cytokine 

stimulus. It seems unlikely that ASMC would retain their TNF-a-induced CCR3 

upregulation throughout the culturing, unless chromatin-modifying factors in vivo 

have permitted the CCR3 locus to be more open and accessible to transcription 

than in their non-asthmatic counterparts. 

Results obtained from CCR3 knockout mice provide valuable information 

regarding the role of this receptor in asthma pathogenesis. Three different studies 

reported that disruption of CCR3 gene in animal models of asthma significantly 

OA.f\ " m 1"3Q 

decreased migration of eosinophils within the airways ' ' . Unfortunately, 

animal models of asthma poorly reproduce some of the airway remodelling 

138 



features typically found in human asthma, including increased smooth muscle 

mass. This is probably because none of the above studies reported any change in 

the airway smooth muscle layer in CCR3-knockout mice. However, an interesting 

observation consistently reported is an unexpected increase in AHR in the CCR3-

deficient animals. Since the functions of eosinophils have been linked to AHR in 

several publications340"342, this finding was in contradiction with the previous 

concept of eosinophils requirement for AHR. However, in accordance with the 

murine data, human asthmatic treated with an antibody directed against IL-5 

decreased eosinophilia without significantly reducing AHR69. These observations 

highlight the complexity of cytokines-chemokines network and their cognate 

receptors in the regulation of the immune response characterizing asthma. 

Development of animal models reproducing typical features of asthma, as well as 

the real course of the disease, will be required in order to dissect the involvement 

of each cellular actor involved in asthma and to fully understand the pathogenesis 

of the disease. The results of our first work provide a new direction to investigate 

the implication of ASMC in airway remodelling and propose a new mechanism to 

explain the increase in smooth muscle mass characterizing the airways of 

asthmatic patients. 

Figure 5 summarizes a possible mechanism of action for CCR3 and eotaxin and 

their role in smooth muscle mass increase in asthmatic airways. 
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Figure 5. Schematic representation of smooth muscle increase in asthma through a 
possible mechanism driven by CCR3 and eotaxin. Epithelial cells and ASMC generate 
a gradient of eotaxin that attracts ASMC and/or myofibroblasts towards an existing 
smooth muscle bundle, thus increasing its size. A potential source of ASMC could also 
include fibrocytes, a precursor cell type expressing CD34+ and collagen I. This cell 
was shown to differentiate into myofibroblasts following allergen challenge. 

4.2 Expression and regulation of CCR1 by ASMC in asthma 

CCR1 is a C-C chemokine receptor that was initially described in three 

different laboratories as the high-affinity receptor for CCL3 and CCL5343"345. 

Additional studies subsequently showed that several other chemokines could also 

bind to CCR1 with a different range of affinity. These chemokines include CCL6, 

CCL7, CCL8, CCL9, CCL13, CCL15, CCL16 and CCL23. However, most of the 

work looking at the cellular response, following CCR1 activation, has been done 

using CCL3, CCL5, CCL7 and CCL13. CCR1 shows the highest tissue 

expression in lungs, although several other organs express the receptor . 

Expression of CCR1 has been initially described on lymphocytes (Th2 
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lymphocytes in particular), monocytes/macrophages, mast cells, basophils and 

eosinophils345. Since then, several other cell types have been shown to express a 

functional CCR1, including platelets, osteoclasts and fibroblasts185'188. Interest in 

CCR1 in the context of asthma comes from the ability of some of its ligands, in 

particular CCL3, CCL5 and CCL13, to recruit eosinophils305. Furthermore, these 

three chemokines have been shown to be increased in asthmatic airways347"349. For 

example, Lamkhioued et al. showed that a combination of antibodies against 

CCL5, CCL11 and CCL13 decreases by about 50% the eosinophil chemotactic 

activity of the bronchoalveolar lavage from asthmatic patients . Relevance of 

CCR1 in asthma was also highlighted in animal models of allergic asthma and 

pulmonary fibrosis. Deletion of CCR1 resulted in a significant decrease in the 

number of goblet cells and subepithelial fibrosis, two important aspects of airway 

remodelling. Furthermore, these animals showed a marked reduction in Th2-

cytokine production, as well as a decrease in CCL11 and CCL22245. Interestingly, 

in this particular model, only a slight decrease in the number of eosinophils in the 

bronchoalveolar lavage was observed and no difference in the airway 

hyperresponsiveness was observed. These results suggest a partial contribution of 

CCR1 ligands to eosinphils recruitment to the airways, but suggests a more 

pronounced role for them in Th2-lymphocyte recruitment and in remodeling 245. 

These observations are coroborated by another study carried out in an animal 

model of lung fibrosis in which CCR1 was blocked using a monoclonal antibody. 

Deposition of collagen I was substantially reduced and survival increased as a 

result of the CCR1 blockade 328. A possible mechanism behind these observations 

was subsequently provided by Ma et a/303, where the authors linked IL-13-
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induced airway remodelling to CCL6/CCR1 signalling. Indeed, using CCR1-

deficient mice they showed a marked reduction in several features of airway 

remodelling through the inhibition of proteases and antiproteases production. 

The expression level of CCR1 in asthma has never been determined. To 

assess this, we examined CCR1 mRNA in airway biopsies obtained from mild, 

moderate and severe asthmatics, compared to non-asthmatics. All three asthmatic 

groups showed a significantly increased level of receptor expression. 

Interestingly, the group with mild asthma showed the highest level of CCR1 

mRNA. We followed by showing baseline expression of CCR1 by cultured 

ASMC, which was readily upregulated by TNF-a and, to a lesser extent, IFN-y. 

TNF-a is a very potent proinflammatory cytokine produced by inflammatory cells 

such as macrophages, neutrophils and mast cells, but also by structural cells such 

as ASMC1. In asthma, levels of TNF-a have been shown to be elevated in both 

BAL and biopsies59'72. As discussed in section 1.3.1, IFN-y may also be elevated 

in asthmatic airways. We observed that CCR1 message induced by TNF-a and 

IFN-y- could be totally abrogated by the synthetic corticosteroid dexamethasone. 

These in vitro results showing steroid sensitivity of CCR1 might provide a 

possible explanation as to the reason why mild asthmatics demonstrated higher 

CCR1 mRNA expression than the other groups. In fact, patients with mild disease 

were steroid-free, unlike their moderate and severe counterparts who were taking 

inhaled steroids as part of their treatment regimen. 

Using promoter analysis software, we detected several Sp-1 binding sites 

in the regulatory region of the CCR1 gene. Sp-1 is usually translocated by the 
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action of several pro-inflammatory mediators . The antibiotic mithramycin A is 

a potent inhibitor of Sp-1 binding and we thus investigated its effect on CCR1 

message. Treatment with mithramycin A completely suppressed the effect of both 

TNF-oc and EFN-y on CCR1 mRNA production, suggesting the requirement of 

Spl for the action of these cytokines. Collectively, these data imply that anti

inflammatory agents inhibit CCR1 mRNA levels, possibly through a 

transcriptional mechanism that would implicate repression of its promoter 

activity. 

Since CCR1 seems to be associated with airway remodelling, we looked 

for the effect of CCR1 ligands on production of components of the ECM. Release 

of ECMP by ASMC has been well documented in the past few years82'153. ASMC 

was stimulated with high doses of CCL3 or CCL23 and mRNA expression for 

collagen-al, decorin, lumican and versican was evaluated using quantitative PCR 

at 4, 12, 24 and 48 hours. Booth CCL3 and CCL23 failed to significantly regulate 

the message of any of these ECM components (figure 6). 
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Figure 6. Production of extracellular matrix components by ASMC following 
stimulation with CCL3 or CCL23. mRNA for collagen I. decorin. versican and 
lumican was evaluated 4, 12. 24 and 48 hours following stimulation with 100 ng/ml of 
CCL3 or CCL23. Expression was analyzed by quantitative real-time PCR. 

However, the contribution of ASMC to airway remodelling has also been 

associated with the release of matrix metalloproteinases (MMP) ' ' . Supported 

by recent results published by Ma et a/.303, it is possible that CCR1 ligands induce 

the release of these MMPs. We also investigated the effects of CCL3 and CCL23 

on cytokines and chemokine production. Using a cytokine array (RayBio® 

Human cytokine array III, Norcross, GA) , we examined the production of over 

40 different cytokines, chemokines and growth factors after the stimulation with 

either CCL3 or CCL23 for 4 and 24 hours. We were unable to detect any effect 

for both chemokines on cytokine release by ASMC. 
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Finally, CCL3 or CCL23 were tested for their ability to chemoattract 

ASMC. Using a similar protocol as the one used with CCR3, we incubated ASMC 

in a Boyden's chamber (see materials and methods, chapter II) with increasing 

concentrations of CCL3 or CCL23. However neither CCL3 nor CCL23 had any 

effect on ASMC recruitment. Based on these results, we have yet to identify the 

precise function of CCR1 on ASMC. Because CCR1 has been linked to airway 

remodelling in animal models ' , it is plausible that this chemokine receptor is 

linked directly or indirectly to the modulation of airway remodelling features in 

human asthma. 

4.3 Perspectives and futures direction* 

Work done with human tissues and cells serve as critical additions and 

often validate data derived from animal models. All the experiments performed in 

this thesis have been carried out using primary human ASMC. The data collected 

herein on chemokine receptors were necessary to determine their presence and 

possible function in humans. Indeed, working in an in vitro setting does not 

recreate the "real" physiological conditions found in asthmatic airways. 

Stimulation of cells, for instance, with a single or a combination of cytokines is 

not representative of the mixture of mediators to which cells are exposed in vivo. 

On the other hand, it is possible to thoroughly dissect single pathways and helps 

us clearly understand the effect of a single mediator on a given cell behaviour. 

The inherent advantage to the use of animal models is that it allows us to recreate 

physiological and pathological conditions to which cells might be exposed in the 

human disease it models. It is therefore possible to appreciate the consequences of 
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the addition or the deletion of a single gene/protein on a more complete scale. 

Several argue that murine models of allergic asthma do not always exactly 

recreate the disease and key pathological features associated with it, such as 

airway remodelling 353. Our work would nonetheless benefit a mice model that 

could reproduce some aspects of airway remodelling. It would be interesting to 

selectively knock-out or knock-in CCR3 or CCR1 on smooth muscle, to evaluate 

our hypothesis on the importance of these receptors on ASMC behaviour in 

asthma. 

The path towards a fuller comprehension of asthma pathogenesis seems 

distant with so many questions remaining. It is our belief that the work presented 

here provided new and exciting elements that could potentially be used for 

developing novel therapies. 
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