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ABSTRACT 

Although the native conformation of a protein is thermodynamically its most 

stable form, this stability is only marginal. As a consequence, globular proteins have 

a certain amount of fiexibility in their backbones whieh allows for conformational 

changes in the course of their biologie al function. In the course of this thesis, we 

study protein models at the edge of stability in different contexts: 

• First, we use molecular dynamics to determine the force needed to rupture a 

chain molecule (an unfolded protein) being stretched at constant loading rate 

and temperature. When all energy bonds of the molecule are identical, we find 

that the force F depends on the pulling rate rand temperature T according 

to F rv con st - T 1/311n( r fT) 11/3 . When a single weak bond is introduced, this 

result is modified to F rv const - T 2/311n( r fT) 12/3 . This scaling, which is model 

independent, can be used with force-spectroscopy experiment to quantitatively 

extract relevant microscopie parameters of biomolecules. 

• Second, we study the structural stability of models of proteins for which the 

selected folds are unusually stable to mutation, that is, designable. A two

dimensional hydrophobie-polar lattice model is used to determine designable 

folds and these folds were investigated under shear through Langevin dynamics. 

We find that the phase diagram of these proteins depends on their designability. 

In particular, highly designable folds are found to be weaker, i.e. easier to 

unfold, than low design able ones. This is argued to be related to protein 

fiexibility. 

v 



• Third, we study the mechanism of cold denaturation through constant-pressure 

simulations for a modei of hydrophobie molecules in an explicit soivent. We find 

that the temperature dependence of the hydrophobie effect is the driving force 

for cold denaturation. The physical mechanism underlying this phenomenon 

is identified as the destabilization of hydrophobie contact in favor of soivent 

separated configurations, the same mechanism seen in pressure induced de

naturation. A phenomenologie al explanation proposed for the mechanism is 

suggested as being responsible for cold denaturation in real proteins. 
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ABRÉGÉ 

La structure native des protéines est leur état le plus stable thermodynamique

ment. Néanmoins, cette stabilité n'est que marginale et ces molécules ont un certain 

degré de flexibilité qui leur permet des changements structuraux afin de réaliser leurs 

fonctions biologiques. Dans cette thèse, nous étudions, dans différents contextes, des 

modèles de protéines qui sont à la limite de leur stabilité: 

• Premièrement, nous utilisons la méthode de la dynamique moléculaire pour 

déterminer la force nécessaire afin de rompre une molécule en forme de chaîne 

(protéine dépliée) qui est étirée à vitesse constante et à temperature constante. 

Quand tous les liens sont identiques, on observe que la force F dépend du taux 

d'étirement r et de la temperature T selon F rv const - T 1/ 3Iln(r/T)ll/3. Si un 

lien faible est introduit dans la molécule, ce résultat devient F rv const - T 2
/

3 

1 ln(r/T) 12/ 3 • Cette loi qui est indépendante du modèle, peut être utilisée con

jointement avec des expériences de spectroscopie-de-force pour obtenir quanti

tativement des paramètres microscopiques de biomolecules. 

• Deuxièmement, nous étudions la stabilité structurale pour des modèles de 

protéine dont les configurations sont résistantes aux mutations, c'est-à-dire 

"designables". Un modèle bidimensionel du genre hydrophobique-polaire est 

utilisé pour déterminer le degré de "designabilité" des configurations et celles-ci 

sont étudiées sous cisaillement avec une méthode de dynamique de Langevin. 

Nous trouvons que le diagramme de phase de ces protéines dépend de leurs "des

ignabilité". En particulier, les configurations qui sont hautement "designées" 
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sont plus faibles, c'est-à-dire plus faciles à déplier que les configurations qui 

ont un faible degré de designabilité. Ce phénomène est possiblement relié à la 

flexibilité des protéines . 

• Troisièmement, nous étudions le méchanisme de dénaturalisation-à-froid avec 

des simulations à pression constante pour un modèle de molécule hydropho

bique dans un solvant explicite. Nous trouvons que la dépendance en températu

re de l'effet hydrophobique est la force motrice de la dénaturalisation-à-froid. 

Le méchanisme derrière ce phénomène est la déstabilisation des contacts hy

drophobiques en faveur de configurations entremêlées avec des molécules de 

solvant - le même méchanisme est observé dans la dénaturalisation à haute 

pression. Le modéle phénoménologique de ce méchanisme est proposé comme 

explication de la dénaturalisation-à-froid dans de vraies protéines. 
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Models of the stability of proteins 

l do not know what l may appear to the world; 

but to myself l seem to have been only like a boy 

playing on the seashore, and diverting myself in 

now and then finding a smoother pebble or a 

prettier shell than ordinary, whilst the great ocean 

of truth Zay all undiscovered before me. 

- Isaac Newton 



Chapter 1 

Introduction 

Everything should be made as simple as possible, but not simpler. 

- A. Einstein 

Systems like gases and liquids comprise a large number of particles of the order 

of Avogadro's number (6.02 x 1023
). Although microscopie constituents account 

for macroscopic properties, it is impossible to compute aIl the microscopic states 

theoretically due to their large number. The common approach to study liquids and 

gases is therefore to use statistical arguments. Based on the partition function, a 

general statistical framework has been developed for equilibrium systems from which 

thermodynamical properties can be derived. 

Although general concepts for systems far from thermal equilibrium are lacking, 

sorne structure has emerged with concepts like universality. This concept, whieh was 

first developed for equilibrium systems, also applies to non-equilibrium processes. 

Universality expresses the notion that certain properties of physieal systems do not 

depend on microscopic details and furthermore are equivalent for seemingly unrelated 

pro cesses in systems. Those unrelated systems are said to form a universality class. 
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The usefulness of this concept lies in the fact that, in general, to understand a 

non-equilibrium system it is enough to study the simplest model falling within a 

universality class. 

Simple models, also known as minimal or toy models, have only those mech

anisms that are considered essential for the understanding of what one observes 

in more complex systems. Through various mappings and different physical inter

pretations of the observables, those models are able to describe a wide variety of 

phenomena in physics and beyond. The large degree of simplification performed 

while going from a complex system to a simple model leads to inaccuracies that can 

be corrected by adding other mechanisms to the mode!. In this way, one can proceed 

from a qualitative to a quantitative description of the phenomena by progressively 

adding other contributions to the dominant behaviour. This is usually referred to 

as the onion-like strategy for modelling [91] - a core which provides a first basic un

derstanding of the dominant behaviour, coated with subsequent layers of decreasing 

significance. 

A different approach for modelling, which is usually referred to as the tradi

tional picture [41], consists in including as many ofthe fine details of the real system 

as possible. This strategy seeks to reproduce quantitative results found in real sys

tems and is extensively employed in quantum chemistry. The difficulty is extracting 

meaningful information on realistic length and time scales. 

In this thesis we study non-equilibrium biomolecular systems through minimal 

models. We are interested in a qualitative description. The models we study include 

only the dominant behaviour of the system being studied. Those models are studied 

2 



either in one or two dimensions and a first or der fine-graining would be to include the 

third dimension. An addition al refinement would be to add more realistic interactions 

between residues of the protein, like hydrogen bonding. 

In particular, we study conformational changes of proteins in three different 

contexts: i) bond rupture of a stretched macromolecule, ii) conformational changes 

under shear flow, and, iii) cold denaturation. Bond rupture is the common ingredient 

relating those projects. In the first project we study how a bond, which accounts 

for the sequential alignment of monomers, breaks. In the second and third projects, 

the conformational changes of the protein occurs through the rupture of weak bonds 

which hold different segments of the protein together. 

After the seminal work of Kauzmann [51], the minimal ingredient for modelling 

protein structure is to include hydrophobicity. This effect is when a protein minimizes 

the amount of hydrophobie amino acids which are left to interact with the solvent 

at the protein's surface, by burying them within the dry protein core. This effeet 

explains the hydrophobie core seen in erystaIlographie data of globular proteins, as 

weIl as their high density packing - see section 2.1.2. One minimal model, that 

aeeounts for those structural features, is the hydrophobie-polar model whieh will be 

used to deseribe protein structures in ehapter 4. 

One should point out that minimal models are not designed to describe aIl fea

tures of the system, only a partieular aspect of the system. Minimal models are de

signed to address specifie issues [91]. Therefore, for example, the hydrophobie-polar 

model, whieh was designed to deseribe the relation between amino acid sequence and 

structure, fails to describe the temperature-dependent stability of protein structures. 
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1.1. THESIS OVERVIEW 

While real proteins are maximally stable at an intermediate temperature and unfold 

at both high and low temperatures, any particular structure in the hydrophobic-polar 

model becomes continuously more stable as temperature decreases. 

To study the temperature dependent stability of proteins, the solvent which ac

counts for the hydrophobie effect has to be described explicitly. In chapter 5, we use 

the Mercedes-Benz model to account for the solvent. This minimal two-dimensional 

model reproduces many of the anomalies of water and also accounts for the hy

drophobie effect. Those anomalies are the result of a competition between hydrogen 

bonding and Van-der-Waals interactions. Coupled to a bead-and-spring model for 

the protein, we reproduce and explain the temperature dependent behaviour of pro

teins. 

1.1 Thesis Overview 

This thesis is organised as follows. In Chapter 2 we introduce the theoretical 

background which is relevant to the bulk of this thesis. In partieular, we review 

proteins, their microscopic constituents and characteristic features of their structures. 

The thermodynamies of proteins is then presented, showing their temperature and 

pressure dependent stability. Subsequently, we discuss the hydrophobie effect - which 

is the main driving force for protein folding. Finally, we discuss minimal models which 

inspired the work in chapters 4 and 5. 

Chapters 3, 4 and 5 correspond to original work. In chapter 3 we study scal

ing laws of bond rupture under an external mechanical force. This phenomena is 

thermally activated, and two scalings for the force-dependent energy barrier are ob

tained. Those scalings result from different shapes of the energy landscape at the 
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1.1. THESIS OVERVIEW 

critical force where the energy barrier vanishes. Langevin simulations on model sys

tems confirm those scalings. Scaling laws for the experimentally relevant situation 

where force increases linearly with time is also studied. This is again confirmed with 

Langevin simulations. 

In chapter 4, we study how protein conformations are affected by external pertur

bations. First we use the hydrophobie-polar model to classify protein conformations 

in a lattice according to their stability to mutation, that is, designability. Geomet

rically we show that structures with greater designability have more covalent bonds 

connecting surface and core monomers. Second, designable structures are subjected 

to shear flow at different temperatures. We find that conformations which are highly 

designable unfold at lower shear rates. A phenomenological explanation for this be

haviour is given based on the geometrical properties of highly design able structures 

and a relationship to protein flexibility is suggested. 

In Chapter 5 we study cold denaturation for a model of proteins in an explicit 

solvent. First we introduce the model and describe how simulations are carried 

out. Results are then presented showing that proteins are more compact at an 

intermediate temperature, and that they open up at high and low temperatures - in 

agreement with heat and cold denaturation, respectively. A change in the energetics 

of water molecules neighbouring the protein is demonstrated to correlate with cold 

denaturation. Characteristic configurations of proteins at different temperatures 

are, then, discussed and a phenomenological explanation for cold denaturation is 

provided. We conclude this thesis in chapter 6. 
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Chapter 2 

Theoretical Background 

2.1 Protein 

The importance of proteins for living systems is highlighted by their name, which 

derives from the Greek word proteios and means of first importance. Proteins are 

linear polymers made of 20 types of monomers, called amino acids. The combinat ion 

of those amino acids account for the variety of proteins found in nature: more than 

100,000 different proteins are estimated to exist in the human body alone [45]. 

The native structure of a protein corresponds to the configurations taken by 

its amino acids in the three-dimensional space under physiological conditions. This 

structure minimizes the Gibbs free energy of the system which depends both on the 

interaction between amino-acids, and between amino-acids and the solvent. There

fore amino acid sequences, which are very different from each other, are likely to 

assume different native structures. Nowadays much effort is being spent to deter

mine the relationship between sequence and structure. The solution to this problem 

will greatly improve the design of new proteins and, hence, new drugs. 

6 



2.1. PROTEIN 

Proteins have evolved through natural selection to perform functions in living 

systems. Those functions are the result of a protein's interaction with other macro

molecules in the cell. Roughly speaking, proteins interact with macromolecules which 

have complementary structures such that protein function is intimately related to 

protein structure. Therefore, determining the structure of a protein is an important 

step towards understanding its role in the cell. Examples of function are: 

• Structural - many proteins serve as a support to give biological structures 

strength or protection. One example is keratin which is found in hair and 

fingernails. 

• Defense - sorne proteins are responsible for defending an organism against in

vasion of other species. Example: antibodies. 

• Transport - many proteins are responsible for the transport of specifie molecules 

from one organ to another. Hemoglobin is one example. 

Proteins can be of two types: fibrous and globular. Fibrous proteins are long

chains which play mostly a structural role in cells. Examples are collagen fibers 

and alpha-helical fibers of wool. The former are strong, resistant to stretching and 

relatively rigid. They are one the most abundant fibrous proteins, being 3, 000 Â long 

and having 15 Â of diameter [19]. The latter are flexible and can be eiastically 

extended to twice their originallength. In contrast, globular proteins are arranged 

in a compact globule-like shape. In this thesis we deal with globular proteins, III 

particular single subunit globular proteins. 
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2.1. PROTEIN 

Function 

Dynamics 

Structure 

Freeenergy 
minimization 

Amino acid sequence 

Figure 2-1: Schematic representation of the relation between amino acid sequence, 
structure and function. The mechanism relating those levels of organization is also 
shown. 

2.1.1 Building Blocks of Proteins 

Amino acids are the building blocks of proteins. Although there are 20 amino 

acids, they aIl share a common form. It consists of a central carbon atom, called the 

a carbon (Co,) bound to an amino-group (NH2 ), a carboxylic acid group (COOH), 

a hydrogen atom (H), and a variable side chain (R) - see Fig. 2-2. It is this side 

chain, which can be one of twenty different structures, that distinguishes the various 

amino acids. Amino acids differ in size, shape, hydrogen bonding capacity, chemical 

reactivity, and, particularly important in the context of this study, their hydrophobic 

char acter , i.e., their affinity to the aqueous environment (see table 2-1). 

To form proteins, amino acids bind through peptide bonds. Those are covalent 

bonds between the carboxyl group of one amino acid and the amino group of another 

amino acid (see Fig. 2-2). Amino acids in the chain are called residues and proteins 
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2.1. PROTEIN 

R R 
H"", 1 1 ~O 

N -Ca-C-N -Ca - C 

H/ 1 Il 1 l ""OH 
H 0 H H 

Figure 2-2: Chemical reaction involved in the formation of a peptide bond. This 
formation results in the loss of one oxygen, which is removed in the form of water 
(blue baIloon). The peptide bond between the carbonyl carbon of one amino acid 
and the amino nitrogen of the other is represented in red. The left end of the chain 
is the N-terminus and the right is the C-terminus. 

with fewer than 30 residues are referred to as peptides. One of the short est amino acid 

sequences that has a biological function is the pentapeptide YGGFM [89]. Proteins 

with more than 4,000 residues are also found in nature while their average size is 

around 367 residues [100]. The two ends of a protein are different from each other: one 

end contains the amino-group while the other end contains a carboxyl group. By 

convention, the amino terminal (N-terminal) residue is taken to be the beginning of a 

polypeptide chain while the carboxyl-terminal (C-terminal) residue is its end. Thus, 

for example, CKQTW and WTQKC are two different pentapeptides with different 

chemical properties. Inside the ceIl, protein synthesis takes place sequentially from 

the N-terminus to the C-terminus. 
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2.1. PROTEIN 

Nature Amino Acids 3-letter code Single letter code 
Alanine Ala A 
Valine Val V 

Phenylalanine Phe F 
Hydrophobie Proline Pro P 

Methionine Met M 
Leucine Leu L 

Isoleucine Ile 1 
Aspartic acid Asp D 
Glutamic acid Glu E 

Charged Lysine Lys K 
Arginine Arg R 

Serine Ser S 
Threonine Thr T 
Tyrosine Tyr Y 

Polar Histidine His H 
Cysteine Cys C 

Asparagine Asn N 
Glutamine GIn Q 

Tryptophan Trp W 
Glycine Gly G 

Table 2-1: List of the 20 amino acids. The full name, 3-letter and single let ter codes 
are given as well as the chemieal nature of the amino acids (hydrophobie, polar and 
charged). The side chain of glycine contains only one hydrogen atom. It is the 
smallest amino acid and has special chemical properties being usually considered 
either to belong to the hydrophobic group or to form a separate group. 
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2.1. PROTEIN 

2.1.2 Structure of Globular Proteins 

The structure of proteins is determined either by X-ray crystallography or by 

Nuclear-Magnetie-Resonance (NMR) methods [101]. Nowadays, more than 30,000 

protein structures are known. Those native structures possess a number of common 

properties: 

Packing: Globular proteins are highly packed objects. Their average packing den

sity is about 0.75 [85, 61]. For comparison, hard spheres of equal sizes are 

believed to have a maximum packing density of approximately 0.74. It may 

seem paradoxical that residues, which are constrained to maintain their sequen

tial position in the backbone, pack better than hard spheres with no constraint. 

However, proteins are not composed of equal-size objects, and one can usually 

pack a set of unequal-size spheres more densely than a set of equal-size ones. 

Hydrophobie core: The first X-ray crystallographie structure of a globular protein 

was determined for myoglobin in 1958 [52, 53]. It was noticed that amino acids 

in the core of the protein had almost exclusively hydrophobie side chains. This 

burying of hydrophobie residues is believed to be the primary driving force for 

protein folding [51, 58, 24]. The interaction aeeounting for the formation of an 

hydrophobie core, Le., the hydrophobie interaction, is diseussed in more detail 

latter in this ehapter. 

Secondary structure: The formation of a hydrophobie core requires the baekbone 

to be buried inside the protein. However the baekbone is highly polar with 

one hydrogen donor, NH, and one hydrogen reeeptor, C=O, for eaeh peptide 

unit. In a hydrophobie environment, polar molecules are hydrophilic and they 
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2.1. PROTEIN 

tend to stay in contact with water molecules - as opposed to the core of the 

protein. Therefore, for the backbone to be buried inside the protein, it must be 

neutralized by the formation of hydrogen bonds. This neutralization takes place 

through the formation of regular secondary structures. The most important 

secondary structures are alpha helix and beta sheets. 

The alpha helix was first described by Linus Pauling in 1951 [77]. It is the most 

important secondary structure in globular proteins. In this structure, amino 

acids are displayed around a main axis in an helical form - Fig. 2-3. Each turn 

of the helice has 3.6 residues with hydrogen bonds between C=O of residue 

n and NH of residue n+4. In globular proteins, the length of a helices varies 

from five to over fort y residues. The si de chains of residues in an Œ helix are 

placed in the outer part of the helix. 

Beta sheets are the second major structural element found in globular proteins 

[76]. They are formed by binding two parts of the backbone, which are not 

necessarily adjacent, through hydrogen bonds - Fig. 2-4. {3 sheets are aligned 

parallel to each other such that a hydrogen bond can form between a C=O 

group of one segment and a NH group of the parallel segment and vice-versa. 

The length of each sheet ranges from 5 to 10 residues. Beta sheets can be 

parallelor antiparallel. Parallel beta sheets occurs when the N-terminal residue 

of the two segments of the sheet are facing each other such that the two ends 

run from a N to C terminus. When the two ends run in opposite direction the 

{3 sheet is said to be antiparallel - see Fig. 2-4. 
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Backbone 
of an 

alpha-helix 

..,-- Hydrogen bond 

Peptide 

2.1. PROTEIN 

Cartoon 

Ball-and-strick 

Figure 2-3: (LEFT) Representation of Hydrogen bonds in an a-helix. (RIGHT) 
Cartoon and ball-and-stick representation of an hypothetical a-helix made of 22 ALA 
amino acids. 

The structure of proteins can be summarized, in a naive manner, as a combi-

nation of secondary structures which are efficiently packed together in order to bury 

the hydrophobie amino acids inside the core of the protein. A variation in the combi-

nation and length of secondary structures, as weIl as the type of connections (loops) 

between those structures, account for the different structures of proteins. 

It is convenient to organize the structure of proteins into four hierarchical levels 

- see Fig. 2-5: 
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2.1. PROTEIN 

Cartoon Antiparallel beta sheet 
N" C 

Cu Cu/ 

c/ "N " / N-H 111111 o=c 

/ "Cu 
Cu" / 

c=o 111111 H-N 

/ " N C 
Ball-and-stick 

Parallel beta sheet 

Figure 2-4: ,B-hairpin. (LEFT) Cartoon and Ball-and-stick representations of beta 
sheets. (RIGHT) Antiparallel and parallel ,B-sheets. 

Primary structure refers to the sequence of amino-acids. This level of structure 

is determine by protein synthesis. Covalent bonding (see Fig. 2-2) is the 

interaction responsible for holding amino acids together. 

Secondary structure is the recurring arrangement of adjacent residues in space. 

The most important secondary structures are alpha-helix and beta-sheet. This 

secondary level of structure is stabilized by hydrogen bonds between amino 

acids. 

Tertiary structure refers to the arrangement of secondary structures in space. 

Hydrophobicity is believed to be the main driving force at this level of packing. 
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2.1. PROTEIN 

Quaternary structure deals with proteins that are made of several polypeptides 

or subunits. 

2.1.3 

Primary structure of Myoglobin: 

LU GLY GLU TRP GLN LEU V AL LEU IDS VAL TRP ALA LYS VA LU ALA ASP V AL ALA GLY HIS GLY GLN 

iAAGilrrmim"t:'I'S"!lI!ftoIiII!H'R9-8e\j"flflt-r:lI!tl"t::r:mcYs"s PHEPHE ASP ARG PHE LYS IDS LEU LYS THR GLU 

LYS GLY IDS IDS GLU ALA GLU LEU LYS PRO LEU ALA GLN SER IDS ALA THR LYS IDS LYS ILE PRO ILE LYS TYR LEU 

GLU PHE ILE SER GLU ALA ILE ILE IDS V AL LEU HIS SER ARG IDS PRO GL Y ASP PHE GL Y ALA ASP ALA GLN GL Y ALA 

MET ASN LYS ALA LEU GLU LEU PHE ARG LYS ASP ILE ALA ALA LYS TYR LYS GLU LEU GLY TYR GLN GLY 

Quaternary structure of 
neuraminidase complex : 

Figure 2-5: Hierarchical levels of structural organization. 

Classification of Protein Structure and Designability 

The importance of structure to protein function has led to the development of 

classification schemes for protein structure. Those schemes are useful in determining 

common evolutionary origins and, therefore, common function of proteins. The 

Structural Classification Of Proteins (SCOP) database organizes proteins within 11 

main classes [71]. Example of these classes are: an a (which contains proteins made 
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2.1. PROTEIN 

exclusively of alpha helix secondary structures) and al f3 (whieh includes proteins 

with alpha and beta secondary structures which are largely interspersed). Those 

classes are subdivided into folds. Proteins are said to have a common fold if they 

have the "same major secondary structures in same arrangement with the same 

topological connections" [71] - see Fig. 2-6 for an example of fold. In a naive 

manner, folds can be viewed as structural templates in whieh amino acid sequences 

fold. 

In 1997, the SCOP database comprised 3,179 protein domains grouped into 279 

folds. In 2005, the number of domains in the database was 75,930 and the number of 

folds 971. Althought the number of domains grew by a factor of 24, the number of 

protein folds increased only 3.5 times in the same period of time. Therefore folds are 

recurrent among proteins such that it is increasingly less likely that a newly solved 

protein structure would involve a new fold. Recurrence seems to suggest that folds 

are not merely an arbitrary outcome of evolution but there is a reason behind their 

selection. 

A designability princip le has been proposed [57] to explain nature's selection 

mechanism for protein structure. This mechanism states that folds are selected in 

nature because they are readily designed and stable against mutation, and that such 

a mechanism simultaneously leads to thermodynamical stability. This mechanism 

has been tested using the hydrophobie-polar lattice model and some of its variant 

models (see section 2.4.1). We will devote Chapter 4 of this thesis to investigate 

some implications of designability for protein dynamics. 
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Topology of alpha-beta barrel 

• Alpha Helix 

.. Sheet 

Triose Phosphate Isomerase(Chicken Muscle) 

2.1. PROTEIN 

Glycolate oxidase (spinacia oleracea) 

Figure 2-6: (Up-Left )Topological representation of the alpha-beta barrel fold. Ex
ample of three proteins containing the alpha-beta barrel fold: Glucolate oxidase (Up
Right), Thiose Phosphate Isomerase (Bottom-Left) and Methylmalonyl-coa mutase 
(Bottom-Right ). 
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2.2. THERMODYNAMICS OF PROTEINS 

2.2 Thermodynamics of proteins 

To study the stability of proteins pressure and temperature are useful quantities 

to be tuned. By adjusting temperature, we control the kinetic energy of each degree 

of freedom of the system, and a phase transition can be observed as temperature is 

reduced: the protein goes from an unfolded state into a folded one. Pressure can 

be used to both destabilize the structure of proteins, and as an antifreeze1 . By 

increasing pressure, proteins can denature. The transition pressure varies from a low 

value « 200 MPa) to a very high value (> 700 MPa), depending on the structure 

and nature of each protein. 

2.2.1 Temperature dependent denaturation 

Denaturation of proteins occurs at both high ( > 54 OC) and low (subzero) tem-

peratures. Thermodynamically, this can be understood by studying the temperature 

dependence of the Gibbs energy of transition [55, 106, 78]: !:1G = GD - GN , D and N 

upperscripts are used to describe the Denatured and Native states of the protein. At 

the transition temperature Tc, both the native and denatured states have the same 

energy: 

(2.1a) 

such that 

(2.1b) 

1 The freezing point of water decreases as pressure increases up to 200 MPa, where 
water freezes at about -22 oC. 
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2.2. THERMODYNAMICS OF PROTEINS 

where ~S is the change in entropy and ~H is the change in enthalpy. The enthalpy 

of transition can be written in terms of the heat capacity at constant pressure: 

~H(T) = ~H(Tc) + fT ~Cp(T)dT, 
JTc 

(2.2) 

since ~Cp = (8~H(T)/8T)p. Whenever ~Cp(T) can be assumed to be a constant: 

(2.3) 

For the entropy of transtion, we have: 

(2.4) 

Now, using Equations 2.3 and 2.4, we obtain the Gibbs energy of transition: 

~G(T) ~H(T) - T~S(T) 

(Tc ~ T) ~H(Tc) + (T - Tc)~Cp - T~Cpln (~) . (2.5) 

Therefore, the Gibbs energy of transtion can be computed from a knowledge of Tc, 

~H(Tc), and ~Cp. These quantities can be determined experimentally. Typical 

numbers for real proteins are: Tc = 60 oC, ~H(Tc) = 500 kJ mol-l, and ~Cp = 10 

kJ mol-1 K-1
• Fig. 2-7 shows the Gibbs energy for these values. ~G has a convex 

shape which leads to two transition temperatures - one at Tc and the other at 

19 



2.2. THERMODYNAMICS OF PROTEINS 

-30 oC, corresponding to cold denaturation. Notice that the convex shape results 

from a subtle balance of the b..H and b..S terms. 

800,------------------------, 

-200 

~ 
~-400 
Q) 
1=1-600 

ri! 

AH ----
-T'" S --------
M-

-800 '-------'------'-------'-------'----'--------' 
-40 -20 20 4& 60 80 

Temperature C 

Figure 2-7: Gibbs Free energy (redjsolid line) of a typical protein. The entropie 
(bluejdotted line) and enthalpie (greyjdashed line) contributions to the free energy 
are also shown. 

From Equation 2.5, the convexity of Gibbs energy can be computed: 

(2.6) 

Therefore cold denaturation can only occur if !:1Cp > O. This heat capacity of 

transition has been measured for several globular proteins [79]. Peaks of Cp were 

observed [78] at each end (high and low temperatures) of the native state and !:1Cp 

was positive: Cp showed a larger value in the denatured states. 
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2.2. THERMODYNAMICS OF PROTEINS 

2.2.2 Pressure dependent cold denaturation 

As seen in the example ab ove , cold denaturation occurs at subzero (-30 OC) 

temperatures. Renee it is difficult to observe cold denaturation experimentally: the 

solvent freezes before the protein denatures. This difficulty can however be overcome 

by studying the system at high pressure. By increasing the pressure, the protein be

cornes less stable: the red curve in Fig. 2-7 shifts downwards. By doing so, the 

subzero temperature, at which !::J.G = 0 shifts to a higher value, becomes accessi

ble experimentally. Also, the freezing point of water decreases (up to -22 OC) as 

pressure increases (up to 200 MPa) - such that experiments can be performed at 

subzero temperature (see Fig. 2-8). Therefore increasing pressure works as both a 

destabilizer of the protein structure and as an antifreeze [55]. 

1000 

900 

800 

700 
(il 
c. 600 
è 
~ 500 
:::J 
CIl 
CIl 400 ~ 
a. 

300 

200 

100 

0 
-60 -50 -40 -30 -20 -10 o 10 20 30 

Temperature (Celsius) 

Figure 2-8: Phase diagram of water. This figure was obtained by connecting triple 
points of water [1] by straight lines. Roman numbers characterize the different states 
of iee. 
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2.2. THERMODYNAMICS OF PROTEINS 

The pressure dependent phase diagram of proteins can be described [44] using 

the Gibbs energy of transition 6J.G = GD - GN . By definition: 

d(6J.G) = -6J.SdT + 6J.VdP, (2.7) 

where to first-order 6J.S(T, P) = J (86J.SjOT)p dT+ J (86J.Sj8P)T dP and 6J. V(T, P) = 

J (86J.VjOT)p dT+ J (86J.Vj8Ph dP. The temperature and pressure dependence of 

6J.G can be obtained by integrating Equation 2.7 from a chosen reference point (Ta, 

Po) to (T, P): 

6J.G 6J.: (P _ Pa)2 + 

6J.a(P - Pa)(T - Ta) - 6J.Cp [T(1n(TjTa) -1) + Ta] + 

6J.Vo(P - Po) - 6J.Sa(T - Ta) + 6J.Go , (2.8) 

where 6J.,6 = (86J. V j 8P)r is the compressibility factor, 6J.a = (86J. V j OT) p = - (86J.S j 8P)T 

is the thermal expansion factor and 6J.Cp = T(86J.Sj8T)p is the heat capacity at con

stant pressure2 
. Close to the reference point T (ln(T jTo) - 1) + To ~ (T - To)2 j2To, 

such that the equation above reads: 

6J.,6 ( )2 ( ) ( 6J.Cp 2 6J.G = 2 P - Po + 6J.a P - Po T - Ta) - 2T (T - Ta) + 
a 

6J.Vo(P - Po) - 6J.Sa(T - To) + 6J.Ga· (2.9) 

2 Notice that Eq. 2.8 reduces to the case of constant pressure (Eq. 2.5) if one sets 
P = Po, Ta = Tc and on making use of Eqs. 2.1 
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2.2. THERMODYNAMICS OF PROTEINS 

This energy is shown in Figure 2-9 for Chymotrypsinogen at pH 2.07 [44]. The 

transition line between native and denatured states can now be obtained by solving 

ll.G(P, T) = O. When equated to zero, Equation 2.9 becomes the equation of a conie 

section whieh can be either a hyperbola or an ellipse. For proteins [44], one finds 

that ll.a2 > ll.Cp ll.{3ITo such that Equation 2.9 has an elliptic shape (see Fig. 2-9). 

Notice that in the previous section the free energy was shown to have the correct 

curvature only if ll.Cp > o. 

(P-Po)MPa T(Celsius) 

400 

~~10~~~~~1~O~~W~~~30~~~~~~50 
Temperature ( oC ) 

Figure 2-9: (LEFT) Pressure and temperature dependence of Gibbs energy (Eq. 
2.9) for Chymotrypsinogen [44]. (RIGHT) Transition line separating the native and 
denatured state of the protein (ll.G = 0). The arrows represent the three types of 
transition: pressure (p), cold (c) and heat (h) denaturation. Data taken according 
to reference [44]: ll.{3 = -1.24 cm6/cal mol-t, ll.Vo = -14.3 cm3 /mol, ll.a = 1.32 
cm3 /mol K-l, ll.So = -227 cal/mol K- 1

, ll.Cp = 3800 cal/mol K-l, ll.Go = 2530 
cal/mol and the reference point is (To = 273 K, Po = 1 atm). These data were 
obtained at pH 2.07. 

The right panel of Figure 2-9 shows the values of pressure and temperature for 

which the protein is in the native (grey) and in the denatured states. If one fol-

lows a line of constant temperature towards higher pressure, the native state of the 
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2.2. THERMODYNAMICS OF PROTEINS 

protein becomes unstable and the protein unfolds. This is called pressure denatu

ration. At constant pressure, the protein unfolds at both a high temperature (heat 

denaturation) and a low temperature (cold denaturation) - see Fig. 2-9. 
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2.3. HYDROPHOBIC EFFECT 

2.3 Hydrophobie effeet 

The hydrophobie effect accounts for the strong attraction among non-polar 

molecules immersed in water. It is considered the main driving force for folding 

and a satisfactory model for proteins has to take this effect into account. We will 

st art this section describing sorne peculiarities of this effect. A thermodynamical 

model of this interaction is then described followed by a microscopie picture. 

2.3.1 Signature of the hydrophobie effeet 

The hydrophobie effect can be inferred from the Gibbs energy of transfer of non

polar molecules from their bulk liquid state into dilute water solution: f:j.G = GW _Gb• 

If f:j.G is positive, the solute prefers to be surrounded by other solutes as opposed 

to water. The larger f:j.G becomes, the higher the tendency of solutes to cluster 

together. In contrast, a negative f:j.G implies a molecule that is soluble in water. 

Non-polar mole cules have a large positive energy of transfer. For example [48] 

the free energy of transfer of n-butane molecules at 25 oC is about 24.5 kJ mol- l
. 

Sorne insights can be gained by cornputing the enthalpy f:j.H and entropy f:j.S of 

transfer separately. For n-butane, the enthalpie contribution to f:j.G is negative 

(-4.3 kJ rnol- l ) while the entropic contribution - T f:j.S is positive (28.7 kJ rnol- l
) 

and corresponds to 85% of the interaction. Thus, non-polar solutes attract each 

other rnostly to increase the entropy of the system. 

The temperature dependence of f:j.G, f:j.H and - T f:j.S for methane is shown in 

Fig. 2-10. As ternperature decreases, bulk methane becornes less stable since f:j.G 

decreases. Enthalpy can be held responsible for this destabilization as 6..H decreases 
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2.3. HYDROPHOBIC EFFECT 

with decreasing temperature. Entropy has the opposite behavior: it stabilizes bulk 

methane since - T.6.S increases with decreasing temperature. 
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Figure 2-10: Experimental data (taken from reference [84]) of methane's free energy 
(black circle) , entropy (triangles) and enthalpy (squares). 

The effects of hydrophobicity can also be measured by the heat capacity of 

transfer from liquid to water .6.Cp = C; - C~. For simple solutions, .6.Cp = C; - C~ 

is sm aIl while for non-polar solutes it is large and positive [29]. This large heat 

capacity of transfer was shown to be proportional to the surface area around non

polar solutes accessible to water [50], and thus proportional to the number of solve nt 

molecules around the solute [40]. 
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2.3. HYDROPHOBIC EFFECT 

2.3.2 Thermodynamical model: Muller's model 

To deseribe these features of the hydrophobie effect, Muller's model [70, 56] 

foeuses on hydrogen bonds among water molecules. These can exist in two states in 

rnutual equilibriurn: 

H bond (intact) ~ H bond (broken), (2.10) 

and the equilibriurn constant K is given by: 

K = 1 ~ 1 = exp ( -I:1Go / RT), (2.11) 

where 1 is the fraction of broken hydrogen bonds, R is the gas constant and I:1Go is 

the Gibbs free energy difference between the two states (I:1Go = Gintact - Gbroken). 

The specifie heat is given by: 

(2.12) 

where I:1H = 1 Hbroken - (1 - f)Hintact and I:1HO is the enthalpie difference between 

broken and intact states. I:1Ho is considered to be independent of temperature. 

Equation 2.11 can be solved for 1 and its derivative with respect to temperature 

becornes: 

(
al) = I:1Gol(1- f) 
Br RT2 ' 

P 

(2.13) 

such that 

(2.14) 

To deseribe the hydrophobie effeet one has to distinguish between bulk water 

and water in the hydration shell. The difference of these two states will contribute 
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2.3. HYDROPHOBIC EFFECT 

f1HO 
b f1So 

b 
f1Ho 

8 f1So 
8 

f1Hu f1Su 

9.80 21.6 10.696 27.36 0 0 
Table 2-2: Parameters for Muller's model. f1H and f1S are glven in units of J Imol 
and J IK/mol. For the number of hydrogen bonds in the shell, Muller uses n = 3N /2, 
where N is the number of solvent molecules in the shell. For propane, butane and 
isobutane, N is [40] 25,28 and 28. 

to the experimentally accessible enthalpy, entropy and heat capacity changes upon 

hydration. Quantities referring to bulk and hydration shell will receive lower-scripts 

band s respectively: f1H~, f1S~, 18 (for the first shell) and f1Hg, f1sg, lb (for the 

bulk). 

Three additional parameters are needed: two to measure the relative enthalpy 

f1Hu and entropy f1Su levels of the hydration shell with respect to those in the bulk 

(see Fig. 2-11) and a third to me as ure the amount n of hydrogen atoms in the 

hydration shell. In terms of these parameters, changes in thermodynamic quantities 

upon hydration are given by: 

(2.15) 

(2.16) 

and 

(2.17) 

These are the "mixing" entropies characteristic of mixture models. 

This model has seven parameters: f1Hg, f1sg, f1H~,!~.S~, n, f1Hu , f1Su ' Esti-

mated values for these parameters are shown in Table 2-2. The entropy computed 
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Figure 2-11: Schematic representation of the energetie (LEFT) and entropie 
(RIGHT) levels of broken and intact hydrogen bonds in the bulk and hydration 
shell. 

from Muller's model (Equation 2.16) was compared to experiments for propane, bu-

tane, and isobutane at 25 oC giving -88.4 (-75.32), -101.4 (-93.20) and -98.9 (-89.14). 

Experimental values are inside parentheses and units are J/K mol-1 . Muller's model 

has been refined [56] to account for temperature dependent behavior of the entropy. 

A simplified version of this model has also been used to study cold denaturation of 

proteins - see section 2.4.2. 

2.3.3 Microscopic model 

The hydrophobic effect will now be discussed from a microscopic point of view. 

We first describe the hydrogen bond - whieh is the interaction responsible for the 

peculiar properties of water including the hydrophobie effect. A microscopic model 

of the hydrophobie effect is then described. 

Hydrogen bond 

The electronie distribution of the six valence electrons of oxygen in a H20 

molecule can be described by four sp3 hybrids [48], two such hybrids being occu-

pied by a single electron each and the other two hybrids being occupied by two 
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electrons each. Oxygen binds covalently with hydrogen by overlapping each half

occupied hybrid of oxygen with the hybrid of hydrogen atom - as represented in Fig. 

2-12. The intramolecular distance between H and 0 atoms is about 0.10 nm. 

+ 
....,------~ 

+ 
&:,,.----+----r'" 

• Oxygen atom 

• Hydrogen atom 

~ Electronic Spin 

Figure 2-12: (LEFT) Schematic representation of the electronic distribution in a 
H20 molecule. The polarization of the molecule is also represented by "+" and "-" 
signs. (RIGHT) Intermolecular bond (doted line) between two H20 molecules. 

Although water is a neutral molecule, it is polar due to the strong electroneg-

ativity of oxygen. The 0 atom attracts the electronic cloud belonging to H atoms 

to its neighborhood such that the net charge on the H atoms becomes slightly pos

itive. On the other hand, the two fully-occupied hybrids of 0 are negative. As a 

result of this polarity, a strong electrostatic attraction between two water molecules 

occurs when a completely occupied hybrid of one molecule (negative hybrid) points 

towards a H atom (positive) of the other molecule. Since this type of bond requires 

the presence of a hydrogen atom, it is called a hydrogen bond. The intermolecular 

distance between 0 and H atoms is about 0.176 nm. 

The binding energy of a H bond lies between 10 and 40 kJ mol-1 . This is much 

stronger than typical van de Waals bonds ('" 1 kJ mol-1 ) but still weaker than 

covalent or ionic bonds ('" 500 kJ mol-1). Hydrogen bonds are strongly directional 
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such that, upon solidification at ambient pressure, water does not assume a close

packed configuration but a hexagonal crystal structure. 

Hydrogen bonds occur not only between water molecules, but between any 

highly electronegative atom (e.g., 0, N, F and Cl) and a H atom which is cova

lently bound to another electronegative atom. For example, in a protein where two 

peptides come close together, the H atom which is covalently bound to the N atom 

forming one of the peptides can interact with the oxygen atom of the other peptide 

forming a hydrogen bond - see Fig. 2-4. These NH-O bonds are responsible for the 

secondary structures in proteins. 

Iceberg Model 

In the liquid phase water mole cules form on average 3 - 3.5 H bonds. These 

interactions are, however, disturbed when a non-polar molecule is introduced in 

water. The pertubation is mostly important close to the solute where, in most 

configurations, water has at least one broken H bond - i.e. at least one of the H 

bonds in the molecules points towards the solute. This is energetically unfavorable, 

and shell water, Le. water molecules surrounding the solute, will favor the very few 

configurations, called clathrate cages [35, 10], where there is no broken bond - see 

Fig. 2-13. Since the number of clathrate cages is small, shell water can only occupy 

a small number of states and have a low entropy. 

The free energy of shell water is thus minimized when those molecules assume 

clathrate-like configurations. This free energy per molecule is however larger than the 

one of bulk water, such that non-polar solutes tend to cluster together to reduce the 

amount of shell water in the system - see 2-14. Since shell water has a low entropy, 
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Figure 2-13: Representation of clathrate cages. The non-polar solute is shown in 
blue while water molecules rest at the edges of the polyhedra. 

the transfer of shell water into the bulk during clustering of solutes is characterized 

by a large increase in the entropy of the system, as observed exp eriment ally. 

This picture of the hydrophobie effect was first suggested by Frank and Evand 

in 1945 [36]. They postulated that the tranfer of solutes into water perturb shell 

water in the direction of greater crystallinity. For obvious reasons, this picture is 

called iceberg model. 

Figure 2-14: Schematie representation of the hydrophobie effect. Non-polar 
molecules attract each other in other to minimize their contact area with the solvent. 
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The iceberg model also explains the large heat capacity of transfer of non-polar 

solutes. At room temperatures, shell water occupies mostly clathrate-like config-

urations: low-energy and low-enthalpy state. As temperature increases, shell water 

increasingly populates a higher energy, higher entropy state: shell water becomes less 

ordered and has weakened attractions. The existence of 2 energetic states for shell 

water provides an energy storage mechanism which explains the large heat capacity 

of transfer. If!:lH is the difference in enthalpy between the 2 states and N is the 

number of molecules of shell water, then the temperature dependence of !:lCp can be 

computed [40]: 

!:l _ N !:lH2 
( exp - (!:lH / RT) ) 

Cp - RT2 [1 + exp ( -!:lH/ RT)j2 
(2.18) 

This model predicts that !:lCp is proportional to the number of shell water and 

thus, to the the surface area of non-polar solutes. This result has been confirmed 

experimentally [50, 40]. 
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2.4 Simplified Model for Proteins 

Details of the atomic scale structure of proteins are provided by all-atom mod

els. Simulations of those models with molecular dynamics or Monte Carlo methods 

permits the calculation of free energies, and also the characterization of structural 

changes in short periods of time. Many force fields have been developed for those 

simulations. AMBER, CHARMM and GROMOS are examples of widely used force 

fields. The best force field for a particular application depends upon the system 

being studied. 

Coupled to molecular dynamics, this alI-atom approach is limited by the inte

gration time-step which must be smaller than the smallest atomic vibration period 

of the system. For proteins, the time-step is around one femtosecond (10-15S) such 

that, to encompass a timescale of tens of microseconds, 109 integrations of the equa

tions of motion are necessary. This is beyond reach of contemporary computational 

power for systems containing rv la, 000 atoms. One of the longest simulation on 

biomolecular systems was conducted to study the early-stages of protein folding [26]. 

The protein in question was a smalI 36-residue peptide, the villin headpiece subdo

main. The simulation was carried out for 1-l1-s at 300 K and contained 3000 water 

molecules. It used 256 processors for 4 months in a CRAY super-computer. To 

account for the complete folding, the simulation would have to be extended to a few 

tens of microseconds. 

Another approach for studying proteins is to use minimal models. In such 

models, the degrees of freedom of the protein which are considered irrelevant to the 

phenomena being studied are averaged out either explicitly, or by phenomenological 
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arguments. Therefore minimal models lack the precision of all-atom systems but 

they are much faster, allowing simulations to be carried out for longer time. Those 

models are also easier to analyze. Hence they have proven of great importance in 

determining and highlighting the causes of phenomena under study. In this section 

1 outline a few minimal models which are relevant for the work carried out in this 

thesis. 

2.4.1 Hydrophobie model and designability 

The hydrophobie force determines the tendency of hydrophobie amino acids to 

be buried inside the dry protein core, leaving polar amino aeids to interact with 

the solvent at the surface of the protein. This force is considered the main driving 

force for protein folding. Models for studying the relation between sequence and 

structure have to take this force into aeeount. One example of such a model is 

the Hydrophobie model, which provides a geometrical and therefore intuitive view 

of the designability princip le described in section 2.1.3. This principle states that 

structures whieh survived evolution were more stable against mutation, Le., more 

designable, and this feature leads to thermodynamical stability. Following Hao Li et 

al. [59] we provide geometrical arguments to explain the positive correlation between 

designability and thermodynamical stability. 

ln the hydrophobie model, the hydrophobicity of an amino acid sequence of 

length N is described by a N-dimensional vector h = (hl, h2 , ... , hN ) where each 

element hi is a number which accounts for the degree of hydrophobicity of the i-th 

amino acid. We take hi to be normalized, 0 ::; hi ::; 1, such that the most hydrophobie 

amino acid has hi = 1 while the most polar is defined by hi = O. The structure taken 
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Figure 2-15: Schematic representation of a compact 6 x 6 lattice structure. Struc
tures are represented by vectors where each element represents a lattice site and can 
be either 0 or 1 - according to whether the site is on the surface or in the core, 
respectively. 

by a given sequence is also described by an N -dimensional vector s = (SI, S2, ... , SN). 

Each element Si of this vector is a number describing the degree of burial inside the 

protein of the i-th amino acid. For simplicity we consider that Si is 1 if the i-th 

amino acid is in the protein core and 0 if it is in the surface of the protein. We also 

assume that sequences fold only in structures which are maximally compact. See 

Figure 2-15 for an example of structure. 

The energy of a sequence which is folded in a particular structure is defined by: 

N 

1{ = - LSihi. 
i=1 

(2.19) 

This energy is minimized when hydrophobie amino acids are buried inside the dry 

protein core. For the task of determining the minimal energy structure of a given 
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sequence, it is useful to rewrite Equation 2.19 in the form: 

N 

Ji = I)h i - sif (2.20) 
i=l 

Eqs. 2.19 and 2.20 are equivalent since for a fixed sequence, I:J:l h; is a constant 

and I:f:l sr has the same value for aU compact structures. 

• • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • 
• • 0· • • • • • • • • 0· • 
• • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • Sequence with 

·0 • degenerate 
• • • • • • • • • • • ground-state 

• • • • • • • • • • 
• • • • • 0 • Sequence with 

• non-degenerate 
• • • • • • ground-state 

• • • • • • • 
• • Oo~ • • • • • • 0 0 Structures 
• • • • OOo~ • • • • • , .o0C!) • • • e/ • • • • • • 
• • .G) • • • • • • • • • • • 
• • • • • • • • • • • • • • • 

Figure 2-16: Schematic representation of structure and sequence spaces and the 
Voronoi construction. The shaded area corresponds to the Voronoi polytope. 

N ow since h and sare vectors spanning the same space they can both be rep-

resented in the same N-dimensional Euclidean space. The number of sequences of 

length N that can be formed with the 20 amine acids that exist in nature is 20N . 

In principle all those sequences can exist and can be represented in the Euclidean 
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that, on average, the difference between the squared distance of Ft and their two 

closest structures is large. Thus, this geometrical representation explains the positive 

correlation between designability and thermodynamical stability: both properties 

require a large Voronoi polytope. 

One can therefore conclude that designability of structures is directly related 

to the distribution of structures in the N-dimensional space such that designability 

can, in princip le , be computed without having to sam pIe through the space of se

quences. Although the thermodynamical stability of a particular protein depends 

on its amino acid sequence, the average stability of structures does not depend on 

amino acid sequences and can also be computed from the distribution of structures 

only. Assuming that nature has chosen high design able structures as proteins folds, 

as suggested by the designability principle, it might be expected that other proper

ties of proteins will also be favored by this choice. One example of such a property 

is the stability to forces - which we discuss in detail in Chapter 3. 

2.4.2 Putting proteins back into water 

Paolo De Los Rios and Guido Caldarelli [87] proposed a model to describe co Id 

denaturation. In this model, the protein corresponds to a self-avoiding random walk 

where each amino acid occupies a site in a lattice. An other nodes i are occupied by 

water molecules which can be in the bulk or form the first shen around the polymer. 

The bulk state is considered to be q times degenerate and for simplicity the energy of 

this state is set to zero. The first shen can be in an ordered or a disordered state [70]. 

The disordered state is considered to be q - 1 times degenerate while the ordered 

state is not degenerate. This model is therefore described by three parameters: J, 
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K and q - where J and K are the energies of the ordered and disordered shen states 

respectively. If s describes the state of first shell water molecules such that s = 0 

represents the ordered state and s = 1, ... , q -1 corresponds to the disordered states, 

then the Hamiltonian of the system reads: 

1-{ = L (-JOSj,o + K(1 - OSj,o)) , 
j 

(2.21) 

where the sum is over aU water molecules that are nearest neighbors of sorne hy-

drophobic monomer. Therefore, for each conformation C of the polymer its energy 

can be computed. The partition function of the system can be cast in the form: 

ZN = L.:c ZN( C) - where the partition function of a given conformation C reads: 

(2.22) 

nS and nb are the number of water molecules in the first shen and bulk respectively, 

and f3 is reciprocal of the thermal energy. 

Energy 

(q-l) limes degenerate 
K 

/' Disordered shell 

0 
Hulk 

~ -J 
Ordered Shell 

Figure 2-17: Representation of the energy of bulk (red) and first shen (blue) water 
molecules. 
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It is possible to classify the polymer according to ns. For self-avoiding random 

walks of size N, the fraction of configurations of perimeter ns is well approximated 

by a Poisson distribution of the form: 

[8(N - 1)]2N+2-ns 

P () 8(N-l) 
N ns rv e "---'( 2-N-+---'-2':""--n-

s 
)-!- , (2.23) 

with 8 rv 0.75. Using this distribution and equation 2.22, the partition function of 

the system reads: 

2N+2 
ZN({3) = L PN(n)q2N+2-n [exp({3J) + (q - 1) exp( -(3K)r , (2.24) 

where the smallest perimeter nmin, assuming that in this configuration the system 

has a circular compact shape, is 2/(7r)/(N). The maximum number of water sites 

in contact with the polymer is 2N + 2. AIl these sites where taken into account when 

computing ZN(C), 

The specifie heat, computed as Cv = (32(fPlnZ/8{32), is shown in Fig. 2-18. 

Three peaks appear in the specifie heat. From zero temperature to the first peak, 

the polymer is swollen - in agreement with cold denaturation. As the temperature 

is raised above the first peak, the pol ymer folds and the number of first shell water 

is approximately 2/(7r)/(N). As temperature increases above the second peak, 

the polymer occupies globule-molten states. Beyond the third peak, the polymer 

reopens. 

The free energy difference llF between the denatured and native states is convex 

- see section 2.2.1 - such that it becomes zero at both a high and a low temperature. 

These temperatures correspond to the transition point of hot and cold denaturation. 
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Figure 2-18: Heat capacity for different polymer sizes. Here, K / J = 2 and q = 103
. 

A rough estimation of !:1F was also computed for this model showing that it has the 

expected curvature - see Fig. 4 of reference [87]. 

2.4.3 Pressure dependent cold denaturation 

In this section l describe the model proposed by Marques et al. [64] to de scribe 

cold denaturation. In this model, the protein corresponds to a self-avoid random 

walk where each amino acid sits in a site of a N x N lattice. AU other sites i are 

occupied by one water mole cule which can be in q different states (Ji. When two 

neighboring water molecules < i, j > are in the same state ((Ji = (Jj), they are said 

to form a hydrogen bond that increases the volume of the system by !:1 V. If the two 

molecules do not have the same orientation, the interaction of the particles does not 

imply any increment in volume. Therefore, 

(2.25) 
<i,j> 
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corresponds to the number of hydrogen bond in the system. The Hamiltonian of 

water-water interaction is simply 1t = -JNHB , where J> 0 is the strength of the 

hydrogen bond interaction between water molecules. The enthalpy of the system is 

sim ply given by: 

1t + PV = -(J - Pô'V)NHB . (2.26) 

Note that this solvent model has a critical pressure Pc = J / ô, V. At this critical 

pressure, the system behaves as a paramagnetic system at zero field - see Fig. 2-

19. Above that pressure, NHB decreases as the temperature is lowered and water 

molecules undergo a transition to astate where aU hydrogen bonds are broken. 

Below Pc, the number of hydrogen bonds increases as temperature decreases and 

water molecules undergo a sharp transition at T = Tc = (J - Pô'V)j[ln(l + q)] to 

astate where aU hydrogen bonds are formed. Therefore this model reproduces the 

freezing of water to low (P > Pc) and high (P < Pc) density ice. 

.. 
:z: 

Z 

Low density ice 

____________ ~~=-__ -----p=Pc 

Tc Temperature 

Figure 2-19: Schematic representation of the temperature dependence of NHB at 
three different pressure. 
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The energetics of the protein is given by: 

Hp = JrnHB(Nmax - L ninj) , 
<i,j> 

(2.27) 

where Jr > 0 is the strength of the interaction and nHB NHB/Nwater, Nwater being 

the number of water molecules in the system. The term inside the brackets decreases 

as the protein becomes more compact: N max being the maximal number of residue-

residue contact and ni = 1 if the lattice position i is occupied with a residue, and 

zero otherwise. The sum is over aU first-neighbors residues. Note that Hp is not a 

local Hamiltonian: N H B is the number of hydrogen bonds of the whole system. 

According to Equation 2.27, the energetic cost of embedding a protein in water 

is less important when the protein assumes compact configurations. This cost is 

proportional to the amount of hydrogen bonds in the system such that, for P < Pc, 

it is continuously less likely to have an open protein as temperature decreases since 

N H B increases. For P > Pc, N H B decreases with decreasing temperature such that 

the cost of having an open protein in water also decreases. Close to the solidification 

point of water the protein unfolds - in agreement with cold denaturation. Thus, this 

model reproduces qualitatively the pressure and temperature dependent behavior of 

proteins. 

In the model, the presence of water-water hydrogen bonds is the driving force 

for protein folding. This mechanism is in contrast to the results of experiments: pro-

tein folding is known to be entropicaUy driven [79]. In the model, the occurrence of 

cold denaturation results from a lack of water-water hydrogen bonds at high pres

sure. Again, this is in contradiction with molecular dynamics simulation which find a 
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correlation [75] between water-water hydrogen bonds of shell water and cold denatu

ration. Finally, it is important to point out that cold denaturation can also occur at 

low pressure (P < Pc) if other mechanisms are introduced to destabilize the protein 

- such as increasing the solution's pH. This cannot be reproduced by the present 

model. 

In conclusion, the present model is attractive due to its simplicity. It accounts 

qualitatively for the behavior of proteins. However it has sorne inconsistencies. In 

chapter 5 of this thesis we study co Id denaturation and suggest a mechanism for 

cold denaturation which is in line with molecular dynamics simulations [75] and the 

model described in section 2.4.2. 

45 



2.5. LANGEVIN DYNAMICS 

2.5 Langevin Dynamics 

Simulations in this thesis rest upon the study of Langevin's equation for Brow-

ni an motion [83]. This equation accounts for the motion of a particle in thermal 

equilibrium with the medium surrounding it. It assumes that the medium can be de

scribed by two types of forces: a rapidly fluctuating force pT and a viscous-damping 

force pd. The latter mimics the effect of the average collision of the atoms of the 

medium with the Brownian particle and the former, deviations from this average 

behavior. In the most simple case, the damping force is linearly dependent on the 

particle's velo city such that the equation of motion reads: 

(2.28) 

where 1 is the viscosity coefficient, m and v are the mass and the velocity of the 

Brownian particle. The formaI solution of equation 2.28 is: 

(2.29) 

The first moment of pT is chosen to be zero such as to avoid biased motion and this 

stochastic variable is uncorrelated in time: 

(2.30) 

The intensity of this random force 9 is chosen such as to guarantee equilibrium. 

This is achieved whenever the work performed per unit of time by the random force, 

ET = limT--->o < pT(t + T)V(t) >= g/2, is equal to the work dissipated per unit of 
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time by the friction force, Et =< "(v2 >= "(kbT lm. As a result: 

(2.31 ) 

This is known as the fluctuation-dissipation theorem since it accounts for how energy 

fluctuations are dissipated in systems close to equilibrium. 

2.5.1 NumericalIntegrators 

Several algorithms have been used to solve Langevin's equation of motion, Eq. 

2.28, numerically. The most straightforward, Euler's method [103], computes the 

position and velocity of each particle i at time t by iterating through the equations: 

fi(t + ~t) 

Vi(t + ~t) 

fi(t) + Vi(t)~t, 

Vi(t) + M-1 j!Ht)~t, 

(2.32) 

(2.33) 

starting from the initial condition fi(O) and Vi(O). Here, fi is the sum of conservative, 

dissipative and random forces. Hence the equation of motions are non-linear. Con

servative forces are computed from the interaction potential V between particles of 

the system. The random force is gaussian distributed with zero mean and root-mean

square (j = (g/ ~t)1/2. The dependence of (j on !:lt accounts for the discreteness of 

tirne in numerics. A few authors [73, 7] make use of a uniformly distributed random 

force in the range [-3(j : 3(j]. Both, the normally and uniformly distributed force 

ensure equilibrium at a temperature T. 

Although the integration of the equations of motion with Euler's algorithm 

accounts for the correct equilibrium properties of the system, it does not handle 

conservative forces in an appropriate manner. The Verlet class of algorithms are 
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more suit able for this purpose. In particular, one can integrate the equations of 

motion with the velocity-verlet algorithm [2] which in its original form reads: 

fi(t + ~t) 

Vi(t + ~t) 

~t2 ..... 
r(t) + Vi(t)~t + 2M Fi (t), 

~t..... ..... 
- Vi(t) + 2M [Fi(t) + Fi(t + ~t)]. 

(2.34) 

(2.35) 

Note that the dissipative force on particle i is linearly dependent on its velocity such 

that, both left and right hand side of Eqn. 2.35 depend on Vi(t + ~t). Therefore to 

solve Langevin's equation of motion with the velocity-verlet algorithm, one has to 

solve Eqn. 2.35 for Vi(t + ~t). The modified algorithm reads: 

fi(t + ~t) 

Vi(t + ~t) 

(~t)2 
r(t) + Vi(t)~t + 2M ffi(t), (2.36) 

Vi(t) + ~[ Fi(t) + F[(t + ~t) + F{(t + ~t)] (1 + ~~) -1. 

This algorithm is very easily implemented and will be used in chapters 3 and 4 of this 

thesis. Other methods have also been used to perform Langevin molecular dynamics 

[13, 49, 103, 30]. 

2.5.2 Constant Pressure Simulations 

Langevin dynamics is appropriate to describe systems in thermal equilibrium -

i.e. for the canonical ensemble. However many situations, especially in soft-matter, 

require simulations to be performed at both constant temperature and constant 

pressure. While temperature is computed from the microscopie degrees of freedom 

using the equipartition theorem, m(v2 )/2 = 3kbT/2, pressure is obtained from the 
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virial theorem [42]: 

(2.37) 

where Fi is the sum of intermolecular forces Frt and external forces Fiext. The 

latter are related [2] to the pressure P applied by the walls of a container where the 

particles are evolving in time: dFi = - pndA. When integrated over the area of the 

container: 
N 

'" f'. . F~xt = P J n . rdA = 3PV ~ ~ ~ , 
i=l 

(2.38) 

such that the pressure can be written in terms of the microscopie degrees of freedom 

as: 
N 

P = NkbT + (2: fi· FJnt). (2.39) 
i=l 

Several simulational methods exist to perform molecular dynamics at constant 

pressure. They consist in constraining the atomic positions inside a simulation box 

whose volume V vary in order to target a constant pressure. In chapter 5 we use 

the extended method proposed by Andersen [3]. It assumes that V is an additional 

variable which contributes with PV to the potential energy of the system and with 

~QV2 to its kinetic energy - where Q has the units of mass and can be interpreted 

as the mass of the container. 

For simulation al purpose, it is convenient to describe the position of particles in 

terms of reduced variables: ~ = ri L where L = V1/ 3 . In terms of these variables, 

the Lagrangian reads: 

I:
L2 

:.,2 I: ---- Q'2 C = -m·s· - V(L s··) + - V - PV 2 Z Z 'ZJ 2 ' 
i i<j 

(2.40) 
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where mi is the mass of ith particle, V is the interaction potential between particles 

of the system. The Hamiltonian is obtained via a Legendre transformation, 

(2.41) 

where 'Tri = aCjfisi and IIv = aC/aVare the conjugate momenta. The equations of 

motion read: 

ÏÎv (2.42) 

where h = - ( av / ar;,) is the force acting on the ith particle, and P is the instanta

neous pressure. P can cast in terms of the reduced variables: 

(2.43) 

where hj = -(av/arij) and Sij = (sj - Si) are the force and distance between 

particles i and j, and d is the number of dimensions of the system. 

Therefore Eqs. 2.42 correspond to the equations of motion of N particles evolv-

ing in a constant pressure environment. Those equations can be solved numerically 

using the velo city verlet algorithm, Le. Eqs. 2.34 and 2.35. Note that apart from 

the kinetic energy of the piston, the Hamiltonian 11 corresponds the enthalpy of the 

system. 
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2.5.3 Constant Temperature and Constant Pressure 

To account for constant temperature and constant pressure simulations, Feller 

et al. [34] replaced the canonical equations of motion, Eqs. 2.42, by a stochastic 

Langevin process: 

(2.44) 

The random forces are defined according to the fluctuation dissipation theorem: 

(ryf) = (ryv) = 0, 

(ryf(t)ryf(t')) = 2oijoaf3o(t - t'), 

(ryv(t)ryv(t')) = 28(t - t'), 

(ryf(t)ryv(t')) = 0, 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

where a and f3 refer to the Cartesian directions. Those equations are used in chapter 

5 of this thesis to account for constant temperature-pressure ensemble. We use the 

algorithm of Kolb and Dünweg [54] to solve Eqs. 2.44. In terms of the conventional 

variables ri(t) = L(t)si(t) and Pï(t) = L(t)-lii(t), this algorithm reads: 

1. Pi(t + .6.t/2) = Pi(t) + Fi (t).6.t/2; 

2. Compute P using fi(t), L(t), and Pi(t + .6.t/2); 

3. IIv(t + .6.t/2) = IIv(t) + (P - P).6.t/2 - 'Yv I1Q' .6.t/2 + ..jkbT'Yv.6.tryv; 

4. V(t + .6.t/2) = V(t) + Q-1IIv(t + .6.t/2)b.t/2; 

5. fi(t + ~t/2) = ri(t) + (L2 (t)/ L 2 (t + ~t/2))(pi(t + ~t/2)/mi)~t; 

6. V(t + .6.t) = V(t + .6.t/2) + Q-1IIv (t + .6.t/2).6.t/2; 
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2.5. LANGEVIN DYNAMICS 

7. ri(t + tlt) = L(~1~t)ri(t + tlt/2); 

8. fti(t + tlt/2) = L(~~tlt)fti; 

9. Evaluate P using fi(t + tlt),L(t + tlt) and fti(t + tlt/2); 

10. IIv(t + tlt) = IIv(t + tlt/2) + (P - P)tlt/2 -l'v~tlt/2 + VkbTl'vtltrFv; 

11. fti(t + tlt) = fti(t + tlt/2) + F'ï(t + tlt)tlt/2, 

where F,tlt/2 = htlt/2 - l'fti/mitlt/2 + y'kbTl'tltifi. Note that this algorithm 

reduces to the velocity-verlet algorithm when Q --+ 00. 
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Chapter 3 

Scaling in Force Spectroscopy of Macro
molecules 

3 .1 Introduction 

Many essential biological pro cesses for life depend on the reaction of various 

bonds and/or molecules to an applied force. One such example is how leukocytes 

recognize invading pathogenic organisms in blood vessels [68]. Atomic force mi-

croseopy (AFM) [63, 104] and bio-membrane force probe [67, 33, 32] (BFP) are now 

being used to determine the energy landseape of these complex molecules. In the 

former experiment, a moleeule is attaehed to the tip of the AFM while a eounter

molecule is held at the surface. A specifie bond [9] between these two moleeules is 

formed when the tip is brought close to the surface. By removing the tip from the 

surface at a constant loading rate and recording the most likely force at which the 

specifie bond breaks, a complete speetrum of force versus loading rate is obtained. 

Experimentally, the force is seen to inerease approximately with the logarithm 

of velo city for about 3 or 4 decades. This behaviour can be explained in terms of a 

minimal model [31] in whieh specifie bonds are modeled by a Lennard-Jones potential 
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while the surrounding environment of the bond is described by a stochastic force. The 

breaking of the bond then takes place through thermal fluctuations, which depends 

strongly on the energy barrier [98]. The potential energy of the bond added to the 

energy associated with the external force (the energy of the cantilever) accounts for 

the energy landscape [6]. An approximate solution of the model reveals that the 

energy barrier of the landscape decreases linearly with the applied force. This linear 

dependence then results in a linear force spectrum. 

There is a need to expand the minimal model and to perform a detailed theo

retical study of the breakup pro cess [22]. In particular, it was recently shown that 

the linear dependence of the energy barrier on the applied force is rarely valid in 

similar cases where an interplay between thermal fluctuations and a time-dependent 

energy barrier exists [8, 90, 37]. The linear logarithmic behaviour must be replaced 

by a In2
/
3 Tir dependence, where T is temperature and r is the loading rate. Since 

this behaviour is observed in systems as varied as Josephson junctions [37], friction 

of an AFM tip on a surface in the creep regime [28, 90], and possibly spin glasses 

[94], it raises the question of the universality of this result and of its applicability to 

the breaking of biological molecules. 

In this chapter, we first use molecular dynamics to study the breaking rate of 

chain molecule held at a fixed length. We find that the breakup is a thermally acti

vated pro cess and extract the energy barrier and attempt frequency. Two situations 

are examined. In the first, the chain is composed of identical Lennard-Jones atoms 

with periodic boundary conditions. We find that the energy barrier tlE rv (sc - s)3, 

where S is the strain of the chain and Sc is the critical strain, the strain at which 
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3.1. INTRODUCTION 

breakup would occur at T = o. This differs from the universality classes described 

ab ove , and arises from specific boundary conditions. A more realistic situation is to 

consider the chain of atoms attached to an harmonic spring representing the mem

brane of a BFP setup, or to be composed of links with different forces. In this 

situation, the energy barrier !:lE '" (sc - S )3/2, within the ramped creep universality 

class. A non-linear vanishing of the energy barrier has been observed in other model 

biological systems [60, 46], and a similar scaling form has also been proposed by 

Dudko et al [27]. 

These results are then used to discuss the dynamical breakup. We use a quasi

static approximation, in which the energy barrier !:lE ( t) '" (sc - s( t))'. We show 

that when the tension is increased at a constant rate, the strain s at which the system 

ruptures scales with the temperature T and the loading rate r = ds/dt as : 

(3.1) 

where "1 = 3 for identical ring mole cule and "1 = 3/2 for BFP experiments. These 

results are confirmed by a direct molecular dynamics study of breaking on a simpli

fied BFP set-up. Even though the rate of elongation that can be simulated using 

molecular dynamics is unrealistically high, these results validate the quasi-static 

approximation. Our results can thus be applied to experimentally useful range of 

stretching rate. In particular, this scaling is based on physical arguments and is uni

versaI, the detailed form of the potential enters only through the numerical constant 

K. 
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3.2 Model Description and Simulation 

We model the molecule being stretched by a one dimension al chain of N atoms, 

described by the position Xi (i = 1, N). The atoms interact together through first

neighbor interactions only. For specificity, we choose the Lennard-Jones potential, 

(although the exact form of the interaction is not essential: 

(3.2) 

where E is the binding energy, a is the inter-atomic spacing, and box is the distance 

between the atoms. The dynamics of this system is obtained by simple Langevin 

equations. The atoms are immersed in a solvent which acts as a friction force (-"(Xi) 

and a random force Çi(t) on each atom i. The intensity of the random force is given 

by the fluctuation-dissipation theorem 

(3.3) 

where M and kB are the mass and Boltzmann's constant, respectively, and the 

angular brackets denote an average. The equation of motion of atom i can now be 

written as 

M~;i + MTÎ;i - F(Xi - Xi-l) + F(Xi+l - Xi) 

= Çi(t), (3.4) 

where F(x) is the force computed from the potential. Two different situations can 

then be considered. 
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a) 

b) 

3.2. MODEL DESCRIPTION AND SIMULATION 

a+ f S 

a+S --

.. 
a+(l-f)S 

Figure 3-1: Schematic representation of stretched chain models. In (a), a periodic 
chain with similar atoms is presented in its local equilibrium configuration: aU atoms 
stretch by the same amount S. In (b) we show a system made by a weak bond and 
a spring. The spring mimics the membrane of a BFP while the bond models the 
relevant weak bond of a complex molecule. At metastable equilibrium, a fraction f 
of the stretched length S of the system extends the weak bond. 

1) Periodic chain: The simple st system to study is a periodic chain with N similar 

atoms, as depicted in Fig. 3-1(a). Periodic boundary conditions are imposed with 

the minimum image convention [2] so that the probability of rupture is equal at each 

point of the chain. The length of the box is fixed at L = N(a + S) and initiaUy aU 

bonds are strained by an equal amount S. This setup corresponds to a metastable 

configuration since the total force on each atom is zero. Therefore, the average strain 

on each bond stays the same along the simulation until rupture occurs. In that case 

the broken bond stretches graduaUy to a + N S while the strain on the others N - 1 
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3.2. MODEL DESCRIPTION AND SIMULATION 

bonds vanishes sueh that the sum of all bond length is conserved at all times. A 

similar system, at a fixed length, was already studied by Oliveira [73]. It was found 

that rupture usually oecurred at a single bond through thermal fluctuations. 

2) Attached chain: A more realistie situation is when different bonds (eorre

sponding to different values of E) are present in the moleeule, with one end of the 

chain (atom i = N) strongly attached to a surface and the other (atoms i = 1) to the 

tip of an AFM or the membrane of BFP. The cantilever of the AFM is modelled by in-

troducing a new atom Xo, linked to the first atom of the chain by an harmonie spring 

(with spring constant kh ), leading to an additional term in the potential energy: 

(3.5) 

Of particular interest for BFP is when one of the bonds (between atoms i* and 

i* + 1) is mueh weaker than the others, and the spring constant less stiffer than the 

weak bond. Defining E(i) as the binding energy between atoms i and i + 1, and 

representing the weak bond by E = E(i*), the specifie situation that we consider is 

thus 

E(i)/E» 1 

E(i*) = E 

E(i)/E» 1 

For i = 1, i* - 1 

(3.6) 

For i = i* + 1, N 

In this case, only the weak bond and the spring plays a role in rupture (the 2 

subehains formed by the strong links are essentially undisturbed). Therefore ta 
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3.2. MODEL DESCRIPTION AND SIMULATION 

speed up simulational time we ignore these strong bonds (see Fig. 3-1b). The atoms 

at the extremity of the setup are held fixed in place. 

Dynamical breakup of the chains: The ultimate goal of a molecular dy

namic simulation would be to compute the mean breaking force for chains subjected 

to strain rates spanning several orders of magnitude (typical experimental time scales 

range from a millisecond to a minute). However, due to prohibitively long computa

tional times [96], molecular dynamics can only probe breaking for a very small range 

of loading rates. We thus proceed in two steps, we first calculate the energy barrier 

for a fixed chain length and show that this result can be used to understand the 

dynamical breakup. The strain s of the chain is thus fixed (through the boundary 

conditions) and the time T( s) necessary for breakup is obtained. 

The dynamics of atoms is given by solving the set of Eq. 3.4 using the velocity 

Verlet algorithm [2, 99]. These are solved numerically for a fixed length of the system 

(fixed strain) until a bond breaks irreversibly. In order to determine whether rupture 

has occurred irreversibly, we compute the characteristic time required for the largest 

bond length of the chain to reach different values d. This is shown in Fig. 3-2. Two 

distinct regimes are clearly distinguished. The first regime occurs when the length 

d of the largest bond is sm aller than dc rv 1.56 (in units of a). In this case the 

time required to produce an increase of d is appreciable. The underlying physics of 

this regime is the competition between thermal fluctuation, which is responsible for 

increasing the length of the largest bond, and the elastic restoring force on this bond. 

The second regime occurs when the length of the largest bond is greater than dc. 

Here, T has reached a plateau: almost no time is required to increase the length of 
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Figure 3-2: Dependence of the characteristic time of rupture r on the length of the 
largest bond of the chain. The vertical line separates the two regimes of rupture. 
This simulation was performed at T=0.019 and 8=0.035. 

the largest bond. This occurs as the unstable point in the potential energy landscape 

is crossed when the elastic force changes sign and becomes a breaking force for the 

largest bond; the bond can not restore its equilibrium length and we can conclude 

that irreversible breaking has occurred. The average point of rupture de is therefore 

well defined. 

The characteristic time of rupture r can be computed by knowing the number 

of chains N(t) that have not ruptured at time t. If there are initially No chains, the 

time evolution is N(t) = No exp ( -tir). Unless otherwise stated, we use No = 800 
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3.2. MODEL DESCRIPTION AND SIMULATION 

in this paper. If breakup is thermally activated, the time for breakup follows an 

Arrhenius form 

(3.7) 

where the inverse of the prefactor, D(s), is the attempted breakup frequency and 

.6.E( s) is the effective potential energy barrier (i. e. the amount of the energy the heat 

bath has ta supply in arder for rupture ta occur). The rate of breaking of the chain 

R(s) = 1/7(S). 

Simulations are performed in reduced units. Energy is written in terms of E, 

length is given in terms or a and time is given in units of the smallest period of 

phonon oscillations 7 0 = 12J(~:/Ma2). For simplicity, the mass of each atom is chosen 

to be one while the friction constant is tuned to 'Y = O.25(27r /70 ). Below we present 

results from simulation. We obtain 7( s) for various temperatures, from which both 

the energy barrier .6.E( s) and the oscillation frequency D( s) can be obtained. The 

behaviour of .6.E (s) as a function of the strain is particularly important since it 

appears as an exponental factor in the thermal rate formula (Eqn. 3.7). At low 

strain, we expect linear behaviour, ie., .6.E(s)/.6.E(O) = 1 + O(s). At sorne critical 

strain value Sc, the energy barrier vanishes and the chain is naturally unstable. Close 

to Sc, we expect power-law behaviour .6.E(s) '" (sc - s)'Y. 

3.2.1 Numerical simulations: attached chain 

This model corresponds to Fig. 3-1 (b). The weak bond is defined by E = 1 

and a = 1 - such that its stiffness (computed from the Lennard-Jones potential) is 

k = 72é/ a2
• The equilibrium length of the harmonie spring is a and its stiffness 

is kh = 1O-4k. Figure 3-3(a) shows the dependence of the logarithm of 7 on the 
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Figure 3-3: Simulational results for the weak + harmonie chain. In (a) the depen
dence of breakup time on the temperature and strain is presented. The energy barrier 
as a function of the strain is shown in the inset. In (b) we show the behavior of the 
energy barrier and attempt frequency (in the inset) on the strain s. The power-Iaw 
dependence of the barrier is evident. 

inverse of temperature for several values of strain. In agreement with Eq. 3.7, this 

dependence is linear, showing that breaking is a thermally activated process, mostly 

determined by the binding energy E and the spring constant kh . The energy barriers 

as a function of the strain sare shown in the inset of Fig. 3-3(a) and demonstrate 

the existence of a critical value of the strain SC' Close to Sc, the energy barrier 

sc ales as !:1E rv (s - scP, as shown in Fig. 3-3(b). The best fit yields values 

of Sc = 370 ± 10 and 1 ~ 1.5 ± 0.1; the large uncertainty cornes from having to 

determine two parameters from the fit, together with the constraint that power law 

behaviours is observed only for strains sufficiently close to the critical strain. The 
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prefactor is given in the inset of Fig. 3-3(b). It increases with strain until it reaches 

a maximum and eventually decreases as Sc is approached. 

3.2.2 Numerical simulations: periodic chain 

a) ,: 1 
1 

-2.5 . ; 
s = (J.05 ... 

~1 

-3.5 
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-1.75 -1.25 -0.75 
ln (1- sis.,) 

Figure 3-4: Simulational results for the periodic chain. Different colors correspond 
to different applied strains. In (a) the dependence of breakup time on temperature 
and strain is presented. The energy barrier as a function of strain is shown in the 
inset. In (b) we show the behavior of the energy barrier and attempt frequency (in 
the inset) on the strain s. The power-Iaw dependence of the barrier is evident. 

In this case, shown in Fig. 3-1(a), aU the bonds of the periodic chains have the 

same binding energy E = 1. Figure 3-4(a) shows the dependence of the logarithm of 

T on the inverse of temperature for sever al values of strain and several temperatures. 

Again, the straight lines shows that breakup is a thermally activated process. The 

inset of Fig. 3-4(a) shows .!::1E(s) vs s. Again, there exists a critical strain at which 

the barriers disappears. 
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3.3. MEAN-FIELD ANALYSIS 

We show in Fig. 3-4(b) that the energy barrier varies as .6.E rv (s - scyx close to 

SC. A bcst fit of these simulational data gives Sc = 0.115 + 0.005 and a ~ 3.5 ± O.l. 

The behaviour of the prefactor is more complicated [88J. Initially it increases and 

reaches a maximum as shown in the inset of Figure 3-4(b). 

For both the periodic and weak bond chain, the behaviour close to Sc is very 

different from the linear dependence usually expected and on which the model of 

Ref. [31 J is built. We now present mean field models that explain these results. 

3.3 Mean-Field Analysis 

$ 
a+S- -

N -1 -

Figure 3-5: Mean-field description of the breakup of a periodic chain of atoms. 

The breakup of a chain can be approached through an effective potential that 

describes rupture [73, 72, 80J. The potential is built around the ide a that the molecule 

breaks locally at a single specific bond [73J. During breakup, one of the bonds 

is stretched by an extra amount cp while the other bonds relax according to the 

prescribed value of the chain length. The complete breakup pro cess can then be 

described with the potential Uef f (s, cp), where s is the prescribed strain of the chain 

and cp represents the increase in strain for the breaking bond. 
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This potential typically has a metastable character. There is one minimum 

<Pmin, located near <P = 0 corresponding to a chain which is not broken. This state 

is separated from a continuum of values of <P (corresponding to a broken chain) by 

an energy barrier, with maximum located at <Pmax. These points are found by the 

condition 

aueft(S, <p) 1 = 0 

<P 1/J=l/Jmin,l/Jmax 
(3.8) 

The energy barrier for a given strain S is then 

(3.9) 

A zero temperature, the transition to a broken chain occurs when the energy 

barrier disappear. At this critical strain Sc, the energy barrier goes to an inflexion 

point, defined by <Pmin = <Pmax = <Pc and the condition 

(3.10) 

At finite temperature, the transition to a broken chain takes place by thermal 

activation over the energy barrier. The time T required for such transition is given 

by Kramer's reaction rate theory, Eq. 3.7, with the attempt frequency: 

(3.11) 

where Wo and Wb are the vibration frequency around the position of local minima and 

maximum of energy. Eq. 3.11 is the overdamped approximation of Kramer's result 

for the attempt frequency [43]. 
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If the load on the chain increases at a constant rate, the energy barrier decreases 

continuously. Due to the exponential character of the activation rate, breakup will 

occur for strains S close to the critical strain Sc, and this even at finite temperature. 

In the critical region (sc - s) 1 Sc « 1, it is possible to obtain easily an accurate 

approximation for the effective potential, and hence the activation rate. We define 

s = 1 - (sise), and expand the effective potential U(s, cp) in deviations ocp = cp - CPe 

and the small parameter S, from which the energy barrier can thereafter be calcu

lated. Analytic expression for the attempt frequency on scan also be computed by 

expanding the second derivative to first order on s. We now present the mean-field 

potential appropriates to both cases. 

Attached chain: This case is reprensented in Fig. 3-1(b). The chain is subjected to 

the total strain s, which is carried by both the weak bond between atoms i* and i* + 1 

and the cantilever between atoms i* + 1 and the first atom of the sctup io. Without 

fluctuations, the total elongation of the two active bonds is s, of which a fraction 

f is taken by the AFM-chain bond. An approximate estimate of f is obtained by 

linearizing the Lennard-Jones potential, yielding f = kh a2 /72E. The path of rupture 

is parametrised by the quantity cp, describing the extent by which the weak bond 

length deviates from a + f s. Equivalently, cp corresponds to the deviation of the 

spring from a + (1 - 1)s, where (1 - 1)s is the strain of the spring in the harmonie 

approximation. The potential energy along cp reads: 

U:" ( cp) = ~h [ (1 - f) s - cp] 2 + U ( a + f s + cp ) . (3.12) 
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Figure 3-6: Dependence of the effective energy on cp. Black and red lines correspond 
to low and high tension respectively. a) Periodie chain. b) Chain composed of a 
weak + harmonie bond. 

Figures 3-6(a)-(b) show how the effective potential for rupture changes when cp is 

varied under two different tensions. Low tension is shown in black while high tension 

is given in red. 

Numerical resolutions of Eq. 3.8 and Eq. 3.10 show that the critical values 

scia = 373.7 and CPcla = 0.071. An expansion around these values then leads to an 

energy barrier 

(3.13a) 

(3.13b) 
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where Eo and Do are given in the footnote 1 . The value of Sc and the 1 = 3/2 

exponent for the the barrier height are in good agreement with the values obtained 

by numerical simulation. 

Periodic chain: This case is characterised by the constraint of fixed chain 

length (see Figure 3-5) and the energetics of this system is described by the effective 

potential 

(3.14) 

In this case, cPmin = 0 is a minimum for an values of the strain. Since this 

minimum is fixed, it implies that cPc = 0, and the critical strain is sim ply related to 

the point at which the single-atom potential becomes unstable 

d2U(a + sc) = 0 
ds2 . 

(3.15) 

In the specific case of the Lennard-Jones potential, Eq. 3.2, this gives Sc = a(13/7)1/6. 

Due to the particular form of the effective energy of the periodic chain, 

81+nU:'f/8cP8sn = 0 for an n. Therefore higher order Taylor's expansion of equation 

3.8 has to be carried out and the resulting scaling for the periodic chain becomes: 

(3.16a) 

(3.16b) 

1 F th h . + k 1· k h . . E - 4 3/2 [J2( 82
Ueff )/( 83Ueff) Jl1/2( 82Ueff) or e armolllC wea m cam. 0 - 3Sc 8s84> 84>3 8s84>' 

1/2 82U 83U / 83U 0 0 = Sc [12( 84>8;/)/( 84>ep)1P 2(~)/27rM, and the derivatives are computed at 
Sc and cPc. 
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where Eo and no can be simply expressed 2 • The exponent in Eq. 3.16a is similar 

to that estimated in the simulation (namely 3.54), and likewise for the value of SC. 

Crossover scaling: A crossover scaling function can account for both limits. 

Consider the parameter 'ljJ fP Uef f /080<p whieh characterizes symmetry: 'ljJ = 0 rep

resents the periodic (symmetrie) chain, while finite 'ljJ corresponds to the assymetrie 

(weak + harmonie) case. Expanding Eqs. 3.8 and 3.9 to second order in 8 and ~ 

gives the scaling form for the energy barrier in the limit of small 8 and small 'ljJ: 

(3.17) 

where the scaling function obeys g('ljJ* -+ 0) ex: 1, and g('ljJ* -+ (0) ex: ('ljJ*)1/2, in terms 

of the scaled variable 'ljJ* = 'ljJ / 83. The proportionality constants and the form of f 

are dependent on the derivative of the energy computed at Sc and <Pc. This recovers 

the previously obtained symmetric and non-symmetric cases in the appropriate limit. 

Although Eq. 3.17 is more general than Eqs. 3.13 and 3.16, it is preferable to work 

with these two scalings separately (this is done in the next section). 

Notice that by adding a different bond type to the period chain (symmetric case), 

ol+nU:'f/o<Posn =1 0 and we regain the scaling of Eq. 3.13. In force spectroscopy a 

different bond (usually harmonie) is required to probe the molecule. Therefore one 

can say that the scaling of the periodic chain made of equal bonds is not appropriate 

to describe these experiments. 

2 F h . d· h·· E - 2 3(Ô3Ueff)3/(Ô3Ueff)2 ri - (Ô3 U )/2 M d or t e peno lC c mn. 0 - 3" Sc asa</>2 a</>3 , ~ '0 - Sc asa</>2 7r 1 an 
the derivatives are computed at Sc and <Pc. 
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Finally, we note that Eq. 3.13 and 3.16 are independent on the type of potential 

used for the interaction between particles. 

3.4 Dynamics of breaking 

The situation of interest for force spectroscopy experiments is when the length 

of the system is increased at a constant rate r (i. e., s (t) = r t). In this case, the chain 

ruptures at a relative strain s with sorne probability. Assuming that the breaking of 

the chain itself takes place on a time scale shorter than any other in the problem, 

the probability that the chain has not broken at time t is 

W(s(t)) = exp ( - r 7-
1 [s(t')]dt') , 

lto 
(3.18) 

where 7(S) is Kramer's rate (Eq. 3.7) for the static strain s. The probability distri

bution of breakup is simply P(s) = -dWjds and can be used to obtain the average 

strain (s) at which breakup occurs. This average strain is given [38] by 

(3.19) 

for the periodic chain. Eo and no are defined in Eq. 3.16. For the chain attached to 

an harmonic spring and containing a single weak bond, it is more relevant to express 

our results in terms of the force F, related to the stain s by 

(3.20) 

This is a reasonable approximation for the force since the spring is much softer than 

the non-linear bond. If we define j = 1 - FI Fc, the probability distribution of 
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3.4. DYNAMICS OF BREAKING 

rupture force reads: 

(3.21 ) 

where Fe - F(se), n* - noir, r dF/dt and E~ _ Eo/kT. From this distribution, 

average breakup is given by [38]: 

(3.22) 

where Eo and no are defined in Eq. 3.13. 

To derive Eqs. 3.19 and 3.22, quasi-static equilibrium was assumed: the mean 

time of rupture was assumed to obey Kramer's equation at any time. This is justified 

[96] since experimentally a significant increase in the length of the chain occurs at 

a macroscopic time-scale (determined by experiments and ranging from milliseconds 

to minutes) which is much larger than the correlation time of molecules in a liquid 

( rv 10-9 second). Therefore, at any elongation of the chain, the molecule vibrates 

several times ensuring equilibrium. 

Now we present additional simulations relating the scaling given in Eq. 3.22 to a 

typical BFP setup. Here, the length of the chain composed of weak + harmonic bond 

is increased at a constant velocity v: the last atom of the chain is kept fixed while 

the position of the atom representing the tip of the AFM (see Figure 3-1b) is given 

by xo(t) = xo(O) + vt. The dynamics is determined by Newton's law until the chain 

ruptures. A typical simulational result is presented in Fig. 3-7(a). Here the force on 

the spring is shown while the molecule is being stretched at v = 2.7 X 10-3 (in units 

of alTo) and and T = 0.02 (in units of El The force increases until it drops to zero, 
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Figure 3-7: a) Typical force on the spring while the molecule is being stretched at 
v = 2.7 X 10-3 (in units of alTo) and T = 0.02 (in units of E). The arrow indicates 
rupture. b) Normalized probability distribution of breaking force. Simulational 
results are indicated by symbols. These simulations were performed at T = 0.02 and 
v = 0.01 (squares, red), v = 0.08 (circles, blue). Curves correspond to analytical 
result. c) Validation of the scaling form, Eq. 3.22. 
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indicating rupture. The cusp occurring right at rupture is a typical experimental 

rcsults of AFM pulling experiments [46] or other stick-slip phenomena [90, 28]. Note 

that it is not due to any kind of singularity in the inter-atomic potentials but only 

to the fact that rupture itself is a very fast pro cess compared to the elongation of 

the chain. 

The distribution of breakup force is illustrated in Figure 3-7 (b) for an ensemble 

of 1900 chains. These simulations were carried out at T = 0.02 and two different 

velocities v = 0.01 (squares, shown in red) and v = 0.08 (circles, blue). Lines 

in this Figure correspond to the analytic result (Eq. 3.21) and symbols are results 

obtained from simulation. A good match between simulations and analytical results 

is observed. We see that the mean force (j) of rupture depends on v. 

To illustrate this dependence, we perform sorne simulations using ensembles 

of 1000 chains at three temperatures and various velocities. The me an force (j) 

of rupture is extracted from these simulations. We note that Eq 3.22 provides a 

temperature independent scaling by plotting (j)3/2/T in terms of In(T /v). Within 

this choice of axes, data computed at different temperatures collapses into a single 

line - as shown in Figure 3-7(c). The quality of the collapse in this Figure for 

the wide range of temperatures and velocities used in the simulation validates the 

proposed scaling. 

In the simulation performed at the slowest stretching rate (the point at the 

left si de of Figure 3-7b) , each atom of the chain executed on average t'V 3.3 x 107 

oscillations around its equilibrium position before the chain ruptured. If we consider 

that each vibration is executed in 10-9 seconds (the vibration period of a molecule in 
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a liquid), than this simulation lasted approximately 33 milliseconds, which is within 

the time range of experiments. At the other end of the spectrum, only 640 vibrations 

(or 0.64 micro seconds ) were executed before rupture. While this is outside the range 

of experiments, it is interesting to note that quasi-static approximation remains valid 

at such a high loading rate. 

3.5 Discussion and Conclusion 

The typical bond used for force spectroscopy experiments is the specific bond 

formed between a biotin and a streptavidin molecule [67]. These experiments are 

usually performed at room temperature (kBT = 4.1 pN.nm-1 ) and the spring con

stant used to characterize the membrane of a BFP lies in the range 0.1-3 pN.nm-1
• 

The binding energy of the specific bond is t rv 50kB T = 205 pN.nm and its bond 

length is assumed to be of the order of nanometer (a rv 1 nm). If this bond were 

Lennard-Jones like, its stiffness would be 72tja2 = 14760 pN.nm-1 . In this manner, 

the stiffness of the membrane is 10000 times smaller than the stiffness of the specific 

bond. This set of parameters correspond to the blue circles in Figure 3-7 - which falls 

in the ramped creep universality class discussed in this paper. Dudko et al. have also 

proposed the same scaling for force spectroscopy [27]. In their work, they use Morse 

potential to perform simulations and validate their scaling (which is equivalent to 

our Eq. 3.22). This provides addition al support for our universality argument: the 

proposed scaling is independent of bond type. 

In summary we modeled the rupture of a specifie bond which is being stretched 

at a constant rate rand temperature T. We showed that if there is just one type 

of bond being stretched, the strain at which the mole cule ruptures sc ales as: s rv 
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T1/3[ln(T1/3/r)p/3; when at least two different bonds are stretched, the molecule 

ruptures according to: f rv const - T2/3[ln(r/T)]2/3. Since in force spectroscopy 

experiments there are at least two types of bonds being stretched (bonds of the 

mole cule and the spring of the BFP), the last scaling should be used to describe 

these experiments and to extract the relevant parameters from them. In order to 

test our results experimentally, it would be valuable to probe rupture in an extended 

range of temperatures. 
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Chapter 4 

Designable structures are easy to 
unfold 

4.1 Introduction 

While the number of different proteins exceeds 105 , when classified in terms of 

structures, only of order of 103 families of protein folds exist [11, 71]. These structural 

templates for amino-acid sequences can be understood [57, 59, 69] in terms of minimal 

microscopie models. In these models, the positions of amino acids are restricted to 

lattice sites, and interaction energies between residues are described by a coarse-

grained model. Emergent structures are classified by their designability, the number 

of different amino acid sequences that design the same structure - see Fig. 4-1. 

A few structures are highly designable, and correspond to an enormous number of 

sequences. These are thereby stable to amino acid mutation, a desirable and natural 

feature for evolution. As weIl, highly designable structures are thermodynamicaIly 

stable [57, 105], and have protein-like symmetry [57, 59, 102]. 

In this chapter, we investigate the dynamical behavior of designable structures 

[23, 20]. Sorne calculations suggest [66, 12] that sequences of amino acids which are 
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Sequences: Structures: 

Ground ~ 
State. L---'===:J 

Designed by 5 sequence 

--® • ® • ® • ®---*- • ~ 
Designed by 3 sequence 

--.-.® • ® • • • @--} §J • --. • © • • • ®---*-
® Hydrophobie amino acid 

~ 
Designed by 2 sequence 

• Polar amino acid 

Designed by 0 sequences 

Figure 4-1: Schematic representation of designability. Sequences that have the same 
structure as ground state are inside the same bracket. A structure that is not designed 
by sequences is also shown. 
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thermodynamieally stable and whose ground state are highly designable, fold faster 

than random sequences. Another important aspect of proteins is their rcaction to 

forces [16]. We study proteins under shear and find a dependence of their phase 

diagram on designability. This diagram reveals that highly design able structures 

are weaker: they are easier to unfold than low designable structures. This result is 

a consequence of how strong covalent bonds in the backbone and weak bonds are 

distributed in designable structures. We expect this to be related to specifie function, 

and in particular to protein fiexibility. 

4.2 Model 

Designable structures are qualitatively different from other structures [59]. Topo

logieally, a large number of a helices and a lack of f3 sheet secondary structures 

[17], seems to account for the peculiar geometry of highly designable structures. 

Since the type of secondary structures determines how the backbone connects sur-

face monomers and this affects the dynamics of unfolding, one would expect that 

highly design able structures respond differently to forces than other structures. To 

investigate this, we consider a hydrophobie-polar (HP) model where a protein is a 

chain made up of polar (P) and hydrophobie (H) amino acids. The model incor

porates hydrophobicity, the main driving force for folding [51, 58]. The energy of a 

structural sequence is given by the short-range contact interaction: 

1t = L Ei,j [8(lfi - fjl- a) - 8j - 1,i] (4.1) 
i<j 

where the N monomers located at spatial positions fi are labeled by indices i and j 

on a two-dimensional triangular lattice, as described below. The first delta function 
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allows only nearest-neighbors interactions at a distance a, while the second excludes 

interactions between residues which are adjacent along the backbone. The interaction 

energy éi,j between monomers i and j can have three values depending on the type of 

monomers being binded: H-H, H-P, or P-P. These values are chosen to minimize 

energy when H-like (P-like) amino acids are within (on the surface of) the protein, 

namely, épp > éHP > éHH. To account for the segregation of different types of 

amino acids an addition al condition is imposed: 2éHP > épp + éHH' Since compact 

shapes have maximum contact and the lowest energy states, they are the only shapes 

considered for representing proteins. With this simplification, the interaction energies 

can be shifted without changing the relative energies of a sequence when folded into 

different conformations. Following Li et al [57], we use: éHH = -2.3, éHP = -1 

and épp = O. For studying unfolding, the triangular "lattice" is created by assigning 

an energy for each structure through two potentials: adjacent monomers along the 

backbone protein interaet through harmonie potentials, others by a Lennard-Jones 

potential: 

N -1 k 2 1 [( a ) 12 ( a ) 6] 
V(ri,j) = L i(ri,i+1 - a) +"2 L é ~ - 2 ~ 

i=l j"'i±l tJ tJ 

( 4.2) 

Ni 

where ri,j - lfi - fjl. The harmonie bonds, with spring constant k and equilibrium 

length a, ensure that the baekbone of the protein is preserved during the simulation. 

The monomers are bound by the Lennard-Jones potential, characterized byenergy 

é and the same equilibrium length a. These Lennard-Jones bonds ean be driven 

apart, ehanging the structure of the protein. A eut-off distance of 2.5a is used. Since 

the equilibrium length of harmonie and Lennard-Jones potentials are the same, the 
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minimal energy structure of the model in two dimensions is a triangular lattice, up 

to smaU corrections due to surface effects. Conveniently, then, the equilibrium states 

can be studied by sim ply assuming aU monomers sit on the positions of a triangular 

lattice. 

To study dynamics, we use a Langevin approach where friction and a ran-

dom force act on each monomer. The intensity of the random force is given by 

a fluctuation-dissipation theorem. The friction force on each monomer is propor-

tional to the relative velocity of the monomer with respect to a prescribed velo city 

field, which can apply a shear [5]. If the ith monomer is located at fi = Xi X + Yi y, 

the prescribed velo city is Vfluid(ri) = SYi X, where S is the shear rate. The equation 

of motion inside the shear flow is 

(4.3) 

where the sum is over aU atoms inside the eut-off. Here, M is the mass of a monomer, 

and ft is the force computed from the interacting potential. For simplicity, a, E and 

Mare chosen to be unity. The spring is chosen to be five times stiffer than the 

Lennard-Jones potential: k = 5(72E/a2). Simulations are carried out in units of the 

fastest atomic vibration time TO = 27rVk/ M, and the friction constant is given a 

First we consider and review equilibrium structure. We study chains of 25 

amino acids. Possible structures are restricted to compact self-avoiding walks on a 

5x5 triangular lattice, implying 352,375 independent structures. The ground state 

of aIl the 225 sequences is computed and we count the number of sequences that fold 
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uniquely into a structure. This number corresponds to the designability of a given 

structure. We find that 135,216 ("-J 38%) are non-degenerate ground states of at 

least one sequence. 

4.3 Results 

The distribution of designability for those 135,216 structures is given in Fig. 

4-2(a). A small number of highly designable folds accommodate more than 500 

sequences. These are thermodynamically stable [57]. The stability of a structure 

can be quantified as the difference between the energy of its ground state and first 

excited state, Egap. In Fig. 4-2(b) we illustrate the relation between stability of 

a structure and designability. In this figure, Egap is averaged over a given range 

of designabilities and plotted versus designability. Highly design able structures are 

seen to be more stable thermodynamically than other structures. Therefore, one 

can conclude that those rare structures which are highly designable, and thus stable 

against mutation, are also thermodynamically stable. These structures have a large 

number of bonds connecting surface monomers to core monomers [102, 45, 92, 93]. 

This is shown in Fig. 4-2(c), where the number of bonds connecting surface to 

core, averaged over structures of a given range of designability, is plotted against 

designability. A systematic increase of surface-to-core bonds with designability is 

observed. A particular example of such a highly designable structure is shown in 

Fig.4-2(d). 

N ow we will quantitatively evaluate how structures with differing designabilities 

react to an applied shear and thermal fluctuations. Rather than simulate a1l135,216 

structures, we sample as follows. We study aIl the 1,500 structures with highest 
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Figure 4-2: a) Histogram of designability. b) Energy gap, averaged over structures 
of a given range of designability, versus designability. c) N umber of bonds connecting 
surface to core residues versus designability. d) Fifth most design able structure. 
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designability, ranging from 200 to 700. For the more numerous structures which are 

less designable, we consider eight randomly-chosen structures for each designability. 

This ensemble of 3,100 structures is representative of the diversity of folds. 

At zero temperature a structure only unfolds if the shear rate is greater than 

a critical value Sc. This critical value is a measure of structural stability to an 

applied force: the larger Sc is, the more stable the structure. To determine the 

relation between Sc and designability, we probe each structure at varying shears 

and different simulation times. A structure is considered to be unfolded whenever 5 

or more bonds have broken. The quantitative dependence of Sc on designability is 

illustrated in Fig. 4-3. In the Figure, the ensemble of 3,100 structures was divided 

into 12 bins, each containing structures with the same number (4 to 15) of surface

to-core bonds. The average designability and the average Sc of each bin is plotted 

in the figure. A clear correlation between designability and Sc exists 1 . Structures 

which are highly designable are easier to unfold by a shear force - that is, more 

unstable to a shear force - than low designable structures. 

The other extreme condition for unfolding is zero shear and high temperatures. 

In this case, thermal fluctuations are the mechanism responsible for unfolding. We 

1 The critical shear rate of high and low designable structures differs by up to 10% 
in Fig. 3. This is a large effect because thermal unfolding of structures depend expo
nentially upon those shear rates. When the rate is smaller than Sc, a structure can 
still unfold via thermal fluctuations: the time for unfolding 7(S) rv exp (Eb(S)lkBT) , 
where Eb is the energy barrier and kB is Boltzmann's constant. Close to the criti
cal flow, the energy landscape is dominated by the fixed point, which is a point of 
inflection. To lowest order in (1 - SI Sc) the energy barrier is Eb(S) ex: (1 - SI Se)3/2. 
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Figure 4-3: (a) Dependence of Sc on designability. (b) Time required to unfold 
designable structures at zero shear and T=0.5 (in units of el Lines are just a guide 
to the eye. 

study how the time required to unfold a structure depends on its designability at 

a temperature of 0.50 (in units of E). In our simulations, the unfolding time T is 

computed by tracking the population of folded chains. The number of chains that 

unfold at time t (dN / dt) is proportional to the population of folded chains N ( t). In 

this case, N (t) = No exp ( - Rt) where R is the rate of unfolding and the characteristic 

unfolding time is given by the inverse of the rate T = 1/ R. We use 1,000 copies (i.e. 

No = 1, 000) of each structure in the simulation. The larger the unfolding time of 

a structure, the more stable it is ta thermal fluctuations. Results are shawn in Fig. 

4-3(b). Again, each point in this Figure corresponds to the ensemble of structures 

having the same number of surface-to-core bonds. A clear downward trend shows 
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that highly design able structures are less robust to thermal fluctuation: they unfold 

faster. 

To investigate the dependence of highly designable structures on simultaneous 

applied shear and thermal fluctuations, the phase-diagram was estimated. This 

diagram is constructed by computing the applied shear rate required to unfold a 

structure in 5,000 units of time at different temperatures. This shear rate is then 

averaged over structures having the same number of surface-to-core bonds. Notice 

that the computed shear delimits two regions of the diagram: folded structures are 

found below this shear and unfolded structures above it. In Fig. 4-4 the phase

diagram is shown for structures having 4 and 15 surface-to-core bonds. These two 

sets of structures have an average designability of 60 and 300 respectively. At any 

temperature, the set of structures with lower designability is more robust and require 

a higher shear rate to unfold. One can therefore state that high designable structures 

are easier to unfold than low designable ones. 

4.4 Discussion 

It is constructive at this point to visualize the protein while it is unfolding - see 

Fig. 4-5. The upper (lower) panels of this Figure correspond to the unfolding of a low 

(highly) design able protein fold. These simulations were performed at a temperature 

of 0.70 (in units of E) and zero shear. Low designable folds have few surface to 

core bonds. As a result, many weak bonds are aligned forming sub-structures where 

mono mers are correlated over long distances. For those folds, the time of unfolding 

is dominated by the slow unbinding of the largest sub-structures. In contrast, high 

designable folds are formed by many small sub-structures which are approximately of 
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Figure 4-4: Phase diagram of low and highly designable structures - filled and open 
circles, respectively. 

the same size. Henee it is easy to separate these sub-structures: only a few bonds need 

to rupture. This is illustrated in Fig. 4-5: for the low designable folds, the largest 

sub-structures is still preserved after 30 To (panel c) while for the high designable 

folds aIl the small sub-structures have been destroyed (panel f). 

This is in marked contrast to the relationship of designability to thermody-

namic stability, namely that highly design able structures are more stable than low 

design able structures. The implication is that, although highly design able struc-

tures are more stable in the folded region of the phase diagram, they require less 

foree/perturbation to unfold. We speculate this to be related to protein flexibility 

[62]: many globular proteins are stable to thermal fluctuations but undergo con

formational changes (and are said to be flexible) when performing their functions. 
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(a) 

(d) (f) 

Figure 4-5: Snapshot of a low (panels a,b and c) and a highly (panels d,e and f) 
designable structure during thermally induced unfolding (8 = 0 and T = 0.70). 
Panels a and d show beads position at time To and a time interval of 15 To has 
elapsed between each panel. 
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The phenomenology of this is as follows. Highly design able structures are weaker 

due to the large number of surface-to-core bonds they contain: as a result of this 

feature, protein folds contain many small sub-structures. These are easy to unfold 

since only a few bonds need to rupture in order to separate the sub-structures. AIso, 

the presence in large number of surface-to-core bonds makes it difficult to trans

form highly design able structures into other distinct compact shapes through local 

rearrangements of the backbone [59]. Such a transformation would require the par

tial unfolding of the structure, which is unlikely in the region of the phase diagram 

where folded structures are at equilibrium, followed by folding into the new shape. 

Therefore, the presence of surface-to-core bonds might explain why high designable 

structures are thermodynamically stable but easier to unfolding. Finally, we expect 

interesting insights to be obtained by expanding the model to three dimensions and 

including hydrodynamics effects (i. e. modeling the solvent explicitly). 
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Chapter 5 

Microscopie mechanism for co Id de
naturation 

5 .1 Introduction 

Under physiological conditions, proteins adopt a unique three-dimensional (3D) 

structure [4]. It is maximally stable at about 17°C and becomes unstable thus 

denaturing the protein at both high (,....., 60°C) and low (,....., -20°C) temperatures [78, 

79, 55]. The latter phenomenon is called cold denaturation, where the protein unfolds 

and thereby increases its entropy, which in turn is accompanied by a decrease in the 

entropy of the entire system. This counter-intuitive behavior has been experimentally 

verified [79,82] but has remained a subject of controversy [78, 55], since a satisfactory 

microscopie explanation for this phenomenon has not yet emerged. Resolving cold 

denaturation microscopically would facilitate understanding the forces responsible 

for the structure of proteins, and in particular the role of the complex hydrophobie 

effect 

In the case of diluted proteins, hydrophobicity is considered as the main driv-

ing force for folding and unfolding [24]. Consequently, different classes of models 
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describing hydrophobicity through varying explicit models have been used to study 

co Id denaturation [14, 75, 86, 18]. One such class [14, 86] considers the different ener

getic states of shell water, Le. water molecules neighboring the protein, in a lattiee. A 

more realistic water model [75] supports this view, as water-water hydrogen bonding 

among shell water has been found to increase at low temperatures and to correlate 

with cold denaturation. Meanwhile, another class of models suggests that the density 

fluctuations of water are responsible for cold denaturation [64, 15]. Despite the lack 

of consensus in the explanation of cold denaturation, the solvent is widely accepted 

as the key player. This is also supported by the fact that denaturation also takes 

place under pressure [47, 65]. By focusing on the transfer of water mole cules to the 

protein interior, pressure denaturation has been explained through the destabiliza

tion of hydrophobie contacts in favor of soivent separated configurations [47]. This 

destabilization has been verified using different water modeis [39]. 

In the present chapter, we examine the microscopie physical mechanism behind 

cold denaturation [21]. To this end, we consider the two-dimensional Mercedes-Benz 

(MB) model to describe water mole cules in the solvent and a simple bead-spring 

model for the protein. The MB model reproduces many of the properties of water 

[95], including the temperature dependent behavior of the hydrophobie effect [25]. 

Our molecular dynamies (MD) simulations of the MB model provide a simple mi

croscopie pi ct ure for co Id denaturation in terms of changes in hydration: at low 

temperatures water molecules infiltrate the folded protein in order to passivate the 

"dangling" water-water hydrogen bonds (H-bonds) found in shell water. At the same 

time, hydrophobie contacts are destabilized and an ordered layer of water mole cules 
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forms around the protein monomers such that they become separated by a layer 

of solvent in the cold denatured state. Hence, increasing pressure and decreasing 

temperature destabilize hydrophobie contacts in favor of similar solvent separated 

configurations. We expect that this aggravated destabilization of hydrophobie con

tacts at high pressure explains why the transition temperature for cold denaturation 

increases with increasing pressure [55]. Here, we study cold denaturation at the 

equivalent of ambient pressure. 

5.2 Model 

As in water, the interaction between the MB molecules is given by a sum of 

hydrogen bonds and van der Waals bonds. The directionality of H-bonds is accounted 

for by three arms separated by an angle of 1200
• This interaction has maximal 

strength when arms of neighboring molecules are aligned. If fij is the distance 

vector between the center of mass of molecules i and j, and fia is the distance vector 

between the center of mole cule i and the extremity of arm Œ, then the interaction 

energy is given by: 

(5.1 ) 

where Eh and Rh are the binding energy and the equilibrium (reference) length of 

the bond, respectively. The constants (JR and (Jo are attenuation parameters of the 
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interaction. Equation (1) favors configurations where the distance between molecules 

i and j is Rh, one arm of molecule i is aligned with the line joining the two cent ers 

of mass, and the same for one arm of molecule j. The van der Waals interaction 

is described by a Lennard-Jones (LJ) potential Vww with binding energy Eww and 

equilibrium length Rww: 

(5.2) 

The LJ potentials are shifted so that the force becomes zero at the cut-off distance 

Re = 2.5Rh [2]. We use the parameter set which has been studied extensively by 

Silverstein et al. [95]: Eh = 1.0, Rh = 1.0, 0' = O'R = O'(} = 0.085, Eww = 0.1, and 

Rww = 0.7. The total interaction energy Vi,j between two water molecules is given 

by the sum of Eqs. 5.1 and 5.2. 

Here, we set Mw = 1 for water. To mimic the distribution of mass in water, 

1/10 of the total mass of a water molecule is located at each arm's extremity and 

the extremity of an arm is located at a distance Rarm = 0.36Rh from the center of 

mass [81]. This defines the angular momentum of the water molecule. 

The force on a MB molecule can now be computed: on the extremity of the 

arm the force is given by Fia = (av / afia) , and on the center of mass by Fi = 
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Figure 5-1: Schematic representation of two MB molecules. 

( av / afi) + L:a ~a' Explicitly, these forces read: 

and, 

where G = exp (- (Tii-Rh )2) G = exp (- (fia.rii - 1)2 _1_) and a similarly defi-
R 20"2, a TijTia 20"2 

nit ion applies for G(3. Vectors used in those equations are represented in Fig. 5-1. 
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Energies, distances, and time are given in units of Eh, Rh, and To = J Eww/ MwR~w' 

respectiveIy. To modei the protein, we use a bead-spring model: monomers which are 

adjacent aiong the backbone of the protein are connected to each other by springs, 

and non-adjacent mono mers are connected by a shifted LJ potential. The LJ po

tentiai is described by a binding energy Emm = 0.375 and distance Rmm. The equi

librium Iength and stiffness of the spring are Rspring and Kspring = 2( 456Emm/ R'?nm). 

This corresponds to twice the stiffness of the LJ potential. Monomers are set to 

be ten times heavier than water molecules. The interaction between monomers and 

water molecules is given by a shifted LJ potential with binding energy Ewm = Eww 

and equilibrium length Rwm. 

When the side-chain of a hydrophobie amino acid is exposed to the soivent, the 

Iiquid surrounding the side-chain assumes a cage-like configuration [10] in order to 

minimize the amount of broken H-bonds of water moiecules. This configuration has 

a low entropy and proteins minimize their free-energy by burying these hydrophobic 

amino-acids in their interior. To reproduce this, we choose Rspring = 2.0 and Rwm = 

0.9 such that monomers can be surrounded by a layer of water mole cules when 

exposed to the solvent. To allow for the formation of a dry protein core, we use 

RmmRwm, though 2Rmm > Rspring to avoid the backbone from intersecting itself. 

Taking these restrictions into account, we choose Rmm = 1.1. 

Having defined the interaction between the different particles we now perform 

MD in the isothermal-isobaric ensemble. Constant pressure is achieved using the 

Andersen extended method [3]. To suppress oscillations of the simulation box, the 

canonical equations of motion are replaced by a Langevin stochastic pro cess [34] 
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implemented using the simplectic algorithm [54]. For the mass Q and the friction 

constant IV of the piston acting on the simulation box, we use Q = 0.054/ R!w and 

IV = 0.5. A parallelogram with equal sides and defined by an angle of 1200 is used for 

the simulation box. This geometry retains the periodicity of a crystal made of water 

molecules through the boundaries. Periodic boundary conditions are implemented 

using the minimum image convention. For the Langevin equations describing the 

motion of particles, we use the friction constant 1-1 = 0.9370 • The noise term in 

the Langevin equations of motion is given by the fluctuation-dissipation theorem. 

Pressure is set to 0.2 in units of Eh/ R~. At this pressure, the MB model reproduces 

water-like anomalies seen at ambient pressure [25] and hydrates non-polar molecules 

in a realistic manner [97]. The simulation box is packed with 512 molecules comprised 

of a lO-monomer long protein and 502 water molecules. To represent the solvent in 

its liquid state, we use temperatures ranging from 0.145 to 0.25 in units of EH. 

The system was initially equilibrated at a temperature of 0.25 for 5000 time 

steps, followed by a data collection period of 50000 time steps. The temperature 

was then lowered and the equilibration-collection cycle was repeated. This cooling 

procedure was repeated until the lowest temperature was reached. Four samples with 

different initial conditions were prepared using this proto col and the distribution of 

the protein's radius of gyration RG was computed. To obtain equilibrium properties, 

the final configuration at each temperature was used to extend the simulation time 

until the distribution of RG of the four samples converged within a root-mean-square 

value of 0.02. 
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Figure 5-2: Normalized distribution of the radius of gyration Re at three tempera
tures: T = 0.25, T = 0.21 and T = 0.17. Inset: The temperature dependence of Re 
of the protein. 

5.3 Results 

Let us now move on to describe the results. In Fig. 5-2, we show the equilibrium 

distribution of Re averaged over the four samples at three different temperatures. An 

initial decrease in temperature, from 0.25 to 0.21, shifts the peak of the distribution to 

a lower value. Therefore, in hot water, proteins favor more compact configurations 

when the temperature of the system is lowered. However, a further decrease of 

temperature results in completely different behavior: as the temperature decreases 

from 0.21 to 0.17, the peak shifts to a larger value indicating that in cold water 

proteins become less compact for decreasing temperature. This behavior in hot and 
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cold water is shown systematically in the inset of Figure 5-2, which depicts the 

temperature dependence of Ra. The radius of gyration decreases as temperature 

decreases towards 0.21 - in hot water the protein folds as temperature decreases. 

Below that temperature, Ra increases monotonically as temperature decreases - in 

cold water the protein unfolds as temperature decreases. These two types of behavior 

are characteristic of heat and cold denaturation of real proteins and are in line with 

previous studies [55, 86, 75]. 

The parabolic-like shape of Ra (see the inset of Fig. 5-2) cannot be mapped 

into a model with local monomer-monomer interactions only [14]. To study the role 

of water, we show in Fig. 5-3 the average H-bond energy per water molecule for shell 

and bulk water. The energy of shell water averaged over the different configurations 

is higher than the energy of bulk water at high temperatures. This changes gradually 

as temperature decreases such that the creation of shell water becomes energetically 

favorable at low temperatures. Therefore, when a protein is immersed in cold water 

it releases heat to form the shell, while in hot water it absorbs heat. These features 

are again characteristic of co Id and heat denaturation of real proteins [78]. In the 

inset of Fig. 5-3 we show the energy absorbed by the system to create the shell 

around the protein. The absorbed energy is defined as the difference in H-bond 

energy between shell and bulk water multiplied by the average number of molecules 

forming the shell. The absorbed energy decreases monotonically with decreasing 

temperature and becomes negative below sorne T indicating heat release. 

Characteristic configurations of the protein at different temperatures are shown 

in Fig. 5-4. In cold water (upper panels), the solvent forms a cage around each 
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Figure 5-3: Hydrogen bond energy per water molecule for shen and bulk water. 
Inset: Absorbed energy to accommodate the protein at different temperatures. The 
shen is defined by water molecules whose distance to the protein is less than 2.5 in 
units of Rh. 

monomer of the protein, Le. monomers are surrounded by an ordered layer of water 

molecules. Molecules forming the cage are strongly H-bonded to each other and 

therefore have a low energy. At T = 0.21, the protein favors compact configurations. 

Water molecules close to the protein have at least one non-saturated H-bond which is 

pointing towards the protein. When the temperature is increased to T = 0.25, most 

monomers are in contact with the solvent. The solvent forms either incomplete cages 

around monomers, Le. cages which do not surround monomers from an sides, or they 

correspond to particles which are weakly bonded to the other solvent particles and are 

thus energetic. The crossover behavior of shen water shown in Fig. 5-3 is therefore 
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T = 0.17·. 

T =0.21 T=0.25 

Figure 5-4: Characteristic configurations of a protein in cold water (T = 0.15 and 
T = 0.17), at an intermediate temperature (T = 0.21), and in hot water (T = 0.25). 
The distance of highlighted (shell) water molecules to the protein is less than 2.5 in 
units of Rh. In cold water, the monomers are typically surrounded by clathrate-like 
cages. 

characterized by the formation of cage-like configurations at low temperatures and 

the presence of dangling H-bonds at high temperatures. 

Configurations where monomers are separated by an ordered layer of solvent 

molecules have also been shown to become more stable, as temperature decreases, 

in models for the hydrophobie effect of methane-like solutes [74, 97]. Solvent layers 

around those monomer-pairs are highly ordered such that their formation decreases 
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the entropy of the system 1 . Unfolding at low temperatures is therefore accompanied 

by a lowering in the entropy of the total system in accordance with experiments [78], 

shell water molecules becoming more ordered as the protein becomes less ordered. 

This mechanism explains the counter-intuitive decrease in entropy during co Id denat

uration. The phenomenology is as follows. When non-polar solutes are transferred 

into water, the system relaxes by ordering those solvent molecules around the solute. 

This ordering has an entropie cost which is minimized by clustering non-polar solutes 

together, as this decreases the amount of surface around solutes. As the temperature 

decreases below a particular value, the system rebuilds the ordered layer of solvent 

around non-polar solutes to saturate the dangling H-bonds left on the surface of clus-

tered solutes - minimizing the enthalpy. Although hydrophobicity is not the only 

force responsible for the st ab ilit y of proteins, the formation of a hydrophobie core 

plays the dominant role. 

5.4 Conclusion 

In conclusion, we find that, at low temperatures, shell water forms hydrogen-

bonds better than bulk water. Microscopically this correlat es with the presence of 

solvent-separated-configurations which accounts for the unfolding of the protein at 

low temperatures. The existence of such low energetic states for shell water at low 

1 According to table 1 of Southall and Dill [97], the entropy term (-T ilS) of con
tact configurations is -0.55 while the same term for solvent separated configuration 
is 0.18 - for two mono mers embedded in 120 water molecules at T = 0.21. Therefore 
the entropy decreases when hydrophobie contacts are destabilized in favor of solvent 
separated configurations. 
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T explains why eold denaturation proceeds with heat release as opposed to heat ab

sorption seen during heat denaturation. Although here we studied eold denaturation 

in two dimensions, solvent-separated-configurations have also been shown to become 

more favorable as temperature deereases in a 3D model for the hydrophobie effeet 

[74]. Therefore we expeet that the results found in this work remain valid in 3D sys

tems. Our results further suggest that eold and pressure denaturation eould be stud

ied under a single framework: a transition towards solvent-separated-eonfigurations 

[47]. 
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Chapter 6 

Conclusion 

In this thesis we developed and studied minimal models for proteins undergoing 

structural changes. In particular, we studied bond rupture under external stress, 

and unfolding resulting from shear fiow and temperature changes. To study those 

non-equilibrium pro cesses, we explored minimal models using Langevin dynamics. 

In the first part of the thesis we showed that bond rupture is a thermally acti

vated process. This phenomena depends therefore on the form of the energy land

scape and, in particular, on its curvatures and energy barrier. The dependence 

of those quantities on the applied stress was obtained analytically by studying the 

landscape around the cri tic al stress where the barrier is zero. This dependence was 

obtained for two classes of models, and simulations of specifie models falling into 

those classes were performed to confirm analytical results. The experimentally rele

vant situation, where the stress applied to the protein increases linearly with time, 

was also studied. We found that the force F, at which the protein ruptures, depends 

on the pulling rate rand temperature T as F rv const - T 2/3Jln(r/T)J2/3. Experi

ments, like the biomembrane-force-probe, are expected to fall into this universality 
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class, and could benefit from the use of this equation to extract relevant microscopie 

parameters for biomolecules. 

In the second part of the thesis we studied how resistance to shear flow and tem

perature depends on the conformation of a protein model. Those conformations were 

classified according to their stability to mutation, i.e., designability. This quantity 

was, then, shown to be negatively correlated with resistance to shear and temper

ature: highly designable structures are easier to unfold than low design able ones. 

By counting the number of covalent bonds between surface and core monomers, a 

phenomenologie al explanation is provided for this correlation. Although this neg

ative correlation seems to contradict the designability principle, whieh states that 

highly designable structures are more stable thermodynamically, we show that this 

contradiction is only apparent. It would be interesting at this stage to verify if the 

correlation found in this work holds for more refined models of proteins structure. 

In the last part of this thesis we studied the microscopie mechanism of cold de

naturation. This phenomena corresponds to the loss of stability of protein structures 

at low temperatures. We showed that water molecules, which form clathrate-like 

cages around hydrophobie solutes, were responsible for co Id denaturation. At high 

temperatures the entropie co st of forming clathrate-like cages is considered to be the 

driving force for protein folding. At low temperatures, we demonstrated that it is 

enthalpically favorable to form clathrate-like cages. Therefore proteins unfold at low 

temperatures to hydrate hydrophobie monomers whieh are inside the dry protein 

core. This mechanism explains cold denaturation and we showed that it is consistent 

with the experimentally observed heat release that occurs during this phenomena. 
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Since pressure denaturation of proteins is also considered to be driven by the forma

tion of clathrate-like cages, we suggested that pressure and cold denaturation could 

be studied under a single framework. 

In conclusion, we have studied dynamical pro cesses of conformational changes 

in proteins using minimal models. We obtained: i) an equation that can be used in 

force spectroscopy to extract parameters of biomolecules; ii) a correlation between 

structural stability to mutation and stability to external pertubation; and iii) the 

microscopie mechanism of cold denaturation of proteins. At this point it would 

be interesting to validate the results obtain in this study with more realistic three

dimensional models. 
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