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ABSTRACT 
Through the use of chronic experimental animal models, the majority of in vitro 

investigations of temporal lobe epilepsy have demonstrated enhanced network 

activity within the subdivisions of the hippocampal formation. However, clinical 

evidence in combination with in vivo and in vitro studies indicates that structures 

external to the hippocampus contribute to the genesis of seizure activity. To address 

the effects of limbic network excitation, 1 have utilized combined hippocampal

entorhinal cortex brain slices from pilocarpine-treated rats that display chronic 

seizures. 

My investigations have focused upon three structures, the subiculum, 

entorhinal cortex and the insular cortex. The experiments in the pilocarpine-treated 

subiculum demonstrated increased network excitability that was attributed to a more 

positive GABAA receptor mediated inhibitory post-synaptic potential (IPSP) reversai 

point coupled with a reduced IPSP peak conductance. Utilizing RT -PCR analysis and 

immunohistochemical staining we observed a decline in K+ -CI" cotransporter mRNA 

expression and a reduced number of parvalbumin-positive, presumptive inhibitory 

interneurons. My second project assessed the network hyperexcitability in layer V of 

the lateral entorhinal cortex. This is the first study to report spontaneous bursting, in 

the absence of epileptogenic agents, in the epileptic entorhinal cortex. We attributed 

this level of network excitation to reduced GABAA receptor mediated inhibition and 

increased synaptic sprouting. In the final project, we extended our slice preparation 

to include the insular cortex, a structure external to the temporal lobe. Our 

investigations identified a mechanism of NMDA receptor dependent synaptic bursting 

that masked GABAA receptor mediated conductances. 
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ABRÉGÉ 

La majorité des études in vitro sur l'épilepsie du lobe temporal a démontré par 

l'utilisation de modèles animaux chroniques, une augmentation de l'activité de circuits 

dans les subdivisions de la formation de l'hippocampe. Pourtant, des observations 

cliniques et des études in vivo et in vitro indiquent que des structures à l'extérieur de 

l'hippocampe contribuent aussi à la genèse d'activité épileptique. Afin d'évaluer 

l'effet de l'excitation du système limbique sur l'épilepsie induite par la pilocarpine 

chez le rat, nous avons utilisé des coupes de cerveaux incluant à la fois l'hippocampe 

et le cortex entorhinal. 

A l'aide d'expériences d'électrophysiologie, nous avons étudié 3 régions en 

particulier: le subiculum, le cortex entorhinal et le cortex insulaire. Dans les subiculi 

traités à la pilocarpine, nous avons pu observer une excitabilité accrue des circuits. 

Cette augmentation est due à une valeur plus positive d'inversion du potentiel post

synaptique inhibiteur (PPSI) des récepteurs GABAA, ainsi qu'à une diminution de la 

conductance maximale des PPSI. Des études d'amplification par RT-PCR ont d'autre 

part révélé une diminution des niveaux d'ARN messagers encodant le co

transporteur à K+ et CI-. De plus, nous avons observé une diminution du nombre de 

neurones inhibiteurs positifs pour la parvalbumine par analyses 

immunohistochimiques. Dans le second projet, nous avons étudié l'hyperexcitabilité 

des circuits de la couche V du cortex entorhinal latéral. Cette étude est la première à 

rapporter la présence de rafales d'activité spontanée en absence d'agents 

épileptogènes dans le cortex entorhinal épileptique. Nous avons attribué ce niveau 

d'excitation des circuits à une diminution de l'inhibition par les récepteurs GABAA, de 

même qu'à une augmentation de l'arborisation synaptique. Pour le projet final, nous 

avons inclus le cortex insulaire, une structure externe au lobe temporal, dans nos 
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coupes. Nous avons identifié un mécanisme par lequel des rafales d'activité 

synaptique dépendantes des récepteurs NMDA masquent les conductances des 

récepteurs GABAA 
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Preface 

0.1 Introduction 

Neuronal networks in structures of the limbic system such as the hippocampus, the 

amygdala as weil as the entorhinal and perirhinal cortices are involved in the 

generation of seizure activity in patients presenting temporal lobe epilepsy (TLE). 

Associated with this disorder is a pattern of neuronal damage termed Ammon's horn 

sclerosis (Gloor 1991; Gloor 1997). Unfortunately, 30 to 40% of TLE patients 

ineffectively respond to antiepileptic medication, thereby affecting their quality of life 

(Kwan and Brodie 2000; Regesta and Tanganelli 1999). Consequently, it is 

necessary to further understand the pathophysiology of this disorder to assist in the 

development of more effective treatments. 

Cellular, pharmacological and molecular investigations over the past few 

decades have contributed to identifying the mechanisms underlying epileptic 

syndromes (Delgado-Escueta et al. 1999). While these studies have led to an 

increased understanding of TLE, they have the limitation of being performed in in vitro 

isolated hippocampal slices. To minimize these limitations, researchers have adopted 

brain slice preparations that include more than one interconnected limbic structure 

(Jones and Lambert 1990a; b; Walther et al. 1986; Wilson et al. 1988). These studies 

have demonstrated that neuronal networks in extended slices of the limbic system 

produce electrographic waveforms that resemble limbic seizure activity in patients 

presenting TLE. Most of these investigations, however, occur in the presence of 

convulsive agents in control tissue. 

Alternatively, researchers have adopted chronic experimental animal models 

such as pilocarpine injection to assess in vitro network excitability. To date, many 
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studies have centered upon the role of the dentate gyrus (DG), Cornu Ammonis 

3(CA3) and CA 1 within the epileptic hippocampus while few studies have addressed 

additional structures beyond Ammon's horn and the fascia dentata. 

0.2 Research Rationale of Thesis 

The aim of my Ph.D. investigations was to assess the network interactions and 

excitability beyond the hippocampal formation in pilocarpine-treated tissue. As such, 1 

addressed the network hyperexcitability in the subiculum and entorhinal cortex (EC) 

in pilocarpine-treated animais. Further investigations extended to the insular cortex 

(IC), a structure that is neuroanatomically connected to the limbic system. 

ln chapter 1, my studies focused upon the role of the epileptic subiculum. 

Interestingly, despite its function as the primary hippocampal output it has received 

minimal attention. In the human epileptic subiculum, spontaneous network bursting 

was attributed to a more positive y-aminobutyric acid (GABA)A receptor mediated 

reversai point (Cohen et al. 2002). Attempts to replicate these results in human 

epileptic tissue and chronic seizure models have failed 0Nozny et al. 2003). Indeed, 

the hyperexcitability of the epileptic subiculum is contentious as additional studies 

report an increase or reduced number of intrinsically bursting neurons (Knopp et al. 

2005; Wellmer et al. 2002). In my investigations, 1 assessed whether the pilocarpine

treated subicular network is altered through intrinsic or synaptically mediated 

mechanisms. In addition, 1 address subicular network interactions within limbic 

regions CA1 and lateral EC layer III. 

My studies of the pilocarpine-treated EC are detailed in Chapter 2. The 

majority of investigations of the in vitro epileptic EC have often focused upon the 

utilization of convulsive agents or the superficial layers of the medial region. While 



3 

neuronal death is reported to occur in medial EC layers 11/111 (Du et al. 1995; Du et al. 

1993), in vitro studies demonstrate that ictal discharges originate from the deep 

layers of the EC (Dickson and Alonso 1997; Lopantsev and Avoli 1998a; b). In over a 

decade, three studies have addressed the in vitro hyperexcitability of medial EC layer 

V in chronic seizure models (Fountain et al. 1998; Thompson et al. 2007; Yang et al. 

2006). However, the lateral region of the EC has been overlooked. Studies in 

pilocarpine treated tissue indicate high levels of FOS immunoreactivity - indicative of 

network activation - during the chronic phase (Biagini et al. 2005). Moreover, an 

additional report indicates that ablation of the lateral EC controls seizure activity 

(Kopniczky et al. 2005). My investigations of epileptic lateral EC layer V addresses 

whether there are perturbations in network inhibition and excitation. 

The final investigation of this Ph.D. thesis involves the IC. At present, the 

understanding of the IC has been limited to clinical reports in TLE and research in 

nociception. The clinical studies of Isnard et aL, (2000), indicate that ictal events can 

originate from the IC or invade the IC from limbic regions. In line with this viewpoint, 

studies in coronal slices, following GABAA receptor blockade, suggest the insular and 

perirhinal cortices exhibit low seizure thresholds (Demir et al. 1998). In these 

particular studies, however, the lack of intracellular recordings makes it difficult to 

discern the synaptic mechanisms involved in the IC that could contribute to this result. 

To this end, 1 report the first intracellular and network electrophysiological 

characterization of the IC in control tissue, and its interaction with the perirhinal 

cortex. 
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0.3 Human Temporal Lobe Epilepsy 

0.3.1 Clinical definition of TLE 

Epilepsy affects 0.5 to 1 % of the North American population (Theodore et al. 2006) 

and is ranked as the second most common neurological disorder. One of the more 

notorious epileptic subtypes is TLE. The initial insult, and development of TLE, has 

often been linked to brain injuries during early childhood; the events can range from 

birth traumas, hypoxia and toxin exposure (French et al. 1993; Mathern et al. 1995). 

Febrile seizures, another precipitating in jury, have been linked with 2/3 of patients 

with TLE (Falconer 1971; French et al. 1993; VanLandingham et al. 1998). 

Subsequent to this neuronal insult, the patient enters a seizure free latent period. 

Unfortunately, during adolescence a subset of these individuals will experience 

recurrent non-provoked seizures. 

Patients with epilepsy often experience auras prior to the onset of seizures 

(French et al. 1993). The aura is a simple partial seizure during which consciousness 

is maintained, and can serve as a warning for the individual. While no discernable 

outward behavioural response is observed during the aura, patients have described 

feelings of nausea, epigastric rising, fear, déjà vu or altemd senses of olfaction 

(French et al. 1993; Mathern et al. 1995). Following this, patients with TLE often 

undergo complex partial seizures. This particular seizure results in impaired 

consciousness combined with repetitive motor movements (automatisms) such as lip 

smacking or swallowing; the duration can last from 30 seconds to 2 minutes. 

The treatment of TLE can be achieved through antiepileptic medication or 

removal of epileptic tissue. Antiepileptic medication can stop or reduce seizure 

frequency; however, 30% of epileptic patients exhibit drug resistance (Kwan and 

Brodie 2000; Regesta and Tanganelli 1999). Alternatively, surgical resection of the 
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epileptic focus provides complete seizure relief in 80 to 90% of drug resistant TLE 

patients (Engel et al. 1997) and is demonstrated to be a more effective than longterm 

medication (Wiebe et al. 2001). Despite this outcome, clinicians still consider surgical 

intervention as the final option for intractable epilepsy (Engel 2001). 

The development of drug resistant seizures is not weil known. 

Pharmacoresistance is speculated to be a consequence of multifactorial events, 

involving a molecular alteration to drug targets or an upregulation of protein pumps in 

the blood brain barrier (Jandova et al. 2006; Remy and Beek 2006). What is 

intriguing, however, is the high correlation of drug resistant seizure patients and 

neuronal death within the hippocampal formation. 

0.3.2 Histopathological features of TLE 

Numerous studies have focused on the histochemical and structural alterations that 

occur in patients with TLE and in animal models simulating this disorder. In both 

instances, the brain often exhibits Ammon's horn sclerosis, which is believed to result 

from status epilepticus or prolonged febrile seizures in early childhood (Gloor 1997; 

Harvey 1999; Jackson et al. 1998; Lewis 1999; Wiebe et al. 2001). The 

histopathological hallmark of Ammon's horn scie rosis consists of a selective loss of 

neurons in the dentate hilus, hippocampal Cornu Ammonis 3 and 1 (CA3 and CA 1, 

respectively) (Gloor 1997). In contrast, the dentate granule cells and area CA2 of the 

hippocampus as weil as the subiculum remain unscathed (Gloor 1997). Additional 

limbic structures that are reported to exhibit neuronal death include layer III of the EC 

(Du et al. 1993) and the amygdala (Gloor 1997). In line with these observations, MRI 

analyses of patients with TLE have demonstrated volumetrie reductions in the 
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aforementioned limbic structures (Bernasconi et al. 1999; Goncalves Pereira et al. 

2005; Jutila et al. 2001; Salmenpera et al. 2000). 

0.4 GABA and Glutamate in TLE 

0.4.1 Glutamatergic neurotransmission in TLE 

One of the factors associated with seizure events is the loss of network inhibition and 

enhanced network excitation. The two primary neurotransmitters involved in 

generating this synchronous network activity are the excitatory and inhibitory 

neurotransmitters glutamate and y-aminobutyric acid (GABA), respectively. 

Glutamate specifically binds and activates the metabotropic and ionotropic glutamate 

receptors. The metabotropic glutamate receptor family consists of 8 receptor 

subtypes (mGlu1 to mGlu 8) that are divided into three groups. Group 1 (mGlu1 and 

mGlu5) is coupled to the intracellular phosphoinositide cascade whereas Groups Il 

(mGlu2 and mGlu3) and III ( MGlu4, mGlu6, mGlu7 and mGlu8) inhibit adenylate 

cyclase activity. These g-protein coupled receptors modulate slow synaptic 

transmission via intracellular signaling and secondary messengers. In contrast, rapid 

excitatory glutamatergic neurotransmission is mediated via three ionotropic excitatory 

ami no acid receptor subtypes: N-methyl-D-aspartate (NMDA), a-amino-3-hydroxy-5-

methyl-4-isoxazole propionate (AMPA) and kainate. The activation of the AMPA and 

kainate receptors produces a post-synaptic depolarization; subsequent binding of 

glycine or D-serine (Mothet et aL, 2000) and glutamate relieves the voltage-gated 

Mg2
+ blockade (Nowak et aL, 1984) within the ionophore of the NMDA receptor 

followed by the influx of sodium and calcium. Persistent activation of the glutamate 

receptor subtypes, primarily the NMDA receptor, is one of the factors implicated in 

epileptogenesis and neuronal death. 
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The termination and prevention of increased extracellular glutamate is 

mediated through the excitatory ami no acid transporter (EAA T) localized on neurons 

and glial cells; presently 5 mammalian isoforms (EAA T1- EAA T5) have been 

identified (Arriza et al. 1997; Arriza et al. 1994; Fairman et al. 1995; Shashidharan et 

al. 1994). EAA T function relies upon the extracellular ionic concentration gradient to 

promote glutamate uptake. In pathophysiological conditions such as stroke and TLE, 

alterations in membrane voltage and calcium concentration promote glumatergic 

efflux and the subsequent increase of extracellular glutamate (Rossi et al. 2000). 

These results are further supported with clinical evidence from epileptic patients, as 

increased extracellular glutamate is reported to occur prior and during seizures 

(During and Spencer 1993). This accumulation of extracellular glutamate would be 

consistent with the decreased transcription and expression of EAA T1 and EAA T2 in 

human sclerotic epileptic tissue (Proper et al. 2002); however, other studies have 

reported no differences in EAA T expression (Mathern et al. 1999; Tessier et al. 

1999). Nevertheless, these data are contentious and they suggest that EAAT 

downregulation is a predisposition of brain structure (Tessier et al. 1999) or require 

extensive tissue damage (Proper et al. 2002). In either case, the accumulation of 

extracellular glutamate enhances limbic network excitation combined with the 

adverse effects of persistent NMDA receptor activation. 

0.4.2 NMDA receptor function in TLE 

Pharmacological antagonism of the NMDA receptor has been demonstrated to hait in 

vivo and in vitro seizure discharges (Dreier and Heinemann 1991; Holmes et al. 1992; 

Lopantsev and Avoli 1998a; Tortorella et al. 1997; Meldrum 1993). The importance 

of the NMDA receptor in epileptogenesis is further supported from the robust in vitro 
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discharges in hippocampal-parahippocampal slices under low Mg2
+ conditions (Dreier 

and Heinemann 1991; Jones and Lambert 1990b; Walther et al. 1986; Wilson et al. 

1988). This network synchronization promotes the propagation of in vitro epileptiform 

events across limbic structures (de Guzman et al. 2004) coupled with energy run 

down (Schuchmann et al. 1999) and altered GABAergic function (Rivera et al. 2004). 

These temporal changes within the hyperexcitable slice preparation are intriguing as 

recent investigations also indicate the susceptibility of the NMDA receptor. 

The physiological impact of altered NMDA receptor subunits and its role in 

epilepsy has only recently been addressed. Tissue acquired from patients with 

cortical dysplasia (Andre et al. 2004) and epilepsy animal models (Bandyopadhyay 

and Hablitz 2006; Yang et al. 2006) indicate the increased functional expression of 

the NR2B subunit of the NMDA receptor. Interestingly, the NR2B subunit is 

predominant during early mammalian development but is reduced in expression and 

superseded by the NR2A subunit in adulthood (Monyer et al. 1994; Sheng et al. 

1994). This suggests a possible developmental regression of the NMDA receptor in 

epileptic tissue or the consequence of chronic seizures. In epileptic neocortical 

tissue, application of specifie NR2B receptor antagonists prevent the spread of 

epileptiform discharges (Bandyopadhyay and Hablitz 2006). These results contrast 

with investigations in the epileptic DG where NR2B antagonisrn did not prevent status 

epilepticus or mossy fibre sprouting (Chen et al. 2007). This conflict may be a result 

of the developmental time frame of the epileptic animais used, structural dependence 

or even, perhaps, the requirement of more extensive damage. The latter prospect 

may not necessarily be true as the epileptic EC undergoes minimal structural 

damage, yet it has been demonstrated to exhibit altered NR2B presynaptic function 

and increased glutamate release in layer V (Yang et al. 2006). Taken together, these 
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reports demonstrate the dynamics of the NMDA receptor and its crucial role in 

mediating seizure activity through glutamate interactions. The final contribution of the 

NMDA receptor, in stroke and epilepsy, is the calcium mediated downstream 

signalling pathways that initiate the parallel pathways of apoptosis (programmed cell 

death) and necrosis. 

The excitotoxic glutamate cascade is a consequence of unregulated 

extracellular glutamate. Intracellular accumulation of calcium, via the NMDA receptor, 

activates pro-apoptotic factors and proteolytic enzymes which lead to cellular 

degradation and sequential caspase activation culminating in cell death (Charriaut

Marlangue et al. 1996; Liou et al. 2003). As such, apoptosis is an orchestrated 

sequence of intracellular and morphological events. The dying cell experiences 

nuclear and cytoplasmic condensation of the plasma membrane, and subsequently 

separates into membrane-enclosed structures termed apoptotic bodies. If apoptotic 

mechanisms cannot be completed as a result of energy depletion, necrosis occurs 

(Cereghetti and Scorrano 2006). This alternative mode of unorganized cellular death 

concludes with cellular swelling and inflammation. To this end, glutamate drives 

seizure activity and indirectly contributes to cellular death and the eventual structural 

reorganization of epileptic structures; however, the maintenance of these seizures still 

requires the necessary interplay with GABAergic networks. 

0.4.3 GABAergic neurotransmission in TLE 

The inhibitory actions of GA BA operate through the binding of either ionotropic or 

metabotropic GABAA and GABAs receptors, respectively. The increased conductance 

and subsequent shunting effects are mediated through cr influx of the GABAA 

receptor ionophore, while GABAs receptor intracellular signaling cascades promote 
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K+ efflux. In contrast to GABAs receptor function, GABAA receptor activation 

generates two forms of network inhibition: phasic and tonic activity. The phasic 

activity of the pentameric GABAA receptor relies upon the properties of alpha, beta 

and gamma GABAA subunits; however, the presence of alpha 5 and delta subunits 

mediates tonic inhibition (Caraiscos et al. 2004; Nusser and Mody 2002). 

ln clinical and experimental conditions of TLE, alterations in GABAA receptor 

subunits reduce tonic inhibition (Glykys and Mody 2006; Houser and Esclapez 2003; 

Peng et al. 2004) and attenuate GABAA receptor affinity (Ragozzino et al. 2005); 

thereby, increasing excitatory neurotransmission (Olsen and Avoli, 1997; Avoli et aL, 

2000). The importance of the GABAA receptor in epilepsy is further illustrated from in 

vivo and in vitro experiments where application of GABAA receptor antagonists 

generate behavioural and electrographic seizures (Acharya and Katyare 2005; Jones 

and Lambert 1990a; b; Sierra-Paredes et al. 1998). Moreover, in the in vitro brain 

slice and whole brain preparations, GABAA receptor blockade facilitates the 

propagation of epileptiform discharges thraughout the hippocampal and 

parahippocampal networks (D'Antuono et al. 2002; Federico and MacVicar 1996; Uva 

et al. 2005). 

Increased significance of GABAergic signaling can be extrapolated fram the 4-

aminopyridine (4-AP) model of epilepsy, where GABAA receptor mediated potentials 

persist following glutamate receptor antagonism (Avoli et al. 1996; Perreault and Avoli 

1992). These results indicate that synchronous network discharges require the 

conflicting interaction of GABA and glutamate; this is further illustrated with the 

simultaneous, yet interchangeable intracellular firing patterns of interneurons and 

pyramidal cells during epileptiform events (Ziburkus et al. 2006). Moreover, the 
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hyperpolarizing effects of GA BA in physiological or pathophysiological conditions are 

not restricted to neuronal inhibition. 

0.4.4 GABAA receptor mediated depolarization and the KCC2 

Early in life, GABAA receptor activation produces excitation, an electrographic 

phenomenon referred to as giant depolarizing potentials (Ben-Ari et al. 1989; 

Khazipov et al. 2001). GABAergic depolarization is a consequence of increased 

intracellular cr and subsequent HC03-'CI- efflux (Dzhala et al. 2005). These 

depolarizing potentials become inhibitory during maturation and are indicated to be a 

result of Na+-K+-2Cr (NCC1) downregulation and increased KCC2 expression (Rivera 

et al. 1999). Both proteins function as cotransporters, where KCC2 and NCC1 

mediate the efflux and influx of cr, respectively. Alternatively, the trophic effects of 

GA BA and oxytocin may trigger the mammalian development of GABAergic inhibition 

(Represa and Ben-Ari 2005; Tyzio et al. 2006). 

ln adult mammalian tissue, the hyperpolarizing effects of GABAA are mediated 

in the neuronal cell body, but GABAA receptor activation at the apical dendrites 

results in neuronal depolarization (Gulledge and Stuart 2003). This paradoxical 

depolarizing event is thought to be a result of increased intracellular cr and a more 

positive cr reversai point. These results are however conflicting as KCC2 is reported 

to be dendritically localized (Gulyas et al. 2001) and would prevent intracellular cr 

accumulation. Investigations of spike timing dependent plasticity in mature brain 

tissue also demonstrate KCC2 alterations and the subsequent effects of GABAergic 

depolarization (Woodin et al. 2003). While GABAA receptor mediated depolarization 

can occur within control, adult mammalian tissue, the excitatory effects of GABA have 

been identified in epileptic conditions (Benini and Avoli 2006; Cohen et al. 2002). 
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This observation of GABAergic plasticity within control tissue suggests the possibility 

that enhanced network excitation could promote similar results. 

Investigations in epileptic tissue acquired from TLE patients (Cohen et al. 

2002) and chronic seizure paradigms (Benini and Avoli 2006), report spontaneous 

network bursting and GABAergic depolarization. Utilizing in vivo and in vitro seizure 

models, KCC2 downregulation and the more positive GABAA receptor mediated 

reversai potential was attributed to brain-derived neurotrophic factor (BNDF) and TrkB 

receptor interactions (Rivera et al. 2002; Rivera et al. 2004). In contrast, in vitro 

studies in the pilocarpine-treated subiculum have demonstrated an unaltered GABAA 

receptor mediated reversai point ryvozny et al. 2003). Regardless, the flexibility of 

KCC2 expression appears to correlate with persistent epileptiform discharges. It is 

important to note, however, that the hyperpolarizing and depolarizing effects of GABA 

provide a shunting effect. Alterations in synaptic conductance will determine the 

impact of network inhibition. As such, GABAergic depolarization can provide the 

duplicitous action of shunting excitatory inputs, while facilitating distal excitatory 

inputs that coincide with the decaying inhibitory post-synaptic potential (Chen et al. 

1996). Indeed, GA BA and glutamate are two of the key neurotransmitters involved in 

TLE, both of which have been investigated through in vitro electrophysiological 

recordings in human epileptic tissue and animal seizure models. 

0.5 Synchronous Network Epileptiform Discharges in TLE 

0.5.1 Limbic seizure activity in human TLE 

ln vivo and in vitro electrophysiological studies in human epileptic limbic structures 

have demonstrated evidence of network reorganization and increased excitation. 

Most of these investigations have focused upon the epileptic hippocampal formation -
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specifically the DG. However, more recent reports have addressed the 

epileptogenicity of CA 1, the subiculum, and the EC. 

The intrinsic firing properties and electrophysiological characteristics of 

neurons within the epileptic tissue are suggested to undergo alterations following 

epileptic events (Sanabria et al. 2001; Wellmer et al. 2002). However, the 

fundamental intrinsic electrophysiological properties (input resistance, action potential 

amplitude, resting membrane potential) and firing characteristics in human epileptic 

neurons do not substantially differ from animal brain tissue (Avoli and Olivier 1989; 

Isokawa et al. 1991; Schwartzkroin and Knowles 1984; Strowbridge et al. 1992); 

these similarities extend to the voltage-gated K+ and Ca2+ currents in human epileptic 

granule cells (Beek et al. 1996; Beek et al. 1997; Schumacher et al. 1998). At 

present, the only intrinsic modification that has been electrophysiologically identified 

is an enhanced Na+ current density (Reckziegel et al. 1B98) and a lower Na+ 

activation threshold (Vreugdenhil et al. 2004) in epileptic subicular neurons. 

Compared to intrinsic properties, the alterations in human epileptic tissue are 

more evident at the synaptic level. The human epileptic DG exhibits enhanced 

NMDA receptor conductances (Masukawa et al. 1991; Urban et al. 1990), reduced 

GABAA receptor mediated inhibition (Masukawa et al. 1989) combined with an 

attenuated pathway specifie inhibitory input (Uruno et al. 1994). Additional 

modifications of the dentate granule network include a sensitivity to extracellular 

potassium ([K+]o), particularly in sclerotic tissue (Gabriel et al. 2004). Interestingly, 

electrographic waveforms comprising transient tonic-clonic discharges required 10 

mM [K+]o in sclerotic tissue, whereas 12 mM [K+]o produced similar waveforms in non 

sclerotic samples (Gabriel et al. 2004). In line with this viewpoint, studies report 

reduced [K+]o bUffering in the epileptic DG (Bordey and Spencer 2004), which was 



(' 

14 

also reported in epileptic CA 1 (Kivi et al. 2000). Consequently, the increased [K+Jo 

cou pied with reduced network inhibition, can lead to the generation of network 

synchronization and the recruitment of surrounding neuronal structures. 

To date, most of the investigations in human epileptic tissue have often 

addressed one structure but not the interactions between structures. In vivo 

electrophysiological studies in the epileptic EC have indicated reciprocal network 

excitatory interactions with CA3 (Rutecki et al. 1989). Moreover, an in vivo study 

revealed significantly higher firing rates, burst propensity and large synchronous 

discharges in the epileptic EC, subiculum and hippocampal formation during slow 

wave sleep (Staba et al. 2002), which differed drastically when recordings were 

obtained from non-epileptic zones. The most recent in vitro study demonstrated 

GABAergic depolarizing effects and synchronous network bursting within the isolated 

epileptic subiculum (Cohen et al. 2002). Collectively, these investigations 

demonstrate alterations in specifie limbic structures; unfortunately, the methods 

required to effectively characterize the interaction between these structural epileptic 

networks is limited. To this end, the in vitro slice preparation trom animal brain tissue 

allows researchers to perform more invasive techniques and to assess detailed 

information on the cellular and pharmacological characteristics of limbic seizures. 

0.5.2 Synchronous network activity in acute in vitro seizure models 

The in vitro brain slice preparation allows the investigation of interconnected neuronal 

structures; however, spontaneous network bursting is a rare occurrence in isolated 

brain tissue (Kano et al. 2005). Application of convulsive agents provides a conven

ient and immediate solution to generate robust in vitro epileptiform events within 

neuronal tissue. Synchronous network discharges are the consequence of low Mg2+, 

cholinergie agonists, GABAA receptor antagonism or the potassium A channel 
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blocker, 4-AP; the latter promotes the release of glutamatergic and GABAergic 

neurotransmission (Buckle and Haas 1982). Ali conditions generate distinctive 

electrographic wave forms that can exist in isolated structures or propagate to 

adjacent territories (Benini and Avoli 2005; de Guzman et al. 2004; Klueva et al. 

2003; Nagao et al. 1996). 

ln the in vitro hippocampus, GABAA receptor blockade can generate rhythmic 

network bursts that propagate throughout the hippocampal trisynaptic loop 

(D'Antuono et al. 2005; Jones and Lambert 1990a; b; Uva et al. 2005). The 

distinguishing feature are the high frequency ripple oscillations exceeding 200 Hz, 

exclusive to the adult DG (D'Antuono et al. 2005); although, increased extracellular 

potassium in tissue acquired postnatal day 12-30 rats generate fast oscillatory ripple 

waveforms in CA3 (Dzhala and Staley 2004). Additional investigations within the 

hippocampal formation utilizing 4-AP, low Mg2
+ or cholinergic activation generated 

brief synchronous discharges that did not display fast oscillatory ripple activity and 

were AMPAlKainate receptor sensitive (Avoli et al. 1996; de Guzman et al. 2004; 

Dickson and Alonso 1997; Nagao et al. 1996). 

Alternatively, in the presence of 4-AP, low Mg2
+ or cholinergic agonists, 

parahippocampal (perirhinal and entorhinal cortices) structures demonstrate 

enhanced NMDA receptor-dependent epileptiform events, lasting several seconds, 

consisting of tonic and clonic components (Avoli et al. 1996; de Guzman et al. 2004; 

Dickson and Alonso 1997; Jones and Heinemann 1988; Nagao et al. 1996). This 

epileptiform discharge morphologically parallels the EEG ietal waveform that 

accompanies seizure activity in vivo, and thus will be referred to as the ictal discharge 

(Chatrian et al. 1974). Studies indicate that in vitro ictal bursts generate alternating 

sites of parahippocampal origin but most often initiate from the perirhinal cortex (de 
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Guzman et al. 2004; Klueva et al. 2003). In addition, application of these drugs 

promote theta oscillations within the ietal discharge (de Guzman et al. 2004; Dickson 

and Alonso 1997; Klueva et al. 2003), which is interesting as high oscillations are 

hypothesized to serve as markers of epileptogenic regions (Bragin et al. 2004). 

The use of acute seizure models provide crucial insight in how a 

hyperexcitable network will function in isolation or during interaction with adjacent 

structures. The primary caveat, however, is that these pharmacological biases 

detract specifie physiologieal aetivity from the network's natural state making it diffieult 

to discern the perturbations present in epileptie tissue. This scenario is further 

eomplicated as control tissue is often investigated and does not exhibit the network 

alterations specifie to TLE. To this end, investigations in chronic seizure models of 

TLE, such as the pilocarpine animal model can address these limitations. 

0.6 The Pilocarpine-Treated Animal Model of TLE 

0.6.1 Pilocarpine induced limbic seizures 

The cholinergie muscarinic agonist, pilocarpine, injected intracranially or 

intraperitoneally generates behavioural and eleetrographic seizures (Lindekens et al. 

2000; Smolders et al. 1997). Categorization of seizure activity is organized by the 

Racine seizure class; class 1 through elass V seizures are respectively comprised of 

mouth and facial movements, head nodding, forelimb elonus, rearing, followed by 

rearing and falling (Racine 1972). Subsequent to prolonged intervals of elass 4 or 5 

seizures (exceeding 30 minutes) and post-ictal recovery, the animais enter a latent 

period. This time point is referred to as the latent phase, and mimics the c1inical 

condition, due to the absence of seizure activity. The latent phase is a crucial time 
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point, as it provides the prospect of determining the cause and eftect of chronic 

epileptic states. Approximately 3 or 4 weeks post status epilepticus, over 90% of 

animais will develop chronic seizures that persist throughout Iife (Cavalheiro et al. 

1991; Priel et al. 1996). 

The mechanisms underlying the cholinergie induction of motor seizures are 

multifactorial. Blockade of the K+ mediated non inactivating M current promotes 

action potential spi king (Brown and Adams 1980), leading to enhanced excitatory 

neurotransmission (Martire et al. 2004) and increased network hyperexcitability. In 

li ne with this viewpoint, su perfusion of pilocarpine in the in vitro EC generates NMDA 

receptor dependent ictal discharges (Nagao et al. 1996). This synaptic mechanism 

difters from the in vitro hippocampal formation as the epileptifmm events are sensitive 

to AMPAlkainate receptors or GluR5 receptor antagonism (Clarke and Collingridge 

2002; Nagao et al. 1996; Rutecki and Yang 1998). In addition, recent studies in the 

in vitro whole brain indicate that pilocarpine induced seizures necessitate a breached 

blood brain barrier (Marco de Curtis, personal communications), which agrees with 

the clinical observations in TLE patients (van Vliet et al. 2007). 

0.6.2 Network structural alterations and network hyperexcitability 

The network modifications following pilocarpine induced status epilepticus are 

demonstrated to occur prior to the development of chronic seizures. 24 hours post-

status epilepticus, edema is reported within the amygdala, piriform and entorhinal 

cortices accompanied with neuronal loss (Roch et al. 2002). Within similar time 

frames, high levels of network activation - indicated by FOS immunoreactivity - are 

localized within Iimbic regions (CA3, CA1, the sUbiculum, the lateral EC and the DG) 

(Biagini et al. 2005). Further anatomical modifications occur wïthin the chronic phase, 
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as MRI studies indicate volumetrie reduction within the perirhinal, and piriform 

cortices, and hippocampus combined with gliosis (Niessen et al. 2005). Similar to the 

clinical scenario, the histopathological patterns in the pilocarpine model involve 

cellular loss within hippocampal CA1 and CA3, medial EC layer III, and the perirhinal 

cortex (Avoli et al. 2002; Covolan and Mello 2000; Du et al. 1995). Additional 

structures include the amygdala, piriform and insular cortices (Covolan and Mello 

2000). However, unlike the aforementioned limbic regions, the alterations in the DG 

include not only cellular death but also neurogenesis of granule cells (Parent et al. 

2006; Parent et al. 1998; Scharfman et al. 2000). 

The functional alterations reported in the pilocarpine-treated DG involve newly 

developed granule cells, in the hilar region, innervated by mossy fibres (Feng et al. 

2003; Parent et al. 1998; Scharfman et al. 1999; 2000; Scharfman et al. 2002; 

Williams et al. 2002). Enhanced excitatory neurotransmission is thought to be a 

consequence of mossy fibre sprouting as 500 new synapes per granule cell are 

estimated (Buckmaster et al. 2002). This increase in recurrent excitation is 

accompanied by reduced alpha 1 and increased alpha 4 GABAA subunits, which may 

potentiate epileptiform activity through enhanced GABAA receptor sensitivity to Zn2
+ 

(Gibbs et al. 1997). At the synaptic level, the excitatory network of the DG can be 

inhibited or enhanced through neuropeptide Y (NPY) (Tu et al. 2005) or BDNF-trkB 

receptor activation, respectively (Scharfman et al. 1999). These findings are 

intriguing, as reduced NPY1 R expression would trigger neuronal hyperexcitability as 

NPY inhibits seizure activity (Baraban, 2004). Moreover, decreased KCC2 

expression correlates with increased extracellular BDNF (Rivera et al. 2002; Rivera et 

al. 1999); although, other studies suggest BDNF provides neuroprotection (Biagini et 

al. 2001). Aside from synaptic activity, modified voltage gated ion channels can 



19 

promote excitability. In the epileptic lateral EC layer III, the decreased HCN mRNA 

expression and hyperpolarizing-activated cation current (lh) favours action potential 

spiking (Shah et al. 2004); similarly, a reduction of HCN1 mRNA is reported within the 

epileptic DG (Bender et al. 2003). However, despite the reported enhanced 

excitability of the epileptic DG recent studies highlight the inability of the DG to 

activate CA3 networks (Ang et al. 2006; Biagini et al. 2005). 

The reduction, or lack, of CA3 network responsiveness to inputs arising from 

the DG is puzzling, as the hippocampal trisynaptic loop has been hypothesized to 

amplify limbic seizures (Pare et al. 1992). Investigations in pilocarpine-treated tissue 

utilizing voltage sensitive dyes or intrinsic optical signais reveal minimal CA3 

responses following DG stimulation (Ang et al. 2006). In addition, while direct 

activation of epileptic CA3 elicits a response (Biagini et al. 2005), antidromic 

activation of the Schaffer collaterals fails to activate CA3 networks (Ang et al. 2006). 

These results are contradictory but both studies report minimal CA3 damage. The 

contribution of network hippocampal hyperexcitability is thought to be a result of CA 1 

and subicular activation through EC layer III inputs, a pathway defined as the 

temporoammonic pathway (TA) (Deadwyler et al. 1975; Ang et al. 2006; Biagini et al. 

2005; D'Antuono et al. 2002; Wozny et al. 2005). To this end, the TA can serve as 

alternative route to amplify limbic seizures without the aid of CA3 outputs. 

The above studies indicate that the hippocampal formation can still contribute 

to epileptiform events. Under these conditions, epileptic CA 1 networks would 

substitute for the hypoactivate CA3 neurons. In pilocarpine-treated CA 1, studies 

reveal spontaneous bursting combined with an up regulation of T-Type calcium 

mediated intrinsically bursting neurons (Sanabria et al. 2001). In addition, augmented 

excitation may be aftected by axonal sprouting (Esclapez et al. 1999) and the 1055 of 
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the parvalbumin positive inhibitory interneuronal synapses on the axonal initial 

segment of CA 1 pyramidal cells (Dinocourt et al. 2003). These events may account 

for the reports of reduced quantal release of GABA (Hirsch et al. 1999) and 

decreased inhibitory post-synaptic potentials (Stief et al. 2007). 

Collectively, these investigations demonstrate a focus on the hippocampal 

formation in pilocarpine-treated tissue. Although, there are additional structures 

external to the hippocampus implicated in TLE. Recent investigations reveal a more 

positive GABAA receptor mediated reversai point in the pilocarpine treated amygdala 

(Benini and Avoli 2006) and the perirhinal cortex (Benini and Avoli, unpublished data). 

ln the following sections of the introduction, 1 will discuss the role of the subiculum, 

and the entorhinal and insular cortices in TLE. 

0.7 The Role of the Subiculum in TLE 

0.7.1 Anatomy 

The subicular complex is comprised of 3 subdivisions, the subiculum, presubiculum 

and the parasubiculum (Lopes da Silva et al. 1990; Witter et al. 1989). At the 

cytoarchitectural level, the subiculum is similar to the three layered allocortex, of the 

hippocampal formation, as it consists of a molecular layer, an enlarged pyramidal cell 

layer and a polymorphie layer (O'Mara et al. 2001). In contrast, the presubiculum and 

the parasubiculum are multilaminar and exhibit structural similarities to the EC 

(O'Mara 2005). 

The subiculum functions as the primary structural output of the hippocampal 

formation with inputs that terminate in layer V of the EC (Kohler 1985; Tamamaki and 

Nojyo 1995). More specifically, the proximal and distal subicular subdivisions direct 
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their projections towards the medial EC and lateral EC, respectively (Tamamaki and 

Nojyo 1995; Witter et al. 1990). In addition, the subiculum is the recipient of 

converging inputs from CA1 and EC layer III; the latter input constitutes the 

temporoammonic pathway (Baks-Te Bulte et al. 2005; Witter et al. 2000). Subicular 

network interactions also occur with additional structures implicated in TLE such as 

the perirhinal cortex (Swanson et al. 1978) and amygdala (Canteras and Swanson 

1992). 

0.7.2 The epileptic subiculum 

The majority of electrophysiological studies of the subiculum have involved in vitro 

slice preparations and the intrinsic firing properties of subicular pyramidal cells. In 

control tissue, regular firing and intrinsic bursting neurons have been identified within 

the subiculum (Mattia et al. 1993). Similar as to what has been described in layer V 

of neocortical structures (Connors and Gutnick 1990), the intrinsic bursting properties 

of subicular pyramidal cells are mediated through T-type calcium currents (Wellmer et 

al. 2002). Studies indicate a variable proportion of regular firing versus intrinsically 

bursting neurons in control tissue, yet most reports agree upon a larger population of 

intrinsically bursting cells (Knopp et al. 2005; Mattia et al. 1993; Q'Mara et al. 2001; 

Weil mer et al. 2002). These observations are intriguing as the presence of intrinsic 

bursters has been hypothesized to predispose a structure to epileptiform activity 

(Connors and Gutnick 1990). 

Interestingly, this large population of subicular intrinsically bursting activity 

may determine the magnitude of synaptic intensity towards the EC. The physiological 

regulation of subicular activity, however, is governed through an inhibitory network 

that becomes apparent following synaptic activation of CA 1 (Behr et al. 1998), EC 
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layer III (Behr et al. 1998), or focal subicular stimulation (Menendez de la Prida et al. 

2002) . These inhibitory processes may serve as an excitatory brake within the 

subiculum thereby precluding excessive excitatory hippocampal output from 

activating the EC (Dickson and Alonso 1997; Lopantsev and Avoli 1998a; Tolner et 

al. 2005). Ta this end, the subiculum can be viewed as a network filter that regulates 

the output of the hippocampal formation towards the parahippocampus. Although, 

when this structural gate becomes compromised a condition of network 

hyperexcitation can result. 

Recently, in vitro studies performed in subicular tissue, obtained from epileptic 

patients, indicated the paradoxical depolarizing effects of the inhibitory 

neurotransmitter GA BA (Cohen et al. 2002) as weil as an augmented sodium 

persistent current (Vreugdenhil et al. 2004). In line with this view, kindling paradigms 

have demonstrated a reduction of subicular inhibitory interneurons (van Vliet et al. 

2004), while pilocarpine treated tissue had an increased quantity of intrinsic subicular 

bursting cells (Wellmer et al. 2002). The combination of these results demonstrates 

the inherent ability of the subiculum ta contribute ta epileptiform events. 

ln contrast ta this evidence, a recent study indicates that the pathophysiology 

of the subiculum is non conducive ta epileptiform activity due ta the observations of a 

reduced number of intrinsic bursters, and decreased dendritic arborisation (Knopp et 

al. 2005). However, additional factors such as functional alterations ta the voltage 

gated ion channels (Vreugdenhil et al. 2004), a reduced affinity for GABA (Ragozzino 

et al. 2005), and a more positive cr reversai point can contribute to epileptiform 

activity (Palma et al. 2006). These data demonstrate that subtle structural and 

inhibitory network modifications can enhance subicular hyperexcitability. 
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0.8 The Role of the Entorhinal Cortex in TLE 

0.8.1 Anatomy 

The EC is a five layered limbic structure that is the recipient of hippocampal and 

neocortical output (Deacon et al. 1983; Kohler 1985; Tamamaki and Nojyo 1995). 

Due to the parallel processing of the EC, this structure is anatomically and 

functionally subdivided into the medial EC and lateral EC (Hamam et al. 2002; 

Hamam et al. 2000); the respective and reciprocal connections of the EC are 

speculated to integrate and segregate information (Dolorto and Amaral 1998a). 

Activation of the EC can originate from the subiculum where efferent fibres terminate 

in layer V (Kohler 1985; Tamamaki and Nojyo 1995); alternatively, neocortical 

efferents enter the EC through layers 11/111 (Deacon et al. 1983; Dolorfo and Amaral 

1998a). To this end, the parallel information flow from EC layer V can enter the 

neocortex (Insausti et al. 1997; Swanson and Kohler 1986), or extend to EC layers 

11/111; the latter route can provide hippocampal re-entry to the DG or hippocampal 

CA1/ subiculum via the perforant and temporoammonic pathways, respectively (Baks

Te Bulte et al. 2005; Dolorfo and Amaral 1998b; Ruth et al. 1988). In addition, the EC 

exhibits network connectivity with the perirhinal cortex, piriform cortex and insular 

cortices (Burwell and Amaral 1998). 

0.8.2 The epileptic entorhinal cortex 

The majority of human epileptic studies have focused upon the hippocampal 

formation; however, it is only as of recent the epileptogenicity of the EC has been 

addressed. In vivo recordings in TLE patients indicate that the EC interacts with 

hippocampal networks (Rutecki et al. 1989) and demonstrates seizure origin 

(Spencer and Spencer 1994). This network synchronization also generates fast 
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oscillatory ripple waveforms (> 200 Hz), which may serve as an electrographic 

signature exclusive to pathological activity (Bragin et al. 2004). Further insights, via 

molecular techniques, suggest the decreased expression of NPY1 Rand 5HTA 

receptors facilitate reduced network inhibition (Jamali et al. 2006). Moreover, 

anatomical studies reveal that the epileptic EC is structurally altered as evidenced by 

volumetrie reduction (Bernasconi et al. 1999) and pyramidal cell loss in medial EC 

layers 111111 (Du et al. 1995; Du et al. 1993). 

Additional investigations of the EC have utilized control animal tissue in the 

combined hippocampal entorhinal cortical slice and the in vitro whole brain. In these 

preparations, network synehronization and robust ietal discharges displayed deep 

layer entorhinal cortical origin by enhancing network function through potassium A 

channel blockade (Lopantsev and Avoli 1998a; b), nominal extracellular Mg2+ (Jones 

and Heinemann 1988), GABAA receptor antagonism (Jones and Lambert 1990a; b; 

Uva et al. 2005), elevated [K+]o (Bear and Lothman 1993) and cholinergie agonists 

(Dickson and Alonso 1997; Nagao et al. 1996). The aetivity of the EC also aetivates 

adjacent structures as in vitro ietal discharges demonstrated bidirectional routes of 

propagation and invaded the subiculum, the hippocampal formation, amygdala, and 

the parahippocampus (Barbarosie and Avoli 1997; Benini et al. 2003; de Guzman et 

al. 2004; Klueva et al. 2003; Uva et al. 2005). While alternative forms of in vitro 

epileptiform events are AMPAlkainate receptor sensitive, ictal waveforms can be 

blocked through NMDA receptor antagonism (Avoli et al. 1996; Jones and 

Heinemann 1988), spontaneous interictal activity (Barbarosie and Avoli 1997; Librizzi 

and de Curtis 2003) and high frequency electrical stimulation (Barbarosie and Avoli 

1997; Benini et al. 2003). The use of convulsive agents has provided valuable insight 

in understanding the network machinery of the EC; although, the investigated tissue 
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lacks the neuronal damage observed in clinical conditions of TLE. To this end, the 

chronic seizure models of TLE have addressed this limitation. 

Investigations of the EC, in chronic seizures paradigms, have often focused 

upon the medial superficial layers (Kobayashi et al. 2003; Kumar and Buckmaster 

2006; Shah et al. 2004; Wozny et al. 2005). Inhibitory neuronal loss during the latent 

and chronic seizure periods lead to enhanced excitation in MEC layer Il and reduced 

GABAA receptor mediated inhibition; these modifications ensure an increased 

synaptic drive on the DG (Kobayashi and Buckmaster 2003; Kobayashi et al. 2003). 

The amplified excitation of EC layer Il may also be a result of decreased GABAergic 

input from functional layer III inhibitory interneurons (Kumar and Buckmaster 2006); 

however, this lack of network interaction seems counterintuitive as layer III networks 

become hyperexcitable following pyramidal cell death (Scharfman et al. 1998). If a 

lack of communication exists between layers II/III, evidence suggests the function of 

EC layer Il may be governed by the network properties of EC layer V (Dickson and 

Alonso 1997). 

ln contrast to the EC superficial mantle, the deep layers of the EC may be 

more conducive to epileptiform activity. Investigations in MEC layer V, in control 

tissue, exhibits recurrent excitatory connections combined with minimal inhibitory 

input (Woodhall et al. 2005). In epileptic tissue, acquired from electrically kindled and 

pilocarpine treated animais, medial EC layer V displays enhanced excitation and 

functionally altered NMDA receptors (Fountain et al. 1998; Yang et al. 2006). 

Additional perturbations also occur in the often overlooked lateral EC. This trend may 

be a result of diminished neuronal death in the lateral EC; however, additional factors 

other than cellular death can contribute to a hyperexcitable network. Unlike additional 

structures implicated in TLE, the EC portrays subtle structural defects (Dawodu and 
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Thom 2005). Investigations of lateral EC layer III, during the latent phase in kainic 

acid treated rodents, report attenuated Ih activity which favours intrinsic and network 

excitation (Shah et al. 2004). The importance of the lateral EC is further reinforced as 

ablation of the lateral subdivision provides seizure relief in epileptic rats (Kopniczky et 

al. 2005). The combination of these studies indicates the EC is a hyperexcitable 

structure that plays a pivotai role in the epileptogenesis of TLE. 

0.9 The Role of the Insular Cortex in TLE 

0.9.1 Anatomy 

The human insula lies buried in the lateral sulcus (Reil 1809), and can only be 

visualized by retraction of the frontal and temporal lobes, which is an opening referred 

to as the limen insula (Carpenter 1985). The IC is comprised of 3 distinct regions 

referred to as the agranular, dysgranular and granular cortices (Mesulam and Mufson 

1982a). At the cytoarchitectural level, 3 strata in the agranular cortex consist 

primarily of pyramidal cells (Flynn et al. 1999). This structural organization differs 

considerably from layers Il and IV of the granule and dysgranular cortices due to the 

presence of granule cells (Flynn et al. 1999). 

The network connectivity of the IC extends to neuronal territories implicated in 

TLE. Within limbic structures, the agranular cortex exhibits reciprocal connectivity 

within the perirhinal and piriform cortices and the EC (Burwell and Amaral 1998; 

Mclntyre et al. 1996; Mesulam and Mufson 1982b; Reep and Winans 1982). In 

contrast, the dysgranular and granular cortices have unidirectional efferents to the 

amygdala (Shi and Cassel! 1998). 

0.9.2 The epileptic insular cortex 
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ln the 19505, Penfield provided the first report implicating the IC in the 

epileptogenesis of TLE (Penfield and Jasper 1954). There was no direct evidence 

and this speculation was based upon the occurrence of persistent seizures following 

temporal lobectomy. Interestingly, the difficulties in identifying insular seizures were a 

combination of the anatomical location of the le and the technological limitations of 

the EEG (Isnard et al. 2004). Through the utilization of depth electrodes, Isnard et al 

(2000) demonstrated focal onset of insular seizures. In this particular study, temporal 

lobectomy provided complete seizure relief when ictal events where not of insular 

origin (Isnard et al. 2000). 

Anatomically, the le would be expected to undergo network hyperexcitation as 

it is the recipient of structural inputs from three epileptogenic structures: the EC, the 

perirhinal cortex, and the piriform cortex. (Burwell and Amaral 1998; Mclntyre et al. 

1996; Mesulam and Mufson 1982b; Reep and Winans 1982). However, anatomical 

connections do not always correlate with functional connectivity. In the in vitro whole 

brain, the le can be activated through entorhinal and piriform networks; unexpectedly, 

perirhinal cortical stimulation produced far field effects in the le (Biella et al. 2003). 

Similar physiological events have been identified with perirhinal - entorhinal cortical 

interactions, which were attributed to inhibitory networks (Biella et al. 2002). These 

results suggest GABAergic inhibition may exist between the perirhinal cortex and IC. 

Under epileptic conditions the break down of these inhibitory networks may promote 

the propagation of seizure activity. In line with this viewpoint, GABAA receptor 

antagonism generates in vitro whole brain epileptiform events that traverse the 

entorhinal and perirhinal cortices (Federico and MacVicar 1996; Uva et al. 2005). 

This removal of network inhibition is further illustrated in the in vitro brain slice, where 

bicuculline induced (GABAA receptor antagonist) epileptiforrn discharges originate 
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and propagate within the agranular le and perirhinal cortex (Demir et al. 1998). The 

utilization of these in vitro models demonstrates the hyperexcitability of the le and its 

network synchronization with adjacent parahippocampal structures. 

The paucity of electrophysiological studies in the le makes it difficult to 

understand how this structure would behave in epileptic tissue. Investigations in 

nociception have revealed the colocalization of GABA and enkephalins within the 

agranular le layer" (Evans et al. 2007) and GABAs receptor mediated output in layer 

V (Ohara et al. 2003). When this information is extrapolated to the conditions of 

network hyperexcitability, the data suggest that the le contains the neurochemical 

resources to generate network synchronization. The combination of endogenous 

opioids and GABA, prove interesting, as ).1-opioids can hyperperpolarize inhibitory 

neurons and desynchronize the network. Modulation of network activity through ).1-

opioid receptors is reported in the in vitro hippocampal-entorhinal slice (Avoli et al. 

1996) and the basolateral amygdala (Finnegan et al. 2006). As such, the relationship 

of opioid circuitry to GABA systems in the le and how they function within an epileptic 

network remains to be determined. 
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Chapter 1: Subiculum Network Excitability is Increased in a Rodent 

Madel of Temporal Lobe Epilepsy 

1.0 Linking Text & Information About Publication 

The subiculum occupies a pivotai location, within the limbic system, as the primary 

structural output of the hippocampal trisynaptic loop. In vitro investigations indicate 

the inhibitory network properties of the subiculum attenuate CA 1 inputs and thus 

subsequent hippocampal output activity. However, this inhibitory gating function is 

altered in pilocarpine treated tissue and may serve to amplify limbic seizures via 

entorhinal cortical interactions (D'Antuono et. al,2002; Wozny et al., 2005). 

Complimentary to this viewpoint, in vitro studies in the human epileptic subiculum 

indicate modified GABAA receptor mediated mechanisms promote spontaneous 

epileptiform discharges (Cohen et aL, 2002). 

ln our studies of the pilocarpine treated subiculum we addressed the network 

interactions of the epileptic subiculum with CA 1 and the entorhinal cortex. We further 

investigated whether perturbations in GABAA receptor mediated inhibition occur in the 

pilocapine treated subiculum and whether alterations occur at the level of the KCC2. 

1.1 Abstract 

ln this study we used in vitro electrophysiology along with immunohistochemistry and 

molecular techniques to study the subiculum - a Iimbic structure that gates the 

information flow from and to the hippocampus - in pilocarpine-treated epileptic rats. 

Comparative data were obtained from age-matched non-epileptic controls (NEC). 

Subicular neurons in hippocampal-entorhinal .cortex slices of epileptic rats: (i) were 

hyperexcitable when activated by CA 1 or EC inputs; and (ii) generated spontaneous 

postsynaptic potentials at higher frequencies than NEC cells. Analysis of 
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pharmacologically isolated, GABAA receptor-mediated inhibitory post-synaptic 

potentials revealed more positive reversai potentials in epileptic tissue (-67.8±6.3 mV, 

n=16 vs. -74.8±3.6 mV in NEC, n=13; p<0.001) combined with a reduction in peak 

conductance (17.6±11.3 nS vs. 41.1±26.7 nS in NEC; p<0.003). These 

electrophysiological data correlated in the epileptic subiculum with (i) reduced levels 

of mRNA expression and immunoreactivity of the neuron-specific potassium-chloride 

cotransporter 2; (ii) decreased number of parvalbumin-positive cells; and (iii) 

increased synaptophysin (a putative marker of sprouting) immunoreactivity. These 

findings identify an increase in network excitability within the subiculum of pilocarpine-

treated, epileptic rats and point at a reduction in inhibition as an underlying 

mechanism. 

~ ... 
r 

1.2 Introduction 

Temporal lobe epilepsy (TLE) patients present with limbic seizures that involve the 

temporal neocortex and deep limbic structures such as the hippocampus, amygdala 

and entorhinal cortex (EC) (Bragin et aL, 2005; Spencer and Spencer 1994). A 

common finding in this epileptic disorder is a pattern of neuronal damage (termed 

mesial temporal sclerosis or Ammon's horn sclerosis) characterized by neuronalloss 

in the CA1/CA3 subfields and dentate hilus, EC layer III and amygdala (Mathern et 

aL, 1995; Houser, 1999). Similar histopathological patterns are observed in laboratory 

animais following treatment with convulsants such as pilocarpine (Turski et aL, 1983) 

or kainic acid (Tuunanene et aL, 1999), as weil as subsequent to repetitive electrical 

stimulation (Sloviter, 1987; Gorter et aL, 2001; Nissinen et aL, 2000). These 

procedures induce an initial convulsive response that is followed within approximately 

2 weeks by recurrent limbic seizures. 
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Limbic network hyperexcitability in TLE and animal models mimicking this dis-

order is associated with dysfunction of voltage-gated currents (Su et aL, 2002; Shah 

et aL, 2005), synaptic reorganization (Sutula et aL, 1988, 1989; Houser et aL, 1990; 

Perez et aL, 1996), and alterations in GABA receptor-mediated inhibition (Buhl et aL, 

1996; Doherty and Dingledine, 2001; Williams et al 1993, Khalilov et aL, 2003, 

Kobayashi et aL, 2003). These investigations have been centered upon the 

hippocampal subdivisions CA 1 and CA3, and the dentate gyrus. However, the 

subiculum has recently been demonstrated to play a fundamental role in experimental 

models of TLE (D'Antuono et aL, 2002; Weil mer et aL, 2002; Knopp et aL, 2005; 

Biagini et aL, 2005). In line with this view, spontaneous interictal activity has been 

shown to occur in the human epileptic subiculum in an in vitro slice preparation 

(Cohen et aL, 2002; Wozny et aL, 2003), while Vreugdenhil et al. (2004) reported 

augmented voltage-gated, Na+ persistent current in human subicular cells. Ove ra Il , 

this evidence indicates that the subiculum may play a fundamental role in epileptiform 

synchronization and thus in the generation of limbic seizures in TLE patients. Hence, 

in this study, electrophysiological recordings in conjunction with molecular and 

histochemical analysis were used to determine whether GABAergic mechanisms are 

altered in the epileptic rat subiculum. Data obtained from epileptic animais treated 

with pilocarpine were compared with those from age-matched, non epileptic controls 

(NECs). 

1.3 Methods 

1.3.1 Preparation of pilocarpine treated rats 

Procedures approved by the Canadian Council of Animal Care were used to induce 

status epilepticus (SE) in adult male Sprague-Dawley rats weighing 150-200g at the 

time of injection. Ali efforts were made to minimize the number of animais used and 
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their suffering. Briefly, rats were injected with a single dose of pilocarpine 

hydrochloride (380-400mg/Kg, i.p). To reduce the discomforts caused by peripheral 

activation of muscarinic receptors, methyl scopolamine (1mg/Kg i.p) was 

administered 30 min prior to the pilocarpine injection. The animais' behavior was 

monitored for approx. 4 h following pilocarpine and scored according to Racine's clas

sification (Racine et aL, 1972). Only rats that experienced SE (stage 3-5) for 30 

minutes or more (48.6±8.3 min, mean±SEM) were included in the pilocarpine group 

and used for in vitro electrophysiological studies approximately 4 months (17±1week; 

n=27 rats) following the pilocarpine injection. Since it has been previously established 

(Cavalheiro et aL, 1991; Priel et aL, 1996) that ail adult rats that experience 

pilocarpine-induced SE later exhibit spontaneous recurrent seizures, only a subset of 

animais from the pilocarpine group were video-monitored and the presence of 

spontaneous behavioral seizures was confirmed in virtually ail of them (n=11 out of 

12 rats). In this study, rats receiving a saline injection instead of pilocarpine were 

used as NECs. 

1.3.2 Electrophysiology procedures 

Brain slices from NEC and pilocarpine-treated epileptic rats were obtained according 

to the procedures established by the Canadian Council of Animal Care. Rats were 

decapitated under halothane anesthesia, the brain was extraeted and placed in cold 

(1-3°C) oxygenated artifieial eerebrospinal fluid (ACSF). Horizontal brain slices (450 

l-lm-thick) that included the EC, the subiculum and the hippocampus proper, were eut 

with a vibratome along the horizontal plane of the brain that was tilted by approx. 100 

along a posterosuperior-anteroinferior plane passing between the lateral olfactory 

tract and the brain stem base. Combined hippoeampal-EC slices were transferred to 
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an interface tissue cham ber and superfused with oxygenated (95%02, 5%C02) ACSF 

at 32-34°C. ACSF composition was (in mM): NaC1124, KCI 2, KH2P04 1.25, MgS04 

2, CaCI2 2, NaHC03 26, and glucose 10. 3,3-(2-carboxypiperazin-4-yl)-propyl-1-

phosphonate (CPP, 10 IJM) and 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 

IJM) were bath applied. Chemicals were acquired from Sigma-Aldrich Canada Ltd. 

(Oakville, Ontario, Canada) and Tocris Cookson Inc. (Ellisville, MO, USA). 

Field potential recordings were performed with ACSF-filled glass electrodes 

(tip diameter: <8 Ilm; resistance: 2-10 Mn) that were connected to a Cyberamp 380 

amplifier (Axon Instruments, Union City, CA, USA). Intracellular sharp-electrodes 

were filled with 3M potassium acetate (tip resistance: 90-120 Mn) and coupled to an 

Axoclamp 2A amplifier (Axon Instruments) with an internai bridge circuit for 

intracellular current injection. The resistance compensation was monitored throughout 

the experiment and adjusted as required. The fundamental electrophysiological 

parameters of the subicular and the EC neurons included in this study were 

measured as follows: (i) resting membrane potential (RMP) after cell withdrawal (ii) 

apparent input resistance (Ri) from the maximum voltage change in response to a 

hyperpolarizing current pulse « -0.5 nA) (iii) action potential amplitude (APA) and (iv) 

action potential duration (APD). Activation of neuronal networks was performed via a 

concentric bipolar electrode (Frederick Haer and Co., Bowdoinham, ME, USA) that 

was positioned in CA1 stratum radiatum (Fig. 3 and Fig. 4), layer III of the lateral EC 

(Fig. 5) or subiculum. In ail experiments, the minimum stimulus intensity (duration= 

100 ilS) that produced a reliable response was selected. 

Field potential and intracellular signais were fed to a computer interface 

(Digidata 1322A, Axon Instruments) and were acquired and stored using the pClamp 

8.0 software (Axon Instruments). Subsequent analysis of these data was performed 
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with the Clampfit 9 software (Axon Instruments). The reversai potential of 

spontaneous post-synaptic potentials (PSPs) and stimulus-induced, 

pharmacologically isolated inhibitory post synaptic potentials (IPSPs) was determined 

by linear regression from the plot of their amplitude versus membrane potential. The 

peak conductance of the latter responses was calculated by linear regression analy

sis from the plot of the relation between injected current and membrane potential 

deflections before and after the extracellular stimulus at latencies of approx. 10 ms 

(cf., Williams et aL, 1993). 

1.3.3 Real-Time PCR 

Total RNA was prepared from EC and subiculum of NEC and pilocarpine-treated 

epileptic rats using Trizol (Invitrogen, Milano, Italy). The total RNA was run on a 2% 

agarose gel and quantified by densitometric analysis using the Gel Doc, Biorad 

(Milano, Italy). Total RNA (1 I-Ig) was reverse transcribed using the first-strand 

synthesis system for RT-PCR (Superscript, Invitrogen). Relative Real-Time PCR was 

performed in a Real-Time Thermocycler (MX 3000, Stratagene, Milano, Italy) using 

the Brilliant SYBR Green QPCR Master Mix according to manufacturer instructions. 

Ali PCR reactions were cou pied to melting-curve analysis to confirm the specificity of 

amplification. Quantitative data were normalized to expression of housekeeping gene 

beta-actin. Specifie primers for rat potassium-chloride cotransporter 2 (KCC2) and 

beta-actin were designed to amplify short DNA fragments (beta-actin forward 5'

aggcatcctgaccctgaagtac-3'; beta-actin reverse 5'- gaggcatacagggacaacacag-3'; 

KCC2 forward 5'-ttcatcaacagcacggacac-3'; KCC2 reverse 5'-cttcttctttccgccctcat-3'). 

The relative quantitation was analyzed with the software that accompanied the 

thermal cycler. 
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1.3.3 Histopathology procedures 

For morphological studies, pilocarpine-treated and NEC animais were anesthetized 

(chloral-hydrate 450 mg/kg Lp.) and perfused via the ascending aorta with 100 ml 

saline followed by 300 ml 4% paraformaldehyde dissolved in 0.1 M phosphate buffer 

(pH 7.4). After dissection, the brains were postfixed for an additional 4 h in the same 

fixative at 4°C. After cryoprotection by immersion in 15% and 30% sucrose-

phosphate buffer solutions, the brains were frozen and eut horizontally from the 

ventral side by a freezing microtome. 

Differences in KCC2 immunoreactivity were assessed with a polyclonal 

antibody (Upstate, NY, USA) that has been shown to be specifie (Vale et aL, 2003; 

Grob and Mouginot, 2005; Lohrke et aL, 2005). In addition, changes in the 

parvalbumin-positive interneuron subpopulation - which is critically involved in TLE 

(de Felipe et aL, 1993) - were investigated by using a mou se monoclonal antibody 

(Swant, Bellinzona, CH). We also analyzed the changes in synaptophysin, a putative 

marker of functionally active sprouted nerve terminais (Proper et aL, 2000) by 

employing a previously characterized rabbit polyclonal antibody for synaptophysin 

(Bahler et al., 1991; kindly provided by Dr. F. Benfenati, Genua, Italy). Antibodies for 

KCC2 (1:1000), parvalbumin (diluted 1:2000), and synaptophysin (1:5000)were used 

on 50 ~m-thick horizontal sections obtained, respectively, at levels 7.3-7.6 from 

bregma. Some sections (one section out of four, four series for each animal) were 

stained with toluidine blue to c1early identify the various anatomical regions of the 

hippocampal formation and to assess the presence of neuronal damage (see Fig. 

1A). Immunohistochemistry was performed using the avidin-biotin complex technique 

and diaminobenzidine as chromogen (cf., Biagini et aL, 2005). Endogenous 
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peroxidase was blocked by 0.1 % phenylhydrazine in phosphate buffered saline (PBS) 

for 20 min, followed by several washes in PBS preceding the incubation with primary 

antibodies. Secondary antibodies and the avidin-peroxidase complex were purchased 

from Amersham Italia (Milan, Italy) and diluted 1 :200 and 1 :300 respectively. The 

stained sections were analyzed by densitometry using image analysis software (KS 

300, Zeiss Kontron, Munich, Germany) (cf., Biagini et aL, 2001; 2005). Four sections 

for each animal were investigated and averaged for statistical analysis. Briefly, the 

value of non-specifie mean gray tone was measured in an area of the slide 

immediately outside the section close, respectively, to subiculum or EC (Fig. 1A,B). 

An area of the angular bundle was taken as index of background labelling (Fig. 1 B), 

since KCC2 and synaptophysin are not detectable in axons and glial cells (Bah 1er et 

aL, 1991; Williams et aL, 1999). Mean gray values of specifie immunostaining were 

measured in subicular and EC areas identified as follows. The subiculum was defined 

by its enlarged and loosely packed pyramidal layer, clearly distinguishable from the 

narrow pyramidal cell layer of CA 1 in toluidine blue-stained sections (Fig. 1 A), and by 

differences in neuronal cell size when compared with the presubiculum; in addition, 

we divided the subiculum into two halves: the one close to CA 1 was defined as 

proximal subiculum, while that close to presubiculum was defined as distal subiculum 

(Fig. 1 B) (cf. Naber et aL, 2001). The EC was identified by its classical lamination in 

six layers and, particularly, by the presence of the more intensely stained layer Il that, 

when continuous, marked the medial EC or, when discontinuous because of the 

"islandic" neuronal organization (Witter 1993), marked the lateral EC (delimited by 

arrowheads in Fig. 1A). To measure mean grey tone values using the KS 300 

software, these areas were manually selected (Fig. 1 B) by an expert neuroanatomist 

(G.B.) that was blinded to animal codes. Transmittance percentage values (T%) of 
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total and non-specifie staining were then obtained by dividing the mean grey tone 

value of every area analyzed by the mean grey tone value of the background. Optical 

density (00) values were then calculated according to the formula 00 = -log T%, for 

bath non-specifie grey tone values and specifically labeled areas. The specifie 00 

was obtained by deducting non-specifie 00 from total 00 for each studied region 

(Biagini et aL, 2001). Neuronal counts of parvalbumin-positive interneurons was as 

described by Biagini et al. (2005). Sections were used for parvalbumin immu-

nostaining were then rehydrated through various passages in decreasing ethanol 

solutions, counterstained with toluidine blue, and analysed by the KS 300 software to 

measure the subicular area. 

1.3.4 Statistical method 

Measurements in the text are expressed as mean±S.E.M. and n indicates the number 

of samples studied under each specifie protocol. The results obtained were compared 

with the Student's t-test or Mann-Whitney test and were considered statistically 

significant if p<0.05. 

1.4 Results 

1.4.1 Unaltered intrinsic cellular properties in NEC and pilocarpine

treated subiculum 

As previously shown (Mattia et aL, 1997; Su et aL, 2002; Knopp et aL, 2005), 

intracellular injection of depolarizing current pulses (duration= 1 s) induced two 

patterns of firing in subicular neurons recorded in NEC and pilocarpine-treated slices. 

The first consisted of an initial burst of action potentials followed by regular firing (Fig. 
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2Aa and Ba), while the second was characterized by regular, repetitive firing only 

(Fig. 2 Ab and Bb). Quantification of the incidence of these two firing patterns demon

strated similar proportions in pilocarpine-treated (intrinsic bursting, n= 16; regular 

firing, n= 13) and in NEC (intrinsic bursting, n= 14; regular firing n= 14) tissue. In 

addition, subicular neurons recorded in the two types of tissue displayed similar 

fundamental intrinsic properties (Table 1). As depicted in Fig. 2 (Ac and Bc), steady 

depolarization of regular firing neurons from RMP to membrane potentials above -54 

mV produced the appearance of rhythmic subthreshold oscillations in the theta range 

(regular firing: NEC= 6.5±0.8 Hz, n=5, pilocarpine= 6.6±1.1 Hz, n=5; intrinsic bursting: 

NEC= 5.6±0.8 Hz n=5, pilocarpine= 5.9±0.6 Hz, n=5) that were combined with action 

potential discharge. The membrane potentials at which 'subthreshold' membrane 

oscillations appeared and the threshold for action potential generation were also 

similar in NEC and pilocarpine-treated, epileptic subicular neurons (Table 1). 

1.4.2 Activation of CA1 inputs demonstrates hyperexcitability within the 

epileptic subiculum 

Single-shock electrical stimuli delivered in the CA 1 stratum radiatum of NEC and pilo-

carpine-treated slices produced similar low amplitude, negative deflecting, field po

tential responses in subiculum (Fig. 3A and B, Field traces in the top samples). In 

contrast, remarkable differences could be identified in the recorded intracellular 

signais. As shown in Fig. 3A (-71 mV trace), CA1 stimulation invariably produced a 

sequence of depolarizing-hyperpolarizing post-synaptic responses in NEC subicular 

cells recorded at RMP (n=14); in addition, these stimulus-induced responses became 

purely depolarizing when the membrane potential was brought to values more 

negative than -80 mV with injection of steady negative current (Fig. 3A, -81 mV and -
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88 mV traces), while at depolarized membrane levels they were characterized by a 

single action potential followed by a robust hyperpolarization (Fig. 3A, -66 mV). At 

variance, two types of stimulus-induced intracellular responses were recorded in the 

pilocarpine-treated subiculum (Fig. 3B). In the first group of neurons (n= 18) single-

shock stimuli produced depolarizing post-synaptic activity at both RMP and at 

hyperpolarized membrane potentials (Fig. 3Ba, -71, -77 and -88 mV traces) while at 

depolarized membrane values these responses comprised of action potential bursts 

or doublets (Fig. 3Ba, -65 mV trace). In the second group of pilocarpine-treated 

subicular cells (n=11), CA1 stimulation elicited bursting responses at RMP or at 

depolarized membrane values (Fig. 3Bb; -70 and -83 mV traces). Moreover, when 

action potential bursting was prevented by injecting steady negative current, we 

identified an underlying slow depolarization that followed the initial excitatory post-

synaptic potential (EPSP) (Fig. 3Bb, -92 mV trace). These characteristics were found 

to be independent of the intrinsic firing properties of subicular cells. 

1.4.3 Subicular cetls in pilocarpine-treated slices have a lower threshold 

to synaptic stimuli than in NEC tissue 

The findings reported in the previous section suggest that increased network 

excitability characterizes the pilocarpine-treated, epileptic subiculum. To this end, we 

compared the input-output curves of the intracellular responses generated by 

subicular neurons following CA 1 single-shock stimuli in NEC and pilocarpine-treated 

slices. As shown in Fig. 4A, focal stimuli with strength ranging between 100 and 200 

~ produced either no or minimal post-synaptic responses in NEC subicular neurons 

(n= 5). These cells generated overt post-synaptic depolarizations only when the 
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current intensity was increased to 450 !lA, while a single action potential occurred in 

response to stimuli delivered at ~500 !lA. 

ln contrast, when this stimulation protocol was applied to pilocarpine-treated 

slices we could identify a lower activation threshold. Thus, a depolarizing response 

was elicited by CA 1 stimuli with current intensity of 100 !lA and then it increased in 

amplitude following stimuli at 150 J.LA (Fig. 4B). Moreover, in ail pilocarpine-treated 

subicular neurons (n= 6), single shock stimulation at approx. 200 ~ was sufficient to 

elicit action potential firing characterized by either doublets or bursts of action 

potentials. To assess network excitability we defined 100% as the current threshold 

required to elicit depolarizing PSPs prior to action potential spiking. Analysis of the 

relation between current intensity and depolarizing response amplitude (prior to 

action potential generation) revealed that pilocarpine-treated subicular cells required 

significantly less current to generate responses comparable to those in NEC tissue 

(Fig.4C). 

1.4.4 Activation of EC layer III produces multiphasic activity in the 

pilocarpine-treated subiculum 

We further assessed subicular network excitability in NEC and pilocarpine-treated 

tissue by analyzing the responses induced by electrical stimuli delivered in EC layer 

III (Fig. 5). At resting membrane potentials, in NEC slices, extracellular stimulation 

elicited a low amplitude field response that was paralleled by a monophasic 

depolarizing PSP with a duration of 101.9±7.3 ms (Fig. 5A; n=13). As iIIustrated in 

Figure 5A, sequential injection of steady positive current from -93 mV progressively 

reduced the amplitude of the depolarizing PSP and unmasked a hyperpolarization at -

61 mV. In contrast, focal stimuli in pilocarpine-treated tissue (n=13 cells) consistently 
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produced multiphasic post-synaptic responses lasting up to 49'1.~h38.5 ms (Fig. SB). 

This activity persisted at hyperpolarized membrane potentials while injection of ste ad y 

depolarizing current made single action potentials, which were not followed by any 

hyperpolarizing component, appear (Fig. SB, -56 mV). The duration of the subicular 

responses to EC stimuli recorded in NEC and pilocarpine-treated slices is quantified 

in Fig. 5C (p<0.0001). 

1.4.5 Spontaneous synaptic activity in NEC and pilocarpine-treated 

subiculum 

As illustrated in Fig. 6A (-73 mV trace), low amplitude spontaneous PSPs comprising 

depolarizing and hyperpolarizing components, occurred at RMP with intervals of 

8.0;1:0.7 s in NEC subicular neurons (n=12). Hyperpolarizing the membrane of these 

cells through negative current injection, produced an inversion of the hyperpolarizing 

component (Fig. 6A, -94 mV trace). In contrast, injection of steady depolarizing 

current made the depolarizing and hyperpolarizing components of the PSP decrease 

and increase, respectively, along with the appearance of :subthreshold voltage-

dependent oscillatory activity (arrows) at membrane potentials less negative than -60 

mV (Fig. 6A, -60 mV trace). 

Intracellular recordings from pilocarpine-treated subicular cells (n=10) also 

demonstrated the presence of spontaneous PSPs that, however, had an increased 

rate of occurrence (intervals= 2.7±0.4 s; p<0.0001 independent t-test) when 

compared with NEC tissue.(Fig. 6 Band C). In addition, pilocarpine-treated subicular 

neurons generated spontaneous depolarizing PSPs both at membrane values of -70 

mV (RMP) and of -83 mV (Fig. 5B). Thus, at RMP pilocarpine-treated subicular cells 

did not exhibit the biphasic EPSPIIPSP sequence observed in NEC tissue. As 
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iIIustrated in Fig. 6B (-62 mV), injection of positive current in pilocarpine-treated cells 

transformed depolarizing PSPs into hyperpolarizing events coinciding with oscillatory 

activity (arrow) and single action potential spiking. Analysis of the reversai potential of 

the spontaneous PSPs revealed a more positive value in pilocarpine-treated tissue (-

62.4±0.9, n=17) than in NEC (-65.8±0.9 mV, n= 16) (p<0.02) (Fig. 60). 

1.4.6 Reversai potential of 'monosynaptic' IPSPs in NEC and pilocarpine

treated subicular neurons 

To isolate GABAergic activity we performed intracellular recordings in subicular 

neurons of NEC and pilocarpine-treated slices in the presence of an NMOA receptor 

antagonist (CPP= 10 !-lM) and of an AMPAlkainate receptor blocker (CNQX= 10 !-lM). 

Under these pharmacological conditions, focal subicular stimulation elicited a 

presumptive IPSP that was often characterized by a fast and a slow component (Fig. 

7 A). Seriai application of GABAA (picrotoxin, 50 J.LM, n=5) and GABAB (CGP 35348, 

10 J.LM; n= 4) receptor antagonists demonstrated that the fast component of the 

stimulus-induced IPSP was GABAA receptor-mediated (not illustrated). In these 

experiments we analyzed the stimulus-induced responses recorded at different 

membrane potentials by injecting pulses of hyperpolarizing and depolarizing current. 

By doing so we could identify the reversai potential of the stimulus-induced fast IPSP 

along with the associated peak conductance. Single-shock stimulation in NEC and 

pilocarpine-treated cells produced GABAA receptor-mediated IPSP reversai points of -

75 mV (Fig. 7C, black dots) and -66 mV (Fig. 7C, open dots), respectively. Analysis of 

additional samples for the GABAA receptor-mediated IPSP, revealed a more positive 

reversai point (-67.8±6.3 mV; n=16, 8 regular fire and 8 intrinsic bursting; p<0.001, 

independent t-test) within the pilocarpine treated subiculum as compared to NEC 
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tissue (-74.8 ±3.6 mV; n=13, 9 regular firing and 4 intrinsic bursting) (Fig. 7D). 

Alteration of the IPSP reversai point was mirrored by a significant reduction (p<0.003; 

independent t-test) in the GABAA receptor mediated IPSP peak conductance in pilo

carpine-treated epileptic cells (Le., 17.6±11.3 nS vs 41.5±26.7,' nS in NEC) (Fig. 70). 

1.4.7 Reversai potential of 'monosynaptic' IPSPs generated by EC layer V 

neurons from NEC and pilocarpine-treated rats 

Using a similar protocol, we assessed whether GABAA receptor activity was altered in 

neurons recorded in EC layer V of epileptic tissue. As shown in Fig. 8, NEC and pilo

carpine-treated neurons in this limbic area had similar reversai potentials (Le., -

72.37;3.8 mV, n=7, for NEC and -69.8±5.2 mV, n=13, for pilocarpine-treated EC cells; 

p<0.27, independent t-test). Moreover, the peak conductance of the GABAA receptor

mediated IPSP was not different (p<0.89; independent t-test) in NEC (10.3±4.1 n$, 

n= 7) and pilocarpine-treateq (12.8±8.6 nS, n= 13) EC neurons (Fig. 80). 

1.4.8 Reduced KCC2 expression in the pilocarpine treated subiculum 

The more depolarized reversai potential of the GABAA receptor-mediated IPSP 

identified in pilocarpine treated subicular cells led us to assess whether the 

expression of KCC2 was changed. As illustrated in Fig. 9A, RT -PCR analysis 

revealed a 44.0±6.1 % reduction in KCC2 mRNA expression level within the 

subiculum, but not in the EC of pilocarpine-treated, epileptic rats (n= 5) as compared 

with NECs (n= 5). We also used a commercially-available antibody reported to be 

specifie for KCC2 (Vale et aL, 2003; Grob and Mouginot, 2005; Lohrke et aL, 2005). 

By doing 50 we could localize in NEC subiculum the presence of KCC2 

immunopositivity both in nerve fibers and on the surface of neuronal cell bodies (Fig. 
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9C); in contrast, the cytoplasm appeared completely devoid of any signal (note that 

the arrowheads in the inset of Fig. 9C point at neuronal somas that appear white). 

This localization was consistent with previous reports on KCC2 expression in the 

mature brain (Lorke et aL, 2005; Vale et aL, 2005). 

Immunohistochemical analysis of the epileptic rat subiculum demonstrated a 

decrease in KCC2 positivity (Fig. 90). These findings were also quantified by using 

optical density analysis. As iIIustrated in Fig. 9B, we found a significant (p<0.05) 

decrease (-25%) in KCC2 immunoreactivity in the subiculum of epileptic rats (n=9) as 

compared to NEC (n= 8). Therefore, these findings demonstrate a reduced 

expression of both mRNA and KCC2 protein in the pilocarpine-treated, epileptic 

subiculum supporting a malfunction in the extrusion of intracellular cr and th us the 

different IPSP reversai potential values. 

1.4.9 Histopathological evaluation of neuronal damage 

Next, we studied whether interneuronalloss or neuronal sprouting were present in the 

subiculum and EC of pilocarpine-treated, epileptic rats. Parvalbumin-positive cells 

were found to be homogeneously distributed both in the subiculum (Fig. 10A and B) 

and in the EC (Fig. 10C and 0). However, a reduced area of immunostaining could 

always be identified in the subiculum of pilocarpine-treated animais. 

By counting parvalbumin-positive cells in the ventral subiculum (Ievel 7.6 mm 

from bregma), we found a significant (p<0.01) decrease (-65%) in parvalbumin

stained neurons in pilocarpine-treated rats (n=9) as compared with NEes (n=8) (Fig. 

10E). However, the area covered by subicular neurons, measured in toluidine blue

stained sections was only slightly decreased in pilocarpine-treated animais 

(0.38±0.06mm2
) compared with NEC (0.40±0.03 mm2

; not statistically different). 



62 

Following the surprising results obtained by counting parvalbumin-positive cells at this 

level, we decided to further analyze the subiculum considering a dorsal level (3.6 mm 

from bregma), since the lesion extent was described to vary along the hippocampal 

longitudinal axis by other authors (Turski et aL, 1983). Interestingly, a significant 

(p<0.01) decrease (-40%) was also observed in the dorsal subiculum. However, the 

area covered by subicular neurons, measured in toluidine blue-stained sections was 

only slightly decreased in pilocarpine-treated animais (0.38±0.06mm2
) compared with 

NEC (0.40±0.03 mm2
; not statistièally ditferent). Parvalbumin-positive cells were also 

counted in the superficial layers of medial EC and lateral EC in the sa me ventral 

sections, but no differences were found between the two groups of animais (Fig. 10, 

compare NEC in C with pilocarpine-treated in D, as weil as quantified data in panel 

E), thus confirming the results reported by Du et al. (1995). 

Finally, we investigated the distribution of immunoreactivity for synaptophysin 

(Fig. 11), which is considered to be a marker of functionally sprouted nerve fibers 

(Proper et aL, 2000). Here, we found the presence of well-delimited patches of 

increased immunoreactivity in dentate gyrus, subiculum and EC of pilocarpine-treated 

rats (arrows in Fig. 11 Band corresponding insets). In the dentate gyrus, patches of 

increased immunoreactivity were localized in the inner molecular layer and were thus 

reminiscent of the mossy fiber sprouting reported in TLE patients (Sutula et aL, 1989) 

and animal models (Sutula et aL, 1988). When the subiculum was separated in 

proximal and distal areas according to Witter (1993) (see also Fig. 1 B), patches of in

creased immunoreactivity were more evident in the distal areas that are known to be 

innervated by the medial EC (Naber et aL, 2001); this was also the EC region in 

which we could identify patch es of increased synaptophysin immunoreactivity 

localized in the superficial layers (Fig. 11 B). 
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Semiquantitative evaluation of optical density values in NEC and pilocarpine

treated rats is shown in Fig. 11 C for both subiculum and EC. Significantly (p<O.01) 

higher staining intensity was found in proximal and distal subiculum as weil as in 

medial and lateral EC (p<O.05) of pilocarpine-treated rats when compared to NECs 

(Fig. 11 C). Therefore, these findings demonstrate a general increase of 

synaptophysin immunostaining in the subiculum and EC of pilocarpine-treated, 

epileptic rats. 

1.5 Discussion 

Our study demonstrates that the subiculum of pilocarpine-treated, epileptic rats is 

hyperexcitable at the network level as indicated by its increased responsiveness to 

CA1 and lateral EC layer III stimulation along with an increased frequency of 

spontaneous PSPs. We have also found that a mechanism contributing to subicular 

hyperexcitability corresponds to a dysfunction of GABAA receptor-mediated inhibition 

characterized by positive shift in IPSP reversai potentials cou pied with a decreased 

IPSP peak conductance. Moreover, these functional perturbations in GABAergic 

activity were presumably caused by a reduction in KCC2 expression along with a 

decreased number of parvalbumin-positive interneurons. Finally, we have found 

enhanced synaptophysin immunoreactivity in both subiculum and EC of epileptic 

animais. 

1.5.1 Network hyperexcitability in the epileptic subiculum 

Subicular neurons recorded intracellularly from epileptic tissue generate bursts or 

doublets of action potentials in response to stimuli delivered in the CA 1 stratum 

radiatum; in contrast, such procedure consistently disclosed a single action potential 

followed by a hyperpolarization in NEC subicular cells. Moreover, input-output curves 
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of the stimulus-induced responses identified a lower activation threshold in the 

epileptic subicular network. This evidence is in line with recent studies that have 

documented subicular hyperexcitability in epileptic tissue during electrical stimulation 

or GABAA receptor antagonism (Knopp et aL, 2005). However, in contrast to the 

results by Knopp et al (2005), we did not observe any synaptic bursting in NEC 

subiculum; this difference may have been dependent upon their adopted stimulus 

intensity. 

We further demonstrated that the altered subicular responsiveness was not 

limited to activation from CA 1, but also involved inputs arising from the lateral EC 

layer III. Our study as weil as previous investigations have shown that synaptic 

inhibition is prevalent within the NEC subiculum following EC stimulation (Behr et 

al.,1998; Maccaferri and McBain, 1995). In contrast, subicular activation by EC inputs 

in pilocarpine tissue revealed increased network excitation as indicated by the 

enhanced duration of the response that was characterized by multiphasic PSPs. In 

addition, hyperpolarizing synaptic potentials could not be recorded in pilocarpine 

tissue, as opposed to the NEC, thus further suggesting a perturbation in inhibitory 

and excitatory properties of the epileptic subiculum. Interestingly, this EC-subiculum 

network interaction correlates with the data obtained by studying epileptiform 

synchronization induced by 4-aminopyridine in pilocarpine-treated, epileptic mice 

(D'Antuono et aL, 2002). While we observed increased network hyperexcitability in 

the epileptic subiculum, we did not detect a correlation with the intrinsic properties of 

subicular neurons. 

A characteristic that was also indicative of network hyperexcitability within the 

epileptic subiculum was the higher frequency of spontaneous PSPs when compared 

to NEC subicular cells. Previous in vitro studies in tissue obtained from epileptic 
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patients (Cohen et aL, 2002; Wozny et aL, 2003) as weil as kainic acid (Shah et aL, 

2005) or pilocarpine-treated rats (Kobayashi et aL, 2003, Sanabria et aL, 2001; 

Knopp et aL, 2005) have shown the presence of network-driven phenomena. 

1.5.2 Reduced GABAergic inhibition within the pilocarpine-treated 

subiculum 

We also discovered that the reversai potential of the spontaneous PSPs recorded in 

epileptic tissue was characterized by a positive shift suggesting decreased network 

inhibition. This aspect was further investigated by establishing the reversai potential 

of the stimulus-induced IPSPs generated by NEC and pilocarpine-treated epileptic 

subicular cells in the presence of glutamatergic antagonists. We found that the 

reversai potential of the GABAA receptor component of this IPSP was more positive in 

pilocarpine-treated neurons than in NEC cells. Su ch a decrease in reversai potential 

may account for attenuated inhibition and thus for the synaptic hyperexcitability 

documented following CA 1 or EC stimulation. These data are also in keeping with the 

presence of depolarizing GABAergic events in the subiculum of human epileptic 

tissue (Cohen et aL, 2002, Wonzy et aL, 2003). 

Our results of a more positive fast IPSP reversai point can be attributed to an 

accumulation of intracellular cr resulting from a reduced expression of the KCC2. 

Under normal physiological conditions, the classical hyperpolarzing GABAergic 

response relies upon a low intracellular cr concentration due to CI- extrusion by 

KCC2. This mechanism, however, can become altered in conditions of network 

hyperexcitability. Accordingly, recent investigations have shown that KCC2 in the 

hippocampus is downregulated after kindling-induced seizures in vivo or by 

exogenous applications of BDNF or neurotrophin 4 in vitro (Rivera et aL, 2002). In 
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addition, Rivera et al. (2004) have reported that interietal epileptiform aetivity in 

hippoeampal slices down-regulates KCC2 mRNA and protein expression in CA 1 

pyramidal neurons. Indeed, by utilizing RT-PCR and immunohistochemical analysis 

we found a significant reduetion in KCC2 mRNA and protein expression in the 

pilocarpine-treated subiculum vs. NEC. As such, the more depolarized GABAA 

receptor indueed IPSP reversai potential identified in piloearpine-treated neurons is 

most likely eaused by a reduction in KCC2 expression and the functional 

consequence of increased intracellular cr. Hence, our data reinforce the evidence 

that a reduction in KCC2 expression may contribute to epileptic hyperexcitability. 

Pharmacologically isolated IPSPs generated by pilocarpine-treated epileptic 

subicular cells are also characterized by a decreased peak conductance when 

compared with similar events in NEC tissue. This change, which is expected to 

decrease the IPSP shunting action, may relate to decreased number of interneurons 

(see below), as weil as to alterations in GABAA receptor subunits (Houser and 

Escalpez, 2003; Olsen et aL, 2004; Friedman et aL, 1994). These factors may also 

contribute towards reduced subicular network inhibition coupled with an augmented 

excitatory drive. 

1.5.3 Structural changes in subicular and EC networks 

The perturbations of network inhibition observed in the subiculum of pilocarpine-

treated rats also appear to be contributed by a decrease of interneurons along with 

synaptic re-organization. First, we have found that parvalbumin-positive cells, which 

represent about 50% of interneurons in the rodent cortex (Kawaguchi and Kubota, 

1993; Kubota et aL, 1994) are markedly decreased in ventral and dorsal subiculum 

but not in EC. Similar findings have been reported in different TLE animal models (Du 
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et al., 1995; van Vliet et al., 2004). A reduction in the number of parvalbumin-positive 

interneurons has been also found in the CA1 subfield (André et al., 2001) and in the 

dentate hilus (Gorter et al., 2001) of epileptic animais, which correlated with the 

development of spontaneous seizures following SE. Interestingly, parvalbumin

positive cells are also decreased in the neocortex (de Felipe et al., 1993) and 

hippocampus (Arellano et al., 2004) of epileptic patients presenting with intractable 

seizures. It should be however mentioned that these studies failed in disclosing 

significant differences in parvalbumin-positive cells in the human epileptic subiculum, 

suggesting a possible inconsistency with the animal model. Alternatively, the 

decrease of parvalbumin-Iabeled interneurons may result from reduced expression of 

this calcium binding protein following repeated seizures (Sloviter et al., 1991; Vizi et 

al., 2004), thus depending on the frequency by which a certain neuronal area is 

recruited by seizures. 

Subiculum hyperexcitability may also be contributed by neuronal sprouting, as 

recently evidenced by tracing studies in rats made epileptic with different procedures 

(Cavazos et aL, 2004). Mossy fiber sprouting has been described in the dentate gyrus 

and CA3 subfield of TLE patients (Sutula et al., 1989; Houser et al., 1990; Houser, 

1999; Proper et al., 2000) and epileptic rats (Ben-Ari, 1985; Sutula et aL, 1988; Gorter 

et aL, 2001). We have investigated the possibility that neuronal sprouting took place 

in our rats by means of synaptophysin immunostaining. Synaptophysin is a synaptic 

vesicle-associated protein (Bahler et al., 1991) known to be upregulated by neuronal 

activity (Li et al., 2002; Valtorta et aL, 2004) and lesion (Kadish and van Groen, 

2003). Although it is not a classical marker of sprouting, changes in synaptophysin 

immunoreactivity have been taken as indirect index of increased nerve terminal 

density or activity in epileptic patients (Proper et aL, 2000) as weil as in animais 
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(Chen et aL, 1996; Li et aL, 2002). Here, we have identified an increase in 

synaptophysin immunostaining in several limbic areas, possibly suggesting neuronal 

sprouting in pilocarpine-treated rats as reported in the kainic acid model (Chen et aL, 

1996), or indicating increased synaptic vesicle density. These changes appeared to 

be more evident in distal subiculum and medial EC, that are reciprocally 

interconnected (Naber et aL, 2001). Increased synaptophysin immunoreactivity was 

also found in the hippocampus of pharmacoresistant TLE patients (Proper et aL, 

2000). Sprouting in the EC superficial layers has been reported to occur in human 

TLE tissue by analyzing the immunoreactivity of the highly polysialylated neural cell 

adhesion molecule (Mikkonen et aL, 1998). 

ln conclusion, our findings highlight a change in subicular neuron excitability in 

epileptic rats that depends on multiple mechanisms. At the molecular level, KCC2 

expression is downregulated thus varying the neuronal response to GABAergic 

inputs. At the cellular level, parvalbumin interneurons are highly decreased, possibly 

hampering the control of neuronal excitability, while the upregulation of synaptophysin 

immunostaining, as also found in the dentate gyrus and EC, favours the hypothesis of 

increased network coupling in the epileptic subiculum. This evidence along with 

findings from other laboratories (Cohen et aL, 2002; Cavazos et aL, 2004; Knopp et 

aL, 2005) indicate in the subiculum a key region in the control of epileptic activity. 
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1.8 Figures 

Figure 1-1: 

Localization of anatomical areas of the hippocampal formation. In A, 

microphotograph of a toluidine blue-stained horizontal section from a pilocarpine

treated rat. Note that layer Il in the entorhinal cortex (EC) is clearly identified as 

composed by a broader and continuous lamina in the medial EC while in the lateral 

EC (delimited by arrowheads) it appears to be composed by dispersed "islands" of 

neuronal elements. The other layers and the lamina dissecans (Id) are also indicated. 

Note that the dashed area in the subiculum shows the location where intracellular 

recordings were obtained. In B, areas of interest used to investigate the changes in 

subicular and EC neuronal network activities are shown. Areas marked in blue and 

red identify the different regions of the subiculum and EC sampled to measure grey 

tone values after immunohistochemistry in the proximal (proxSub) and distal (distSub) 

subiculum and in the lateral (LEC) and medial EC (MEC). The white ellipse in the 

angular bundle (ab) indicates the area used for the background (bg) staining, while 

the yellow ellipse close to the section indicates the procedure to measure nonspecific 

(ns) grey tone values. Other abbreviations: CA, cornu Ammonis; DG, dentate gyrus; 

H, hilus of dentate gyrus; paraSub, parasubiculum; preSub, presubiculum; Prh, 

perirhinal cortex. Scale bar, 500 /lm. 
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Figure 1-2: 

Intrinsic firing and subthreshold oscillations generated by subicular neurons in 

NEC and pilocarpine-treated tissue. Two types of firing patterns are generated by 

subicular neurons in NEC (A) and pilocarpine (B) treated slices during injection of 

depolarizing current: (i) action potential bursting coupled with regular action potential 

firing (Aa and Ba) or regular firing (Ab and Bb). Comparison of NEC and pilocarpine 

(Ac and Be) treated regular firing subicular neurons produced subthreshold 

oscillatory activity when depolarized from RMP. Quantification of subthreshold oscilla

tions through power spectral analysis demonstrates that subthreshold activity 

oscillates within a theta band of 6-9 Hz. 
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Figure 1-3: 

Activation of CA1 networks demonstrates hyperexcitability within the epileptic 

subiculum. A: ln NEC tissue, CA 1 single-shock stimulation elicits a sequence of 

depolarizing-hyperpolarizing post-synaptic responses at -71 mV (RMP). Hyper-

polarization to -77 mV, -81 mV and -88 mV produces stimulus-induced depolarizing 

post-synaptic events, whereas electrical stimulation at -66 mV elicits a single action 

potential. Ba: ln pilocarpine-treated subicular neurons, single-shock stimulation of 

the CA 1 area elicits action potential bursting at -65 mV while a depolarizing post -

synaptic response is seen at RMP and at further hyperpolarized potentials. Bb: ln 

other experiments, pilocarpine-treated subicular neurons generate all-or-none 

stimulus-induced bursting activity. Action potential bursts were halted upon further 

hyperpolarization of the membrane to -92 mV. 
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Figure 1-4: 

Pilocarpine-treated subicular neurons exhibit a lower threshold of activation. A: 

CA1 stimulation (duration of the stimulus= 100 )ls) at increasing intensities in NEC 

tissue produces hyperpolarizing responses (200 )lA) and depolarizing events (450 

)lA), whereas a strength of 500 uA is sufficient to elicit a single action potential. B: ln 

contrast, a stimulus of lower intensity in CA 1 is required to elicit depolarizing 

responses (100 )lA and 150 )lA) and action potential bursting (200 )lA) in pilocarpine-

treated subicular neurons. C: Graphical display of the average input-output curves of 

the post-synaptic responses generated prior to the appearance of action potential(s), 

in pilocarpine treated tissue (black dots; n=6) compared to NEC (open dots; n=5). 

Boltzman sigmoidal parameters were used to fit the current-response relationship. 

Stimulus to evoke the half amplitude of response (NEC: 315.6 ± 3.3 )lA and 

Pilocarpine: 147.1 ± 3.8 )lA) and slope (NEC: 56.6 ± 2.9 and pilocarpine: 4.6 ± 4.3) 

were statistically significant (half amplitude of response: p<0.00001; slope: 

p<O.0003). 
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Figure 1-5: 

Activation of EC layer III generates hyperexcitable responses in the pilocarpine-

treated subiculum. A: Single shock stimulation of EC layer III elicits a monophasic 

post-synaptic response in the NEC subiculum. B: ln contrast, EC layer III activation 

within pilocarpine treated tissue produced multiphasic post-synaptic activity within the 

subiculum. C: The pilocarpine treated subiculum produced a response of enhanced 

duration that was significantly different from the subicular response in the NEC (NEC: 

101.9~ ± 7.33ms vs. Pilocarpine: 491.8~ ± 38.54 ms; p<O.0001) 



A NEC B 

~10mv 
~~ ~~ ~~ 
RMP-~----------- RMP-........{ 

Pilocarpine 

~10mv 
200 ms 

Field Field -...;"""""""~""""""",-~~~-~"",,",,,,,~"""""-

-61 mV 

-66mV 

-78 mV 

Figure 5 

c 
500 

--. 
Cf) 

E 400 

c 
o 
~ 300 
::J 
'"C 

Q) 200 Cf) 
c 
o 
0.. 

~ 100 
cr: 

Ismv 
-':'"20""""0-m-Js 

o -L-___ _ 

-82 mV 

-88mV ~ 

* 

NEC Pilocarpine 

__ ---115 mV 

200 ms 



80 

Figure 1-6: 

Higher frequency of post-synaptic potentials (PSPs) within the pilocarpine-

treated subiculum. A: Intracellular recordings in the subic:ulum of NEC slices 

demonstrate spontaneous PSPs exhibiting excitatory and inhibitory components at -

73 mV. Depolarizing PSPs occur at -94 mV whereas at -60 mV these events were 

mainly hyperpolarizing. B: Subicular neurons in pilocarpine treated tissue exhibited 

depolarizing PSPs at -70 mV and -83 mV while hyperpolarizing PSPs occur during 

steady depolarization to -62 mV. C: Pilocarpine-treated subicular neurons exhibit a 

higher frequency of spontaneous PSPs as compared to those recorded in NEC slices 

(p<0.0001, independent t-test). 0: The reversai potential of spontaneous PSPs in 

NEC vs pilocarpine-treated tissue was significantly different (p<O.02). 



~, 

~" 

0 
,-

0 

Q) 
C .-
C. 
~ ca 
u 
o -.-c.. 

al 

ü w 
z 

ID 
c 

"B.. 
'-

* 
ca 
(.) 

..Q 
a:: 
() 
w z 

ex:> CO "<t C\I 0 

(S) Al!J\!lOe OndeUAS-lSod 
10 aouamooo 10 IBJ\JalUI 

Q) 
c 
"B.. 
'-ca 
(.) 
0 

ë: 

() 
w 
z 

C 

0 

> 
E 
o 
l"-

I 

l 
1 

> 
E 
Ct) 
l"-

I 

0 0 0 
C\I "<t CO 

1 1 1 

(AW) Al!J\!lOB ondBuAS-lSod 
10 IB!lUalOd leSJ8J\8CJ 

> 
E 

Ct) 
CO 

1 

> 
E 
~ 
0) 

1 

* 

0 
ex:> 

1 



81 

Figure 1-7: 

The pilocarpine-treated subiculum exhibits a more positive GABAA receptor 

mediated IPSP. A and B:Single shock stimulation (100 J.ls) at different membrane 

potentials elicit "isolated" IPSPs in the presence of glutamatergic antagonists 

(CPP+CNQX, 10 J.lM for both drugs). Sharp-electrode intraceilular recordings were 

performed in NEC (A) and pilocarpine-treated tissue (B). Insets: expansion of the 

intracellular recordings of the IPSPs recorded in NEC and pilocarpine-treated tissue. 

Note that at -66mV hyperpolarizing synaptic potentials occur in NEC, whereas 

depolarizing potentials occur in the pilocarpine-treated cell. C: The IPSP reversai 

point in the NEC subiculum is -75 mV (black dots) whereas the pilocarpine-treated 

subiculum exhibits a value of -66 mV. 0: Mean values of the "isolated" IPSPs are 

significantly more positive (p<0.001; independent t-test) in pilocarpine-treated tissue 

compared to NEC. Note also that a significant reduction in the IPSP peak 

conductance occurs in the pilocarpine-treated subiculum (p<O.003; independent t-

test). 
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Figure 1-8: 

Assessment of the CI reversai potential of the GABAA receptor mediated IPSP 

in layer V of the entorhinal cortex A and B. Inhibitory post-synaptic activity isolated 

via application of the glutamatergic antagonists CPP and CNQX (10 /lM in both 

cases). In NEC (A) and pilocarpine treated tissue (B), single shock stimulation in 

layer V of the entorhinal cortex produced depolarizing and hyperpolarizing inhibitory 

post-synaptic responses at negative and positive membrane potentials, respectively. 

C: Regression analysis demonstrated the cr reversai point in NEC to be -76 mVand 

-75 mV in the pilocarpine-treated EC. D: Comparison of the averages of the cr; 

reversai point (NEC: -72.~;t3.8 mV, n=7; Pilocarpine: -69.~;t5.2 mV, n=13; p<0.27; 

independent t-test) and cr conductance (NEC: 1 0.~±4.1 nS; pilocarpine; 12.~±8.6 nS; 

p<0.89; independent t-test) 
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Figure 1-9: 

KCC2 expression in pilocarpine-treated and NEC rats. In A: KCC2 mRNA levels 

in pilocarpine-treated EC and subiculum (n=5), expressed as percentage of NEC 

(n=5) values. In B: KCC2 immunoreactivity in the subiculum of NEC (n=8) and 

epileptic rats (n=9). * p< 0.05 vs. control values, Mann-Whitney test. In C and D: 

Distribution of KCC2 immunoreactivity in the subiculum of NEC and pilocarpine

treated rats, respectively. Note the wide distribution of KCC2 in the grey matter, while 

the angular bundle (ab) is scarcely stained. As shown in the inset (C), 

immunoreactivity is visible in nerve fibers and on the surface of neuronal somas, 

while the cytoplasm is unstained (arrow-heads). Abbreviations: alv, alveus; ml, 

molecular layer; sp, pyramidal layer; sr, stratum radiatum. The asterisk indicates the 

presubiculum. Scale bar, 150 /lm for C and D, 50/lm for the inset. 
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Figure 1-10: 

Parvalbumin immunoreactivity in the subiculum and EC of age matched NEC 

and pilocarpine-treated rats. A & B. Immunohistochemical staining in the ventral 

subiculum (7.6 mm from bregma) reveals a reduced number of parvalbumin positive 

inhibitory interneurons in pilocarpine-treated rats (B). The inset in B magnifies a 

parvalbumin-positive interneuron. C & 0: distribution of parvalbumin-positive cells in 

the EC of NEC (C) and epileptic rats (0). E: quantitative analysis reveals a significant 

reduction (p<0.01, Mann-Whitney test) of inhibitory interneurons in the epileptic 

subiculum vs. NEC (saline treated) both at ventral and dorsal (3.6 mm from bregma) 

levels. In contrast, parvalbumin cell number was unaltered in the superficial layers of 

the lateral and medial EC. Scale bar: 250 IJm. 
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Figure 1-11: 

Changes in synaptophysin immunoreactive levels in NEC (A) and pilocarpine-

treated epileptic rats (B).The arrows point to patches of highly dense synaptophysin 

immunoreactivity, respectively magnified in the insets on the right side (arrowheads), 

in the molecular layer of dentate gyrus (DG), the distal subiculum (distSub), and in the 

superficial layers of the medial EC (MEC). In panel C, densitometric analysis of 

synaptophysin immunoreactivity demonstrates higher levels in the subiculum and EC 

of pilocarpine-treated epileptic rats (see Fig. 1 for indications on the sampling 

procedure). Other abbreviations: CA1, cornu Ammonis 1; gl, granule layer; proxSub, 

proximal subiculum. *=p<0.05, **=p<0.01, Mann-Whitney test. Scale bars, 500 IJm for 

A and B, 100 IJm for the insets. 
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Table 1-1: 

Intrinsic neuronal properties of NEC and pilocarpine-treated subicular neurons. 

A comparison of the resting membrane potential (RMP), the input resistance (IR) and 

the action potential amplitude (APA) and action potential duration (APD) in the NEC 

and pilocarpine treated subiculum. Additional properties include membrane potential 

for subthreshold oscillatory activity as weil as action potential generation. 



" 

) ') ) 

Intrinsic properties of NEC subicular neurons 

Firing Pattern RMP (mV) IR (MQ) APA{mV) APD (ms) 
Oscillatory AP threshold 

threshold (mV) (mV) 

Regular Firing 
(n = 14) -69.7 + 0.8 42.3 + 2.9 89.2 + 2.5 1.3 + 0.1 -54.5 + 0.5 -50.5 + 0.9 

Intrinsic Bursting 
(n = 14) -66.7 + 1.1 35.2 + 3.1 88.8 + 1.9 1.3 + 0.1 -56.7 + 1.8 -54.7 + 1.0 

Intrinsic properties of pilocarpine treated subicular neurons 

Firing Pattern RMP {mV} IR (MQ) APA{mV) APD {ms} Oscillatory AP threshold 
threshold (mV) (mV) 

Regular Firing 
-66.7 + 0.8 43.7 + 3.7 91.4 + 2.8 1.4 + 0.1 -53.2 + 2.3 -49.9 + 1.1 

(n = 13) 

Intrinsic Bursting -69.0 + 1.1 39.4 + 3.7 88.9 + 2.1 1.3 + 0.1 -58.7 + 0.9 -54.8 + 0.9 
(n = 16) 

Table 1 
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Chapter 2: Network Hyperexcitability in the Deep Layers of the 

Pilocarpine-Treated Entorhinal Cortex 

2.0 Linking Text & Information About Publication 

ln the presence of convulsive agents, robust ictal discharges originate from the deep 

layers of the entorhinal cortex and propagate towards and throughout adjacent limbic 

structures. As discussed in chapter 1, multiphasic activity appeared in the pilocarpine 

treated subiculum following electrical activation of the epileptic entorhinal cortex. This 

evidence implicates the epileptogenic nature of the entorhinal cortex. 

Most investigations of the entorhinal cortex in chronic seizure models have 

often focused upon the superficiallayers and medial subdivision. In my next series of 

experiments, 1 investigated the properties of layer V of the pilocarpine treated 

entorhinal cortex and its network interactions in the lateral and medial subdivisions. 1 

further assessed the role of NMDA receptor function in the entorhinal cortex and its 

importance in maintaining in vitro epileptiform activity. This study was submitted to the 

Journal of Neurophysiology in a manuscript titled "Network hyperexcitability in the 

deep layers of the pilocarpine-treated entorhinal cortex" (de Guzman P, Inaba Y, de 

Curtis M and Avoli M) 

2.1 Abstract 

We report in this study that epileptiform discharges can occur spontaneously 

(duration= 2.60±0.49 s) or be induced by electrical stimuli (duration= 2.50±0.62 s) in 

entorhinal cortex (EC) slices from pilocarpine-treated rats, but not in slices from age-

matched, non-epileptic control (NEC). These network-driven epileptiform events con-

sist of field oscillatory sequences at frequencies greater than 200 Hz that most often 

initiate in the lateral EC and propagate to the medial EC with 25-63 ms delays. The 

87 
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NMDA receptor antagonist CPP depresses the rate of occurrence (p<0.01) of spon

taneous epileptiform discharges but fails in blocking them. Paradoxically, stimulus-in

duced epileptiform responses are enhanced in duration during CPP application. Con

comitant application of NMDA and non-NMDA glutamatergic antagonists abolishes 

spontaneous and stimulus-induced epileptiform events. Intracellular recordings from 

lateral EC layer V cells indicate a lower frequency spontaneous hyperpolarizing post

synaptic potentials (p<0.002) in pilocarpine-treated tissue than in NEC both under 

control conditions and with glutamatergic receptor blockade. Finally, the reversai 

potential of pharmacologically isolated GABAA receptor-mediated inhibitory post

synaptic potentials has similar values in the two types of tissue. COllectively, these 

results indicate that reduced inhibition within the pilocarpine-treated EC layer V may 

promote network epileptic hyperexcitability. 

2.2 Introduction 

The entorhinal cortex (EC) is a limbic structure that receives anatomical inputs from 

the amygdala, the perirhinal cortex and the hippocampal formation (Burwell and 

Amaral 1998). One of the physiological functions of the EC is to participate in spatial 

memory and learning (Hafting et al. 2005). Moreover, in pathophysiological 

conditions, such as human temporal lobe epilepsy (TLE), the EC exhibits 

dysfunctional neurotransmission (Jamali et al. 2006), neuronal death (Du et al. 1993) 

and volumetrie reduction (Bernasconi et al. 1999). 

ln vitro electrophysiological studies of the EC have demonstrated that bath ap

plication of convulsants promote robust epileptiform activity. This experimental ap

proach has allowed us to further understand the EC network machinery, as it may 

exploit synaptic or intrinsic properties unique to this structure (Avoli et al. 1996; de 
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Guzman et al. 2004; Dickson et al. 2000; Uva et al. 2005). However, these acute 

experiments focused on seizure-like events involving tissue that does not exhibit the 

network changes that are associated with a chronic condition such as TLE. 

Furthermore, pharmacological manipulations (e.g., the application of convulsant 

drugs) alter EC excitability, making it difficult to identify subtle functional alterations 

that may be present in the epileptic tissue. 

Investigating chronic models of TLE can address these limitations. Thus, 

studies in kainic acid- or pilocarpine-treated animais have shown patterns of neuronal 

death similar to those observed in human TLE along with alterations in network 

function (Ben-Ari 1985; Biagini et al. 2005; Covolan and Mello 2000; Du et al. 1995; 

Tolner et al. 2005; van Vliet et al. 2004). Most of these investigations have 

addressed the superficial layers of the medial EC and have identified both enhanced 

network interactions and altered intrinsic neuronal properties (Kobayashi et al. 2003; 

Kumar and Buckmaster 2006; Shah et al. 2004; Tolner et al. 2005; Wozny et al. 

2005). In addition, layer V of the medial EC of pilocarpine-treated tissue has been 

reported to exhibit changes in excitatory presynaptic activity (Yang et al. 2006). 

These studies indicate that network changes within the medial EC can lead to 

hyperexcitability, thus contributing to epileptiform synchronization and limbic seizures. 

However, the contribution of the lateral EC to TLE development remains under-

investigated. Therefore, by employing field potential and intracellular recordings, we 

assessed here the network interactions of layer V networks of the lateral EC in slices 

obtained from non-epileptic control (NEC) and pilocarpine-treated rats. 

2.3 Methods 

2.3.1 Preparation of pilocarpine-treated rats 
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Adult, male Sprague Dawley rats (150-200g) were subjected to intraperitoneal 

injections with the cholinergie agonist pilocarpine (380 mg/kg, Lp.) (cf. de Guzman et 

aL, 2006) according to procedures approved by the Canadian Council of Animal 

Care. Ali efforts were made to minimize the number of animais used and their 

suffering. To prevent discomfort induced through peripheral muscarinic receptor 

stimulation, rats were treated with Lp. injection of scopolamine methylnitrate (1 

mg/kg) 30 min prior to pilocarpine injection. Animal behavior was monitored for 6 h 

after pilocarpine injection and scored according to the classification of Racine (1972). 

Pilocarpine treated rats that experienced status epilepticus (Racine stages 3-5) for 30 

min or more (duration= 46±5 min, n= 52) were defined as the experimental group and 

studied within 4 months (17±1 week; n= 52) subsequent to pilocarpine injection. Pre

vious investigations have established that adult rats that experience pilocarpine

induced status epilepticus will develop chronic seizure activity (Cavalheiro et al. 1991; 

Priel et al. 1996). As such, pilocarpine-treated animais that were video-monitored 

showed spontaneous behavioral seizures (n= 26). Age-matched NEC rats - injected 

Lp. with saline - did not develop status epilepticus or any other form of epileptic 

behavior. 

2.3.2 Electrophysiology procedures 

Brain slices from NEC and pilocarpine-treated epileptic rats were obtained according 

to the procedures established by the Canadian Council of Animal Care. Animais were 

decapitated under halothane anesthesia, the brain was extracted and placed in cold 

(1-3°C) oxygenated artificial cerebrospinal fluid (ACSF). Horizontal brain slices (450 

/-lm-thick) that included the EC, the subiculum and the hippocampus proper, were cut 

with a vibratome along a horizontal plane of the brain that was tilted by approx. 10° 
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along a posterosuperior-anteroinferior plane passing between the lateral olfactory 

tract and the brain stem base (Avoli et al. 1996). Combined hippocampal-EC slices 

were transferred to an interface tissue chamber and superfused with oxygenated 

(95%02, 5%C02) ACSF at 32-34°C. ACSF composition was (in mM): NaCI 124, KCI 

2, KH2P04 1.25, MgS04 2, CaCb 2, NaHC03 26, and glucose 10. Ifenprodil (10 IJM), 

3,3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonate (CPP, 10 IJM), 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX, 10 IJM) and picrotoxin (50 /lM) were bath applied. 

Chemicals were acquired from Sigma-Aldrich Canada Ltd. (Oakville, Ontario, 

Canada) and Tocris Cookson Inc. (Ellisville, MO, USA). 

Field potential recordings were performed with ACSF-filled glass electrodes 

(tip diameter: <8 ).lm; resistance: 2-10 Mn) that were connected to a Cyberamp 380 

amplifier (Axon Instruments, Union City, CA, USA). Lateral EC neurons were 

recorded intracellularly with sharp-electrodes that were filled with 3M potassium 

acetate (tip resistance= 90-120 M'D) and coupled to an Axoclamp 2A amplifier (Axon 

Instruments) with an internai bridge circuit for intracellular current injection. 

Resistance compensation was monitored throughout the experiment and adjusted as 

required. The fundamental electrophysiological parameters of lateral EC neurons 

were measured as follows: (i) resting membrane potential (RMP) after cell withdrawal 

(ii) apparent input resistance (Ri) from the maximum voltage change in response to 

hyperpolarizing current pulses « -0.5 nA) (iii) action potential amplitude (APA) and 

(iv) action potential duration (APD). Neuronal network activation was made via a 

concentric bipolar electrode (Frederick Haer and Co., Bowdoinham, ME, USA) 

positioned in lateral EC layer V. In ail experiments, the minimum stimulus intensity 

(duration= 100 ).ls) eliciting a reliable response was selected. 
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Field potential and intracellular signais were fed to a computer interface 

(Digidata 1322A, Axon Instruments) and were acquired and stored using the pClamp 

8.0 software (Axon Instruments). Subsequent analysis of these data was performed 

with the Clampfit 9 software (Axon Instruments). For each field potential trace, the 

onset of epileptiform activity was determined relative to the earliest deflection from the 

baseline recording. The reversai potential of stimulus-induced, pharmacologically 

isolated inhibitory post-synaptic potentials (IPSPs) was determined by linear 

regression from the plot of their amplitude versus membrane potential. 

2.3.3 Statistical methods 

Measurements in the text are expressed as mean±S.E.M. and n indicates the number 

of samples studied under each specifie protocol. The results obtained were compared 

with the Student's t-test or Mann-Whitney test and were considered statistically 

significant if p<0.05. 

2.4 Results 

2.4.1 Epileptiform activity is a hallmark of the pilocarpine-treated EC 

As iIIustrated in Fig. 1A, spontaneous hypersynchronous activity was not recorded 

from the EC in brain slices obtained from NEC animais (n= 35 slices from 24 rats). In 

these experiments extracellular focal stimuli delivered in the EC deep layers elicited 

transient monophasic or biphasic field potentials (duration= 0.14±0.05 s, n=16; Fig. 

1Aa). In contrast, spontaneous field discharges occurred in 36 of 49 pilocarpine

treated EC slices that were obtained from 31 animais (Fig. 1 B). These epileptiform 

discharges (duration= 2.60±0.49 s; interval of occurrence= 35.2±4.3 s; n= 36) 

consisted in the lateral EC layer V of a series of negative deflections arising from a 
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slow negative shift coinciding with an initial positive waveform in layers Il and III (Fig. 

1 Ba). Similar field events (duration= 2.50±0.62 s, n= 49) were elicited in ail 

pilocarpine-treated slices by electrical stimuli (Fig. 1 Bb). 

As iIIustrated in Fig. 2, the onset of both spontaneous and stimulus-induced 

epileptiform events recorded from the lateral EC of pilocarpine-treated slices 

consisted of transient repetitive runs of fast oscillatory activity (duration= 52.B±5.7 ms, 

n=22). Power spectral analysis (following a band pass filtering from 100 Hz to 1000 

Hz) of the initial component of the field discharges recorded fram the lateral EC layer 

V demonstrated fast oscillatory ripple activity exceeding 200Hz (Fig. 2Ab,c and Bb,c). 

ln contrast, quantification of the frequency of the late component of the epileptiform 

events, via power spectra, indicated oscillations at 20 Hz (not shown). 

2.4.2 Network interactions within the pilocarpine-treated EC 

Next, we assessed the initiation and propagation of epileptiform discharges in the 

deep layers of both lateral and medial EC subdivisions. The slice schematic on the 

top part of Fig. 3 illustrates the position of the field potential recording electrodes and 

of the stimulating electrode that was located in the lateral EC. Electrical stimuli 

delivered in NEC slices - which did not generate any spontaneous field activity -

elicited a monophasic negative deflection in the lateral EC that was followed by a 

biphasic positive-negative waveform in the medial EC (n=6; Fig. 3A). In contrast, 

slices from pilocarpine-treated rats generated spontaneous epileptiform events that 

originated from the lateral (n= 6, Fig 3Ba) or medial EC (n= 3, Fig. 3Bb) and 

subsequently propagated to the medial and lateral EC, respectively. Propagation 

delays between the two structures produced a variable travel time between 25 and 63 

ms (n=9). In the distribution histogram shown in Fig. 3C, we arbitrarily defined 
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territorial lag times from the lateral EC towards the medial EC as negative whereas 

the reverse direction (medial EC~lateral EC) was classified as positive. This vari

ability in bidirectional propagation cou Id be restricted to a unidirectional movement 

fram lateral to medial EC following stimulation of lateral EC layer V along with a more 

confined time lag distribution (4 to 24 ms; n=9) (Fig. 3D). 

2.4.3 Firing properties of layer V lateral EC neurons in both NEC and 

pilocarpine-treated tissue 

We further investigated whether the firing patterns and the intrinsic properties of 

lateral EC layer V neurons were altered in the epileptic tissue compared to NEC. 

Intracellular injection of depolarizing current pulses (duration= 1s) induced two 

patterns of firing in lateral EC neurons analyzed in both types of tissue. The first 

consisted of regular, repetitive firing only (Fig 4Aa and Ba), while the second was 

characterized by an initial burst of action potentials followed by regular firing (Fig 4Ab 

and Sb). Quantification of these two firing patterns in NEC (regular firing, n= 25; 

intrinsic bursting, n= 6) and pilocarpine-treated slices (regular firing, n= 47; intrinsic 

bursting, n= 8) demonstrated in both cases a higher incidence of regular firing 

neurons compared to intrinsic bursters. In addition, lateral EC neurons recorded in 

the two types of tissue displayed similar fundamental intrinsic properties (Table 1). 

2.4.4 Intracellular characteristics of spontaneous and stimulus-induced 

events in NEC and pilocarpine-treated lateral EC neurons 

Single-shock stimulation produced an initial depolarizing response that was followed 

by biphasic hyperpolarizing components in lateral EC layer V neurons recorded at 

RMP in NEC slices (Fig. SA, -67 mV). Cell membrane hyperpolarization to values 

more negative than -80 mV with injection of steady negative current increased the 
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amplitude of the stimulus-induced depolarizing component and markedly reduced the 

subsequent hyperpolarizations (Fig. SA, -80 mV trace). In contrast, active 

depolarization of these cells disclosed a robust hyperpolarizing response (Fig. SA, -51 

mV trace), that was at times preceded by a single action potential (not shown). 

Hence, ail layer V neurons (26/26) recorded from the NEC lateral EC generated 

sequences of excitatory post-synaptic potential (EPSP)-IPSP in response to single

shock electrical stimuli. 

ln contrast, stimulus-induced (n= 56/75 neurons from 72 slices) and 

spontaneous (n=50/75 neurons from 72 slices) action potential bursting was recorded 

intracellularly from layer V neurons of the lateral EC in pilocarpine-treated slices. At 

RMP both stimulus-induced and spontaneous discharges were characterized by a 

depolarizing envelope that was overridden by action potential bursting (Fig. SB, -69 

mV and -71 mV). Membrane hyperpolarization to values more negative than RMP 

increased the amplitude of the stimulus-induced and spontaneous depolarizing 

envelopes (Fig. SB, -82 mV and -82 mV, respectively). Conversely, steady 

depolarization of these neurons to membrane values around -50 mV reduced the 

amplitude of these depolarizations (Fig. SB, -50 mV and -52 mV, respectively). Within 

the range of membrane potentials tested in these experiments (i.e., from -85 to -50 

mV) stimulus-induced and spontaneous depolarizations triggered similar amounts of 

action potential discharge. In addition, as expected from a network-driven synaptic 

event, changing the neuron membrane potential did not modify the rate of occurrence 

of the spontaneous epileptiform depolarizations. 
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2.4.5 Epileptiform activity in pilocarpine-treated EC persists during 

NMDA receptor antagonism but is abolished by a non-NMDA 

glutamatergic antagonist 

We further characterized the dependence of spontaneous network-driven epileptiform 

activity (duration= 1.75±0.32 s, interval= 32.7±9.6s, n= 5) on ionotropic glutamatergic 

mechanisms (Fig. 6A). Bath application of the NR2B receptor antagonist ifenprodil 

(10 ).lM, n= 5) did not modify the duration or the rate of occurrence of these 

spontaneous events. Synchronous discharges also persisted following application of 

Cpp (10 ).lM, n= 5) although this NMDA receptor antagonist increased significantly 

(p<0.01) their interval of occurrence (Fig. 6A). Subsequent application of CNQX 

blocked spontaneous network bursting (Fig. 6A; n= 5). The effects of these ionotropic 

glutamatergic antagonists on the duration and rate of occurrence of spontaneous 

epileptiform events are summarized in Fig. 6B and C. 

ln these experiments we also tested the effects of NMDA and non-NMDA 

glutamatergic antagonism on the paroxysmal depolarizations elicited by single-shock 

stimuli delivered in lateral EC layer V of pilocarpine-treated slices. Bath application of 

ifenprodil did not influence these stimulus-induced epileptiform discharges (n= 5), 

while subsequent application of CPP (n=6) caused an enhanced network response 

characterized by a single action potential followed by sustained discharges (Fig. 7 A). 

This apparent augmented response was associated with a significant increase in 

latency following the stimulus. Finally, subsequent addition of CNQX (10 J.lM, n= 6) 

abolished the stimulus-induced epileptiform discharges and revealed a monosynaptic 

post-synaptic potential (PSP). The effects induced by these ionotropic glutamatergic 

antagonists on the duration and latency of the stimulus-induced epileptiform 

responses are quantified in the plots shown in Fig. 7B and C. 
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2.4.6 Reduced GABAergic inhibition in the pilocarpine-treated EC 

Spontaneous hyperpolarizing post-synaptic potentials (PSPs) were recorded from 

NEC EC layer V neurons analyzed at RMP under control conditions (Fig. BA, -73 

mV). These events occurred at intervals ranging fram 7.4 to 34.9 5 (12.5±1.1 s, n= 7 

neurons); this value differed fram what observed in pilocarpine-treated layer V lateral 

EC (Fig 8A, -68 mV) as similar PSPs occurred at significantly longer intervals in these 

neurons (Fig 8B, 2B.5±4.9 s, n= 12, p<0.002 independent t-test). 

Spontaneous hyperpolarizing PSPs, recorded at RMP during concomitant ap

plication of CPP (10 IJM) and CNQX (10 IJM) were also more frequent in NEC 

(interval of occurrence= 14.4±1.6 s, n=6) as compared to pilocarpine-treated cells 

(interval of occurrence= 73.3±18.9 s, n=7; p<0.00001) (Fig. 8C and D). As shown in 

Fig. 8C and E, the amplitude of these PSPs was smaller in pilocarpine-treated cells 

(2.15±0.17 mV, n= 6) than in NEC (5.14±1.14 mV, n= 6; p<0.0002). Finally, during 

blockade of glutamatergic receptors, NEC and pilocarpine-treated EC neurons 

responded to local electrical stimuli with intracellular potentials that were 

characterized by similar reversai values (Fig. 8F and G; -75.4±1.1 mV, n=6 for NEC 

and -73.2±1.6 mV, n=6, for pilocarpine-treated EC cells; p>0.05, independent t-test). 

Subsequent bath application of the GABAA receptor antagonist picrotoxin (50 IJM, n= 

6) blocked both spontaneous and stimulus-induced IPSP activity in both types of 

tissue (not illustrated). 

2.5 Discussion 

We have found that the lateral EC in slices obtained from pilocarpine-treated animais 

can generate spontaneous epileptiform events that do not occur in NEC tissue. These 

discharges initiated most often within the lateral EC, and entrained the medial EC. 
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We have also demonstrated that this type of epileptiform activity is not NMDA 

receptor-dependent, as spontaneous and stimulus-induced synchronous bursting per-

sisted following NMDA receptor antagonism. Finally, we have established that spon

taneous, presumably GABAA receptor-mediated, PSPs in epileptic lateral EC neurons 

were reduced in amplitude and in frequency, thus suggesting that network hyperex

citability in the pilocarpine-treated lateral EC may result from impaired inhibition. 

2.5.1 Network hyperexcitability within the pilocarpine-treated EC 

Experiments performed in kindled rats have provided evidence for EC 

hyperexcitability, although no spontaneous network activity was reported (Fountain et 

al. 1998). Utilizing simultaneous field potential recordings, we have found that 

spontaneous network discharges in the absence of acute application of epileptogenic 

agents occur within the lateral EC. In li ne with this observation, convulsant 

treatments in control slices have demonstrated that synchronous epileptiform 

discharges are generated in the medial EC as weil as that this epileptiform activity 

originates in the deep layers (Dickson and Alonso 1997; Jones and Heinemann 1988; 

Lopantsev and Avoli 1998a, b). 

The spontaneous network discharges recorded from EC slices of pilocarpine

treated animais exhibit bidirectional routes of propagation between the medial and 

lateral component of this limbic structure. Accordingly, similar characteristics have 

been reported for the epileptiform activities recorded in the EC of control tissue slices 

in the presence of convulsants (de Guzman et al. 2004; Klueva et al. 2003; Uva et al. 

2005). These studies collectively demonstrate that enhanced excitation can promote 

network reverberation within the EC as reported in in vitro whole brain studies (Biella 

et al. 2002a; Biella et al. 2002b; Gnatkovsky and de Curtis 2006). It should also be 
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emphasized that the paroxysmal network synchronization identified in pilocarpine

treated lateral EC is supported by the occurrence of brief bursts of transient, high fre

quency oscillations in layer V at the onset of spontaneous and stimulus-induced 

epileptiform events. High frequency oscillations exceeding 200 Hz, deemed 

pathological, may serve as a surrogate marker of epileptogenicity (Bragin et al. 2004) 

as suggested by intracranial recordings performed in the EC of TLE patients (Bragin 

et al. 2002b; Jirsch et al. 2006) and by in vivo recordings in the temporal cortex of 

kainic acid-treated rodents (Bragin et al. 2002a; Tolner et al. 2005). 

The hyperexcitabilty of pilocarpine-treated layer V lateral EC ce"s also 

emerged fo"owing electrical stimulation. Single-shock stimuli in NEC slices elicited 

PSPs consisting of an initial depolarizing response (presumably an EPSP that cou Id 

eventually trigger a single action potential) fo"owed by biphasic hyperpolarizing 

components (Behr et al. 1998; Williams et al. 1993». In contrast, EC neurons 

recorded in slices from pilocarpine-treated animais responded to similar electrical 

stimuli by generating paroxsysmal epileptiform activity. A decreased threshold of 

network responses to stimuli has been reported to occur in EC superficial layers 

(Kobayashi et al. 2003; Kumar and Buckmaster 2006) and subiculum (Cohen et al. 

2002; de Guzman et al. 2006) of epileptic tissue. 

We also addressed whether network hyperexcitability within the pilocarpine

treated EC could be attributed to changes in intrinsic neuronal properties. However, 

RMP, Ri, and APA were not different in layer V neurons recorded in NEC and pilo

carpine-treated animais. In both conditions, an overwhelming number of regular firing 

neurons was observed compared to intrinsic bursters, which is line with studies per

formed in layer V of the lateral (Hamam et al. 2002; Rosenkranz and Johnston 2006) 

and medial (Hamam et al. 2000) EC in control tissue. As such, we conclude that 
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factors involving recurrent excitatory connectivity and attenuated inhibition may 

contribute to the hyperexcitablity of the deep layer EC (Dhillon and Jones 2000; 

Woodhall et al. 2005). 

2.5.2 Reduced network inhibition in the pilocarpine-treated EC 

Previous studies in control tissue have shown a significantly reduced network 

inhibition in EC layer V compared to layer Il (Woodhall et al. 2005). In our pilocarpine

treated tissue, lateral EC layer V neurons revealed a lower frequency of spontaneous 

post-synaptic events. These results, which suggest decreased network inhibition 

within the pilocarpine-treated lateral EC layer V, were further reinforced by data 

obtained in the presence of glutamatergic antagonists. We have found that lateral EC 

layer V neurons in pilocarpine-treated slices produced a lower frequency of IPSP 

activity along with significantly reduced amplitudes than NEC cells. Thus, these 

findings indicate a diminished GABAergic inhibition of layer V pyramidal cells when 

compared to the NEC. In parallel with these results, EC layer Il is subject to reduced 

network inhibition in the pilocarpine-treated EC (Kobayashi et al. 2003). However, the 

attenuated inhibition identified in EC layer V neurons was not associated with a 

change in GABAA receptor-mediated IPSP reversai potential, unlike previous studies 

performed in the subiculum of human epileptic patients (Cohen et al. 2002) and 

pilocarpine-treated animais (de Guzman et al. 2006). Overall, our data suggest that 

disinhibition within the EC could result from reduced inhibitory input rather than 

alterations in cr extrusion mechanisms. Attenuated network inhibition resulting from a 

reduced excitatory drive on inhibitory interneurons, has been reported in the 

hippocampus and EC layers 111111 (Bekenstein and Lothman 1993; Kumar and 

Buckmaster 2006; Sioviter et al. 2003; Williams et al. 1993). Additional alterations 
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regarding a reduction of NPY and 5-HT activity may contribute to network 

hyperexcitability within the EC (Jamali et al. 2006). 

2.5.3 Glutamatergic mechanisms in the pilocarpine-treated EC 

The presence of spontaneous epileptiform activity in pilocarpine-treated EC involves 

reduced network inhibition leading to a presumed over-expression of glutamatergic 

mechanisms. We have, however, found that EC network hyperexcitability is not 

dependent upon NMDA receptors. Previous investigations in control tissue have 

revealed that NMDA receptor blockade abolishes ictal-like activity (Avoli et al. 1996; 

de Guzman et al. 2004). In contrast, both spontaneous and stimulus-induced 

epileptiform discharges in pilocarpine-treated EC appeared to be resistant to NMDA 

receptor antagonism. 

A recent investigation of EC layer V neurons in pilocarpine-treated slices has 

revealed an alteration in NR2B receptor function thus suggesting a developmental 

regression of this NMDA receptor subtype (Yang et al. 2006). In contrast, we have 

found in our experiments that spontaneous or stimulus-induced epileptiform 

discharges were not influenced by NR2B receptor antagonism. Since the presence of 

the NR2B receptor is reported to be age-dependent, these different results may 

reflect the younger age of the animais used in the study of Yang et al (2006). 

However, we have also found that spontaneous epileptiform discharges in 

pilocarpine-treated EC persisted in the presence of full NMDA receptor blockade 

even though it occurred at longer intervals. Interestingly, single-shock stimulation 

during CPP application produced a delayed response consisting of a prolonged 

bursting sequence, thereby suggesting an apparent augmentation of network 

discharge. The delayed occurrence, combined with the graduai rising and sustained 
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action potential firing, fo"owing single-shock stimuli during NMDA receptor blockade 

may be caused by reduced NMDA-dependent depolarization and synchronization. 

Thus, under these experimental conditions, blockade of NMDA receptors could delay 

the development of a bursting sequence that is sustained by AMPA/kainite receptors 

coupled with the subsequent recruitment of cholinergie synapses to promote network 

reverberation (Cobb and Davies 2005). 

Kindling studies in the dentate gyrus indicate that NMDA receptor blockade 

does not preclude seizure development (Brandt et al. 2003) nor contributes to the 

maintenance of seizure activity (Sayin et al. 1999). Therefore, factors su ch as 

reduced inhibitory inputs (Kumar and Buckmaster 2006) as weil as increased synaptic 

sprouting (de Guzman et al. 2006) leading to over-function of AMPA/kainate receptor

mediated mechanisms, should be taken into account for the hyperexcitability 

demonstrated in the pilocarpine-treated rats. In keeping with this view, spontaneous 

and stimulus-induced epileptiform discharges were abolished upon AMPA/kainate 

receptor antagonism. 

2.6 Conclusions 

Our study indicates that the pilocarpine-treated EC is hyperexcitable. The epileptic 

EC has been demonstrated to interact with the subiculum and CA 1; this limbic circuit 

has been suggested to enhance network reverberation and to increase excitation 

under epileptic conditions (Biagini et al. 2005; D'Antuono et al. 2002; Wozny et al. 

2005). As such, the pilocarpine-treated EC exhibits hyperexcitable network 

properties that contribute to the generation and propagation of seizure activity across 

limbic structures. As of recent, most investigations have focused on the medial EC 

while the lateral EC received scarce attention. Nonetheless, in chronic models of 
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seizure activity, the lateral EC layer III has been shown to enhance subicular activity 

(de Guzman et al. 2006) and to display altered intrinsic neuronal properties (Shah et 

al. 2004). Furthermore, lateral EC ablation has been reported to attenuate limbic 

seizures thus underscoring the epileptic role of this area (Kopniczky et al. 2005). 

Further investigation of the lateral EC is required as it may represent an important 

therapeutic target for controlling limbic seizures in TLE patients 
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2.9 Figures 

Figure 2-1: 

Spontaneous network discharges can be recorded in the pilocarpine-treated 

lateral EC - ln the NEC and pilocarpine-treated tissues, three simultaneous field 

potential electrodes were positioned in lateral EC layers Il, III and V combined with a 

bipolar stimulator in lateral EC layer V (see slice schematic) A: No spontaneous field 

potential activity occurs in the NEC tissue while single-shock stimulation produces a 

negative-positive deflecting transient waveform (expanded inset in Aa). B: ln contrast 

the pilocarpine-treated lateral EC demonstrates spontaneous and stimulus-induced 

(triangle, Bb) network discharges that consist of multiple population spikes (expanded 

insets: Ba and Bb) and appear to propagate throughout layers Il, III and V. 
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Figure 2-2: 

Fast oscillatory ripple activity occurs in the pilocarpine-treated lateral EC layer 

V. A and B: Spontaneous and stimulus-induced (triangle) network bursting consist of 

a negative deflecting waveform on which multiple population spikes occurr. Band 

pass filtering (100 - 1000Hz: Ab and Bb) reveals a transient discharge of fast 

oscillatory activity (expanded insets). Power spectral analyses of spontaneous (Ac) 

and stimulus induced (Be) transient discharges demonstrates network oscillations 

greater than 200 Hz. 
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Figure 2-3: 

Spontaneous network activity propagates between both structures within the 

pilocarpine-treated EC. Dual field potential electrades where positioned within layer 

V of the lateral EC (LEC) and medial EC (MEC) combined with a bipolar stationed in 

LEC layer V (slice schematic). A: Single shock stimulation (triangle) in NEC tissue, 

elicits a negative deflection followed by a biphasic waveform in the LEC and MEC, 

respectively. Expanded inset: network activity from the LEC prapagates towards the 

MEC following stimulation. B: ln two different slices, spontaneous epileptiform activity 

originates fram the LEC (Ba: expanded inset) or MEC (Bb: expanded inset) and 

subsequently propagates to the MEC or LEC, respectively. Electrical stimulation in 

LEC (triangle) elicits network discharge that spreads to the MEC (expanded inset: Ba 

and Bb). C: Graphical distribution of the delay times (ms) of spontaneous activity 

fram the LEC-7MEC and MEC-7LEC in two pilocarpine-treated slices. 0: A more 

confined time lag distribution (i.e., LEC-7MEC) emerges when electrical stimuli are 

delivered in LEC. 



B a Pilocarpine 

MEC layer V ~, 

, 
1 , 

~.~~~....n 

~ ~AlM.L .. /"--'--,'-' r"~""~ , 
: -.J 1 mV 
1 20 ms 

... 

~1mV 
20 ms 

~EClaYerV """"""";"~ ".", 4s~ Ijllit'~I~J~~ 

Fig. 3 

MEC layer V 1 11 mV 

~: 
1 -.J 1 mV 

20 ms 

D 10 
(f) 

1:8 
~ 
W6 
Ci 
054 
..c 
§2 
Z 

5s 

o~+--r------r----
-80 -60 -40 -20 0 20 40 -30 -20 -10 0 10 20 30 



112 

Figure 2-4: 

Intrinsic firing patterns of lateral EC layer V neurons in NEC and pilocarpine-

treated tissue. Two types of firing patterns are recorded from layer V lateral EC 

neurons in NEC (A) and pilocarpine-treated (B) slices during injection of depolarizing 

current: (i) regular repetitive action potential firing (Aa and Ba) or (ii) initial bursts (ex

panded insets) followed by regular action potential spiking (Ab and Bb). 
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Figure 2-5: 

Single-shock stimulation and spontaneous network activity are synaptica"y 

driven in pilocarpine-treated lateral EC layer V neurons. A: Single-shock stimu-

lation (triangle) elicits a depolarizing hyperpolarizing post-synaptic response at -67 

mV (RMP) in a NEC lateral EC layer V neuron. Electrical stimuli at hyperpolarized (

BO mV) and depolarized (-51 mV) membrane potentials elicit depolarizing and 

hyperpolarizing PSPs, respectively. B: Stimulus-induced (triangle) and spontaneous 

epileptiform activity recorded at RMP (-69 mV and -71 mV) in pilocarpine-treated 

tissue is characterized by action potential bursting. The amplitude of the depolarizing 

envelope increases at -B2 mV, whereas a reduction occurs at -50 mV and -52 mV. 
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Figure 2-6: 

Spontaneous epileptiform activity and NMDA receptor blockade in pilocarpine-

treated slices. A: Simultaneous intracellular and field potential recordings dem

onstrate spontaneous network bursting within the pilocarpine-treated lateral EC layer 

V. Note that spontaneous bursting persist in the presence of ifenprodil (10 IJM) and 

Cpp (10 IJM), but is blocked subsequent to CNQX (10 IJM) application; under this 

pharmacological procedure, single-shock stimulation induces a depolarizing post

synaptic response. Band C: Quantitative summary of the effects induced by the 

glutamatergic receptor antagonists on the duration and interval of occurrence of the 

spontaneous network discharges; note that these parameters are not significantly 

altered by ifenprodil while CPP significantly increases the interval of occurrence 

(p<0.01 ). 
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Figure 2-7: 

NMDA receptor blockade paradoxically enhances the duration of single-shock-

induced epileptiform discharges. A: Single-shock stimulation (triangle, duration= 

100 IJs) in lateral EC layer V in the pilocarpine elicits a network epileptiform response 

as indicated by simultaneous intracellular and field potential recordings. Bath 

application of ifenprodil does not change this epileptiform response while CPP (10 

IJM) enhances its duration and increases its latency. Note also that the stimulus

induced epileptiform response is blocked following application of CNQX (10 IJM). B 

and C: Quantitative summary of the duration and latency of the stimulus-induced 

network bursting. Note that a prolongation and an increased latency of the 

epileptiform response (p<0.00001 in both cases) occurs following NMDA receptor 

blockade with CPP. 
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Figure 2-8: 

Reduced frequency of IPSP activity in layer V of the pilocarpine treated lateral 

EC. A: Intracellular recordings at RMP from lateral EC layer V neurons in NEC and 

pilocarpine-treated tissue demonstrate spontaneous hyperpolarizing PSPs under 

control conditions. B: Graphie representation of the intervals of occurrence of hyper

polarizing PSPs recorded under control conditions from lateral EC layer V neurons in 

NEC and pilocarpine-treated tissue; note that the interval of occurrence is 

significantly longer in pilocarpine-treated neurons than in NEC (p<0.002). C: 

Intracellular recordings at RMP from layer V lateral EC neurons in NEC and 

pilocarpine-treated tissue reveal spontaneous hyperpolarizing PSPs during NMDA 

(CPP 10 !-lM) and AMPAIKainate receptor (CNQX 10 !-lM) blockade. D and E: 

Quantitative summary of the interval of occurrence and amplitude of spontaneous 

hyperpolarizing PSPs recorded from NEC and pilocarpine-treated neurons under 

glutmatergic receptor blockade; note that significant differences (p<0.00001 and 

p<0.0002, respectively) occur for both parameters. F: Stimulus-induced PSP 

recorded in the presence of CPP (10 !-IM)+CNQX (10 !-lM) at different membrane 

potentials from NEC and pilocarpine-treated EC neurons. G: Graphical display of the 

stimulus-induced PSP reversai points in NEC and pilocarpine-treated EC cells; note 

that these values are not significantly different (p>0.05). 



A 
NEC r--., 

. 'mV -r--r""'-' 100000tnt ........... • __ e ... ' -~,!:J'\...'" _rt ""Ir"."""--_N ....... ""_' ..... _. _._r~~ 

-68 mV 

c 

Pilocarpine 
V" 

NEC: CPP+CNQX 

~20mv 
5s 

B -.!!2- 40 
<1> 
(,) 
c: 
~ 30 
L.. 
:J 
(,) 

8 20 -o 
(ij 10 
è 
<1> -c: 0 

* 

NEC Pilocarpine 

-71mV~ -~--~~~~--~~~~--~~~~ --~--~~~----~--~~~--~~~ 

____ ---lI 2. mV 

-68mV-""'''-~''~---------~--------------------~ _______ ~._' __ , _. __________ .. __ 5s __________ I ____ ---- ~ '0'" ... ,. '" "M"'_'" . .. , , r---e 

•• -' ~"" - - r Pilocarpine: CPP+CNQX 

D Ci) 100 --
~ ë~ / 

<1> ._ 
(,)'0 
ai ro 
L..(L a CI) 
(,)(L 
0-
-CI) o :J 
- 0 ro (1) 
è c: 
<1> ct! 
+-' +-' c: c: 

0 
0.. 
CI) 

F 
-53mV 

-63mV 

-72mV 

;81 mV 1 
/'~J 

Figure 08 

80 

60 

40 

20 

0 

* 

NEC Pilocarpine 

NEC 

-50mV 

-62mV 

-74mV 

-85mV 

E 1 

(L 8 
CI)-
(L> 
-E 

6 CI) --
:J <1> 
0"0 
<1> :J c:_ 4 ro= 
- 0.. c: E 
8..ro 2 CI) 

0 
NEC Pilocarpine 

Pilocarpine G NEC Pilocarpine 
0 

.-
> 
E 
- ·20 
cu 
~ 
2 -40 
0 
0. 

cu 
~ -60 
Q) 
> 
Q) 
~ 

a. -80 
(j') 
a. 

-100 

100 ms 



117 

Table 2-1: 

Table 1 - Intrinsic neuronal properties of NEC and pilocarpine-treated lateral EC 

layer V neurons. These properties included resting membrane potential (RMP), input 

resistance (Ri), action potential amplitude (APA) and action potential duration (APD). 



NEC Lateral Entorhinal Cortex 

Firing Pattern RMP (rnV) Ri (MQ) APA (rnV) APD (ms) 

Regular Firing -70.1 +1.0 46.1 + 2.5 90.2 + 1.1 1.3 + 0.1 
(n = 25) 

Intrinsic Bursting -66.7 + 2.9 46.7 + 7.5 82.6 +2.7 1.3 + 0.1 
(n = 6) 

Pilocarpine - Treated Lateral Entorhinal Cortex 

Firing Pattern RMP (rnV) Ri (MQ) APA (rnV) APD (ms) 

Regular Firing 
(n = 47) -69.2 + 0.8 49.3 + 2.2 87.1 + 1.1 1.2 + 0.1 

Intrinsic Bursting 
(n = 8) -69.8 + 1.9 49.9 + 4.4 96.6 + 1.9 1.1 + 0.1 

Table 1 

( (, 



Chapter 3: NMDA Receptor-Mediated Transmission 

Contributes to Network 'Hyperexcitability' in the Rat Insular 

Cortex 

3.0 Linking Text & Information About Publication 

The previous chapters of my Ph.D. thesis have addressed the function and 

underlying mechanisms of the epileptic subiculum and entorhinal cortex in the 

pilocarpine treated animal model of TLE. However, a structure that has recently been 

implicated in drug resistant TLE is the insular cortex. Through the serendipitous use 

of depth electrode recordings, Isnard et al. (2004) identified seizure activity originating 

from this structure. In this particular study, seizures originated from either the 

entorhinal cortex or insular cortex; when seizures demonstrated insular origin, 

surgical removal of the entorhinal cortex failed to control seizure activity. To date, the 

majority of studies of the insular cortex has only been investigated through molecular 

and anatomical methods; however, there are no investigations that have 

electrophysiologically characterized the in vitro insular cortex. The study presented in 

this chapter summarizes the results published in the European Journal of 

Neuroscience in 2006 in a manuscript entitled ''NMDA receptor-mediated 

transmission contributes to network 'hyperexcitability' in the rat insular cortex" 

(Authors: Inaba Y, de Guzman P, Avoli M). 

3.1 Abstract 

The insular cortex (le) plays distinct roles under physiological and pathologi-

cal conditions. However, the mechanisms regulating excitability in this area remain 

unknown. By employing field potential and sharp-electrode intracellular recordings in 

horizontal rat brain slices comprising the IC and the perirhinal cortex (PC) we studied 
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here the intrinsic and network characteristics of neurons in the agranular le. These 

cells generated regular action potential firing with weak adaptation during intracellular 

injection of depolarizing current pulses, and were pyramidal in shape when neurobio

tin filled. Spontaneous, field events (duration= 2.3±0.25 s; intervals of occurrence= 

44.9±6.3 s) were identified in 22/52 slices and corresponded in le neurons ta intracel

lular depolarizations with action potential firing. Similar field and intracellular 

discharges were elicited in ail slices by electrical stimuli. Antagonizing NMDA 

receptors blocked the spontaneous activity and reduced or abolished the stimulus-in

duced discharges. In the latter cases, stimuli elicited depolarizing events that became 

hyperpolarizing at approx. -64 mV suggesting the contribution of GABAA receptor

mediated conductances. Our findings identify for the tirst time sorne functional proper

ties of agranular le neurons and point at a powerful NMDA receptor-mediated 

mechanism implementing network hyperexcitability. This feature may contribute ta the 

raie of le in neurological disorders. 

3.2 Introduction 

Although the insular cortex (le) is not part of the temporal lobe, it is closely related ta 

it anatomically and participates ta the integration of autonomic response with ongoing 

behaviour and emotion (Allen et al., 1991; Augustine, 1996). The le is also involved 

in processing somaesthetic stimuli and plays a raie in pain (Frot & Mauguière, 2003; 

Jasmin et aL, 2003, 2004). Moreover, seizures in temporal lobe epileptic patients 

invade the le and can originate in this area (Silfvenius et al., 1964; Isnard et al., 

2000, 2004; Bouilleret et al., 2002). Indeed, Isnard et al. (2000, 2004) have reported 

that while drug-refractory epileptic patients with seizures propagating to le are fully 

controlled by temporal lobectomy, those with ietal events originating in le respond 
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poorly to this surgical procedure. In line with these findings, experimental evidence 

highlights a role for the IC in the rat amygdaloid kindling model (Kodama et aL, 2001; 

Ferland et al., 1998). 

ln spite of a remarkable amount of findings on IC connectivity and of evidence 

supporting its role in epileptic disorders and pain, no data are available on the electro

physiological characteristics of this area. Therefore, we used here field potential and 

intracellular recordings in an in vitro brain slice preparation to identify sorne intrinsic 

and synaptic properties of cells in the rat agranular IC. Our data report the presence 

of powerful excitatory events that can occur spontaneously, are supported by NMDA 

receptors, and are presumably accompanied by the activation of inhibitory 

mechanisms. 

3.3 Methods 

Male, Sprague-Dawley rats (350-400 g) were decapitated under halothane 

anesthesia according to the procedures established by the Canadian Council of 

Animal Care. Ali efforts were made to minimize the number of animais used and their 

suffering. The brain was quickly removed and placed in cold (1-3 OC), oxygenated 

artificial cerebrospinal fluid (ACSF). Horizontal slices (450 IJm) were then cut using a 

vibratome (cf., Kano et aL, 2005). In this study, we used slices matching the plates 

identified by Paxinos and Watson (1998) at around -6.6 mm from the bregma; these 

slices contained the IC and the perirhinal cortex (PC). Slices were then transferred 

into a tissue cham ber where they lay at the interface between ACSF and humidified 

gas (95% O2, 5% CO2) at 34 oC. ACSF composition (pH= 7.4) was (in mM): NaC1124, 

KCI 2, KH2P04 1.25, MgS04 2, CaCI2 2, NaHC03 26, and glucose 10. 6-cyano-7-ni

troquinoxaline-2,3-dione (CNQX, 10 IJM), 3,3-(2-carboxypiperazin-4-yl)-propyl-1-



121 

phosphonate (CPP, 10 ~M), phenobarbital (PHB, 500 J-lM) and 3-Aminoprapyl 

(diethoxymethyl) phosphonoic acid (CGP 55845, 4 J-lM). were bath applied. Chemi

cals were acquired fram Sigma (St. Louis, MO, USA) with the exception of CNQX and 

CPP (obtained from Tocris Cookson, Langford, UK). 

Field potential and sharp-electrode intracellular recordings were made with 

glass pipettes that were filled with ACSF (resistance= 2-5 MO) and 3M K-acetate 

(resistance= 70-120 M'O) , respectively. Extra- and intracellular signais were fed to 

high-impedance amplifiers with internai bridge circuit for intracellular current injection. 

Resistance compensation was monitored thraughout the experiment and adjusted as 

required. Electrophysiological recordings in IC were obtained from the agranular 

portion that was identified by using the perirhinal fissure at the level of the IC as a 

point of reference (Fig. 1A). 

The IC cell passive membrane properties were measured as follows: (i) 

resting membrane potential (RMP) after cell withdrawal; (ii) apparent input resistance 

from the maximum voltage change in response to hyperpolarizing current pulses «-
0.5 nA); (iii) action potential amplitude fram the baseline; and (iv) action potential 

duration at half-amplitude. The firing patterns of IC cells were established by injecting 

depolarizing current pulses. Extra- and intracellular signais were fed to a computer in

terface, acquired and stored using the pClamp 9 software and analyzed with the 

Clampfit 9 software (both from Axon Instruments, Union City, CA, USA). Electrical 

stimuli (50-100 J-ls; <200 J.tA) were delivered thraugh bipolar, stainless steel elec

trodes. The recording and stimulating electrode location in the slice is shown in Fig. 

1 A. In sorne experiments the IC and PC were surgically isolated at the start of the 

experiment by a eut made under visual control with a razor blade (dotted line in Fig. 

1A). 
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For intracellular labeling, electrodes were filled with 2% neurobiotin dissolved 

in 2M K-acetate. Neurobiotin was applied by injecting depolarizing current pulses 

(0.5-1 nA, 3.3 Hz, 150ms) for >10 min. Only one cell was filled in each slice. At the 

end of the experiment, slices were processed as described by D'Antuono et al. 

(2001). Measurements are expressed as mean±SEM and n indicates the number of 

slices or neurons. Data were compared with the Student's t-test and were considered 

significant if p<0.05. 

3.4 Results 

Neurons (n= 27) recorded in the IC at 400-1200 \-lm from the pia responded to 

intracellular depolarizing pulses by generating trains of action potentials with weak 

adaptation (Fig. 1 Ba), although a burst of 2-3 action potentials with intervals <6 ms 

could occur at pulse onset (asterisk); these cells were therefore classified as regularly 

spiking (McCormick et al., 1985). Neurobiotin-filled IC cells (n= 14/27) displayed 

pyramidal-like shape with a distinct apical dendrite directed towards the pia and 

extensive basal dendritic tree (Fig.1 Bb). The fundamental electrophysiological 

properties of neurobiotin-filled and non-Iabeled cells were similar (p> 0.21) thus 

suggesting that the sampled neuronal populations exhibited comparable intrinsic 

physiological properties. By pooling the values obtained from labeled and unlabeled 

IC cells (n= 27) we found: (i) RMP = -74.2±1.2 mV; (ii) apparent input resistance= 

45.7±2.5 Mn; (iii) action potential amplitude= 94.6±2.7 mV; and (iv) action potential 

duration= 1.7±0.4 ms. 

A striking characteristic of the brain slices analyzed in this study was the pres

ence of synchronous field discharges that occurred spontaneously in 22 of 52 slices 

(duration= 2.3±0.25 s; intervals of occurrence= 44.9±6.3 s) or following electrical 
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stimuli delivered in PC (response duration= 1.3±0.2 s, n=10) or IC (duration= 1.4±0.1 

s, n=15) in ail experiments (Fig. 1 C). Spontaneous events (duration= 1.7±0.2 s; 

intervals of occurrence= 84.1 ±1 0.9 s; n=6) were still present in IC after surgical cut 

from PC (not shown). Spontaneous and stimulus-induced events corresponded in IC 

cells to sustained intracellular depolarizations leading to repetitive action potential 

discharges (Fig. 1 C). Hyperpolarizing or depolarizing the neuron with steady current 

injection increased or decreased, respectively, the amplitude of these depolarizations 

(Figs. 1 C and 2A), thus suggesting that they were contributed by synaptic conduc

tances. Moreover, bringing the membrane to depolarized levels disclosed hyperpolar

izing potentials during the initial part of the response (Fig. 2A, arrows in -60 mV panel) 

while long-lasting (up to 4 s) hyperpolarizations terminated the intracellular events (Figs. 

1 C and 2A, asterisks). The rate of occurrence of the spontaneous events was not 

influenced by changing the RMP (not shown), further indicating that this activity was 

network-driven. 

To determine the mechanisms underlying the occurrence of network 

discharges in the IC we assessed the effects of the NMDA receptor antagonist CPP. 

As shown in Fig. 2B, CPP abolished the spontaneous activity in 5 experiments while 

reducing the duration of the stimulus-induced events. This latter aspect was analyzed 

in 6 additional slices that did not generate any spontaneous activity. Overall, the du

ration of the stimulus-induced responses was reduced by CPP to 18.3± 3.7 % of what 

seen in control (n= 7), while only a depolarizing-hyperpolarizing potential sequence 

was observed in the remaining experiments (n=6; Fig. 3A, +CPP). In addition, by 

changing the RMP we found that the pola rit y of the stimulus-induced intracellular 

response measured at a latency of approx. 50 ms inverted in polarity at -64.3±2.9 mV 
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(n=8; Fig. 3Bc) suggesting the participation of GABAA receptor-mediated con

ductances (CPP+CGP 55845; Fig. 3Ba). 

To test this hypothesis we bath applied PHB, a drug that is known to enhance 

GABAA receptor-mediated mechanisms (Barker & McBurney, 1979; Twyman et al., 

1989). As iIIustrated in Fig. 3B, PHB produced a more negative reversai potential 

(from -64.5±6.4 mV to -69.4±4.2 mV, n= 3) of the response induced by PC stimuli 

but also decreased synaptic responsiveness, presumably via an interaction with 

excitatory glutamatergic processes. Therefore, to firmly establish the presence of 

GABAA receptor-mediated activity within the IC network we used focal stimuli during 

bath application of glutamatergic (CPP+CNQX) and GABAs (CGP 55845) receptor 

antagonists. Under these conditions, stimuli delivered close «150 IJm) to the re

corded cell induced at RMP a short-lasting depolarization inverting in polarity at -

71.6±1.3 mV (n= 8; Fig. 3C). Moreover, further application of PHB caused a 

significant negative shift in its reversai potential (from -69.3±0.6 to -78.9±2.2; n=3, 

p<0.05) along with a prolongation of the response (Fig. 3C). Finally, we found that 

bath application of the GABAA receptor antagonist picrotoxin (50 IlM; n=3) abolished 

the synaptic response induced by close electrical stimuli during application of 

glutamatergic and GABAs receptor antagonists (not shown). 

3.5 Discussion 

We have found here that the rat agranular IC analyzed with field potential and intra-

cellular recordings in an in vitro slice preparation generates spontaneous or stimulus

induced synchronous events that are: (i) associated with synaptic depolarizations 

leading to sustained action potential firing, (ii) supported by NMDA receptor-mediated 

mechanisms, and (iii) accompanied by the activation of GABAA receptor-mediated, 
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inhibitory conductances. These characteristics suggest that the agranular le is 

"hyperexcitable" as compared to limbic or neocortical networks maintained in vitro in 

normal ACSF, since cells in these structures rarely generate spontaneous activity and 

respond to stimuli with EPSP-single action potentials (Schwartzkroin, 1975; Connors 

et al., 1982; Jones & Lambert, 1990; Martina et al., 2001). We have also established 

that the IC cells recorded intracellularly were regularly firing and pyramidal in shape 

when labeled with neurobiotin. 

NMDA receptors play a unique role in the occurrence of spontaneous and 

stimulus-induced discharges in the IC. Indeed, at the best of our knowledge, these 

data are the first to identify an essential role for NMDA receptors in the generation of 

spontaneous network activity in brain slices bathed in normal ACSF. This evidence 

may imply that Mg2
+ exerts a reduced control on NMDA receptor channels in the 

agranular IC. NMDA receptors are indeed known to contribute to epileptogenesis and 

represent a target for antiepileptic drug therapy (Rogawski, 1998). In addition, the 

trigger for the NMDA receptor-mediated events identified in IC may result from mixed 

non-NMDA and GABAA receptor-mediated conductances. The latter view is further 

reinforced by the sensitivity of the stimulus-induced response to application of the 

barbiturate PHB (Nicoll et aL, 1975; Barker & McBurney, 1979; Twyman et aL, 1989). 

The presence of inhibitory conductances during the activity recorded in IC slices is in 

li ne with evidence obtained from epileptic human brain tissue indicating that 

spontaneous inhibitory potentials can be sufficiently synchronous to support field 

potential discharges (Cohen et al., 2002; Kôhling et al., 1998). 

ln conclusion, our data point at a powerful NMDA receptor-mediated mecha

nism implementing network hyperexcitability in rat agranular IC. These findings may 

be relevant for understanding the role of the IC in epileptic disorders (Isnard et aL, 
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2000,2004; Bouilleret et aL, 2002; Kodama et aL, 2001; Ferland et aL, 1998) and in 

central pain (Frot & Mauguière, 2003; Jasmin et aL, 2003, 2004). 
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3.8 Figures 

Figure 3-1: 

Drawing of the brain slice preparation used in this study, showing the position 

of recording and stimulating electrodes. Note that the agranular le (arrow) was 

identified by taking the perirhinal fissure (asterisk) as point of reference. The 

dotted line highlights the location of the cut used to isolate the IC from PC. B: Re

sponses to the injection of pulses of hyperpolarizing (-0.6 and -0.2 nA) and 

depolarizing (0.2 nA) intracellular current (a) generated by an IC cell that was filled 

with neurobiotin (b); note that this cell generates rhythmic action potential firing while 

the asterisk identifies the first 2 action potentials that occurred at intervals <6 ms. C: 

Spontaneous and stimulus-induced activity recorded in the IC with intracellular and 

field potential recordings. The RMP of this neuron was -72 mV while stimulation was 

delivered in PC. Note that hyperpolarization of the neuronal membrane, through 

negative current injection, increases the amplitude of the depolarizing envelope as 

weil as that a hyperpolarization terminates the intracellular discharge (asterisk) in the 

-72 mV sample. In this and following figures focal electrical stimuli are identified with 

triangles. 
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Figure 3-2: 

A: Field and intracellular characteristics of the responses recorded in the IC following 

single-shock stimuli delivered in the PC at RMP (-78 mV) and during injection of 

depolarizing (-60 mV) and hyperpolarizing (-90 mV) steady current. Note that hyper

polarizing or depolarizing the neuron with steady current injection increases or de

creases, respectively, the amplitude of the stimulus-induced depolarizations. Note also 

in the -60 mV panel that depolarizing the neuron discloses hyperpolarizing potentials 

during the initial part of the intracellular response (arrows) as weil as a slow post

discharge hyperpolarization (asterisk). B: Effects induced by the NMDA receptor 

antagonist CPP on the spontaneous and stimulus-induced discharges recorded in the 

IC. Stimuli were delivered in the IC. Note that CPP reversibly abolishes the 

spontaneous activity and reduces the duration of the stimulus-induced discharge. 
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Figure 3-3: 

Stimulus-induced responses recorded in control ACSF and following bath 

application of NMDA and non-NMDA glutamatergic receptor antagonists. A: 

CPP blocks the stimulus-induced discharge thus revealing a depolarizing 

postsynaptic response with latency similar to what seen under control. B: Effects 

induced by changing the membrane potential (Vm) with current injection on the 

polarity of the synaptic responses induced by PC stimulation during CPP+CGP 55845 

(Control) and CPP+CGP 55845+PHB. Raw data are shown in a; note in b that the 

reversai points obtained by measuring the response amplitude (calculated at -55 ms 

after the stimulus) were -64 mV (CPP+CGP 55845) and -70 mV (CPP+CGP 

35348+PHB). C: Responses induced by focal IC stimulation during application of 

medium containing CPP+CNQX+CGP 55845 (Control) and CPP+CNQX+CGP 

55845+PHB. Raw data are illustrated in a while in b normalized intracellular traces 

obtained under both conditions are superimposed; note that PHB (red traces) causes 

an increase in response duration. Plot of the amplitude of the stimulus-induced 

responses recorded at different membrane potentials (Vm) is shown in c. Note that 

reversai points of -68 mV and -78 mV occur during control and PHB conditions, 

respectively. Amplitude of response was assessed at 17 ms after stimulus artifact. 
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Conclusion 

0.1 Summary of Research Findings 

The main findings of my Ph.D. investigations are indicated below: 

1. The pilocarpine-treated subiculum demonstrated an enhanced network 

response from CA1 and LEC layer III inputs. This network excitability 

within the pilocarpine-treated subiculum is attributed to a more positive 

GABAA receptor mediated reversai point combined with reduced KCC2 

expression. Additional factors include decreased levels of parvalbumin 

positive inhibitory neurons and increased synaptic sprouting within the 

subiculum (Chapter 1). 

2. The spontaneous and stimulus induced bursting within the deep layers 

of the pilocarpine-treated entorhinal cortex may be a consequence of 

the reduced frequency and amplitude of spontaneous GABAA receptor 

mediated IPSPs. While we did not observe an alteration in the fast 

IPSP reversai point, the synaptic sprouting within EC Layer V may have 

contributed to network hyperexcitability (Chapter 2). 

3. In our investigations of the control tissue of the IC, we report that 

spontaneous bursting was NMDA receptor dependent and occurs 

concomitantly with GABAA receptor mediated conductances (Chapter 3) 
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0.2 Can the epileptic subiculum contribute to the amplification of limbic 

seizures? 

Chapter 1 of my thesis indicates that subtle network alterations occur within the 

pilocarpine-treated subiculum. Previous investigations, in the presence of convulsive 

agents, have demonstrated that the isolated subicular network is capable of 

generating epileptiform activity (Benini and Avoli 2005). If epileptiform events can 

occur within an isolated structure, an increase of hyperexcitability would be expected 

from external inputs. In the clinical condition, this would be problematic for epileptic 

patients as the subiculum receives network input from epileptogenic structures 

(entorhinal cortex and CA1) via the TA pathway. 

The network modifications of epileptic CA 1 demonstrate increased synaptic 

sprouting in chronic seizure models (Esclapez et al. 1999); these experiments also 

indicated enhanced network excitability due to the upregulation of intrinsically 

bursting neurons and reduced GABAergic input (Hirsch et al. 1999; Weil mer et al. 

2002). In addition, epileptic lateral EC layer III neurons suggest enhanced synaptic 

activity may occur through reduced Ih function (Shah et al. 2004). The convergence of 

these epileptogenic structures within a modified subicular network may contribute to 

amplified limbic seizures. In line with this viewpoint, investigations in pilocarpine 

treated tissue utilizing intrinsic optical signais, voltage sensitive dyes, or convulsive 

agents suggest the augmentation of limbic seizures via the temporoammonic 

pathway (Ang et al. 2006; Biagini et al. 2005; D'Antuono et al. 2002; Wozny et al. 

2005). 

Moreover, in our studies we attribute the epileptic properties of the subiculum 

to synaptic excitation. We indicate that an equal proportion of regular firing neurons 

and intrinsic bursters occur within the subiculum; while others report either an 



134 

increase or reduction of intrinsically bursting epileptic subicular neurons (Knopp et al. 

2005; Weil mer et al. 2002). However, strict categorization of intrinsic cell firing 

properties into intrinsic bursters or regular firing is an oversimplification of a complex 

and dynamic process. Regular action potential firing can be altered into a state of 

intrinsic bursting while the reverse is also true (Steriade 2004). This flexibility of 

intrinsic firing is dependent upon the membrane potential and as such makes it 

difficult to carefully discern and classify neuronal firing properties. Taken together, 

these discrepancies in the proportions of bursting neurons indicate that they may not 

necessarily be a prerequisite for epileptogenesis. Indeed, additional cortical 

structures such as the highly epileptogenic parahippocampal territories (Avoli et al. 

1996; de Guzman et al. 2004; Kelly and Mclntyre 1996; Lopantsev and Avoli 1998) 

have not been demonstrated to exhibit an extensive population of intrinsic bursting 

neurons indicating that alternative factors such as synaptic mechanisms may be 

favoured. 

0.3 What are the additional factors that contribute to network 

hyperexcitability within the epileptic entorhinal cortex? 

My investigations in chapter 2 demonstrate, for this first time, spontaneous network 

bursting within layer V of the pilocarpine treated EC in the absence of convulsive 

agents. We further demonstrate that this in vitro epileptiform activity can propagate to 

both EC subdivisions and is resilient to NMDA receptor blockade. We attributed this 

level of network hyperexcitability to the reduction of GABAA receptor mediated 

network inhibition. Although, additional factors may contribute to these events. 

Recent investigations in the human epileptic EC demonstrate reduced 

expression of NPY receptors. This event would trigger neuronal hyperexcitability as 

the overall action of NPY is to inhibit seizure activity (Baraban 2004). In line with this 
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viewpoint, NPY inhibits in vitro epileptiform discharges in the EC and hippocampal 

formation (Klapstein and Colmers 1997; Woldbye et al. 2002). Additional alterations 

would include a reduced Ih function, which favours increased action potential spiking 

in lateral EC layer V and layer III (Rosenkranz and Johnston 2006; Shah et al. 2004). 

Further modifications that may impact the presence of inhibition within EC layer V is 

presynaptic modulation of neurotransmission. Studies in pilocarpine treated tissue 

indicate that blockade of the NR2B subunit reduces the occurrence of excitatory post-

synaptic current (EPSC) (Yang et al. 2006). In our investigations of EC layer V, bath 

application of ifenprodil (selective NR2B receptor antagonist) was unable to block 

spontaneous or stimulus induced bursting. Other studies report that utilization of 

ifenprodil can block the spread of discharges in cortical dysplatic tissue 

(Bandyopadhyay and Hablitz 2006). Although, a recent study in the DG indicated 

that NR2B antagonism did not prevent status epilepticus or mossy fibre sprouting; 

although, NR2A antagonism precluded behavioural seizures (Chen et al. 2007). 

Moreover, a recent study in epileptic EC layer V reports that functional alterations in 

presynaptic GABAs receptors promote increased and reduced frequencies of EPSC 

and inhibitory post-synaptic current (IPSC), respectively (Thompson et al. 2007). 

Collectively, these events demonstrate that multiple factors may contribute to the 

epileptogenesis of the EC. 

0.4 How can the insular cortex contribute to the generation of seizure 

activity? 

ln chapter 3, we (co-authors) report the first electrophysiological characterization of 

the agranular IC in control tissue. Surprisingly, spontaneous bursting activity 

occurred in 42% of slices. This spontaneous bursting was NMDA receptor 
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dependent, which differed considerably from the glutamatergic mechanisms involved 

in my findings of the epileptic EC (Chapter 2). 

The investigations of the IC, which have focused on nociception, have 

demonstrated the presence of endogenous opioid receptors colocalized with GABA 

(Evans et al. 2007; Ohara et al. 2003). When extrapolated to in vitro epilepsy 

models, these neurochemicals contribute to network synchronization (Avoli et al. 

1996; Finnegan et al. 2006). In fact, preliminary evidence in control tissue 

demonstrates that J..L-opioid receptor activation blocks spontaneous network bursting, 

presumably, through hyperpolarization of inhibitory interneurons (Finnegan et al. 

2006). 

Moreover, the IC demonstrates anatomical connectivity with structures, 

implicated in TLE, within the parahippocampus. If either of these structures become 

epileptogenic, the epileptiform activity of these regions could influence the IC. This 

viewpoint is iIIustrated in clinical TLE, as depth electrode studies demonstrate 

seizures of insula onset or the propagation of ictal events of limbic origin into the IC 

(Isnard et al. 2000; Isnard et al. 2004). To this end, further investigations are required 

to understand the mechanisms involved in the generation of epileptiform activity in 

the IC and its role in TLE. 

0.5 Concluding remarks 

My investigations in the epileptic subiculum and EC demonstrate that two epileptic 

structures may contribute to the amplification of limbic seizures. The examination of 

the IC, in control tissue, reveals that the IC possesses the network machinery to 

contribute to epileptiform activity. While clinical data demonstrate seizures of insular 

origin, the dearth of synaptic and intrinsic mechanisms of the IC limit the physiological 
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understanding of this structure. Further research is required to characterize and 

determine the mechanisms involved, in the IC, within epileptic tissue. To this end, the 

investigations of epileptic phenomena should encompass not only the hippocampal 

formation but also extend to neuronal structures within the paralimbic belt. 
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(SE) in adult male Sprague-Dawley rats weighing 150-200 g at 
the time of injection. Ali efforts were made to minimize the 
number of animais used and their suffering. BrieHy, rats were 
injected with a single dose of pilocarpine hydrochloride (380-
400 mg/kg, i.p). To reduce the discomforts caused by peri ph
eral activation of muscarinic receptors, methyl scopolamine 
(1 mg/kg i.p.) was administered 30 min before the pilocarpine 
injection. The animais' behavior was monitored for ",,4 h fol
lowing pilocarpine and scored according to Radne's classifica
tion (Racine et al., 1972). Only rats that experienced SE 
(Stages 3-5) for 30 min or more (48.6 ± 8.3 min, mean ± 
standard error of mean (SEM» were included in the pilocar
pine group and used for in vitro electrophysiological studies 
",4 months (17 ± 1 week; n = 27 rats) following the pilocar
pine injection. Since it has been previously established (Caval
heiro et al., 1991; Priel et al., 1996) that ail adult rats that ex
perience pilocarpine-induced SE later exhibit spontaneous 
recurrent seizures, only a subset of animals from the pilocarpine 
group were video-monitored and the presence of spontaneous 
behavioral seizures was confirmed in virtually ail of them (n = 
Il out of 12 rats). In this study, rats receiving a saline injection 
instead of pilocarpine were used as NECs. 

Electrophysiology Procedures 

Brain slices from NEC and pilocarpine-treated epileptic rats 
were obtained according to the procedures established by the Ca
nadian Council of Animal Care. Rats were decapitated under halo
thane anesthesia, and the brain was extracted and placed in cold 
(1-3°C) oxygenated artificial cerebrospinal Huid (ACSF). Hori
zontal brain slices (450-l1m thick) that included the EC, the subic
ulum, and the hippocampus proper were cut with a vibrato me 
along the horizontal plane of the brain that was tilted by "'100 

along a posterosuperior-anteroinferior plane passing between the 
lateral olfactory tract and the brain stem base. Combined hippo
campal-EC slices were transferred to an interface tissue chamber 
and superfused with oxygenated (95% 02> 5% COz) ACSF at 
32-34°C. ACSF composition was : NaCI 124 mM, KCI 2 mM, 
KH2P04 1.25 mM, MgS04 2 mM, CaCIz 2 mM, NaHC03 

26 mM, and glucose 10 mM. 3,3-(2-Carboxypiperazin-4-yl)
propyl-1-phosphonate (CPP, 10 I1M) and 6-cyano-7-nitroqui
noxaline-2,3-dione (CNQX, 10 I1M) were bath applied. Chemi
cals were acquired from Sigma-Aldrich Canada (Oakville, Ontario, 
Canada) and Tocris Cookson (Ellisville, MO). 

Field potential recordings were performed with ACSF-filled 
glass electrodes (tip diameter: <8 I1m; resistance: 2-10 MO) that 
were connected to a Cyberamp 380 amplifier (Axon Instruments, 
Union City, CA). Intracellular sharp-electrodes were filled with 
3M potassium acetate (tip resistance: 90-120 MO) and coupled 
to an Axoclamp 2A amplifier (Axon Instruments) with an inter
nai bridge circuit for intracellular current injection. The resist
ance compensation was monitored throughout the experiment 
and adjusted as required. The fundamental electrophysiological 
parameters of the subicular and the EC neurons included in this 
study were measured as follows: (i) resting membrane potential 
(RMP) after cell withdrawal, (ii) apparent input resistance (Ri) 
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From the maximum voltage change in response to a hyperpolariz
ing current pulse « -0.5 nA), (iii) action potential amplitude 
(APA), and (iv) action potential duration (APD). Activation of 
neuronal networks was performed via a concentric bipolar elec
trode (Frederick Haer and Co., Bowdoinham, ME) that was 
positioned in CAl stratum radiatum (Figs. 3 and 4), layer III of 
the lateral EC (Fig. 5) or subiculum. In ail experiments, the mini
mum stimulus intensity (duration = 100 ilS) that produced a 
reliable response was selected. 

Field potential and intracellular signais were fed to a computer 
interface (Digidata 1322A, Axon Instruments) and were acquired 
and stored using the pClamp 8.0 software (Axon Instruments). 
Subsequent analysis of these data was performed with the Clamp
fit 9 software (Axon Instruments). The reversal potential of spon
taneous postsynaptic potentials (PSPs) and stimulus-induced, 
pharmacologically isolated inhibitory postsynaptic potentials 
(IPSPs) was determined by linear regression from the plot of their 
amplitude vs. membrane potential. The peak conductance of the 
latter responses was calculated by linear regression analysis from 
the plot of the relation between injected current and membrane 
potential deflections before and after the extracellular stimulus at 
latendes of ",10 ms (cf. Williams et al., 1993). 

Real-Time PCR 

Total RNA was prepared from EC and subiculum of NEC and 
pilocarpine-treated epileptic rats using Trizol (Invitrogen, Milano, 
Italy). The total RNA was run on a 2% agarose gel and quantified 
by densitometric analysis using the Gel Doc, Biorad (Milano, 
Italy). Total RNA (1 11g) was reverse transcribed using the first
strand synthesis system for RT-PCR (Superscript, Invitrogen). Rela
tive RT-PCR was performed in a Real-Time Thermocycler (MX 
3,000, Stratagene, Milano, Italy) using the Brilliant SYBR Green 
QPCR Master Mix, according to the manufacturers instructions. 
AlI PCR reactions were coupled to melting-curve analysis to con
firm the specificity of amplification. Quantitative data were nor
malized to expression of housekeeping gene f3-actin. Specific pri
mers for rat potassium-chloride co transporter 2 (KCC2) and 
f3-actin were designed to amplifY short DNA fragments (f3-actin 
forward 5'-aggcatcctgaccctgaagtac-3'; f3-actin reverse 5' -gaggcatac
agggacaacacag-3'; KCC2 forward 5'-ttcatcaacagcacggacac-3'; KCC2 
reverse 5'-cttcttctttccgccctcat-3'). The relative quantitation was ana
Iyzed with the software that accompanied the thermal cycler. 

Histopathology Procedures 

For morphological studies, pilocarpine-treated and NEC ani
mals were anesthetized (chloral-hydrate 450 mg/kg i.p.) and 
perfused via the ascending aorta with 100 ml saline followed 
by 300 ml 4% paraformaldehyde dissolved in 0.1 M phosphate 
buffer (pH 7.4). After dissection, the brains were posmxed for 
an additional 4 h in the same fixative at 4°C. After cryoprotec
tion by immersion in 15 and 30% sucrose-phosphate buffer 
solutions, the brains were frozen and cut horizontally from the 
ventral side by a freezing microtome. 

Differences in KCC2 immunoreactivity were assessed with a 
polyclonal antibody (Upstate, NY) that has been shown to be 
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A 
FIGURE 1. Localization of anatomieal areas of the hippocam
pal formation. A: Mierophotograph of a toluidine blue-stained 
horizontal section from a pilocarpine-treatedo rat. Note that layer 
II in the EC is clearly identified as composed by a broader and 
continuous lamina in the medial EC while in the lateral EC 
(delimited by arrowheads) it appears to be composed by dispersed 
"islands" of neuronal elements. The other layers and the lamina 
dissecans (Id) are also indicated. Note that the dashed area in the 
subiculum shows the location where intracellular recordings were 
obtained. B: Areas of interest used to investigate the changes in 
subicular and EC neuronal network activities are shown. Areas 

specifie (Vale et al., 2003; Grob and Mouginot, 2005; Lohrke 
et al., 2005). In addition, changes in the parvalbumin-positive 
interneuron subpopulation-which is critically involved in TLE 
(de Felipe et al., 1993)-were investigated by using a mouse 
monoclonal antibody (Swant, Bellinzona, CH). We also ana
Iyzed the changes in synaptophysin, a putative marker of func
tionally active sprouted nerve terminais (Proper et al., 2000) by 
employing a previously characterized rabbit polyclonal antibody 
for synaptophysin (Bahler et al., 1991; kindly provided by Dr. 
F. Benfenati, Genua, Italy). Antibodies for KCC2 (1:1,000), 
parvalbumin (diluted 1:2,000), and synaptophysin (1:5,000) 
were used on 50-llm-thick horizontal sections obtained, respec
tively, at levels 7.3-7.6 from bregma. Sorne sections (one sec
tion out of four, fout series for each animal) were stained with 
toluidine blue to c1early identify the various anatomical regions 
of the hippocampal formation and to assess the presence of 

B 
marked in blue and red identify the different regions of the subie
ulum and EC sampled to measure gray tone values after immuno
histochemistry in the proximal (proxSub) and distal (distSub) sub
iculum and in the lateral (LEC) and medial EC (MEC). The white 
ellipse in the angular bundle (ab) indicates the area used for the 
background (bg) staining, while the yellow ellipse close to the sec
tion indicates the procedure to measure nonspecific (ns) gray tone 
values. Abbreviations used: CA, cornu ammonis; DG, DG; H, hilus 
of DG; paraSub, parasubieulum; preSub, presubiculum; Prh, peri
rhinal cortex. Scale bar, 500 !lm. [Color figure can be viewed in the 
online issue, which is available at http://www.interscience.wiley.com.) 

neuronal damage (Fig. lA). Immunohistochemistry was per
formed using the avidin-biotin complex technique and diami
nobenzidine as chromogen (cf. Biagini et al., 2005). Endoge
nous peroxidase was blocked by 0.1 % phenylhydrazine in phos
phate-buffered saline (PBS) for 20 min, followed by several 
washes in PBS preceding the incubation with primary antibod
ies. Secondary antibodies and the avidin-peroxidase complex 
were purchased from Amersham Italia (Milan, Italy) and 
diluted 1:200 and 1:300, respectively. The stained sections were 
analyzed by densitometry using image analysis software (KS 
300, Zeiss Kontron, Munich, Germany) (cf. Biagini et al., 
2001, 2005). Four sections for each animal were investigated 
and averaged for statistical analysis. Briefly, the value of non
specifie mean gray tone was measured in an area of the slide 
immediately outside the section close, respectively, to subi cu
lum or EC (Fig. 1A,B). An area of the angular bundle was 
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taken as index of background labeling (Fig. lB), since KCC2 
and synaptophysin are not detecrable in axons and glial cells 
(Bahler et al., 1991; Williams et al., 1999). Mean gray values of 
specific immunostaining were measured in subicular and EC 
areas identified as follows. The subiculum was defined by its 
enlarged and loosely packed pyramidal layer, dearly distinguish
able from the narrow pyramidal cell layer of CAl in toluidine 
blue-stained sections (Fig. lA), and by differences in neuronal cell 
size when compared with the presubiculum; in addition, we di
vided the subiculum into two halves: the one close to CAl was 
defined as proximal subiculum, while that dose to presubiculum 
was defined as distal subiculum (Fig. lB) (cf. Naber et al., 2001). 
The EC was identified by its classical lamination in six layers 
and, particularly, by the presence of the more intensely srained 
layer II that, when continuo us, marked the medial EC or, when 
discontinuous because of the "islandic" neuronal organization 
(Witter, 1993), marked the lateral EC (delimited by arrowheads 
in Fig. lA). To measure mean gray tone values using the KS 300 
sofrware, these areas were manually selected (Fig. lB) by an 
expert neuroanatomist (G.B.) who was blinded to animal codes. 
Transmittance percentage values (T%) of total and nonspecific 
staining were then obtained by dividing the mean gray tone value 
of every area analyzed by the mean gray tone value of the back
ground. Optical density (OD) values were then calculated accord
ing to the formula OD = -log T%, for both nonspecific gray 
tone values and specifically labeled areas. The specific OD was 
obtained by deducting nonspecific OD from total OD for each 
studied region (Biagini et al., 2001). Neuronal counts of parval
bumin-positive interneurons were as described by Biagini et al. 
(2005). Sections were used for parvalbumin immunostaining were 
then rehydrated through various passages in decreasing ethanol 
solutions, countersrained with toluidine blue, and analyzed by the 
KS 300 software to measure the subicular area. 

Statistical Methods 

Measurements in the text are expressed as mean :!: SEM and 
n indicates the number of samples studied under each specifie 
protocol. The results obtained were compared with the Stu
dent's t-test or Mann-Whitney test and were considered statis
tically significant if P < 0.05. 

RESULTS 

Unaltered Intrinsic Cellular Properties in NEC 
and Pilocarpine-Treated Subiculum 

As previously shown (Mattia et al., 1997; Su et al., 2002; 
Knopp et al., 2005), intracellular injection of depolarizing current 
pulses (duration = 1 s) induced two patterns of firing in subicular 
neurons recorded in NEC and pilocarpine-treated slices. The first 
consisted of an initial burst of action potentials followed by regular 
firing (Fig. 2Aa and Ba), while the second was characterized by 
regular, repetitive firing only (Fig. 2 Ab and Bb). Quantification of 
the incidence of these two firing patterns demonstrated similar 
proportions in pilocarpine-treated (intrinsic bursting, n = 16; reg-
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ular firing, n = 13) and in NEC (intrinsic bursting, n = 14; regu
lar firing n = 14) tissue. In addition, subicular neurons recorded 
in the two types of tissue displayed similar fundamental intrinsic 
properties (Table 1). As depicted in Figure 2 (Ac and Bc), steady 
depolarization of regular firing neurons from RMP to membrane 
potentials above -54 mV produced the appearance of rhythmic 
subthreshold oscillations in the e range (regular firing: NEC = 6.5 
:!: 0.8 Hz, n = 5, pilocarpine = 6.6 :!: 1.1 Hz, n = 5; intrinsic 
bursting: NEC = 5.6 :!: 0.8 Hz, n = 5, pilocarpine = 5.9 :!: 0.6 
Hz, n = 5) that were combined with action potential discharge. 
The membrane potentials at which "subthreshold" membrane 
oscillations appeared and the threshold for action potential genera
tion were also similar in NEC and pilocarpine-treated, epileptic 
subicular neurons (Table 1). 

Activation of CAl Inputs Demonstrates 
Hyperexcitability Within the 
Epileptic Subiculum 

Single-shock electrical stimuli delivered in the CAl stratum 
radiatum of NEC and pilocarpine-treated slices produced similar 
low amplitude, negative deflecting, field potential responses in sub
iculum (Fig. 3A and B, Field traces in the top samples). In con
trast, remarkable differences could be identified in the recorded in
tracellular signais. As shown in Figure 3A (-71 m V trace), CAl 
stimulation invariably produced a sequence of depolarizing-hyper
polarizing postsynaptic responses in NEC subicular cells recorded 
at RMP (n = 14); in addition, these stimulus-induced responses 
became purely depolarizing when the membrane potential was 
brought to values more negative than -80 mV with injection of 
steady negative current (Fig. 3A, -81 mVand -88 mV traces), 
while at depolarized membrane levels they were characterized by a 
single action potential followed by a robust hyperpolarization (Fig. 
3A, -66 m V). At variance, two types of stimulus-induced intracel
lular responses were recorded in the pilocarpine-treated subiculum 
(Fig. 3B). In the first group of neurons (n = 18) single-shock stim
uli produced depolarizing postsynaptic activity at both RMP and 
at hyperpolarized membrane potentials (Fig. 3Ba, -71, -77, and 
-88 mV traces) while at depolarized membrane values these 
responses comprised of action potential bursts or doublets (Fig. 
3Ba, -65 mV trace). In the second group of pilocarpine-treated 
subicular cells (n = 11), CAl stimulation elicited bursting 
responses at RMP or at depolarized membrane values (Fig. 3Bb; 
-70 and -83 m V traces). Moreover, when action potential burst
ing was prevented by injecting steady negative current, we identi
fied an underlying slow depolarization that followed the initial 
excitatory postsynaptic potential (EPSP) (Fig. 3Bb, -92 m V 
trace). These characteristics were found to be independent of the 
intrinsic firing properties of subicular cells. 

Subicular Cells in Pilocarpine-Treated Slices 
Have a Lower Threshold to Synaptic Stimuli 
Than in NEC Tissue 

The findings reported in the previous section suggest that 
increased network excitability characterizes the pilocarpine-
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FIGURE 2. Intrinsic firing and subthreshold oscillations gen
erated br subicular neurons in NEC and pilocarpine-treated tissue. 
Two types of firing patterns are generated br subicular neurons in 
NEC (A) and pilocarpine (B) treated slices during injection of 
depolarizing current: (i) action potential bursting coupled with 
regular action potential firing (Aa and Ba) or regular firing (Ab 

treated, epileptic sllbiculum. To this end, we compared the 
input-output curves of the intraceUular responses generated by 
subicular neurons following CAl single-shock stimuli in NEC 
and pilocarpine-treated slices. As shown in Figure 4A, focal 
stimuli with strength ranging between 100 and 200 JlA pro
duced either no or minimal postsynaptic responses in NEC 
subicular neurons (n = 5). These ceUs generated overt postsy
naptic depolarizations only when the current intensity was 
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and Bb). Comparison of NEC and pilocarpine (Ac and Bc) treated 
regular firing subicular neurons produced subthreshold oscillatory 
activity when depolarized from RMP. Quantification of subthres
hold oscillations through power spectral analysis demonstrates that 
subthreshold activity oscillates within a q band of 6-9 Hz. 

increased to 450 JlA, while a single action potential occurred in 
response to stimuli delivered at 2:500 JlA. 

In contrast, when this stimulation protocol was applied to 
pilocarpine-treated slices, we could identify a lower activation 
threshold. Thus, a depolarizing response was elicited by CAl 
stimuli with the current intensity of 100 JlA, and then it 
increased in amplitude following stimuli at 150 JlA (Fig. 4B). 
Moreover, in ail pilocarpine-treated subicular neurons (n = 6), 
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TABLE 1. 

Instrinsic Neuronal Properties of NEC and Pilocarpine-Treated Subicular Neurons 

Oscillatory 
Firing pattern RMP(mV) IR (MO) APA (mV) APD (ms) threshold (m V) Ap threshold (m V) 

NEC subicular neurons 
Regular firing (n = 14) -69.7:!: 0.8 42.3:!: 2.9 89.2 :!: 2.3 1.3 :!: 0.1 -54.5 :!: 0.5 -50.5:!: 0.9 
Intrinsic bursting (n = 14) -66.7:!: 1.1 35.2:!: 3.1 88.8 :!: 1.9 1.3 :!: 0.1 -56.7:!: 1.8 -54.7:!: 1.0 

Pilocarpine-treated subicular neurons 
Regular firing (n = 13) -66.7:!: 0.8 43.7:!: 3.7 91.4 :!: 2.8 1.4 :!: 0.1 -53.2 :!: 2.3 -49.9 :!: 1.1 
Intrinsic bursting (n = 16) -69.0 :!: 1.1 39.4 :!: 3.7 88.9 :!: 2.1 1.3 :!: 0.1 -58.7:!: 0.9 -54.8:!: 0.9 

A comparison of the resting membrane potentia! (RMP), the input resistance (IR), the action potentia! amplitude (APA), and the action potentia! dutation (APD) 
in the NEC and pi!ocarpine-treated subiculum. Additiona! properties include membrane potentia! for subthresho!d osdUatory activity as weU as action potentia! 
generation. 

single shock stimulation at ~200 ~ was sufficient to elicit 
action potential firing characterized by either doublets or bursts 
of action potentials. To assess network excitability we defined 
100% as me current threshold required to elicit depolarizing 
PSPs prior to action potential spiking. Analysis of the relation 
between current intensity and depolarizing response amplitude 
(prior ta action potential generation) revealed mat pilocarpine
treated subicular cells required significantly less current ta gen
erate responses comparable to mose in NEC tissue (Fig. 4C). 

Activation of EC Layer III Pro duces Multiphasic 
Activity in the Pilocarpine-Treated Subiculum 

We furmer assessed subicular network excitability in NEC and 
pilocarpine-treated tissue by analyzing the responses induced by 
electrical stimuli delivered in EC layer III (Fig. 5). At resting 
membrane potentials, in NEC slices, extracellular stimulation eli
cited a low amplitude field response mat was paralleled by a 
monophasic depolarizing PSP with a duration of 101.9 :±: 7.3 ms 
(Fig. 5A; n = 13). As illustrated in Figure 5A, sequential injec
tion of steady positive current from -93 mV progressively 
reduced the amplitude of me depolarizing PSP and unmasked a 
hyperpolarization at -61 mY. In contrast, focal stimuli in pilo
carpine-treated tissue (n = 13 cells) consistently produced multi
phasic postsynaptic responses lasting up ta 491.9 :±: 38.5 ms 
(Fig. 5B). This activity persisted at hyperpolarized membrane 
potentials while injection of steady depolarizing current made sin
gle action potentials, which were not followed by any hyperpola
rizing component, appear (Fig. 5B, -56 mV). The duration of 
the subicular responses to EC stimuli recorded in NEC and pilo
carpine-treated slices is quantified in Figure 5C (P < 0.0001). 

Spontaneous Synaptic Activity in NEC 
and Pilocarpine-Treated Subiculum 

As illustrated in Figure 6A (-73 m V trace), low amplitude 
spontaneous PSPs comprising depolarizing and hyperpolarizing 
components occurred at RMP with intervals of 8.0 :±: 0.7 s in 
NEC subicular neurons (n = 12). Hyperpolarizing the mem-
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brane of these cells through negative current injection produced 
an inversion of the hyperpolarizing component (Fig. 6A, 
-94 mV trace). In contrast, injection of steady depolarizing 
current made the depolarizing and hyperpolarizing components 
of the PSP decrease and increase, respectively, along with the 
appearance of submreshold voltage-dependent oscillatory activ
ity (arrows) at membrane potentials less negative than -60 m V 
(Fig. 6A, -60 mV trace). 

Intracellular recordings from pilocarpine-treated subicular 
cells (n = 10) also demonstrated the presence of spontaneous 
PSPs that, however, had an increased rate of occurrence (inter
vals = 2.7 :±: 0.4 s; P < 0.0001 independent t-test) when com
pared with NEC tissue (Fig. 6B and C). In addition, pilocar
pine-treated subicular neurons generated spontaneous depolariz
ing PSPs both at membrane values of -70 m V (RMP) and of 
-83 mV (Fig. 5B). Thus, at RMP pilocarpine-treated subicular 
cells did not exhibit the biphasic EPSP/IPSP sequence observed 
in NEC tissue. As illustrated in Figure 6B (-62 m V), injection 
of positive current in pilocarpine-treated cells transformed 
depolarizing PSPs into hyperpolarizing events coinciding with 
oscillatory activity (arrow) and single action potential spiking. 
Analysis of me reversai potential of the spontaneous PSPs 
revealed a more positive value in pilocarpine-treated tissue 
(-62.4 :±: 0.9 mY, n = 17) than in NEC (-65.8 :±: 0.9 mV, 
n = 16) (P < 0.02) (Fig. 6D). 

ReversaI Potential of "Monosynaptic" 
IPSPs in NEC and Pilocarpine-Treated 
Subicular Neurons 

To isolate GABAergic activity we performed intracellular re
cordings in subicular neurons of NEC and pilocarpine-treated sli
ces in me presence of an NMDA receptor antagonist (CPP = 
10 /lM) and of an AMPNkainate receptar blocker (CNQX = 
10 /lM). Under mese pharmacological conditions, focal subicular 
stimulation elicited a presumptive IPSP that was often character
ized by a fast and a slow component (Fig. 7 A). Serial application 
of GABAA (picrotaxin, 50 /lM, n = 5) and GABAB (CGP 
35348, 10 /lM; n = 4) receptor antagonists demonstrated mat 
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FIGURE 3. Activation of CAl networks demonstrates hyperex
citability within the epiIeptic subiculum. A: In NEC tissue, CAl 
single-shock stimulation elicits a sequence of depolarizing-hyper
polarizing postsynaptic responses at -71 mV (RMP). Hyperpolar
ization to -77, -81, and -88 mV produces stimulus-induced 
depolarizing postsynaptic events, whereas electricaI stimulation at 
-66 mVelicits a single action potentiaI. Ba: In piIocarpine-treated 

the fast component of the stimulus-induced IPSP was GABAA re
ceptor-mediated (not illustrated). In these experiments, we ana
Iyzed the stimulus-induced responses recorded at difFerent mem
brane potentials by injecting pulses of hyperpolarizing and depo
larizing current. By doing so, we could identifY the reversai 
potential of the stimulus-induced fast IPSP along with the associ
ated peak conductance. Single-shock stimulation in NEC and 
pilocarpine-treated cells produced GABAA receptor-mediated 
IPSP reversai points of -75 m V (Fig. 7C, black dots) and 
-66 mV (Fig. 7C, open dots), respectively. Analysis of additional 
sampi es for the GABAA receptor-mediated IPSp, revealed a more 
positive reversai point (-67.8 ± 6.3 m V; n = 16, 8 regular fire 
and 8 intrinsic bursting; P < 0.001, independent t-test) within 

Pilocarpine· CA 1 stimulatIon 

b ~20"'V 
-74mV 5(lO "'" 

AM? 

F1ek:l 12mV 

.83 m" .JI \:.... •. _--

subicular neurons, single-shock stimulation of the CAl area elicits 
action potentiaI bursting at -65 mV whiIe a depolarizing post
synaptic response is seen at RMP and at huther hyperpolarized 
potentiaIs. Bb: In other experiments, pilocarpine-treated subicular 
neurons generate aIl-or-none stimulus-induced bursting activity. 
Action potentiaI bursts were haIted upon ftuther hyperpolarization 
of the membrane to -92 mY. 

the pilocarpine-treated subiculum as compared to NEC tissue 
(-74.8 ± 3.6 mV; n = 13, 9 regular firing and 4 intrinsic 
bursting) (Fig. 7D). Alteration of the IPSP reversai point was 
mirrored by a significant reduction (P < 0.003; independent 
t-test) in the GABAA receptor mediated IPSP peak conductance 
in pilocarpine-treated epileptic cells (i.e., 17.6 ± 11.3 nS vs. 
41.5 ± 26.7 nS in NEC) (Fig. 7D). 

ReversaI Potentiai of UMonosynaptic" IPSPs 
Generated by EC Layer V N eurons From NEC 
and Pilocarpine-Treated Rats 

Using a similar protocol, we assessed whether GABAA recep
tor activity was altered in neurons recorded in EC layer V of 
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FIGURE 4. Pilocarpine-treated subicular neurons exhibit a 
lower threshold of activation. A: CAl stimulation (duration of the 
stimulus = 100 ilS) at increasing intensities in NEC tissue produces 
hyperpolarizing responses (200 J1A) and depolarizing events 
(450 J1A), whereas a strength of 500 J1A is sufficient to elicit a sin
gle action potential. B: In contrast, a stimulus of lower intensity 
in CAl is required to elicit depolarizing responses (100 and 
150 J1A) and action potential bursting (200 J1A) in pilocarpine
treated subicular neurons. C: Graphical display of the average 

epileptic tissue. As shown in Figure 8, NEC and pilocarpine
treated neurons in this limbic area had similar reversal potentials 
(i.e., -72.3 ± 3.8 mV, n = 7, for NEC and -69.8 ± 5.2 mY, 
n = 13, for pilocarpine-treated EC cells; P = 0.27, independent 
t-test). Moreover, the peak conductance of the GABAA receptor
mediated IPSP was not different (P = 0.89; independent t-test) 
in NEC (10.3 :!: 4.1 ns, n = 7) and pilocarpine-treated (12.8 :!: 
8.6 ns, n = 13) EC neurons (Fig. 8D). 

Hippocampus DOl lO.l002/hipo 

input-output curves of the postsynaptic responses generated prior 
to the appearance of action potential(s), in pilocarpine-treated tis
sue (black dots; n = 6) eompared to NEC (open dots; n = 5). 
Boltzman sigmoidal parameters were used to fit the eurrent
response relationship. Stimulus to evoke the half amplirude of 
response (NEC: 315.6 ± 3.3 J1A and pilocarpine: 147.1 ± 3.8 J1A) 
and slope (NEC: 56.6 ± 2.9 and pilocarpine: 4.6 ± 4.3) were statis
tically signifieant (half amplirude of response: P < 0.00001; slope: 
P < 0.0003). 

Reduced KCC2 Expression in the 
Pilocarpine-Treated Subiculum 

The more depolarized reversal potential of the GABAA recep
tor-mediated IPSP identified in pilocarpine treated subicular ceUs 
led us to assess whether the expression of KCC2 was changed. As 
illustrated in Figure 9A, RT-PCR analysis revealed a 44.0 :!: 6.1 % 
reduction in KCC2 mRNA expression level within the subiculum, 
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FIGURE 5. Activation of EC layer III generates hyperexcitable 
responses in the pilocarpine-treated subicnlum. A: Single shock 
stimulation of EC layer III elicits a monophasic postsynaptic 
response in the NEC subiculum. B: In contrast, EC layer III acti
vation within pilocarpine treated tissue produced multiphasic post-

but not in the EC of pilocarpine-treated, epileptic rats (n = 5) as 
compared with NECs (n = 5). We also used a commercially avail
able antibody reported to be specifie for KCC2 (Yale et al., 2003; 
Grob and Mouginot, 2005; Lohrke et al., 2005). By doing 50, we 
could localize in NEC subiculum the presence of KCC2 immuno
positivity both in nerve fibers and on the surface of neuronal cell 
bodies (Fig. 9C); in contrast, the cytoplasm appeared completely 
devoid of any signal (note that the arrowheads in the inset of Fig. 
9C point at neuronal somas that appear white). This localization 
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synaptic activity within the subicnlum. C: The pilocarpine treated 
subiculum produced a response of enhanced duration that was sig
nificandy different from the subicnlar response in the NEC (NEC: 
101.93 ± 7.33 ms vs. pilocarpine: 491.89 ± 38.54 ms; P < 0.0001). 

was consistent with previous reports on KCC2 expression in the 
mature brain (Lorke et al., 2005; Vale et al., 2005). 

lmmunohistochemical analysis of the epileptic rat subiculum 
demonstrated a decrease in KCC2 positivity (Fig. 9D). These 
findings were also quantified by using optical density analysis. As 
illustrated in Figure 9B, we found a significant (P < 0.05) 
decrease (-25%) in KCC2 immunoreactivity in the subiculum 
of epileptic rats (n = 9) as compared to NECs (n = 8). There
fore, these findings demonstrate a reduced expression of both 
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FIGURE 6. Higher frequency of postsynaptie potentiaIs (PSPs) 
within the pilocarpine-treated subiculurn. lu Intracellular record
ings in the subieulum of NEC sliees demonstrate spontaneous 
PSPs exhibiting excitatory and inhibitory eomponents at -73 mY. 
Depolarizing PSPs oecur at -94 mY whereas at -60 mY these 
events were mainly hyperpolarizing. B: Subicular neurons in pilo
carpine treated tissue exhibited depolarizing PSPs at -70 and 

mRNA and KCC2 protein in the pilocarpine-treated, epileptic 
subiculum supporting a malfunction in the extrusion of intracel
lular Cl- and thus the different IPSP reversai potential values. 

Histopathological Evaluation 
of Neuronal Damage 

Next, we studied whether interneuronal loss or neuronal 
sprouting were present in the subiculum and EC of pilocar
pine-treated, epileptic rats. Parvalbumin-positive cells were 
found to be homogeneously distributed both in the subiculum 
(Fig. 10A,B) and in the EC (Fig. 10C and D). However, a 
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-83 mY while hyperpolarizing PSPs oeeur during steady depolari
zation to -62 mY. C: Pilocarpine-treated subicular neurons ex
hibit a higher frequency of spontaneous PSPs as compared to 
those recorded in NEC sliees (P < 0.0001, independent t-test). D: 
The reversaI potentiaI of spontaneous PSPs in NEC vs. piloear
pine-treated tissue was significandy different (P < 0.02). 

reduced area of immunostaining could always be identified in 
the subiculum of pilocarpine-treated animais. 

By counting parvalbumin-positive cells in the ventral subicu
lum (level 7.6 mm From bregma), we found a significant (P < 
0.01) decrease (-65%) in parvalbumin-stained neurons in pilo
carpine-treated rats (n = 9) as compared with NECs (n = 8) 
(Fig. lOE). However, the area covered by subicular neurons, 
measured in toluidine blue-stained sections was only slightly 
decreased in pilocarpine-treated animais (0.38 :!: 0.06 mm2

) 

compared with NECs (0.40 :!: 0.03 mm2
; not statistically dif

ferent). Following the surprising results obtained by counting 
parvalbumin-positive cells at this level, we decided to further 
analyze the subiculum considering a dorsallevel (3.6 mm From 
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FIGURE 7. The pilocarpine treated subiculwn exhibits a more 
positive GAB~ receptor-mediated IPSP. A and B: Single shock stimu
lation (100 ~s) at different membrane potentials elieit "isolated" IPSPs 
in the presence of glutamatergic antagonists (CPP + CNQX, 10 IlM 
for both drugs). Sharp-deetrode intracellular recordings were per
formed in NEC (A) and pilocarpine-treated tissue (B). Insets: expan
sion of the intracellular recordings of the IPSPs recorded in NEC and 
pilocarpine-treated tissue. Note that at - 66m V hyperpolarizing synap-

bregma), since the lesion extent was described to vary along the 
hippocampal longitudinal axis by other authors (Turski et al., 
1983). Interestingly, a significant (P < 0.01) decrease (-40%) 
was also observed in the dorsal subiculum. However, the area 
covered by subicular neurons, measured in toluidine blue
stained sections was only slighrly decreased in pilocarpine
treated animais (0.38 ± 0.06 mm2

) compared with NEC (0.40 
± 0.03 mm2

; not statistically different). Parvalbumin-positive 
cells were also counted in the superficial layers of medial EC 
and lacerai EC in the same ventral sections, but no differences 
were found between the two groups of animais (Fig. 10, com
pare NEC in C with pilocarpine-treated in D, as weil as quan-
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Pilocarpine - Subiculum 

tic potentials occur in NEC, whereas depolarizing potentials occur in 
the pilocarpine-treated cdl. C: The IPSP reversai point in the NEC 
snbiculwn is -75 mV (black dots) whereas the pilocarpine-treated 
subiculum exhibits a vaIue of -66 mY. D: Mean vaIues of the "iso
lated" IPSPs ate significandy more positive (P < 0.001; independent t
test) in pilocarpine-treated tissue compared to NEC. Note aIso that a 
significant reduction in the IPSP peak conductance occnrs in the pilo
carpine-treated subiculwn (P < 0.003; independent t-test). 

tified data in panel E), thus confirming the results reported by 
Du et al. (1995). 

Finally, we investigated the distribution of immunoreactivity 
for synaptophysin (Fig. Il), which is considered to be a marker 
of functionally sprouted nerve fibers (Proper et al., 2000). 
Here, we found the presence of well-delimited patches of 
increased immunoreactivity in DG, subiculum and EC of pilo
carpine-treated rats (arrows in Fig. Il Band corresponding 
insets). In the DG, patches of increased immunoreactivity were 
localized in the inner molecular layer and were thus reminis
cent of the mossy fiber sprouting reported in TLE patients 
(Sutula et al., 1989) and animal models (Sutula et al., 1988). 
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FIGURE 8. Assessment of the CI- reversai potential of the 
GABAA receptor mediated IPSP in layer Y of the EC. A and B: In
hibitory postsynaptic activity isolated via application of the gluta
matergic antagonists CPP and CNQX (10 f.tM in both cases). In 
NEC (A) and pilocarpine treated tissue (B), single shock stimula
tion in layer Y of the EC produced depolarizing and hyperpolariz
ing inhibitory postsynaptic responses at negative and positive 

When the subiculum was separated in proximal and distal areas 
according to Witter (1993) (see also Fig. lB), patches of 
increased immunoreactivity were more evident in the distal 
areas that are known to be innervated by the media! EC 

(Naber et aL, 2001); this was also the EC region in which we 
could identify patches of increased synaptophysin immunoreac
tivity localized in the superficiallayers (Fig, lIB), 

Semiquantitative evaluation of optical density values in NEC 
and pilocarpine-treated rats is shown in Figure Il C for both 
subiculum and EC. Significancly (P < 0.01) higher staining in
tensity was found in proximal and distal subiculum as weil as in 
medial and lateral EC (P < 0.05) of pilocarpine-treated rats 
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membrane potentials, respectively. C: Regression analysis demon
strated the Cl- reversai point in NEC to be -76 mY and -75 
mY in the pilocarpine-treated EC. D: Comparison of the averages 
of the CI-; reversai point (NEC: -72.3 ± 3.8 mY, n = 7; pilocar
pine: -69.8 ± 5.2 mY, n = 13; P = 0.27; independent t-test) and 
Cl- conductance (NEC: 10.3 ± 4.1 nS; pilocarpine: 12.8 ± 8.6 nS; 
P = 0.89; independent t-test). 

when compared to NECs (Fig. 11C). Therefore, these findings 
demonstrate a general increase of synaptophysin immunostaining 
in the subiculum and EC of pilocarpine-treated, epileptic rats. 

DISCUSSION 

Our study demonstrates that the subiculum of pilocarpine
treated, epileptic rats is hyperexcitable at the network level as indi
cated by its increased responsiveness to CAl and lateral EC layer 
III stimulation along with an increased frequency of spontaneous 
PSPs. We have also found that a mechanism contributing to sub-
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FIGURE 9. KCC2 expression in pilocarpine-treated and NEC 
rats. In A: KCC2 mRNA levels in pilocarpine-treated EC and sub
iculum (n = 5), expressed as percentage of NEC (n = 5) values. In 
BI KCC2 immunoreactivity in the subiculum of NEC (n = 8) and 
epileptic rats (n = 9). *P < 0.05 vs. control values, Mann-Whit
ney test. C and D: Distribution of KCC2 immunoreactivity in the 
subiculum of NEC and pilocarpine-treated rats, respectively. Note 

icular hyperexcirability corresponds to a dysfunction of GABAA re
ceptor-mediated inhibition characterized by positive shift in IPSP 
reversai potentials coupled with a decreased IPSP peak conduct
ance. Moreover, these functional perturbations in GABAergic ac
tivity were presumably caused by a reduction in KCC2 expression 
along with a decreased number of parvalbumin-positive interneur
ons. Finally, we have found enhanced synaptophysin immunoreac
tivity in both subiculum and EC of epileptic animais. 

Network Hyperexcitability in the 
Epileptic Subiculum 

Subicular neurons recorded intracellularly from epileptic tis
sue generate bursts or doublets of action potentials in response 
to stimuli delivered in the CAl stratum radiatum; in contrast, 

SUBICULUM AND TEMPORAL LOBE EPILEPSY 855 

B 

the wide distribution of KCC2 in the gray matter, while the angu
lar bundle (ab) is scarcely stained. As shown in the inset (C), 
immunoreactivity is visible in nerve libers and on the surface of 
neuronal somas, while the cytoplasm is unstained (arrowheads). 
Abbreviations used: alv, alveus; ml, molecular layer; sp, pyramidal 
layer; sr, stratum radiatum. The asterisk indicates the presubicu
lum. Scale bar, 150 .... m for C and D,50 flm for the inset. 

such procedure consistently disclosed a single action potential, 
followed by a hyperpolarization in NEC subicular cells. More
over, input-output curves of the stimulus-induced responses 
identified a lower activation threshold in the epileptic subicular 
network. This evidence is in line with recent studies that have 
documented subicular hyperexcitability in epileptic tissue dur
ing electrical stimulation or GABAA recepcor antagonism 
(Knopp et al., 2005). However, in contrast to the results by 
Knopp et al. (2005), we did not observe any synaptic bursting 
in NEC subiculum; this difference may have been dependent 
upon their adopted stimulus intensity. 

We further demonstrated that the altered subicular responsive
ness was not limited to activation from CAl, but also involved 
inputs arising From the lateral EC layer III. Our study as weil as pre
vious investigations have shown that synaptic inhibition is prevalent 
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FIGURE 10. Parvalbumin immunoreactivity in the subicu1um 
and EC of age-matched NEC and pilocarpine-treated rats. A and 
B: Immunohistochemical staining in the ventral subiculum 
(7.6 mm from bregma) reveals a reduced number of paravalbumin
positive inhibitory interneurons in pilocarpine-treated rats (B). 
The inset in B magnifies a parvalbumin-positive interneuron. C 
and D: distribution of parvalbumin-positive cells in the EC of 

within the NEC subiculum following EC stimulation (Maccaferri 
and McBain, 1995; Behr et al., 1998). In contrast, subicular activa
tion by EC inputs in pilocarpine tissue revealed increased nerwork 
excitation as indicated by the enhanced duration of the response 
that was characterized by multiphasic PSPs. In addition, hyperpola
rizing synaptic potentials could not be recorded in pilocarpine tis
sue, as opposed to the NEC, thus further suggesting a perturbation 
in inhibitory and excitatory properties of the epileptic subiculum. 

Hippocampus DOl lO.1002/hipo 

MEC LEC 

NEC (C) and epileptic rats (D). E: quantitative analysis reveals a 
significant reduction (P < 0.01, Mann-Whitney test) of inhibitory 
interneurons in the epileptic subiculum vs. NEC (saline-treated) 
both at ventral and dorsal (3.6 mm from bregma) levels. In con
trast, parvalbumin cell number was unaltered in the superficial 
layers of the lateral and medial EC. Scale bar: 250 !Lm. 

Interestingly, this EC-subiculum nerwork interaction correlates with 
the data obtained by studying epileptiform synchronization in
duced by 4-aminopyridine in pilocarpine-treated, epileptic mice 
(D'Antuono et al., 2002). While we observed increased nerwork 
hyperexcitability in the epileptic subiculum, we did not detect a cor
relation with the intrinsic properties of subicular neurons. 

A characteristic that was also indicative of nerwork hyperex
citability within the epileptic subiculum was the higher fre-
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FIGURE 11. Changes in synaptophysin immunoreactive levels 
in NEC (A) and pilocarpine-treated epileptic rats (B). The arrows 
point to patches of highly dense synaptophysin immunoreactivity, 
respectively magnified in the insets on the right side (arrowheads), 
in the molecular layer of DG, the distal subiculum (distSub), and 
in the superficiallayers of the medial EC (MEC). In panel C, den-

quency of spontaneous PSPs when compared to NEC subicular 
cells. Previous in vitro studies in tissue obtained from epileptic 
patients (Cohen et al., 2002; Wozny et al., 2003) as weil as 
kainic acid (Shah et al., 2005) or pilocarpine-treated rats (Sana
bria et al., 2001; Kobayashi et al., 2003; Knopp et al., 2005) 
have shown the presence of network-driven phenomena. 

Reduced GABAergic Inhibition Within 
the Pilocarpine-Treated Subiculum 

We also discovered that the reversai potential of the spontane
ous PSPs recorded in epileptic tissue was characterized by a posi
tive shi ft suggesting decreased network inhibition. This aspect 
was further investigated by establishing the reversai potential of 
the stimulus-induced IPSPs generated by NEC and pilocarpine
treated epileptic subicular cells in the presence of glutamatergic 
antagonists. We found that the reversal potential of the GABAA 

receptor component of this IPSP was more positive in pilocar
pine-treated neurons than in NEC cells. Such a decrease in rever
sai potential may account for attenuated inhibition and thus for 

sitometric analysis of synaptophysin immunoreactivity demon
strates higher levels in the subiculum and EC of pilocarpine-treated 
epileptic rats (see Fig. 1 for indications on the sampling procedure). 
Other abbreviations: CAl, cornu Ammonis 1; gl, granule layer; prox
Sub, proximal subiculum. * = p < 0.05, ** = p < 0.01, Mann-Whitney 
test. Scale bars, 500 /Lm for A and B, 100 mm for the insets. 

the synaptic hyperexcitability documented following CAl or EC 
stimulation. These data are also in keeping with the presence of 
depolarizing GABAergic events in the subiculum of human epi
leptic tissue (Cohen et al., 2002; Wozny et al., 2003). 

Our results of a more positive fast IPSP reversal point can be 
attributed to an accumulation of intracellular Cl- resulting from 
a reduced expression of the KCC2. Vnder normal physiological 
conditions, the classical hyperpolarzing GABAergic response 
relies upon a low intracellular Cl- concentration due to Cl
extrusion by KCC2. This mechanism, however, can become 
altered in conditions of network hyperexcitability. Accordingly, 
recent investigations have shown that KCC2 in the hippocampus 
is downregulated after kindling-induced seizures in vivo or by 
exogenous applications of BDNF or neurotrophin 4 in vitro ( 
Rivera et al., 2002). In addition, Rivera et al. (2004) have 
reported that interictal epileptiform activity in hippocampal slices 
down-regulates KCC2 mRNA and protein expression in CAl 
pyramidal neurons. Indeed, by utilizing RT-PCR and immuno
histochemical analysis we found a significant reduction in KCC2 
mRNA and ptotein expression in the pilocarpine-treated subicu-
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lum vs. NEC. As such, the more depolarized GABAA receptor 
induced IPSP reversal potential identified in pilocarpine-treated 
neurons is most likely caused by a reduction in KCC2 expression 
and the functional consequence of increased intracellular Cl-. 
Hence, our data reinforce the evidence that a reduction in 
KCC2 expression may contribute to epileptic hyperexcitability. 

Pharmacologically isolated IPSPs generated by pilocarpine
treated epileptic subicular cells are also characterized by a decreased 
peak conductance when compared with similar events in NEC tis
sue. This change, which is expected to decrease the IPSP shunting 
action, may relate to decreased number of interneurons (sec below), 
as well as to alterations in GABAA receptor subunits (Friedman 
et al., 1994; Houser and Escalpez, 2003; Olsen et al., 2004). These 
factors may also contribute toward reduced subicular network inhi
bition coupled with an augmented excitatory drive. 

Structural Changes in Subicular 
and EC Networks 

The perturbations of network inhibition observed in the sub
iculum of pilocarpine-treated rats also appear to be contributed 
by a decrease of interneurons along with synaptic reorganiza
tion. First, we have found that parvalbumin-positive cells, 
which represent about 50% of interneurons in the rodent cor
tex (Kawaguchi and Kubota, 1993; Kubota et al., 1994) are 
markedly decreased in ventral and dorsal subiculum but not in 
EC. Similar findings have been reported in different TLE ani
mal models (Du et al., 1995; van Vliet et al., 2004). A reduc
tion in the number of parvalbumin-positive interneurons has 
been also found in the CAl subfield (André et al., 2001) and 
in the dentate hilus (Gorter et al., 2001) of epileptic animais, 
which correlated with the development of spontaneous seizures 
following SE. Interestingly, parvalbumin-positive cells are also 
decreased in the neocortex (de Felipe et al., 1993) and hippo
campus (Arellano et al., 2004) of epileptic patients presenting 
with intractable seizures. It should be, however, mentioned that 
these studies failed in disclosing significant differences in parv
albumin-positive cells in the human epileptic subiculum, sug
gesting a possible inconsistency with the animal model. Alter
natively, the decrease of parvalbumin-Iabeled interneurons may 
result from reduced expression of this calcium binding protein 
following repeated seizures (Sloviter et al., 1991; Vizi et al., 
2004), thus depending on the frequency by which a certain 
neuronal area is recruited by seizures. 

Subiculum hyperexcitability may also be contributed by neu
ronal sprouting, as recently evidenced by tracing studies in rats 
made epileptic with different procedures (Cavazos et al., 2004). 
Mossy fiber sprouting has been described in the DG and CA3 
subfield of TLE patients (Sutula et al., 1989; Houser et al., 
1990; Houser, 1999; Proper et al., 2000) and epileptic rats 
(Ben-Ari, 1985; Sutula et al., 1988; Gorter et al., 2001). We 
have investigated the possibility that neuronal sprouting took 
place in our rats by means of synaptophysin immunostaining. 
Synaptophysin is a synaptic vesicle-associated protein (Bahler 
et al., 1991) known to be upregulated by neuronal activity (Li 
et al., 2002; Valtorta et al., 2004) and lesion (Kadish and van 
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Groen, 2003). Although it is not a classical marker 6f sprout
ing, changes in synaptophysin immunoreactivity have been 
taken as indirect index of increased nerve terminal density or 
activity in epileptic patients (Proper et al., 2000) as weil as in 
animais (Chen et al., 19%; Li et al., 2002). Here, we have 
identified an increase in synaptophysin immunostaining in sev
eral limbic areas, possibly suggesting neuronal sprouting in 
pilocarpine-treated rats as reported in the kainic acid model 
(Chen et al., 19%), or indicating increased synaptic vesicle 
density. These changes appeared to be more evident in distal 
subiculum and medial EC, that are reciprocally interconnected 
(Naber et al., 2001). Increased synaptophysin immunoreactivity 
was also found in the hippocampus of pharmacoresistant TLE 
patients (Proper et al., 2000). Sprouting in the EC superficial 
layers has been reported to occur in human TLE tissue by ana
lyzing the immunoreactivity of the highly polysialylated neural 
cell adhesion molecule (Mikkonen et al., 1998). 

In conclusion, our findings highlight a change in subicular 
neuron excitability in epileptic rats that depends on multiple 
mechanisms. At the molecular level, KCC2 expression is down
regulated, thus varying the neuronal response to GABAergic 
inputs. At the cellular level, parvalbumin interneurons are 
highly decreased, possibly hampering the control of neuronal 
excitability, while the upregulation of synaptophysin immuno
staining, as also found in the DG and EC, favors the hypothe
sis of increased network coupling in the epileptic subiculum. 
This evidence along with findings from other laboratories 
(Cohen et al., 2002; Cavazos et al., 2004; Knopp et al., 2005) 
indicate in the subiculum a key region in the control of epilep
tic activity. 
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with internai bridge circuit for intracellular current injection. Resist
ance compensation was monitored throughout the experiment and 
adjusted as required. Electrophysiological recordings in IC were 
obtained from the agranular portion that was identified by using the 
perirhinal fissure at the level of the IC as a point of reference 
(Fig. lA). 

The IC cell passive membrane properties were measured as follows: 
(i) resting membrane potential (RMP) after cell withdrawal; (ii) 
apparent input resistance from the maximum voltage change in 
response to hyperpolarizing current pulses « -0.5 nA); (iii) action 
potential amplitude from the baseline; and (iv) action potential 
duration at half-amplitude. The firing patterns of IC cells were 
established by injecting depolarizing current pulses. Extra- and 
intracellular signais were fed to a computer interface, acquired and 
stored using the pClamp 9 software and analysed with the Clampfit 9 
software (both from Axon Instruments, Union City, CA, USA). 
Electrical stimuli (50-100 I!S; < 200 I!A) were delivered through 
bipolar, stainless steel electrodes. The recording and stimulating 
electrode location in the slice is shown in Fig. lA. In sorne 
experiments the IC and PC were surgically isolated at the start of 
the experiment by a cut made under visual control with a razor blade 
(dotted line in Fig. lA). 

For intracellular labelling, electrodes were filled with 2% neurobi
otin dissolved in 2 M K-acetate. Neurobiotin was applied by injecting 
depolarizing current pulses (0.5-1 nA, 3.3 Hz, 150 ms) for> 10 min. 
Only one cell was filled in each slice. At the end of the experiment, 
slices were processed as described by D'Antuono et al. (2001). 
Measurements are expressed as mean ± SEM, and n indicates the 
number of slices or neurons. Data were compared with the Student's 
t-test and were considered significant if P < 0.05. 

Results 
Neurons (n = 27) recorded in the IC at 400-1200 I!m from the pia 
responded to intracellular depolarizing pulses by generating trains of 
action potentials with weak adaptation (Fig. 1, Ba), although a burst of 
two-three action potentials with intervals < 6 ms could occur at pulse 
onset (asterisk); these cells were therefore classified as regularly spiking 
(McCormick et al., 1985). Neurobiotin-filled IC cells (n = 14/27) 
displayed pyramidal-like shape with a distinct apical dendrite directed 
towards the pia and extensive basal dendritic tree (Fig. 1, Bb). The 
fundamental electrophysiological properties of neurobiotin-filled and 
non-labelled cells were similar (P > 0.21), thus suggesting that the 
sampled neuronal populations exhibited comparable intrinsic physio
logical properties. By pooling the values obtained from labelled and 
unlabelled IC cells (n = 27), we found: (i) RMP = -74.2 ± 1.2 mV; 
(ii) apparent input resistance = 45.7 ± 2.5 Mn; (iii) action potential 
amplitude = 94.6 ± 2.7 mV; and (iv) action potential duration = 
1.7 ± 0.4 ms. 

A striking characteristic of the brain slices analysed in this study 
was the presence of synchronous field discharges that occurred 
spontaneously in 22 of 52 slices (duration = 2.3 ± 0.25 s; intervals 
of occurrence = 44.9 ± 6.3 s) or following electrical stimuli 

delivered in PC (response duration = 1.3 ± 0.2 s, n = 10) or IC 
(duration = 1.4 ± 0.1 s, n = 15) in all experiments (Fig. IC). 
Spontaneous events (duration = 1.7 ± 0.2 s; intervals of occur
rence = 84.1 ± 10.9 s; n = 6) were still present in IC after surgical 
cut from PC (not shown). Spontaneous and stimulus-induced events 
corresponded in IC cells to sustained intracellular depolarizations 
leading to repetitive action potential discharges (Fig. 1 C). Hyper
polarizing or depolarizing the neuron with steady current injection 
increased or decreased, respectively, the amplitude of these 
depolarizations (Figs le and 2A), thus suggesting that they were 
contributed by synaptic conductances. Moreover, bringing the 
membrane to depolarized levels disclosed hyperpolarizing potentials 
during the initial part of the response (Fig. 2A, arrows in -60 mV 
panel), while long-lasting (up to 4 s) hyperpolarizations terminated 
the intracellular events (Figs IC and 2A, asterisks). The rate of 
occurrence of the spontaneous events was not influenced by 
changing the RMP (not shown), further indicating that this activity 
was network driven. 

To determine the mechanisms underlying the occurrence of network 
discharges in the lC, we assessed the effects of the NMDA receptor 
antagonist CPP. As shown in Fig. 2B, CPP abolished the spontaneous 
activity in five experiments, while reducing the duration of the 
stimulus-induced events. This latter aspect was analysed in six 
additional slices that did not generate any spontaneous activity. 
Overall, the duration of the stimulus-induced responses was reduced 
by CPP to 18.3 ± 3.7% of that seen in control (n = 7), while only a 
depolarizing-hyperpolarizing potential sequence was observed in the 
remaining experiments (n = 6; Fig. 3A, +CPP). In addition, by 
changing the RMP we found that the polarity of the stimulus-induced 
intracellular response measured at a latency of about 50 ms inverted in 
polarity at -64.3 ± 2.9 mV (n = 8; Fig. 3, Bc), suggesting the 
participation of y-aminobutyric acid (GABA)A receptor-mediated 
conductances (CPP + CGP 55845; Fig. 3, Ba). 

To test this hypothesis, we bath-applied PHB, a drug that is known to 
enhance GABAA receptor-mediated mechanisms (Barker & McBumey, 
1979; Twyman et al., 1989). As iIlustrated in Fig. 3B, PHB produced a 
more negative reversaI potential (from -64.5 ± 6.4 mV to 
-69.4 ± 4.2 mV, n = 3) of the response induced by PC stimuli, but 
also decreased synaptic responsiveness, presumably via an interaction 
with excitatory glutamatergic processes. Therefore, to firmly establish 
the presence of GABAA receptor-mediated activity within the IC 
network we used focal stimuli during bath application of glutamatergic 
(CPP + CNQX) and GABAB (CGP 55845) receptor antagonists. Under 
these conditions, stimuli delivered close « 150 I!m) to the recorded cell 
induced at RMP a short-lasting depolarization inverting in polarity at 
-7\.6 ± 1.3 mV (n = 8; Fig. 3C). Moreover, further application of 
PHB caused a significant negative shift in its reversaI potential (from 
-69.3 ± 0.6 to -78.9 ± 2.2; n = 3; P < 0.05) along with a prolonga
tion ofthe response (Fig. 3C). Finally, we found that bath application of 
the GABAA receptor antagonist picrotoxin (50 I!M; n = 3) abolished 
the synaptic response induced by close electrical stimuli during 
application of glutamatergic and GABAB receptor antagonists (not 
shown). 

FIG. 1. (A) Drawing of the brain slice preparation used in this study, showing the position of recording and stimulating electrodes. Note that the agranular insular 
cortex (lC, arrow) was identified by taking the perirhinal fissure (asterisk) as point ofreference. The dotted line highlights the location of the eut used to isolate the le 
from the perirhinal cortex (PC). (8) Responses to the injection of pulses of hyperpolarizing (-0.6 and -0.2 nA) and depolarizing (0.2 nA) intracellular current (a) 
generated by an lC cell that was filled with neurobiotin (b); note that this cell generates rhythmic action potential firing while the asterisk identifies the first two action 
potentials that occurred at intervals < 6 ms. (C) Spontaneous and stimulus-induced activity recorded in the IC with intracellular and field potential recordings. The 
RMP of this neuron was -72 mV, while stimulation was delivered in the PC. Note that hyperpolarization of the neuronal membrane, through negative current 
injection, increases the amplitude of the depolarizing envelope and also terminates the intracellular discharge (asterisk) in the -72 m V sample. In this and following 
figures focal electrical stimuli are identified with triangles. 
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FIG. 2. (A) Field and intracellular characteristics of the responses recorded in the IC following single-shock stimuli delivered in the PC at RMP (-78 mV) and 
during injection ofdepolarizing (-60 mV) and hyperpolarizing (-90 mV) steady CUITent. Note that hyperpolarizing or depolarizing the neuron with steady CUITent 
injection increases or decreases, respectively, the amplitude of the stimulus-induced depolarizations. Note also in the -60 mV panel that depolarizing the neuron 
discloses hyperpolarizing potentials during the initial part of the intracellular response (arrows) as weil as a slow post-discharge hyperpolarization (asterisk). 
(B) Effects induced by the NMDA receptor antagonist 3,3-(2-carboxypiperazin-4-yl)-propyl-l-phosphonate (CPP) on the spontaneous and stimulus-induced 
discharges recorded in the IC. Stimuli were delivered in the IC. Note that CPP reversibly abolishes the spontaneous activity and reduces the duration of the stimulus
induced discharge. 

Discussion 

We have found here that the rat agranular le analysed with field 

potential and intracellular recordings in an in vitro slice preparation 
generates spontaneous or stimulus-induced synchronous events that 

are: (i) associated with synaptic depolarizations leading to sustained 
action potential firing; (ii) supported by NMDA receptor-mediated 

mechanisms; and (iii) accompanied by the activation of GABAA 

receptor-mediated, inhibitory conductances. These characteristics 

FIG. 3. Stimulus-induced responses recorded in control ACSF and following bath application of NMDA and non-NMDA glutamatergic receptor antagonists. 
(A) 3,3-(2-carboxypiperazin-4-yl)-Propyl-l-phosphonate (CPP) blocks the stimulus-induced discharge, thus revealing a depolarizing postsynaptic response with 
latency similar to that seen under control. (B) Effects induced by changing the membrane potential (V m) with CUITent injection on the polarity of the synaptic 
responses induced by PC stimulation during CPP + (3-aminopropyl)(diethoxymethyl)phosphinic acid (CGP 55845) (Control) and CPP + CGP 55845 + pheno
barbital (PHB). Raw data are shown in (a); note in (b) that the reversai points obtained by measuring the response amplitude (calculated at ~ 55 ms after the 
stimulus) were -64 mV (CPP + CGP 55845) and -70 mV (CPP + CGP 35348 + PHB). (C) Responses induced by focal IC stimulation during application of 
medium containing CPP + 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) + CGP 55845 (Control) and CPP + CNQX + CGP 55845 + PHB. Raw data are 
illustrated in (a), while in (b) normalized intracellular traces obtained under both conditions are superimposed; note that PHB (red traces) causes an increase in 
response duration. A plot ofthe amplitude of the stimulus-induced responses recorded at different membrane potentials (V m> is shown in (c). Note that reversai points 
of -68 m V and -78 m V occur during control and PHB conditions, respectively. The amplitude of response was assessed at 17 ms after stimulus artefact. 
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suggest that the agranular IC is 'hyperexcitable' as compared with 
limbic or neocortical networks maintained in vitro in normal ACSF, as 

cells in these structures rarely generate spontaneous activity and 
respond to stimuli with excitatory postsynaptic potentials-single 
action potentials (Jones & Lambert, 1990; Schwartzkroin, 1975; 
Connors et al., 1982; Martina et al., 2001). We have also established 
that the IC cells recorded intracellularly were regularly firing and 
pyramidal in shape when labelled with neurobiotin. 

NMDA receptors play a unique role in the occurrence of 
spontaneous and stimulus-induced discharges in the IC. lndeed, at 

the best of our knowledge, these data are the first to identify an 
essential role for NMDA receptors in the generation of spontaneous 
network activity in brain slices bathed in normal ACSF. This evidence 
may imply that Mg2+ exerts a reduced control on NMDA receptor 
channels in the agranular IC. NMDA receptors are indeed known to 
contribute to epileptogenesis and represent a target for antiepileptic 
drug therapy (Rogawski, 1998). In addition, the trigger for the NMDA 
receptor-mediated events identified in IC may result from mixed non
NMDA and GABAA receptor-mediated conductances. The latter view 

is further reinforced by the sensitivity of the stimulus-induced 
response to application of the barbituate PHB (Nicoll et al., 1975; 
Barker & McBumey, 1979; Twyman et al., 1989). The presence of 
inhibitory conductances during the activity recorded in IC slices is in 
line with evidence obtained from epileptic hurrian brain tissue 
indicating that spontaneous inhibitory potentials can be sufficiently 
synchronous to support field potential discharges (Kohling et al., 

1998; Cohen et al., 2002). 
In conclusion, our data point at a powerful NMDA receptor

mediated mechanism implementing network hyperexcitability in rat 
agranular IC. These findings may be relevant for understanding the 
role of the IC in epileptic disorders (Ferland et al., 1998; lsnard et al., 
2000, 2004; Kodama et al., 2001; Bouilleret et al., 2002) and in 
central pain (Frot & Mauguière, 2003; Jasmin et al., 2003, 2004). 
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