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A B S T R A C T 

In recent years, various metrics have been developed for measuring the 

similarity of states in probabilistic transition systems (Desharnais et al., 1999; 

van Breugel & Worrell, 2001a). In the context of Markov decision processes, we 

have devised metrics providing a robust quantitative analogue of bisimulation. 

Most importantly, the metric distances can be used to bound the differences 

in the optimal value function that is integral to reinforcement learning (Ferns 

et al. 2004; 2005). More recently, we have discovered an efficient algorithm to 

calculate distances in the case of finite systems (Ferns et al., 2006). In this thesis, 

we seek to properly extend state-similarity metrics to Markov decision processes 

with continuous state spaces both in theory and in practice. In particular, we 

provide the first distance-estimation scheme for metrics based on bisimulation 

for continuous probabilistic transition systems. Our work, based on statistical 

sampling and infinite dimensional linear programming, is a crucial first step in 

real-world planning; many practical problems are continuous in nature, e.g. robot 

navigation, and often a parametric model or crude finite approximation does not 

suffice. State-similarity metrics allow us to reason about the quality of replacing 

one model with another. In practice, they can be used directly to aggregate states. 
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SOMMAIRE 

Au cours des dernieres annees, plusieurs metriques ont ete developpes pour 

mesurer l'equivalence des etats dans les systemes de transition probabilistes (De-

sharnais et al., 1999; van Breugel & Worrell, 200.1a). Pour les processus de 

decision Markoviens, nous avons cree des metriques qui fournissent un analogue 

quantitatif de la bisimulation et tels que les differences dans la fonction valeur 

optimale de « l'apprentissage par renforcement » sont moindres que les distances 

metriques (Ferns et al. 2004; 2005). Plus recemment, nous avons decouvert un 

algorithme rapide pour calculer les distances dans les systemes finis (Ferns et al., 

2006). Ici, nous esperons developper ces travaux pour des processus de decision 

Markoviens dans lesquels l'espace des etats est continu. En particulier, nous 

fournissons le premier algorithme pour calculer les metriques pour les systemes 

de transition probabilistes continus, en utilisant des techniques statistiques et 

de programmation lineaire en dimensions infinies. Notre travail est une premiere 

etape cruciale dans l'apprentissage par renforcement pour des problemes realistes: 

beaucoup de problemes sont naturellement continus, par exemple, la navigation 

d'un robot mobile, et souvent un modele parametrique ou une approximation finie 

imprecise ne suffit pas. Nos distances nous permettent d'evaluer la qualite de rem-

placer un modele avec d'autres. De plus, elles peuvent etre employees directement 

pour l'agregation des etats. 
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CHAPTER 1 
Introduction 

1.1 Motivations 

Markov decision processes (MDPs) are the standard mathematical model of 

choice when it comes to sequential decision making under uncertainty (Boutilier 

et al., 1999). The objective of this decision making is to maximize a cumulative 

measure of long-term performance, called the return. Standard dynamic pro

gramming algorithms such as value iteration or policy iteration (Puterman, 1994) 

allow one to compute the optimal expected return for any state, and in turn, the 

optimal method of decision making, the optimal policy, that generates this return. 

However, in many practical situations the state space of an MDP may be too large, 

possibly even infinite, in which case the standard algorithms cannot be applied. 

Similarly, MDPs with a high degree of stochasticity, that is, when there are many 

possible outcome states for probabilistic state transitions, can be much more prob

lematic to solve than those that are nearly deterministic (Likhachev et al., 2005). 

Thus, one usually turns to approximation theory to find a simpler relevant model; 

the hope is that this can be done in such a manner as to construct an "essentially 

equivalent" MDP with drastically reduced complexity, thereby allowing the use 

of classical solution methods while at the same time providing a guarantee that 

solutions to the reduced MDP can be extended to the original model. 

1 
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Recent MDP research on defining equivalence relations on MDPs (Dean and 

Givan 1997; 2003) has built on the notion of strong probabilistic bisimulation 

from concurrency theory. Probabilistic bisimulation was introduced by Larsen 

and Skou (1991) based on bisimulation for nondeterministic systems due to Park 

(1981) and Milner (1980). In a probabilistic setting, bisimulation can be described 

as an equivalence relation that relates two states precisely when they have the 

same probability of transitioning to classes of equivalent states. The extension 

of bisimulation to transition systems with rewards was carried out in the context 

of MDPs by Givan et al. (2003) and in the context of performance evaluation 

by Bernardo and Bravetti (2003). In both cases, the motivation is to use the 

equivalence relation to aggregate the states and get smaller state spaces. The basic 

notion of bisimulation is modified only slightly by the introduction of rewards. 

However, it has been well established that the use of exact equivalences in 

quantitative systems is problematic. A notion of equivalence is two-valued: two 

states are either equivalent or they are not. A small perturbation of the transition 

probabilities of a probabilistic transition system, for example, can alter the 

behaviour of two equivalent states so much as to make them no longer equivalent. 

In short, any kind of equivalence is unstable - too sensitive to perturbations in the 

numerical values of the parameters of a model. 

A natural remedy is to use (pseudo)metrics, as metrics are natural quantita

tive analogues of equivalence relations. The triangle inequality, for example, can be 

interpreted as a quantitative generalization of the axiom of transitivity: if states x 

and y, and y and z, are close in distance then so too must be states x and z. 
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The metrics on which we focus in this work specify the degree of similarity of 

a system's states, with a distance of zero corresponding to exact equivalence, or 

bisimulation. Based on work in the context of labeled Markov processes (Deshar-

nais et al. 1999; 2004; van Breugel and Worrell 2001a; 2001b), we sought to extend 

bisimulation for MDPs quantitatively in terms of such metrics (Ferns et al. 2004; 

2005; 2006). In the case of infinite state spaces, we were able to prove existence of 

state-similarity metrics satisfying certain continuity conditions. For finite models 

the situation is even better; we discovered an efficient method for estimating the 

distances using techniques from statistical sampling and network optimization. 

Still, the full potential of the state-similarity metrics has yet to be realized. 

Consider now the following scenario: a robot is set to navigate a foreign 

terrain. After brief exploration, data is collected and a probabilistic planning 

model is devised. The problem is most naturally modeled as a continuous state 

space Markov decision process. One of the following occurs: 

• Several finite state approximations are proposed; which of these behaves most 

like the original? 

• Several deterministic approximations are proposed; which of these behaves 

most like the original? 

• A package of planning strategies has been precomputed for each of several 

known models in similar planning tasks. We would like to reuse these strate

gies. From which model should the robot choose its planning strategies? 
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• The decision maker decides to aggregate states and plan with the resulting 

finite state model; how should states be aggregated so as to minimize 

planning error while maintaining model accuracy? 

Alternatively, consider that the problem is most naturally modeled by a partially 

observable Markov decision process. It is well-known that this can be equivalently 

modeled as a continuous state (belief) space Markov decision process. Again, how 

do we proceed? 

These are the questions we hope to answer through this work. Robot navi

gation is just one of many real-world problems that are most naturally modeled 

with a continuous state space. State-similarity metrics in theory allow us to reason 

about proposed approximation schemes. More importantly, in practice we can 

use them to aggregate states, to assess the quality of an aggregation, to assess the 

quality of several finite state approximation schemes, to bound the error in using 

solutions from similar models, and in particular, in using deterministic models. 

Such work is crucial, especially in those cases where a parametric model or crude 

finite approximation will not suffice. 

1.2 Contributions 

Here we unify and strengthen the results of Ferns et al. (2005) for infinite 

state MDPs by providing state-similarity metrics with better continuity properties. 

The most important contribution of this thesis, however, is an extension of the 

sampling algorithm used in the finite case (Ferns et a l , 2006) to MDPs whose 

state spaces are compact metric spaces; in short, one can effectively estimate state-

similarity distances everywhere by estimating their values on a finite set. Crucial 
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to this distance-approximation scheme is a novel application of a uniform Glivenko-

Cantelli theorem, essentially guaranteeing uniform convergence of empirical 

probability measures to the true measures. 

Specifically, the main original contributions of this thesis are the following: 

• We extend an approach to bisimulation metrics for finite state probabilistic 

transition systems due to van Breugel and Worrell (2001b), based on 

linear programming, to bisimulation metrics for continuous state space 

Markov decision processes using infinite dimensional linear programming 

(theorem 3.4.2). This is a refinement of previous work (Ferns et al., 2005). 

• We prove Lipschitz continuity of the optimal value function with respect to 

our bisimulation metrics for continuous state space Markov decision processes 

(theorem 3.4.10). This is a refinement of previous work (Ferns et al., 2005). 

• Our key original result is the stochastic distance-approximation scheme based 

on the assignment problem from linear programming (theorem 4.1.4). The 

entirety of Chapter 4 is original work. 

1.3 An Outline 

The thesis is organized as follows: in the next chapter, we present a brief 

mathematical survey and then review finite Markov decision processes, including 

a discussion of the standard reinforcement learning paradigm, bisimulation, bisim

ulation metrics and methods for computing these. We also take a look at related 

work. Chapter 3 then shifts the discussion to infinite state spaces, introducing 

issues of measurability and continuous analogues of concepts introduced in the 

previous chapter. We delve into the details of the Kantorovich functional, an 
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infinite linear program that can be used to define a metric on probability measures. 

This, in turn, is used in the first major result: existence of state-similarity metrics 

generalizing bisimulation, along with several continuity properties. We conclude 

with an important reinforcement learning bound and a simple calculation, illus

trating the use of metric reasoning. In Chapter 4 we present our central result: an 

approximation scheme for estimating distances for MDPs whose state spaces are 

compact metric spaces. We review the uniform Glivenko-Cantelli property and 

apply it in conjunction with a fixed point theorem to arrive at our Monte-Carlo 

algorithm. Several error bounds are provided and in Chapter 5 we provide some 

illustrations of the algorithm in practice. In the concluding chapter, we present a 

summary of our results and discuss directions for future research. 



CHAPTER 2 
Background 

In this chapter we will review some fundamental mathematical background as 

well as the basics of Markov decision processes with respect to reinforcement learn

ing, bisimulation, and quantitative state-similarity along with current methods for 

its computation. For the sake of convenience, this latter material will initially be 

presented in the context of finite systems; the issues that arise in moving to infinite 

state spaces will be discussed in the following chapters. We conclude by looking at 

related work in the field. 

2.1 A Mathematical Review 

We begin with a brief mathematical survey of the results that are most 

relevant to this thesis, and in particular, the mathematics of continuous systems. 

Results will be stated without proof and can be found in most classical texts in 

probability and analysis, such as Rudin (1976), Folland (1999), Dudley (2002), 

and Billingsley (1968). 

2.1.1 Metric Spaces 

A metric is perhaps the simplest geometric structure that one can impose 

on a space. It is essentially a distance function, that is, a means of assigning 

a nonnegative numerical weight to pairs of points on a set in order to quantify 

how far apart they are. More formally we say a pseudometric on S is a map 

p : S x S —* [0, oo) such that for all s, s', s" in S: 

7 
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1. s = s'=>p(s,s') = 0 

2. p{s,s') = p(s',s) 

3. p( S , S ")<p(s ,5 ' ) + p(s',s") 

If the converse of the first axiom holds as well, we say p is a metric.1 

A set S equipped with a metric (pseudometric) p is a metric (pseudometric) 

space. 

A typical means of constructing a metric space is through a normed vector 

space, where one already has a notion of length of a vector through the norm 

function. Suppose (V, \\ • ||) is such a space. Then d(v,v') := ||i> — v'\\ is easily seen 

to define a metric on V. 

2.1.1.1 Convergence 

A metric easily allows one to speak of the convergence of elements in a space: 

a sequence converges to a limit point if the distance between that limit point and 

the points in the sequence can eventually be made arbitrarily small. Formally, a 

sequence of elements {xn} converges to an element a; in a metric space (S, p) if and 

only if for every positive e there exists a natural number N depending on e such 

that for all n > N, p(xn, x) < e. 

As an example, whenever we speak of a sequence of real-valued functions 

converging uniformly, we are implicitly invoking convergence in the space of 

1 For convenience, we will use the terms metric and pseudometric interchange
ably, though we really mean the latter. 
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bounded real-valued functions equipped with the metric induced by the uniform 

norm, i.e. | | / | | := supxG5 | /(x) | . 

Sometimes it is convenient to speak of the convergence of a sequence without 

having a definite candidate for its limit in mind. Suppose instead that we had con

sidered a sequence whose pairwise distances could eventually be made arbitrarily 

small; we might expect that the sequence itself should converge. Unfortunately, 

such is not always the case. Formally, a sequence {xn} is said to be Cauchy if for 

every positive e there exists a natural number N depending on e such that for 

all n,m > N, p(xn,xm) < e. A metric space in which every Cauchy sequence 

converges is said to be Cauchy-complete or simply complete. For example, let met 

be the set of bounded pseudometrics on S equipped with the metric induced by 

the uniform norm, \\h\\ = supss/ \h(s, s')\. Then met is a complete metric space. 

2.1.1.2 Special Sets 

Completeness is just one of many special properties that can be attributed to 

a subset of a metric space. Here we consider a few more select sets and properties 

they might possess. Firstly, given a point x in (S, p) and a fixed positive e, we can 

consider all those points that are within e-distance of x. These yield the open and 

closed balls, BP(X) = {y E S : p(x,y) < e} and C£(x) — {y E S : p(x,y) < e}, 

respectively. An open ball containing x is also known as an open neighborhood 

of x. More generally, a subset E of S is said to be open if for every point e E E 

there is some open ball £?£(e) that is entirely contained in E. On the other hand, 

a subset F of S is said to be closed if its relative complement S\F is open. Closed 

subsets of a metric space can also be characterized by the following property: F is 
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closed if and only if for every point x that is the limit of a convergent sequence in 

F \{x} , x belongs to F, i.e. F contains all its limit points. Formally, a point p is a 

limit point of the set E if every open neighborhood of p contains some point of E 

other than p. This leads us to a type of subset useful for approximating the whole 

space. We say a subset X of S is dense in S if every point of S is a limit point of 

X or a point of X (or both). In particular, a metric space is said to be separable 

if it has some countable dense subset. In this work, we will be primarily interested 

in those metric spaces that are complete and separable, allowing us to work with 

an at most countably infinite set of points; such metric spaces are sometimes called 

Polish metric spaces. 

From the point of view of approximating the whole space, there are two 

more interesting types of sets. A subset X is said to be totally bounded if for any 

positive e it can be expressed as the union of finitely many open balls of radius 

e. More generally, a subset X is compact if for every open cover of X, that is, for 

every collection of open subsets whose union contains X, there is a finite subcover 

of X. It is trivial to see that a totally bounded metric space is separable. More 

importantly, a metric space is compact if and only if it is totally bounded and 

complete. In particular, a compact metric space is Polish. 

Let us note that different metrics can produce the same collection of open sets 

on a space, and that some properties depend only on this collection of open sets, 

rather than on a given metric. The set S equipped with a given collection of open 

sets is called a topological space. Specifically, a collection T of subsets of S forms a 

topology on S if and only if: 
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1. The empty set 0 and the whole set S belong to T, 

2. T is closed under finite intersections, i.e. if {[/j}f=1 is a finite sequence in T 

then nr=i Ui e T, and 

3. T is closed under arbitrary unions, i.e. if {Ua}aej is a collection in T for 

some index set J then \JaeJ Ua € T. 

Properties that refer only to the collection of open sets will be referred to as 

topological. 

2.1.1.3 Continuity 

Continuity is a crucial property for our work on approximating spaces and 

functions on those spaces. Loosely speaking, a function is continuous if the output 

of the function cannot change too abruptly with small changes in its input. More 

formally, a function / : (X, px) —> (Y, py) is continuous at a point x € X if for 

every e > 0 there is a 8 > 0, depending on x and e, such that for all x' € X 

with px(x, x') < 5 we have py(f(x), f(x')) < e. We say / is continuous if it is 

continuous at every point of X. If S can be chosen so as to depend on e alone, 

i.e. independent of the point x, then / is said to be uniformly continuous. A very 

strong form of uniform continuity is Lipschitz continuity: / is Lipschitz continuous 

if for some constant a, pY(f(x), f(x')) < apx(x, x') for all x, x' G X. The constant 

a is known as the Lipschitz constant for this mapping, though some take this term 

to refer to the greatest lower bound of all possible constants. We will sometimes 

write that / is a-Lipschitz continuous. Obviously every Lipschitz continuous 

function is uniformly continuous, and every uniformly continuous function is 

continuous, but the converse is not generally true in either case. For compact 
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metric spaces, however, the situation is much more well-behaved. Here, every 

continuous function is indeed uniformly continuous. Moreover, if / is real-valued 

then it has a minimum value and a maximum value, each of which is attained. 

Continuity in metric spaces can alternatively be characterized in terms of con

vergent sequences: / is continuous if for every convergent sequence {xn} in X with 

limit x, the sequence {f(xn)} is convergent with limit f(x). One can use this to 

loosen the definition of continuity in several ways. One generalization that is useful 

in this work is semicontinuity. Formally, a real-valued function / on a metric space 

(X, p) is lower semicontinuous if for any sequence {xn} converging to x in X, 

liminfn^oo/(a;„) > f(x); one can analogously define / to be upper semicontinuous 

by requiring l i m s u p ^ ^ f(xn) < f(x). It is easily seen that a real-valued function 

is continuous if and only if it is both lower semicontinuous and upper semicontinu

ous. The intuition behind these definitions is that semicontinuous functions allow 

for abrupt (discontinuous) jumps in one vertical direction; this can be seen through 

the prototypical examples of semicontinuous functions: the indicator function of an 

open set is always lower semicontinuous while the indicator function of a closed set 

is always upper semicontinuous. In this work, we will be particularly interested in 

lower semicontinuous functions due to several important properties; for example, 

the pointwise supremum of an arbitrary collection of uniformly bounded lower 

semicontinuous functions on a Polish metric space is itself lower semicontinuous, 

and a lower semicontinuous function on a compact subset of a Polish metric space 

attains its minimum at some point in the subset. 
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Continuity in topological spaces is denned as follows: a function / : (X, Tx) —> 

(y, Ty) is continuous if for each open set Oy € Ty, the preimage f~l(Oy) € Tx. 

If the topologies Tx and 7y are induced by metrics, then this definition actually 

coincides with the metric definition of continuity. Continuity is important for 

defining equivalence of topological spaces; two topological spaces are equivalent, or 

homeomorphic, if there exists a continuous bijection between them such that its in

verse is also continuous. A Polish space, for example, is any topological space that 

is homeomorphic to a Polish metric space, as defined above. Another important 

topological space is an analytic space. An analytic space is the continuous image of 

a Polish space under a map between Polish spaces. 

2.1.2 Fixed Points 

Fixed point theory plays a major role in this thesis. Here we recall some basic 

definitions and a theorem from fixed point theory on lattices, which can be found 

in any basic text (Winskel, 1993). 

Let (L, •<) be a partial order. If it has least upper bounds and greatest lower 

bounds of arbitrary subsets of elements, then it is said to be a complete lattice. A 

function / : L —> L is said to be monotone if x •< x' implies f(x) ^ f(x'). A point 

x in L is said to be a prefixed point if f(x) ^ x, a postfixed point if x ^ f(x) and a 

fixed point if x — f(x). The importance of these definitions arises in the following 

theorem. 

Theorem 2.1.1 (Knaster-Tarski Fixed Point Theorem). Let L be a complete 

lattice, and suppose f : L —> L is monotone. Then f has a least fixed point, which 
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is also its least prefixed point, and f has a greatest fixed point, which is also its 

greatest postfixed point.2 

This theorem will later be applied to two rather interesting complete lattices 

SHeC and (£qu, the space of binary relations and the space of topologically-closed 

equivalence relations on a Polish space S, respectively. Here, we equip each with 

the subset ordering, clearly obtaining partial orders. The greatest lower bound 

of a set of relations is simply their intersection. The same can be said for a set 

of equivalence relations - and moreover, an arbitrary intersection of topologically 

closed sets is topologically closed. Hence, both spaces are complete lattices.3 

A more common fixed point theorem comes from the theory of metric spaces 

and has the advantage of being constructive in nature; its proof can be found in 

most basic texts in analysis, e.g. (Rudin, 1976). 

Theorem 2.1.2 (Banach Fixed Point Theorem). Suppose (X,d) is a complete 

metric space and T : X —> X is a contraction mapping, i.e. for some c G [0,1) 

d(Tx,Tx') <c-d(x,x') 

for all x,x' in X. Then: 

1. T has a unique fixed point, x*, and 

2 This is an elementary theorem sometimes called the Knaster-Tarski theorem in 
the literature. In fact the Knaster-Tarski theorem is a much stronger statement to 
the effect that the collection of fixed points is itself a complete lattice. 

3 Existence of least upper bounds follows from that of greatest lower bounds. 
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2. for any x0 € X, d(x*,Tnx0) < ^-cd(Tx0,x0). 

In particular, lim^oo Tnx0 = x*. 

2.1.3 Probability and Measure 

A rather unfortunate consequence of moving to uncountably infinite state 

spaces is that we can no longer specify transition probabilities point-to-point; one 

needs to specify probabilities on sets of points and even then not all sets can be 

"measured" in this way. Formally, we say a a-algebra or a-field on S is a collection 

E of subsets of S satisfying the following axioms: 

1. The empty set 0 and the whole set S belong to E, 

2. E is closed under complements, i.e. if E e E then S\E e E, and 

3. E is closed under countable unions, i.e. if {Ei} is a sequence in S then 

U^eE. 

The members of E are known as the measurable sets. The pair (S, E) is known as 

a measurable space. Given a metric space, there is a unique smallest cr-algebra B 

that contains all the open sets; this is known as the Borel a-algebra. Its members 

are said to be Borel measurable. 

Given a measurable space (£, E), a measure is a set function /x : E —• [0, oo] 

such that 

1. xi(0) = 0, and 

2. for any pairwise disjoint collection of sets {Ei} in E, fj,({J Ei) = E/x(£Jj). 

If \i take values in [0,1] then it is a subprobability measure; if in addition n(S) = 1 

then it is a probability measure . The triple (S, E,/z) is known as a measure space 

(respectively, subprobability space, probability space). 
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Sometimes we need to assign weights of a probabilistic type to all subsets of 

a space, at the cost of satisfying all the nice properties of a probability measure; 

such is frequently the case in the theory of empirical processes, where one cannot 

guarantee that all the sets one may encounter in practice will be measurable. An 

outer probability measure is a set function <\> : 2s —> [0,1] satisfying 

1. 0(0) = 0, 

2. E C F implies (f)(E) < (f>(F), and 

3. for any countable collection {Ei} of subsets of S, (f)(\jEi) < E0(JE7j). 

Every probability measure can be extended to an outer probability measure, and 

conversely, every outer probability measure can be used to construct a cr-algebra 

on which it is a probability measure. Note as well that any set of outer probability 

zero has complement with outer probability one. 

A probability measure on a metric space is tight, or inner regular, if it can 

be approximated from within by compact sets, i.e. JJL is tight if for every Borel 

measurable set E, fi{E) = sup^- n{K) where the supremum is taken over all 

compact subsets K contained in E. Every probability measure on a Polish metric 

space is tight; this is known as Ulam's Tightness Theorem. 

Measures can be extended to act on functions through the process of inte

gration. We will assume the reader is familiar with the basic ideas of integration, 

if not the details, as the details are involved and add nothing to the exposition 

here. Suffice it to say that, just as only certain subsets can be measured, so too 

can only certain functions be integrated. Formally, a function / between measur

able spaces (X, Ex) and (Y, Ey.) is said to be measurable if the preimage of every 
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Ey-measurable set is E^-measurable, i.e. {f~1(E) : E G £y} C Ex- A real-

valued function / on a measurable space (S, E) is measurable, or in the language 

of probability theory, a random variable, if it is measurable as just denned, where 

M. is equipped with its usual Borel cr-field. The prototypical measurable functions 

are the simple functions: finite linear combinations of indicator functions on mea

surable sets. If S is a metric space and E its Borel cr-field, then every continuous 

function on S is measurable. Given a sequence of measurable functions, its point-

wise supremum, infimum, and limit (when it exists) are all measurable. Lastly, 

if the integral of the absolute value of a measurable function / with respect to a 

measure /i exists and is finite, then / is said to be integrable. The collection of all 

such / for a given fi is denoted by I/1(//) (here it is standard to identify functions 

that differ on a set of //-measure zero). 

2.1.3.1 Weak Convergence of Probability Measures 

Let us now consider convergence of probability measures on a metric space. 

Since probability measures are essentially just set functions, it is natural to 

attempt to analyze their convergence properties through pointwise converge, i.e. 

to say that a sequence of probability measures {/in} converges to probability 

measure ^ if {/in(E)} converges to fi(E) for every measurable set E. However, 

such convergence is too strong: consider the Dirac measure 5X, which assigns 

a value of 1 if and only if a given measurable set contains the point x and 0 

otherwise. Take [0,1] with its Borel cr-algebra and consider the sequence of Dirac 

measures on {- : n G N}. It would be quite natural to expect, if not demand, that 

this sequence converges to the Dirac measure at zero. However, taking the Borel 
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measurable singleton {0} in the definition of pointwise convergence would yield 

limn_»oo5i({0}) = 0 = <50({0}) — 1, which is clearly not the case. It is not hard 
n 

to show here that pointwise convergence over the measurable sets is equivalent 

to pointwise convergence over bounded measurable functions, i.e. convergence of 

{//„(/)} to fj,(f) for every bounded measurable function / . Therefore, one way 

of weakening convergence is to consider a similar pointwise convergence, but over 

a smaller class of functions. Formally, we say that {/xn} converges weakly to JJL if 

{/in(/)} converges to //(/) for every bounded continuous real-valued function / . It 

is not hard to show that the Dirac measures on {- : n G N} do indeed converge 

weakly to the Dirac measure at 0. 

2.1.3.2 Empirical Processes 

Consider now an ambient probability space (Cl, A, P) over which we sample 

n points {X\, X2,..., Xn} with values in (S, E) independently and with identical 

distribution fj,, i.e. each Xi is a measurable map from (Cl,A,¥) to (S, S) such that 

F({UJ e Cl : Xi(u) e E}) = ¥(Xr1(E)) = n(E) for every E in E. Define the nth 

empirical probability measure jin of [x to be the average of the Dirac measures at 

each Xi, i.e. /j,n :— ^ Y17=i ^ - Each fj,n is in effect a random measure; that is, for 

each u € Cl, yun(o;) := ^ YH=i ̂ x*H is a probability measure. Does this sequence of 

random probability measures {//„} converge? 

Recall that a sequence of random variables {Yn} converges to a random 

variable Y in probability, if for every e > 0, 

lim P({w e Cl : \Yn(u) - Y(u)\ > e}) = 0, 
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and almost surely if 

F({u e f t : lim Yn(u) = Y(u)}) = 1. 
n—+00 

The Weak Law of Large Numbers (Strong Law of Large Numbers) tells us that 

for each real-valued bounded continuous / , the sequence of random variables 

iVnif)} = {^ ]C"=i f(Xi)} converges to fi(f) in P-probability (P-almost surely). If 

the convergence was uniform over the set T of all bounded continuous functions, 

i.e. if sup^Gjr \ti>n(f) — M/)l converged to zero , then it would follow that the 

empirical measures themselves converged weakly. This turns out to be a useful 

property in itself. Let us note that the maps u 1—>• supyG:F |/zn(o>)(/) — /z(/)| 

need not be measurable since they involve taking a supremum over the possibly 

uncountable collection T. Thus, we will need to use the outer probability P* when 

speaking of their convergence. Any class T of integrable functions for \i such that 

supje : F \fjin(f) — (J>(f)\ converges to zero in P*-outer probability (P*-almost surely) is 

said to be a weak (strong) Glivenko-Cantelli class. If J7 is a Glivenko-Cantelli class 

for every probability measure on (S, E) then it is said to be a universal Glivenko-

Cantelli class. Lastly, if the rate of P*-convergence can be made to be uniform over 

all /x, i.e. if for every positive e there exists a natural number iV depending only on 

e such that for all /z and all n > N, P*(sup^G:r |/zn(/) — /•*(/)I > e) < e» then T is 

said to be a uniform Glivenko-Cantelli class. 

We are now ready to proceed. 
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2.2 Reinforcement Learning 

We will adhere to the somewhat simplified view that artificial intelligence is 

the science of intelligent agents, that is, the entities that perceive and act within 

an environment. The environment, then, is defined to be all that is external to the 

agent. 

Accordingly, we define reinforcement learning (RL)4 to be that branch of AI 

that deals with an agent learning through interaction with its environment in order 

to achieve a goal. The intuition behind reinforcement learning is that of learning 

by trial and error. By contrast, in supervised learning an external supervisor 

provides examples of desired behaviour from which an agent can learn, much as a 

student learns from a teacher. 

Applications of reinforcement learning include optimal control in robotics 

(Lane & Pack Kaelbling, 2002), meal provisioning (Goto et al., 2004), scheduling, 

brain modelling, game playing, and more. 

2.2.1 Markov Decision Processes 

The interaction of an agent with its environment in reinforcement learning can 

be formally described by the Markov decision process framework below: 

Consider the sequential decision model represented in Figure 2-1 (Sutton & 

Barto, 1998), depicting the interaction between a decision-maker, or agent, and its 

environment. 

This is also known as neuro-dynamic programming. 
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Figure 2-1: Agent-environment interaction 
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We assume that time is discrete, and that at each discrete time step t €E 

{0,1,2,... ,T}, the agent perceives the current state of the environment st from 

the set of all states S. We refer to T as the horizon and note that it may be either 

finite or infinite. On the basis of its state observation the agent selects an action at 

from the set of actions allowable in st, ASt. As a consequence, the following occurs 

immediately in the next time step: the agent receives a numerical signal rt+\ from 

the environment and the environment evolves to a new state s t + 1 according to 

a probability distribution induced by st and at. The agent perceives state st+i 

and the interaction between agent and environment continues in this manner, 

either indefinitely or until some specified termination point has been reached, in 

accordance with the length of the horizon. Here, we think of rt+\ as a means of 

providing the agent with a reward or a punishment as a direct consequence of its 

own actions, thereby enabling it to learn which action-selection strategies are good 

and which are bad via its own behaviour. 
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We further suppose that the following conditions are true of the stochastic, 

nature of the environment: state transition probabilities obey the Markov property: 

Pr(st+\ = s\s0, a0, SI, d , . . . , st, at) = Pr(st+t = s\st, at) 

and are stationary, i.e. independent of time: 

Vt, Pr(st+1 = s'\st = s,at = a) = Ps°s, 

The state and action spaces together with the transition probabilities and 

numerical rewards specified above comprise a discrete-time Markov decision 

process. Formally, we have the following: 

Definition 2.2.1. A finite Markov decision process is a quadruple 

(S,{As\s G S},{P(-\s,a)\s E S,ae As},{r(s,a)\s G S,ae As}) 

where: 

• S is a finite set of states, 

• A = UsGsAs is a finite set of actions, 

• Vs G S, As is the set of actions allowable in state s, 

• Vs G S, Va G As, P(-\s,a) : S —> [0,1] is a stationary Markovian probability 

transition function; that is, Vs' G S, ^(s'ls, a) is the probability of transi

tioning from state s to state s' under action a and will be denoted by P"s,, 

and 

• Vs G S,Va G v4s,r(s,a) is the immediate reward associated with choosing 

action o in state s, and will be denoted by r". 



We frequently take As = A, i.e. all actions are allowable in all states. 

A finite Markov decision process (hereafter, MDP) can also be specified via 

a state-transition diagram; Figure 2-2, for example, depicts a finite MDP with 4 

states and 1 action. 

Figure 2-2: State transition diagram for a simple finite MDP 

A Markov Decision Problem consists of an MDP together with some opti-

mality criterion concerning the strategies that an agent uses to pick actions. The 

particular Markov decision problem we will be concerned with is known as the 

infinite-horizon expected discounted return RL task. 

2.2.2 Policies and Optimality Criteria 

An action selection strategy, or policy, is essentially a mapping from states 

to actions, i.e. a policy dictates what action should be chosen for each state. 

More generally, one allows for policies that are stochastic, history-dependent, and 

even non-stationary. Here we will restrict our attention to randomized stationary 
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Markov policies. Formally, a policy is a mapping n : S x A —• [0,1], such that 

7r($, •) is a probability distribution on A for each s £ S. 

The optimality criterion of the Markov decision problems is concerned with 

finding a policy that maximizes the sum of the sequence of numerical rewards 

obtained through the agent's interaction with its environment. The most common 

optimality criterion, the infinite horizon total discounted reward task, involves 

finding a policy -K that maximizes for every state s € S, limT-><x^
n[Rt\st = s] 

where Rt = ^kZo lkft+k+i for some 7 6 [0,1) and E^ is the expectation taken 

with respect to the system dynamics following policy n. Such a maximizing policy 

is said to be optimal. Another optimality criterion is the average reward criterion, 

wherein one seeks to maximize for every state the cumulative sum of rewards 

averaged over the length of the horizon. 

The total discounted reward criterion involves geometrically discounting the 

reward sequence. The intuition is that rewards obtained in the future are less 

valuable than rewards received immediately, an idea prevalent in economic theory. 

Alternatively, we may view it simply as a mathematical tool to ensure convergence. 

In any case, the discounted reward model possesses many nice properties, such as 

a simplified mathematics in comparison to other proposed optimality criteria and 

existence of stationary optimal policies (Puterman, 1994). For this reason, it is the 

dominant criterion used for RL tasks, and we concentrate on it in this work. 

2.2.3 The Value of a Policy 

The expression we seek to maximize in the infinite horizon discounted model, 

lim.T^oo^[Rt\st — s], is known as the value of a state s under a policy n, and 
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is denoted V"K(s). For finite MDPs rewards are necessarily uniformly bounded; 

hence, the limit always exists and we may rewrite V"*(s) as E^EfcLoT^+fc+i]-

The induced map on states, Vn, is called the state-value function (or simply value 

function) for n. Much research is concerned with estimating these value functions, 

as they contain key information towards determining an optimal policy. 

In terms of value functions, a policy IT* is optimal if and only if V7r* (s) > 

Vn(s) for every s E S and policy n. As previously mentioned, an important fact 

about infinite horizon discounted models for finite MDPs is that an optimal policy 

always exists. 

Given policy n, we can use the Markov property to derive for any s E S: 

00 

V*(s) = W[Rt\st = s}= E*[J2lkrt+k+i\st = s] 
fc=0 

oo 

= ] P 7r(s,a)E7r[^7 f cr (+ fc+i |s t = s,at = a] 
aeAs fc=0 

oo 

= J2 n(s' °)( r" + 1^(52 lkrt+k+2\st = s,at = a}) 
aeAs fc=0 

oo 

= J2 *•(«, a)(rs
a + 7 E P^'E7rE7 fc^+fc+2|s< = s,at = a, st+1 = s']) 

a€As s'eS fe=0 

= J2 *(*, o)(r? + 7 E ^ ^ [ i ? t + 1 | S t + 1 = s']) 
a€As s'eS 

= ^7r(S ,a)(r: + 7 E P ^ V ) ) 
o€As s'eS 

The linear equations 

' H ^ E ^ ' ^ + ^ E ^ W S G S (2.i) 
aeAs s'es 
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are known as the Bellman equations for policy n, and Vw is their unique solution. 

Note that while the value function for a given policy is unique, there may be many 

policies corresponding to the same value function. 

The optimal value function V*, corresponding to an optimal policy IT*, 

satisfies a more specialized family of fixed point equations, 

V*(s) = max(rs
a + 7 ^ P s

a
s ^ * ( 5 ' ) ) , V S e S (2.2) 

of which it is the unique solution (see sections 6.1 and 6.2 of Puterman (1994)). 

These are known as the Bellman optimality equations. 

It is worth remarking that the existence and uniqueness of the solutions in 

these Bellman equations can be obtained from the Banach Fixed Point Theorem, 

Theorem 2.1.2, by applying the appropriate contraction mapping over the space 

of bounded real-valued functions on S equipped with the metric induced by the 

uniform norm. 

2.2.4 Value Iteration and Policy Iteration 

The Bellman equations are an important tool for reasoning about value 

functions and policies. They allow us to represent a value function as a limit 

of a sequence of iterates, which in turn can be used as the basis for dynamic 

programming (DP) algorithms for value function computation. Once more as a 

consequence of the Banach Fixed Point Theorem, one obtains: 

Theorem 2.2.2 (Policy Evaluation). Given a randomized stationary policy n, 

define 

• V£(s) = 0,VseS and 
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• VFn(8) = E^T(M)(r? + 7 E ^ ^ ^ M ) i V i € N,V*€ S. 

Then {V?}^ converges to V* uniformly. 

Theorem 2.2.3 (Value Iteration). Define 

• V0(s) = 0, Vs e S and 

• Vi+l(s) = maxaeAs (ra
s + 7 £ s , e 5 P f M s 1 ) ) , ^ e N,Vs e 5. 

TTien {Vi}ieN converges to V* uniformly. 

These results allow one to compute value functions up to any prescribed 

degree of accuracy. For example, if one is given a positive e then iterating until 

the maximum difference between consecutive iterates is €^ 2~
7^ guarantees that the 

current iterate differs from the true value function by at most e (Puterman, 1994). 

One can thus use value functions in order to compute optimal policies. For 

example, once one has performed value iteration, one can then determine an 

optimal policy by choosing for each state the action that maximizes its optimal 

value in the Bellman optimality equation, i.e. 

7r(s, a) <- argmax (ra
s + 7 V P^V^s')). 

s'es 

In practice, however, the optimal policy may stabilize for a given optimal value 

iterate long before the optimal value function itself has converged; in this case, 

the remaining iterations would serve only to waste time. As an alternative, one 

can instead iterate over policies. Given an arbitrary policy n, one can use policy 

evaluation to compute Vn and thereby obtain a measure of its quality. One can 
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then attempt to improve % to n' by setting 

ir'(s, a) <- argmax (ra
s + 7 J] i?, V^)); 

s'eS 

this is known as policy improvement. If there is no improvement, that is, the 

policy is stable, then the policy is optimal; otherwise, one may continue to iterate 

in this manner. This is known as policy iteration: starting from an initial policy, 

one repeated performs policy evaluation and policy improvement until a stable 

optimal policy is achieved. 

These DP algorithms constitute a standard MDP solution method; many 

alternative solution methods are based on them while aiming to improve compu

tational efficiency. The problem with DP algorithms is that they are subject to 

the curse of dimensionality: a linear increase in state-space dimension leads to an 

exponential increase in running time. In general, such methods are impractical 

when dealing with large state spaces. 

One typical method for overcoming such problems is state aggregation: one 

clusters together groups of states in some manner and defines a smaller MDP over 

the set of clusters. The hope is that one can recover a solution to the original 

MDP by solving the reduced model. However, clustering together states with 

different reward and probability parameters can be detrimental. We are thus led to 

the problem of how one should cluster states so as to recover good solutions; more 

generally, how does one best assess the quality of a state aggregation? The solution 

we propose is to use state-similarity metrics. 



29 

2.3 Discrete State Similarity 

Let (S, A, {P^,}, {r"}) be a given finite MDP. When should two states be 

placed in the same cluster of a state aggregation? Equivalently, what is the best 

state equivalence for MDP model reduction? 

Givan et al. (2003) investigated several notions of MDP state equivalence for 

MDP model minimization: action-sequence equivalence, optimal value equivalence, 

and bisimulation. Two states are deemed action-sequence equivalent if for any 

fixed finite sequence of actions, their distributions over reward sequences are the 

same. Here let us remark that for any state, a fixed finite sequence of actions 

of length n induces a probability distribution over reward sequences of size n 

by means of the MDP's system dynamics. As Givan et al. note, the problem 

with action-sequence equivalence is that it may equate states with different 

optimal values. To overcome such a limitation, the authors consider optimal 

value equivalence, wherein states are deemed equivalent if they have the same 

optimal value. Here again, however, problems arise: states deemed equivalent 

under optimal value equivalence may have markedly different MDP dynamics; in 

particular, they may have different optimal actions under an optimal policy and 

so are unsuitable for clustering. Givan et al. go on to argue that bisimulation, a 

refinement of the first two equivalences, is the best state equivalence for model 

minimization. 

Bisimulation has its origins in the theory of concurrent processes (Park, 1981). 

Milner (1989) utilized strong bisimulation as a notion of process equivalence for 

his Calculus of Communicating Systems (CCS), a language used to reason about 
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parallel processes. Bisimulation in this context can informally be seen as the 

largest type of matching relation, i.e. processes p and q are related iff for every 

a-labeled transition that process p can make to process p', process q can make an 

a-labeled transition to some process q' related to p', and vice versa. Alternatively, 

bisimulation equivalence on processes can be characterized by a modal logic known 

as Hennessy-Milner logic (Hennessy & Milner, 1985); two processes are bisimilar if 

and only if they satisfy precisely the same formulas. 

Larsen and Skou (1991) extended this notion to a probabilistic framework. 

Their probabilistic bisimulation was developed as an equivalence notion for 

labeled Markov chains (LMCs). They provide characterizations of probabilistic 

bisimulation both in terms of a maximal matching relation and a probabilistic 

modal logic. The definition of bisimulation by Givan et al. is a simple extension of 

probabilistic bisimulation: 

Definition 2.3.1. A bisimulation relation R is an equivalence relation on S that 

satisfies the following property: 

SRS' ^^ WaeA, (ra
s = ra

s, and VC e S/R, Ps
a(C) = P${C)) 

where P;(C) = £ c e C P s
a

c . 

We say states s and s' are bisimilar, written s ~ s', iff sRs' for some stochastic 

bisimulation relation R. 

In other words, bisimulation is the largest bisimulation relation on S, and 

roughly speaking, two states s and s' bisimilar if and only if for every transition 
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that s makes to a class of states, s' can make the same transition with the same 

probability and achieve the same immediate reward; and vice versa. 

Bisimulation can also be formulated using fixed point theory, as has been 

verified for finite MDPs (Ferns, 2003). Note that the existence of a greatest fixed 

point in the definition below is guaranteed by the Knaster-Tarski Fixed Point 

Theorem, Theorem 2.1.1: 

Definition 2.3.2. Let SHct be the complete lattice of binary relations on S. Define 

T : mtl -> 9tel by 

sF{R)s' ^^ V a e A (ra
s - ra

s, and VC G S/RrsU P?(C) = P*,{C)) 

where Rrst is the reflexive, symmetric, transitive closure of R. 

Then s and s' are bisimilar iff s ~ s' where ~ is the greatest fixed point of T. 

In the finite case, the operator T can be used to compute the bisimulation 

partition: starting from an initial equivalence relation, the identity relation for 

example, iteratively apply T until a fixed point is reached. As each application of 

T either adds cluster-states or results in a fixed point, and there are only finitely 

many states, this procedure must stop. 

Unfortunately, as an exact equivalence, bisimulation suffers from issues of 

instability; that is, slight numerical differences in the MDP parameters, {r"} and 

{Ps
a
s,}, can lead to very different bisimulation partitions. Consider the sample 

MDP in Figure 2-3 with 4 states labeled x, x, y, and y, and 1 action labeled a. 

Suppose r | = 0. Then all states share the same immediate reward and transition 

amongst themselves with probability one. So all states are bisimilar. On the other 
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Figure 2-3: MDP demonstrating bisimulation is too brittle 

hand, if r | > 0 then y is the only state in its bisimulation class since it is the only 

one with a positive reward. Moreover, x and x are bisimilar iff they share the same 

probability of transitioning to y's bisimulation class. Each is bisimilar to y iff that 

probability is zero. Thus, y, x, and x are not bisimilar to y, x ~ x iff p = p', x ~ y 

iff p = 1.0, and x ~ y iff q = 1.0. This example demonstrates that bisimulation is 

simply too brittle; if Ty is just slightly positive, and p differs only slightly from p' 

then we should expect x and x to be practically bisimilar. However, an equivalence 

relation is too crude to capture this idea. To get around this, one generalizes the 

notion of bisimulation equivalence through bisimulation metrics. 

2.3.1 Bisimulation Metrics 

Metrics can be used to give a quantitative notion of bisimulation that is 

sensitive to variations in the rewards and probabilistic transitions of an MDP. 
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In Ferns et al. (2004; 2005) we provided the following metric generalization of 

bisimulation for finite MDPs:5 

Theorem 2.3.3. Let c e (0,1). Let met be the space of bounded pseudometrics on 

S equipped with the metric induced by the uniform norm. Define F : met —> met 

by 

F(h)(s, s') = max((l - c)\ra
s - ra

s,\ + cTK{h){P^ P$)) 

Then : 

1. F has a unique fixed point p*, 

2. p*(s, s') = 0 <=> s ~ s', and 

3. for any h0 e met, ||p* - Fn(h0)\\ < £-jF(h0) - h0\\. 

Here TK(h)(P, Q) is the Kantorovich probability metric6 applied to distribu

tions P and Q. It is defined by the following linear program: 

\s\ 
max Y^ (P(si) - Q(si))ui 

Ui *• ' 

i=\ 

subject to: Vi,j,Ui — Uj < h(si, Sj) 

Vi,0<Ui< \\h\\ 

5 Results appear here in slightly modified form. 

6 Frustratingly, this metric likes to hide under a variety of names: Monge-
Kantorovich, Kantorovich-Rubinstein, Hutchinson, Mallows, Wasserstein, Vasser-
stein, Earth Mover's Distance, Fortet-Mourier, and Dudley, to name a few. 
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It can also be specified by the dual linear program 

\s\ 
min y^ Xkjh(sk,Sj) 

subject to: Vfc. YJ ^kj = P{sk) 
j 

Vj. ^2Xkj = Q(sj) 
k 

Vk,j.\kj>0 

which can be rewritten as min\E>J/i] where A is a joint probability function on 

S x S with projections P and Q. This discrete minimization program has an 

interpretation as a Hitchcock transportation problem. This is an instance of the 

minimum cost flow (MCF) network optimization problem as seen in Figure 2-4. 

Figure 2-4: Hitchcock network transportation problem (N = \S\) 

Here we have \S\ source nodes and |JS'I sink nodes. For each s G S, there 

exists a source node labeled with a supply of P(s) units and a sink node labeled 
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with a demand (or negative supply) of Q(s) units. Between each source node 

and each sink node, labelled respectively P(s) and Q(s') for some s, s' £ S, 

there is a transportation arc labelled with the cost of transporting one unit from 

the source to sink, given here by h(s, s'). A flow is an assignment of the number 

(nonnegative) of units to be shipped along all arcs. One requires that the total 

flow exiting a source node is equal to the supply of that node, and the total flow 

entering a sink node is equal to the demand at that node. One also requires that 

the total supply equals the total demand, which in this case is 1. The cost of a 

flow along an arc is simply the cost along that arc multiplied by the flow along 

that arc. The cost of the flow for the entire network is take to be the sum of the 

flows along all arcs. The goal then is to find a flow of minimum cost. 

There exist strongly polynomial algorithms to compute the MCF problem (Or-

lin, 1988; Vygen, 2000). Therefore the Kantorovich metric in the discrete case can 

be computed in polynomial time, assuming of course that the state metric h is 

itself computable. 

The key property of the Kantorovich metric is that it matches distributions, 

i.e. assigns them distance zero only when they agree on the equivalence classes 

induced by the underlying cost function. Therefore, it is not surprising that it can 

be used to capture the notion of bisimulation, which requires that probabilistic 

transitions agree on bisimulation equivalence classes. We will say more about the 

Kantorovich metric in the next chapter. For now, let us conclude with an example 

of the metric distances applied to the MDP in Figure 2-3. Using uniqueness of p* 

and the identity TK(p*)(Sx,Sy) = p*(x,y) along with the fact that there is only 
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one action, it is not hard to see that solving for p* in the fixed point equations 

amounts to solving a set of linear equations. We therefore find: 

p*(x,x) 

P*(x,y) 

p*(%,y) 

Consider now the MDP in Figure 2-2. Even though states x and y are not 

bisimilar, we see that for any c they have p*-distance 0.01 — 0.0095c, which is much 

less than the maximum possible distance of 1; that is, they are very close to being 

bisimilar. 

2.3.2 Value Function Bounds 

The most important property of the metrics is that they show that similar 

states have similar optimal values, and this relation varies smoothly with sim

ilarity. Formally, the optimal value function is continuous with respect to the 

state-similarity metrics. 

Theorem 2.3.4 (Ferns et al., 2004). Suppose j < c. Then V* is -^-Lipschitz 

continuous with respect to p*, i.e. 

\V*(s)-V*(s')\<T^-cP*(s,s'). 

We can use this result to relate the optimal values of a state and its represen

tation in an approximant by considering the original model and its approximant as 

one MDP. 

= c\p-j/\r$ P*(y,y)=r? 

= c(l - p)rg p*(x, y) = r? - cpr? 

= c(l-P')rl p*(x,y)=rl-cp'rl 
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2.3.3 Computing State-Similarity 

We were able to compute the state-similarity metric by hand for the simple 

MDP pictured in Figure 2-3; but what can we say in the general case? In fact, 

the fixed point nature of the metrics permits the use of a DP algorithm in a 

manner analogous to the computation of the optimal value function: starting with 

the everywhere-zero metric, denoted by _l_, we iteratively apply the fixed point 

functional F until a desired level of accuracy is achieved. Since, as we noted, the 

Kantorovich operator can be computed in strongly polynomial time, we have an 

algorithm to calculate the state-similarity metrics - though one subject to the same 

shortcomings as traditional MDP dynamic programming algorithms. As only the 

distances are changing (and in fact converging) in the Kantorovich operator, and 

this object is itself an instance of an MCF LP, one immediately applicable speedup 

is to use cost re-optimization: that is, we can save the optimizing solutions for each 

Kantorovich LP between iterations and use them to begin the Kantorovich LP in 

the next iteration. We are thereby saving on computation time at the cost of larger 

space requirements. This appears slightly more promising; but, can we do better? 

Indeed; a promising approach to quick and efficient approximation of the distances 

arises from the area of statistical sampling. 

Suppose P and Q are approximated using the empirical distributions P, and 

Qi. That is, we sample i points X\,X2,... ,Xi independently according to P and 

define Pt by P^x) = \ Y?k=1 Sxk{x). Similarly, write Qt(x) = \ Y^k=\ 5Yk(
x)- T h e n 

TK(h)(Pi, Qi) = min - V h(Xk, Yc{k)) (2.3) 
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where the minimum is taken over all permutations a on i elements (see p. 12 

of Villani (2002); this is a consequence of the Birkoff - von Neumann theorem). 

Now the Strong Law of Large Numbers (SLLN) tells us that both {Pi(x)} and 

{Qi(x)} converge almost surely to P(x) and Q(x).7 Let us write T^(h)(P,Q) for 

TK(h)(Pi, Qi) when the empirical distributions are fixed. Then as a consequence 

of the SLLN, {Tl
K(h)(P, Q)} converges to TK(h)(P,Q) almost surely; moreover 

replacing TK by Tl
K in F yields a metric, 

p*(s, s>) = max((l - c)\ra
s - ra

s,\ + cTK{pl){P^ J?)) , 

which converges almost surely to p* as i gets large (Ferns et al., 2006). 

The importance of this result stems from the fact that the expression in 

equation (2.3) is an instance of the assignment problem from network optimization. 

This is a specialized network flow problem in which the underlying network is 

bipartite and all flow assignments are either 0 or l.8 Its specialized structure 

allows for fast, simple solution methods. For example-, the Hungarian algorithm 

runs in worst case time 0(z3), where i is the number of samples. Still, is the 

resulting sampling algorithm for estimating bisimulation distances really any better 

than the exact algorithms? 

7 Note that both Pi and Qi are random variables. 

8 In graph theoretic terminology, this is the problem of optimal matching in a 
weighted graph. 
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We have compared the Monte Carlo algorithm for a fixed number of samples 

along with the algorithms presented above, in terms of computational resources 

(space and time), and use in aggregation (Ferns et al., 2006). For purposes of 

illustration, we present here some of these results. 

Experiments were run on MDPs given by an n x n grid world with two actions 

(move forward and rotate) and a single reward in the center of the room for n = 3, 

5, and 7, and a flattened out version of the coffee robot MDP (Boutilier et al., 

1995) in which a robot has to get coffee for a user while having to avoid getting 

wet. Each state in the grid world encodes both position as well as orientation of 

the agent; thus, the gridworld MDPs have 36, 100, and 196 states respectively. 

Additionally, the actions are deterministic. The coffee domain has 64 states and 4 

actions, some with stochastic effects. For each domain, we computed: jr^p*', the 

same with cost re-optimization, and jz^p* via sampling. 

Exact computation of the Kantorovich metric in the first two methods was 

carried out using the MCFZIB Minimum Cost Flow solver (Frangioni & Manca, 

2006). An implementation of the Hungarian algorithm for the assignment problem 

was used to estimate the Kantorovich distances in the third method. 

For each MDP, 10 transitions were sampled for each state and action, and this 

vector of samples was then used to estimate the empirical distribution throughout 

the whole run. The distance metric was obtained by averaging the distances 

obtained over 30 independent runs of this procedure. 
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Lastly, metrics were computed using three different values for the discount 

factor, here taking the metric and value discount factors to be the same, i.e. c = 7 

with 7 e{0.1,0.5,0.9}. 

Table 2-1 summarizes the running times in seconds for each method with the 

different discount factors. A '-' means that the algorithm failed to compute the 

metric. 

Kantorovich Re-optimized Stochastic 
3x3 gridWorld 

7 = 0.1 
7 = 0.5 
7 = 0.9 

2.067 
5.223 

41.089 

1.563 
2.944 
15.231 

5.883 
14.406 
85.725 

5x5 gridWorld 
7 = 0.1 
7 = 0.5 
7 = 0.9 

- -
44.200 
109.473 
653.645 

7x7 gridWorld 
7 = 0.1 
7 = 0.5 
7 = 0.9 

- -
168.853 
419.735 
2625.16 

Coffee Robot 
7 = 0.1 
7 = 0.5 
7 = 0.9 

57.640 
137.129 
1024.42 

-
72.823 
165.687 
1037.03 

Table 2-1: Running times in seconds for different metric algorithms 

We also compared the amount of space used by each method. This was 

measured using the massif tool of valgrind (a tool library in Linux). Table 2-2 

presents the maximum number of bytes used by each algorithm when computing 

the distances for each MDP; an '*' indicates an algorithm terminated prematurely 
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due to maximum memory usage. In those cases where all algorithms were able to 

3x3 gridWorld 
5x5 gridWorld 
7x7 gridWorld 

coffee robot 

Kantorovich 
80Mb 
1.8G6* 
1.8Gb* 
1.6Gb 

Re-optimized 
180Mb 
1.8Gb* 
1.8Gb* 
1.8Gb* 

Stochastic 
80Kb 
500Kb 
1.8Mb 
300Kb 

Table 2-2: Memory usage in bytes for different metric algorithms 

run to completion, the Monte Carlo algorithm either outperformed or performed 

comparably to the exact algorithms. Moreover, we compared the quality of the 

estimated distances with that of the exact distances by using each in simple 

aggregations schemes - and here too results were comparable (Ferns et al., 2006). 

All in all, when considering the tradeoff between the computational requirements 

of time and space, and the quality of the results, the Monte Carlo algorithm for 

calculating bisimulation distances significantly outperforms the others. Therefore, 

extending this sampling algorithm is the most promising approach to providing 

practical quantitative state-similarity for continuous Markov decision processes. 

2.4 Related Work 

This work has its roots in the work of Desharnais et al. (2004) and van 

Breugel and Worrell (2001b). In the work of Desharnais et al. (1999; 2004) and 

mainly in the thesis of Desharnais (2000), the authors developed bisimulation 

metrics for a probabilistic transition model similar to the Markov decision process, 

namely the labeled Markov process (LMP) (Blute et al., 1997): 



42 

Definition 2.4.1. A labeled Markov process is a quadruple 

(S,E,A,{ra\aeA}) 

where: 

• S is an analytic set of states 

• S is the Borel a-field on S 

• A is a finite set of actions 

• Va E A, ra : S x E —*• [0,1] is a stationary subprobability transition kernel: 

o VX E H,ra(;X) is a measurable function and 

o Vs € S,ra(s,-) is a subprobability measure 

An LMP can best be thought of here as a continuous state space MDP, with 

the difference being that it allows for subprobability measures and lacks rewards. 

It is worth noting that the authors develop their theory in the slightly more 

general setting of analytic spaces. 

One may define bisimulation for an LMP as follows: given a relation R on S, 

a subset X of S is said to be .R-closed if and only if {s' E S\3s E X. sRs'} C X. 

Then a bisimulation relation is an equivalence relation on S that satisfies the 

following property: 

sRs' <=> Va E A, Vi?-closed X EH, ra(s, X) = ra(s', X) 

We say states two states are bisimilar if and only if they are related by some 

bisimulation relation. 
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One may also define bisimulation for LMPs in terms of a modal logic: two 

states are bisimilar if and only if they satisfy exactly the same formulas in some 

fixed logic (Blute et al., 1997; Desharnais, 2000). This forms the basis for the 

metrics of Desharnais (2000; 1999; 2004), which are defined in terms of real-valued 

logical expressions. The intuition in moving to metrics is that the bisimilarity 

of two states is directly related to the complexity of the simplest formula that 

can distinguish them; the "more bisimilar" two states are, the harder it should 

be to find a distinguishing formula; hence, such a formula should be necessarily 

"big". Of course, to formalize this one needs to find some quantitative analogue of 

logical formulas and satisfaction. One idea of how to do this in the context of a 

probabilistic framework comes from (Kozen, 1983): 

Classical Logic 

Truth values 0,1 

Propositional function 

State 

The satisfaction relation (= 

Generalization 

Interval [0,1] 

Measurable function 

Measure 

Integration f 

The idea is that just as the satisfaction relation maps states and propositional 

formulas to truth values, integration maps measures and measurable functions to 

extended truth values - values in the closed unit interval [0,1]. On the basis of 

these ideas, Desharnais (2000) developed a class of logical functional expressions 

that could be evaluated on the state space of a given LMP to obtain values in the 
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unit interval. A family of bisimulation metrics is then constructed by calculating 

the difference of these quantities for a fixed pair of states across all formulas. 

Formally, let c G (0,1] and let Tc be a family of functional expressions whose 

syntax is given by the following grammar: 

f:=l\min(f,f)\{a)f\feq\\fV 

where a and q range over A and rationals in [0,1] respectively. These functional 

expressions are evaluated on S as follows: 

l(s) = 1 

min(/1 ,/2)(s) = min(/i(s),/2(s)) 

( ( a ) / ) ( s ) = c / f(x)ra(s,dx) 
Js 

(feq)(s) = max(f(3)-q,0) 

[/}*(*) = mm(f(s),q) 

Lastly, define dc : S x S -> [0,1] by 

dc(s,s')= sup |/(5) -f(s')\. 
fefc 

Theorem 2.4.2 (Desharnais, 2000). For every c in (0,1], dc is a 1-bounded 

bisimulation metric. 

In the finite case and with c < 1, Desharnais et al. (1999) were able to 

construct a decision procedure for computing the metrics to any desired accuracy; 

one simply replaces Tc in the definition above with a specially chosen finite subset 
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of functions. However, in the general case no algorithm was provided and it 

remained unclear as to whether or not d1 was computable. 

Later on, van Breugel and Worrell (2001a; 2001b) worked with a slightly mod

ified version of these metrics in a categorical setting; they used fixed point theory 

in conjunction with the Kantorovich probably metric to define metrics on LMPs. 

They were able to show that the metrics induced by the logical characterization 

of bisimulation and provided by Desharnais et al. coincided with their own fixed 

point metrics. Particularly important was their application of the Kantorovich 

operator and subsequent use of network linear programming to develop the first 

polynomial-time decision procedure for the metrics in the finite case. In recent 

years, these same authors have developed both a theoretical framework and de

cision procedure for finite LMP metrics without discounting, i.e. for c = 1 (van 

Breugel et al., 2007). Still, no work has been carried out on estimating distances 

for general LMPs, i.e. with infinite state spaces. 

In the context of MDPs, a number of methods have been proposed for 

analyzing state-similarity. Li et al. (2006), for example, survey a number of 

state aggregation techniques for finite MDPs in an attempt to unify the theory 

of state abstraction: these include aggregation of states based on bisimulation, 

homomorphisms, value equivalence, and policy equivalence, to name a few. Muller 

(1997) put forth an excellently written paper containing an early sensitivity 

analysis result in a spirit very similar to our own; he considers abstract MDPs 

(with full measurable state and action spaces) in which only the stochastic 

transition kernels differ. He then demonstrates continuity of a sort for the optimal 
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value function with respect to several integral probability metrics. However, 

these results are purely of a theoretical nature - no algorithm is provided or even 

suggested. 

In the realm of finite MDPs, several works have analyzed the error in per

turbing the parameters of a given Markov decision process. Dean et al. (1997) 

consider bounded-parameter MDPs, in which reward and probability parameters 

are specified by intervals of closed reals, and define e-homogeneity: a loosening 

of bisimulation such that all states in the same equivalence class have reward 

parameters and probability parameters each differing by at most e. In the paper 

of Even-Dar and Mansour (2003), this work was expanded upon by considering 

different norms on the probability parameter in the definition of e-homogeneity 

and providing performance results specifically showing that the quality of an e-

homogeneous partition depended heavily on the norm in use. Most recently, Ortner 

(2007) has expanded upon the notion of e-homogeneity in terms of adequate pseu-

dometrics and used these results to analyze finite MDPs under an average reward 

optimality criterion. 



CHAPTER 3 

State-Similarity Metrics: Theory 

The first thing we have to deal with in moving to infinite state spaces1 is the 

issue of measurability; simply put, we can no longer specify probabilities point-to-

point. One needs to look at the probabilities of sets of states, and even then, not 

all sets can be measured in this way. Formally, we have a potentially uncountably 

infinite state space, S, equipped with a sigma-algebra of measurable sets, E. We 

may think of E as providing some sort of "information resolution" - that is, the 

only pertinent sets of states are those that are measurable (and we ignore the rest). 

Following along these lines, we need to ensure that the reward and probability 

functions satisfy certain measurability conditions, that is, that they behave well 

with respect to measurable sets. Formally, we have the following: 

3.1 Continuous Markov Decision Processes 

Let (S, E, A, P, r) be a Markov decision process (MDP), where (S, E) is a 

measurable space, A is a finite set of actions, r : S x A —>Risa measurable reward 

function, and P : S x A x E —* [0,1] is a labeled stochastic transition kernel, i.e. 

• Va G A, Vs G S, P(s, a, •) : E —> [0,1] is a probability measure, and 

• Va G A, \/X G E, P(-, a, X) : S —> [0,1] is a measurable function. 

1 We will still assume finitely many actions; what to do when this is not the case 
is beyond the scope of this work. 
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We will use the following notation: for a € A and s £ S, Ps
a denotes P(s, a, •) 

and r" denotes r(s, a). Given measure P and integrable function / , we denote the 

integral of / with respect to P by P(f). 

We also make the following assumptions: 

1. S is Polish space2 equipped with its Borel sigma algebra, E, 

2- sup a y ) 0 | r ? - r ? , | < oo. 

3. the image of r is contained in [0,1] 

4. For each a E A, r(-,a) is continuous on S. 

5. For each a £ A, Ps
a is (weakly) continuous as a function of s, i.e. if sn tends 

to s in S then for every bounded continuous function / : S —* R, P"n (/) 

tends to P s
a(/). 

3.2 B isimulat ion 

Our presentation of bisimulation here amounts to little more than a mild 

extension3 through the addition of rewards to the definition of bisimulation given 

by Desharnais et al. (2004) in their work on labelled Markov processes (LMPs). 

Let R be an equivalence relation on S. We now have two notions of "visibility" 

on S: the measurable sets, as determined by the sigma algebra on S, and the sets 

built up from the equivalence classes of R. Naturally, we are interested in those 

2 A topological space homeomorphic to a complete, separable metric space. 

3 In fact, this definition of bisimulation for continuous state space MDPs was 
first proposed to me by my supervisor, Prakash Panangaden. 
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sets that are visible under both criteria (measurability and equivalence). Let us 

formalize these concepts. 

We say a set X is i?-closed if the collection of all those elements of S that are 

reachable by R from X is itself contained in X; this is equivalent to saying that 

X is a union of R-equivalence classes. We write S(i?) for those £-measurable sets 

that are also i?-closed. 

Definition 3.2.1. An equivalence relation R on S is a bisimulation relation iff it 

satisfies 

sRs' &VaeA, rA
s = ra

s, and VX G £(#) , Pf{X) = P?,(X). 

Bisimulation is the largest of the bisimulation relations. 

Note that it is not immediately clear that bisimulation itself is a bisimulation 

relation (transitivity is not obvious); that this is indeed the case will be shown 

in the proof of theorem 3.3.2 through a fixed point characterization of bisimula

tion. By contrast, Desharnais et al. (2004) prove transitivity through a logical 

characterization of bisimulation. 

3.3 Metrics 

As before, we will develop state-similarity metrics over a certain space of 

pseudometrics on S; here, however, measurability conditions come into play. 
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Let SOtet be the subset of met consisting of lower semicontinuous4 (lsc) 

pseudometrics. Endowing S x S with the product topology, we note that lsc 

functions are product measurable. Moreover, it is not hard to show that 9Jtet is 

a closed subset of met, so that it is itself a complete metric space. Thus, once 

more we have a rich structure on our space of pseudometrics, admitting the use 

of important fixed point theorems, provided we construct an appropriate map on 

OJlet. In order to do so we first look at the best way of assigning a distance to 

probability measures for our purposes. 

3.3.1 Probability Metrics 

There are numerous ways of defining a notion of distance between probability 

measures on a given space (Gibbs & Su, 2002). Two typical ones are the total 

variation distance, capturing strong convergence of probability measures, and 

the Kullback-Leibler (KL) divergence,5 capturing certain information-theoretic 

properties of the measures. As previously mentioned, however, the particular 

probability metric of which we make use is known as the Kantorovich metric. Its 

use in defining metrics for bisimulation was first demonstrated by van Breugel and 

Worrell (2001a). We present it here in greater generality; all results are taken from 

the books by Rachev and Rueschendorf (1998) and Villani (2002), unless otherwise 

stated. 

4 Recall that a function h : S x S —> R is lower semicontinuous if whenever 
(sn,s'n) tends to (s,s')> liminf h(sn,s'n) > h(s,s'). 

5 Note that the KL divergence fails to satisfy the symmetry axiom for a metric. 
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Given a metric h G OJlet and probability measures P and Q on S, the 

Kantorovich distance, TK(h), is defined by 

TK(h)(P,Q) = sup(P(f)-Q(f)), 
f 

where the supremum is taken over all bounded measurable / : S —> R satisfying 

the Lipschitz condition: / (x) — /(y) < h(x,y) for all x,y £ S. We write Lip(h) for 

the set of all such functions. 

In light of the definition of bisimulation, the importance of using the Kan

torovich distance is made evident in the following lemma. Insofar as we know, this 

is an original result. 

Lemma 3.3.1. Lethe SDtct. Then 

TK(h)(P, Q) = 0 «• P(X) = Q(X), VX G E(Rel(h)). 

Proof. <= Fix e > 0 and let / G Lip(h) such that TK(h){P, Q) < P(f) - Q(f) + e. 

WLOG / > 0. Choose ^ a simple approximation (the usual one) to / so that 

TK(h)(P, Q) < P(ip) - Q(tp) + 2e. Let ip(S) = {ci,..., ck} where the q are distinct, 

Ei = ^ - 1({ci}), and i? = Rel(h). Then each i^ is i?-closed, for if y G i?(2?») then 

there is some x G Ei such that /t(a;, y) = 0. So /(#) = /(y) and therefore, ^(x) = 

t/>(y). So y G £*. So by assumption P(V>) - Q(^) = J2cip(Ei) ~EciQ(Ei) = 0. 

Thus ,T K ( /0 (P ,Q)=0 . 

=> Let X G S(i?).-Let K C X he compact. Define f(x) = mikeK h(x, k). 

Since a lsc function has a minimum on a compact set, we may write f(x) = 

miiikeK h(x,k). In fact, / is itself lsc (Puterman, 1994, theorem B.5). Since / is 

measurable, R{K) = / - 1({0}) G T,(R). Now, since P is tight (as S is a complete 
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separable metric space), P(X) = sup P(K) where the supremum is taken over all 

compact K QX. However, K C X implies K C R(K) C i?(X) = X. Since /2(AT) 

is measurable, we have P{X) — sup P(R(K)). Similarly, Q(X) = supQ(R(K)). 

Define gn = max(0,1 — nf). Then gn decreases to the indicator function on R(K). 

Also, gn/n G Lip(h), so by assumption P(gn/n) = Q(gn/n). Multiplying by n and 

taking limits gives P(R(K)) = Q(R(K)) and we are done. • 

The Kantorovich metric arose in the study of optimal mass transportation. 

The following description is due to Villani (2002): assume we are given a pile 

of sand and a hole, occupying measurable spaces (X, Ex) and (Y, £y) , each 

representing a copy of (S, S) (Figure 3-1). The pile of sand and the hole obviously 

/ V 
X 

arY" 
h(x 

A 
,y) 

•N, 
S Y 

v \ y 

Figure 3-1: Kantorovich optimal mass transportation problem 

have the same volume, and the mass of the pile is assumed to be normalized to 1. 

Let P and Q be measures on X and Y respectively, such that whenever A G Ex 

and B G Ey, P[A] measures how much sand occupies A and Q[B] measures how 

much sand can be piled into B. Suppose further that we have some measurable 
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cost function h : X x Y —>• R, where h(x, y) tells us how much it costs to transfer 

one unit of mass from a point a; £ I to a point y G Y. Here we consider h G VJltt. 

The goal is to determine a plan for transferring all the mass from X to Y while 

keeping the cost at a minimum. Such a transfer plan is modelled by a probability 

measure A on (X x Y, T,x <8> £y)> where d\(x,y) measures how much mass is 

transferred from location x to y. Of course, for the plan to be valid we require 

that X[A x Y] = P[A] and X[X x B] = Q[B] for all measurable A and B. A plan 

satisfying this condition is said to have marginals P and Q, and we denote the 

collection of all such plans by A(P, Q). We can now restate the goal formally as: 

minimize h{\) over A e A(P, Q) 

This is actually an instance of an infinite linear program. Fortunately, under very 

general circumstances, it has a solution and admits a dual formulation. 

Let us first note that measures in A(P, Q) can equivalently be characterized as 

those A satisfying: 

P(0) + W ) = A(0 + VO 

for all (</>, V;) ^ ^(P) x V-{Q). As a consequence of this characterization we have 

the following inequality: 

sup(P( / ) - Q(/)) <TK(h)(P,Q) < inf h(X) (3.1) 
/ AeA(P.Q) 

where / is restricted to the continuous functions in Lip(h). 

The leftmost and rightmost terms in inequality (3.1) are examples of infinite 

linear programs in duality. It is a highly nontrivial result that there is no duality 
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gap in this case, as a result of the Kantorovich-Rubinstein Duality Theorem with 

metric cost function (Rachev & Riischendorf, 1998, theorems 4.15 and 4.28, and 

example 4.24; Villani, 2002). 

Note that for any h for which there is no duality gap, and for any point 

masses 5X, 6y, we have TK{h)(8x,5y) = h(x,y) since 6(XtV) is the only measure 

with marginals Sx and 5y. As a result, we obtain that any lower semicontinuous 

h can be expressed as h(x, y) = supy (f(x) — f(y)) for some family of continuous 

functions / (we used this property in the previous chapter to compute the state-

similarity metric by hand for a very simple finite MDP). 

Suppose P and Q are finite sums of Dirac measures assigning equal mass to 

each of n points, respectively, i.e. P = - Y^k=i &xk
 a r id Q = - X)fc=i &Yk f° r points 

Xx, X2, • • •, Xn and Y\, Y2,. • •, Yn in S. Then the Kantorovich metric simplifies 

according to 
1 n 

TK(h)(P, Q) = min - V h(Xk, Ya{k)) 
fc=l 

where the minimum is taken over all permutations a on n elements. This is 

particularly useful for measuring the distance between empirical measures. 

The Kantorovich metric also admits a characterization in terms of the 

coupling of random variables. We may write Tx(/i)(P, Q) = minpc.y) E[/i(X, Y)] 

where the expectation is taken with respect to the joint distribution of (X, Y) and 

the minimum is taken with respect to all pairs of random variables (X, Y) such 

that the marginal distribution of X is P and the marginal distribution of Y is Q. 
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The next result, which is original, essentially tells us that given the continuity 

assumptions on the MDP parameters, the limit of a sequence of pairs of bisimilar 

states is itself a pair of bisimilar states. 

Theorem 3.3.2. Bisimulation is a closed subset of S x S 

Proof. Recall that DM and <£qu are the complete lattices of binary relations and 

topologically-closed equivalence relations on S, respectively. Define T : SHet —>• £Het 

by 

sT{R)s' ^ V a e A , ra
s = ra

s, and VX e Z(Rrst), P^{X) = P${X). 

Then the greatest fixed point of T is bisimulation.6 

Firstly note here that RrSt is the reflexive,symmetric, transitive closure of R, 

i.e. the smallest equivalence relation containing R. Next, simply note that the fixed 

points of T are precisely the bisimulation relations. So the greatest fixed point is 

contained in bisimulation, and since every bisimulation relation is contained in the 

greatest fixed point, so is bisimulation. 

Next we claim that T maps <£qu to <£qu. That T(E) is an equivalence 

relation for a given E is obvious. To see that F(E) is closed, let {(xn,yn)} be a 

sequence in F{E) converging to some pair of states (x,y). Let a € A. By the 

definition of ^(E), r®n = r^n for every n. Since the reward function is continuous, 

taking limits yields r% = r®. Next, let PE be the discrete pseudometric assigning 

distance 1 to two points if and only if they are not related by E. Since E is 

6 That T has any fixed points at all is a consequence of the Knaster-Tarski The
orem. 
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closed, PE is lower semicontinuous. So the Kantorovich metric, TK(PE) is well-

defined. Now we can invoke the leftmost equality in (3.1) to obtain that the map 

(s,s') i—> TK(pE)(Ps,Ps>) is lsc; for since P" is continuous with respect to the 

topology of weak convergence, P"( / ) is continuous in the usual sense for every 

bounded continuous / in LZP(PE)- SO Ps
a(/) — Ps"(/) is continuous on S x S, 

and hence, lower semicontinuous. Finally, taking the supremum over all / yields 

that the map taking a pair of states to its Kantorovich distance with respect to 

PE is lsc. Let X be an ^-closed measurable set. Then by definition of J-'(E), 

P?n{X) = Py
a
n(X), which by lemma 3.3.1 means TK{pE){P^ P£j = 0 for all n. 

Since TK(PE)(P?,P$) is lower semicontinuous, TK(pE)(P£,P£) = 0. Again using 

lemma 3.3.1, P£{X) = P${X). So (x,y) belongs to f(E), i.e. F{E) is closed. 

Now let ~(*qU be the least upper bound of bisimulation in <£qu. By monotonic-

ity, we have ~ = J-{~) C .F(~gqU). So ~£qU C J-"(~<*qU), i.e. ~£qu is a postfixed 

point of J7; but then ~e q u Q ~, the latter being the greatest postfixed point. 

Therefore, ~ = ~£qU, i.e. bisimulation is closed. 

• 

3.4 State Similarity Metrics 

Definition 3.4.1. A pseudometric p on the states of an MDP is a bisimulation 

metric if it satisfies p(s, s') = 0 •<=>- s ~ s'. 

All of the preceding theory comes together in the following crucial result. It 

is worth noting that our presentation is a significant extension of the work carried 

out by van Breugel and Worrell (2001a; 2001b) in their work on bisimulation 

metrics for labelled Markov processes. 
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Theorem 3.4.2. Let c G (0,1) and Wftti be the set of bounded lower semicontinu-

ous pseudometrics on S. Define F : 97tet —> SDTct by 

F(h)(s,s') = max((l-c)\ra
s-r

a
s,\+cTK(h)(P:,P?,)) 

Then 

1. F has a unique fixed point p*, 

2. p* is a bisimulation metric, 

3. for any h0 G SDTct, limn_00 F
n(h0) = p*, 

4- p* is continuous on S x S, 

5. p* is continuous in r and P, and 

6. p* scales with rewards. 

Before proving theorem 3.4.2, let us first make a few remarks. The first three 

properties tell us that a quantitative notion of bisimulation exists, and that it can 

be approximated. The continuity results tell us that we only need to know the 

metric on a dense subset, and that distances are insensitive to perturbations in the 

MDP parameters. The last property is not surprising, and reflects the fact that the 

actual numbers are not as important as the qualitative structure7 arising from the 

metric. 

7 The topological or even uniform structures - see for example Dudley (2002) -
yield the same distinguishing information with respect to bisimilarity; our specific 
choice of pseudometric here is influenced by theorem 3.4.10. 
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Lemma 3.4.3. F has a unique fixed point p*, such that for any h0 G DJltt, 

\\p* - Fn(h0)\\ <~\\F(h0) - h0\\. 

Proof. It is important to note here that we are implicitly invoking the left

most equality in (3.1) in order to correctly claim that the map taking (s, s') to 

TK(h)(Pg,P£) is lsc. Moreover, F is a monotone map on Witt. 

This is simply an application of the Banach Fixed Point Theorem. Here 

we use the dual minimization form of T#(-), as given in (3.1). Note that for all 

h, h! € Witt, and for all s, s' € S, 

F(h)(s, s') - F(h')(s, s') < cmaoc(T^(/i)(P;, P$) - TK{h'){I», / ? ) ) 

< cm&x(TK(h -h' + ti)(P?, J? ) - TK(h')(P?, P})) 

< cmax{TK(\\h - h'\\ + /»')(/?, P?,) - TK(h')(I~t P$)) 

< cmMh-W\+TK{h'){F;,P})-TK{h')(P;,P$)) 
a£A 

<c\\h-ti\\ 

Thus, \\F(h) — F(h')\\ < c\\h — h'\\, so that F is a contraction mapping and has 

unique fixed point d*. O 

The following is an original continuity result. 

Lemma 3.4.4. p* is a continuous function on S x S. 

Proof Since the set of bounded continuous pseudometrics on S is a closed subset 

of Witt, we need only show that F maps it to itself. So let p be a bounded contin

uous pseudometric on S. Let a £ A. Then continuity of r on S implies |r" — r"| 
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is continuous on S x S. For the continuity of TK(p)(P£, P°), we appeal to the 

following result: 

Theorem 3.4.5 (Parthasarathy, 1967). Let X be a separable metric space and pn 

be any sequence of measures on X. Then pn =>- p if and only if 

lim sup / fdfl„ ~ j fdp = 0 

for every family Ao C C{X) which is equicontinuous at all the points x £ X and 

uniformly bounded, i.e., for some constant M, \f(x)\ < M for all x G X and 

f G Ao. 

This theorem implies that TK(p) metrizes the topology of weak convergence, 

provided Lip(p) is equicontinuous and uniformly bounded. Since p is uniformly 

bounded, so is Lip(p). As for equicontinuity at a point x, let e > 0. Continuity 

of the function p(x, •) implies that there is a neighborhood Nx of x such that 

for all y in Nx, p(x,y) = \p(x,y) — p(x,x)\ < e. Then for any / G Lip(p), 

\f(x) — f(y)\ < p(x,y) < e. Thus, Lip(p) is equicontinuous. Since 

\TK(P)(PS, Py
a) - TK(p)(Px

a
n,Py

a
n)\ < TK(p)(Px

a, PI) + TK(p)(Py
a, PI) 

we have that for any {(xn,yn)} converging to (x,y), Tx{p)(PXn, Pyn) converges to 

TK{p){Px, Py). Thus, continuity of F(p) is immediate. • 

As an immediate consequence of the preceding lemma, we have the following: 

Corollary 3.4.6. The topology induced by p* on S is coarser than the original. 
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Next we show that we have indeed quantitatively captured bisimulation. The 

proof of this result is original. 

Lemma 3.4.7. p* is a bisimulation metric 

Proof. It follows from lemma 3.3.1 that for any h in 97tet, Rel(F(h)) = F{Rel{h)). 

Thus, Rel(p*) = ^(Re^p*)) is a fixed point and so is contained in bisimulation. 

For the other direction, we consider the discrete bisimulation pseudometric that 

assigns distance 1 to pairs of non-bisimilar states; call it p. Since bisimulation is 

closed (theorem 3.3.2), p is lsc. So - = F(~) = F{Rel{p)) = Rel(F(p)), which 

implies F(p) < p. Since F is monotone, iterating F and taking limits yields p* < p, 

whence it follows that Rel(p*) contains bisimulation. 

• 

Before moving on, let us give meaning to the iterates {Fn(±)}. Define 

inductively ~ 0 = S x S, and ~ n + i = .F(~n). Finally, let ~ w = C\n ~ n represent the 

limit of this sequence. 

The best way to view this is once more in terms of "information resolution". 

At first, we know nothing; this is represented by the relation that equates all 

states, ~o- Applying T corresponds to a one-step lookahead refinement, and 

similarly for n steps. Our intuition naturally tells us that in the limit, we should 

have a "strong matching", i.e. bisimulation; however, it is not immediately clear 

that this is so. Not surprisingly, a proof once more makes itself evident through the 

use of metrics. 

Simply note that by induction Rel(Fn(±)) = ~ n (here, we are once again 

using the fact that Rel(F(h)) = !F(Rel(h))). Since it is easily seen that 
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nnRel{Fn(±)) = Rel(supnF
n(±)) and supnF

n(±) = p*, we have ~ w = Rel(p*), 

which is bisimulation. 

Thus, the nth iterate corresponds to an n-step approximation to bisimulation. 

Let us note that we now have three equivalent formulations of bisimulation, mak

ing this more in line with the traditional presentation of bisimulation for labeled 

nondeterministic transition systems: as a maximal relation, as a greatest fixed 

point, and as an intersection of an infinite family of equivalence relations (Milner, 

1980). 

Lemma 3.4.8. / / MDP M' is obtained from MDP M by setting r' = k • r for some 

scalar k > 0, then p*M, = k • p*M. 

Proof. It is not hard to see that k • p*M is a solution to the fixed point equation for 

M'; thus, the result follows by uniqueness. • 

The following original result shows that, by contrast with bisimulation, the 

bisimulation distances vary smoothly with the MDP parameters. 

Lemma 3.4.9. Let M = (S, E, A, r, P) and M = (S, E, A, f, Q) be MDPs with 

common state and action spaces, and such that each satisfies the assumptions 

outlined at the beginning of this chapter. Let p and p be the corresponding 1-

bounded bisimulation metrics given by theorem 3.4-2 with discount factor c. Then 

\\p ~ P\\ < 2||r - f\\ + - ^ - sup TV(P:, Qa
s), 

I, J- C) a,s 

where TV is the total variation probability metric, as defined by 

TV(P,Q) = sup \P(X)-Q(X)\. 
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Proof. Let g be the discrete pseudometric that assigns distance 1 to all pairs of 

non-equal states. Using the triangle inequality along with the fact that Lip(h) is 

containedin Lip(g) for h £ {p, p}, we first obtain: 

TK(h)(P2,Py
a) -TK{h){Ql,Qa

y) < TK(h)(P2,Qa
x)+TK(h)(Py

a,Qa
y) 

<TK(g)(P2,Qa
x) + TK(g)(Py

a,Qa
y) 

<TV(P2,Qa
x) + TV(Py

a,Qa
y) 

Here we have used the fact that TK{O) = TV (Villani, 2002). Next, we see that 

p(x,y)-p(x,y) 

< max((l - c)\ra
x - ra

y\ + cTK{p){P«, P;)) - max((l - c)\ra
x - ra

y\ + cTK(p)(Qa
x, Qa

y)) 

< max((l - c)(\r« - ra
y\ - \ra

x - ra
y\) + c(TK(p)(P£, Py

a) - TK(p)(Qa
x, Qa

y))) 

<max(( l -c) ( | ( r : - r«) - ( f : - f«) | ) 

+ C(TK(P)(P:, Pa
y) - TK(p)(Px

a, P;)) + c(TK(p)(Px
a, Py

a) - TK{p){Ql, Qa
y))) 

< max((l - c)(\ra
x - ra

x\ + \ra
y - fa

y\) + c\\p - p\\ + 2csupTV{P^ Qa
s))) 

< max(2(l - c)\\ra - fa\\ + c\\p - p\\ + 2csup7V(Ps
a, Qa

s)) 

< 2(1 - c)||r - r|| + c\\p - p\\ + 2csup7V(Ps
a, <%))) 

a,s 

D 

Thus, existence of the state-similarity metrics for a continuous MDP is 

established, along with several important properties. However, as in the finite case, 

perhaps the most important property of the metrics is showing that similar states 

have similar optimal values, and that this relation varies smoothly with similarity. 
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We must emphasize that in contrast with the work on LMPs, where the underlying 

motivation has been to analyze the validity of testing properties expressed in a 

modal logic on similar systems, a primary focus here is in analyzing the validity of 

computing optimal values (and hence, optimal policies) on similar MDPs. 

3.4.1 Value Function Bounds 

In moving to continuous state spaces, we must address the validity of the 

continuous analog of the optimality equations: 

V*(s) = max (ra
s + ^(V*)), Vs e S. 

aeA 

In general, such a V* need not exist. Even if it does, there may not be a well-

behaved, that is to say measurable, policy that is captured by it. Fortunately, 

there are several mild restrictions under which this is not the case; and in fact, 

theorem 6.2.12. of Putermah (1994) states that the optimality equations are valid 

provided the state space is Polish and the reward function is uniformly bounded, 

as is indeed the case here. Just as before, the optimal value function V* can be 

expressed as the limit of a sequence of iterates Vn; we can use these to show 

that the optimal value function is continuous with respect to the state-similarity 

metrics. 

Theorem 3.4.10. Suppose 7 < c. Then V* is Lipschitz continuous with respect to 

p* with Lipschitz constant -^-c, i.e. 

\v*{s)-}r^)\<^-/{8^). 
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Proof. Each iterate Vn is continuous, and so each |^n(s) — l/n(s') | belongs to SDTet. 

The result now follows by induction and taking limits. • 

We can use this result to relate the optimal values of a state and its represen

tation in an approximant by considering the original model and its approximant as 

one MDP. More directly, we can use the distances themselves for aggregation with 

error bounds. Let us consider a simple illustration, first, presented in Ferns et al. 

(2005), of metric-based reasoning: let S = [0,1] with the usual Borel sigma-algebra, 

A — {a, b}, r" = 1 — s, rb
s = s, P" be uniform on S, and Pb the point mass at s. 

Clearly, these MDP parameters satisfy the required assumptions. 

Given any c £ (0,1), we claim p*(x,y) = \x — y\. Define h by h(x,y) = ^f~, 

and note that TK{h)(P£,P*) = 0 and TK{h)(P*,P%) = h(x,y). Thus, F(h)(x,y) = 

max(|a; — y\ +c-0, \x — y\ + c-h(x,y)) = \x — y\ +c-h(x,y) = h(x,y). By uniqueness, 

p* = (1 — c)d* = (1 — c)h as was to be shown. 

Now consider the following approximation. Given e > 0, choose n large 

enough so that \ < (1 - c)e. Partition S as Bk = [£, *±1), Bn^ = [2=1, l], 

for A; = 0,1, 2 , . . . , n — 2. Note that the diameter of each Bk with respect to p*, 

diamp» Bk, is - < (1 — c)e. The n partitions will be the states of a finite MDP 

approximant. We obtain the rest of the parameters by averaging over the states in 

a partition. Thus, r%h = 1 - 2§±i, rb
Bk = 2 g l , P^Bl = ±, and P^Bl = 8Bh,Br 

Assume 7 is given and choose c = 7. Note that for all x, y in Bk, 

\V*(x) - V*(y)\ < Y^-C diamp. Bk < e. 
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Thus, we would expect that by averaging, and solving the finite MDP, V*{Bk) 

should differ by at most e from V*(x), for any x E Bk. In fact, in this case 

the value functions of the original MDP and of the finite approximant can be 

computed directly and we can verify this. For x E S, Bk, we find: 

( 

V\x) = { 

V*(Bk) = 

l - x + 

x 
1-7 

2<fc) i f O < a : < i 

if \ < x < 1 

1 2n ^ 2(1-7) - 2 

2fc+l 
2n 

1-7 
if V < k < n - 1 

Therefore, for x E Bk, 

\V*(x)-V*(Bk)\< 
1 - 7 a: — 

2k+ 1 

2n 
< 

1 - c 
diamp. Bk < e. 

In fact, we can generalize this result. Let \i be a measure on S, and "P a 

finite partition of positive /i-measure. Define the /u-average finite MDP M-p by 

(P, A, r, P) where 

pa 

^ LBP*{B')MX)~ KB) 
Then 

AHLSJ; Jie[s] 

where [—] takes s E S to its equivalence class in V. In other words, we can bound 

the distance between a state and its equivalence class by the average distance 
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between that state and all the other states in its equivalence class. The proof of 

this fact is immediate, and essentially follows substitution of r and P as denned 

above into the fixed point equation for p*. 



CHAPTER 4 
State-Similarity Metrics: Practice 

The goal of this chapter is to develop a practical means of estimating state 

similarity in a continuous MDP using the theory of bisimulation metrics developed 

in the previous chapter. In practice, though dealing with infinite state spaces, we 

need to get our hands on some finite structure with which we can work; it is for 

this reason that we will restrict our attention to those Markov decision processes 

with compact metric state spaces. 

4.1 Distance Approximation Schemes 

Based on a comparison of distance-estimation schemes for finite MDPs (Ferns 

et al., 2006), the most promising method for estimating bisimulation distances 

for continuous MDPs would appear to be the sampling method: one samples all 

probability mass functions, replaces each with an empirical distribution built 

from the resulting samples, and repeatedly applies the fixed point bisimulation 

functional to the new MDP. Supposing for the moment that one can enumerate 

and sample from a compact metric space with full-fledged probability measures, 

the only problem in this procedure is the validity of replacing the original MDP 

with the sampled version. In other words, if we replace the probability measures in 

our MDP with empirical measures, is it still true that the bisimulation metric on 

the sampled MDP will converge to the true bisimulation metric as the number of 

samples increases? 

67 
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Fortunately, with some minor modifications the answer is yes. In order to 

prove this, we will need to make use of a uniform Glivenko-Cantelli theorem. 

Such theorems typically characterize uniform convergence of empiricals to means, 

and are ubiquitous throughout machine learning (Anthony, 2002). Formally, one 

says that a family of real-valued measurable functions J- is a strong uniform 

Glivenko-Cantelli class if and only if 

Ve > 0 lim supP*(supsup \fi(f) - /im(f)\ > e) = 0, 
»^°° fi m>i feF 

where the outermost supremum is taken over all probability measures on the state 

space, P is the underlying sampling probability measure and fxm is the empirical 

measure of fi on m samples.1 Let us take a moment to consider what this means 

in the context of the Kantorovich distances. Suppose Lipih) is a uniform Glivenko-

Cantelli class for pseudometric h. Then the uniform Glivenko-Cantelli property 

tells us that TK(h)(/j,, /j,i) converges to zero P-almost surely for all /J, and this 

convergence is uniform over all //. 

The question as to which classes constitute uniform Glivenko-Cantelli classes 

and under what conditions is an important area of active research. Recall that 

Lip(h) refers to the set of bounded measurable functions on S that are 1-Lipschitz 

continuous with respect to h (Section 3.3.1). Recall too, however, that the value of 

1 Recall that each /im is actually a random variable over some ambient probabil
ity space (f2, ,4,P). We use the outer probability P* in place of P in the definition 
of uniform Glivenko-Cantelli class to avoid issues of measurability. 
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the Kantorovich metric is unchanged if we restrict attention to only the continuous 

functions in Lip(h). Henceforth, Lip(h) will refer to the set of bounded measurable 

functions that are continuous on S and 1-Lipschitz continuous with respect to h. 

Lemma 4.1.1. Lip(p*) is a uniform Glivenko-Cantelli class. 

Proof. Since S is assumed to be a compact metric space, S equipped with p* is 

again a compact (pseudo)metric space with a coarser topology (corollary 3.4.6); 

hence, (S, p*) is totally bounded. Our result then is contained in the proof of the 

following proposition: 

Proposition 4.1.2 (Dudley et al., 1991). For any separable metric space (X,d) 

and 0 < M < oo, FM '•= {/ : | | / | | B L < M} is a universal Glivenko-Cantelli class. 

It is a uniform Glivenko-Cantelli class if and only if(X,d) is totally bounded. 

A few remarks are warranted in regard to the application of this proposition 

to Lemma 4.1.1. Firstly, the proof of Proposition 4.1.2 in Dudley et al. (1991) 

shows us that the implication that FM is a uniform Glivenko-Cantelli class 

provided (X, d) is totally bounded depends solely on the integral probability metric 

induced by FM metrizing weak convergence and FM itself being totally bounded 

in uniform norm - and this remains valid in the context of pseudometric spaces. 

In other words, if we can show that the integral probability metric induced by 

Lip(p*), Tx(p*), metrizes weak convergence and that Lip{p*) is totally bounded, 

then it will follow that Lip(p*) is uniform Glivenko-Cantelli. 

Theorem 3.4.5 shows us that TK(P*) metrizes weak convergence (as outlined in 

the proof of lemma 3.4.4); so we need only show that Lip(p*) is totally bounded. 
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Since (S, p*) is totally bounded, so is F2. Now since p* is continuous on S x S, 

Lip(p*) can simply be denned as those functions that are 1-Lipschitz with respect 

to p*; for any such function / we have 

< Up! < 1, and 

ll/IU == suJlfix).~f[y)l :x,yeX such that p*(x,y) ? o) < 1. 

Therefore, | | / | | B L : = | | / | | + | | / | | L < 2 , whence it follows that Lip(p*) C F2 (here 

|| • \\L and || • \\BL are the Lipschitz and bounded-Lipschitz norms, respectively). As 

a subset of a totally bounded set is itself totally bounded, we are done. 

• 

How does this help us? Recall that as a first step in our distance approxi

mation scheme, we would like to replace each probability measure on the space 

with an empirical measure and use Theorem 3.4.2 to guarantee existence of bisim-

ulation metrics. However, in order to use that we require the map taking states 

to empirical measures to be continuous - and in general this need not be the 

case. We may circumvent this issue by replacing the Kantorovich operator with 

one that is defined on all real-valued functions, not just the measurable ones. 

For a fixed i, define for empiricals p,i = | H = 1 <5x, and V{ = 4 YJJ=I^ an<^ 

bounded-pseudometric h, 

1 ' 
Tl

K(h)(p,i, Vi) = min T V ] h(Xk, Ya{k)) 
<T % 

k=\ 

(note that if h is measurable, then Tl
K{h)(ni, v^) = TK(h)(pii, ^ ) ) . With this in 

mind, we may once more apply the Banach Fixed Point Theorem to obtain: 
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Proposition 4.1.3. Let c G (0,1) and % G N. Define Fi : met —> met by 

Fi(h)(s, s') = max((l - c)\ra
s - ra

s,\ + cTK(h)(P^s, i* , ) ) 

Then : 

1. Fi has a unique fixed point p\, and 

2. for any h0 G met, limn^oo(F i)
n(/i0) = p*.2 

Thus, the proposed statistical estimates {p*} to p* exist; yet, how do we know 

that they actually converge to p*l It is not hard to see that 

\\P*-P*\\<7^- sup T*(p' ) ( i* , /? ) . (4.1) 
1 - c aeA,seS 

Simply note that 

\p*(S,s')-p*(s,s')\ < cmax\TK(p*)(P?tS,P«s,) - TK{p*){P^ P$)\ 
a€A 

< cv^\rK(fi)(P£a,Ify)-Tk(p*){I*a,Pfr)\ 

+ Cmax|rK(p*)(/-s,^s,)-r^(p*)(p;,p;)| . 

2 Technically, we have a random mapping here; that is, for each u in Q, there is 
a mapping Fi(uj) from met to itself with fixed point p*(co). So each p* is really a 
(not necessarily measurable) mapping from Q to met. Therefore, when speaking of 
convergence of the family {pi}, we assume that convergence to be almost surely or 
in probability with respect to P*. We will omit the explicit use of UJ in the rest of 
this work for the sake of convenience; however, the reader should make careful note 
of its existence. 
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< clip* - p * | | + cmax(TK(p*)(P«s, P?) +TK(p*)(PZs„P:,)) 

< c\\p* - p*\\ + 2csupT„(p*)(P«s, Ps
a) 

a,s 

and the result follows. This is where the uniform Glivenko-Cantelli property comes 

into play: we would like to use it to show that the quantity on the right-hand side 

of inequality 4.1 tends to zero almost surely. Unfortunately, we face a problem 

in the form of the supremum over the possibly uncountably infinite set S. While 

the uniform Glivenko-Cantelli theorem indeed tells us that empiricals converge 

in Kantorovich distance to their measure almost surely for each measure, and 

even over all measures almost surely for a countable set of measures, it does not 

dictate that all measures converge at the same rate uniformly almost surely. Here 

compactness comes to the rescue. 

Let U be a countable dense subset of S, and let d be the metric on S. Recall 

that p* is continuous on S x S; in fact, since S is compact we may take p* to be 

uniformly continuous. So for a fixed e > 0, there is a Sc(e) > 0 such that for any 

x,y in S, if d(x,y) < 6c(e) then p*(x,y) < e. In particular, we have 

maxT*(p*)(Px
a,P;) < -p*(x,y) < -

Let [—] : S —> U be a mapping such that d(s, [s]) < Sc(e) for every s in S and 

the image [S] is finite; that this can be done is a consequence of U being dense in 

S and S being compact. Next, if p{ = \ Y!j=\ ^Xj, define [p^ to be \ Y,)=i ^[x,]-
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Then for any /jj 

TK(p*)(ph {fa]) = mm-J2p*(Xk, [Xa{k)]) < -Tp*(Xk, [Xk]) < e 
k=\ fc=l 

Now we are ready to proceed. The idea is that we will use statistical estimates 

of the probability measures as before; however, this time we will use [—] to shift S 

to close by points in U, thus restricting our calculations to the finite set [S]. 

Theorem 4.1.4. Let c G (0,1), i £ N, and e > 0. Define F^e : met —> met by 

FUh){s, s') = max((l - c)|rfs] - rfo| + cTK(h)([P^s]}, [ i ^ , ] ) ) 

Then : 

1. Fi>e has a unique fixed point p * e , 

2. for any h0 G met; l imn^o o(F i ] e)n( / i0) = P*,e, and 

3. p*e converges to p* as i —> oo and e —»• 0, F'-almost surely. 

Proof. The first two items once more follow from the Banach Fixed Point Theo

rem. As for the last item, let us show that 

\\pl -p*\\< T - ^ e e + 2c max TK{p*)(P^ui Pu
a)). (4.2) 

1 — c aeA,ue[S] 

As in the previous proposition, let us note that 

K > , s') - d*(s, s')\ < (1 - c) max(|rfs] - rfol - \ra
s - ra

s,\) 

+ +cmax \rK(pl)mis]}, [P?<W]\) ~ TK(P*)(P:, i ? ) l 



< (1 - c) max \rfs] - ra
s \ + max |rfs,j - ra

s, \ 

+ cmax \TK(pl)([P^ I ^ M D ~ Tl
K(p*)([P?t[s]}, [i*[y]])| . 

+ cmax |T*(p*)([P°[s]], [P^,,]) - TK(p*)(P:, P?)| 

< p * ( s , [ s ] ) + p V , [ s ' ] ) + c | |p* e - -pl 

+ cmg{TK(p*){[PZ[a]],P?[a]) + TK(p*)(P°[s], Pft) + TK(p*)(P^P:) 

+ TK(p*)(P:„ 'Pfa) + TK(p*)(P^,P^[sl]) + TK(p*)(P?M, [J*M])} 

< c\\pl - p*\\ + 6e + 2c max T^(p*)(P«u) Pu
a) 

a£A,u<E[S] 

and the bound follows immediately. 

By the Uniform Glivenko-Cantelli property, the rightmost term in inequal

ity 4.2 tends to zero P-almost surely (incidentally, dependent on e); for, given a 

finite set U of measures, we have for a given e > 0 

P*(supsupTK(p*)(//m,p;) > e) = P*(supsup7V(p*)(p;m,/i) > e) 
m>i /nsW n&A m>i 

<^2F*(supTK{p*)(fim,f,) > e) 
_, . m>i 

<\U\supF*(supTK(p*)(fxm,p,)>e) 
/x m>i 

whence it follows that P*(limsuprTlsup/ieWT^(p*)(p:m,/i) > e) = 0. Since e is 

arbitrary, we then have P*(limsupTnsupMeWT;R-(p*)(p,m,p:) ^ 0) = 0. Hence, for 

every e > 0 

lim \\PI - p*\\ < ^ (4 
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except for a set Ne of P-measure zero. Consider now only rational e, and let AT be 

the union of the collection {Ne} over all such e. Then save for N, inequality 4.3 

holds for every e, and N has P-measure zero. So letting e tend to zero in the same 

inequality, we find that pi>e converges to p*, as was to be shown. • 

Let us note that this then is the crucial result: it tells us that we may 

approximate p* through (F"e)(±), i.e. through sampling, discretization, and finite 

iteration and that we need only compute this latter quantity on [S]. More.to the 

point, we may choose [S] C U to be finite, since the <5(e)-balls of U form an open 

cover of compact S. We now have the seeds of an algorithm. 

4.2 On the Road to an Algorithm: the Question of Representation 

We will assume we are provided with an "effective" representation of the 

state space S in terms of an enumeration of a countable dense subset U of S; we 

will additionally require that a specific metric d on S be specified as part of the 

input as a computable function on U x U. The set of actions is simply a finite 

set A, and the reward function will be represented as an A-indexed family of 

computable functions from U to [0,1]. All that remains is to specify the transition 

probabilities. 

How does one represent a probability measure on a continuous space? In the 

discrete setting, one of two approaches traditionally suffices: either probabilities 

can be specified point-to-point in a probability matrix, or one restricts attention 

to a parameterized class of probability mass functions. This latter approach also 

applies to Euclidean spaces, where one typically works with probability density 

functions. Although one may argue that both approaches can be suitably extended 
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in the setting of a compact metric space (the interested reader is directed to the 

works of Edalat (1997) and Webster (2006)) we will focus on the approach taken 

by Bouchard-Cote et al. (2005). 

Let us suppose that (S, d) is supplied with a canonical probability measure 

ji. We may then represent transition kernels inducing non-atomic probability 

measures by an A-indexed family of product measurable probability density 

functions, fa : S x S —• [0, oo), such Ps
a(M) = fM fa(s,-)d[i. We will further 

suppose that n(U) = 1 and for each a, fa is continuous in the first coordinate, 

and bounded by a /j-integrable function in the second; it then follows from the 

dominated convergence theorem that P" is (weakly) continuous in s, and finally, 

that we need only specify each fa on U x U. 

To summarize, a given continuous Markov decision process (S, E, A, P, r) with 

compact metric space (S, d) will be represented by the sextuple (U, d, ji, A, P, r), 

where: 

• U is an enumeration of a countable dense subset of S, 

• the metric d is computable on U x U, 

• fj, is a canonical sampling measure on S satisfying [i(U) = 1, and 

• P° is represented by 

o an atomic measure, given by a finite sum of point masses subject to the 

continuity constraint, or 

o a non-atomic measure, given by a probability density function fa : 

U x U —> [0, oo) continuous in the first coordinate, and bounded 

uniformly by a /i-integrable function in the second coordinate 
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• r is a computable function from U x A to [0,1] 

Lastly, we will assume that for a fixed positive rational e we can enumerate 

a finite database X C U, such that the e-balls centered at the points of X cover 

the entire space. Such an X is called an e-covering. If X instead satisfies that all 

of its points are at least e apart, then it is called an |-packing. The ideal situation 

would be one in which we can find an X that satisfies both properties; such an X 

is called an e-net. 

If a means of enumerating an e-net for a given problem does not make itself 

obvious, then, as noted by Clarkson (2006), an e-net X can be constructed by 

the following greedy algorithm essentially devised by Gonzalez (1985): given 

input e > 0 and maximum allowable e-net size k, pick s £ U arbitrarily, and 

set X := {s}. Then repeat the following: pick an s € U — X that maximizes 

d(s,X) = mm{d(s,x) : x € X}: If d(s,X) < e or \X\ > k then stop; otherwise, 

set X := X U {s}, and continue. Then X is an e'-net for some e' < e provided k is 

large enough; specifically, e' := d(s, X — {s}) where s was the last state to be added 

to X. The only problem in immediately applying this algorithm to the general case 

is in finding the element s in U that maximizes d(s, X). We can get around this by 

sampling according to ji] either sample the space beforehand and run the algorithm 

on the finite samples, or as suggested in Bouchard-Cote et al. (2005) replace the 

maximum with the essential-supremum with respect to fi and approximate this via 

sampling according to /J, and maximizing over the samples. The resulting heuristic 

should provide an ample covering of U. 
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Our algorithm then is as follows: given a positive rational epsilon, enumerate 

a 8c(e) cover X. Define [s] to be the nearest neighbor of s in X according to d. 

Sample the probability distributions induced by X and use [—] to restrict them to 

X. Finally, perform the iteration algorithm on X, as in the finite case. Figure 4-1 

provides pseudocode for estimating distances to within an iteration error of 8 for a 

given e and e-net X. 

4.3 Estimation Error 

Let us analyze the error of our approximation algorithm for the 1-bounded 

bisimulation metric p*. Recall that we are approximating p* by F™e{±) for large i 

and n, and small e. So the approximation error is given by: 

ii ( i ^ n i ) - P*ii < n(^e)"(±) - PIW + \\PI - P*\\ 

< T ^ - ( 1 - c) • (1 - c)-±-(6e + 2c max TK(p*){P?u, Pu
a)) 

1 — C 1 — C aeA,ue[S] 

1 — C L — C aeA,ue[S] 

Let e„, £[_], and eP denote cn, ^ , and ^ maxae^ue [5] TK(p*)(P?u, P£); these are, 

respectively, the bisimulation, discretization, and sampling errors. In the next few 

sections, we will try to bound these to within some prescribed degree of accuracy. 

4.3.1 Bisimulation Error 

Bounding the error due to approximating bisimulation in n steps is a simple 

enough feat. Suppose we want this error to be less than 8 for some 8 > 0. Choose 

n — | " ^ 1 ; then e^ = cn < c^ = elnS = 8. So we need only iterate for [ j ^ ] steps. 
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INPUT: finite database X C U, finite action set A, number of samples i, 
reward function r : U x A —> [0,1], distance function d : U x U —> [0, oo), 
density functions {/a : U x U —> [0, oo)}aeA. sampling measure ̂ , 
iteration error S 

O U T P U T : distance function p : X x X -> [0,1] 

M E T H O D S : 
NN(z,d, X) returns nearest neighbor of z in X according to d. 
SAMPLER, /) returns element of U sampled independently according to 

probability measure induced by fi and density /. 
HUNGARIAN_ALG(p, x, y) returns value of minimum-cost assignment for 

assignment problem with cost p and z-vectors x and y from X. 

ALGORITHM: 
(INITIALIZATION) 
For s,s' = 1 to \X\ do 

p(s,s')^0 
For a — 1 to |/1| do 

For j — 1 to i do 

2^SAMPLE(^,/a(s,-)) 

(MAIN LOOP) 
For j = 1 to fjai] do 

For s, s'= 1 to |X| do 
For a = 1 to |̂ 4| do 

TKa(s, s') *-HUNGARIAN_ALG(p, Pa(s, •), Pa(s', •)) 
For s,s' = l to |X| do 

p(s,s') -^maxQ((l -c)\r(s,a) -r(s',a)\ +cTKa(s,s')) 

Figure 4-1: Pseudocode for estimating bisimulation distances 

4.3.2 Discretization Error 

In some sense, bounding the discretization error is hopeless - we need to know 

how p* varies with d and in general, this is information that we just do not have. 

However, there is some hope; recall that what we need is some way of specifying a 
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5c(e) so that d(x,y) < 5c(e) implies p*(x,y) < e. Suppose we can bound p* from 

above by a continuous metric m; define the modified metric dm to be max(d, m). 

Then, as d < dm and dm is continuous with respect to d, we have that dm and d 

are compatible metrics, i.e. they induce the same topology on S. Therefore, we 

could use dm in place of d and simply take Sc(e) to be e; but how do we find m? 

More to the point - as p* is itself a candidate - how do we find an m that is easier 

to compute than p*l 

We propose here a heuristic for computing such an m. We cannot hope to 

bound the discretization error in computing m due to the reasons mentioned 

above; however, we hope to shift the focus of the discretization error onto how r 

and P vary with d. In other words, if we discretize the state space using an e-net 

with respect to dm then we will be able to set £[_j = -^- + em where em, the 

estimation error for dm, hopefully varies much more closely with d than does p*. 

Let SDTetc Q 97tet denote the space of bounded continuous pseudometrics on S. 

Define R € Wtttc by 

R{x,y) = max|r£ - r " | 

and the operator T : OJtctc —> 9Jlttc by 

T(h)(x,y) = m*x(P2®PZ)(h), 

where \x <g> v is the product measure of p, and v. The fact that T(h) is symmetric 

follows from the Fubini-Tonelli Theorem (see for example Folland (1999)), which 

allows one to change the order of integration in an iterated integral. The fact that 

T{h) is continuous for h in Wlttc follows from the fact that for separable metric 



81 

spaces the limit of the product of weakly converging measures is the product 

of the limits of those measures, i.e. if pn => p, and un =>- v then pn <g> vn =£> 

p®v (Billingsley, 1968). We immediately have that for any h G VJttic, 

F(h) < (l-c)R + cT(h), 

where F is the fixed point operator for p*. Finally, we define 

oo 

m:=(l-c)J2ckTk(R). 
k=0 

Note that by comparison with the geometric series (1 — c) YlV=ock^ rn converges 

absolutely everywhere. Moreover, as the sequence of partial sums belong to OJtctc 

. and converge uniformly to m, m too belongs to Wtttc- Now for any x,y and a, the 

Monotone Convergence Theorem tells us that 

oo oo 

{Pa
x ® Py

a)(m) = ( i ? ® P;)(( l - c) Y,ckTk(R)) = (1 - c) J V ( i * ® P;)(Tfc(i?)). 
k=0 fc=0 

Hence, taking the maximum over all actions yields T(m) < (1 — c) X)fclo (^Tk+1(R). 

Thus, F(m) < ( l - c ) P + cT(m) < (1 - c ) P + c(l - c ) E f c L o ^ ^ H ^ ) = m» whence 

it follows that p* < m. 

Let us assume that we can compute (P£ (8) P£)(h) for any computable /i, e.g. 

through numerical integration, sampling, etc. Then we can compute m for any pair 

of states by iterating T until cn is less than some prescribed degree of accuracy and 
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computing the nth partial sum.3 Finally, dm can be computed as the maximum of 

m and d, and can even be taken to be 1-bounded.4 

4.3.3 Sampling Error 

Let us first note that, strictly speaking, the expression denoted by £p is not 

solely the error due to sampling; for it is dependent on the measures indexed by 

[S], i.e. it measures error due to discretization as well. In addition, though this 

term does tend to zero almost surely, it will be easier in practice to bound its 

convergence in probability. Let us suppose we want £p to be less than or equal to 

A with probability at least 1 — a for some small positive constants A and a. Note 

that 

F(ep > A) = P*( max TK{p*){P^Pa
u) > i - ^ A ) 

<\A\\[S}\ sup r ( T i , ( p * ) ( ^ , P u
a ) > i - ^ A ) . 

Thus, it will suffice to find a uniform Glivenko-Cantelli convergence bound for 

s u p P - ( W ) ( ^ 0 > ^ A ) < ^ . (4.4) 

The lower bound on the number of samples required to achieve the specified level 

of accuracy with the specified probability is known as the sample complexity. 

A large number of bounds exist in terms of various notions of dimension, e.g. 

3 This, of course, introduces the additional estimation error em. 

4 We may replace d with the compatible 1-bounded metric ^ . 
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VC-dimension, the fat-shattering dimension, covering numbers (Anthony, 2002); 

in general, a specific bound will depend on the structure of the metric space in 

question. As such, we are not able to provide specific bounds for the sample 

complexity in full generality. However, as an example, the following asymptotic 

lower bound for 4.4 can be obtained from Theorem 3.6 of Alon et al. (1997): 

i = 0(iG8Wf+lni)), 

where e = ^ A , rj = \AurSu, and (3 is the fat-shattering dimension of Lip(p*) with 

scale ^ : for a given class $ of [0, l]-valued functions on S and a given positive 

real number 7, one says S' C S is 7-shattered by $ if there exists a function 

s : S' —> [0,1] such that for every S" C S' there exists some fs» G $ that satisfies 

for every x G S'\S", fs"{x) < s(x) — 7 and for every x G S", fs"(x) > s(x) + 7. 

The fat-shattering dimension of $ at scale 7 is the maximum cardinality of a 

7-shattered set. 

4.3.4 Computational Complexity 

Precise computational complexity results are difficult to come by due to the 

application of this work to general metric spaces. The particular performance will 

depend on the structure of a given space - and this in turn can be represented 

by a number of proposed measures of metric space dimension (Clarkson, 2006). 

However, the previous sections do give an idea of the space and time requirements 

in computing distances to a given level of accuracy with a given probability. A • 

quick glance will tell us that it would be very expensive to attempt to compute 

distances to within a very small degree of error with high probability - but this 



is none too surprising. Previous work (Even-Dar & Mansour, 2003) has shown 

that finding the minimal e-equivalent MDP for a given finite MDP in tabular 

form is NP-hard and computing the bisimulation metrics obviously solves that 

problem. In practice we fix the number of samples in our sampling procedure 

and sacrifice accuracy for improved running times, e.g. for a fixed number of 

samples i and a given discretization [—], let n be the number of discretized states 

in [S] and m be the number of actions; then computing the state-similarity 

distances to within a bisimulation error of 5 requires time 0(^mn2i3). In order 

to see this, let us refer to the pseudocode in Figure 4-1: in the initialization 

phase, for every discrete state and for every action, a sample is obtained and 

a nearest neighbour search is peformed, % times, let us assume that sampling 

takes constant time; then this requires 0(nmi(0(l) + n)), or 0(mn2i) steps. 

In the algorithm's main loop, we iterate the following procedure for |~j^] steps: 

for every pair of states and for every action, peform the Hungarian algorthim 

on their induced empirical probability distributions, taking 0(i3) steps for each 

pair and leading to a total of 0(n2mi3) steps. Then for every pair of states a 

maximization must be performed over the m actions, requiring a total of 0(n2m) 

steps. So the main loop requires 0(^(mn2i3 + mn2)), or 0(^-mn2i3) steps. 

The entire algorithm then requires 0(mn2i)+0(^mn2i3) = 0(j~mn2i3) steps. 

Future algorithmic efficiency, however, will require the imposition of several 

structural/representational conditions and learning just how to exploit these. 



CHAPTER 5 
Experiments 

In this chapter we perform a few illustrative experiments to demonstrate 

the use of our distance-approximation-scheme in practice. Software was written 

using the Java programming language and Java's pseudorandom number generator 

was used to sample states. Experimental data was analyzed in MATLAB. The 

distance-approximation algorithm was coded by myself, using an implementation of 

the Hungarian Algorithm by Konstantinos A. Nedas (2005). 

5.1 A Simple MDP 

For our initial experiment we used the simple MDP described in section 3.4.1: 

S = [0,1] with the usual Borel sigma-algebra, A = {a, b}, r" = 1 — s, rb
s = s, Ps° 

is uniform on S, and Ps
6 is the point mass at s. The simple structure of this MDP 

allows us to compute exactly the form of the bisimulation metric: p*(x, y) = \x — y\. 

Therefore, we can use this expression to test the accuracy of our algorithm as we 

vary the level of discretization and the number of samples for a fixed bisimulation 

error. 

For our experiments, we considered metric discount factors in {0.1,0.5,0.9} 

and discretized the unit interval by dividing it into subintervals of size e, for e 

belonging to {0.025,0.050, 0.075,..., 0.450,0.475,0.500}, and choosing the left 

endpoints of each subinterval to be in our e-net, e.g. for e = 0.250 the unit interval 

[0,1] is divided into {[0,0.250), [0.250,0.500), [0.500,0.750), [0.750,1]}, which gives 
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the e-net {0,0.250,0.500,0.750}. For constructing empirical measures, we let the 

number of samples vary from 1 to 30. Throughout, we kept the bisimulation error 

fixed at the low value of 0.001. For each setting of the parameters, we computed 

the metric estimate p, its computation time in milliseconds, and its distance from 

the exact metric with respect to the uniform norm, i.e. 

\\p-p*\\ = sup \p(x,y) - p*{x,y)\. 
3i,ye[0,l] 

For estimating this latter term we used an e-discretization of [0,1] with e = 0.01 

and used a nearest-neighbour mapping to extend p to this setting. For each 

setting, we performed these calculations for thirty independent runs. The results, 

averaged over the thirty runs, are depicted in Figure 5-1 and Figure 5-2. 

The timing results coincide with what we would expect given the discussion 

at the end of the previous chapter, e.g. for a fixed discretization e, there appears 

to be an order of growth of 0(n3) in terms of the number of samples. The increase 

in distance-approximation error with the discount factor on the other hand is 

at first glance unsettling: after all, the function we are attempting to estimate, 

p*(x, y) = \x — y\, is independent of the metric discount factor c! 

In fact, this too is to be expected: the linear increase in error with the dis

cretization can be attributed solely to the use of the nearest-neighbor method in 

calculating the approximation error; as for the sharp increase in the approximation 

error in the case of higher metric discount factors, low discretization, and smaller 

sample sizes, this only serves to illustrate the fact that higher values of c corre

spond to a greater emphasis on future distances in the recursive definition of p*. 
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In other words, since we require many more iterations for higher values of c, the 

sampling and discretization error build up to a greater extent (see, for example, 

the error bounds in section 4.3.3). Since high values of c are common in practical 

application, this at first appears to be troubling; notice however, that the data 

for our simple example shows that for a fixed discretization, the error decreases 

sharply with the number of samples. So one can obtain a good approximation even 

for higher values of c, simply by increasing the number of samples. 

5.2 Puddle World 

In this section we investigate a more realistic problem through a variant of 

"Puddle World" (Sutton, 1996), as pictured in Figure 5-3. In this problem, an 

agent moves throughout the unit square [0, 1] x [0,1] according to one of four 

possible actions: move up, down, left, or right by 0.05, up to the limits of the 

space. For each action, there is a stochastic noise in the form of a Gaussian with 

mean zero and standard deviation 0.025 (either vertical or horizontal, depending 

on the direction of the chosen action). There are also puddles, circles of radius 

0.1 whose centers belong between (0.1,0.75) and (0.45,0.75), and (0.45,0.4) and 

(0.45, 0.75), as well as a goal area consisting of all those positions above the line 

x + y = 1.9. Rewards are assigned according to position: a reward of 0.4 — 4di 

is achieved for positions within the puddles, where d\ is the straight-line distance 

into the puddle, a reward of 0.4 + 6y/2d,2 is achieved for positions within the goal 

area, where di is the straight-line distance past the goal line, and a reward of 0.4 

is achieved everywhere else. Note that we have modified the reward function of the 

original problem in order to meet the continuity and boundedness conditions set 
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Figure 5-3: An agent moving throughout a modified Puddle World 

out at the beginning of Chapter 3. The goal of this Markov decision problem is to 

learn a policy that would get and keep the agent into the goal area while avoiding 

the puddles. 

Here, we consider the effects of using a deterministic model of the environment 

in place of the original. Our deterministic model is obtained by simply neglecting 

the Gaussian noise. We then estimate the bisimulation distance between a state, 

or position, in the original model and the corresponding position state in the 

deterministic model. An overall small magnitude in distance would justify the use 

of the more easily solvable deterministic model. 

For this experiment, we again considered metric discount factors in {0.1,0.5,0.9} 

and discretized the unit interval into subintervals of size 0.05, choosing the left 

endpoints to represent the subintervals. We then took the product of this set of 

points with itself in order to obtain a grid of points that covered the unit square. 
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Empirical measures were obtained by sampling 10 states each. We then estimated 

the distances between each state and its deterministic copy, once more using a 

bisimulation error of 0.001. We performed this calculation for thirty independent 

runs for each setting of the discount factor. Results were averaged over the thirty 

independent runs and are pictured in Figure 5-4. 

For our Puddle World problem domain, these results imply that one can 

justify use of a solely deterministic model for low metric discount factors (and 

hence low value discount factors), as the distances are indeed everywhere negligible 

for c = 0.1, and very small, being roughly no more than 40% of the maximum 

distance in small areas of the domain, for c = 0.5. For the high discount factor 

of c = 0.9 on the other hand, we once more see that states are distinguished 

to a greater extent as we look further ahead into the future. Here the use of a 

deterministic model can only be justified in roughly the bottom half of the physical 

domain. This coincides with what we would expect, since states closer to areas of 

greater reward differential, i.e. the puddles and the goal zone, carry a greater risk 

of being distinguished by those rewards. 



CHAPTER 6 
Conclusions 

In this thesis we have established a robust quantitative analogue of bisim-

ulation for Markov decision processes with continuous state spaces in the form 

of a continuous pseudometric on the system states. More importantly, we have 

developed a novel distance-estimation scheme for MDPs with compact metric state 

spaces, permitting for what we believe is the first time the use of metric based 

reasoning for continuous probabilistic systems in practice. 

The ability to estimate bisimulation distances for a wide class of continuous 

systems provides an invaluable tool for finding solutions to a similarly wide class of 

problems. One can compare the performance of several candidate state aggregation 

schemes in practice, or one can use the distances themselves to aggregate; in either 

case the distances provide meaningful error bounds on the quality of the models. 

Equally important, they provide tight error bounds on the quality of solutions 

obtained from finite approximations through the continuity bounds we've obtained 

on the optimal value function. 

6.1 Future Work 

There are many interesting directions possible for future investigation. Chief 

among these is the question of whether or not the results appearing in this work 

remain valid with less stringent or alternative conditions on the Markov decision 

problem parameters. Let us make a few quick remarks on this matter: firstly, 
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the work of Desharnais (2000) for LMPs provides ample evidence that existence 

of our metrics should remain valid in at least analytic spaces. Following along 

the lines of Miiller (1997), we may replace uniform boundedness of rewards with 

boundedness in terms of a bounding "weight" function, which controls the rate 

at which the functions grow - this essentially amounts to replacing all uniform 

norms by weighted uniform norms in the proofs of this work. Promising work 

on Kantorovich duality (Dedecker et al., 2004) may allow us to show that the 

mapping of states to the Kantorovich distance of their induced distributions in 

Theorem 3.4.2 is a measurable mapping, thereby allowing us to remove continuity 

conditions on the reward and probability parameters, at least in existence proofs. 

There are problem instances where each time step is equally important, 

and discounting is unsuitable; in these cases an average reward optimality crite

rion (Puterman, 1994) is preferable for finding optimal polices for a given Markov 

decision process. We conjecture that limc_,.i p* may yield a bisimulation metric 

suitable for analyzing average reward Markov decision problems. 

We could also consider applying our work to extensions of bisimulation. 

Desharnais et al. (2002), for example, utilize weak bisimulation instead of bisim

ulation when developing a quantitative notion of state-similarity for a finite 

probabilistic transition system: essentially, states are deemed equivalent if they 

match over a sequence of transitions, rather than precisely at every step. 

An immediate concern is that the algorithm proposed in this work was tested 

merely to illustrate its validity; a more extensive empirical investigation needs to 

be performed and will be carried out at a later stage. In practice, however, MDPs 
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are rarely represented explicitly; instead, researchers usually work with factored 

representations (Boutilier et al., 2000), wherein the state space is represented by 

a family of state variables. Each MDP parameter is then compactly represented 

in terms of these variables, e.g. using dynamic Bayes nets or multi-terminal 

binary decision diagrams, yielding a compact representation of an MDP. If metric 

calculation can be adapted to work solely with the factored representation, and it 

is our strong belief that this is the case, then one would expect a great savings in 

the performance of such state-similarity algorithms. 

Another natural extension is to apply this work to partially observable 

MDPs (POMDPs). A POMDP basically consists of an MDP in which the actual 

state of the system is hidden; instead one has a visible set of observations and a 

probabilistic observation function. Each POMDP induces a continuous MDP from 

which a solution may be recovered. In this sense, our results for continuous MDPs 

would immediately apply; however, a more direct solution would be preferable. 

The most evident use of our metrics is in analyzing state aggregations; how

ever, the original motivation for a quantitative notion of bisimulation was to study 

performance properties of a system, specified in terms of a modal logic (Desharnais 

et al., 1999; Desharnais, 2000). In fact, the original LMP metrics were defined in 

terms of a real-valued modal logic that captured properties of the system's states. 

Though we have not covered the logical approach for the continuous case in this 

work, it should easily be carried over with only slight modification. Thus, our 

metrics have a potential use in reasoning about logical properties of continuous 

MDPs too. 
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There has also been some preliminary work on knowledge transfer of policies 

in MDPs (Phillips, 2006). The basic idea is that if two MDPs have small overall 

bisimulation distance then Theorem 3.4.10 tells us that their optimal value 

functions, and hence optimal polices, should not be too far apart. One could 

potentially solve a class of MDPs by using the solution to a base MDP to which 

they are all similar, and modifying that policy accordingly. 

Lastly, one might say the next logical step is to allow other parameters, e.g. 

time or the space of actions, to be continuous. 
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