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ABSTRACT 

"Involvement of tyrosine phosphatas es in Leishmania düferentiation and 

virulence". PhD thesis (2007). 

Mirna Nascimento. Department of Microbiology & Immunology. McGill 

University, Montreal, Quebec. 

Leishmania protozoan parasites, the causative agent of leishmaniasis, a disease 

endeITÙC in more than 80 countries, undergo two main developmental stages during its 

life cycle: the extracellular flagellated promastigote residing in the midgut of the 

sandfly vector and the obligate intracellular amastigotes which multiply in the 

phagolysosome of infected macrophages within the mammalian host. The 

differentiation pro cess from promastigote to amastigote allows Leishmania parasites 

to adapt to different environments and is essential for parasite proliferation and 

survival. However, the molecular events that regulate this process are not weIl 

understood. 

In higher eukaryotes, cellular proliferation, differentiation and function are 

govemed largely by protein phosphorylation, which is controlled by protein kinases 

and phosphatases. The research described in this thesis has investigated the role of 

protein tyrosine phosphatase in controlling the differentiation and proliferation of the 

Leishmania pathogen in different life cycle stages, by analogy to what happens in 

higher eukaryotes. The focus was on protein phosphatases because in general, there 

are fewer phosphatases than kinases in the eukaryotic cells and therefore there is less 

likelihood of redundancy under conditions where it is possible to genetically develop 

mutants in phosphatase genes. 
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By undertaking a predominantly genetic approach, we show the protein 

tyrosine phosphatase may play a role in L. donovani differentiation and is clearly 

required for parasite virulence as defined by survival in the mammalian host. 

The results from this study suggest that Leishmania PTP 1 represents a 

potential drug target. However it is also revealed that the overall three dimensional 

structure of the active site of Leishmania PTPl is very similar to the human PTPlB 

arguing that it may be difficult to develop parasite specifie inhibitors. Taken together 

this study represents the first genetic analysis of a key regulatory gene in Leishmania, 

which establishes the foundation for future more biochemical approaches to study 

protein phosphorylation in Leishmania. 
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Résumé 

Ph.D Mirna N ascimento Microbiologie et Immunologie 

La Leishmaniose est une maladie endémique dans plus de 80 pays et met 

environ 350 millions de personnes en danger autour du monde. La maladie est 

définie par le parasite protozoaire Leishmania dont le cycle de vie présente deux 

grandes étapes. Les promastigotes extracellulaires, qui sont flagellées et qui résident 

dans la région digestive du vecteur la mouche des sables, et les amastigotes 

intracellulaires qui se multiplient dans les phagolysosomes des macrophages infectés 

de l'hôte mammifère. Le procédé de différentiation du promastigote à l'amastigote 

permet au parasite Leishmania de s'adapter aux différents environnements, un 

mécanisme essentiel à sa survie et prolifération. Cependant, les événements 

moléculaires qui règlent ce processus ne sont pas bien compris. 

Chez les eucaryotes de niveau plus élevé, la prolifération et différentiation 

sont en grande partie déterminées par la phosphorylation de protéines, ce qui à son 

tour est commandée par les kinases et phosphatases de protéines. La recherche 

décrite dans cette thèse étudie le rôle de la Tyrosine phosphatase qui commande la 

différentiation et prolifération du pathogène Leishmania pendant les différentes 

étapes de son cycle de vie. Cette étude a été réalisée en comparant ces événements 

avec ceux se produisant chez les eucaryotes supérieurs. L'emphase a été mise sur les 

phosphatas es des protéines car, en général, il y a moins de phosphatases que de 

kinases dans les cellules eucaryotiques. Etant donné leur faible nombre, il y a moins 

de risques de redondance de fonction, ce qui facilite la création de différentes mutants 

de gènes de phosphatases. 

IV 



En entreprenant une approche principalement génétique, nous démontrons que 

la tyrosine phosphatase a un rôle important dans la différentiation de L. donovani. De 

plus, ce processus de différentiation est nécessaire pour la virulence du parasite et par 

le fait même pour sa survie dans l'hôte mammifère. 

Les résultats de cette étude suggèrent que Leishmania PTP 1 pourrait 

représenter une cible potentielle pour le développement d'un médicament. Par 

contre, nous indiquons également que la structure tridimensionnelle globale du site 

actif de Leishmania PTPl est très semblable au PTPIB humain, ce qui pourrait 

rendre difficile le développement d'inhibiteurs parasite-spécifiques. De façon 

générale, cette étude représente la première analyse génétique d'une enzyme de 

régulation clé de Leishmania, ce qui établit une base important pour les futures études 

biochimiques de la phosphorylation des protéines chez Leishmania. 
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CONTRIBUTIONS TO ORIGINAL SCIENTIFIC KNOWLEDGE 

1. This research established that expression of the Heterologous protein tyrosine 

phosphatase 1 B in L. donovani promastigotes mediates partial differentiation of these 

parasites towards the amastigote stage and increases infection levels in vivo and in 

vitro. 

2. This research demonstrated that inhibition of protein tyrosine kinases in 

promastigotes results in partial differentiation towards amastigotes and increased 

virulence. 

3. This research identified the Leishmania major homologue to human PTPIB, 

the Leishmania PTP 1 enzyme (LPTP 1), and sequenced the L. donovani PTP 1 gene. 

4. This research confirmed the activity of the L. major PTPl gene product. 

5. This research demonstrates the role of the Leishmania PTPl enzyme in the 

parasite life cycle, by showing mutant parasites are able to proliferate as 

promastigotes but were poorly infective as amastigotes in BALB/c mice. This 

confirmed the importance of this enzyme for the ability of the parasite to survive in 

the mammalian host. 
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6. This research revealed that although Leishmania PTPl represents a potential 

drug target because of its importance for survival in the mammalian host, it's active 

site is structurally very similar to the human PTPIB enzyme suggesting it may be 

difficult to identify parasite specifie PTPl inhibitors. 
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CHAPTER 1: Introduction 
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A. LEISHMANIA 

Leishmaniasis represents a collection of diseases with clinical diversity that 

mostly afflicts economically less privileged individuals throughout the world 

(approximately 80% of the two million new cases/year) (Davies et al., 2003). 

According to the World Health Organization (WHO), leishmaniasis is an emergent 

and uncontrolled disease (Murray et al., 2005) and is therefore considered one of the 

most relevant parasitic infectious diseases. Leishmania spp., the causative agent of 

leishmaniasis, is a unicellular eukaryotic organism with a dimorphic life cycle that 

alternates between its insect vector and the mammalian host, where it causes a 

spectrum of clinical manifestations. Considered a neglected disease, recent 

discoveries and advances in the research studies of leishmaniasis bring hope that 

more attention and funding will be given to facilitate prevention, diagnosis, treatment 

and vaccine development against this destructive disease. 

Infection and Pathogenicity 

Infection with the protozoan flagellated parasites belonging to the Genus 

Leishmania, Family Trypanosomatidae and Order Kinetoplastida, results in the 

spectral disease leishmaniasis, which is characterized by a multitude of clinical forms 

in humans that are mainly related to the species of parasites. Leishmaniasis is caused 

by 20 different species of human pathogenic Leishmania spp. transmitted through the 

bite of infected female phlebotomine sandfly vectors (reviewed in Desjeux, 2004a). 

The Trypanosomatidae family diverged early in eukaryotic evolution and 
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trypanosomatids encompass numerous protozoan genera. Members of this order are 

eukaryotes and exhibit usual features such as the presence of a nucleus delimited by a 

nuclear membrane, and organelles such as the endoplasmic reticulum, the golgi 

apparatus, the mitochondrion, among others. However, sorne organelles have unique 

characteristics: for example, the mitochondria is present as a single unit per cell, is 

large and elongated, and its whole DNA content is condensed into a sub-structure 

called the kinetoplast, hence the name of this order (reviewed in Bastin et al, 2000). 

The kinetoplast is a specialized region of the mitochondrion (Fig. 1) rich in small 

circular DNA molecules (kDNA) containing tens of maxicircles and thousands of 

interlocked minicircles into a single network in each cell and is the site of RNA 

editing (reviewed in Lukes et al., 2002). 

Different species of Leishmania cause distinct forms of the disease, which 

depends on properties of the parasite like temperature sensitivity, tissue tropism, 

ability to evade the immune system and chronic persistence in the host. Development 

of leishmaniasis is also dependant on the immunological status of the patient 

(reviewed in Murray, 2005). Clinical forms appear as visceral, mucocutaneous and 

cutaneous leishmaniasis. Visceral leishmaniasis (VL), which is fatal if not treated, 

involves the entire reticuloendothelial system and is caused by species of the L. 

donovani complex (L. donovani, L. infantum and L. chagasi). Mucocutaneous 

leishmaniasis (MCL), a mutilating and disfiguring disease caused mainly by L. 

braziliensis, can lead to a great psychological trauma in inflicted patients and creates 

social and aesthetic stigma. Cutaneous leishmaniasis (CL), caused by L. major, L. 

tropica and L. mexicana, among others, may appear as multiple skin lesions (diffuse 
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type) in individuals with defective cell-mediated immune response or as single 

(localized) lesions that can heal spontaneously (reviewed in Desjeux, 2004b). 

CL usually appears two to three weeks after the bite of the infected sand fly as 

a small papule on the skin. This lesion usually grows slowly, often becomes 

ulcerated and can lead to the development of secondary infections (reviewed in 

Matlashewski, 2001). Moreover, diffuse lesions, characterized by disseminated 

nodules similar to lepromatous leprosy, may develop and are caused by L. mexicana, 

L. amazonensis and L. aethiopica infections. Lesions may also appear in the oral and 

nasopharyngeal mucosa if the species involved have tropism to mucocutaneous 

membranes, like L. braziliensis (reviewed in Desjeux 2004b). Similar to CL, VL 

begins with a nodule at the site of the insect bite. This lesion rarely ulcerates and 

often disappears, but signs of systemic disease like fever, weight loss, weakness, 

hepatospienomegaly, Iymphadenopathy, anemia, and leucopenia appear. In this form 

of the disease, parasites invade internaI organs (liver, spleen, bone marrow, and 

lymph nodes) and attack the reticuloendothelial cells, wherein they muitiply and 

eventually burst those cell types; and this infection is fatal if not treated (reviewed in 

Schwartz et al., 2006, Baron et al., fourth edition, 1996). 

Classification 

Systematic classification of Leishmania species has divided them into Old 

World species, whose main examples for causing CL are Leishmania tropica, L. 

major, and L. aethiopica (causing oriental sore) and for VL, L. donovani and L 
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infantum. These species cause disease in the Middle East, Africa, southem Europe 

and Asia. New World species, found throughout Central and South America and 

Southem USA, which cause CL are L. mexicana (chiclero ulcer), L. amazonensis, L. 

peruviana (cutaneous disease locally known as Uta), L. braziliensis (causing MCL 

also known as espundia), L. panamensis, L. guyanensis (causing dennal 

leishmaniasis), while L. chagasi and L. infantum, which are considered identical, are 

known to cause VL (Guerin et al., 2002, Baron et al., fourth edition, 1996) (Table 1). 

Leishmania species are still further divided into two sub-genera, Leishmania (present 

both in the Old World and the New World) and Viannia (New World only), according 

to their development in the phlebotomine sandfly digestive tract (Table 1). Members 

of the Leishmania subgenus such as Leishmania (Leishmania) major and L. 

(Leishmania) donovani grow at the pyloric (foregut) and midgut regions, while 

Viannia species grow at the hindgut region, where they attach by flagellar 

hemidesmosomes to prevent their loss during excretion of blood meal, and later 

migrate to the midgut and foregut. Examples of the latter are L. (Viannia) braziliensis 

and L. (Viannia) panamensis. Despite this division, biochemical and molecular 

criteria are also used to differentiate Leishmania parasites according to the presence 

of specific markers. Clinical and morphological criteria are used alongside 

immunoreaction with monoclonal antibodies, and biochemical analyses (zymodeme, 

restriction enzymes, DNA hybridization, isoenzymatic profiles and PCR-based 

techniques) for an accurate positioning of species (reviewed in Correa et al, 2005). 
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Life cycle 

Leishmania parasites have a digenetic life cycle (Fig. 2), altemating between 

two different morphological and developmental forms (Fig. 1): the intracellular and 

apparently aflagellated round amastigotes, which actually present a very short 

flagellum limited to the flagellar pocket, which is an invagination of the plasma 

membrane where the flagellum emerges from the cell body (Overath et al., 1997). 

Amastigotes have a diameter of 2-6 Ilm and are found within the phagolysosome 

compartment (or the parasitophorous vacuole) of infected macrophages of the 

mammalian host (Fig. 1). The motile flagellated procyclic promastigote form is 

present in the alimentary tract of the invertebrate dipteran vector, the sandfly. They 

have a long and slender body of approximately 15-30llm by 2-31lm (Fig. 1). The 

procyclic forms undergo intense repli cation and become attached to the epithelial 

midgut of the insect vector (reviewed in Sacks and Karnhawi, 2001). The flagellum 

is considered a functional organelle since it is involved in the parasite's motility and 

attachment to insect-specific tissues and it may also be involved in signaling via its 

action as an environmental sensor (reviewed in Bastin et al. 2000). Following 

repli cation, procyclics undergo another developmental transition, transforming into 

metacyclic promastigotes (Fig. 2), which represent the infective stage for the 

mammalian host. These Leishmania developmental stages express different 

molecules and markers and their surface is coated by stage-specific surface 

glycocalyxes. The cell surface of promastigotes contains a thick and dense 

glycocalyx, whose main components are the surface glycoconjugate termed 

lipophosphoglycan (LPG), GPI-anchored proteins and free 
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glycoinositolphospholipids (GIPLs), which are not linked to proteins; LPG re­

structure and re-organization occur during metacyclogenesis and seem to be very 

important for the parasite infectivity (reviewed in Naderer et al., 2004). Amastigotes 

dramatically down-regulate LPG expression and hence lack a surface glycocalyx, but 

nonetheless they seem to be coated with GIPLs and host glycosphingolipids. GPI­

anchored proteins, like the surface zinc metalloprotease gp63, also follow this pattern 

of expression and are downregulated once promastigotes differentiate into the 

amastigote stage in the mammalian host (reviewed in Naderer et al., 2004). 

Transmission of leishmaniasis occurs through the bite of an infected sandfly 

of the genera Phlebotomus (for Old World species) or Lutzomya (New World species) 

(Fig. 2). Female sandflies (Phlebotomus and Lutzomyia spp) become infected when 

they take up blood from infected human hosts (anthroponoses) or terrestrial mammals 

(zoonoses) during its bloodmeal (Desjeux, 2004b). Regarding zoonoses, a number of 

reservoir hosts are involved in the maintenance of Leishmania in nature, varying from 

domestic to wild mammals. The reservoirs for wild zoonotic CL can be from 

different orders, which include rodents, hyraxes, marsurpials and edentates, while 

dogs are considered important reservoirs for species that have a peri-domestic or 

domestic transmission (reviewed in Farell et al., 2002- vol. 4). When a female 

sandfly takes a blood meal from an infected mammalian host, amastigotes are 

ingested and once in the insect digestive tract they transform and replicate as 

promastigotes. During the next bloodmeal, infective metacyc1ic promastigotes 

present in the proboscis (mouthpart) are regurgitated and injected into the skin of the 

mammalian hosto At this point they are phagocytosed by cells of the mononuc1ear 
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phagocytic system, mostly macrophages, and complete their life cycle by 

transforming back into amastigote and multiplying by mitosis (reviewed in Farell et 

al., 2002- vol. 4) (Fig. 2). Vector competence in most species seems to be controlled 

by the parasite's ability to resist proteolytic enzymes during the bloodmeaI digestion 

and avoid excretion by binding to the midgut. Binding to the midgut epithelium 

occurs through lectin-like interactions and is mediated by the promastigote 

polymorphic LPG, whose oligosaccharide side chains differ between species 

(reviewed in Naderer et al., 2004). From the insect's point ofview, the protein from 

the family of galectins PpGaIec expressed in the midgut was shown to be critical for 

this sandfly-Leishmania association, survival of parasite in the digestive tract and 

therefore for Leishmania transmission (Beverley and Dobson, 2004). OveraII, risk of 

acquiring infection in endemic areas is determined by the occurrence of local sandfly 

populations and by the presence of infected animaIs or a human reservoir (reviewed 

in Murray et al., 2005). 

Incidence and Geographie Distribution 

The global prevalence of leishmaniasis is estimated at approximately 12 

million or more infected people and 2 million new cases affecting over 88 countries 

in every continent, except Oceania and Antarctica (reviewed in Desjeux, 2004b) (Fig. 

3). It is estimated that 1-1.5 million new cases ofeL and 500.000 cases ofVL occur 

every year, and that a population of350 million people around the world are at risk of 

infection, although these numbers likely underestimate the reaIity due to a number of 
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limiting factors including undiagnosed/misdiagnosed or unreported cases (Murray et 

al., 2005, Desjeux, 2004a). Ever-increasing incidence rates have drawn more 

attention to this disease and are raising great concem among the medical community, 

since leishmaniasis poses as a major public health problem in many countries. This 

amplification in incidence figures in recent years is largely due to population 

movement either with a significant increase in international traveling to affected areas 

and migration from rural to urban regions. In addition, factors including 

environmental changes (e.g. deforestation and global warming), lack of efficient 

vector control and an effective vaccine, Leishmania resistance to treatment, or 

individual risk factors such as RIV infection and malnutrition contribute to a higher 

incidence (Desjeux, 2004a,b). Another great concem is that the increasing numbers 

of patients co-infected with RIV are a potential source for drug resistance emergence. 

These patients have a high parasite burden associated with a weak immune response 

and respond to treatment slowly, which could lead to drug-resistance. Furthermore, 

identification of transmission via needle sharing in these patients is another route for 

the spread of resistant parasites (reviewed in Croft et al., 2006). Ninety per cent of 

those affected by VL live in India, Bangladesh, Nepal, Brazil and Sudan while 90% 

of CL cases occur in Afghanistan, Pero, Brazil, Syria, Algeria, Iran and Saudi Arabia 

(Fig. 3). Even though a great number of countries that have been affected by this 

disease, including the United States (canine leishmaniasis) and Southem European 

countries from the Mediterranean basin, 72 of those are listed as underdeveloped or 

developing countries (reviewed in Desjeux, 2004b). Additionally, those more likely 

to be infected are the poor population living in remote areas far from health care 
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centers. Therefore, prospects for financial return following the development of an 

antileishmanial drug are unlikely, which is not appealing to major pharmaceutical 

companies. As a result, despite all these striking figures of disease incidence and 

mortality, leishmaniasis still remains a neglected disease (WHO, 2005 

www.who.intlleishmaniasislburdenlmagnitude, reviewed in Murray et al. 2005, Hailu 

et al., 2005, Desjeux, 2004a). 

Measures to control and prevent leishmaniasis vary according to areas 

affected, but they traditionally represent disease treatment, vector control with the use 

of insecticide-treated bed nets or insecticide house spraying, and animal reservoir 

control (in cases of zoonosis) with use of impregnated dog collars or vaccination of 

dogs (reviewed in Murray et al., 2005, Desjeux, 2004b). However, these methods are 

expensive and difficult to sustain for prolonged periods. 

Immunology of Leishmania infections 

The immune response in Leishmania infections is one of the main components 

involved in the disease outcome and pathogenesis, since it dictates the resolution of 

the infection or susceptibility to the parasite. Therefore the role of cytokines and the 

type of immune response they generate have been extensively investigated. 

Experimental infections with L. major have created the well documented and 

established ThllTh2 paradigm associated with resistance and susceptibility to the 

disease. The murine model has been of great importance regarding the understanding 

of in vivo mechanisms of T cell protection and it has been widely used to characterize 
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the immune response against Leishmania. There are two functionally and 

phenotypically distinct subsets of CD4+ T cells, distinguishable by their cytokine 

pattern, namely the T helper cell type 1 (Thl) and type 2 (Th2). Classical 

experiments have showed that C57BL/6 mice infected with L. major develop a Thl 

type response with production of interleukin (IL)-12 that initially activates natural 

killer (NK) cells to produce interferon-gamma (lFN-y), and a polarization of naïve-T 

cells into Thl cells. This Thl bias is characteristic of cell-mediated immunity and is 

important against intracellular pathogens. IFN-y activated macrophages, in tum, 

pro duce turnor necrosis factor (TNP) and reactive nitrogen intermediates (RNIs), in 

particular nitric oxide (NO), by upregulation of inducible nitric oxide synthase 

(iNOs), enabling these mice to kill intracellular Leishmania, control the parasite 

infection and therefore become resistant to L. major by activation of CD4+ and CD8+ 

T cells (reviewed in Murray et al., 2005, Sacks and Noben-Trauth, 2002). 

Conversely, BALB/c mice mount a Th2 response with expression of IL-4, among 

other cytokines, that counter-regulate the Thl response. This has a powerful 

deactivating effect on infected cells and favours the development of a humoral 

response by inhibiting IFN-y secretion. Consequently, these mice fail to control the 

infection and develop progressive lesions and systemic disease and are considered 

susceptible to L. major. Studies in IL-13 deficient and transgenic mice have shown 

that this cytokine also has a role in Leishmania susceptibility, as it seems to have 

similar properties to IL-4 (Matthews et al., 2000), and IL-IO-deficient BALB/c mice 

are markedly more resistant to L. major infection than wild-type mice, indicating a 

role for IL-lO in susceptibility (reviewed in Campos-Neto, 2005, Gumy et al., 2004, 
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Sacks and Noben-Trauth, 2002). AlI these studies show how important and relevant 

is the balance of the Th1/Th2 immune response in order to regulate the outcome of 

leishmaniasis. But is also important to keep in mind there are evolutionary 

divergences in distinct species of Leishmania causing significant differences in host­

parasite mechanisms that ultimately lead to different patterns of disease and different 

immune mechanisms that mediate curing or non-curing responses (reviewed in 

McMahon-Pratt and Alexander, 2004). 

Macrophage Entry 

In order to establish a successful infection, the ob1igate intracellular pathogen 

Leishmania needs to silently invade macrophage cells and circurnvent the host's 

immune response by keeping macrophage functions deactivated. Despite the fact 

macrophages have microbicidal properties, it is remarkable that Leishmania parasites 

can still invade and survive within these celIs. Molecules present on the parasite's 

surface or secreted by Leishmania have been linked to such invasion and evasion 

mechanisms (reviewed in Sacks and Karnhawi, 2001). Entry into macrophages is 

basically a passive process to the parasite, with uptake of both amastigote and 

promastigote forms facilitated by receptor-mediated endocytosis of the opsonized 

parasite (reviewed in Denkers and Butcher, 2005) and binding may involve serum 

factors, complement and sandfly saliva (reviewed in Titus et al., 2006 and in Farell et 

al., 2002- vol.4, Zer et al., 2001). Different species of Leishmania bind to 

complement receptors CR1/CR3, mannose-fucose receptor (MFR), fibronectin 

receptor (FnR) and a receptor for a non-enzymatic glycosylation end product (Chang 
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et al., 1990), due to the differences in surface molecule composition of each species 

(reviewed in Olivier et al., 2005). Amastigotes may also bind macrophages via a 

similar mechanism or through the Fc receptor and C-reactive protein receptor 

(Alexander et al., 1999). 

The most abundant component of the Leishmania promastigote cell surface is 

LPG (lipophosphoglycan), whose structure varies between Leishmania species and 

has been implicated in promastigote uptake and in protection from killing by 

macrophages (reviewed in Matlashewski, 2001). Another important surface molecule 

is the glycoprotein gp63, a zinc-dependent metalloprotease that is proposed to have 

an important role in parasite uptake, inhibition of complement-mediated lysis and 

parasite protection in the phagolysosome compartment (reviewed in Yao et al., 2003). 

Once inside the host ceIl, promastigotes prevent the induction of NO and of many 

cytokines and therefore inhibit macrophage functions that are important for an 

effective immune response to protect against leishmaniasis. This, in tum, allows the 

parasite to survive and multiply within macrophage phagolysosome compartment. 

Diagnosis and Treatments 

The severe pathologies that arise from leishmaniasis, which may ultimately 

lead to death of the patient, emphasize the need for an early diagnosis of Leishmania 

infections. Diagnostic methods for CL are based on direct microscopic visualization 

of the parasite from smears, scrapings or biopsies of lesions or indirectly by culturing 

material obtained from biopsies (reviewed in Schwartz et al., 2006). Direct 
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visualization of amastigotes after Giemsa staining is useful and fast. However, this 

process is a painful process to patients, identification of infected cells is difficult and 

sensitivity varies from 19 - 77 %. Indirect methods, on the other hand, require 

experience and technical skills to be properly performed and have 58 - 62 % 

sensitivity (reviewed in Schwartz et al., 2006, Desjeux, 2004b). However, a 

combination of both microscopy and culture methods increases the sensitivity to 

detect infection to over 85 % (reviewed in Murray et al., 2005). Another test that is 

positive in almost all patients with CL is the leishmanin skin or Montenegro test that 

measures Delayed type hypersensitivity (DTH) reactions to an intradermaI injection 

of a suspension of killed promastigotes. The DTH test is aIso an important 

instrument for epidemiologicaI and immunological studies, though it may yield a 

negative result in the beginning of an infection (reviewed in Schwartz et al., 2006, 

Manzur and ul Bari, 2006). For VL, serological tests such as the enzyme-linked 

immunoabsorbant assay (ELISA), direct agglutination test (DAT), the more recent 

fast agglutination-screen test (FAST) (Schoone et al., 2001) and indirect 

Immunofluorescence test (IF AT) are commonly used to detect antileishmaniaI 

antibodies. The use of the recombinant Leishmania antigen k39, a conserved 

amastigote epitope, in a dipstick system and urine antigen detection tests (latex 

agglutination) are currently under evaIuation as a diagnostic method for VL 

(reviewed in Hailu et al., 2005 and Murray et al., 2005). ParasitologicaI diagnostics 

rely on the demonstration of parasites in the spleen, bone marrow or lymph node 

aspirates. Despite the fact that these methods have an average of 95 % sensitivity, 
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they are quite invasive and potentially dangerous to patients (reviewed in Hailu et al., 

2005, Silva et al., 2005, Desjeux, 2004b, Guerin et al., 2002). 

Unfortunately, none of the diagnostic methods above are species-specific and 

the differentiation of species is a crucial step for appropriate treatment and prognosis 

determination. Detection of parasite DNA material by a molecular method such as 

PCR represents a more sensitive and powerful diagnostic approach (with the 

sensitivity to detect one single parasite or less). Diagnostic PCR can also be specifie 

for certain Leishmania species when primers for the conserved regions of the 

minicircle kinetoplast DNA (kDNA), which also posses a variable region, are used in 

amplifications (reviewed in Sundar and Rai, 2002a) or when species-specific primers 

based on single nucleotide polymorphism (SNP) are chosen (Zhang et al., 2006). 

However, diagnostic PCR is still an uncommon practice in remote places of 

developing countries where most of leishmaniasis cases OCCUf. Therefore, diagnostic 

methods that are simpler, quicker and more specifie are in great demand. 

Treatment 

Treatment of VL is limited and pentavalent antimonial drugs (Sb v), such as 

sodium stibogluconate (Pentostam) or meglumine antimoniate (Glucantime), have 

been the mainstay of therapy for about 60 years in most parts of the world. These 

agents are very toxic and can cause several side effects such as cardiotoxicity, nausea, 

abdominal pain and pancreatitis. The exact mechanism of action of Sb v still remains 

to be completely understood and reports show controversial results, although it is 

widely accepted that these pentavalent antimonials are ''prodrugs'' and need to be 
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reduced to their trivalent fonn SbIII
, by the parasite itself, to be effective (reviewed in 

Croft et al., 2006). The location and mechanisms of reduction, however, are not 

completely c1ear, but stage-specific reduction leading to amastigote susceptibility has 

been shown, whereas promastigotes do not seem to be affected (reviewed in Croft et 

al., 2006). Treatment with antimonial drugs has also been threatened by the 

emergence of parasite resistance. Pentamidine, the second line of treatment against 

VL, was considered an inadequate substitute for antimony because of great 

irreversible toxicity, such as renal failure, and the appearance of resistance cases, 

causing its use to be abandoned (Guerin et al., 2002). Amphotericin B (Fungizone) is 

an alternative choice and is currently considered a second-line drug for treatment. It 

is a polyene antibiotic used as an antifungal that is selectively targeted to the parasite 

due to its higher affinity for ergosterol in trypanosomatids compared to cholesterol in 

mammalian cells (reviewed in Croft et al., 2006). Amphotericin B then causes the 

fonnation of pores and leads to membrane penneability and killing of Leishmania 

(reviewed in Sundar and Rai, 2002b). Nevertheless, serious adverse reactions have 

also been reported in patients and other drawbacks inc1ude its high cost and need for 

hospitalization due to required infusions (reviewed in Murray et al., 2005, Hailu et 

al., 2005). The deve10pment of lipid-associated (liposome) fonnulations of 

amphotericin B (AmBisome), more efficient to target macrophages (possibly related 

to parasite load), allows it to be administered in a single dose and is better tolerated 

by patients, producing fewerside-effects (reviewed in Croft et al., 2006, Murray et al., 

2005, Guerin et al., 2002). The high costs of this effective drug still restrict its use in 

underdeveloped countries. Miltefosine is an alkylphosphocholine originally 
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developed as an anti-tumor agent and is the first and only oral drug effective against 

VL and is associated with moderate gastrointestinal side effects (reviewed in Berman 

et al., 2006, Desjeux, 2004a, Sundar and Rai, 2002b). Studies suggest that 

miltefosine triggers changes in the parasite associated with apoptosis such as cell 

shrinkage, DNA fragmentation and phosphatidylserine exposure (Paris et al., 2004). 

But it is an expensive and teratogenic drug and therefore cannot be used for women 

of childbearing age. In addition, there is a theoretical risk of developing resistance if 

not used in combination with other antileishmanial drugs due to its long half-life and 

consequently prolonged subtherapeutic levels in the blood (Berman et al., 2006). 

Paramomycin (also known as aminosidine) is an antibiotic of the aminoglycoside 

family that was shown to be highly effective against VL as a single agent or when 

used in combination with sodium stibogluconate (reviewed in Hailu et al., 2005), 

showing minimum toxicity and lower costs (Murray et al., 2005). Sitamaquine is a 

novel drug in the testing phase against leishmaniasis. It is an orally active 8-

aminoquinoline analog (lepidine) that has a broad-spectrum antiprotozoan activity, 

but its specifie mode of action is yet to be known (reviewed in Croft et al., 2006). 

This drug is in phase II trials and it has shown a cure rate in patients with VL of about 

80%. OveraIl, Sitamaquine was efficacious and generally weIl tolerated with few 

side effects; however, further tests are still needed in order to confirm drug toxicity in 

different organs (Wasanna et al., 2005). 

While lesions from CL can spontaneously self-cure, depending on different 

factors, treatment is recommended to accelerate cure, avoid scarring and prevent 

mucosal invasion. Treatment is also likely to be given for persistant, multiple or 
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larger cutaneous lesions (reviewed in Murray et al., 2005). The same drugs used for 

VL, such as amphotericin B and miltefosine, are used for cutaneous disease. Sb v is 

administered systemically for the treatment of CL but a prolonged treatment schedule 

is necessary for cases of mucocutaneous disease (MCL) (Schwartz et al., 2006). 

Local treatment is chosen instead of systemic modalities when lesions are smaller and 

there is no risk of MCL. For Old world CL species, intralesional antimony treatment 

is often used, although infiltrations are painful; topical formulations are also available 

but they need to penetrate into the dermis to be effective (reviewed in Schwartz et al., 

2006, Murray et al., 2005). 

Patients generally start to respond to treatment within 6 weeks for CL with 

noticible lesion healing and conditions often improve within 2 weeks for VL. But 

treatment failure (unresponsiveness) and relapse (reappearing of lesion) can occur in 

5-10% of treated case (Murray et al., 2005). When this happens, a second or third 

course of Sb v must be administered and often a combination therapy or a different 

treatment regimen is given to patients. RIV patientsalso present special problems 

since they respond slowly to treatment and relapse often occurs. 

Sorne immunointerventions have been used alone or in combination with 

traditional Sb v therapy in an attempt to activatelstimulate the immune system to 

produce a protective response against Leishmania parasites. The basis for 

immunotherapy cornes from the old practice of leishmanization, which is the 

inoculation of material from lesions to produce a smaller lesion and long-term 

immunity against subsequent infections. Different approaches have been tested 

experimentally with the use of killed promastigotes and adjuvants like BCG, use of 
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cytokines, such as IFN-y or immunomodulators (reviewed in Davies et al., 2003, Lee 

and Hasbun, 2003, Sundar and Rai, 2002). In one study, Imiquimod, which is an 

immune response modifier that can activate macrophages to release NO, was given 

locally as a cream in combination with standard meglutamine antimoniate in CL 

patients with prior unresponsiveness to Sb v alone and produced a 90% cure rate 

(Arevalo et al., 2001). A second study also demonstrated that topical Imiquimod 5% 

cream is a superior therapy to Sb v alone in the treatment of CL by reducing the time 

required to cure the disease and by improving scar quality (Miranda-Verastegui et al., 

2005). 

Drug resistance 

A major problem that has come up from the use of different drugs against 

leishmaniasis in the past 15 years is acquired parasite resistance, which has become a 

clinical threat. Sorne reasons for the emergence of drug resistance are misuse of the 

drugs, especially Sb v. In the case for the region of Bihar, India, drug misuse practices 

exposed the parasite to drug pressure and progressive tolerance was reached (Croft et 

al., 2006). The mechanisms by which Leishmania acquire resistance against 

antimonial drugs have been the focus of many research studies, even though results 

seem to be quite contradictory. In vitro studies show a decrease in the reduction of 

Sb v to SbIII in L. donovani amastigotes resistant to sodium stibogluconate (Shaked­

Mishan et al., 2003). A different study showed aquaglyceroporins mediate the uptake 

of SbIII and it has been suggested that a decrease in the expression of these molecules 

could be responsible for resistance. In support of this hypothesis, transfection of 
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vectors expressmg aquaglyceroporyns into resistant Leishmania renders them 

sensitive to that antimonial and a disruption of one of its alleles causes the cell to 

become resistant to SbIII (Gourbal et al., 2004). There have been no reports so far on 

the identification of a pump that may be responsible for drug efflux or its role in 

antimonial resistance (Croft et al., 2006). A couple of amphotericin B resistance 

cases in LeishmanialHIV co-infected patients have been reported. However studies 

on the mechanism of resistance were inconclusive and only in vitro studies showed 

that resistant promastigotes change their plasma membrane sterol to an ergosterol 

precursor (reviewed in Croft et al., 2006). In relation to paramomycin, no clinical 

cases of resistance have been reported and only one report of resistance in cultured 

promastigotes has been identified thus far. This case was related to decreased drug 

uptake with no enzymatic modification or mutations in Leishmania rRNA, which is 

the target in bacteria to prevent protein synthesis. However, in Leishmania, 

paramomycin treatment appears to affect mitochondrial ribosomes and induces 

respiratory dysfunction and mitochondrial membrane depolarization (reviewed m 

Croft et al, 2006). 

OveraIl, measures to prevent the potential spread of resistance are imperative. 

The development of new drugs is essential and must be complemented by an 

understanding of the mechanism of drug action, including both the identification of 

their intracellular targets and parasite mechanisms of defense. 
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Drug targets 

Currently, the main tool against leishmaniasis is phannacological treatment, 

since an effective vaccine has yet to leave the arena of clinical trials. The occurrence 

of parasite drug resistance makes crucial the development of new drugs and 

identification of their targets, as weIl as the minimization of treatment duration, costs 

and toxicity. The best approach for the development of novel drugs involves 

knowledge of parasite biology and rational design, such as targeting weIl­

characterized unique gene products essential for Leishmania survival in the 

mammalian host or gene products implicated in metabolic pathways specific to 

Leishmania. These essential pathogen proteins should be more resistant to changes 

through mutations due to their importance in function and therefore become attractive 

molecular targets. AdditionaIly, data coming from the completion of the L. major and 

L. infantum genome projects should facilitate this selection process. A recent analysis 

of the sequencing results from the Tritryp species (L. major, T. cruzi and T. brucei) 

indicates the apparent acquisition of bacterial enzymes, which gives advantages to 

parasites, are potential drug targets (Kissinger, 2006). Overall, a number of genes 

have been the focus of different studies and sorne will be discussed herein. 

Leishmania cathepsin L-like cysteine proteases (CP) have attracted sorne 

attention for the development of specific protease inhibitors because they play a key 

role in parasite infection. These enzymes exhibit stage-specificity with sorne being 

expressed in the infective metacyc1ic stage (CPB in L. chagasi and CPB1 and 2 in 

L.mexicana) and others in the amastigote stage (CPBs in L. mexicana and CPA in L. 

chagasi and L. donovani) (Denise et al., 2003) and they have been shown to be 
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involved in nutrition, host cell invasion and evasion and modulation of the host 

immune system (reviewed in Matlashewski, 2001, Frame et al. 2000). Macrophage 

and BALB/c murine mode1s infected with CPB mutant L. mexicana showed that 

promastigotes have reduced survival compared to wildtype, suggesting these enzymes 

are potential targets for antileishmanial drugs (Frame et al., 2000). 

Another molecule involved in Leishmania virulence is the elongation factor 

EF -1 a, required for protein synthesis and other important cell functions. N andan et 

al. (2002) demonstrated that Leishmania EF-1a is involved in the pathogenesis of L. 

donovani infections by binding and activating host SHP-1 phosphatase and 

consequently impairing macrophage functions important to pathogen elimination, 

such as iNOs expression. Even though the degree of homology between the 

Leishmania and human EF-1a is very high (82%), sequence differences have been 

found, which account for structural differences that may be involved in the host­

pathogen interaction, establishing a proof-of-principle for a specific drug target 

(Cherkasov et al., 2005). 

It has been recently suggested that destabilizing the structure of oligomerized 

proteins by changing their quaternary structure and preventing protein-protein 

interactions of important biological regulators might be a key mechanism to 

inactivate enzymes. GDP-mannose pyrophosphorylase (GDP-MP) is an enzyme 

responsible for mannose metabolism in Leishmania by catalyzing the conversion of 

mannose 1-phosphate to GDP-mannose. This molecule, in turn, is used as a building 

block for glycoconjugates, critically important for virulence and found in the outer 

glycocalyx of the parasite (Davies et al., 2004). The self-association and consequent 
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activation of GDP-mannose pyrophosphorylase has been shown in a recent study 

(Davies et al., 2004) and disruption of the GDP-MP oligomeric state might inhibit the 

activity of fuis important enzyme in Leishmania, providing insight into the design of 

nove1 drugs (Perugini et al., 2005). 

DNA topoisomerases are ubiquitous enzymes that play pivotal roles in cellular 

processes mainly related to DNA topology, organization and metabolism, namely 

replication, transcription, recombination and repair are targets for antitumor and 

antimicrobial drugs (reviewed in Das et al., 2006). Following the same rationale, 

these enzymes could also be targeted in Leishmania parasites. Studies have shown 

these Leishmania enzymes are sufficiently distinct from their human counterparts, to 

allow differential chemical targeting (Das et al., 2006). There are three different 

categories of DNA topoisomerases: type lA, lB and type II. Despite homology 

between trypanosomatid DNA topoisomerase and other eukaryotic type lB enzymes, 

Leishmania and Trypanosoma type 1 DNA topI differ structurally from all other 

eukaryotes: they are heterodimers, with each subunit (core and catalytic domain) 

being encoded by different genes located in different chromosomes, but once 

synthesized they associate with each other through protein-protein interaction and 

form an active heterodimeric enzyme (reviewed in Reguera et al., 2006, Das et al., 

2006). 

Genome content 

Leishmania parasites have a compact genome of approximately 35 Mb with 

60% of its content being composed of G+C rich sequences. Genome size was based 
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on Leishmania major-Friedlin (MHOMlIL/81/Friedlin) genome, the reference strain 

used in the Leishmania Genome Sequencing Project. Leishmania are diploid 

organisms, although sorne chromosomes are aneuploid, with 36 chromosome pairs, in 

general, ranging in size from 0.28 to 2.8 Mb. Species of the new world have 34 or 35 

chromosomes, with chromosomes 8+29 and 20+36 fused in the L. mexicana group 

and 20+34 in the L. braziliensis group. But gene order and sequences are highly 

conserved among 30 different species (Ivens et al. 2005): the Leishmania karyotype 

seems to be conserved among Leishmania strains and species overall, although 

observations of a small percentage of distinct patterns due to modest chromosome 

size polymorphisms among strains and greater size polymorphisms among species 

have been demonstrated (reviewed in Sunkin et al, 2000). 

Not much is known about transcription initiation in trypanosomatids, and only 

a few promoters have been examined in regards to their function (Ivens et al, 2005). 

Promoters for protein-encoding genes (RNA polymerase II promoters) have not been 

identified yet (Clayton, 2002), with the only exception being the SL RNA gene 

promoter dependent on RNA pol II (reviewed in Palenchar and Bellofatto, 2006). 

Genes in Leishmania chromosomes are organized into large polycistronic units and 

are characterized by a unique arrangement of directional gene c1usters (DGC), 

oriented in such a way that their rnRNAs are transcribed into long polycistronic 

rnRNAs either convergently from or divergently toward the telomeres (Ivens et al, 

2005, Laurentino et al, 2004). The L. major genome is organized into 133 gene 

c1usters of tens to hundreds of protein-coding genes, with unrelated predicted 

function, on the same DNA strand (Ivens et al, 2005). Furthermore, Leishmania 
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genes are known to be mostly free of introns and constitute a high-density genome, 

with 45% ofwhich estimated to be protein coding regions (Laurentino et al, 2004). 

Trypanosomatids have three polymerases with typical functions: RNA 

polymerase (RNA pol) I transcribes rRNA; RNA pol II transcribes protein-enconding 

genes from rnRNAs and RNA pol III transcribes small RNAs (tRNAs and snRNAs); 

RNA poIs I and II are also involved in polycistronic transcription (reviewed in 

Palenchar and Bellofatto, 2006 and Beverley, 2003). Sorne studies suggest that 

polycistronic transcription by RNA pol II initiates bidirectionally within the divergent 

strand-switch (STS) region, and terminates within the convergent STS region, which 

usually contains tRNA, rRNA andlor snRNA genes (reviewed in Palenchar and 

Bellofatto, 2006, Ivens et al., 2005). Sorne long DOCs hold intervening tRNA and 

snRNA, which is suggestive of more than one polycistron (Ivens et al., 2005). As 

mentioned above, transcription proceeds towards the telomeres in most cases. 

Findings indicate that trypansomatid genomes, Leishmania inc1uded, is 

disproportionately high in the number of proteins with a zinc-finger domain. This 

fact, along with the presence of polycistronic gene organization and paucity of both 

RNA pol II and transcriptional regulation are consistent with posttranscriptional 

control mechanisms responsible for the control of gene expression (Ivens et al., 

2005). rnRNA processing is also carried out in a distinctive manner to generate 

mature rnRNAs with trans-splicing of a spliced-Ieader (mini-exon) RNA to the 5' of 

almost aIl rnRNA and with polyadenylation, whose site is determined by trans­

splicing of the downstream mRNA (reviewed in Beverley, 2003 and Shapira et al., 

2001). Cis-splicing is a rare event in trypanosomatids, but both cis- and trans-
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splicing seem to be catalysed by the spliceosome (Ivens et al., 2005). At the 

postranslational level, protein modification seems to engage typical eukaryotic 

processes, namely, phosphorylation, glycosylation and lipidation (Ivens et al., 2005). 

Nevertheless, several essential modifications that facilitate membrane attachment 

and/or protein-protein interactions have also been characterized in trypanosomatids 

like glycosylphosphatidylinositol (GPD-anchor addition, acylation and prenylations 

(Ivens et al, 2005). 

Trypanosomatids possess a two-unit genome: besides their genomic DNA, 

trypanosomatids also have the mitochondrial DNA in the kinetoplast, namely the 

kDNA. These two genomes are replicated periodically in the cell cycle and data from 

timing of the cell cycle suggests DNA synthesis is triggered in the mitochondrion at 

the same time as in the nucleus, although segregation of the kDNA occurs before 

separation of the replicated nuclear genome at mitosis (reviewed in Gull, 2001). The 

kDNA is made up of two types of circular DNA: the network of several thousands of 

concatenated minicircles, each 0.5-2.5 kb in size, depending on the species, and 20-30 

maxicirc1es which contain genetic infonnation equivalent to a nonnal mitochondrial 

genome, with sequences that hybridize with mitochondrial gene sequences from other 

organisms (genes for mitochondrial proteins), and mitochondrial ribosomal RNAs. 

The minicirc1es in this organelle are responsible for encoding guide RNAs that have 

complementary regions to the edited rnRNA segments involved in mitochondrial 

RNA editing, which results in the insertion or deletion of uridine residues in the 

maxicirc1e transcripts to create functional open reading frames (ORFs) (reviewed in 

Costa-Pinto et al., 2001, Morris et al, 2001, Weissmann et al, 1990). 

26 



Post-transcriptional Control 

In trypanosomatids, mature mRNAs are fonned by processing of polycistronic 

pre-rnRNA units transcribed by RNA polymerase II, as discussed above. No 

evidence for the transcriptional activation of developmentally regulated genes has 

been found to date, and mRNA levels are exclusively detennined by post­

transcriptional mechanisms involving different processing of the polycystronic 

transcript rnRNA and rnRNA stability (reviewed in Shapira et al., 2001). Maturation 

of mRNAs involves two processing reactions, namely trans-splicing of a capped 39-

nucleotide (nt) miniexon near the 5' end of the coding sequence and specifie 

polyadenylation. Although trans-splicing precedes polyadenylation, the two 

mechanisms are coupled (Ullu et al., 1993) and polyadenylation occurs at a fixed 

distance of -250 nt upstream of the trans-splicing site, with polypyrimidine tracks 

and AG splice accepting sites serving as signal for these two mechanisms (reviewed 

in Clayton, 2002, Shapira et al., 2001, LeBowitz et al., 1993). Not much is known 

about control elements in Leishmania but the regulatory needs during their life cycle 

must be accompli shed through downstream mechanisms that involve RNA and 

protein regulatory processes (reviewed in Beverley, 2002). That, in turn, could affect 

gene expression, mRNA stability or translation. Different studies indicate that 

elements in the 3' unstranslated region (UTR) and intergenic regions of rnRNAs are 

involved in both altered rnRNA stability and rnRNA translation (McNicoll et al., 

2005, Larreta et al., 2004, Zilka et al., 2001, Charest et al., 1996). 
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Vaccines 

Despite the fact that leishmaniasis is one of the most significant parasitic 

diseases and is considered a category 1 disease (emerging and uncontrolled) by the 

WHO (Murray et al., 2005), there are currently no available effective vaccines for 

human use. Leishmaniasis may be a preventable disease by vaccination as it is 

known that individuals affected with primary cutaneous disease are protected from re­

infection and are afforded life-Iong immunity. Experimentally, the development of 

CD4 Thl and cell-mediated responses are the main players in mice resistance. 

However, in vaccines tested so far (animal models or clinical trials), a polarized Thl 

response showed protection but rarely gave long-term immunity or complete 

protection against Leishmania (reviewed in Scott et al., 2004, Davies et al., 2003). It 

is possible that the lasting immunity observed in previously infected individuals is 

due to the presence of a persistent low number of parasites and inability to reach 

sterile immunity, even after "cure" (reviewed Sacks and Noben-Trauth, 2005). 

Therefore, the solution for this impasse may come from a better understanding on 

how memory T cells develop and function to help comprehend this issue (reviewed in 

Scott et al., 2004). A second matter to be taken into consideration is the fact that the 

immune response differs according to the species of Leishmania involved in the 

infection, suggesting that the requirements for vaccines intended to protect from CL 

may be different from those for visceral disease (Selvapandiyan et al., 2006). 

Nonetheless, studies continue in an effort to find an effective vaccine against 

Leishmania infection. 
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Vaccines against leishmaniasis developed so far are comprised of three 

categories: 1) live vaccines, including genetically altered organisms, 2) first 

generation vaccines, consisting of fractions or whole killed parasites and 3) second 

generation vaccines, where aIl defined vaccines, with recombinant proteins, DNA, 

etc, are included (Khamesipour et al, 2006). 

The inoculation of material from Leishmania lesions in hidden areas of the 

body of uninfected children is an ancient practice in parts of the Middle East and is 

the first documented use of live parasites to attempt immunization. The major 

problem with the use of live virulent parasites, though, is the dangers of uncontrolled 

pathogenesis, including large skin lesions, which caused this practice to be 

discontinued in the 1990's (reviewed in Handman, 2001). Recent advances in 

molecular biology techniques have allowed the manipulation of the Leishmania 

genome to generate live attenuated vaccines. This may involve the introduction of or, 

more commonly, the elimination of genes to produce avirulent promastigotes and 

amastigotes that are unable to pro duce pathology or to revert to a virulent form. 

Protection from avirulent challenges in mice was achieved after deletion of genes, 

such as the enzyme dihydrofolate reductase-thymidylate synthetase (DHFR-TS) in L. 

major, the glucose transporter gene family or the cysteine protease in L. mexicana 

(reviewed in Selvapandiyan et al., 2006, Handman, 2001). Very recently, a non­

pathogenic species of Leishmania to humans, L. tarentolae, was used as a live 

vaccine in BALB/c mice. This vaccine was able to elicit a protective Thl immune 

response against subsequent inoculation of the infectious L. donovani by inducing T 

cell proliferation and production of IFN-y (Breton et al., 2006). However, 
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speculations that a unifonn large scale production of avirulent strains with well 

defined conditions is not feasible and could cause a halt in the development process 

of a live-attenuated parasite vaccine. 

The use ofkilled parasites started in the 1940's in Brazil, but it was in the late 

1970's that Mayrink et al. obtained promising results with the development of a killed 

vaccine composed of five isolates of Leishmania containing four different species, 

and later on with the use of a single strain of L. amazonensis in the Leishvaccin ® 

(Biobras) (Mayrink et al., 1979, Marzochi et al., 1998). These vaccines were both 

used prophylactically and therapeutically with antimonial drugs, and when adjuvants 

were introduced, such as Bacillus Calmette Guerin (BCG), there was an increase in 

cure rates (reviewed in Handman, 2001). During the past 20 years clinical trials have 

been conducted in Brazil to evaluate the response to these vaccines. Recently De 

Luca et al. (2001) confinned the presence of acquired T lymphocyte-mediated 

immune responses against various dennotropic Leishmania species (but not against 

VL) characterized by the production ofIFN-y and a predominance of the CD8+ T cell 

phenotype among the Leishmania-reactive cells in 50-70% of individuals. Their in 

vitro results also showed a significant increase in Leishmania antigen-induced IFN-y 

and IL-2 production and the absence of increase in IL-4 production by T cells. Old 

World species, such as killed L. major, has also been tested but no significant 

protection was achieved unless alum (aluminum hydroxide) was used in combination 

with killed parasites + BCG. This vaccine also showed increased cure rates when 

used therapeutically with antimonial drugs (reviewed in Khamesipour et al, 2006). 

Various crude Leishmania fractions have been demonstrated to be immunogenic and 
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protective in mice. An example of one of these, the fucose-manose ligand (FML) 

antigen has been used in trials for a dog vaccine and has induced around 90% of 

protection in naturally exposed vaccinated dogs (reviewed in Khamesipour et al, 

2006). Another fraction from lysates of L. major or L. infantum promastigotes, 

comprised of proteins with molecular weights between 67-94 kDa and termed F-2, 

induced resistance to promastigote challenges in mice (Frommel et al., 1988). The 

disadvantage of the use ofboth killed parasite and partial fraction methods is the lack 

ofreproducibility and ofknowledge about the involvement ofmolecules and epitopes 

that could promote a protective immune response. 

Refinement of vaccine strategies led to the use of better studied and defined 

candidates. Finalization of the Leishmania genome project has also allowed 

identification of a number of genes present in Leishmania, especially in the 

amastigote stage which is responsible for aIl c1inical manifestations in humans. One 

of the first recombinant molecules used was the membrane glycoprotein gp63. Both 

recombinant and native proteins seem to be protective, even though results in humans 

and animal mode1s have been variable. The glycolipid LPG also provided a good 

level of protection, depending on the adjuvant used in combination with this molecule 

(reviewed in Handman, 2006). The Leishmania homologue of a receptor activated 

for C kinase (LACK) expressed both in promastigotes and amastigotes was able to 

protect mice from subsequent infections when combined with IL-12 (Mougneau et 

al., 1995). Cysteine proteases, which are primarily expressed and active in the 

amastigote stage, are also recognized by the immune system of Leishmania infected 

patients. Immunization studies with cysteine proteases conducted in mice 
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demonstrated that, in combination with adjuvants, they can induce immunity against 

L. major infection (Zadeh-Vakili et al., 2004, Rafati et al., 2002, 2001, 2000). 

Candidate molecules have been tested against VL; the amastigote-specific A2 

recombinant proteins provided significant protection (89% reduction in liver parasite 

burden with high IFN- Y production) when used to immunize mice followed by 

challenge with L. donovani (Ohosh et al., 2001). L. chagasi LCRl, which shares 

homology with Trypanosoma flagellar protein, is another protein that induced IFN-y 

production and partially protected BALB/c mice against L. infantum (Wilson et al., 

1995, Streit et al., 2000). 

A sandfly (Phlebotomus spp.) salivary protein of 15 kDa termed SP15 was 

also used as a vaccine, along with the salivary gland homogenate (SOR), and was 

able to provide protection in mice challenged with L. major plus SOR CV alenzuela et 

al., 2001). This is consistent with reports that individuals from endemic areas 

naturally develop antisandfly saliva antibodies and when they acquire leishmaniasis, 

through the bite of the insect vector, they develop a cell mediated Thl Immune 

response (reviewed in Titus et al., 2006). 

Access to the genome database has allowed the use of diverse Leishmania 

DNA sequences in the development of DNA vaccines in an effort to express 

Leishmania proteins in vivo in the host (in a mammalian expression vector) with these 

antigens being appropriately presented to the immune system as occurs in natural 

infections. DNA vaccination can elicit both humoral and cellular responses and 

immunostimulatory molecules like IFN-y or IL-12 have been used to increase vaccine 

effectiveness; DNA unmethylated CpO motifs have also been used in an effort to 

32 



mediate a Thl response in the host (reviewed in Ourunathan et al., 2000). Many of 

the molecules mentioned in the section above have also been tested in DNA vaccines 

against leishmaniasis. The LACK antigen has given varying degrees of protection 

against L. major, but not against other species, in immunized mice (reviewed in 

Kubar and Fragoki, 2005). The A2 genes showed great potential in DNA vaccination 

in combination with the HPV E6 gene (used to inhibit the tumour suppressor p53 and 

therefore inhibit cellular effects like apoptosis or DNA repair mechanisms), as the 

combined vaccination conferred a good level of protection in mice against subsequent 

challenges with L. donovani (Ohosh et al., 2001). A DNA vaccine containing the 

SP 15 gene of the sandfly salivary protein was also able to control Leishmania 

infection in mice. In this study, vaccinated mice deficient in B cells were infected 

with L. major plus SOH, they presented humoral and DTH responses against the 

parasites. These results argued that a DTH response against saliva provides 

protective effects and that salivary gland proteins or the DNA that encodes them 

could be used as vaccine alone or in combination with an anti-Leishmania vaccine, 

which may allow the host exposed to the bite of infected sand flies to develop minor 

or no pathology and a strong anti-Leishmania immunity (Valenzuela et al., 2001). 

Thus far, results with DNA vaccination show great potential and much has 

been learned from these trials, especially about how the nature of the antigen or the 

adjuvant, dose and route of administration can influence the outcome of the responses 

to DNA vaccination. But achievement of a more effective vaccine may only be 

reached when a cocktail of several potentially immunogenic molecules is used to 
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maximize the host response to elicit a better protection against infections with 

different species of Leishmania. 

Differentiation 

Leishmania parasites cycle between vector and host (Fig. 2) and are therefore 

exposed to extremely different environments, undergoing a developmental program 

with differentiation into highly adapted forms that enable their survival. This 

transformation is linked to remarkable biochemical and morphological changes, 

inc1uding flagellum restructuring and synthesis of new surface molecules correlated 

with differential gene expression (Bente et al., 2003), or most likely to differential 

protein expression, in response to environmental changes. However, the molecular 

and biochemical mechanisms involved in this differentiation remains to be 

understood and thus far knowledge is stilliimited. 

In the mammalian host, Leishmania grows and surVIVes as intracellular 

aflagellated amastigotes in pH 5.0 and temperatures of 37 oC, and in the cold-blooded 

sandfly vector midgut as extracellular flagellated promastigotes in temperatures of 

around 27 Oc and alkaline pH. Procyc1ic promastigotes intensely replicate in the 

digestive tract of the insect vector and become attached by their flagella to the sandfly 

epithelial midgut cells. Upon proliferation, non-infective and immature procyc1ic 

forms lose their epithelial cell attachment property and differentiate into the virulent, 

non-dividing metacyc1ic, that migrates to the sandfly mouth parts prior to 

transmission (Sacks and Karnhawi, 2001). Metacyc10genesis is accompanied by 
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morphological changes, as weIl as differences in gene expression and structural 

modification of surface molecules like LPG, which mediates release of metacyclics 

from the insect midgut, followed by migration towards the prosbocis and injection 

into the skin of the mammalian host during the sandfly bloodmeal (Sacks, 2001). 

Morphologically, metacyclics are shorter and slender than procyclics with their 

flagella measuring twice the length of their cell body. Metacyclogenesis seems to be 

a pre-requisite for complement-mediated lysis resistance and therefore important for 

host invasion (McConville et al., 1992). This pro cess can be replicated in vitro in 

axenic cultures, where a fraction of non-infective logarithmic (stationary) phase 

procyclics differentiate into infective metacyclics (Sacks and Perkins, 1984). Few 

metacyclic-specific proteins have been identified to date (Knuepfer et al., 2001) but 

the main marker of this pro cess is still the developmental differences in LPG 

structure, which is the basis for current methods of metacyclic purification (Spath and 

Beverley, 2001). 

A number of genes preferentially expressed in the promastigote stage of the 

Leishmania life cycle have been identified to date. One example is the 3' 

nucleotidase/nuclease, involved in purine salvaging in Leishmania, which is capable 

of breaking down and dephosphorylating exogenous purine sources to nucleosides 

and making them suitable for transport across the membrane. This enzyme is 

expressed in procyclic and metacyclic promastigotes, but is absent from the 

amastigotes (Sopwith et al., 2002). The paraflagellar rod (PFR), restricted to the 

flagella of kinetoplastids, is a cytoskeletal structure that runs along the length of the 

flagellum next to the axoneme once it emerges from the flagellar pocket and is 

35 



essential for flagellar motility in Leishmania promastigotes; however, it is absent 

from the attenuated flagellum of amastigotes (Bastin et al., 1998). Its main 

components, the PFR1 and PFR2 proteins, have promastigote-specific expression 

with abundance of rnRNAs only observed in promastigotes, correlating weIl with the 

presence or absence of the PFR structure during the Leishmania life cycle (Moore et 

al., 1996). LPG and the metalloprotease gp63 are genes with higher expression in the 

promastigote stage that have been well studied due to their roles in facilitating 

Leishmania survival in the mammalian host. 

Transformation from promastigotes to amastigotes occurs when the former are 

phagocytosed by macrophages, multiply and reside in the phagolysosome 

compartment and are exposed to an environment with lower pH (4.5 - 6.0). 

Leishmania parasites are able to quickly adapt to this acidic pH, and once transformed 

into amastigotes, many of their enzymes have optimal activity conditions in the new 

environment, although intracellular pH ofboth promastigotes and amastigotes remain 

constant (Zilberstein and Shapira, 1994). It has long been known that exposure to 

reduced pH and elevated temperatures initially trigger differentiation and influence 

protein synthesis. Therefore, the heat shock system has been the focus of many 

studies regarding differentiation, since the drastic changes Leishmania encounters 

induce expression of Heat shock proteins (HSPs), which are involved in cellular 

response to stress. In Leishmania, increased accumulation of mainly HSP70, HSP83 

(also known as HSP90) rnRNAs, due to posttranscriptional upregulation, has been 

detected after heat shock conditions in vitro and in vivo (Brandau et al., 1995), 

although these genes are transcribed constitutively and their transcription is not 

36 



induced by heat shock. Abundance of another protein, HSP 100, is only detected in 

arnastigotes but not in the promastigotes (Krobitsch et al., 1998). These results argue 

HSPs could be important players in the differentiation process. 

Recently, Barak et al., (2005) showed the course of events that ultimately 

lead to differentiation in Leishmania parasites: five hours after the initial 

differentiation signals happen (shift in temperature and pH), morphological changes 

start to be noticed and, induced by heat, cells arrest at G 1 within the first three hours, 

although they returned to the cell cycle and resumed growth at hour six after signal. 

These authors also showed that acidic pH and higher temperatures have very specific 

roles in the differentiation process; while an increase in temperature induces growth 

arrest, low pH releases growth arrest and induces heat adapted promastigotes to 

transform into arnastigotes. Investigation of genes involved in this process still 

remains to be established. 

Stage-specific gene expression in Leishmania can be mimicked in vitro by 

applying changes in temperature and pH similar to those occurring during the parasite 

life cycle. Several species have been used to produce axenic arnastigotes with each 

one requiring special conditions (related to temperature, pH and nutrients) for this 

differentiation (Gupta et al., 2001). However, generation of L. major axenic 

arnastigotes seems to be difficult (Gupta et al., 2001) and trials with different strains 

haven't been successful thus far (Debrabant et al., 2004). To date, a limited number 

of genes have been shown to be differentially expressed in either promastigote or 

arnastigote stages. Axenic arnastigotes are more infective than promastigotes and 

express stage-specific proteins like A2, arnastin, specific proteases (CP A cysteine 

37 



proteases in L. chagasi and L. donovani and CPB in L. mexicana), and HSP 100 

(Charest and Matlashewski, 1994;Wu et al., 2000;Denise et al., 2003). Exposure to 

higher temperatures typically up-regulates expression of HSPs, as discussed above, 

and down-regulates the expression of 13- tubulin or surface molecules like LPG, 

similarly to bona fide amastigotes (Gupta et al., 2001). Genes that are preferentially 

expressed in response to various extracellular stimuli probably play an important role 

in Leishmania survival and pathogenicity within macrophages. This is extremely 

important since amastigotes are responsible for all clinical manifestation in the 

mammalian host. The identification and characterization of such genes and their 

control mechanisms will help better understand stage-specifie gene expression in 

amastigotes and may provide enough insight for the development of novel therapeutic 

strategies. 

A2proteins 

Among the amastigote-specific proteins, the A2 family (seven proteins that 

differ according to the number and length of repeated motifs) range from 45 to 100 

kDa, are solely expressed in the amastigote stage of L. donovani and L. mexicana 

complexes but are not present in the L. major or L. tropica complexes (Ghed.in et al., 

1997;Zhang et al., 1996). A2 is one of the best markers for amastigote differentiation 

to date and its accumulation requires both an increase in temperature and acidic pH. 

However, pH shift is considered the major trigger for developmental expression of 

the A2 gene and mRNA slowly accumulates after transfer of cells, with A2 protein 

accumulation following similar kinetics (Charest et al., 1996). As early as 1 hour 
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after transfer to higher temperature and lower pH, promastigotes start to express low 

molecular weight A2 and after 5 hours they express all A2 proteins at similar levels to 

amastigotes (Barak et al., 2005). Accumulation of transcripts is regulated by post­

transcriptional mechanisms at the level of rnRNA stability and involves regulatory 

elements within the 3' untranslated region (UTR) (Ghedin et al., 1997; Zhang et al., 

1996). There are at least 7 copies of the A2 gene per haploid genome clustered in 

arrays and tandemly associated with copies of related sequences termed with A2rel, 

although no homology has been found between these 2 genes. However unlike A2, 

A2rel is not developmentally expressed but is constitutively expressed throughout the 

L. donovani life cycle. !ts sequence is conserved in different Leishmania species (L. 

donovani, L. mexicana, L. tropica and L. braziliensis complexes) (Ghedin et al., 

1998). The N-terminal of the A2 protein contains a leader sequence, but the protein 

has no hydrophobic or anchor region that could indicate it is a membrane protein and 

it has been suggested it might be secreted, even though it was not found in the 

supematant of amastigote-like cells and was only be observed in the cytoplasm of A2 

transfected L. donovani (Zhang et al., 2006). Zhang and Matlashewski (1997) 

investigated the biological role of the A2 proteins by using antisense RNA to study 

their involvement in amastigote survival within macrophages. Amastigotes with 

inhibited or impaired A2 expression (94% less A2 compared to wild-type 

amastigotes) could proliferate in culture in a manner indistinguishable from wild-type 

cells, and showed no difference in their ability to invade macrophages but had a 

reduced ability to proliferate and multiply within macrophages in vitro and could 

barely survive in BALB/c mice. These results indicated A2 is a virulence factor 
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required for leishmanial survival in the mammalian host (mouse model) but it is not 

required for L. donovani proliferation or differentiation in axenic culture. Other 

studies with A2 (Zhang and Matlashewski, 2001) and its expression in L. major 

showed these proteins might be involved in visceralization of leishmaniasis since it 

could increase the ability of that species, which is not typically viscerotropic, to 

survive in the spleen of infected mice, resulting in splenomegaly. 

B. SIGNAL TRANSDUCTION 

Cells are highly responsive to their environment and their physiological state 

is determined by exogenous and endogenous signaIs that ultimately lead to gene 

transcription and protein expression. Signal transduction cascades mediate this 

process in order to detect, amplify and integrate various external signaIs to regulate 

many biochemical processes, generating responses such as changes In enzyme 

activity, gene expression or ion-channel activity (Rosenfeld et al., 2006). 

Sorne external stimuli can be sensed by cells through surface molecules, while 

others can be directly internalized by surface receptor interactions. As a result, an 

extracellular signal is transduced into the cells and a sequence of reactions leads to a 

specifie cellular response. There are different types of cell-surface receptors that 

interact with soluble ligands and they are c1assified as: G protein-coupled receptors, 

ion-channel receptors, tyrosine kinase-linked receptors and receptors with intrinsic 

enzymatic activity (reviewed in Lodish et al., 2000). Binding of the ligand to these 
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receptors is specific and may or may not induce formation of a second-mess enger, 

which, in turn, is responsible for the transmission of the signal. 

Discussion of the following sections will focus mainly on signaling through 

receptors with intrinsic activity, where activation by binding of ligands leads to 

dimerization of the receptor and activation of its kinase activity; these receptors, also 

known as receptor serine/threonine kinases or receptor tyrosine kinases, are able to 

autophosphorylate residues on their cytosolic domains and can also phosphorylate 

their target substrates. 

Phosphorylation 

Proteins are able to perform numerous functions relying on the versatility of 

the 20 existing amino acids. However, they can be covalently modified through the 

addition of groups other than amino acids. Covalent modification, and in particular 

phosphorylation, are reversible and act to alter - activate or inhibit - a wide variety of 

cellular proteins in response to environmental signals. Many proteins in a typical 

eukaryotic cell are modified by phosphorylation, which is the most prevalent 

reversible covalent modification and one of the most common methods utilized to 

regulate protein activity, stability, protein-protein interactions and function (Zhang et 

al., 2002). Phosphorylation is a highly effective mechanism for controlling the 

activity of proteins for structural, thermodynamic, kinetic, and regulatory reasons 

since the phosphoryl group adds two negative charges to a modified protein, leading 

to structural changes that can alter substrate binding and activity. The phosphate 
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group can also form hydrogen bonds, allowing specific interactions with hydrogen­

bond donors. Phosphorylation is an incredibly fast mechanism and it induces great 

cellular effects because a single enzyme (kinase) can phosphorylate a number of 

target substrates in a short interval, and further amplification can arise from this first 

action because target proteins may be different enzymes that could affect other 

substrate molecules (reviewed in Berg et al., 2002). 

As briefly mentioned above, protein kinases are the enzymes responsible for 

the catalysis of the phosphorylation process through the addition of a phosphate group 

onto proteins. The terminal phosphoryl group of ATP, the most commonly used 

source of phosphate group, is transferred to specific serine and threonine residues by 

serine/threonine kinases and to specific tyrosine residues by tyrosine kinases with the 

release of a large amount of free energy when the phosphate bond in A TP is broken to 

produce ADP (Fig. 4). Kinases have been extensively studied and constitute one of 

the largest protein families known, and each is responsible for phosphorylating a 

different protein or set of proteins. The diversity of these enzymes allows regulation 

and fine-tuning according to tissue specificity, time or substrate (Berg et al., 2002). 

This reaction is reversed by another group of enzymes, the phosphatas es, which in 

turn remove the phosphate group by catalyzing its hydrolytic removal from proteins 

(Fig. 4). Therefore, cellular phosphorylation is controlled by activities of both 

kinases and phosphatases. There are many different phosphatases in the cell, sorne of 

them are highly specific and remove phosphate groups from only one or a few 

proteins, whereas others act on a broad range of proteins and sorne are targeted to 

specific substrates by regulatory subunits (Zhang et al., 2002). Kinases that 
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phosphorylate proteins in eukaryotic cells belong to a very large family of enzymes, 

which share a cataIytic sequence of 250 amino acids. Various family members 

contain different amino acid sequences on either side of the kinase sequence, and 

often have short amino acid sequences inserted into loops within it. Sorne of these 

additional amino acid sequences enable each kinase to recognize the specific set of 

proteins it phosphorylates; other sequences allow the activity of each enzyme to be 

tightly regulated, so it can be tumed on and off in response to different signaIs. 

So, as a result of the combined actions of kinases and phosphatases, the 

phosphate groups on proteins are constantly turning over by additions and removals, 

leading to different status of protein activation in the celL In higher eukaryotes, 

protein phosphorylation and dephosphorylation is a key mechanism involved in a 

number of physiological processes such as cell cycle control, cellular proliferation, 

growth, transformation and differentiation. 

Kinases 

AGCgroup 

The AGC group includes the cAMP-dependent protein kinase A (PKA), 

cGMP-dependent protein kinase G (PKG), phospholipid-dependent protein kinase C 

(PKC) and Phosphoinositide-dependent protein kinase 1 (PDKl). Members of this 

family have received considerable attention because they are downstream effectors of 

intracellular second messengers (cAMP, cGMP or phospholipids and Ca2+) in animaIs 

and yeast. The structuraIly related AGC kinases phosphorylate their substrates at 
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serine and threonine residues and participate in a variety of crucial and well-known 

processes such as protein synthesis, gene transcription, cell growth, apoptosis and 

cytoskeletal remodeling (Bogre et al., 2003). The members of this family also play 

critical roi es in receptor tyrosine kinase (RTK) signal transduction, essential for 

regulating many important biological events just mentioned above. Kinases from this 

group display a high degree of primary sequence conservation within their kinase 

domains and activation loops; however, outside the catalytic domain the AGC kinases 

usually have little similarity. Their activity depends upon phosphorylation of the 

activation loops and each member also has a highly conserved phosphorylation site 

(Parker and Parkinson, 2001;Peterson and Schreiber, 1999). The representative 

member of this group is PKA, composed of the relatively small catalytic (C) and 

regulatory (R) subunits. The catalytic subunit is considered a prototype because of its 

constitutive activity and apparent simplicity, containing short flanking regions at the 

N- and C-tennini in addition to the conserved core (Taylor et al., 2005;Breitenlechner 

et al., 2004). The active protein is released only upon binding of cAMP, when the 

catalytic subunit is assembled as a fully phosphorylated enzyme (Taylor et al., 2005). 

ln its inactive state the catalytic domain is sequestered by its association with a 

regulatory subunit. The regulatory domain, on the other hand, also displays key 

functions such as targeting the kinases to the appropriate cellular location and 

regulation of the kinase activity by serving as an autoinhibitory module (Newton, 

2003). 

PKG shares similar structural and biochemical properties with PKA, however, 

unlike protein kinase A, PKG does not dissociate into catalytic and regulatory 
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subunits upon activation. PKG is a dimer, each containing a regulatory domain (R) 

and a catalytic domain (C) on a single polypeptide chain (reviewed in Francis and 

Corbin, 1999). There are two homologous forms of PKG: type l, with an acetylated 

amino (N)-terminal, usually associated with the cytoplasm and type II, with a 

myristylated N-terminal, associated with the membrane (reviewed in Francis and 

Corbin, 1999). PKG is an important regulator of diverse cellular processes and many 

reports have indicated that PKG might regulate cell function by activating members 

of the MAPK family of signaling proteins whose function is to regulate the 

contractile activity of the smooth muscle cell (Komalavilas et al., 1999). 

PKC comprises a superfamily of isoenzymes activated in response to various 

stimuli, inducing activation of different isoforms. These isoenzymes are grouped into 

subclasses according to the domain composition of the regulatory moiety and its 

activity depends on Ca2
+ and on the phospholipid diacylg1ycerol (DAG). The two 

basic modules are the Cl and C2 domains: the diacylg1ycerol and the Ca2
+ sensors, 

respectively. Sorne PKCs contain both Cl and C2 domains while others contain only 

the Cl domain; however the Cl domain can also be found in a number of non-kinase 

molecules (reviewed in Newton, 2003). Generation of DAG and Ca2
+ recruits PKC 

to the membrane by engaging the Cl and C2 domains. This interaction at the cell 

surface allows substrate binding and phosphorylation (Newton, 2003). This enzyme 

is be1ieved to be invo1ved in signaling pathways that control cellular metabolism, 

mitogenesis, apoptosis and differentiation. 

Phosphorylation of the AGC family kinases in the activation loop has been 

found to be mediated by PDKI. This serine/threonine kinase is able to phosphorylate 
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the conserved threonine residue in the activation loop of AGC family kinases. 

However, it is not yet established whether all these kinases are direct physiological 

substrates of PDKI or whether there are additional substrates. This kinase contains a 

catalytic domain near its N-terminal and a pleckstrin homology (PH) domain 

(allowing interactions with lipids) at its C-terminal, which is responsible for targeting 

to the plasma membrane and hence for substrate interactions; it also contains several 

autophosphorylation sites (Mora et al., 2004). 

CaMKgroup 

Calcium signaling plays an important role in many aspects of cellular growth 

and development and it's recognized as one of the most important intracellular signals 

in eukaryotes. Ca2+/calmodulin-dependent protein kinases (CaMKs) play pivotaI 

roI es in Ca2+ signaling pathways. An increase in intracellular Ca2+ on cellular 

stimulation results in binding of Ca2+ to calmodulin (CaM). This Ca2+/CaM complex 

activates several Ca2+/CaM-dependent enzymes and elicits a variety of Ca2+_ 

dependent cellular responses. Among these enzymes, a group of Ser/Thr protein 

kinases activated by Ca2+/CaM, called CaMKs, plays a pivotaI role in the Ca2+ 

signaling pathways. They are classified into two different categories: the CaMKs 

with strict substrate specificity (responsible for the phosphorylation of a specific 

substrate in response to Ca2+) and the multifunctional CaMKs that can phosphorylate 

multiple protein substrates and are involved in a greater range of physiological 

responses through phosphorylation of various substrates; it can be exemplified by 

CaMK-II, the best characterized CaM kinase (Ishida et al., 2003). When 
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Ca2+/calmodulin binds a subunit ofCaMK II, calmodulin displaces the autoregulatory 

domain of the subunit, enabling it to become phosphorylated by the catalytic domain 

of a. neighboring subunit. Once phosphorylated, the subunit can remain active for a 

prolonged period, even in the absence of a sustained elevation in Ca2+ (Curtis and 

Finkbeiner, 1999). CaMKlI is present in abundance in the brain and is known to play 

important roles in the central nervous system through the regulation of the synthesis, 

release, and signaling of neurotransmitters, although it is also involved in 

carbohydrate metabolism, transcription, cytoskeletal organization and cardiac 

functions, among others (Ishida et al., 2003). 

CMGG and STE groups 

The Mitogen-activated protein kinases (MAPKs) and the Cyclin-dependent 

kinases (CDKs) are included in this group; the STE group is involved in the MAPK 

pathways and this family refers to the three classes of protein kinases that lie 

sequentially upstream of the MAPKs (MEK or MAPKK, MEKK or MAPKKK and 

MEKKK) (reviewed in Plowman et al., 1999). The MAPK family of kinases 

connects external stimuli through cascades, transmitting these extracellular signaIs to 

their intracellular targets, leading to varied cellular responses ranging from activation 

or suppression of gene expression to the regulation of cell mortality, growth, and 

differentiation (reviewed in Rubinfeld and Seger, 2005). Each cascade consists of 

several protein kinases that sequentially activate each other by phosphorylation (Fig. 

5A). The core cascade is usually composed of MAPK kinase kinase (MAP3K or 

MEKK), MAPKK, and MAPK, aIl of which having highly conserved molecular 
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architecture. The MAPK is activated by phosphorylation on a conserved tyrosine and 

threonine in the activation loop by a dual-specificity MAPK kinase (MAPKK or 

MEK), which, in turn, is phosphorylated on conserved serine and threonine by a 

MAPKK kinase (MAPKKK or MEKK). The four distinct mammalian MAPK 

cascades are organized according to the subgroup of their MAPK components: the 

extracellular signal regulated kinases 1 and 2 (ERKs), the c-Jun N-terminal kinase 

(JNK) , p38MAPK and ERK5 (Fig. 5B). The most extensively studied is ERK1I2, 

activated by a variety of extracellular agents, which inc1ude growth factors, 

hormones, and neurotransmitters. Extracellular factors, which can act through G 

protein-coupled receptors, tyrosine kinase receptors, ion channels and other 

mechanisms, can initiate a variety of intracellular signaling responses that result in 

the activation of the ERK (MAPK) cascade, which often requires adaptor proteins 

(reviewed in Rubinfeld and Seger, 2005). After activation, ERKII2 is able to 

phosphorylate downstream substrates related to a multitude of cellular functions such 

as cell survival, motility, proliferation and differentiation (reviewed in Kohno and 

Pouyssegur, 2006). 

Cyc1in-dependent kinases (CDKs) are heterodimeric serine/threonine kinases 

with crucial roles in the regulation and control of eukaryotic cell division. Their 

enzymatic activity is modulated by protein-protein interactions as weIl as by both 

inhibitory and activating phosphorylations. Association with regulatory subunits 

(cyc1ins), synthesized and degraded in a cell-cycle-dependent manner, activates 

CDKs. Cyc1ins are regulatory partners of CDKs and comprise a diverse family of 

proteins found in all organisms that share a conserved sequence of 100 amino acids, 
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the cyclin box, which is necessary for CDK binding and activation (reviewed in 

Nebreda, 2006). Cyclin binding provides the CDK with targeting domains important 

for substrate selection and subcellular localization, which in turn determine the 

biological specificity. Although cyclins play an important role in cell cycle 

progression, they are not always required for CDK activation (reviewed Nebreda, 

2006). Historically, the first member of the CDK family (Cdkl) was identified in 

genetic screens for Schizosaccharomyces spp. mutants with defects in the cell 

division cycle. This protein, then designated Cdc2 in S. pombe and Cdc28 in 

Saccharomyces cerevisiae, was shown to be essential for cell-cycle progression. 

Subsequently, many members of the Cdk family were cloned and a unifying 

nomenclature was adopted (the term 'cyclin-dependent kinase') (reviewed in 

Malumbres and Barbacid, 2005). Cell cycle progression requires a different cyclin­

dependent kinase through each stage (Fig. 6): progression through the GOlGI 

transition was found to be primarily under the control of cyclin D/Cdk4,6 and the 

restriction point in the exit from the G liS transition is controlled by complexes of 

Cdk2 and E-type cyclin. Two other cyclins (A and E), respectively paired with Cdk2 

and Cdc2, were found to be required for progression through S phase (Cdk2/cycA) or 

driving of the G2/M transition (Cdc2/cycB) (reviewed in Sanchez and Dynlacht, 

2005, Cooper, 2000). 

Protein Tyrosine kinase (TK) group 

Tyrosine phosphorylation is a fundamental mechanism for numerous 

important aspects of eukaryote physiology (reviewed in Schlessinger, 2000). This 
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group of enzymes is divided into two families: the transmembrane receptor tyrosine 

kinases (RTK) and the non-receptor or cytosolic family. Their tyrosine kinase 

domain has approximately 300 residues with a two-domain architecture shared by 

serine/threonine kinases; the A TP binding site is located in the cleft between the N 

and C-terminal lobes and the tyrosine-containing residue of the substrate interacts 

with residues in the C-terminal lobe (reviewed in Chiarugi, 2005). Tyrosine kinases 

are the main mediators in the transmission of extracellular signals into the cell and 

therefore are essential enzymes regulating cellular signaling processes such as 

growth, differentiation and metabolism. 

Signaling by RTKs, which are single-pass membrane proteins with an 

extracellular ligand-binding domain and an intracellular kinase domain, is perhaps the 

most extensively studied pathway to date. One of the RTK categories includes the 

receptors for most polypeptide hormones and growth factors, the latter organized in 

different subfamilies, such as the epidermal growth factor receptors (EGFRs or 

ErbBs), fibroblast growth factor receptors (FGFRs), insulin and the insulin-like 

growth factor receptors (IR and IGFR), platelet-derived growth factor receptors 

(PDGFRs) and the vascular endothelial growth factor receptors (VEGFRs) (reviewed 

in Li and Hristova, 2006). RTKs conduct biochemical signals via lateral dimerization 

in the plasma membrane and ligand binding results in receptor autophosphorylation 

with subsequent activation of downstream signaling cascades that incIude mitogen­

activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), 

protein kinase C and small GTPases, among others. Although these events occur 

Inosdy in the cytosol, transcription and cell-cycle regulation are affected by receptor 
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signaling, which requires the activation and nuclear translocation of transcription 

factors (reviewed in Massie and Mills, 2006). Studies have shown that nuclear 

events, once thought to be mediated only by signaling cascades, can also be affected 

directly by sorne RTKs and their adaptor molecules (i.e. peripheral membrane 

proteins that associate with membranes through phosphoinositide and protein 

interactions with the plasma membrane and endosomes) since they can be directly 

translocated to the nucleus to affect gene expression, transcription and DNA repair 

(reviewed in Massie and Mills, 2006). RTK signaling has an important role in the 

regulation of a diverse set of cellular processes, such as control of cell growth, 

differentiation, and metabolism and has been implicated in diseases such as cancer 

and immune deficiencies (reviewed in Alonso et al., 2004). 

About one third of protein tyrosine kinases (PTKs) are grouped as non­

receptor tyrosine kinases. They are found in the cytoplasm, do not contain a 

transmembrane domain, and they usually function downstream of the RTKs. Typical 

cytoplasmic PTKs (cPTK) contain domains that mediate protein-protein interactions 

(SH2 and SH3 domains), protein-lipid interactions (pleckstrin homology [PH] 

domain) or can be lipid modified (reviewed in Chiarugi, 2005). SH2, or Src 

homology region 2, is a domain that binds polypeptides that contain pTyr with 

significant specificity; SH3 is a small beta-barrel module that presents a non-polar 

groove complementary to the target short peptides in a polyproline-II conformation, 

i.e, it binds to proline rich peptides and hydrophobic residues. Cytoplasmic PTKs 

include Src and Janus kinases, among others. The mechanisms for their activation 

involve heterologous protein-protein interactions and are therefore more complex. 
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The extensively studied Src family is the prototype in this group: inhibition ofkinase 

activity is achieved by orchestrated interactions between the SH2 domain and the 

phosphorylated Tyr in the C-terminal and between the SH3 domain and the SH2 

kinase linker. Binding of ligand to the SH2 or SH3 domain and/or dephosphorylation 

of the C-terminal phospho-Tyr (pTyr) by tyrosine phosphatases (PTPs) releases 

inhibition, leading to autophosphorylation of the Tyr residue in the activation loop 

(reviewed in Chiarugi, 2005). The Src family is- capable of communicating with a 

large number of different receptors. It was first identified as the transforming protein 

(v-Src) of the oncogenic retrovirus Rous sarcoma virus (RSV). Later studies 

identified Src-related proteins that regulate cellular events in addition to cell 

proliferation and carcinogenesis, such as cytoskeletal alterations, differentiation, 

survival, cell adhesion, migration, immune ceIl function and even learning and 

memory (reviewed in Thomas and Brugge, 1997). 

Phosphatases 

About one-third of aIl eukaryotic proteins are controlled byphosphorylation of 

specific serine, threonine, and/or tyrosineresidues (reviewed in Barford et al., 1998). 

Most phosphorylation mechanisms are reversible, reflecting the balanced activity 

between protein kinases and phosphatases. Changes in the phosphorylation state can 

result from changes in the activities of either of these enzymes. Protein phosphatases 

are defined by three distinct families: the ppp and PPM families, both encoding 

protein Ser/Thr phosphatases, whereas the protein tyrosine phosphatase (PTP) family 
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includes both tyrosine-specific and dual-specificity phosphatases. Within each, 

structural diversity is generated by the attachment of regulatory and targeting 

domains and/or subunits to the protein catalytic domain. Regulatory subunits and 

domains serve to direct the protein to a particular subcellular localization and 

modulate protein specificity, functions that are regulated by allosteric modification 

using second messengers and reversible protein phosphorylation (reviewed in Barford 

et al., 1998). 

In higher eukaryotes, four types of serine/threonine specific protein 

phosphatase catalytic subunits have been identified in a variety of species and are 

differentiated by their substrate specificity, regulation by peptide inhibitors and 

bivalent cation requirements. Based on amino acid sequence comparisons, three 

enzymes, protein phosphatases (PP) 1, 2A and 2B, are members of the same gene 

family (PPP) possessing a conserved catalytic core and are regulated by 

Ca2+/calmodulin. Their common catalytic domain has 280 residues and most 

divergences are found within their noncatalytic N- and C-termini. They are also 

distinguished by their associated regulatory subunits and form a diverse variety of 

holoenzymes (reviewed in Ceulemans and Bollen, 2004, Barford et al., 1998). PPI is 

involved in controlling multiple cellular functions including glycogen metabolism, 

muscle contraction, cell cycle progression, neuronal activities, and the splicing of 

RNA (reviewed in Barford et al., 1998). Protein phosphatase 2A (PP2A) is a highly 

abundant and ubiquitously expressed SerlThr phosphatase whose activity is found in 

numerous cellular processes. It has long been implicated in cell cycle regulation in 

many different organisms (reviewed in Ceulemans and Bollen, 2004). PP2B is 
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characterized by its dependence on Ca2
+ for activity. It consists of an A-subunit with 

an N-terminal catalytic domain and aC-terminal regulatory region containing binding 

sites for the B-subunit and calmodulin as well as an auto-inhibitory sequence at the 

extreme C-terminal. The fourth enzyme, PP2C, appears to be in a distinct family 

(PPM) due to different mechanics and structure and Mg2
+ requirement. Many other 

phosphatases have been discovered in the ppp family, namely PP4, PP5 and PP6. 

The former and the latter are similar to the PP2A subfamily on the basis of catalytic 

domain structure; PP5 is grouped into a separate subfamily not only on the basis of 

their catalytic domain, but also because of a fused amino-terminal domain that 

contains three to four tetratricopeptide repeat (TPR) motifs involved in the regulation 

its phosphatase activity (reviewed in Barford, 1996). 

Tyrosine phosphatases 

Protein tyrosine phosphatases (PTPs), are highly regulated enzymes and 

together with PTKs play an important role in regulating cellular growth, metabolism, 

cell cycle, cell-cell communication (inc1uding within the immune system), 

differentiation, gene transcription and survival; they exert both positive and negative 

effects on a signaling pathway (reviewed in Chiarugi, 2005, Mustelin et al., 2005, 

Zhang et al., 2002). Members of PTP family are very diverse and have been 

identified from prokaryotes to eukaryotes (reviewed in Elchebly et al., 2000). PTPs 

comprise a superfamily of enzymes with more than 100 members and its hallmark is 

the presence of the signature motif or active site - the HNCXsR(S/T) within the 

catalytic domain - containing the invariant cysteine (Cys) and arginine (Arg) residues 
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required for phosphatase activity (reviewed in Alonso et al., 2004, Zhang et al., 

2002). 

PTPs are divided according to their sequence homology and substrate 

specificity into "c1assical" tyrosine-specific phosphatases, low molecular weight 

(LMW) phosphatas es or dual-specific phosphatases, which can c1eave phosphoester 

bonds in proteins that contain phosphotyrosine (pTyr) , as well as phosphoserine 

(pSer) and phosphothreonine (pThr), the latter exemplified by MAPK phosphatases 

and Cdc25 phosphatas es (Fig. 7) (reviewed in Wang et al., 2003). Many of the PTP 

substrates have the related SH2 domain sequence that binds pTyr in a sequence­

specific manner (reviewed in Hunter, 1989). Tyrosine-specific PTPs are further 

divided according to their localization into receptor PTPs and cytosolic PTPs 

(cPTPs): the first can be exemplified by CD45 and generally have an extracellular 

putative ligand-binding domain composed of a variety of structural domains, a 

transmembrane region and one or two cytoplasmic PTP domains within the C­

terminus (reviewed in Chiarugi, 2005, Elchebly et al., 2000). cPTPs, which inc1ude 

PTPIB and LMW phosphatases, contain a single catalytic domain, N- or C-terminal 

extensions such as SH2 domains which may have targeting or regulatory functions 

(reviewed in Chiarugi, 2005, Zhang et al., 2002, Elchebly, et al 2000). AlI PTPs are 

characterized according to their sensitivity to vanadate, a phosphatase inhibitor, 

ability to hydrolyze p-Nitrophenyl phosphate (PNPP), insensitivity to okadaic acid, a 

serine/threonine phosphatase inhibitor, and lack of metal requirements for catalysis 

(reviewed in Denu and Dixon, 1998). The signature motif, which forms the 

phosphate recognition site, is located at the base of the PTP loop in the active site, 
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also know as the cleft. The active site pockets of different PTPs vary in size and 

shape, which defines the depth of the cleft and gives specificity for substrates: the 

active site is located in a deep pocket in tyrosine-specific PTPs to select exclusively 

pTyr-containing substrates, while the active site cleft is more superficial in dual­

specificity phosphatases and may recognize pTyr or pSerlThr (reviewed in Chiarugi, 

2005, Tonks, 2003,Wang et al., 2003). The active site is also surrounded by different 

superficial loops that are important for catalysis and substrate recognition (reviewed 

in Wang et al., 2003). 

Catalysis of the phosphate group involves a two-step mechanism and starts 

with the sulfur atom of the thiol group of the invariant and active cysteine (Cys) 

residue. The thiolate side chain of Cys serves as a nucleophile to accept the 

phosphoryl group of the substrate, forming a cysteinyl-phosphate catalytic 

intermediate. The arginine (Arg) residue makes a hydrogen bond with the substrate 

phosphoryl group and has an important role in both substrate binding and transition 

state stabilization during catalysis (reviewed in Wang et al., 2003). PTPs also make 

use of an aspartic acid (Asp) residue in an accessory loop, which acts as general acid 

by protonating the ester oxygen of the substrate tyrosyl-Ieaving group and enhancing 

the rate of phosphoenzyme formation. In the second step, mediated by a glutamine 

(GIn) residue from a different accessory loop, the dephosphorylation and hydrolysis 

of the phosphoenzyme intermediate occurs by attack of a nucleophilic water molecule 

assisted by the same Asp residue functioning now as a base, with subsequent release 

of enzyme and inorganic phosphate (reviewed in Tonks, 2003, Wang et al., 2003). 
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RPTPs are mainly regulated through dimerization, like most transmembrane 

receptor proteins. However, RPTPs are often inhibited by dimerization through 

symmetrical interactions between the catalytic site and the inhibitory structural wedge 

(reviewed in Chiarugi, 2005). By catalyzing the removal of a phosphate group from a 

tyrosine residue, PTP can act either as an "on" or "off' switch for signal transduction. 

Although PTPs share a common catalytic mechanism, they have distinct and often 

unique biological functions, which may also be determined by the identity of the 

substrates upon which they act in the cell (Zhang et al., 2002) 

PTP1B 

In higher eukaryotes, protein tyrosine phosphatase lB (PTP1B) is the 

prototype of the PTP superfamily, first isolated from human placenta. This PTP was 

the first one shown to exist as a phosphoprotein in vivo and is widely expressed in 

cells (Tonks et al., 1988). It has been implicated in numerous signaling pathways, 

possessing a dynamic role as a regulator of multiple receptor tyrosine kinases, such as 

the insulin receptor (IR), platelet derived growth factor receptor (PDGR) and 

epidermal growth factor receptor (EGFR) (reviewed in Dube and Tremblay, 2004, 

Sarmiento et al., 2000). Because of this great versatility, PTPs are considered to have 

promiscuous activity in vitro. Their structure consists of an N-terminal catalytic 

domain (PTP domain) with the signature motif (IIVHCXXRSIT), where the essential 

cysteine residue is at position 215 and, together with the arginine residue, is important 

for catalysis; accessory loops, namely WPD and Q loops, are also involved in 

catalysis (reviewed in Tonks, 2003). At the C-terminus the presence of a c1eavable 
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proline-rich motif allows interaction with SH3-domain-containing proteins and a 

small hydrophobic stretch of 35 amino acid residues is necessary and sufficient to 

localize the enzyme to the endoplasmic reticulum (ER) facing the cytoplasm 

(reviewed in Tonks, 2003). Subcellular localization of PTPIB allowing access to 

substrates in a spatial and temporal manner and is thought to influence the broad 

range of substrate specificity this enzyme has, since it is proposed it could regulate 

nascent RTKs during their biosynthesis and transport to the membrane by preventing 

their premature activation (reviewed in Dube and Tremblay, 2004, Sarmiento et al., 

2000). The C-terminus of PTPIB is not only involved with localization and 

activation of this enzyme, but also exerts an effect on catalysis: a truncated form of 

the enzyme lacking 75 amino acid residues from the C-terminus has increased PTP 

activity, which suggest a role for the C-terminus as an activity suppressor (reviewed 

in Tonks, 2003). 

PTP 1 B has been implicated in the regulation of metabolic signaling (insulin 

and leptin) (reviewed in Elchebly et al., 2000) and perhaps this is the area where it 

has been most studied since it is the negative regulator of insulin (i.e. it impairs 

insulin signaling) through dephosphorylation of key residues within the insulin 

receptor (IR) and therefore it decreases tyrosine kinase activity. This inhibition leads 

to insulin resistance through decreased secretion of insulin from the pancreas, raising 

plasma glucose. Deregulation of this signaling pathway leads to the development of 

deseases and PTPIB is known to be involved in the etiology of type II diabetes 

(diabetes mellitus) (reviewed in Elchebly et al., 2000), although its role goes beyond 

metabolic function and it has recently been shown to be involved in Ras signaling, 
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behaving as a positive or negative regulator of oncogenesis (reviewed in Dube & 

Tremblay, 2004, Dube et al., 2004). 

PTPIB is a major target for drug development for the treatment of diabetes 

and obesity (reviewed in Dube and Tremblay, 2004) and with the discovery of its 

potential involvement in oncogenic signaling, it may also be pursued as a target 

against cancer. 

Phosphorylation in Trypanosomatids 

In trypanosomatids, as in higher eukaryotes, signal transduction is an important 

mechanism to control intracellular events. The role of various components of 

signaling pathways and the molecular basis of this process have been extensively 

studied in eukaryotic cells; in trypanosomatids, the identification and characterization 

of several receptor proteins, kinases, phosphatases and second messengers have been 

reported, but their function and signaling pathways in which they are involved in have 

not been elucidated. 

Kinases 

Trypanosomatid kinome (Serine/threonine protein kinases) 

Trypanosomatids consist of parasites of the Trypanosoma and Leishmania 

genera, which are two major pathogens of human and domestic animals. 

Trypanosoma cruzi causes Chagas disease, a debilitating disease in South America 
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affecting multiple organ systems; T. brucei gambiense and T. b. rhodesiense are 

responsible for African sleeping sickness in humans, a tsetse fly (Glossina spp.) 

transmitted disease. Another subspecies, T.b. brucei, does not infect humans, but it 

causes a disease called nagana in native antelopes and other African ruminants 

(reviewed in Vickerman et al., 1988). In the bloodstream and tissue fluids of the 

mammalian host, T. brucei proliferates as a long slender form and differentiates into a 

growth-arrested short stumpy form pre-adapted for survival in the fly. When 

bloodstream forms are taken up during a blood meal by the insect vector, the stumpy 

form differentiates rapidly to the dividing procyclic (insect) form in the lumen of the 

fly midgut. The parasite continues its life cycle by progressing through a series of 

further developmental stages (epimastigotes) culminating, in the salivary glands of 

the fly, in differentiation to the metacyclic form, which is infective for the 

mammalian host (reviewed in Vickerman et al., 1988). Therefore, Trypanosoma sp., 

just like Leishmania, responds to external and intracellular signaIs with changes in 

metabolism and protein profile as they adapt to different environments in their 

complex life cycle. 

Mechanisms of signal transduction have been reported in these parasites, and 

although there are similarities with mammalian molecules, little is known about the 

intracellular processes involved in their life cycle. Completion of the genome project 

for three trypanosomatid species pathogenic in humans (Trypanosoma brucei, T. cruzi 

and L. major) has enabled studies of their "kinomes", that is, the protein kinase 

genomes (Parsons et al., 2005). The trypanosomatid kinome is 33% larger than that 

of S. cerevisae and twice the size of P. falciparum, although compared to humans it is 
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only one third of the size and has significant differences from the mammalian host 

(reviewed in Naula et al., 2005). There are approximately 179, 156 and 171 

eukaryotic protein kinases (ePKS) and 17,20 and 19 atypical protein kinases (aPKs) 

in L. major, T. brucei and T. cruzi respectively. Sorne of the aPKs lack sequences 

involved in peptide binding or characteristic domains in ePKs (Parsons et al., 2005). 

The three kinomes (Tritryp kinomes) analyzed are closely related and only a small 

number of genes seems to be unique to each species (20 in L. major, Il in T. cruzi 

and 3 in T. brucei). Most of their ePKs had highly significant BLAST scores against 

at least one member of the human, worm, fly and yeast database used (Parsons et al., 

2005). About 8% of ePKS from each species are, however, supposedly catalyticly 

inactive due to the presence of mutations within essential residues (Parsons et al., 

2005). 

ePKs are grouped by the amino acid sequences of the catalytic domain and 

comprise a diverse set of proteins broadly divided into two categories: 

serine/threonine kinases and tyrosine kinases. These kinases are key elements in the 

regulation of different physiological processes such as transcriptional control and cell 

cycle progression in eukaryotic cells and, therefore, are ubiquitous and important 

regulators of signal transduction. But in trypanosomatids, the mechanisms for gene 

regulation occur at the post-transcriptionallevel and the results of signaling pathways 

are unlikely to be at the level of transcription. Therefore, the control mechanisms still 

remain unknown (reviewed in Parsons and Ruben, 2000, Parsons et al., 2005). A 

few receptor proteins have been identified in the tritryp kinome with previous reports 

on the identification of receptor-like proteins, such as adenylate cYclase in T. brucei 
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linked to regulation of transition processes during differentiation (Seebeck et al., 

2004, Alexandre et al., 1996), or of a surface receptor for the insulin-like growth 

factor (IGF-I) on Leishmania promastigotes, speculated to be used for survival and 

proliferation within the host (Gomes et al., 2001). However, trypanosomatids lack 

typical signaling receptors, as weIl as SH2 domains, transcriptional factors and 

heterotrimeric G proteins (Parsons et al., 2005, reviewed in Seebeck et al., 2004). 

Molecules that could potentially bind to second messengers have also been identified, 

although no intermediate steps of signal transduction have been defined to date 

(Parsons et al., 2005). 

Analysis of the tritryp kinomes classified kinases into seven groups related to 

ePKs, based on similarities in the active site. These organisms have representatives 

of the AGC, CAMK, CMGC and STE groups, but members ofboth the TK and TKL 

(tyrosine kinase and tyrosine kinase-like) groups are missing. Most mammalian 

receptor kinases are from the TK group. However, in plants most receptor proteins 

are from the serine/threonine group (reviewed in Parsons et al., 2005). Although 

kinases bearing a transmembrane domain were found in the kinome studies, 

especially within the STE group, not much is know about the surface display of such 

enzymes, despite the fact there are reports of ectokinases in Leishmania (Lester et al., 

1991). Kinases that did not fit into any of those groups above were classified as 

"other". Within each of these groups, a number of families were also identified. The 

most important groups will be discussed in the following sections. 
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AGCgroup 

The trypanosomatid AGC group is structurally related to kinases that respond 

to second messengers and encompasses: protein kinases A (PKA), responsive to 

cAMP, protein kinase G (PKG), responsive to cGMP and protein kinase C (PKC), 

responsive to the phospholipid DAG (Parsons et al., 2005). Trypanosomatids have 

approximately half the number of human AGC kinases (Parsons et al., 2005), 

although no orthologs of PKG have been identified in Leishmania and Trypanosoma 

(Allocco et al., 2006). cAMP is an important mediator of cell differentiation, and that 

is also true for trypanosomatids: in T. brucei, the slender form secretes a factor 

termed SIF (for stumpy-induction factor) that stimulates parasites to transform into 

the non-dividing stumpy forms and which acts through cAMP signaling. Most 

cAMP-induced effects are mediated through protein kinase A (reviewed in Naula and 

Seebeck, 2000;Parsons and Ruben, 2000). 

PKAs have been extensively studied in eukaryotes and are tetramers made up 

of two catalytic subunits. Binding of cAMP, generated by adenylate cyclases, results 

in dissociation and activation of monomeric C (catalytic) subunits, which in turn 

phosphorylate a wide range of substrates in the nucleus and cytosol (reviewed in 

Skalhegg and Tasken, 2000). Therefore PKAs play an important role in signal 

exchange between the external environment, cytoplasm and nucleus via adenylate 

cyclase-cAMP signal transduction pathways (reviewed in Seebeck et al., 2004). 

However, the T. cruzi enzyme seems to be activated by cGMP rather than by cAMP. 

The biological relevance of this finding is still not known (reviewed in Seebeck et al., 
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2004). PKAs have also been identified and cloned in L. donovani and L. amazonensis 

(Oenestra et al., 2001; Banerjee and Sarkar, 1992). 

In eukaryotes, PKC uses ATP as a phosphate donor and consists of a family of 

ten isoenzymes. These isotypes contain a catalytic domain, including an ATP binding 

site, and a regulatory domain with Ca2
+, DAO and phospholipid binding sites 

(reviewed in Epand and Lester, 1990). In trypanosomatids, little is known about the 

functional role ofPKCs. 

Leishmania parasites 

In Leishmania, as in Trypanosoma, cAMP, the activator ofPKAs, is related to 

differentiation from metacyclic promastigotes to amastigotes in vitro, although little 

is known about the downstream effectors of cAMP signaling (reviewed in Seebeck et 

al., 2004). L. donovani PKA appears to have some of the properties of mammalian 

PKA (Banerjee and Sarkar, 1992). However, in contrast to general mIes, the enzyme 

in this species does not seem to be regulated by cAMP (reviewed in Seebeck et al., 

2004) and may be regulated in a similar fashion as T. cruzi PKA. In L. major, the 

catalytic subunit of a PKA termed LmPKAC1 is primarily expressed in 

promastigotes, but not amastigotes, suggests it is regulated during the differentiation 

process (Siman-Tov et al., 1996). Two genes encoding PKA catalytic subunit 

isoforms (LmPKAC2a and C2b) have been recently characterized, but their biological 

role remains to be determined (reviewed in Seebeck et al., 2004, Siman-Tov et al., 

2002). In L. amazonensis, studies showed the activity of a PKA was higher in 

metacyclic promastigotes compared to non-infective procyclic promastigotes with 

low activity in amastigotes, suggesting a role in the metacyclogenesis process 
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(Genestra et al., 2004). Leishmania PKAs have mostly been studied in the context of 

differentiation, but other functions have been suggested for these proteins need to be 

experimentally confirmed. 

PKC has been implicated fi different cellular processes in Leishmania 

(Becker and Jaffe, 1997). L. amazonensis PKC seems to be involved in parasite 

uptake, as the enzyme activity may modulate L. amazonensis interactions with 

macrophages (Vannier-Santos et al., 1995). In 2002, Alvarez et al., suggested L. 

infantum PKC also play a critical role in the attachment and intemalization steps of 

parasitic invasion, since inhibition of this enzyme inhibits the parasite-ho st cell 

invasion process. However, information about second messengers or the actual role 

of these enzymes in Leishmania signal transductio.n pathways is still scarce. 

Little has been described about the phosphorylation activity associated with 

cyclic-3'-5' guano sine monophosphate (cGMP) in trypanosomatids. A cGMP­

dependent activity of a protein kinase was detected in L. amazonensis metacyclics but 

the biological significance of this data remains to be defined (Geigel and Leon, 2003), 

although it is possible this kinase is part of metabolic pathways with a potential role 

in the life cycle or infectivity of the parasite based on its pattern of expression. 

CAMKgroup 

This is a relatively poorly represented group in the three sequenced 

trypanosomatid genomes that includes Ca2+/calmodulin regulated kinases and AMP­

dependent kinases. It includes 13 CaMKs predicted to be active in T. cruzi, 14 in T. 

brucei and 16 in L. major (Parsons et al., 2005). 
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Ca2+ has a criticaI role as a second messenger in a variety of eukaryotic ce11 

functions, such as ce11 division, secretion and motility, and is considered a universaI 

signaling molecule. Trypanosomatids posses a11 the machinery to transduce Ca2+ 

signais, including acidocalcisomes, which are Ca2+ storage organelles with special 

significance for the propagation of signais in intrace11ular trypanosomatids 

(amastigote stage) (reviewed in Parsons and Ruben, 2000). Exposure to Ca2+ 

chelators in trypanosomatids leads to a decrease in host cell invasion (reviewed in 

Moreno and Docampo, 2003). In general, the Ca2+ system in trypanosomatids share 

great similarities with that of the mammalian host, but regulation differs from the 

processes that occur in higher eukaryotes (reviewed in Moreno and Docampo, 2003, 

Parsons and Ruben, 2000). These organisms also contain a variety of Ca2+ binding 

proteins (CaBPs) and, possibly, the regulatory caImodulin (CaM). However, onlya 

smaIl number of target enzymes seem to depend on CaM (reviewed in Parsons and 

Ruben, 2000). 

A Ca2+/calmodulin dependent kinase in T. cruzi epimastigotes (TcCaMK) 

with autophosphorylating activity was found to be associated with the parasite 

cytoskeleton and to play an important role in regulating Ca2+ -dependent processes in 

the parasite (Ogueta et al., 1996; 1994). This protein also appears to be involved in 

the phosphorylation of a different set of proteins throughout the parasite life cycle 

(Ogueta et al., 1998). Sorne isoforms of adenylate cyclase are aIso Ca2+ binding 

proteins and a variety of others have been cloned, such as the EF -hand CaBP that can 

sense or buffer Ca2+: this protein is 10cated in the flagellum of trypanosomatids and, 

due to its localization, may be involved in motility and environmental sensing 
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(reviewed in Parsons and Ruben, 2000; Godsel and Engman, 1999; Maldonado et al., 

1997). 

Leishmania 

Intracellular Ca2
+ concentration in Leishmania and other typanosomatids has 

been demonstrated to change during their interaction with host cells and upon heat 

shock, suggesting a role in the differentiation process. However, Ca2
+ physiological 

role as second messenger is yet to be established (reviewed in Moreno and DoCampo, 

2003, Sarkar and Bhaduri, 1995). In Leishmania, a handful of proteins have been 

shown to bind Ca2
+, including Ca2

+ -dependent A TPases in L. donovani (Mazurnder et 

al., 1992) and in L. mexicana (Benaim et al., 1993), although hardly any CaM kinases 

have been characterized in these parasites. 

CMGG 

This is a significantly expanded family of kinases in trypanosomatids that 

include cyclin-dependant kinases (CDKs), whose family members were named CRK 

for cdc2-related kinase, mitogen-activated protein kinases (MAPKs) and 

extracellular-signai-regulated kinase (ERK), a subdivision of MAPKs. The increased 

number of such kinases in trypanosomatids may reflect the requirement to control 

their life cycle and cell cycle, along with the need to carry out correct repli cation and 

segregation of organelles (reviewed in Naula et al., 2005). 

Cyclin-dependent kinases 

Trypanosomatids have a family of cdc2-related kinases that share 

approximately 45-55% identity with the human cdc2. Due to the importance of the 
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division process to differentiation during their life cycle, a number of investigators 

have tried to identify the molecular mechanisms that control the cell cycle in 

trypanosomatids. In L. major and T. brucei, this family has Il members, while T. 

cruzi has 10 (reviewed in Naula et al., 2005). A few reports on the characterization 

and potential roles ofthese CDKs have been pub li shed and in T. brucei RNAi studies 

indicated CRK1, 2,3, 4 and 6 have potential role in cell cycle, since donwregulation 

of CRK1 in the procyclic and bloodstream forms leads to reduced growth and 

increase duration of the G 1 phase. Concurrent downregulation of CRK1 and either 

CRK2, 4 or 6 further enhanced that phenotype, although neither CRK2 nor 6 alone 

are essential for cell cycle progression. CRK3 is the functional homologue of CDK1 

controlling entry into mitosis and its downregulation in T. brucei both procyclic 

(insect stage) and bloodstream forms led to mitotic block and growth arrest (Tu and 

Wang, 2004). 

CDKs require cyclins as regulatory subunits and activating partners and 

analysis of the tritryp genome identified 10 cyclins in each parasite. It has been 

demonstrated that CRK3 interacts with CYC2 and CYC6 and downregulation of 

these two cyclins correlate with results of CRK3 downregulation. Collective data 

suggest the CRK3 :CYC2 complex is required for cell cycle progression through G 1 

(reviewed in Naula et al., 2005). 

In T. cruzi, a couple of CRKs functioning as cyclin-dependent kinases 

(Gomez et al., 2001) have been identified and characterized. One of them, the 

TzCRK3, is most likely a homologue of CDK1 whose activity is maximal at the 

G2/M phase boundary. The second CRK studied, TzCRK1, is active throughout the 
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Gland S phases (reviewed in Naula et al., 2005). They were both shown to 

phosphorylate histones Hl, but the relevance ofthis infonnation is not yet known (da 

Cunha et al., 2005). 

Leishmania 

In L. mexicana, two cdc2-related genes have been isolated: CRK.1, expressed 

in all life-cycle stages but active and able to phosphorylate histone Hl only in the 

promastigote stage and CRK3, the functional homologue of CDK1 controlling entry 

into mitosis and active both in promastigotes and amastigotes (Grant et al., 

2004;Grant et al., 1998;Mottram et al., 1996). LmexCRK.1 is essential in 

promastigotes, but its specific function in the cell cycle control is yet to be 

established: it is proposed to have a similar function to T. brucei CRK.1 in cell cycle 

progression, since the latter can complement LmexCRK.1 mutants (reviewed in Naula 

et al., 2005). Inhibition of LmexCRK.3 activity with flavopiridol, a chemical inhibitor 

of CDKs and a growth inhibitor with a structure related to natural alkaloids, showed 

cells arrested in G2/M phase and this kinase is essential to control cell cycle 

progression at the entry into mitosis (Grant et al., 2004, Hassan et al., 2001). L. 

major CRK3, which is 99% identical to LmexCRK3, is able to complement S. pombe 

cdc2 mutant and was shown to be essential for parasite growth (Hassan et al., 200 1, 

(Wang et al., 1998). 

MAPkinases 

A large number of MAPK genes (14 in T. brucei, 13 in T. cruzi and 15 in L. 

major) have been identified in the tritryp kinome, possibly reflecting the importance 

of the MAPK cascade in coordinating environmental sensing (Parsons et al., 2005). 
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Four MAP kinases have been cloned and characterized in T. brucei, all ofwhich can 

also be classified as ERKs. One is highly expressed in the bloodstream stage of the 

parasite and appears to be induced by IFN-y; it also appears to be essential for 

parasite survival and proliferation (Hua and Wang, 1997). This MAPK was tenned 

KFRI. ThMAPK2, the second member, is not required for T. brucei bloodstream 

fonn but it was shown to be important for cell cycle progression, growth and 

differentiation to procyclics (Muller et al., 2002). The third MAPK, the ThECK1, is 

an ERK-like kinase that shares characteristics of CDKs and is constitutive1y 

expressed throughout the trypanosome life cycle. This kinase has an unusual C­

terminal region that acts as negative regulator of procyclic proliferation, suggesting 

an important role in cell cycle (Ellis et al., 2004), making this molecule an attractive 

drug target. The recently characterized ThMAPK5 is involved in growth and 

differentiation of bloodstream fonns. De1etion of this gene results in reduced mice 

infection due to premature differentiation to stumpy fonns: mutant procyc1ics were 

able to proliferate nonnally in culture, could be transmitted to tsetse flyand were able 

to infect mice, however the parasitemia leve1 was three times lower (Pfister et al., 

2006). 

Leishmania 

Nine MAPKs (LmxMAPK-LmxMPK9) genes with developmentally regulated 

mRNA expression (Parsons et al., 2005) have been cloned and partially characterized 

in L. mexicana (reviewed in Naula et al., 2005). LmxMPK, the first MAPK 

identified, is essential for infection since it is required for amastigote survival and 

proliferation inside the host macrophage (Wiese, 1998). Subsequently, eight more 
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genes, present in one copy per haploid genome, were c10ned from L. mexicana, as 

well as one homologue from L. major, L. infantum, L. amazonensis and L. 

braziliensis (Wiese and Gorcke, 2001) and L. donovani and L. panamensis (Wiese et 

al., 2003 a; Wiese et al., 2003b). In L. tropica, L. aethiopica and L. donovani this gene 

is present in at least two copies per haploid genome (Wiese and Gorcke, 2001). Of 

these L. mexicana MAPKs, onlya couple more, the LmxMPK4 and LmxMPK9, apart 

from LmxMPK, have been fully characterized: LmxMPK4 is essential for 

promastigotes and amastigotes (Wang et al., 2005) and LmxMPK9, exc1usively found 

in the promastigote stage, is involved in the regulation of flagellar length by inducing 

flagellar shortening (Bengs et al., 2005). 

STE group 

This is another expanded group identified in the trypanosomatid kinomes, 

with many STEs having been studied in Leishmania. In the MAP kinase signaling 

pathway cascade they are the upstream regulators and involve activators of MAPK, 

such as MAP kinase kinases (MAP2Ks), that mediate activation of the former 

through phosphorylation on tyrosine or threonine in the activation loop (Parsons et 

al., 2005). Although several reports of members of the group exist, it has been 

impossible to predict the signaling pathways with which the members of this group 

are involved based only in sequence analysis. 

Leishmania 

In L. mexicana two MAP kinase kinases (LmxMKK and LmxPK4) and one 

MAPKKK (LmxMPK3) have been identified. The LmxMKK is only expressed in the 
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promastigote stage and is required for regulation of flagellar assembly and 

maintenance of a full-Iength flagellum, promastigote shape and size and for cell 

motility (Wiese et al., 2003a). LmxPK4, also found in other kinetoplastids, is 

expressed throughout the promastigote stage and during differentiation to 

amastigotes, but is not required for growth in vitro since mutants show no defect in 

proliferation (Kuhn and Wiese, 2005). However mutants lacking the enzyme have 

delayed proliferation within infected cells and have difficulty to establish infection, 

showing LmxPK4 may have an important role in the differentiation process towards 

the amastigote stage in vivo (Kuhn and Wiese, 2005). The MPK3 is exclusively 

expressed in promastigotes and its rnRNA is downregulated in the amastigote stage. 

Mutation of the LmxMK3 gene leads to the appearance of a reduced flagellum that 

resembles LmxMKK mutants, indicating these two kinases are components of a 

common signal transdcution pathway. And indeed, LmxMKK is able to 

phosphorylate and activate LmxMK3 (Erdmann et al., 2006). It is likely there are 

two MAP kinase signal transduction cascades influencing the control of flagellar 

length: one with LmxMKK and its potential activators and substrates kinases 

regulating elongation of the flagellum and a second with LmxMPK9 and its activating 

kinases affecting shrinkage of flagellum (Bengs et al., 2005). 

TK and TKL groups 

This group involves receptor-linked or cytosolic tyrosine kinases and tyrosine 

kinase-like enzymes. According to analysis of the tryp kinomes, these two groups are 

absent in trypanosomatids, despite the fact there are numerous reports on tyrosine 
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phosphorylation in these orgamsms. It has been suggested that tyrosine 

phosphorylation is due to the action of atypical tyrosine kinases, such as dual­

specificity kinases, that could phosphorylate serine, threonine and tyrosine residues 

(Sadigursky and Santos-Buch, 1997). For this matter, sequence data alone could not 

accurately predict specific signaling pathways in trypanosomatids and additional 

biochemical studies will be required for that purpose (reviewed in Parsons et al., 

2005, Naula et al., 2005). 

Nonetheless, tyrosine phosphorylation has been weIl documented in 

trypanosomatids (Wheeler-Alm and Shapiro, 1992) and it seems to be an important 

mechanism for differentiation, where tyrosine phosphorylation is stage-regulated 

rather than cell cycle-regulated (Parsons et al., 1995; Parsons et al., 1991), and for 

parasite invasion (Favoreto S Jr et al., 1998), where tyrosine phosphorylation is 

absent in slender blood forms of T. brucei, but stumpy forms show close profile to 

procyclic forms with a higher phosphotyrosine containing proteins (Parsons et al., 

1990). However no TKs have been purified from trypanosomatids to date and the 

enzymes that carry out this process have not yet been characterized (Doerig et al., 

2002;Gonzalez, 2000). 

Leishmania 

Tyrosine phosphorylation activity and its effects have also been broadly 

reported in Leishmania parasites, but to date no characterization of TKs has been 

described. The effects of differential tyrosine phosphorylation are generally related to 

environmental changes, adaptation to acidic conditions, transformation from the 

promastigote to the amastigote stage (Salotra et al., 2000;Rivero-Lezcano et al., 
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1997;Dell and Engel, 1994) or associated with mediation of promastigote entry into 

macrophages (Ghosh and Chakraborty, 2002). 

"Other" group 

This group involves aIl kinases that don't have any homology to groups from 

the ePKs used for analysis. The NEK family has a significant number of members in 

the tritryp kinome (20-22) when compared to the human genome (15). Not much is 

known about the role of NEK members, but in sorne model systems they seem to be 

involved in cell cycle and skeletal function and appear to work in cascades. One 

NEK in T. brucei. termed Nrk, posseses higher expression levels in procyclics than in 

bloodstream forms (Reviewed in Naula et al., 2005, Parsons et al., 2005). 

Sorne identified members from this group include proteins involved in cell 

division in other organisms, DNA replication/repair and stress response (Parsons et 

al., 2005). Activators of CAMKs are also included here, as weIl as the casein kinase 1 

(CK1) family. CKI was identified in L. mexicana and T. cruzi and an interesting fact 

about this kinase is that it can bind a group of CDK inhibitors (flavopiridol), unlike 

the mammalian CKI (Knockaert et al., 2000), making it an attractive target for drug 

development. 
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Additionally ldentified and Characterized Kinases 

Ectokinases 

A few kinases in Leishmania have been identified on the extemal membrane 

of the parasite and were termed ectokinases (Vieira et al., 2002, Mukhopadhyay et 

al., 1988; Lester et al., 1991). These enzymes either reside on or are shed from the 

cell surface and have the ability to phosphorylate exogenous substrates. This extemal 

orientation may have an important role in regulating host-parasite interactions, 

parasite survival and signal transduction (Lester et al., 1991). Cell surface histone­

specifie kinase activity has been detected in Old and New world Leishmania species, 

such as L. donovani, L. major, L. tropica, L. panamensis and L. amazonensis and is 

present in higher levels in metacyclics than in procyclics (Mukhopadhyay et al., 

1988). In 1991 (Hermoso et al., 1991) demonstrated that L. major promastigote 

ectokinase LPK-l is able to phosphorylate components of the complement cascade 

indicating this enzyme may play a role in the interaction with the host, reinforcing the 

idea that kinases released by this parasite may be involved in host-parasite 

interactions and host immune system modulation. It has also been shown that L. 

major is capable of releasinglshedding its ectokinases with different activities either 

in the presence or even in the absence of substrates, depending on the ectokinase, and 

that the constitutively shed leishmanial ectokinase LCK is a casein kinase (CK1)-like 

enzyme (Sacerdoti-Sierra and Jaffe, 1997). Constitutive shedding of the casein 

kinases 1 and 2, active in promastigotes of L. donovani, is synergistically inhibited by 

low pH and high temperatures, conditions found in the transfer from insect vector to 

macrophages, indicating optimal conditions for the release of CKI from 
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promastigotes are consistent with the local environment in the insect vector. 

Nonetheless, activity is still detected in low pH, suggesting that casein kinases could 

potentially have a role in parasite survival within macrophages perhaps by 

phosphorylating host proteins to facilitate the invasion process (Vieira et al., 2002). 

Recently, L. major CKI isofonn 2 has been identified as the primary high-affinity 

binding protein of a PKG inhibitor, which leads to inhibition of promastigote growth 

in culture, which is consistent with an essential biochemical function for CKI in the 

insect stage of Leishmania promastigotes (Allocco et al., 2006). 

Phosphatases 

Reversible protein phosphorylation is recognized as a fundamental mechanism to 

regulate protein function. As previously reviewed, the dephosphorylation of 

phosphoproteins is catalyzed by protein phosphatases, which are c1assified into the 

tyrosine phosphatases (PTPs) and serine/threonine phosphatas es (PPs) groups. The 

genome-wide analysis of the tritryp kinomes revealed protein kinases comprised 

approximately 2 % of each genome (Parsons et al., 2005). According to the genome 

database, there are approximately 57 phosphatases in L. major, which correspond to 

less than 1 % of its genome. Yet, even less infonnation about these phosphatases is 

available. 
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Tyrosine phosphatases 

Although there was no direct evidence, reports of PTP activity in 

trypanosomatids started in the 1990's (Parsons et al., 1991;Aboagye-Kwarteng et al., 

1991;Cool and Blum, 1993). Bakalara et al. (1995b) showed T. brucei and T. cruzi 

lysates were able to dephosphorylate peptides at their tyrosine residues and the 

cytosolic enzyme activity was inhibited with a PTP inhibitor. Those authors also 

showed PTP activity was located both in the soluble and particulate fractions and that 

a 55-kDa protein was found in the bloodstream and procyclic forms, suggesting 

tyrosine phosphatase is stage-regulated. A membrane-associated PTP was also 

identified in T. brucei, which is present in the bloodstream stage, but not in the 

procyclic stage. Presented data suggested TbPTPase is stage-regulated and has an 

optimal pH of 4.0-5.0, possibly a reflection of its extemallocation, and that it might 

play a role in trypanosome growth and differentiation (Bakalara et al., 1995a). A 

PTP closest to the class ofphosphatases ofregenerating liver (PRL) was isolated and 

characterized in T. cruzi (Cuevas et al., 2005). TcPRL-1 has several residues 

characteristic of PRLs and the conserved catalytic residues common to all PTPs and, 

like other PRLs, this protein is famesylated at the C-terminal, a modification that is 

essential for its membrane localization and biological function. In epimastigotes, 

TcPRL-l is located in endocytic membranes, co-Iocalizing with the cysteine 

proteinase and its functional role in cellular processes has not been determined 

(Cuevas et al., 2005). T. cruzi also has an ecto-protein tyrosine phophatase in the 

trypomastigote and amastigote stages with optimal activity on acidic pH that could 

indicate physiological re1evance since trypomastigotes enter the acidic compartment 
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ofmammalian cells; amastigotes present a higher activity of the ecto-PTP, which may 

suggest a role during infections, maybe as an antiphagocytosis mechanism (Furuya et 

al., 1998). 

Leishmania 

In Leishmania, little is known about PTPs, although there are about nine 

identified tyrosine phosphatases in the L. major database. To date, most studies 

suggest the involvement of host PTPs in the pathogenesis of Leishmania infections. 

In 1993, Cool and Blum first demonstrated PTP activity in L. donovani and the 

possible presence of multiple enzymes that change the balance of tyrosine 

phosphorylation and dephosphorylation at different stages of the culture. A 

subsequent study on the involvement of phosphatas es in the differentiation process 

showed the tyrosine phosphorylation profile of a virulent strain of L. donovani is 

reduced after heat shock, mimicking amastigote transformation, most likely due to 

increase in protein phosphatase activity (Salotra et al., 2000). However, one 

investigation on the involvement of tyrosine phosphatases in the differentiation 

process of L. donovani showed that overexpression of the human PTPIB in 

promastigotes induces partial amastigote differentiatiation and expression of the 

amastigote-specific A2 proteins; similar results are also obtained when the tyrosine 

kinase inhibitor tyrphostin AG1433 (an inhibitor of RTKs with more affinity to 

PDGF receptor) is used in promastigote cultures (Nascimento et al., 2003). 

Moreover, the hPTPIB expressing promastigotes display increased virulence, when 

compared to wild-type L. donovani, both in vivo and in vitro. These data strongly 

suggested tyrosine phosphorylation plays a role in L. donovani differentiation and 
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virulence (Nascimento et al., 2003). More recently, a report on membrane PTP 

activity in L. major has been published (Aguirre-Garcia et al., 2006) with the 

identification of a 55-60 kDa protein band. The Western blot band identified when 

antibodies against the catalytic domain of hPTPIB or a T. cruzi PTP was used, 

indicate metacyclics have higher levels of the enzyme than procyclics. 

Immunolocalization studies also showed that in metacyclics this PTP shifts its 

localization from cytoplasmic to the membrane vicinity, on the tip of the parasite that 

usually establishes contact with the host, suggesting a possible role in adaptation to 

confront host mechanisms, with external membrane expression or even release of the 

enzyme (Aguirre-Garcia et al., 2006). However further studies will be necessary to 

determine the precise role of this PTP. Also very recently, Almeida-Amaral et al. 

(2006) have identified and characterized the activity of another ecto-phosphatase in L. 

amazonensis. This phosphatase seems to be inhibited by both a classical inhibitor of 

acid phosphatase as weIl as phosphotyrosine phosphatase inhibitors such as sodium 

orthovanadate and bpV(phen), suggesting it may be a phosphohydrolase 

ectophosphatase with PTP activity. However, the biological relevance of this finding 

remains to be determined. An unusual PTP with dual function has also been 

characterized in L. major and was termed LmACR2 (Zhou et al., 2006). This enzyme 

was first identified as a metalloid reductase that exhibits Sb(V) reductase activity and 

functions as a physiological drug activator in Leishmania (Zhou et al., 2004). 

However, its closest homologues are members of the dual phosphatase Cdc25 PTP 

family, sharing the same active site. LmACR2 is capable of dephosphorylating a 

phosphotyrosine-containing peptide and its function is inhibited when a PTP inhibitor 
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is used, indicating it also has PTP activity (Zhou et al., 2006). The role of a 

conserved cysteine residue (Cys75) in the active site motif was also investigated and 

results with mutant enzymes show this residue, along with an Arg81 residue, is 

important for the enzyme phosphatase activity, which is proposed to be the 

physiological function of Leishmania ACR2 (Zhou et al., 2006). 

Serine/threonine phosphatases 

Regarding serine/threonine phosphatases, the first identification of PPs in 

trypanosomes goes back to 1991 (Erondu and Donelson, 1991) with the 

characterization of catalytic subunits of protein phosphatase 1 and 2A from T. brucei 

with high degree of homology with their mammalian homologues. Very few 

phosphatases have been isolated and characterized since then and their function is not 

completely understood, although numerous reports on the use of PPs inhibitors 

suggest their involvement in nutrition, cellular differentiation and virulence. The 

biological roI es of PP1 and PP2A have been inferred after pre-treatment of T. cruzi 

trypomastigotes with a PP1 inhibitor, which induces amastigote differentiation, 

suggesting involvement in the differentiation process (Grellier et al., 1999). When a 

specific inhibitor of PP2A is used, but not inhibitors of PP1 or PP2B, cells do not 

completely transform from trypomastigotes to amastigotes in vitro, suggesting a role 

for these enzymes in T. cruzi remodeling (Gonzalez et al., 2003). Another report of 

two PPs in T. cruzi, termed TcPP1a and TcPP1~ and expressed in both epimastigotes 

and metacyclic trypomastigotes, indicate they may be involved in cell division and 

maintenance of parasite shape since inhibition with PP1 inhibitor affects epimastigote 
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growth and morphology (Orr et al., 2000). The identification of a T. brucei PP5 

(TbPP5) and analysis of its expression has been reported (Chaudhuri, 2001). This 

type 5 pp has 45-48% overall identity and 60-65% similarity with PP5 from different 

species and is expressed as a 52 kDa protein in the bloodstream and procyclic 

proliferative forms. TbPP5 is a predominantly cytoplasmic phosphatase with a 

conserved region at the C-terminal that appears to be essential for localization and 

seems to be expressed at higher levels in mid-log phase than in stationary phase 

promastigotes. The role of TbPP5 is yet to be determined and future studies will be 

required to analyze its function in cellular proliferation (Chaudhuri, 2001). 

Ectophosphatases 

Protein phosphatases have been detected at the cell surface of several 

members of the Trypanosomatidae family and in other intracellular pathogens such as 

Yersinia. Biological and physiological roi es for these enzymes have been proposed 

and are supposed to involve nutrition, through hydrolysis of metabolites in order to 

provide the parasite with inorganic phosphate, virulence and differentiation. Acid 

phosphatases (AcPs) are known to exist in the plasma membrane oftrypanosomatids, 

although these enzymes are typically found in the lysosome compartment since 

they're able to hydrolyse a number of substrates at acidic pH. An acidic protein 

phosphatase, most likely from a different family of acidic ectophosphatases, has been 

characterized and cloned from T. brucei. This enzyme, named TryAcPI15, is 

modified by N-linked glycans and is expressed in patchwork patterns on the cell 

surface. This unequal distribution is related to its C-terminal intracellular domain. It 

has been proposed TryAcP115 may be implicated in cell growth and host-parasite 
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interaction (Bakalara et al., 2000). The demonstration of ecto-phosphatase activity of 

a tartrate-sensitive membrane-bound acid phosphatase in intact and live bloodstream 

forms of T. brucei, but not in procyclics, also suggests a role in cell-cell interactions 

(Cedro et al., 2003). In T. rangeli, a parasite of wild and domestic animal unable to 

elicit pathology, an external acidic phosphatase present in the epimastigote (insect) 

stage with optimal pH in the acidic range is also predicted to have a role in 

(invertebrate) host-parasite interaction and/or transduction of external stimuli (Gomes 

et al., 2006). A T. brucei type 1 membrane bound histidine acid phosphatase termed 

ThMBAP 1 is a tartrate-sensitive acid phosphatase downregulated during 

differentiation from the bloodstream to the procyclic insect stage and is essential for 

the maintenance of endo- and exocytosis in the mammalian stage of T. brucei 

(Engstler et al., 2005). 

Leishmania 

Identification of a type 2C serine/threonine protein phosphatase (PP2C) in L. 

chagasi and L. amazonensis through amino acid sequence comparison demonstrates 

this enzyme is present in both the promastigote and amastigote stage; the authors also 

demonstrate the presence ofPPl-like activity in Leishmania (Burns, Jr. et al., 1993). 

Further characterization studies identified the L. donovani PP2C as a cytosolic 

enzyme with great similarities to the mammalian PP2C and a Mi+ requirement for 

activity (Nandi and Sarkar, 1995), but the PP2C function in Leishmania is still 

unknown. A cytosolic Ca2+/calmodulin dependent PP2B, which is ubiquitously 

expressed in higher eukaryotes, has aiso been described in L donovani promastigotes. 

It has close similarity with other well-characterized PP2B from mammalian sources, 
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however its biochemical role aIso remains to be e1ucidated (BaneIjee et al., 1999). A 

study by Becker and J affe (1997) evaluated the effect of two different inhibitors of 

serine/threonine kinases on parasite growth and morphology with the use of a kinase 

inhibitor approach, which would mimic phosphatase activity: by inhibiting 

serine/threonine kinases, promastigote growth was inhibited, while amastigote 

differentiation and proliferation were not affected, which may indicate a role for 

serine/threonine phosphatases in promastigote proliferation. 

Ectophosphatases 

Many Leishmania surface membrane molecules have been studied and one of 

the best characterized is the family of histidine acid phosphatases. They inc1ude the 

unique tartrate-resistant externaIly oriented cell surface membrane-bound acid 

phosphatase (MAcP) and the heavily glycosylated/phosphorylated, tartrate-sensitive 

secretory acid phophatase (SAcPs) present in a several Leishmania species (Shakarian 

et al., 2003). According to studies of two main acid phosphatases in L. mexicana 

promastigotes, the membrane bound and the secreted enzymes have homologous but 

not identical N -terminal sequences and are encoded by different genes (Menz et al., 

1991). 

One of the fust studies to identify the distribution of acid phosphatases over 

externaI surface membranes of L. donovani promastigotes, including the flagellar 

membrane was carried out by Gottlieb and Dwyer (1981b; 1981a). These authors 

showed activity and broad substrate specificity exhibited asymmetrical distribution in 

the exterior surface. These membrane bound acid phosphatases were aIso detected in 

the outer face of the plasma membrane of infective and non-infective L. amazonensis 
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promastigotes and amastigotes (Pimenta and de, 1986). However, studies of L. 

donovani acid phosphatase indicate virulent clones have higher levels of enzyme 

activity than avirulent ones and that there are quantitative and qualitative differences 

between virulent and avirulent L. donovani regarding the amount of produced enzyme 

and the pattern of electrophoretic mobility (Katakura and Kobayashi, 1988) that this 

could be used as a marker to differentiate virulent from avirulent clones (Singla et al., 

1992). The L. donovani cell-surface acid phosphatase ACP1, which 

dephosphorylates phosphopeptides at serine residues, was shown to be able to inhibit 

the generation of superoxide anions by phagocytes (macrophage oxidative burst) (Das 

et al., 1986) and similar results are obtained with a purified preparation of L. 

donovani acid phosphatases that are able to suppress host phagocytic cells by 

reducing their ability to produce oxygen metabolites (Remaley et al., 1985). In 2002, 

Shakarian et al. identified and characterized a novel L. donovani tartrate-resistant 

membrane-bound acid phosphatase (MacP). The gene is present in a single copy in 

the L. donovani genome and the RNA and protein expression indicate it is 

constitutively present both in membranes of promastigotes and amastigotes. This 

enzyme contains an N-terminal peptide sequence that is also conserved in SacPs 

(which includes the histidine AcPs catalytic domain) that is required, along with the 

C-terminal, for surface membrane targeting (Shakarian et al., 2002). Activity of the 

L. mexicana membrane bound acid phosphatase (LmxMBAP) is detected in both 

promastigote and amastigote stages (Menz et al., 1991) and cloning of LmxMBP 

indicate it is a type 1 membrane protein with hydrophilic N-terminus responsible for 

enzyme activity (Wei se et al., 2005) and that its COOH-terminus is required for 
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endosomal targeting, where the enzyme is located in the endosomal/lysosomal 

compartment between the flagellar pocket and golgi apparatus (Wiese et al., 1996). 

The role of LmxMBP remains to be elucidated, but the enzyme doesn't seem to be 

required for promastigote growth in cultures, for infection or survival of amastigotes 

within macrophages (Benzel et al., 2000). 

The extracellular secreted acid phosphatase (SAcP), with an optimal pH of 4.5 

- 5.0 and N-linked (glycosylated) side chains, was :tirst detected in promastigotes of L. 

donovani and was capable of dephosphorylating a wide variety of substrates; 

comparative studies showed it was distinct from the previously described surface 

membrane-bound acid phosphatase (Gottlieb and Dwyer, 1982). Analysis of different 

Leishmania species demonstrated the presence of secreted acid phosphatase activity 

in aIl cultured promastigotes examined, except for L. major and L. tarentolae. 

However, activity has been detected in L. major promastigotes lysates when a 

sensitive method is used (Shakarian and Dwyer, 2000). Differences among species 

regarding the level of enzyme activity and their inhibition by tartrate were detected. 

This is due to either differences in the amount of released enzyme or to different 

enzymatic activity, as weIl as different pattern of electrophoretic mobility (Lovelace 

and Gottlieb, 1986; Doyle and Dwyer, 1993). The L. donovani SAcPs are composed 

of tandemly arrayed single-copy genes (sacpl and sacp2) constitutively secreted by 

promastigotes (Shakarian et al., 1997). In L. mexicana, two tandemly arranged genes 

(lmsapl and Imsap2), highly conserved to LdSAcPs, encoding a tartrate-sensitive acid 

phosphatase located in the flagella pocket have also been describe and characterized 

from promastigotes (Wiese et al., 1996; Wiese et al., 1995). Biosynthesis and 
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secretion of L. donovani acid phosphatase was investigated and results showed this 

enzyme is the major glycoprotein secreted in large amounts by promastigotes in vitro. 

It is composed of two re1ated heterodisperse subunits, synthesized as two intracellular 

precursors, and its secretory pathway inc1udes N-glycosylation in the endoplasmic 

reticulum with further glycosylation and modification involving the Golgi apparatus 

prior to secretion (Bates and Dwyer, 1987). It was demonstrated L. donovani 

amastigotes are also able to produce this enzyme in vivo and in vitro, which suggests 

its importance for survival ofboth developmental stages survival (Bates et al., 1989; 

Doyle et al., 1991; Ellis et al., 1998). L. mexicana promastigotes release a single type 

of SAP filament that is actually a copolymer of both SAPI and SAP2, while 

amastigotes do not seem to have SAP (Wiese et al., 1995). LdSAcPI and LdSAcP2 

are active1y transcribed in promastigotes and have a high degree of sequence 

conservation to each other, with the presence of a signal peptide, a catalytic domain 

with N-linked glycosylation sites and the consensus sequence of histidine acid 

phosphatases, a Ser/Thr rich repeat region and a common C-terminus. LdSAcPs are 

heterogeneous glycoproteins that possess similarities to the LPG structure due to the 

sharing of carbohydrate epitopes in their abundant C-terminal phosphoglycans within 

the ser/thr rich region (Lippert et al., 1999). The filamentous complexes of LmSAPs 

are composed of a central chain of globular partic1es with a surrounding glycocalyx 

that are assembled in the flagellar pocket. Similar to LdSAcP, these complexes are 

modified by N-linked glycans and phosphoserine mannosyl residues and by capped 

phosphosaccharide repeats, all attached to the serine residues within the Ser/Thr-rich 

repeat domain (Stierhof et al., 1998). The role of the extensively studied LdSAcPs is 
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speculated to be related to hydrolysis of substrates to provide nutrients or to modify 

the host environment to the parasite advantage, enabling them to live in hydrolytic 

conditions within the sandlfy. Sorne of these conclusions were drawn after 

investigation of LdSAcP activity in the presence of proteases, which showed overall 

enhancement of LdSAcP activity most likely due to involvement of the 

phosphoglycan modifications in those enzymes (Joshi et al., 2004). However, studies 

of the involvement of L. mexicana SAP in the survival of metacyclic promastigotes 

within the insect vector showed this phosphatase is not present in the gel-like plug 

produced by the parasites in the sandfly midgut (Stierhof et al., 1999). 

Leishmania Infection and Altered Host Signaling 

Leishmania parasites are able to infect cells of the monocytic/macrophage 

lineage and evade the host immune response by impairing macrophage and dentritic 

cell function. Leishmania impairs host cell function in part by manipulation of 

intracellular kinases and phosphatases and, therefore, suppresses the activation of 

signaling pathways, transcription factors and gene expression, leading to 

compromised macrophage functions (reviewed in Murray et al., 2005). The presence 

of surface molecules in Leishmania have been the main focus of studies regarding 

interaction and manipulation of macrophage functions: LPG, gp63 and GIPL have 

been extensively linked to entry into the host cell (reviewed in Olivier et al., 2005 and 

Sacks and Kamhawi, 2001). The secretion of molecules, such as secreted acid 

phosphatases and the presence of ecto-kinases/phosphatases, have also been linked to 
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parasite survival and pathogenesis in the mammalian host as weIl as to the 

Leishmania-induced suppressive effects through manipulation of host signaling 

cascades (reviewed in Denkers and Butcher, 2005). 

Parasite-driven impairment of macrophage PKC, or its major substrate 

MARCKS, is also an important event during Leishmania infection, since it's linked to 

a decrease in oxidative mechanisms due to interference by LPG (reviewed in Denkers 

and Butcher, 2005;Nandan and Reiner, 2005;Brandonisio et al., 2000). LPG has also 

been associated with the inactivation of macrophage MAPK, important for the 

activation of NF-lCB-dependent signaling pathways that regulates proinflammatory 

cytokines release (Prive and Descoteaux, 2000). Several studies indicate Ca2
+ 

concentration is increased in Leishmania infected cells since there is increased Ca2
+ 

uptake linked to the fact LPG seems to chelate intracellular Ca2
+ (reviewed in Olivier 

et al., 2005). It's well established that Leishmania infections are able to downregulate 

the IFN-y response. As a consequence, the pathway downstream of the IFN-y 

receptor, namely Janus Kinases (JAKs)/STATl signaling, is also inhibited and shows 

defective phosphorylation of its components with reduced PTK activity, resulting in 

inhibition of transcription ofIFN-y induced genes, such as iNOs (reviewed in Olivier 

et al., 2005). Results from different studies also suggest a role for the Src homology 

domain 2 containing tyrosine phosphatase 1 (SHP-l) in the pathogenesis of 

leishmaniasis, since infection of macrophages with Leishmania was shown to induce 

an increase in the specifie activity ofhost SHP-l (reviewed in Olivier et al., 2005 and 

Nandan and Reiner, 2005). This phosphatase is predominantly expressed in 

hematopoietic cells and is typically involved in signal termination (it is a negative 
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regulator involved in the immune response). It appears that SHPI is the main 

component of the macrophage PTP repertoire and interferes with JAKISTAT 

pathways following cytokine stimulation and therefore has a direct role in negative 

signaling induced by Leishmania infection (Blanchette et al., 1999). It has also been 

showed that L. major infection in SHPI deficient mice, which shows a normal 

expression level of iNOs and signaling molecules (e.g. STAT1, NF1C~), does not 

pro duce footpad swelling (Forget et al., 2001), further establishing the involvement of 

this phosphatase in Leishmania progression (reviewed in Olivier et al., 2005). 

Leishmania Kinases and Phosphatases as Drug Targets 

Phosphorylation of serine, threonine and tyrosine residues play an essential 

role in many molecular aspects of cellular processes and cell cycle in eukaryotes. 

Protein kinases, and the well-studied cyclin-dependant kinases (CDKs), have been 

extensively characterized in many organisms, including sorne in trypanosomatids as 

discussed above. Therefore, there is a great potential for using kinases as a target for 

novel drugs to interfere with key signaling pathways (reviewed in Sebolt-Leopold and 

English, 2006). 

A number of specific kinase inhibitors have been recently developed and are 

under clinical evaluation (reviewed in Sebolt-Leopold and English, 2006 and in Naula 

et al., 2005), and understanding the function and structure ofhuman kinases and their 

interactions with inhibitors may also be useful to identify Leishmania homologues 

and drug targets specific to the parasite enzymes. Hence, developing a rational 
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strategy to identify new targets is a critical step and justified much of the work 

described in this thesis. 

In Leishmania, orthologues of MAPK, MAPKK, CDK and PKA have been 

identified and demonstrated to be involved in a number of essential functions, 

especially in the regulation of cell cycle, differentiation and response to stress during 

the complex parasite life cycle (reviewed in Doerig et al., 2002, Parsons and Rubens, 

2000). The potential ofMAPKs and CDKs from the CMGC kinase family to be used 

as targets is therefore vast, since they are abundant (Parsons et al., 2005) and most 

likely required to insure proper growth and cell division. Moreover, their sequences 

diverge significantly from the mammalian homologues (reviewed in Knockaert et al., 

2002) and there are unique features in trypanosomatid cell cycle biology, such as the 

absence ofkey cell cycle checkpoints, that could be used as specific targets (reviewed 

in Naula et al, 2005). A number of CDK inhibitors, none of which selective for a 

single CDK (reviewed in Knockaert et al., 2002), have been tested in Leishmania and 

have been shown to affect kinase functions (Knockaert et al., 2002, Knockaert et al., 

2000). Recently, a library screen of CRK3 kinase inhibitors was used against the L. 

mexicana CRK3 and four classes of inhibitors were shown to inhibit parasite CRK3 

causing disruption of cell cycle and a change in DNA content, growth arrest and 

aberrant cell morphology (Grant et al., 2004). Diverse protein kinase inhibitors have 

also been known to affect Leishmania growth, morphology and infectivity (Alloco et 

al., 2006; Di Giorgio C. et al., 2004; Nascimento et al., 2003 ; Alvarez et al., 2002 ; 

Becker et al., 1997). 
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Altematively, blocking essential phosphatases may also result in either 

deactivation of vital pathogenic mechanisms or activation of specific phosphorylation 

events that can be deleterious to Leishmania parasites and could therefore be used as 

potential drug targets. In 1998, Olivier et al. showed inhibition of phosphatases in L. 

donovani promastigotes by bpV(phen), a potent PTP inhibitor, inhibits parasite 

growth in culture and in macrophages, when these cells are treated with the inhibitor 

prior to infection, due to an increase in the production of NO. Moreover, when mice 

were treated with bpV(phen), they were able to control infection and the development 

of cutaneous lesions. A different study by Pathak and Yi (2001) showed sodium 

stibogluconate, an established pentavalent antimonial used as a common treatment for 

leishmaniasis, is able to strongly inhibit the in vitro activity of PTPIB and SHP1, 

among other PTPs, but not of dual phosphatases. Both bpV(phen) and the 

pentavalent sodium stibogluconate are able to inhibit PTPs and these studies reinforce 

the idea that blocking vital phosphatase activity in Leishmania-infected cells may be 

an important mechanism to control infections. The recent identification of the L. 

donovani PTP1 enzyme and its involvement in parasite survival in mice (Nascimento 

et al, 2006) also support the connection of PTP as necessary in the course of 

Leishmania infection. Consequently, identification of highly selective and potent 

phosphatas es inhibitors that modulate essential parasite functions may be an effective 

strategy to inhibit specific pathways involved in Leishmania infectivity or survival 

within the host and could be used against this disease. 

According to a recent study, there is a high probability specific inhibitors can 

be designed to target kinases with less than 60% homology to the mammalian 
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enzymes, which is the case for most of the parasite kinomes (reviewed in Naula et al., 

2005), and most likely the same idea can be applied to phosphatases. The use of 

multi-targeted inhibitors that affect other related signaling molecules, or a rational 

drug combination, should also be taken into consideration in order to avoid 

mechanism of acquired resistance (reviewed in Sebolt-Leopold and English, 2006 and 

Naula et al., 2005). In the past few years advances in the field of cancer and diabetes 

has resuited in the development of kinase and phosphatase inhibitors. Leishmania 

research can aiso benefit from these studies, especially through screening of inhibitor 

libraries to facilitate the identification of novel potential targets to combat 

leishmaniasis. 

Leishmania Phosphorylation and differentiation 

Over the years, the crucial involvement of the complex network of protein 

phosphorylation and dephosphorylation in the regulation of several cellular processes 

in higher eukaryotes, such as signal transduction, cellular growth and transformation 

has become weIl established. Studies in yeast have also established a central role of 

protein phosphorylation in cell cycle control. The final steps of this mechanism 

involve the phosphorylationldephosphorylation of transcription factors that ultimately 

regulate gene expression. Similarly, in Leishmania the counterbalanced activity of 

protein kinases and phosphatases has been detected and showed to be regulated 

during their deve1opment, suggesting a critical role during parasite differentiation to 

amastigotes or during metacyclogenesis (Espiau et al., 2006;Genestra et al., 2004). 
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As previously discussed, tyrosine phosphorylation may play a role in the 

differentiation of Leishmania parasites and other trypanosomatids, since the 

phosphorylation pattern is known to change during these parasite development 

(Parsons et al., 1991). Through the action of tyrosine kinases and phosphatases, 

during the log growth phase there is a general increase in tyrosine phosphorylation, 

suggesting it is due to tyrosine kinases, and in the late log/stationary phase there is an 

overall decrease in tyrosine phosphorylation, possibly indicating the activity of 

tyrosine phosphatas es (Salotra et al., 2000, Cool and Blum, 1993); however no 

specifie enzymes have been identified in any of these studies. The changes in the 

phosphorylation status of the cells are most likely due to the fact these parasites go 

through a great variation in their environrnent during their life cycle, altemating 

between the sandfly environrnent (26 Oc pH 7.0) and that of the mammalian host (37 

oC, pH 5.0), and they need to adapt to those changes. It has also been shown that the 

level of tyrosine phosphorylation in virulent L. donovani promastigotes decreases 

after heat shock, while avirulent promastigotes didn't present changes in their 

phosphorylation pattern (Salotra et al., 2000), which may indicate effective 

differentiation towards the amastigote stage in the former strain. However, the 

significance of these studies and the specifie role of tyrosine phosphatases in 

amastigote differentiation and virulence are far from clear. In higher eukaryotic cells, 

where adaptation to changes in the environrnent is initiated by extracellular signaIs, 

phosphorylation at tyrosine residues is an important regulatory mechanism involved 

in cellular division, growth and differentiation and by analogy it should also be 

important for cellular function in trypanosomatids (Salotra et al., 2000). 
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RA TIONALE AND THE SIS OBJECTIVES 

Leishmania parasites are dimorphic protozoans that are exposed to markedly 

different environments during their life cycle. It is weIl established that 

environmental factors such as pH and temperature trigger the differentiation of 

Leishmania. Transformation is linked to biochemical and morphological changes, 

flagellum restructuring and synthesis of new surface molecules corre1ated with altered 

protein function in response to environmental changes. However, the molecular basis 

of amastigote transformation and virulence remains poorly understood. 

Signal transduction, through phosphorylation of tyrosine residues, plays a key 

role in differentiation, among other cellular events, in higher eukaryotes. This process 

is one of the most important regulatory mechanisms for biochemical changes in the 

cell. By analogy to higher eukaryotes, protein phosphorylation is likely to be 

important for Leishmania intracellular events and may play an important role in 

parasite survival and differentiation. 

As discussed herein, several studies in Leishmania parasites suggest 

phosphorylation leve1s change as the parasite goes through its life cycle with different 

patterns of tyrosine phosphorylation being reported. It is therefore possible that 

tyrosine phosphorylation is life cycle stage-regulated, since higher phosphorylation 

levels are detected in promastigotes compared to amastigotes (Dell and Engel, 1994), 

where, upon heat shock, differentiation and dephosphorylation occur, possibly 

indicating the activity of tyrosine phosphatases (Solotra et al, 2000, Cool and Blum, 

1993). However, such studies were based on analysis of general Leishmania 

phosphorylation patterns and none of them provided in-depth investigation on the 
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potential enzymes involved in the process, including the tyrosine kinases and 

phosphatases linked to this regulatory mechanism. 

Therefore, we have chosen to investigate the involvement of tyrosine 

phosphatas es in the Leishmania differentiation process and virulence focusing the 

research on a genetic approach. The work presented in Chapter 2 aimed to determine 

whether a heterologous tyrosine phosphatase would affect the control of L. donovani 

differentiation and virulence levels. Our results indicate participation of a tyrosine 

phosphatase in the processes mentioned above. 

Once it was established that tyrosine phosphatas es are linked to differentiation 

and virulence, we extended our investigations to identify and characterize the 

Leishmania endogenous tyrosine phosphatase responsible for the effects reported in 

Chapter 2 and to determine the role of this enzyme on L. donovani life cycle, 

proliferation and survival in culture and in mice, as reported in Chapter 3. This 

Chapter also examined the potential of the endogenous Leishmania tyrosine 

phosphatase as a drug target. 

OveraIl, the aim of this research was to determine the contribution of tyrosine 

phosphatas es to Leishmania differentiation and proliferation, as weIl as in the 

virulence and survival of these parasites within mammalian cells. 
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FIGURE LEGENDS 

Table 1. Pathologies linked to Leishmania species and geographic distributions. 

Figure 1. Leishmania developmental stages. A) Amastigote form cartoon and an 

amastigotes-infected macrophage and B) promastigote cartoon and culture. Notice 

the different morphology of each stage and parasite intracellular components. 

Adapted from www.1eishmania.orglpaginelleishmaniosi canina/eziologia-promastigote.asp, 

www.dpd.cdc.gov/dpdxlHTML/lmageLibrary and 

www.bact.wisc.edU/foodsafetvJparasite/gallerv.html. 

Figure 2. Leishmania life cycle in the sandOy and the human hosto 

Developmental stages and transition forms of Leishmania are seen as the parasite 

goes though its biological cycle that depends on whether they are founding in the 

insect vector or within the mammalian host. 

Figure 3. Worldwide distribution of leishmaniasis. A map showing regions of the 

world affected by leishmaniasis, as seen in dark and hatched area. The majority of 

countries affected are composed of developing or under-developed nations. Adapted 

from Davies et al., BMJ. 326:377-82 (2003). 

Figure 4. Phosphorylation process. Counterbalanced action of protein kinases and 

phosphatases carry out the phosphorylation pro cess through addition of a phosphate 

group from ATP and production of ADP by protein kinases. To reverse this action, 

protein phosphatas es remove the phosphate from the side chain of target proteins with 

the release of inorganic phosphate (Pi). 

Figure 5. Simplified representation of the MAP kinase cascade. MAP Kinases are 

activated in response to a variety of stimuli such as growth factors and other signaling 
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molecules that eventually leads to the activation of transcription factors and gene 

expression. A) The cascade is composed of a succession of events that start with the 

phosphorylation of MAPKKK, leading to its activation and ultimately results in 

activation of MAPK to control cellular events. D) Activation of the four different 

MAP kinase cascades (ERK1I2, ERK5, JNK and p38): extracellular factors start the 

intracellular signaling responses that can result in activation of either gene expression 

or CDKs. Each MAPK cascade is activated either by a small GTP-binding protein (e.g 

Ras family) or by an adaptor protein, which transmits the signal either directly or 

indirectly through a mediator MAP4K to the MAP3K level. Signal is transmitted down 

the cascade by MAPKK and MAPK. Adapted from Rubinfeld and Seger. Mol Biotechnol. 

31:151-74 (2005). 

Figure 6. Diagram of CDKs and cyclin participation in the cell cycle progression. 

CDK activity is modulated by binding of cyclins. This complex, in turn, regulates a 

number of checkpoints during the cell cycle. In animal cells, progression through the 

0 1 restriction point is regulated by complexes of Cdk4 and 6 with cyclin D. Cdk2/cyc 

E complexes function later in GI and are crucial for the Ol/S transition. Cdk2/cyc A 

complexes are required for progression through the S phase and Cdc2/cyc B 

complexes drive the G2 to M transition. 

Figure 7. Structure of Protein tyrosine phosphatas es (PTPs). The PTP family 

comprises cytosolic PTPs - that includes low-molecular-weight PTPs (LMW-PTPs) -

receptor PTPs (RPTPs) and dual-specificity PTPs (DUSPs). Cytosolic (or soluble) 

PTPs and RPTPs have different structures however they share a conserved catalytic 

domain. The PTP catalytic domain is highly conserved with the presence of a single 

cysteine used in a cysteinyl-phosphate enzyme intermediate during 
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dephosphorylation. On the other hand, DUSPs can dephosphorylate phosphorylated 

tyrosine, threonine and serine residues. Adapted from Larsen et al., Nature 4:700-711 

(2003). 
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Table J. Pathologies linked to Leishmania spp. and geographic distributions 

Species Pathology 

Old World 

L. (L.) donovani VL,PKDL 

L. (L.) infantum VL, PKDL 

L. (L.) major CL 

L. (L.) tropica CL 

L. (L.) aethipica CL,DCL 

NewWorld 

L. (L.) chagasi VL 

L. (L.) mexicana CL,DCL 

L. (L.) amazonensis CL,DCL 

L. (V.) braziliensis MCL,CL 

L. (V.) peruviana CL 

L.(V.) guyanensis CL 
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Location 

Middle East, China, 
India, East Asia, Pakistan. 

Mediterranean, Middle East, 
Asia, Africa, China 

Middle East, India, Africa 
Pakistan, northwest China. 

Middle East, Mediterranean, 
West Asia, India. 

Ethiopia, Kenya, Yemen. 

South and Central America 

Mexico, Central America, Texas 

Amazon basin, Brasil, Texas 

Brasil, Pern, Bolivia, Ecuador 
Venezuela 

Andes region, Pern 

Guyana, Surinam, Amazon basin 
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PREFACE TO CHAPTER 2 

Signaling pathways involved in adaptation to environmental changes and regulation 

of growth, differentiation and proliferation are not well understood in Leishmania. 

However, it is known these parasites use phosphorylation and dephosphorylation of 

proteins as a regulatory mechanism during their life cycle. In higher euk:aryotes, 

tyrosine phosphorylation is responsible for cellular differentiation and proliferation. 

Regulation ofprotein tyrosine kinases (PTKs) and phosphatases (PTPs) is likely to be 

important for Leishmania intracellular events, including differentiation, since these 

parasites encounter a wide range of environmental conditions. With this study, we 

aimed to identify the involvement of tyrosine phosphatase in Leishmania donovani 

differentiation either through overexpression of the human PTP 1 B or through 

inhibition of PTKs; we also report herein the influence of tyrosine phosphatase on L. 

donovani virulence in vitro and in vivo. 
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CHAPTER 2: Heterologous expression of a mammalian protein tyrosine 
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Summary 

Leishmania is a protozoan pathogen, which is transmitted to humans through 

the bite of an infected sandfly. This infection results in a spectrum of diseases 

throughout the developing world, collectively known as leishmaniasis. During its life 

cycle, Leishmania differentiates from the promastigote stage in the sandfly vector into 

the amastigote stage in the mammalian host where it multiplies exclusively in 

macrophage phagolysosomes. Although differentiation of Leishmania is essential for 

its survival and pathogenesis in the mammalian host, this process is poorly 

understood. In higher eukaryotic cells, protein tyrosine phosphorylation plays a 

central role in cell proliferation, differentiation and overall function. We have 

therefore investigated the role of protein tyrosine phosphorylation in Leishmania 

differentiation by undertaking complementary approaches to mediate protein tyrosine 

dephosphorylation in vivo. In the present study, L. donovani were engineered to 

express a mammalian protein tyrosine phosphatase, or were treated with inhibitors of 

protein tyrosine kinases, and the resulting phenotype was examined. Both approaches 

resulted in a partial differentiation from promastigotes to amastigotes including the 

expression of the amastigote specifie A2 protein, morphological change and increased 

virulence. These data provide support for the involvement of tyrosine 

phosphorylation in the differentiation of Leishmania. 
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Introduction 

Leishmaniasis is an infectious disease with an overall prevalence of 12 million 

cases and sorne 350 million people at risk of infection (Des jeux, 2001). The 

aetiologic agent of this disease is the Leishmania protozoan parasite, which is 

transmitted through the bite of an infected sandfly. This infection is firmly 

established in over 88 countries in the developing world, and it is now emerging in 

previous unaffected areas such as in Southern Europe and expanding its presence in 

South America and East Asia (Desjeux, 2001). Leishmaniasis is typically associated 

with three types of pathology: visceral leishmaniasis, cutaneous leishmaniasis and 

mucocutaneous leishmaniasis (reviewed in Herwaldt, 1999). Visceral disease is 

responsible for widespread mortality and morbidity whereas the cutaneous and 

mucocutaneous diseases have a severe impact on the quality of life but are non-fatal 

(Herwaldt, 1999). Treatment options are limited and there is no available vaccine. It 

is therefore important to define the molecular basis for this infection in order to 

identify potential new targets for drug and vaccine development. In order to complete 

its life cycle, Leishmania promastigotes, which are transmitted to a mammalian host 

by the bite of an infected sandfly, must differentiate into amastigotes in order to 

survive inside the macrophage phagolysosomal vacuole (reviewed in Matlashewski, 

2001; Matlashewski, 2002). A number ofbiochemical and biological properties have 

been established which delineate the differences between promastigotes and 

amastigotes (Gupta et al., 2001), however, the molecular basis for regulating 

differentiation from promastigotes to amastigotes is not understood. In both higher 

and lower eukaryotes, protein kinases regulate major biological processes including 
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cell differentiation, proliferation, signal transduction and cell morphology (Hunter, 

1996; Cohen, 2000). Although protein phosphorylation has been described in 

Leishmania (Lester et al., 1990; Saltora et al., 2000), it remains unclear what role this 

plays in differentiation. Sorne protein kinase inhibitors have been shown to be toxic to 

Leishmania and mediate changes in growth and morphology suggesting that protein 

kinases are important for proliferation and viability (Becker and Jaffe, 1997). Protein 

tyrosine phosphorylation is regulated in eukaryotic cells through the balance of 

protein tyrosine kinases and protein tyrosine phosphatases (Hunter, 1996; Cohen, 

2000; Ibarra-Sanchez et al., 2000). The transfection of mammalian genes into lower 

eukaryotic cells, including yeast, has been used successfully to identify and 

characterize key regulatory pathways involved in cell proliferation and differentiation 

(Nurse et al., 1998). We have therefore undertaken this approach to study the role of 

tyrosine phosphorylation in Leishmania differentiation. The human tyrosine 

phosphataselB (PTP-IB) has been characterized in detail and has been reported to be 

promiscuous with respect to its target protein specificity (Cheng et al., 2001). As the 

human PTP-1B gene and relevant PTP-1B specific antibodies were available, we 

determined whether it was possible to express PTP-1B in L. donovani and whether 

this affected the state of differentiation using previously established biological, 

morphological and phenotypic characteristics for Leishmania amastigotes. It is 

demonstrated within that ectopic expression of human PTP-1B in L. donovani 

resulted in several changes associated with differentiation towards amastigotes 

including increased virulence. Consistent with this observation, it is further revealed 

that treatment of promastigotes with protein tyrosine kinase inhibitors is also 
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associated with differentiation towards amastigotes and that this was reversible upon 

the removal of the inhibitor. These results reveal the feasibility of studying 

Leishmania differentiation through ectopic expression of key regulatory enzymes 

from higher eukaryotes, and provides evidence that tyrosine phosphorylation plays a 

role in the differentiation and life cycle of Leishmania. 

Results 

Expression of mammalian protein tyrosine phosphatase-l B in L. donovani 

We initially determined whether it was possible to stably express the human 

protein tyrosine phosphatase-1B (PTP-1B) gene in L. donovani. PTP-1B was chosen 

in this study because it had been shown to be promiscuous with respect to target 

protein tyrosine dephosphorylation, the corresponding gene has been previously 

cloned and antibodies specific to the protein were available (Muise et al., 1996; 

Cheng et al., 2001). Promastigotes were transfected with a PTP-1B gene expression 

plasmid (PALTneo-PTP1B) and fOllowing selection, the expression of PTP-1B was 

determined by Western blot analysis. As confirmed in Fig. lA, it was possible to 

transfect and select for promastigotes expressing the PTP-1B protein. Consistent with 

the expression of the human PTP-1B protein in L. donovani promastigotes, there was 

also a higher level of protein tyrosine phosphatase activity in the promastigotes 

expressing PTP-1B than in the control plasmid transfected and selected or wild-type 

non-transfected promastigotes (Fig. lB). One of the most widely used protein 

markers specific for amastigotes is the expression of the A2 family of proteins, which 

ranges in molecular weight from 45 kDa to 110 kDa, and is expressed at higher leve1s 
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In amastigotes than promastigotes (Zhang et al., 1996; Gupta et al., 2001). To 

determine whether PTP-1B expression mediated an induction of A2 expression, 

Western blot analysis was carried out on stationary phase cultures of control 

transfected and the PTP-1B expressing L. donovani promastigotes. As shown in Fig. 

2A, there was a c1ear increase in the leve1 of A2 protein expression in the PTP-1B 

transfectants in comparison to the control vector transfected cells. It is also evident 

that PTP-1B expressing cells did not express as much A2 protein as the control axenic 

amastigotes arguing that ectopic expression of PTP-1B resulted in a partial 

differentiation towards amastigotes. Re-transfection and selection of PTP-1B in L. 

donovani revealed that this pattern of induction of A2 expression in PTP-1B 

expressing cells was reproducible. Stationary phase axenic cultures of L. donovani 

promastigotes (cultured at 27 oC, pH 7.2) are long and cylindrical and contain 

flagella. By comparison, axenic cultures of amastigotes (cultured at 37 oC, pH 5.5) are 

smaller, lack flagella and display a more rounded morphology, similar to macrophage 

derived amastigotes which reside in the low pH environment of the macrophage 

phagolysosome (Doyle et al., 1991; Gupta et al., 2001). We therefore examined the 

morphology of the PTP-1B/A2 expressing promastigote culture to determine whether 

they had assumed an amastigote like morphology. As shown in Fig. 2B, many of the 

individual stationary phase L. donovani expressing PTP-1B (cultured at 27 oC, pH 

7.2) had assumed a more rounded morphology and had lost or retained shorter 

flagella, properties associated with axenic amastigotes. In comparison, the control 

transfected and se1ected promastigotes were uniformly long and cylindrical which is 

typical of cultured promastigotes. These data demonstrate that ectopic expression of 
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human tyrosine phosphatase PTP-1B gene in stationary phase cultured L. donovani 

was associated with an increase in A2 protein expression and an altered morphology 

consistent with a partial differentiation towards amastigotes. It has been previously 

established that amastigotes are more infective to macrophages than are 

promastigotes (Pan, 1984; Bates, 1994; Gupta et al., 2001). Because the PTP-1B 

expressing L. donovani expressed A2 and displayed a more amastigote-like 

morphology, it was important to determine whether the PTP-1B transfectants were 

more virulent in vitro and in vivo. Given that only the control pAL TNeo plasmid and 

pALTNeoPTP1B plasmid transfectants underwent transfection and G418 selection, 

only these were directly compared to each other for the infection assays to ensure that 

any phenotypic differences would be due to PTP-1B expression and not a result of 

phenotypic changes caused by the transfection and selection procedure. As shown in 

Fig. 3A and B, the PTP-1B expressing promastigotes were more virulent in vitro than 

the control transfected promastigotes with respect to both the percentage of 

macrophage infected and the number of amastigotes per macrophage. Moreover, 

PTP-1B expression also increased virulence in mice as determined by measuring 

visceral infection levels 4 weeks following infection via the taïl vein (Fig. 3C). Taken 

together, these observations demonstrate that ectopie expression ofhuman PTP-1B in 

L. donovani increased the virulence of this pathogen both in vitro and in vivo. These 

observations supported the argument that increased tyrosine phosphatase activity in L. 

donovani mediated at least a partial differentiation toward the amastigote phenotype. 

To confirm that the phenotypic change was associated with the PTP-IB gene transfer, 

we attempted to reverse the phenotype by inhibiting PTP-1B with a protein tyrosine 
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phosphatase inhibitor, vanadate. However, vanadate proved to be toxic to the L. 

donovani cultures and therefore it was not possible to specifically inhibit PTP-IB 

activity in this manner. It was therefore necessary to consider other phannacological 

approaches to substantiate the above observations. 

L. donovani treatment with protein tyrosine kinase inhibitors 

The above experiments argued that increased protein tyrosine phosphatase 

activity, which reduces tyrosine phosphorylation, was associated with differentiation 

from promastigotes to amastigotes. This suggested that inhibition of tyrosine kinase 

to diminish tyrosine phosphorylation could likewise mediate a differentiation from 

promastigotes to amastigotes. To test this hypothesis, we examined L. donovani 

promastigotes following treatment with tyrphostin (AGI433), a generic inhibitor of 

protein tyrosine kinases (Levitzki, 1990; Gazit et al., 1996) at concentrations which 

did not impair viability in culture. As shown in Fig. 4A, AG1433 was able to induce 

the expression of the A2 protein in a dose-dependent manner. Similar results were 

obtained with a second protein tyrosine kinase inhibitor, butein (data not shown). 

Moreover, AG1433 treatment induced morphological changes associated with the 

amastigote phenotype (Fig. 4B). Consistent with the induction of A2 expression and 

the amastigote morphology, AG1433 also increased the infection of L. donovani in 

macrophages in vitro (Fig. 4C). An advantage of undertaking the phannacological 

approach, compared to the gene transfer approach, is that it is possible to confirm 

whether removal of the tyrosine kinase inhibitor results in phenotypic reversion. The 

AG1433 treated L. donovani promastigotes were therefore washed and placed back 

into culture in the absence of AG1433 and their proliferation and morphology was 
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compared to the same number of control promastigotes which were not previously 

exposed to AG1433. As shown in Fig. 5A, following the removal of AG1433, the 

proliferation rate of the AG1433 treated promastigotes was the same as the control 

non-treated promastigotes. Moreover, following the removal of AG1433, the 

morphology of the AG1433-treated promastigotes reverted back to the slender 

flagella containing form, which was indistinguishable from the control non-treated 

promastigotes (morphology data not shown). As shown in Fig. 5B, following the 

removal of AG1433 from the culture, the expression of the amastigote specific A2 

proteins was also lost, consistent with differentiation back into promastigotes. These 

data confirmed the viability of the AG1433-treated cells and their ability to 

differentiate back into promastigotes following the removal of AG1433. Taken 

together, these data argue that the generic tyrosine kinase inhibitor AG1433 mediated 

phenotypic changes associated with differentiation from promastigotes to amastigotes 

in a manner similar to ectopic expression of protein tyrosine phosphatasePTB-l B. 

Discussion 

Leishmania survives as amastigotes for the vast majority of its life cycle -

from months to years - within the mammalian host. In contrast, promastigote survive 

for only a few days in the sandfly vector until it is transmitted to another mammalian 

host. The mechanism of differentiation from promastigotes to amastigotes is therefore 

essential for the survival and pathogenesis of this parasite in the human host. Protein 

tyrosine phosphorylation is among the most important regulatory mechanisms in 
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eukaryotic cells. We therefore examined differentiation of Leishmania following 

ectopic expression of a human protein tyrosine phosphatase gene, and in a 

complementary approach, by treatment with protein tyrosine kinase inhibitors. 

Several significant observations are reported within. First, it was possible to stably 

express the human PTP-1B· enzyme in L. donovani and this was associated with 

higher protein tyrosine phosphatase activity in the transfected cells. Second, the PTP­

lB expressing promastigotes displayed several features consistent with their 

differentiation towards amastigotes inc1uding the expression of A2, morphological 

changes and infection in macrophages and mice. Third, similar phenotypic changes 

were induced using a complementary pharmacological approach to inhibit protein 

tyrosine kinase and this was reversible upon the removal of the inhibitor. Taken 

together, targeting tyrosine phosphorylation either enzymatically or 

pharmacologically in promastigotes had similar effects on Leishmania, stimulating 

differentiation towards amastigotes. Although the PTP-1B transfected and AG1433 

treated L. donovani displayed several features associated with amastigotes, we 

consider these not to be fully differentiated amastigotes as many of the individual 

parasites shown in Figs. 2 and 4 had not completely lost their flagella and were not 

completely round as the authentic axenic L. donovani amastigotes. Nevertheless, it 

was c1ear that the expression of the human PTP-1B enzyme in Leishmania did have a 

measurable and relevant phenotypic influence, most notably the induction of A2 

expression and increased virulence in vitro and in vivo, properties associated with 

amastigotes. It is of interest to compare the present study to a previous study in which 

we expressed high levels of the biologically active human p53 tumour suppressor 
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gene in L. donovani in which no phenotypic change was evident (Zhang et al., 1995). 

As p53 is a transcriptional regulator, it was perhaps not surprising that it was inert in 

Leishmania. This argues that the phenotypic changes in Leishmania mediated by 

ectopic expression of PTP-1B was dependent on its activity and not due to a non­

specific effect caused by the expression of a foreign higher eukaryotic gene. The fact 

that different independent approaches which target tyrosine phosphorylation in 

eukaryotic cells had very similar phenotypic outcomes on Leishmania provides 

support for the notion that tyrosine phosphorylation plays a significant role in 

Leishmania differentiation. However, it is noteworthy, that we did not detect specific 

changes in the tyrosine phosphoproteins in the PTP-1B transfectants compared to the 

control promastigotes using one dimensional gel electrophoresis and Western blot 

analysis with monoclonal antibodies specific to phosphotyrosine containing proteins. 

This may be because PTP-1B expressing cells with more global changes in 

phosphotyrosine proteins levels may have been selected against as a result of a 

negative impact on parasite survival in culture. The PTP-1B mediated changes in 

phosphotyrosine proteins are therefore likely to be more subtle and as a result may 

only be detectable following more sensitive and extensive two dimensional gel 

analysis and Western blotting with several different phosphotyrosine protein specific 

monoclonal antibodies. These studies are currently under consideration with the 

objective of obtaining sequence information on the target proteins using emerging 

proteomic approaches. The present study therefore sets a firm bioIogicaI foundation 

for such future proteomic studies. 
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Consistent with the observations reported within, reduced protein tyrosine 

phosphorylation has also been observed in L. donovani promastigotes upon switching 

them to amastigote culture conditions (Saltora et al., 2000). Reduced levels of protein 

phosphorylation have also been reported in L. major amastigotes compared to 

promastigotes, and this was associated with increased protein phosphatase activity in 

amastigotes (Dell and Enge1, 1994). Although these studies did not examine the 

effects of ectopic expression of a protein tyrosine phosphatase gene in Leishmania or 

of tyrosine kinase inhibitors, they are consistent with the observations reported within 

in arguing that protein tyrosine phosphorylation plays a role in Leishmania 

differentiation. The expression of A2 is dependent on both an increase in temperature 

and a decrease in pH resulting in an increased stability of A2 rnRNA in amastigotes 

(Charest et al., 1994; 1996). In the present study, it was possible to induce the 

expression of A2 by ectopic expression of a protein tyrosine phosphatase or protein 

tyrosine kinase inhibitors in the absence of temperature and pH induction. These 

observations demonstrate that A2 protein expression is regulated directly or indirectly 

through signal transduction pathways involving protein tyrosine phosphorylation and 

that reduced pH or increased temperature can be bypassed to achieve A2 expression 

under promastigote culture conditions. This argues that environmental changes 

encountered during the life cycle of Leishmania act to influence tyrosine 

phosphorylation As A2 proteins are amastigote specific, the characterization of the 

signal transduction pathway regulating their expression could facilitate identifying 

additional amastigote specific proteins. Future studies will also require the 

identification and characterization of endogenous protein tyrosine phosphatase genes 
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using the data emerging from the Leishmania genome project currently nearing 

completion (Myler et al., 2000; Almeida et al., 2002). The genetic and biological 

experimental approaches described within using heterologous genes will be useful to 

confirm the functions of the endogenous protein tyrosine modifying enzymes. 

Experimental procedures 

Plasmids, antibodies, biochemicals and transfections 

The anti-A2 monoclonal antibody C9 was developed in our laboratory (Zhang 

et al., 1996). The human PTP-1B gene and antibodies have been previously described 

(Muise et al., 1996) and the gene was cloned into the Leishmania vector pALTNeo 

and transfected into Leishmania as detailed below. Sheep anti-mouse IgG and 

donkey anti-rabbit IgG horseradish peroxidase conjugated (Amersham Pharmacia 

Biotech, QC) were used as secondary antibodies and the enhanced 

chemiluminescence (ECL) (AmershamPharmacia Biotech, QC) was used for signal 

visualization. The protein tyrosine kinase inhibitor; tyrphostin AG1433 [2-(3,4-

Dihydroxyphenyl)-6,7 dimethylquinoxaline, HCI; SU 1433] (Levitzki, 1990; Gazit et 

al., 1996) was purchased from CalBiochem. AG1433 was dissolved in methanol, 

aliquoted, speed vacuumed and maintained at -20 Oc according to the manufacturer 

recommendation until needed. Dried aliquots were resuspended in DMSO (Fisher 

Scientific, NJ) at a concentration of 10 mM. The final DMSO concentrations did not 

exceed 0.1 % (v/v) in the culture medium and had no affect on the Leishmania 

cultures. 
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Expression of human PTP 1 B in Leishmania 

To make the construct pALTneoPTP1B, a 1.5 kb human PTP1B cDNA 

containing the entire coding sequence was removed from plasmid pZeohPTP 1 B 

(Muise et al., 1996) with restriction enzymes BamH 1 and Xba 1 and inserted into the 

corresponding sites downstream of the Leishmania tubulin gene intergenic sequence 

in the Leishmania expression vector pALTneo which has been previously described 

(Laban et al., 1990; Zhang et al., 1995). The pAL Tneo vector does not contain a 

promoter sequence as promoters are nonfunctional in Leishmania. pALTneo 

however, do es contain L. major tubulin intergenic regions which contains the 

processing sites required to express mature trans-spliced mRNA in Leishmania as 

previously detailed (Laban et al., 1990). pALTneoPTP1B and the control vector 

pALTneo were electroporated into Leishmania donovani promastigotes as previously 

described (Zhang et al., 1995). Transfectants were selected and maintained in culture 

with 50 mg ml-lof G418. 

Western blot analysis of A2 and PTP 1 B pro teins 

For Western blot analysis, promastigotes, amastigotes and AG1433 treated 

cultures were washed three times with chilled PBS, resuspended to 5.0 x 106cells/10 

ml, and immediately lysed with boiling 2X SDS-P AGE sample buffer. Ten 

micro litres of the lysate was then resolved on 10% SDSP AGE gels, and transferred 

onto nitrocellulose membrane (Bio-Rad Laboratories). TBST 20 mM Tris-HCl, pH 

7.5, 500 mM NaCI, 0.1 % (v/v Tween-20) was used for all subsequent washing steps 

at room temperature. Membranes were first washed twice and then blocked with 10% 

non-fat milk in TBST for two hours. Following three washes, the detection of A2 

163 



proteins was preformed as described previously by Zhang et al. (1996) with the anti­

A2 monoclonal antibody C9. 

For the detection ofPTP-1B, anti-PTP-1B (BD Biosciences 1,2000) was used as the 

primary antibody and incubated for one hour at room temperature. Membranes were 

washed three times and incubated for one hour with sheep antimouse IgG (1 : 3000). 

Following five washes, proteins were detected using ECL (Amersham). To insure 

equal loading of protein in each lane, membranes were stripped and reblotted with 

polyclonal anti-tubulin antibody (Oncogene 1, 2000), the secondary antibody in this 

case was donkey anti-rabbit IgG (1 : 3000). 

Leishmania culture, differentiation, and macrophage infections 

Leishmania donovani 1 S2D promastigotes kindly provided by Dr Denis 

Dwyer were cultured in M199 medium (Gibco) supplemented with 10% fetal bovine 

serum (FBS), at pH 7.2 and 27 oC. Every four days, late-Iog phase cultures were split 

1 : 100 (v/v) into fresh promastigote medium. Promastigotes were induced to 

differentiate into amastigotes by inoculating 1 : 50 (v/v) late-Iog phase promastigotes 

into M199 medium supplemented with 20% FBS, pH 5.5 and 37 oC, conditions which 

mimic the transition into the macrophage phagolysosomal vacuole. Amastigotes were 

differentiated back into promastigotes by placing them back into promastigote culture 

conditions. The macrophage cellline Raw 264.7 (ATCC TIB-71) was used to carry 

out in vitro infection experiments with promastigotes and amastigotes. cens were 

split 1 : 10 once a week in RPMI-1640 medium (Gibco) supplemented with 10% 

FBS, 1 M Hepes (pH 7.3), 100 U ml-lof penicillin and streptomycin. Macrophage 

infections were carried out as previously detailed (Buates and Matlashewski, 2001). 
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Briefly, infections were carried out using stationary phase parasite cultures in RPMI 

1640 medium supplemented with 10% FBS at al: 1 ratio of parasite to macrophage 

cell (106 macrophages ml-1
) in non-adherent polystyrene tubes. It was not feasible to 

first isolate metacyclic parasites as it was not possible to identify typical metacyclics 

within the PTP-1B expressing lines or following treatment with AG1433. Parasites 

were washed free of AG1433 prior or just prior to carrying out the infections. 

Following 12 h contact at 37 oC, free parasites were washed away from the infected 

cells by washing four times with PBS and an aliquot was cytocentrifuged. 

Cytocentrifuged infected cells on polylysine-coated slides were fixed with methanol 

and stained with Giemsa and the number of intemalized amastigotes per 1000 

macrophage nuclei and the percent of infected cells was counted in triplicate. The 

experiment was repeated three times and the results reported in bar graphs are the 

mean ± SE. Statistical methods: Microsoft Excel was used to calculate the Student's 

t-test and results were considered to be statistically significant if P < 0.05. 

Protein tyrosine phosphates activity determination and inhibition of protein tyrosine 

kinase 

Protein tyrosine phosphatase activity was determined as previously described 

(Kozlowski et al., 1993; Blanchette et al., 1999). Briefly, 107 L donovani cells were 

washed in PBS and disrupted in ice-cold lysis buffer containing 50 mM Tris-HCl pH 

7.0, 0.1 mM EGTA, 0.1% 2-beta-mercaptoetanol (v/v), 1% NP40 and protease 

inhibitors. Total protein tyrosine phosphatase activity was determined on 20 mg of 

protein in a reaction mixture containing 50 mM Hepes pH 7.5, 0.1 % 2-beta­

mercaptoethanol and 10 mM of the substrate 4-Nitrophenyl phosphate (PNPP). 
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Enzymatic hydrolysis of pNPP was determined by measuring the absorbance at 405 

nm at 15 and 30 min of incubation. Experiments involving the inhibition of L. 

donovani tyrosine kinase were carried out using concentrations oftyrphostin AG1433 

which were non-toxic as determined by carrying out growth curves in the presence of 

different concentrations of AG1433. The proliferation ofpromastigotes cultured in 20 

mM AG1433 and below was not impaired. 
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Figure Legends 

Figure 1. A. Western blot analysis of hurnan PTPIB expression in Leishmania 

donovani transfected with plasmids pALTNeoPTPIB expressing PTPIB or the 

control plasmid, pALTNeo as indicated. B. Total cellular tyrosine phosphatase 

activity determined in the PTPIB transfectants (PTPIB), in the control transfected 

(pAL TNeo), and non-transfected wild-type L. donovani promastigotes. 

Figure 2. A. Western blot analysis of A2 expression in stationary cultures of 

Leishmania donovani transfected with plasmids pALTNeoPTPIB expressing PTPIB, 

the control plasmid, pALTNeo, or cultured wild-type amastigotes as indicated. Equal 

loading of protein was verified by reprobing the blot with an anti-alpha-tubulin 

antibody. B. Morphology of wild-type promastigotes (cultured at 27 oC, pH 7.2); 

wild-type amastigotes (37 oC, pH 5.5); PTPIB transfected promastigotes (27 oC, pH 

7.2); and control pALTNeo plasmid transfected promastigotes (27 oC, pH 7.2) as 

indicated. Note that the arrows demonstrate that ectopie PTPIB expression induced a 
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more rounded morphology resembling the cultured amastigotes. In comparison, 

promastigotes are long and spindle shaped whereas amastigotes are rounder. 

Figure 3. Infection of macrophages and mice with the PTP1B and control plasmid 

pALTNeo transfected promastigotes. A. Percentage of macrophages infected after12 

h of infection at al: 1 promastigote/macrophage ratio. B. The number of 

amastigotes per macrophage after 12 h of infection at aIl 

promastigote/macrophage ratio. C. Infection in mice 28 days following tail vein 

infection with 2 x 108 promastigotes showing the number of amastigotes per 1000 

cells and the Leishman-Donovan Units (LDU): number of amastigotes per 1000 cells 

x liver weight (g). 

Figure 4. Phenotypic characterization of AG 1433 treated promastigotes. A. 

Expression of the A2 protein in Promastigotes (Lane P), Amastigotes (Lane A), and 

promastigotes cultured in various concentrations of AG1433 as indicated. Below the 

levels of tubulin in each lane was determined to ensure equallevels of protein in each 

lane. B. Morphology of wild-type (WT) cultured Promastigotes, wild-type (WT) 

Amastigotes, and AG1433 15 mM treated Promastigotes. C. Macrophage infection 

levels determined as the number of amastigotes per 1000 macrophages following 

infection with promastigotes, amastigotes and promastigotes cultured inAG1433 as 

indicated. Note that the amastigotes and the AG1433-differentiated promastigotes 

were more infective than the control untreated promastigotes. 

Figure s. Removal of AG1433 resulted in the reversion back into wild-type 

promastigotes. A. Promastigotes cu1tured in la mM and 15 mM AG1433 were 

washed to remove the AG1433, and then placed into promastigote culture media in 
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the absence of AG1433 and their proliferation rate was compared with an equal 

number of non-treated promastigotes. B. Western blot analysis of A2 protein in 

promastigotes (Lanes 1 and 4); promastigotes cultured in the presence of 10 mM and 

15 mM AG1433 (lanes 2 and 3); and promastigotes previously cultured in the 

presence of AG1433 following the removal of in AG1433 (lanes 5 and 6). Note that 

removal of AG1433 resulted in the loss of A2 protein expression. 
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PREFACE TO CHAPTER 3 

In the previous chapter, the results showed tyrosine phosphatas es are involved 

in the amastigote differentiation process of L. donovani, since higher expression of a 

heterologous and promiscuous PTP and the use of a PTK inhibitor lead to partial 

amastigote differentiation. It was also demonstrated that higher tyrosine phosphatase 

activity is linked to an increase in L. donovani virulence levels. This study extends 

the investigation on the contribution of tyrosine phosphatases in pathways related to 

L. donovani differentiation and infectivity. The next Chapter describes the 

identification of the Leishmania homologue to hPTP1B through sequence analysis 

and the confirmation the LPTP1 is an active enzyme. In addition, the development of 

L. donovani mutant clones lacking this phosphatase provides further evidence of its 

involvement in mechanisms of Leishmania survival inside the host; in silico studies 

also investigate the prospect of finding specifie inhibitors to target the Leishmania 

PTP1 enzyme. 
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Abstract 

Leishmania parasites are eukaryotic protozoans responsible for a variety of 

human diseases known as leishmaniasis, which ranges from skin lesions to fatal 

visceral infections. Leishmania is transmitted by the bite of an infected sandfly where 

it exists as promastigotes and, upon entry into a mammalian host, differentiates into 

amastigotes, which replicate exc1usively in macrophages. The biochemical pathways 

enabling Leishmania to differentiate and survive in the mammalian host are poorly 

defined. We have therefore examined the role of protein tyrosine phosphorylation, 

which is essential in regulating cell function in higher eukaryotes. Using the recently 

completed Leishmania genome, we have identified and c10ned a Leishmania protein 

tyrosine phosphatase gene (LPTP 1) by virtue of its homology with the human protein 

tyrosine phosphatase lB gene (hPTP1B). The enzyme activity of recombinant 

LPTP 1 was confirmed using a combination of PTP specific substrates and inhibitors. 

We further demonstrate, by creating LPTP 1 null mutants through gene targeting, that 

LPTP 1 is necessary for survival as amastigotes in mice but it is dispensable for 

survival as promastigotes in culture. Ruman PTPs, including the PTPIB enzyme, are 

actively pursued drug targets for a variety of diseases. The observations with the 

LPTP 1 mutants in mice suggest it may also represent a drug target against the 

mammalian amastigote stage. Rowever, in silico structure analysis of LPTP 1 

revealed a striking similarity with hPTPIB in the active site suggesting that, although 

this is an attractive drug target, it may be difficult to develop an inhibitor specific for 

the Leishmania LPTPl. 
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INTRODUCTION 
Leishmaniasis is a disease caused by infection with Leishmania protozoan 

parasites, which results in a spectrum of clinical manifestations ranging from se1f-

healing cutaneous lesions to fatal visceral disease (reviewed in 1). There are over two 

million new cases of leishmaniasis each year and over 12 million people currently 

suffering from this infection in 88 tropic and subtropic countries (2, 3). During its 

lifecyc1e, Leishmania alternates between promastigotes in the sandfly vector and 

amastigotes in the mammalian host. Once transmitted to the mammalian host through 

the bite of an infected sandfly, the promastigotes differentiate into non-flagellated 

intracellular amastigotes whereupon they multiply exc1usively in the phagolysosome 

organelle of infected macrophages. Amastigotes are responsible for the diverse 

pathologies associated with leishmaniasis, which depends to a large extent on the 

Leishmania species (reviewed in 1). The biochemical changes associated with 

differentiation from promastigotes to amastigotes and with the long-term survival of 

amastigotes in the mammalian host are poorly understood, and consequently the 

biological role of protein phosphorylation remains largely unknown in Leishmania. 

Protein phosphorylation is among the most important regulatory biochemical 

changes in higher euk:aryotic cells. Phosphorylation of tyrosine residues is controlled 

by protein tyrosine kinases (PTK) and protein tyrosine phosphatases (PTP). 

Particularly, protein tyrosine phosphorylation and dephosphorylation regulate 

multiple central processes inc1uding cellular phenotypic functions, differentiation, 

proliferation, and cell death (reviewed in 4). The overall protein phosphorylation 

pattern in Leishmania parasites and re1ated trypanosomatids has been shown to 

change during differentiation associated with different lifecyc1e stages, suggesting 
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that protein kinases and phosphatases play a role in these processes (5). More 

recently, it has been established that L. major promastigote extracts contain protein 

tyrosine phosphatase activity, although the corresponding gene(s) has not yet been 

identified (6). 

Due to their central role in higher eukaryotic cell function, we have begun to 

investigate the potential contribution of protein tyrosine phosphorylation to the 

Leishmania life cycle and virulence. We had previously observed that heterologous 

expression of a prototype human protein tyrosine phosphatase lB (hPTP1B) in L. 

donovani mediates partial differentiation towards the amastigote stage, induces 

expression of amastigote-specific proteins, and increases virulence in BALB/c mice 

(7). These observations argue that protein tyrosine phosphatas es (PTPs) play a role in 

amastigote survival in the mammalian host and provide strong justification for the 

characterization of endogenous Leishmania PTP genes as detailed within. 

In the present study, we describe the identification of a PTP gene from L. 

major, L. infantum, and L. donovani which has extensive sequence and corresponding 

structural homology with the human PTP1B gene product. These Leishmania genes 

have been designated LmPTP1, LiPTPl and LdPTP1, respectively. The enzyme 

activity of LmPTPl has been confirmed with relevant substrates and inhibitors. We 

have also developed LdPTPl heterozygous and homozygous null mutant knock-out 

clones which proliferated in a similar fashion to wildtype promastigotes in culture but 

were severely impaired with respect to survival as amastigotes in BALB/c mice. 

Through in silico structural analysis, we also show that the L. infantum PTPl 

(LiPTPI) and human PTPIB (hPTPIB) shared remarkable structural conservation in 
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the active site; however, notable differences outside this region are aIso present. This 

observation suggests that from a phenotypic perspective, the LPTPl represents an 

attractive drug target. However, from a structural perspective, it may be difficult to 

develop a small molecule specific to the active site ofLPTP1. 

Experimental Procedures 

Parasite cultures - The L. donovani 1 S/CI2D and L. major FriedIin V9 promastigotes 

were routinely cultured at pH 7.2 and 27 oC in M199 medium (Gibco) supplemented 

with 10 % fetaI bovine serum (FBS). L. donovani differentiation into amastigotes 

was performed by shifting to amastigote culture media (37 oC, pH 5.5 in RPMI 1640 

plus 10 % FBS) ovemight, which mimics the temperature and pH of the host 

macrophage phagolysosome. 

Cloning, sequencing and tagging of L. major PTP 1 - The 1.5 Kb L. major DNA 

fragment homologous to the human PTPIB was identified in the Leishmania major 

database by BLAST search (Entry GeneDB LmjF36.5370, www.genedb.org). Based 

on the sequence obtained from the database, two primers were designed to PCR 

amplify the LmPTPl gene and to incorporate a sequence encoding a His-tag at the N­

terminal and the amplified product was then ligated into the mammalian expression 

vector pcDNA3. The primers used were HisF 5'­

~gcttATGGGCCATCATCATCATCATCATCATATGTGTGAAAAGCAACTCAA 

GGAG-3' , which contained a Hind III site and reverse R 5' -

ggatccTTACACAAACGAAGGCGAGAAGCGC-3' contained a Bam HI site. The 

resulting His-tagged LmPTPl containing plasmid was used as template in a second 

183 



PCR reaction, where a new primer incorporated a 10 amino acid epitope tag from the 

L. donovani specifie A2 protein which is recognized by an anti-A2 monoclonal 

antibody (8) A2-HisF 5'­

aagcttA TGCAGTCCGTTGGCCCGCTCTCCGTTGGCCCGCATCATCATCATCA 

TCATCAT-3', with a Hind III site and the Same R 5'­

ggatccTT ACACAAACGAAGGCGAGAAGCGC-3' with a Bam HI site was used. 

The final amplified product was then cloned into the pcDNA3 vector and called 

pcDNA3-LmPTPl as shown in Fig. 2A. As a positive control for subsequent 

experiments, the human PTPIB sequence was also PCR amplified with the A2/His­

tag, using the oligonucleotide primers A2HisF (hPTP) 5'­

ggatccATGCAGTCCGTTGGCCCGCTCTCCGTTGGCCCGCATCATCATCATCA 

TCATCATATGGAGATGGAAAAGGAGTTCGAG-3', with an Eco RI site and the 

A2HisR (hPTP) 5'-gaattcCTATGTGTTGCTGTTGAACAGGAAC-3' with aBam HI 

site. 

The L. donovani LdPTP 1 gene was PCR amplified from L. donovani 1 S/CI2D 

genomic DNA with the same primers used above for L. major and sequenced 

(GenBank bankit827438 DQ862810). In brief, the amplified fragment was cloned 

into the TOPO TA cloning vector (Invitrogen), termed pLdPTPI-TOPO, and M13 

Reverse and M13 Forward primers were used in sequencing reactions with the 

MegaBace500 (Molecular Dynamics of GE Healthcare). Sequencing reactions were 

performed by DYEnamic ET TerminatorCycle Sequencing Kit with Thermo 

Sequenase II DNA polymerase, and post-reaction cleanup Was achieved by extensive 

ethanol precipitation before adding formamide loading solution. 
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Transfection of Cos 7 cells and purification of A2His-tagged LmPTP 1 and hPTP lB -

The Cos7 cell line was transiently transfected using lipofectamine reagent according 

to the manufacturer's protocol (Invitrogen). Briefly, a 100mm dish of Cos7 cells 

(approximately 8x105 cells) was transfected with a total of 8 Jlg DNA (6 Jlg of 

pcDNA3-LmPTP1 and 2 Jlg of a ~-galactosidase expression plasmid) in 20 JlI of 

lipofectamine. The following day (-20 h after transfection), cells were washed with 

cold media and lysed with NP-40 lysis buffer (150 mM NaCI, 1 % NP-40, 20 mM 

Tris pH 8.0) + protease inhibitors (Roche® complete cocktail tablets) on ice for 30 

minutes. Cell lysates were centrifuged and ~-galactosidase assays performed to 

determine the levels of transfection efficiency in each dish and to normalize the 

amount of protein used in each assay. His-bind® resin (Novagen) was used for 

purification of the A2-His tagged LmPTP1 and hPTP1B according to the 

manufacturer's protocol. Briefly, His-bind® resin was activated in IX Binding 

buffer (8X= 4 mM NaCI, 160 mM Tris-HCl, 40 mM Imidazole, pH 7.9) + 0.1 % NP-

40. 60 III of activated His-bind® resin was added to 200 III celllysates and incubated 

with agitation for 3 h at 4 oC. His-bind® resin was thoroughly washed 5x in 1.0 ml of 

150 mM NaCl, 1 %NP-40, 20 mM Tris pH 8.0, buffer + protease inhibitors (Roche® 

complete cocktail tablets) and half of the His-bind® resin with the purified A2-His 

tagged LmPTP 1 or hPTP 1 B was used for activity assays, and the other half used for 

Western blot analysis with anti-A2 tag monoclonal antibodies. 

Protein tyrosine phosphatase activity and inhibition assays - The 4 p­

Nitrophenylphosphate (pNPP) assay was used for detection of total phosphatase 

activity as described previously (7). Briefly, 30 III of His-bind® resin containing 
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purified PTP proteins was washed once in 1.0 ml 150 mM NaCI, 1 % NP-40, 20 mM 

Tris pH 8.0, Roche® complete protease inhibitor buffer and placed in a 96 weIl plate. 

180 JlI reaction buffer (50 mM Hepes pH 7.5, 0.1 % J3-Mercaptoethanol containing 10 

mM fresh pNPP) was added to each weIl and the plate was incubated at 37 Oc 

overnight. Plates were read at 405 nm. 

The Malachite green phosphatase activity assay with the insulin receptor (IR) 

phosphopeptide is a more specific assay for hPTP1B, since the IR is a major substrate 

of this enzyme (9, 10). The assay was performed according to manufacturer's 

instructions (Sigma, PTP101, non-radioactive phosphotyrosine phosphatase assay). 

Two inhibitors, 1 mM of Sodium orthovanadate (Na3 V04), and 10 JlM of 

potassium bisperoxo(l,1 O-phenanthroline)oxovanadate (V) [bpV (phen)] were used to 

further confirm the activity of LmPTP 1 and the hPTP1B as the control. bpV (phen) is 

a member of a c1ass ofpotent and specific PTP inhibitors (11, 12). For the inhibition 

assays, His-bind® resin containing LmPTP1 and hPTP1B was washed 5 times with 

1.0 ml 150 mM NaCI, 1 % NP-40, 20 mM Tris pH 8.0, Roche® complete protease 

inhibitor buffer and then incubated with inhibitors for 1 h at 4 oC. His-bind® resin 

containing the PTPs was washed 4x with 1.0 ml 150 mM NaCI, 1 % NP-40, 20 mM 

Tris pH 8.0, Roche® complete protease inhibitor buffer and then assayed for 

phosphatase activity using pNPP as substrate, as detailed above. 

Disruption of the LdPTPl genes from L. donovani- The L. donovani PTP1 gene 

disrupted strains were generated by homologous gene targeting as outlined in Fig. 4A. 

A Hind III and Xba 1 fragment containing the L. donovani PTP 1 gene from the 

pLdPTP1-TOPO plasmid described above was subc10ned into a pBluescript vector. 
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The resulting pBSLdPTPI plasmid was digested with Bel l to remove the 357 bp 

catalytic region of the LdPTPI gene. The fragment containing the hygromycin 

resistance gene was removed from the pSPY hygromycin vector (13) with Bam HI 

and Bgl II and inserted into the Bel 1 site within the LdPTPI sequence, generating the 

plasmid pBSLdPTP Hyg. The linear fragment containing the hygromycin gene and 

the LdPTP flanking sequences was then electroporated into L. donovani. 

Transfectants were initially selected, in the tirst round targeting, with 50 Jlglml 

hygromycin to obtain the heterozygous single LdPTP1 knockout mutant. The double 

knockout homozygous null mutant for the LdPTP 1 gene was achieved by increasing 

the hygromycin concentration to 200 Jlglml in selection culture medium. 

Complementation of the double knockout null mutant with a plasmid 

containing the LdPTP 1 gene was carried out as follows. The following 

oligonucleotide primers LdPTPFI 5'cccaagcttTCACTITTTGTTGCCCTTGGT with 

a Hind III site and the reverse LdPTPRI 5'cgagatctCAGAGGTGCAGCCAGTCATA 

with a Bgl II site were used to amplify a 3140 bp fragment from L. donovani genomic 

DNA which contained the LdPTP1 gene open reading frame including 655 bp 

upstream and 1000 bp downstream flanking sequences. The 3140 bp fragment was 

then inserted into Hind III and Bam HI sites of plasmid pSPY -Neo (li) to generate 

the complementing plasmid pSPYNeoLdPTPI as shown in Figure 7A. 

Southern Blotting - For Southern blot analysis, 10 Jlg of Leishmania genomic DNA 

was digested with restriction enzymes Pst 1 and Sst 1 and separated in a 0.7 % agarose 

gel. Hybridization and washing were performed as previously described (14). The 

LdPTP1 active domain encoding DNA (357 bp Bel 1 fragment from nucleotides 677-
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1034) was used as a probe for DNA from the single (+/-) and double knock-out (-/-) 

clones described above to demonstrate the disruption of the LdPTP1 gene (Fig. 4B). 

Southern blot using the hygromycin gene demonstrated specific targeting into the 

LdPTP1 gene (Fig. 4C). The L. major 1.5 kb LmPTP1 gene containing fragment was 

used in the southern blot to confirm the presence of the episomal LdPTP1 added back 

to the double knockout null clone Ld1PTP1 -/- (Fig. 7B). 

Infection of Balblc mice and recovery of amastigotes - Female BALB/c mice (Charles 

River Breeding laboratories) weighing 20-25 g (n= four mice per group) were 

injected via tail vein with 1.5x108 late log phase promastigotes in 100 III PBS, as 

described previously (15). After 4 weeks of infection, mice were examined for L. 

donovani parasite burden by counting the number of amastigotes in the Giemsa­

stained liver imprints. Liver parasite burden, expressed as Leishman-Donovan Units 

(LDU) was calculated by multiplying the number of amastigotes per 1000 cell nuclei 

x liver weight (g). Spleen parasite burden were determined by limiting dilution in 96 

well plates as previously detailed (16). 

Proliferation in culture - Parasite growth was evaluated by determination of the 

optical density (O.D.) at 600 nm of diluted cultures (starting from 106 cell/ml) grown 

in 96 well plates from days 0 to 8 (promastigotes) or 0 to 5 (amastigotes). 

LiPTP 1 catalytic domain modeling - The alignment between the L. infantum PTP 1 

amino acid sequence and human PTP1B obtained with ClustalW (Fig. 1) in 

conjunction with the PTP1B crystal structure (PDB code 1SUG) were used in 

Modeller 8 (version 2, default configuration, 17) to create the L. infantum PTP1 

homology model. A 20-residue stretch of amino acids present in the Leishmania 
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PTP 1 sequence that was outside of the enzyme active site was not present in the 

human enzyme sequence and, as a result, was not modeled (residues 32-51). In 

addition, the construct used to elucidate the human enzyme structure did not contain 

any residues beyond position 319. Therefore, these two regions were removed from 

the Leishmania homology model. 

RESULTS 

We began this study by performing a BLAST search of the L. major database 

(18, www.genedb.org) for sequences which could represent PTP genes by virtue of 

their homology with the human PTPIB gene. In total, 9 potential PTP genes were 

identified in the Leishmania genome. The one with the greatest identity with human 

PTPIB was LmjF36.5370 located on chromosome 36, which we have designated 

LmPTP 1. The L. infantum PTP 1 (LiPTP 1) sequence was also identified in this 

manner from the L. infantum data base (LinJ36.5860, www.genedb.org). Based on 

these sequences, we designed PCR primers to amplify, clone and sequence the L. 

donovani LdPTPl homolog (GenBank bankit827438 DQ862810) as detailed in the 

Experimental Procedures. Alignment comparison of the various Leishmania PTPl 

and hPTPIB proteins revealed they share approximately 40% sequence identity, 

including a number of important conserved amino acid residues within the hPTPIB 

signature catalytic domain [(IN)HCXXGXXR(SfT/G)] which contains the essential 

cysteine and arginine residues required for enzyme activity (boxed region in Fig.l) 

(reviewed in 4). In addition to the conserved catalytic domain, LPTPls share relevant 
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accessory motifs with hPTP1B including the adjacent signature WPD and the Q 

residues (boxed region highlighted in bold in Fig. 1), which play a role in maintaining 

the conformation of the active site. The LPTP1s and hPTP1B also share a proline 

rich region from amino acids 325-340 which are responsible for SH3 domain protein­

protein type interactions and cellular localization in hPTP1B (4). Southem blot 

analysis of genomic DNA from L. major demonstrated that LmPTPl was a single 

copy gene in the haploid genome (our unpublished data). Included in Figure 1 is the 

closest PTP sequence homolog from S. cerevisae, which is more divergent from 

hPTP 1 B than is the LPTP 1 s. 

Although the Leishmania PTP1 sequences shown in Figure 1 suggest that they 

encode for a hPTP1B homolog, it was necessary to validate this experimentally using 

relevant enzyme substrates and inhibitors. We designed primers to amplify, clone 

and insert the LmPTP1 gene into a eukaryotic expression vector (pcDNA3) for 

expression in transfected simian Cos7 cells. In order to detect and partially purify the 

LmPTP 1 from Cos7 cells, a 10 amino acid epitope tag derived from the L. donovani 

A2 protein, followed by a 7-Histidine tag (His7 tag) encoding sequence, were inserted 

at the 5' end of the LmPTP1 gene (Figure 2A). In this manner, the Cos7 cell 

expressing A2-His7 tagged LmPTP1 could be detected with anti-A2 monoclonal 

antibodies (Mabs) (8) and partially purified from cell lysates by affinity 

chromatography with His-tag bind® resin. We also generated the same construct 

using the human hPTP1B gene as a positive control for subsequent comparison. 

Expression of the A2-His7 tagged LmPTP1 and hPTP1B genes in Cos7 cells 

was analyzed by Western blot analysis with anti-A2 Mabs 24hr after transfection. As 
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shown in Fig 2B, the hPTPIB and LmPTPl proteins were detectable at the predicted 

molecular weights of 50 kDa and 55 kDa respectively (Lanes 2 and 3). The control 

empty pcDNA3 vector did not produce bands (Lane 1) confirming the specificity of 

the Western blot for A2-tagged PTPs. The A2-His7 tagged proteins were 

subsequently partially purified from the transfected Cos7 cell lysate using His-tag 

bind® resin and washed extensive1y, followed by Western blot analysis with anti-A2 

Mabs. As shown in Fig. 2B, lanes 5 and 6, the washed His-tag binding resin 

contained approximately equal amounts of hPTPIB and LmPTPl. These data 

confirmed that it was possible to express, detect, and partially purify similar leve1s of 

hPTP 1 B and LmPTP 1 from transfected Cos7 cells. 

We next determined whether we could detect PTP enzyme activity in the 

washed His-tag bind® resin containing the extracted hPTPIB and LmPTPI from the 

transfected Cos7 cells. Two protein phosphatase substrates were used for these 

assays inc1uding 4-p-Nitrophenylphosphate (pNPP) and a specifie tyrosine 

phosphatase substrate, insulin receptor (IR) phosphopeptide (Fig. 3A and B). For this 

assay, the hPTPIB and LmPTPI expression constructs were transfected into Cos7 

cells, purified on His-Tag resin, assayed for activity and further subjected to parallel 

Western blot analysis to confirm similar levels of hPTP 1 B and LmPTP in each assay. 

As shown in Figure 3A and B, both LmPTPl and hPTPIB enzyme activities were 

detected on the His-tag bind® resin with the pNPP and IR-phosphopeptide substrates 

when compared to the control (His-tag binding resin from control pcDNA3-

transfected cells). 
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To confinn that the activity detected in the sampI es shown was due to PTP 

activity, we detennined whether it was possible to specifically inhibit this activity 

using the protein phosphatase inhibitor sodium orthovanadate (Na3 V04), and a more 

specifie protein tyrosine phosphatase inhibitor potassium bisperoxo(1, 1 0-

phenanthroline)oxovanadate (V) [bpV (phen)] (12, 19). As shown in Figure 3C and 

D, both the LmPTPl and hPTPIB were inhibited with Na3V04and bpV (phen) (white 

bars). Accompanying Western blots confinned there were similar levels of LmPTPl 

and hPTPIB assayed in the presence (+, white bars) and absence (-, black bars) of 

these inhibitors. Importantly, the inhibitors did not affect the background activity 

observed on His-tag binding resin from the control vector transfected cells (pcDNA3 

control). Taken together, these data confinn the bioinfonnatic prediction that the 

LmPTP 1 gene encodes for a protein tyrosine phosphatase enzyme which, when 

assayed under these conditions, had a similar level of activity as hPTPIB. 

Once the Leishmania PTPl gene had been identified and characterized as 

detailed above, it was necessary to detennine its role in the parasite's life cycle by 

developing null PTPl mutants. We perfonned single and double knockouts of the 

catalytic domain of the PTPl gene from L. donovani and characterized the resulting 

mutant parasite phenotype. L. donovani was chosen for this analysis because it can 

be cultured in vitro as both promastigotes and amastigotes whereas L. major can only 

be cultured as promastigotes. Additionally, it has been previously shown that 

overexpression of a transfected hPTPIB gene in L. donovani resulted in increased 

virulence in the amastigote stage (7). 
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Since Leishmania are diploid organisms, the two alleles of the catalytic 

domain of the LdPTPl gene were targeted for deletion as summarized in Figure 4A. 

The Bel 1 restriction enzyme fragment containing the LdPTP1 catalytic domain 

(nucleotides 677-1034, Fig. 1) was replaced with a Bam HI - Bgl II fragment 

containing the selectable marker gene conferring hygromycin (Hyg) resistance. The 

resulting plasmid, termed pBsLdPTPlhyg, was linearized and targeted into the 

LdPTP1 site of the L. donovani genome by transfection, and transformants were 

selected for hygromycin resistance. The first round of gene targeting (heterozygous 

deletion) was carried out using 50 !J.g/!J.I of hygromycin selection and the second 

round (homozygous deletion) was carried out using 200 !J.g/!J.I ofhygromycin. In this 

manner, both LdPTP1 alleles could be targeted with one selectable marker. Cultures 

were then subjected to serial dilution to isolate individual LdPTPl knock-out clones. 

Southem blot analyses were performed to confirm the heterozygous and 

homozygous targeted deletion of the catalytic domain of the LdPTPl gene in the 

cloned L. donovani mutant cultures. For this analysis, the 357 bp Bel 1 restriction 

enzyme fragment, which was deleted by gene targeting (see Fig. 4A), was used as the 

hybridization probe. As shown in Figure 4B, the Bel 1 LdPTP 1 gene fragment 

encoding the catalytic domain was eliminated from the L. donovani clones as 

indicated by the absence of the band containing this sequence in the null mutant 

double knock out (-/-) cultures and further by a 50% reduction in the single knock out 

clone (+/-), as compared to wild type L. donovani (+/+) culture. PCR analysis of the 

LdPTP 1 gene in these mutant clones confirmed the Southem b10t data showing 

deletion of the catalytic domain (data not shown). We further confirmed the accurate 
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replacement of the Hygromycin resistance gene specifically into the LdPTPllocus on 

the same clones by performing Southem blot analysis with a probe specific for the 

Hygromycin resistance gene. As shown in Figure 4C, the hygromycin resistance 

gene was only present in the specific site for the LdPTPl gene. Taken together, these 

Southem blot analyses demonstrated that the active site region of the LdPTPl gene 

was specifically and completely disrupted in the null mutant clones, thereby 

confirming their suitability for subsequent phenotypic analysis. 

Initially, the phenotype of the LdPTPl null mutants was compared with that 

of the wildtype L. donovani using well established in vitro axenic culture protocols 

for promastigotes and amastigotes. As observed in Figure 5A, the two individual 

homozygous LdPTPl null mutant clones (LdlPTPl-/-, Ld2PTPl-/-), cultured under 

promastigote conditions (26 oC, pH 7.2), proliferated at a slightly slower rate 

compared to wild type L. donovani (L.dWT). The heterozygous single knockout 

clone (LdPTP+/-) proliferated at a similar rate to the null mutant clones. Under 

amastigote culture conditions (37 oC, pH 5.5), the homozygous null mutants 

(LdlPTPl-/-, Ld2PTPl-/-) also demonstrated a slight reduction in proliferation 

compared to the single knockout clone (LdPTP+/-) and the wildtype culture (LdWT) 

(Fig. 5B). With respect to promastigote morphology, there did not appear to be any 

difference between the null mutant clones and the wildtype cultures as shown in 

Figure 5C. 

The most stringent assay for L. donovani virulence is its ability to survive in 

the visceral organs in a mammalian hosto We therefore compared the ability of the 

LdPTP 1 null mutant clones and the parental wildtype L. donovani to survive in the 

194 



liver 4 weeks following injection in the tail vein of BALB/c mice. As shown in 

Figure 6, the two LdPTP1 null mutant clones (Ld1PTP1-/-, Ld2PTPl-/-) displayed 

significantly reduced virulence compared to the wildtype parasites as indicated by 

both the number of amastigotes per nuclei in liver imprints (Upper panel) and by 

calculating the Leishman-Donovan Units (LDU) determined by multiplying the level 

of infection by liver weight (Lower panel). Both LdPTP1 null mutant clones 

displayed the same phenotype with approximately an 80-90 % reduction in virulence 

as determined by their ability to survive in the liver. The single knock-out clone 

LdPTP1+/- showed a clear intermediary reduction in virulence, consistent with 

reduced expression of LdPTP 1. These results argue that the LdPTP 1 gene plays a 

significant role in parasite survival in the mammalian host. 

We next determined whether it was possible to restore the virulence of the 

null mutant clone (Ld1PTPl-/-) by complementation with the wildtype LdPTP1 gene. 

This was performed by introducing the LdPTP1 gene including its flanking regulatory 

sequences into a plasmid (Fig. 7 A). The LdPTP1 containing plasmid 

(pSPYneoLdPTP1) was transfected into the null mutant clone (Ld1PTP1-/-) and 

transformants were selected in 0418 and cloned by limiting dilution. For subsequent 

infections in mice, the wildtype L. donovani promastigotes which had been in culture 

for several months and used to generate the null mutants characterized in Figure 6 

were no longer available. Nevertheless, the heterozygous single knockout clone 

LdPTP 1-/+ also represented a relevant control because it had retained one wildtype 

PTP1 allele (Fig. 4B), was more virulent than the null mutant clones (Fig. 6) and had 

undergone the same selection procedure as the null mutant clone, Ld1PTP1-/-. 
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Southern blot analysis with the entire LdPTPl gene probe confinned that the 

pSPYneoLdPTPl plasmid had been successfully introduced into the null mutant 

clone (Fig 7B, Lanes 5 and 6). 

We compared the virulence of the mutant LdlPTPl-/- containing the 

complementary pSPYneoLdPTPl plasmid to the parental null mutant LdlPTPl-/­

and the heterozygous mutant (LdPTP 1 +/ -), which retained one intact endogenous 

LdPTP 1 allele. In addition, a newly established L. donovani culture was used for 

comparison. As shown in Figure 7C and D, adding back the plasmid-derived LdPTPl 

gene to the LdlPTP1-/- nun mutant increased virulence in the liver (Lanes 4) in 

comparison to the parental LdlPTP1-/- nun mutant (Lanes 3). The LdlPTP1-/­

parasites containing the add-back LdPTPl was similar in virulence to the 

heterozygous LdPTPl +/- clone (Fig. 7C and D, Lanes 2) which retained one 

functional endogenous allele for the LdPTPl gene. It is also noteworthy that the 

infection levels shown in Figure 7C, D, for both the heterozygous LdPTPl +/- (Lanes 

2) and null mutant LdlPTP1-/- (Lanes 3) were almost identical to the previous 

experiment shown in Figure 6. As expected, the newly thawed culture of wildtype L. 

donovani (Fig. 7C, D, Lanes 1) was considerably more virulent than the previous L. 

donovani culture used to generate the original LdPTPl null mutants and which had 

been maintained in culture for several months (Fig. 6A and B, Lanes 1). 

To further examine the ability of the added back LdPTPl gene to restore 

virulence to the nun mutant, we compared infection levels in the spleen. As shown in 

Figure 7 E, adding back the plasmid derived LdPTPl gene to the LdlPTP1-/- nun 

mutant resulted in increased spleen parasite levels (Lane 4) compared to the parental 
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LdlPTPl-/- null mutant (Lane 3) and was similar in virulence to the heterozygous 

single allele knockout clone (+/-, Lane 2). Taken together, these infection results in 

the mouse liver and spleen demonstrate that adding back the LdPTPl gene on a 

plasmid partially complemented the virulent phenotype in the null mutant LdlPTPl-/­

clone, thus confirming the importance for LdPTPl in amastigote survival in the 

mammalian host. 

The preceding observations provide an argument that inhibition of Leishmania 

PTPl in amastigotes may have therapeutic potential and therefore may represent a 

drug target. With this in mind, in silico homology modeling was performed to 

compare the three-dimensional structures of the Leishmania infantum PTP with the 

hPTPIB (Fig 8A). This was performed to determine whether there were significant 

differences in the active sites between these enzymes which could be exploited to 

develop specifie small molecule inhibitors. The structure of the complex between a 

tyrosine-phosphorylated peptide substrate (sequence etdy(Ptr)rkggkgll) and human 

PTP (HEPTP, PDB code 1 G 1 G), was used to model the position of the peptide ligand 

into the L. infantum homology via superposition. Enzyme residues within eight 

angstroms of the ligand were used to perform the superposition. The hydrogen­

bonding pattern seen in the substrate peptide-human HEPTP complex between the 

phosphate group and the backbone of the protein appears to be very weIl conserved in 

the L. infantum PTP 1 homology mode1, and a high level of structural conservation 

between the human and Leishmania enzymes is concentrated in and around the active 

site (Figs. 8A and B). Thus, it seems likely that the active sites of the two proteins 

are similar, although there are significant differences in residues further away from 
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the active site, including residues 32-51 (Fig. 8A and B). Two differences close to 

the active site are worth mentioning: while the L. infantum enzyme has a proline 

residue at position 67, the human enzyme has an arginine. Second, residue 205 in the 

L. infantum sequence is a glutamine, while in aIl human tyrosine phosphatases there 

is a phenylalanine residue at this position. These differences affect the 

hydrophobicity of the substrate binding pocket and thus, potentiaIly, the preferred 

substrate. This altered specificity may provide scope for designing an inhibitor that 

binds more tightly to the L. infantum enzyme than to the human homologues. 

DISCUSSION 

Among the most important signaling mechanisms in eukaryotic cells are those 

that involve protein tyrosine phosphorylation and dephosphorylation (4). It was 

therefore important to identify a prototype PTP related gene in the Leishmania 

genome, determine its role in the parasite life cycle, and its potential as a drug target. 

We were particularly interested in identifying a Leishmania PTPIB-type gene 

because we had previously observed that overexpression of the human PTPIB 

increased the virulence of L. donovani and appeared to mediate certain aspects of 

differentiation towards the amastigote stage (7). The present study confirmed that 

Leishmania parasites do have a functional PTPIB-like gene which we termed LPTPl. 

Deletion of the L. donovani PTPl gene resulted in attenuated amastigotes in BALB/c 

mice but did not significantly impair promastigote survival in culture. These results 

argue that Leishmania PTPl plays a significant role in biochemical pathways 
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associated with amastigote survival in the mammalian host. On the other hand, we 

did not obtain evidence that Leishmania PTPl was directly involved in differentiation 

into amastigotes as previously suggested (7) since the LdPTP1-/- knockout mutant 

promastigotes were capable of morphologically differentiating into and proliferating 

as amastigotes in culture. In addition, we did not observe any changes in the 

expression of the amastigote-specific protein A2 in the LdPTP-/- null mutant clones 

(data not shown). 

This study further supports the recent conclusion that L. major has PTP 

enzyme activity (6) and provides insight into the primary and three-dimensional 

structural features of the Leishmania PTPl gene. Comparison of the primary 

structure of the human PTPIB and the Leishmania PTPl proteins revealed striking 

similarities. Firstly, the 10 amino acid active site containing the central cysteine 

residue is highly conserved with only a two amino acid difference in this region. As 

revealed in Figures 1 and 8, human PTPIB and the Leishmania PTPl enzymes share 

additional important motifs, including the invariant Asp residue in the WPD loop and 

the GIn residue in the Q loop which are also involved in the catalysis of the cysteinyl­

phosphate catalytic intermediate (4). The in silico three dimensional structural 

analysis in the presence of a substrate peptide further confirms the close similarities 

between the Leishmania and human PTPs. This is further supported by the 

observations in Figure 3, which showed that when assayed under identical conditions 

in the presence of the same substrates and inhibitors, the Leishmania PTPl and 

human PTPIB had similar levels of activity. Outside of the active site, the proline 

rich region at the C-terminal section of human PTPIB is involved in its association 

199 



with substrates containing SH3-domains (4, 20); this proline enrichment of the C­

terminal region was also present in the Leishmania PTPI sequence. Subcellular 

localization of the human PTPIB enzyme is largely mediated through the highly 

hydrophobie C-terminal region which anchors this enzyme to the endoplasmic 

reticulum (21 - 23). Likewise, the last 35 amino acids of Leishmania PTPl are also 

highly hydrophobie, suggesting a potential association with cell membranes similar to 

the human PTPIB protein. This is consistent with the recent report that PTP activity 

is associated with L. major membrane fractions (6). 

To define the role of the Leishmania PTPl gene in the parasite life cycle 

stages and virulence, the active site of the enzyme was deleted by gene targeting. It is 

noteworthy that although LdPTPl is a single copy gene, it was relatively easy to 

develop both heterozygous and homozygous PTP 1 gene knockouts in promastigotes 

indicating that this enzyme does not play a major role in the survival of promastigotes 

in culture. Morphologically, the LdPTPl mutant promastigotes were similar to 

wildtype cultures. However, the LdPTPl mutants were severely attenuated in 

comparison to the wildtype L. donovani with respect to survival in the liver and 

spleen of BALB/c mice. Future studies will be necessary to identify the endogenous 

targets (parasite or host) of Leishmania PTPl to define the biochemical pathways 

involved in mediating parasite survival in the mammalian host. Although there is no 

secretion leader sequence on the Leishmania PTPl enzyme, its strong homology with 

human PTPIB makes it tempting to speculate that it might also target host cell 

substrates. This would be similar to other obligate macrophage pathogens including 

Yersinia spp., Salmonella typhimurium, and Mycobaterium tuberculosis, which all 
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secrete PTP enzymes into the host cell that play significant roles in the virulence of 

these pathogens (reviewed in 24, 25). 

This study represents an example of how recent tools inc1uding the 

Leishmania genome and in silico protein structure analysis can be combined with 

more traditional molecular biological approaches inc1uding gene targeting and 

virulence analysis in mouse models to define potential drug targets. We have focused 

on PTPs because of the central role of tyrosine phosphorylation in the biology of 

higher eukaryotic cells making this among the most intense1y studied areas of cell 

biology and drug deve1opment. This study revealed a strikingly high conservation 

between the Leishmania and human PTPs. Because the active sites of these enzymes 

are highly conserved, it is difficult to conc1ude that Leishmania PTPl represents a 

viable target for drug development. Nevertheless, there may be subtle differences in 

charge within the active site suggesting that screening a library of PTP inhibitors for 

Leishmania PTP 1 specifie inhibitors may be justified. The combination of the 

technologies used in this study should however prove beneficial in defining additional 

drug targets against this important human parasite. 
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FIGURE LEGENDS 

Figure 1. Amino acid sequence alignment of PTPs from Leishmania spp., S. 

cerevisae, and human PTPIB. Dashes (-) indicate conserved residue among the 

sequences. Dots (.) were included in the sequence comparison for alignment 

purposes only. Stars (*) highlight conserved residues in Leishmania and human 

PTPIB sequences. The L. major 13 residues making up the conserved catalytic 

domain is shown in the box (231-243) with the active cysteine (236) residue in bold 

and highlighted. The WPD (202-204) and Q (281) loops conserved in Leishmania 

and human PTPs are in bold and highlighted with boxes. Proline residues in the C­

terminal region are also in bold and indicated by arrows. 
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Figure 2. Expression, detection and purification of L. major PTPI and human 

PTPIB from transfected Cos 7 cells. Panel A, relevant regions of the recombinant 

expression plasmids (pcDNA3-LmPTPI, pcDNA3-hPTPIB) containing the CMV 

promoter (CMV), a 10 amino acid epitope-tag derived from the A2 protein (A2), a 

His7-tag (His7) followed by either the L. major LmPTPI or human hPTPIB genes. 

Panel B, Western blot analysis of LmPTPI and hPTPIB using the anti-A2 Mab 

following transfection ofCos7 cells with pcDNA3-LmPTPI (Lanes 3, 6) or pcDNA3-

hPTPIB (Lanes 2, 5) or the control empty plasmid pCDNA3 (Lanes 1 and 4) in total 

cell lysates (Lanes 1-3), or following purification on His-bind® resin (Lanes 4-6). 

These are representative data from three independent experiments showing the same 

results, inc1uding performing the Western blot, each time to confirm similar levels of 

PTP in each assay. 

Figure 3. LmPTP enzymatic activity and inhibition following expression in Cos7 

cells. LmPTP 1 and hPTP 1 B purified on the His-bind® resin were assayed on PTP 

substrates; pNPP (Panel A) and insulin receptor (IR) phosphopeptide (Panel B) as 

indicated. Also shown is a Western blot confirming equallevels of PTP protein used 

for each substrate enzyme assay. For the enzyme inhibition assays, LmPTPl and 

hPTPIB purified on the His7-tag resin were assayed in the absence (-) or presence 

(+) of the PTP inhibitors; Na3V04 (Panel C) and bpV(phen) (Panel D) as indicated. 

Also shown is a Western blot confirrning equal levels of PTP protein used in the 

presence (+) or the absence (-) of the inhibitors in each assay. Note than both 

inhibitors impaired the enzyme activity to levels similar to that derived from the 
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control transfected cells (control pcDNA3). Values reported are the average mean of 

three independent experiments and results in bar graphs are the mean ±SE (standard 

error). Microsoft Excel was used to calculate the Student's test. *P~ 0.05 and ** 

P~O.Ol demonstrates statistical difference from control. 

Figure 4. Removal of PTPl gene active site from L. donovani by gene targeting. 

Panel A, Gene targeting strategy. A hygromycin se1ectable marker gene was inserted 

into a Bel 1 site of the pBsLdPTPl construct containing the LdPTPl gene, resulting in 

the construct pBsLdPTPI-Hyg which was then linearized and transfected into L. 

donovani promastigotes. F or the single gene targeting (heterozygous LdPTP 1 

knockout), recombinant parasites were selected in 50 ~glml hygromycin and for the 

double gene targeting (homozygous LdPTPl knockout) recombinant parasites were 

selected in 200 uglml hygromycin. Panel B, Southem blot analysis of genomic DNA 

derived from the wildtype (+/+), the heterozygous (+/-), and homozygous (-/-) gene 

targeted clones following digestion with Pst 1 or Sst I. The probe consisted of the 357 

bp fragment (see Panel A) derived from the LdPTPl active site encoding region. 

Panel C, Southem blot analysis as in B above with a probe consisting of the HygR 

gene. Note that these Southem blots confirm the removal of the 357bp fragment 

containing the active site of the LdPTPl gene in the homozygous (-/-) gene targeted 

clones and the HygR gene targeted specifically into the LdPTPl gene in all clones 

tested. 
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Figure 5. Comparison of wildtype L. donovani and LdPTPl gene-targeted mutant 

clone proliferation and morphology in culture. Panel A, Proliferation of promastigote 

cultures (27°C pH 7.2): wildtype (LdWT), single knockout (LdPTPl+/-) and two 

different double knockout null mutant (LdPTPl-/-) clones. Panel B, Proliferation of 

amastigote cultures (37°C pH 5.5): wildtype (LdWT), single knockout (LdPTP 1 +/ -), 

and two different double knockout null mutant (LdPTPl-/-) clones. Panel C, 

Morphology of log phase promastigote cultures (100 X): wildtype (LdWT), double 

knockout (LdPTPl -/-). Leishmania proliferation curves are representative of two 

independent experiments showing the same results. 

Figure 6. Comparison of the virulence between the single (+/-) and double (-/-) 

knockout LdPTP 1 mutants. Liver parasite burden was determined 4 weeks following 

infection by quantifying the number of amastigotesll 000 nuclei in liver imprints 

(Upper Panel) and by Leishman-Donovan Units (LDU) (Lower panel) calculated by 

multiplying the number of amastigotes per 1000 ceU nuclei x liver weight. Note that 

two independent clones (LdlPTPl-/-, Ld2PTPl-/-) were severely attenuated 

compared to the single knockout clone retaining one wildtype PTPl allele (LdPTP+/­

) or the wildtype L. donovani (L.d. WT). Values reported in bar graphs are the mean 

±SE of the average mean of four mice per group. Microsoft Excel was used to 

calculate the Student's test. *p:::; 0.05 and ** P:::;O.OI demonstrate statistical difference 

from the wildtype control. 
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Figure 7. Complementation of the LdPTPl null mutant. Panel A, Representation of 

the pSPYNeoLdPTPl complementing construct which was transfected into the 

LdlPTPl -/- null mutant. Panel B, Southem blot analysis of Genomic DNA cut with 

Pst 1 (Lanes 1, 3, 5) and Sst 1 (Lanes 2, 4, 6) probed with the full length LdPTPl 

sequence. L. donovani DNA was derived from; wildtype (Lanes 1, 2); LdlPTP1-/­

null mutant (Lanes 3, 4); LdlPTP1-/- null mutant with added back pSPNeoLdPTPl 

(Lanes 5, 6); Markers, M. Parasite levels in the liver 4 weeks after infection as 

determined by: Panel C, number of amastigotes per nuclei in liver imprints or Panel 

D, Leishman donovani Units for; wildtype (Lane 1), heterozygous knockout clone 

retaining one wildtype LdPTP 1 allele (Lane 2), homozygous knockout null mutant 

LdlPTPl-/- (Lane 3). Homozygous knockout null mutant LdlPTP1-/- plus the add­

back pSPNeoLdPTPl (Lane 4). Panel E, Infection levels in the spleen 6 weeks after 

infection for: wildtype (Lane 1), heterozygous knockout clone retaining one wildtype 

LdPTPl allele (Lane 2), homozygous knockout null mutant LdlPTPI-/- (Lane 3). 

Homozygous knockout null mutant, LdlPTP1-/-, plus the add-back pSPNeoLdPTPl 

(Lane 4). For figures 7 C and D, results reported in bar graphs are the mean ±SE of 

the average mean of four mice per group. Microsoft Excel was used to calculate the 

Student's test. *P~ 0.05 demonstrates statistical difference from the heterozygous 

knockout clone (+/ -) and the homozygous knockout null mutant Ld 1 PTP 1-/­

containing the add-back pSPNeoLdPTPl (-/- + LdPTP1). For figure 7 E, the spleens 

from the 4 mice in each group were pooled before determining parasite numbers. 
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Figure 8. Three-dimensional homology model for the structure of Leishmania 

infantum PTPl. Panel A, The homology model is shown as a cartoon representation, 

highlighting alpha-helices, beta-strands and loops. The color scheme used is 

according to the level of conservation at each residue position between the L. 

infantum sequence and the human PTP 1 B sequence with red representing identicaI 

residues; orange, conserved substitutions; green, semi-conserved substitutions; 

turquoise, positionaI conservation; blue, no conservation. Those stretches of 

sequence outside the active site (32-51 and 319-493) that could not be modeled, and 

therefore were not included, are represented schematically by ovaIs, and their size is 

indicative of the number of residues missing from the model. The oval representing 

the residues 32-51 that are present in the Leishmania sequence but not the human 

sequence is colored bIue, the ovai that represents residues 319-493 that are present in 

both enzyme sequences but were not present in the structure of the human enzyme is 

colored mauve. Panel B, Using the identical orientation as in (A), a molecular 

surface representation is shown, which is colored using the same scheme as in (A). 

The active site is shown occupied by the mono-phosphorylated peptide substrate from 

the human PTPIB-peptide complex (PDB code IGIG), which is represented by a 

stick model colored by atom type as follows: white, carbon; bIue, nitrogen; red, 

oxygen; yellow, phosphorous. Aiso indicated are residues proline 67 and glutamine 

205, which may affect substrate preference. 
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CHAPTER 4: General Discussion 
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The importance of networks of tyrosine phosphorylation in a number of 

cellular processes in higher eukaryotes, ranging from differentiation to 

transformation, is well established in different organisms. As demonstrated in this 

thesis, tyrosine phosphorylation also plays an important role for Leishmania parasites 

with respect to survival in the hosto Enzymes involved in regulating tyrosine 

phosphorylation have not been studied in detail in these protozoans and the research 

described in this thesis has begun to address this issue. The identification of tyrosine 

phosphatases has been reported in Leishmania (Dell and Engel, 1994, Cool and Blum, 

1993). However, their biological roI es in physiological processes are not known and 

many of the studies on tyrosine phosphorylation are restricted to the demonstration of 

different patterns of phosphorylation, without identifying the corresponding enzymes 

involved in the process. 

The most important process Leishmania parasites undergo during their life 

cycle is the passage from the invertebrate sandfly to the mammalian host and back to 

the sandfly, where they encounter a significant change in environmental conditions, 

especially regarding temperature and pH. Signal transduction is likely to be involved 

in pathways that control adaptations to such changes, leading to differential 

expression of proteins that ultimately results in altered metabolism and changes in 

Leishmania biochemistry and morphology. Therefore, protein kinases and 

phosphatases may act as signal transduction mediators and, as a result, may be 

implicated in Leishmania differentiation, which is an essential process for parasite 

replication and survival inside the host macrophage (reviewed in Matlashewski, 2001 

and Gupta et al., 2001). 

219 



.-
In search of the role of tyrosine phosphorylation in the differentiation and 

virulence levels of Leishmania parasites, we initially investigated the effects of 

overexpression of the human PTP1B in L. donovani promastigote cultures 

(Nascimento et al., 2003). We took this approach initially because the Leishmania 

genome had not been completed and therefore we did not have direct access to the 

Leishmania PTP gene (s). As demonstrated within, our fust results argue tyrosine 

phosphatases may play a role in amastigote differentiation of L. donovani parasites, 

since overexpression of the heterologous human phosphatase PTP1B, known act on a 

broad range of targets (reviewed in Dube and Tremblay, 2004), induces partial 

amastigote differentiation of transfected L. donovani promastigotes including the 

induction of A2 gene expression, a marker for amastigote differentiation (Charest and 

Matlashewski, 1994; Zhang et al., 1996). This was further supported by using a 

tyrosine kinase inhibitor, which mimics the action of tyrosine phosphatases. Both 

approaches resulted in a partial differentiation toward the amastigote stage. It was of 

particular interest that expression of human PTP1B in Leishmania also mediated an 

increase in virulence in mice. This would argue that dephosphorylation of target 

proteins plays a significant role in virulence as determined by increased infection 

levels. It will be important in future studies to define these target proteins. 

Subsequent studies led to the identification of the Leishmania sequence 

homologue to hPTP1B in the L. major (LmPTP1) and L. infantum (LiPTP1) genome 

databases. In vitro activity assays confirmed that these sequences code for an active 

enzyme, a fact confirmed by the ability of the LmPTP1 enzyme to dephosphorylate 

phosphotyrosine peptides and by its inhibition with tyrosine phosphatase inhibitors. 
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This study also showed for the first time the utility of using an A2 epitope tag to 

identify gene products expressed in L. major which have lost the ability to express A2 

(Ghedin et al., 1997; Zhang et al., 2003). However, disruption of LdPTP1 in L. 

donovani did not indicate any specific involvement of this phosphatase in amastigote 

differentiation since the LdPTP 1 knockouts grew and differentiated into amastigotes 

in vitro similarly to wild-type cells. Tyrosine phosphorylation is a tightly regulated 

and controlled process within the cell. Higher levels of the ectopic hPTP1B 

expression in L. donovani, an enzyme considered promiscuous with a number of 

targets, possibly led to the dephosphorylation of target(s), which is/are involved in 

differentiation, and caused the observed change in phenotype. In 1993, Lammers et 

al. showed transient overexpression ofhPTP1B in human kidney fibroblast 293 cells 

dephosphorylates receptor tyrosine kinase precursors in the endoplasmic reticulum, 

which is in accord with its cellular localization. Those authors also proposed that 

PTP specificity is defined by a combination of cellular localization and target 

recognition. However, high levels of expression may interfere with PTP1B 

specificity and activity regulation. The PTK inhibitor used in the first study, 

tyrphostin AG1433, also targets RTK, similarly to hPTP1B. The same observed 

phenotype in AG1433-treated promastigotes, i.e. partially amastigote differentiated 

cells, may be due to the fact that both act on similar substrates. An alternative 

explanation might be that ectopic expression of hPTP1B or treatment with AG1433 

caused a non-specific stress on the promastigotes which served as a signal to 

differentiate toward the amastigote stage in culture. However, the effect on 
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differentiation was not observed in the control pALTNeo transfected L. donovani or 

with p53 expressing Leishmania (Zhang et al., 1995). 

The Leishmania PTPl enzyme and its physiological target(s), on the other 

hand, are involved in the pathogenicity of Leishmania related to the ability of this 

parasite to survive in mice. This was demonstrated by a striking -85% decrease in 

LdPTPl -/- virulence in mice (Nascimento et al., 2006). This was also consistent 

with the observation that higher ectopic phosphatase activity leads to increased 

virulence in vitro and in vivo, (Nascimento et al., 2003). Therefore, it is clear that 

Leishmania PTP 1 activity is important for parasite survival in the mammalian host, 

since its loss may prevent or delay proliferation inside macrophages. 

The fact that a tyrosine phosphatase may be associated with Leishmania 

virulence and pathogenicity doesn't come as a surprise, since a number of other 

intracellular pathogens have their tyrosine phosphatases related to virulence. That is 

the case for Yersinia spp., Mycobacteria tuberculosis and Salmonella spp. However, 

Yersinia, and other prokaryotic pathogens, translocate phosphatas es directly into the 

host cell cytosol through a contact- dependent type III secretion system (Hu et al., 

2004), thus affecting phosphorylation of host cells by causing a direct interference 

with the host signal transduction pathways. This in turn, leads to impairment of 

phagocytic functions and disruption of normal cytoskeletal regulation and structure 

(reviewed in Stebbins and Galan, 2001; DeVinney et al., 2000). In Leishmania, 

molecules that directly interfere with the host are usually located in the external 

membranes, such as LPG, gp63 and acid phosphatases. The Leishmania PTPl seems 

to be cytosolic, as indicated by sequence analysis and its homology to the amino acid 
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sequence of the cytosolic hPTPIB. However, PTPIB is able to anchor in membranes 

and it suggest that this may also be the localization of the LPTP 1. A study by 

Aguirre-Garcia et al., (2006) detected the presence of a PTP in L. major membrane 

fractions, though no sequence identification was presented. These authors also 

reported higher PTP expression in metacyc1ics and suggested a role for this PTP in 

Leishmania adaptation to host defense mechanisms. Further studies will be required 

to determine the localization of LPTPl in Leishmania cells and elucidate its role and 

targets. It is, however, tempting to speculate this enzyme may be able to interfere 

with host signaling given its strong homology with the human enzyme in the active 

site. 

Analysis of the LPTPl sequence, both at the primary level of amino acid 

sequence and three-dimensional structure, showed considerable homology to hPTP 1 B 

in the active site. Additionally, two loops, namely the WPD and Q loops, involved in 

the mechanisms of ligand binding and phosphate group catalysis (reviewed in Tonks, 

2003), are also present in the Leishmania PTPI. This suggests that it may be difficult 

to identify inhibitors specific for Leishmania PTP1. Nevertheless, two amino acid 

residues are different in the parasite active site sequence. These differences may be 

exploited as a target for small molecule specific inhibitors, since this may account for 

differences in the hydrophobicity of the pocket and may provide a unique structural 

opportunity for achieving selective inhibition. As discussed previously, intense 

research on PTPIB for treatments against type II diabetes and obesity, has led to an 

extensive study on structure-based drug design for human PTPs in the last decade (Hu 

et al., 2004). The screen of inhibitor libraries would be a valuable resource for the 
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identification of specific LPTP1 inhibitors targeting binding sites present only in the 

parasite phosphatase enzyme. 

Inhibition of LPTP 1 could be used as a treatment for leishmaniasis, since, as 

demonstrated in this study, disruption of this phosphatase activity severely limits L. 

donovani survival in mice. In BALB/c mice, analysis of parasite ability to survive in 

visceral organs in a long-term infection with wildtype L. donovani shows an increase 

in liver LDU (first 4 weeks) and spleen LDU (fust 6-8 weeks), marking the peak of 

parasitemia, followed by a reduction in parasite burden after 6-8 weeks; at week 10 

the level of parasitemia is very low with a small number of parasite detected (our 

unpublished data). Although the effects of a long-term infection with PTP1-/- L. 

donovani are presently unknown, it is possible that the host could eliminate parasites 

deficient in phosphatase activity and control infection. The use of a specific 

phosphatase inhibitor could also affect Leishmania ability to survive intracellularly or 

abolish its interference with host signaling, potentially causing the immune response 

to be more effective against this pathogen. However, at this stage, we cannot say 

with certainty whether the inhibitor effects would modulate parasite survival or 

macrophage functions, since we have no further knowledge of LPTP1 target(s). 

Reports on the use of tyrosine phosphatase inhibitors, such as bpV(phen) in mice 

(Olivier et al., 1998), or the pentavalent drug sodium stibogluconate (Pathak and Yi, 

2001) against leishmaniasis strongly argue that Leishmania tyrosine phosphatases are 

involved in the parasite pathogenicity and that inhibiting this pathway could influence 

the course of Leishmania infections. The priority for future studies will therefore be 

to define the target proteins for LPTP 1. 
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