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Abstract 

Two important steps of translation initiation inc1ude the recognition of the rnRNA cap 

structure by eIF4E and the recycling of eIF2. Each step is thought to be regulated 

independently through the interaction of eIF4E with 4E-BPs and the phosphorylation of 

the a subunit of eIF2 at serine 51. Phosphorylation of eIF2a by dsRNA-dependent 

protein kinase PKR inhibits protein synthesis in cells subjected to virus infection; 

therefore, most viruses have evolved mechanism to overcome the deleterious effects of 

PKR. The human papillomavirus (HPV) E6 oncoprotein contributes to virus-induced 

pathogenicity through multiple mechanisms inc1uding the inhibition of apoptosis and 

the blockade of interferon action. This study demonstrates a novel function of PKR 

providing a link between the two mechanisms of regulation of translation initiation. 

Activation of PKR induces the PI3K-PKB/Akt and FRAP/mTOR pathways leading to 

S6 and 4E-BP1 phosphorylation upon stress conditions and in response to growth 

stimuli. Induction of the PI3K pathway antagonizes the apoptotic effects of PKR 

activation, but does not intervene with its translational inhibitory activity. Investigating 

functional interaction of HPV E6 and PKR, we determined that HPV -18 E6 protein 

synthesis is regulated by eIF2a phosphorylation. On the other hand, E6 oncoprotein is 

able to rescue cells from PKR-mediated inhibition of protein synthesis and induction of 

apoptosis by promoting eIF2a dephosphorylation through physical association with 

GADD34IPPl holophosphatase complex. These findings demonstrate, for the first time, 

the ability of PKR to activate a growth-stimulatory pathway; PI3K. Furthermore, it 

demonstrates role of oncogenic E6 in antagonizing signaling pathways induced by PKR 

inc1uding eIF2a phosphorylation and PI3K pathway. 



Résumé 

Les deux étapes importantes de l'initiation de la traduction sont la reconnaissance de la 

structure Cap de l'ARNm par le facteur d'initiation eIF4E, et le recyclage du facteur 

eIF2. Chacune de ces étapes est réglée indépendamment par l'interaction de eIF4E et de 

4E-BPs d'une part et la phosphorylation de la sous-unité a du facteur eIF2 d'autre part. 

En réponse à une infection virale, les cellules active la protéine kinase PKR, qui 

phosphoryle eIF2a, et par conséquent réprime l'initiation de la traduction. Cependant, la 

majorité des virus ont développé des mécanismes leur permettant de contourner l'effet 

inhibiteur de PKR. Ainsi, l' oncoprotéine virale E6 contribue à la pathogénicité de HPV 

à travers différents mécanismes incluant l'inhibition de l'apoptose et le blocage de 

l'action des interférons (IFNs). Cette étude montre une nouvelle fonction de PKR en 

établissant un lien entre les deux· mécanismes de régulation de l'initiation de la 

traduction. L'activation de PKR induit les voies PI3K et FRAP/mTOR, responsable de 

la phosphorylation des protéines S6 et 4E-BP en réponse aux stress cellulaires et aux 

facteurs de croissance. L'induction de la voie PI3K antagonise l'apoptose induite par 

PKR, mais n'intervient pas dans l'inhibition de la traduction. De plus, des expériences 

sur l'interaction fonctionnelle entre les protéines HPV -18 E6 et PKR, nous ont permis 

de déterminer que la synthèse de la protéine HPV-18 E6 est dépendante de la régulation· 

de la phosphorylation de eIF2a. L'oncoprotéine E6 lève l'inhibition de la traduction et 

prévient l'induction de l'apoptose par PKR en provoquant la déphosphorylation de 

eIF2a suite à la liaison entre eIF2a et du complexe holophosphatase GADD34IPPl. Ces 

résultats montrent, pour la première fois, la capacité de PKR à activer la voie de 

11 



stimulation de la croissance PI3K et le rôle de l'oncoprotéine E6 comme antagoniste des 

voies eIF2a et PI3K induites par PKR. 
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Chapter 1 - General Introduction 

1. Protein translation 

Synthesis of protein from the messenger RNA (rnRNA) is the final step of 

encoding the genomic information concealed in DNA. Protein translation consists of 

three steps: initiation, elongation and termination. Bach step is processed by the help of 

designated factors in order to bring the three essential components, the ribosome, the 

rnRNA and aminoacylated tRNAs together and mediate the synthesis of the polypeptide 

chain (1,2). 

1.1 Introduction to translation 

Translation of rnRNA to protein is carried out by large ribonucleoproteins 

named ribosomes and is mediated by a large group of proteins termed translation 

factors. Translation is initiated with priming of the ribosome by the unique initiator 

methionyl-tRNA (Met_tRNAjMet), and its recruitment to the proper AUG start codon on 

the rnRNA. The polypeptide chain is then extended by binding of aminoacyl-tRNAs, 

determined by the template rnRNA, to the ribosome. The translation is terminated when 

a stop codon on rnRNA is encountered (3). 

1.1.1 Initiation of translation 

Translation initiation is a complex process in which the initiator Met-tRNAjMet, 

small (40S), and large (60S) ribosomal subunits, are assembled by eukaryotic initiation 

factors (eIFs) into an 80S ribosome at the initiation codon (AUG) of rnRNA (Fig.1). 
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The 40S ribosomal subunit initially forms the 43S pre-initiation complex, by binding to 

eIF3, 1, lA, 5 and a temary complex. The temary complex is consisted of the Met­

tRNAiMet that recognizes the AUO codon during initiation, and eIF2 coupled to OTP. 

Binding of the pre-initiation complex to rnRNA is mediated by interaction of eIF3 with 

the eIF4F protein complex associated with the 5' cap structure of rnRNA. Cap is an 

inverted 7-methylguanosine that is attached to the first nuc1eotide structure located at 

the 5' end of the majority of eukaryotic rnRNAs, which consists of m70pppN (where 

m70 represents 7-methlguanylate, p represents a phosphate group and N represents any 

base) and together with the pol Y A tail at the 3' end form strong promoters of 

translation. 

The eIF4F complex is comprised of several initiation factors inc1uding eIF4E, a 

cap-binding protein that mediates the interaction of eIFs and the ribosome with the 5' 

cap structure; eIF4A, a dead-box RNA helicase which serves to unwind the secondary 

structure at 5' UTR allowing the 43S complex to scan the rnRNA for the start codon; 

and eIF40, which acts as a scaffolding protein to recruit eIF4E, eIF4B and eIF3 (1,2). 

It is currently believed that the 43S complex scans the 5' UTR in a 5' to 3' direction 

until an appropriate start site for peptide synthesis is recognized through the formation 

of base pairs between the Met-tRNAi
Met and the start codon (4). Binding of 43S 

complex to the start codon AUO results in formation of a stable complex referred to as 

48S initiation complex. Subsequently, eIF2-bound OTP undergoes hydrolysis that is 

catalyzed by eIF5 which is required for joining of the 60S to the initiation complex. At 

this step initiation factors inc1uding eIF2-0DP are dissociated from the small ribosomal 

subunit, leaving the initiator tRNA base-paired with AUO in ribosomal P-site. A second 
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step of GTP hydrolysis on eIF5B occurs to release eIF5B and render the ribosome 

competent for polypeptide synthesis. The large (60S) ribosomal subunit then joins the 

40S subunit at this position to form the catalytically competent 80S ribosome (5). 
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Figure 1. Schematic representation of cap-dependent translation initiation 

The eIF4F complex consisted of eIF4E, eIF4G and eIF4A is recruited to rnRNA 

through association of eIF4E cap-binding protein with the cap structure. The RNA 

helicase eIF4A, assisted by eIF4B, unwinds the secondary structure at 5'UTR of the 

rnRNA. The initiator Met-tRNAj
Met forms the temary complex with eIF2-GTP, which 

together with 40S ribosomal subunit and eIF3 yield the 43S pre-initiation complex. 

eIF4F bridges the 43S pre-initiation complex to rnRNA through interaction of eIF4G 

with eIF3. The pre-initiation complex scans the rnRNA in a 5' to 3' direction until it 

identifies the initiation codon AUG, a process which is assisted by eIFI and eIFIA. 

Stable binding of the 43S pre-initiation complex to the AUG codon forms the 48S 

initiation complex. AUG recognition triggers GTP hydrolysis on eIF2 and dissociation 

of initiation factors. Subsequently, joining of the 60S subunit results in formation of the 

80S initiation complex which then proceeds to elongation. 

Adapted from Gebauer and Hentze, Molecular Cell Biology 2004 

5 



Ternary complex 

Met 

Figure 1 

P 

0_ 
o 

! 

43S pre-initiation complex 

Cap •• ~_-.li 
mRNA 

AUG -

ct 
GDP CD 
e~ 

80S initiation complex 



1.1.2 Translation initiation factors and their functions 

Initiation of translation in eukaryotes is assisted by more than 25 polypeptides, 

termed eIFs each serving a specific function (2) (Table 1). 

The initiation factor eIF4E is the rate-limiting factor in initiation and is 

characterized by its cap binding activity, which is crucial for cap-dependent translation. 

Therefore, the expression of eIF4E is necessary for active cell growth. Its structure 

resembles a cupped hand or a baseball glove forming a suitable binding site for the cap 

structure. Through this activity, eIF4E mediates correct positioning of 43S complex (6). 

The role of eIF4G is scaffolding during initiation of translation, which recruits 

the initiation factors to the site of initiation. Moreover, eIF4G interacts with poly (A)­

binding protein (PABP), which binds the poly A stretch at 3' UTR. This interaction 

mediates the circularization of the rnRNA bringing the 3' UTR, in close proximity to 

the 5' end of the rnRNA. The 3' UTR contains most translational regulatory sequences, 

and thus such circularization provides the means for synergistic stimulating effect of the 

cap structure and the poly-A tail on translation (1,2). 

The RNA helicase eIF4A plays a major role in translation of highly structured 

rnRNAs. eIF4A is an ATP-dependent RNA binding protein, an RNA-dependent 

ATPase and an RNA helicase. It belongs to a large family of DEAD box RNA helicases 

and is believed to unwind the secondary structure in the 5' UTR of capped rnRNAs to 

facilitate ribosome binding and its subsequent scanning to reach the initiation codon (6). 

eIF4A, however, is an inefficient helicase and its function is enhanced by eIF4B and 

eIF4H. The role of eIF4B is not limited to its stimulatory effect on eIF4A helicase 
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activity. It may also contribute to the binding of ribosome to rnRNA and to bridge eIF3 

to 40S ribosomal subunit (7). 

The pivotaI role of eIF2 is the recruitment of the Met_tRNAjMet to 40S ribosomal 

subunit, and due to this function it plays a major role in regulation of translation 

initiation. eIF2 consists of three non-identical subunits; a, 13 and y (8). The a subunit 

contains the well-known serine (Ser) 51 phosphorylation site which is phosphorylated 

by the eIF2a kinases and is involved in translational control. The 13 subunit contains 

multiple phosphorylation sites for casein kinase II (CK-II), protein kinase C (PKC), 

cAMP- dependent protein kinase (PKA) and two of three consensus guanine nucleotide 

binding domains. It also contains the binding domain for eIF5B at its N-terminus and 

the guanine nucleotide exchange factor, eIF2B at its C-terminus. The y subunit contains 

Met-tRNAjMet binding site and all three consensus guanine nucleotide binding domain, 

which are the characteristic sequence of GTP-binding proteins. Thus, eIF2y plays a 

major role in binding to GDP but it does not possess intrinsic GTPase activity. eIF5 is a 

GTPase-activating protein (GAP) specific for eIF2, which provides an "arginine finger" 

for the catalytic center of eIF2y. Upon recognition of the start codon by the pre­

initiation complex, eIF5 binds to eIF2 and mediates the hydrolysis of the GTP bound to 

eIF2 and eIF2-GDP is released from the initiation complex (9). Formation of another 

temary complex requires the eIF2-bound GDP to be replaced by GTP. This reaction is 

catalyzed by eIF2B after each round of initiation (8). 

The guanine exchange factor eIF2B consists of five non-identical conserved 

subunits a-f, and is regulated by diverse signaIs (10). Phosphorylation of eIF2B by 

multiple kinases such as glycogen synthase kinase-3 (GSK-3), casein kinase (CK)-I, 
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CK-II and dual-specificity tyrosine phosphorylated and regulated kinase (DYRK) has a 

negative effect on its activity. Phosphorylation of eIF2B by GSK3 requires activity of 

DYRK as a priming kinase by phosphorylating eIF2B on Ser539. In response to insulin, 

GSK3 activity is inhibited and, thus, eIF2B becomes dephosphorylated and more active. 

In yeast, the activity of eIF2B is also regulated by fusel a1cohols, such as butanol, which 

are products of amino acid breakdown as nitrogen source. The most important 

mechanism of regulation of eIF2B, however, is through phosphorylation of eIF2a in 

response to cellular stress. Once phosphorylated, eIF2 has higher affinity for eIF2B and 

results in inhibition of its nucleotide-exchange function (1,10). 

eIFl and eIF1A play an important role in translation initiation site specificity 

and ensure the correct arrangement of the components of 43S complex when binding to 

mRNA. They act synergistically to enable 43S to reach the initiation codon without 

arresting at the initial binding site (1). eIF1A enhances binding of 43S to mRNA and the 

scanning process, but is unable to promote reaching the first AUG. It also stabilizes 

binding of the temary complex to 40S ribosomal subunit, which may play a role in 

correct positioning of Met-tRNAiMet and mRNA during scanning. eIF1, on the other 

hand decreases formation of cap-proximal complex and promotes low levels of 48S 

complex formation (1). Together, eIFl and eIF1A promote dissociation of 43S from 

cap-bound eIF4F complex and mediate binding of 43S to mRNA in order to scan to the 

initiation codon (1). In addition to its role in initiation codon selection during 48S 

complex formation, eIFl also participates in maintaining the fidelity of the initiation 

process at a later stage, hydrolysis of eIF2-bound GTP, by inhibiting premature GTP 

hydrolysis and by linking establishment of codon-anticodon base-pairing with GTP 

9 



hydrolysis. Moreover, recent data demonstrate that full activation of eIF5B and efficient 

joining of 60S ribosomal subunit requires the extreme C-terminus of eIF1A which 

interacts with eIF5B (11). 

eIF5 plays an essential role in initiation of protein synthesis in conjunction with 

GTP and other initiation factors. Following formation of the 48S initiation complex at 

the AUG codon of an rnRNA, eIF5 interacts with the 48S initiation complex to promote 

the hydrolysis of eIF2-bound GTP, which results in the release of bound initiation 

factors from the 40S subunit, an event that is essential for the subsequent joining of the 

60S ribosomal subunit to the 40S subunit resulting in formation of the functional 80S 

ribosome. Detailed characterization of the eIF5-promoted GTP hydrolysis reaction 

shows that eIF5 functions as a GTPase-activating protein (GAP) in translation initiation. 

It contains an arginine-finger motif consisting of an invariant arginine residue at its N­

terminus, which is essential for its function. This invariant arginine residue is 

presumably involved in the stabilization of the transition state of the GTP hydrolysis 

reaction catalyzed by initiation factor eIF2 (1). Recent data reveal that hydrolysis of 

eIF2-bound GTP by eIF5 is necessary but not sufficient for joining of the 60S, and it 

requires the function of eIF5B (5). 

eIF5B is a GTPase that facilitates joining of the 60S ribosomal subunit to the 40 

S ribosomal subunit during translation initiation. Formation of the resulting 80S 

initiation complex triggers eIF5B to hydrolyze its bound GTP, reducing the affinity of 

the factor for the complex and allowing it to dissociate. The role of eIF5B could be to 

displace eIF3 and possibly eIFl and eIF1A from the 40S subunit after release of eIF2 

(9). The interaction of eIF1A with eIF5B promotes ribosomal subunit joining, and 
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possibly provides a checkpoint for correct complex formation, allowing full activation 

of GTP hydrolysis only upon formation of a properly organized 80 S initiation complex 

(11). 
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Table 1. Eukaryotic initiation factors and their functions 

Translation initiation is a complex process which is assisted by more than 25 

polypeptides termed initiation factors (eIFs for eukaryotic initiation factors), the most 

important and weIl characterized ones of which are listed in this table. 

Adapted from Dever TE, Cell 2002 
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Table 1 : Eukaryotic initiation factors and their functions 

Eukaryotic Initiation Factor 

elF1 

elF1A 

elF2 

elF2B 

elF3 

elF4A 

elF4B 

elF4E 

elF4F 

elF4G 

elF4H 

elF5 

elF5B 

Function 

Fidelity of AUG codon recognition 

Facilitate Met-tRNAjMet binding to 408 subunit 

Bind Met-tRNAjMet to 408 subunit; GTPase 

Guanine-nucleotide exchange factor for elF2 

Promote Met-tRNAjMet and mRNA binding to 408 

Dead-box helicase 

Promote elF4A activity 

m7GpppN cap binding protein 

Cap binding complex of el Fs 4A, 4E and 4G 

Adaptor protein interacts with many other proteins 

8imilar to elF4B 

AUG recognition and promote elF2 GTPase activity 

8ubunit joining 

) 



1.2 Regulation of translation 

Regulation of protein synthesis plays an important role in development, 

differentiation, cell cycle progression, cell growth, and apoptosis. In eukaryotic cells 

rnRNA translation is affected by a wide range of environmental conditions. Protein 

synthesis is increased in response to hormones, growth factors, cytokines, nutrients and 

mitogens, whereas stress conditions such as virus infection, ER stress, DNA damage, 

oxidative and osmotic stress or withdrawal of nutrients lead to a decrease in protein 

synthesis (12). 

Translational control involves regulation at various steps inc1uding initiation, 

elongation and termination (2). Considering that translation is one of the main energy­

consuming processes, it is more efficient to regulate its onset than to disrupt it later at 

elongation or termination steps (12). 

1.2.1 Regulation of translation initiation 

Regulation of translation initiation is generally achieved by modifications in 

phosphorylation states of the initiation factors or their regulators. Two important steps 

of translation initiation include the recognition of the rnRNA cap structure by eIF4E and 

the recycling of eIF2. Each step is thought to be regulated independently through the 

interaction of eIF4E with 4E-BPs and the phosphorylation of the a subunit of eIF2 at 

Ser 51. 

1.2.2 Cap-dependent translation regulation through modulation of eIF4E function. 

Regulation of cap-dependent translation initiation is achieved in part by modulating the 

function of the cap-binding initiation factor eIF4E. The majority of rnRNAs that play a 
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role in cell proliferation and growth or those involved in cell survival or apoptosis have 

highly structured 5' UTRs which require formation of the eIF4F complex for their 

translation, which functions as a regulation mechanism to tightly control the expression 

of these genes (13). Binding of eIF4E to the 5' cap structure as a complex with eIF4G 

and eIF4A, results in unwinding of this secondary structures which facilitates the 

recruitment of the 43S pre-initiation complex to rnRNA and the subsequent scanning 

process. Interaction of eIF4E and eIF4G requires a small domain in eIF4G which is 

shared by a family of proteins known as 4E-binding proteins (4E-BPs), which have 

been identified as important inhibitors of eIF4E. In quiescent cells 4E-BPs inhibit cap­

dependent translation initiation by binding to eIF4E and preventing its association with 

eIF4G and thus assembly of a functional eIF4F complex (Fig.2). 

Three 4E-BP proteins have been identified: 4E-BP1, 4E-BP2, and 4E-BP3, 

which share 56-59% homology, especially at their mid-region containing the eIF4E­

binding site. Despite their high homology and identical functions, 4E-BP rnRNAs are 

not expressed at the same levels in aIl tissues, which may explain the existence of three 

4E-BPs with redundant function. The binding site to eIF4E is characterized by a 

conserved amino acid motif containing the core sequence YXXXXL<I>, where X is any 

amino acid and <1> is a residue with an aliphatic portion, most often lysine, but 

sometimes methionine or phenylalanine. Exposure of the cells to various types of 

extracellular stimuli such as hormones (insulin, angiotensin II, etc.) mitogens (TPA) , 

growth factors (EGF, PDGF, NGF, IGFI, IGFII, etc.) and cytokines (IL-3, GMCSF, 

etc.), induces 4E-BP phosphorylation on several sites (14). This results in a decreased 

affinity of 4E-BP for eIF4E leading to their dissociation, thereby allowing translation 
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initiation to proceed. On the contrary, serum starvation, amino acid deprivation, and 

certain environmental stresses such as heat shock or osmotic shock, result in 

dephosphorylation of 4E-BP and inhibition of cap-dependent translation (15). To date, 

seven Ser and threonine (Thr) sites have been identified in 4E-BP1, two of which are 

situated at the amino-terminal side of the eIF4E-binding motif; Thr37 and Thr46 and 

the other five at the carboxy-terminal side; Ser65, Thr70, Ser 83, Ser101 and Ser 112. 

The first five phosphorylation sites are conserved among an 4E-BPs, but Ser101 and 

Ser112 only exist in 4E-BPI (16,17). Hyperphosphorylation of 4E-BP occurs in two 

steps: phosphorylation of Thr37 and Thr46 acts as a priming event for Thr70 which 

occurs prior to Ser65. This priming may induce conformational changes in 4E-BP 

structure so that a second kinase is recruited and phosphorylates the other residues (16). 

This specific pattern of phosphorylation is required for disruption of the eIF4E/4E-BP 

interaction. Although Ser65 phosphorylation is the final step for release from eIF4E, 

phosphorylation of this residue is not sufficient to mediate the dissociation, suggesting 

that phosphorylation of the other sites is also required (18). The pathways leading to 

4E-BP phosphorylation involve the phosphoinositide-3 kinase (PI3K) and mammalian 

target of Rapamycin (mTOR) (15,19) (Fig.3). 
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Figure 2. Regulation of cap-dependent translation initiation through modulation of 

eIF4E availability 

The eIF4E-binding proteins share the same binding sites for eIF4E as eIF4G. Binding of 

4E-BPs to eIF4E inhibits the formation of eIF4F complex and therefore initiation of 

translation. Phosphorylation of 4E-BPs on several residues results in its dissociation 

from eIF4E, which is now available to bind to eIF4G and proceed to initiate the 

translation. 

Adapted from Gebauer and Hentze, Molecular Cell Biology 2004 
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Figure 3. Schematic representation of the PI3K pathway 

The best characterized pathway leading to phosphorylation of 4E-BPI is the PI3K­

FRAP/mTOR pathway. Exposure of the cells to extracellular stimuli such as growth 

factors, cytokines, hormones and mitogens induces PI3K signaling pathway, which 

results in cell growth, proliferation and survival. Upon binding of the ligands to the 

receptor tyrosine kinases, PI3K is recruited and activated through binding of its 

regulatory subunit p85 to the phosphorylated receptors. PI3K catalyzes the formation of 

PI(3,4,5)P3 from PI(4,5)P2 at the plasma membrane, which recruits proteins containing 

the pleckstrin homology (PH) domain such as PDKI and PKBI Akt. This recruitment 

brings the two proteins in vicinity leading to phosphorylation and activation of 

PKB/Akt. Phosphorylation of PKB/Akt by FRAP/mTOR-Rictor results in its full 

activation which then leads to modulation of the activity of downstream effectors. 

Pharmacological inhibitors of the PI3K and FRAP/mTOR pathways; wortmannin, 

L Y294002 and rapamycin are depicted in red. 
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1.2.3 Regulation of translation initiation through modulation of eIF2 function. 

Another step of regulation of translation initiation is phosphorylation of the translation 

initiation factor eIF2. As discussed earlier, eIF2 associates with 40S ribosomal subunit 

in its GTP-bound form as a part of the temary complex to recruit the initiator tRNA. 

The GTP molecule is hydrolyzed upon recognition of the start codon leading to 

dissociation of eIF2-GDP from the initiation complex. To reconstitute a functional 

temary complex for a new round of translation this GDP has to be replaced by GTP, a 

reaction catalyzed by eIF2B, a guanine nucleotide exchange factor (GEF) required for 

the recycling of eIF2-GDP to eIF2-GTP. Phosphorylation of the a. subunit on Ser51 

results in higher affinity of eIF2 for eIF2B, which sequesters eIF2-GDP and eIF2B in a 

complex with reduced GEF activity resulting in inhibition of the overall protein 

synthesis (20) (FigA). To date, four distinct eIF2a. kinases have been identified. 

Functional analyses of these kinases have indicated that each enzyme provides the cell 

with a unique capability to modulate translation in response to specifie forms of stress, 

including heme-regulated inhibitor (HRI) , stimulated by heme depletion; general 

control non-derepressible-2 (GCN2), induced by amino acid deprivation; dsRNA 

activated protein kinase (PKR), activated upon virus infection; PKR-like endoplasmic 

reticulum-resident kinase (PERK), activated upon conditions of endoplasmic reticulum 

(ER) stress (7). The mechanism of function of these kinases is explained in section 3. 

21 



Figure 4. Regulation of translation initiation by eIF2a phosphorylation pathway 

Initiation of translation requires hydrolysis of GTP to GDP at two steps; recognition of 

AUG initiation codon andjoining of 60S subunit. The eIF2 binds to Met-tRNAj
Met in its 

active GTP-bound state to forrn the temary complex. GTP is hydrolyzed upon 

recognition of AUG and eIF2-GDP leaves the initiation complex. The guanine 

nucleotide exchange factor eIF2B replaces GDP by GTP in order to reconstitute a 

functional temary complex for a new round of translation initiation. Phosphorylation of 

the a subunit of eIF2 results in sequestering eIF2B in an inactive complex and as a 

result GDP-GTP exchange can no longer occur and global rnRNA translation is 

inhibited. Four distinct kinases phosphorylate eIF2a in response to stress conditions 

such as heme deficiency, virus infection and ER stress, all resulting in inhibition of 

protein synthesis. 
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2. PI3K Signaling Pathway 

Phosphoinositide signaling plays a very important part in signal transduction in 

response to a wide range of cellular stimuli involved in numerous types of cellular 

processes, which underscores the significance of the lipid molecules as second 

messengers. Extracellular stimuli such as growth factors, cytokines and hormones bind 

to their cognate tyrosine kinase receptors (RTKs), resulting in phosphorylation of 

phosphatidylinositol lipids which initiates a set of events leading to cell growth, 

proliferation, cell cycle entry and cell survival. Various signaling proteins contain 

pleckstrin-homology (PH) domains which specifically bind to phosphorylated 

phosphoinositides (21). These proteins include serine threonine kinases, tyrosine 

kinases, and exchange factors that regulate heterotrimeric guanosine triphosphate 

(GTP)-binding proteins (G-proteins) and are located in the cytoplasm of unstimulated 

cells. Once translocated to the membrane where they associate with the phosphorylated 

lipids, these signaling proteins mediate recruitment of proteins required to initiate local 

responses leading to various signaling pathways. These signaling proteins coordinate 

complex events leading to changes in cell metabolism, cell growth, cell movement, and 

cell survival (22). 

2.1 Phosphatidyinositol3- Kinase PI3K 

The enzymes that phosphorylate phosphatidylinositol and its derivatives are 

termed phosphoinositide kinases (PI3K). PI3Ks are dual specificity lipid and protein 

kinases that phosphorylate phosphatidylinositol-4,5-biphosphate [PI(4,5)P2] at its D-3 

position of the inositol ring to form phosphatidyl-inositol-3,4,5-triphosphate 

[PI(3,4,5)P3] at the membrane (Fig.5A) (21). There are several forms of PI3K in higher 
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eukaryotes. Class la enzymes exist as a heterodimer consisted of a regulatory subunit 

(p85) and a catalytic subunit (pllO) (Fig.5B). The mammalian plIO includes at least 

four different family members, plIOa, /3, y, and 8, which are encoded by at least two 

genes (22). The regulatory subunit consists of five isoforms; p85a, p85/3 , p55a, p55y 

and p50a (23-29). The p85/3 and p55y are each products of a single gene whereas, p55a 

and p50a are products of alternative splicing of p85a gene (29). The structure of the 

regulatory subunit consists of two proline-rich motifs (PRMs), two Src Homology 

(SH2) domains and a plIO binding domain, which is situated between the two SH2 

domains (IS) (Fig.5B) (22) . Through this domain, the regulatory subunit maintains the 

pllO catalytic subunit in a low-activity state in quiescent cells and mediates its 

activation by direct interaction with phosphotyrosine residues of activated growth factor 

receptors or adaptor proteins (21). The p85 subunits act as adaptor proteins, utilising the 

two SH2 domains for interactions with proteins containing phosphotyrosine in a 

specific motif, with a consensus sequence of YXXM. The pllOy does not associate with 

a p85 subunit but appears to be controlled by interactions with G-protein /3 and y 

subunits (30). Moreover, a portion of growth factor-mediated PI3K activation has been 

shown to proceed through a direct interaction of a p21Ras effector domain with a 

specific site in the plIOa or /3 subunits (31,32). In addition to being a lipid kinase, PI3K 

has been demonstrated to exhibit protein kinase activity (33). The crystal structure of 

PI3K shows the presence of a typical conserved protein kinase domain that shares 

similarity to the Src family of tyrosine protein kinases. However, PI3K has been shown 

to catalyze serine rather than tyrosine phosphorylation in the presence of Mn2+ ions 

(34). Indeed, the plIOOl. catalytic subunit has been shown to phosphorylate the p85 
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regulatory subunit and the insulin receptor substrate-l (IRS1) on serine residues (34-

36). 

2.2 Protein and lipid phosphatase PTEN 

PTEN (Phosphatase and TENsin homolog on chromosome TEN) is a tumor 

suppressor, which is frequently mutated or lost in many tumor types (37,38). PTEN is a 

member of tyrosine phosphatase family with a unique lipid phosphatase activity that is 

not shared by other famiIy members (39). It antagonizes PI3K signaling by 

dephosphorylating the D-3 position of the inositol ring in PI(3,4,5)P generated by PI3K 

(Fig.5A). PTEN phosphatase domain, located at the N-terminal half, has homology to 

both protein tyrosine phosphatase family and the nonphosphatases tensin and auxilin 

(37). The C-terminus contains a binding domain for a c1ass of PDZ domain which plays 

a role in protein-protein interaction (40,41). In addition to its N-terminal domain, PTEN 

contains a calcium-independent C2 domain that mediates lipid binding and membrane 

localization. The phosphatase domain together with the C2 domain forro a minimal 

catalytic unit, as truncation mutations in any of these regions leads to abolishment of the 

phosphatase activity (42). One important downstream target of PTEN is protein kinase 

PKB/ Akt which is activated upon formation of phosphorylated Iipids by PI3K. 
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Figure 5. The function and structure of PI3K 

A. PI3K function. PI3K catalyzes the formation of PI(3,4,5)P3 from PI(4,5)P2 by 

phosphorylating the phosphoinositides at their D3 position of the inositol ring. This 

results in formation of the second messengers to initiate the downstream signaling 

pathways. 

B. PI3K structure. Schematic diagram represents the structure of catalytic subunit and 

three regulatory subunit isoforms. 

Adapted from Vivanco and Sawyers, Cancer 2002, and Funaki et al., Cellular Signaling 2000 
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2.3 Serine/threonine protein kinase PKB/Akt 

Protein kinase B (PKB)/ Akt was first identified as a homologue of the viral 

oncogene, v-akt. It is a Ser/Thr kinase, which belongs to the 'AGC' super family of 

protein kinases and shares similarity within its catalytic domain structure and in its 

mechanism of activation with protein kinase A (PKA) and protein kinase C (PKC) was 

thus named PKB (43). Three members of PKB/Akt family, termed PKB(a,~, y) or 

Akt(l, 2, 3) are products of three distinct genes with 80% homology but different tissue 

distribution (44) (Fig.6A). The structure of PKB/Akt contains a PH domain at the N­

terminus, a central kinase catalytic domain and aC-terminal hydrophobic motif (HM) 

(43,44). The PH domain is shared between numerous signaling proteins and provides a 

lipid binding module for the PI3K generated PI(3,4,5)P3 (45,46). The kinase domain 

contains a threonine residue in the activation loop (Thr308, Thr309 and Thr305 in 

PKBalAktl, PKB~/Akt2 and PKBy/Akt3, respectively), phosphorylation of which 

results in activation of PKB/Akt by inducing conformational change that allows better 

substrate binding and higher rate of catalysis. The HM domain plays a dual role in 

regulating the kinase activity. It contains a docking site for PDK1 (3-Phosphoinositide­

Dependent protein Kinase 1) and provides stability for the catalytic domain (44). It 

contains a second phosphorylation site, Ser473, Ser474, and Ser472 in PKBalAktl, 

PKB~/Akt2 and PKBy/Akt3, respectively, which is required for full activation of 

PKB/Akt (43). Although PKB/Akt was originally suspected to play a role in signal 

transduction in response to growth factors, its significance was only demonstrated when 

it was shown to be a downstream target of PI3K (47,48). Activation of Class la and lb 

PI3K is thought to induce PKBI Akt activity (Fig 3). Vpon formation of PI(3,4,5)P3 at 

29 



the membrane as a result of PI3K activation, PKB/Akt is translocated to the membrane 

(49), where it is recruited to the vicinity of PDKI. This recruitment is believed to 

induce a conformational change in PKB/ Akt, which enhances the accessibility of the 

threonine residue for phosphorylation by PDKI. Phosphorylation of PKB/Akt by PDKI 

results in its activation, which in tum initiates signaling pathways affecting cell growth, 

cell cycle entry and cell survival (43). PDKI is a Ser/Thr kinase that contains a C­

terminal PH domain and interacts with phosphorylated lipids. PDKI phosphorylates the 

threonine residue of PKB/Akt in the activation loop, which regulates access to the 

catalytic site of PKB/Akt (50-52). In order to achieve maximal activation, PKB/Akt 

requires phosphorylation at the serine site in its C-terminus. The kinase responsible for 

phosphorylation of this residue has been unknown. It has been believed that PDKI itself 

(53), or another kinase termed PDK2 phosphorylate Ser473. It has also been suggested 

that modification of Ser473 occur through autophosphorylation (54). Recent data, 

however, demonstrates that FRAP/mTOR-Rictor complex phosphorylates the Ser473 

residue (55). The most recent scenario suggests that PI3K-generated phosphorylated 

lipids recruit PKB/ Akt and PDKI to the plasma membrane. Phosphorylation of serine 

residue by FRAP/mTOR-rictor promotes PKB/Akt interaction with PDKI through HM 

domain. This interaction results in activation of PDKl, which then phosphorylates 

PKB/ Akt on the threonine residue. At this point the HM domain prefers intramolecular 

association and releases PDKI and adopts a full Y active state for PKB/Akt (44). Active 

PKB/ Akt dissociates from the membrane and localizes to the cytoplasm and nucleus 

(56-58) where it phosphorylates the downstream targets such as glycogen synthase 

kinase-3 (GSK3) (59), Procaspase-9 (60), forkhead transcription factors (FKHR, 
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FKHRL1, AFX) (61-63), IKKa (64,65), Ask1 (66), BAD (67,68), CREB (69) and 

Mdm2 (70,71). Through modulating the activation of these proteins, PKB/Akt plays a 

role in regulation of apoptosis, proliferation and other processes (Fig.6B). 

Most of the known protein targets of PKBI Akt become inacti vated by the 

phosphorylation event. For example, phosphorylation of FKHRL1 results in their 

cytoplasmic localization and retenti on by a protein termed 14-3-3, which results in 

blocking transcription of genes normally stimulated by FKHRL1 in the nucleus. The 

same mechanism is applied to the proapoptotic protein BAD. Upon phosphorylation by 

PKB/Akt, BAD is sequestered in cytoplasm by 14-3-3 and can no longer bind to 

antiapoptotic proteins such as Bcl-2 or Bcl-XL , which results in releasing them for a cell 

survival response (43). 

A third target of PKBI Akt is GSK3 (59). This protein kinase was originally 

characterized as an important enzyme in regulation of glycogen synthesis in response to 

insulin before its diverse role in many cellular processes such as differentiation, 

proliferation, and transformation was determined (72). GSK3 is constitutively active in 

unstimulated cells and phosphorylates many proteins including glycogen synthase (GS) 

(73,74), c-Myc (75), l3-catenin (76), p53 (77,78), and cyclin Dl (79) to keep them in 

inactive states or promote their degradation. The two isoforms of GSK3, a and 13, are 

phosphorylated by PKBI Akt, a modification that tums off their catalytic activity and 

leads to the activation of pathways that are normally repressed by GSK3 (72). 

Another downstream target of PKB/Akt is the PI3K-related protein kinase, 

FRAP/mTOR that plays a major role in regulating protein synthesis. It is 

phosphorylated directly by PKB/Akt (80,81). 
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Figure 6. PKBI Akt signaling pathway 

A. The structure of PKBI Akt illustrates the plecksterin homology domain (PH), the 

kinase domain (KD) and the regulatory domain (RD). The structure of three members of 

the family is presented, indicating the Thr307 and Ser473 phosphorylation sites in 

kinase domain and regulatory domain, respectively. 

B. The PKBI Akt signaling pathway and its downstream targets are shown. Upon 

activation of PI3K and formation of PIP3, PKB/Akt is phosphorylated and activated by 

its upstream kinases on Thr308 and Ser473. Activation of PKB/Akt results in 

phosphorylation and inactivation of proteins involved in apoptosis such as Bad, pro­

caspase 9, FKHR, IKK and Mdm2 and activation of proteins involved in cell growth 

and proliferation such as GSK3, FRAP/mTOR, p21 and p27. 

Adapted from Nicholson and Anderson, Cellular Signaling 2002, and Fresno Vara et al., Cancer 

Treatment Reviews 2004 
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2.4 Serine/threonine protein kinase FRAP/mTOR 

The mammalian target of rapamycin (mTOR) also known as FRAP (FKBP­

Rapamycin- Associated Protein), belongs to the PIKK (PI3K-related Kinases) family of 

kinases (82). The kinase domain of FRAP/mTOR is located at the C-terminus and has 

sequence similarities with the catalytic domain of PI3K (Fig.7 A). To date, there is no 

evidence for lipid kinase activity of FRAP/mTOR. In this regard, FRAP/mTOR is 

similar to other members of the family, including ATM (Ataxia Telangiectasia Mutated) 

and ATR (Ataxia Telangiectasia and Rad3 related). Upstream to the catalytic domain is 

the FRB (FKB12-Rapamycin Binding) domain which mediates binding of FKB12 

(FK506-Binding Protein) and rapamycin. FRAP/mTOR contains a large FAT (FRAP, 

ATM, TRRAP) domain which is shared between all PIKKs (83). The C-terminus end 

contains another FAT domain termed FATC, which is essential for FRAP/mTOR 

activity (84,85). FRAP/mTOR also possesses an autoinhibitory domain termed negative 

regulatory domain (NRD) or repressor domain between the catalytic and FATC 

domains. The N-terminus contains 20 tandem HEAT (Hungtington, EF3, A subunit of 

PP2A, TORI) repeats, which are present in many proteins and are involved in protein­

protein interactions (86). 

FRAP/mTOR plays an important role in regulation of translation through 

phosphorylation and inactivation of 4E-BPl, as weIl as phosphorylation and activation 

of S6 kinase (S6Kl) (87,88). In addition, FRAP/mTOR also modulates transcription by 

phosphorylating STAT3 and pRb (Fig.7B). The activity of FRAP/mTOR is regulated by 

growth and survival stimuli such as growth factors, cytokines and nutrients (89). Raptor 

(Regulatory Associated Protein of TOR) is a positive regulator of FRAP/mTOR and is 
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essential for its activity. It acts as an adaptor protein to recruit FRAP/mTOR substrates. 

At its N-terminus, Raptor con tains a unique conserved domain followed by three HEA T 

repeats and seven WD-40 repeats at its C-terminus. The HEAT repeats in FRAP/mTOR 

and Raptor mediate the interaction of the two proteins (90). Raptor also binds to 4E­

BPI and S6Kl through interaction with a five amino acid motif termed TOS (TOR 

Signaling), present at the N-termini of both proteins (91,92). This interaction is 

necessary forphosphorylation of 4E-BPI and S6Kl by FRAP/mTOR (93). Another 

positive regulator of FRAP/mTOR activity in response to nutrients, is the G protein P­

subunit-like protein (GI3L) (94). It contains seven WD-40 repeats and interacts with the 

kinase domain of FRAP/mTOR independently of Raptor. GI3L stabilizes mTOR-Raptor 

complex, thus GI3L, Raptor and FRAP/mTOR may represent a nutrient-sensitive 

complex (94). In response to nutrient condition such as amino acid availability mTOR­

Raptor complex undergoes a conformational change that induces its efficient interaction 

with downstream targets leading to their phosphorylation (90,94). 

FRAP/mTOR activation in response to growth factors and cytokines is mediated 

by PI3K (95,96). PKB/Akt plays an important role in regulation of mTOR activity. Two 

residues of FRAP/mTOR are directly phosphorylated by PKBI Akt; Thr 2446 and Ser 

2448, from which Ser 2448 is phosphorylated by PKBI Akt in vitro and in vivo (81) 

(97). The significance of this phosphorylation in activation of FRAP/mTOR is not clear, 

since mutation of these sites does not affect FRAP/mTOR activity (80). Recent studies 

have demonstrated that regulation of FRAP/mTOR by PKBI Akt is mediated through 

modulation of TSCI and TSC2 (Tuberous Sclerosis Complex 1 and 2) proteins that are 

upstream negative regulators of FRAP/mTOR. TSCI and TSC2 interact through their 
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N-termini and function as a heterodimer to inhibit FRAP/mTOR activity (98,99). TSCl­

TSC2 heterodimer acts as a GTPase activating protein (GAP). Rheb (Ras homolog 

enriched in brain) is a small GTPase and was characterized to function as an upstream 

positive regulator of FRAP/mTOR that acts downstream of PI3K, PKB/Akt and TSCl­

TSC2. In fact, biochemical studies showed that TSC2 exhibits specific GAP activity 

toward Rheb (100,101). TSC2 is directly phosphorylated by PKB/Akt, which results in 

inactivation of TSCI-TSC2 by disrupting the complex and promoting degradation of 

TSC2 (102,103), resulting in the activation of FRAP/mTOR by Rheb. 

The most important downstream targets of FRAP/mTOR are proteins involved in 

translation. The activation of several initiation factors including eIF4E, eIF4G and 

eIF4B is regulated directly or indirectly by FRAP/mTOR. Moreover, the S6K and its 

substrate S6 ribosomal protein and elongation factor 2 (eEF2), are also targets of this 

pathway (89). 

FRAP/mTOR-mediated regulation of eIF4E is exerted through phosphorylation 

of 4E-BPs. Activation of FRAP/mTOR phosphorylates the two priming sites of 4E­

BPI; Thr37 and Thr46, required for subsequent phosphorylation of 4E-BPI on Thr 70, 

followed by Ser65, which ultimately results in its dissociation of eIF4E (18). 

Mammalian cells contain two similar S6K proteins encoded by two different 

genes. They share a high homology and possess conserved phosphorylation sites. The 

S6 kinases play a role in regulation of cell growth and are direct targets of 

FRAP/mTOR (104). The generally accepted model proposed that activation of S6K 

leads to increased translation of certain rnRNAs containing a terminal oligopyrimidine 

tract (TOP) at their 5' end, therefore termed 5'TOP rnRNAs. These rnRNAs encode for 
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proteins involved III translation machinery including aIl ribosomal proteins, the 

elongation factors and PABP (105,106). Recent studies, however, demonstrate that 

induction of S'TOP mRNAs in response to amino acids, growth factors and mitogenic 

signaling relies only on PI3K and PKB/Akt and does not require S6K and S6 

phosphorylation (107,108). On the other hand, mTOR signaling has been shown to 

regulate the activity of TIF-l, a transcription factor for RNA polymerase 1 (POL 1), 

essential for rRNA synthesis. It has been demonstrated that activation of FRAP/mTOR 

results in a decrease in phosphorylation of TIF-1 at Ser199 residue and an increase at 

Ser44 residue, which leads to activation of TIF-1 (109). This finding provides strong 

evidence for a new role of FRAP/mTOR in cell growth and proliferation through 

regulation of rRNA synthesis. 

Rapamycin is a macrocyclic antibiotic that was originaIlY identified as an 

antifungal agent before its anti-tumor and immunosuppressive effects were appreciated. 

It possesses inhibitory role on cell growth in different cell types and induces G 1 arrest 

due to inhibition of translation (110). It was isolated from a strain of streptomyces 

hygroscopicus found in a soil sample Rapa Nui (111). Currently rapamycin is used as 

an immunosuppressant to prevent graft rejection after organ transplantation; and its 

analogues, CCI-779, RADOOl and AP23841 are under clinical trial for anticancer 

application. The primary intracellular rapamycin receptor is FKBP12, an abundant, 

ubiquitously expressed protein with a possible role in protein folding (112). Rapamycin 

binds to FKBP12 forming a complex that interacts with FRB domain of FRAP/mTOR 

and inhibits the function of FRAP/mTOR (113). 
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Figure 7. FRAP/mTOR signaling pathway 

A. Structural domains of FRAP/mTOR are illustrated. HEA T domain (Huntingtin, 

Elongation factor 3, A subunit of PP2A and Torlp) is involved in protein-protein 

interaction. FAT domain (FRAP-ATM-TRRAP) is required for mTOR activity 

FRB domain (FKBP12-Rapamycin Binding) mediates the binding of FKB12 and 

rapamycin to mTOR. The kinase domain shows sequence similarity to the catalytic 

domain of PI3K, but like other members of the PIKK family does not exhibit lipid 

kinase activity. FATC domain: FAT C-terminus 

B. FRAP/mTOR is activated in response to nutrients and growth factors. Upon 

stimulation of cells with growth factors, activated PKB/Akt inhibits TCSl/TCS2 

complex by phosphorylating TCS2, leading to activation of Rheb and subsequently 

activation of FRAP/mTOR. Downstream targets of FRAP/mTOR, include S6Kl and 

4E-BPl which play a role in translation. FRAP/mTOR also modulates transcription and 

regulates cell cycle by phosphorylating STAT3, pRb and p27. 

Adapted from Asnaghi et al., Pharmacological Research 2004 
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3. The eIF2a. phosphorylation pathway 

Eukaryotic cells respond to stress signaIs in part by inhibition of cellular protein 

synthesis to provide the cells with the means to restore the healthy state or by induction 

of apoptosis if the damage is beyond repair. An important pathway involved in this 

response is the eIF2a phosphorylation pathway (Fig.4). Phosphorylation of eIF2a on 

Ser51 residue by members of the family of eIF2a kinases results in inhibition of 

translation initiation by reducing the levels of functional eIF2B (114). Although 

phosphorylation of eIF2a results in inhibition of general translation, it stimulates 

expression of a specific class of genes. The best characterized examples of such genes 

are the yeast GCN4 protein, a transcriptional activator of amino acid biosynthetic genes 

whose production is increased under amino acid starvation conditions, and the 

mammalian ATF4, a transcriptional activator who se expression is increased under ER 

stress or amino acid starvation conditions (7). 

3.1 The family of eIF2a. kinases 

To date, there are four distinct kinases with unique ability to respond to various 

stress conditions. They share a catalytic domain containing the conserved subdomains 

characteristics of all Serffhr protein kinases, but possess highly divergent regulatory 

domains (Fig.8). Specifically, these kinases show significant homology in subdomain V 

which may serve as the substrate binding domain (115,116). 
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Figure 8. The eIF2a. kinase family 

The structures of four eIF2a kinases are presented. The conserved kinase domains (KD) 

are depicted in red. The two heme-binding sites in HRI are marked in black. The 

dsRNA binding domains (dsRBD) in PKR are shown in orange. The N-terminal haif of 

PERK, which resembles the corresponding domain of the ER stress-responsive IREI 

kinase, signal peptide (SP) and transmembrane (TM) domain of PERK are indicated. 

GCN2 structure consist of N-terminal GCNI binding domain, charged region (+/-), 

pseudokinase domain ('PKD), the regulatory histidyl-tRNA synthetase (HisRS) domain 

and the C-terminai ribosome binding and dimerization domain (RBIDD). 

Adapted from Dever TE, Cell 2002 
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Table 2. Activation of the eIF2a. kinases 

The activating condition or ligand for each kinase is indicated in Table 2. 

Adapted from Dever TE, Cell 2002 
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Table 2: The e1F2a. kinases and their activation conditions 

e1F2a. Kinase 

HRI 

PKR 

PERK 

GCN2 

Activation 

Herne deficiency 
Oxidative stress 

Viral infection 
dsRNA 

ER stress 
Unfolded proteins 

Amino acid deprivation 
Uncharged tRNA 



3.1.1 General Control Non-derepressible-2 

GCN2 is a 180 kDa protein, which is activated by uncharged tRNA under 

conditions of amino acid starvation and shortage of purine. GCN2 contains a 110 amino 

acid insert between subdomains IV and V, and a 530 amino acid histidyl-tRNA 

synthetases (HisRS) sequence, which lies adjacent to the kinase domain and is required 

for GCN2 regulatory function. Binding of uncharged tRNA to the HisRS domain results 

in activation of the neighboring kinase domain leading to phosphorylation of eIF2a and 

inhibition of global protein synthesis. Despite this inhibitory effect translation of the 

transcription factor GCN4 is significantly enhanced. Upregulation of GCN4 promotes 

transcription of enzymes catalyzing amino acid and purine biosynthesis (115,117). 

3.1.2 Heme-Regulated Inhibitor 

HRI or HRC (Herne Control Repressor) is a 90 kDa protein that is activated 

under conditions of heme deficiency. Similar to GCN2, the structure of HRI contains an 

insert of 140 amino acids between subdomains IV and V. HRI contains two heme 

regulatory motifs (HRM) in its kinase domain. Upon heme deficiency, HRI is activated 

by dimerization and autophosphorylation leading to phosphorylation of eIF2a. Binding 

of hemin to HRI induces formation of disulfide bonds between the two monomers, 

which inhibits the activation of the kinase (118,119). Recent studies have implicated 

HRI in response to heat shock, osmotic stress and oxidative stress upon arsenite 

treatment (120). 
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3.1.3 PKR-like endoplasmic reticulum-resident kinase 

PERK is a transmembrane protein residing on ER membrane. The N-terminal 

domain, which contains the regulatory domain, is located in the lumen of ER and senses 

the conditions of ER stress upon accumulation of misfolded proteins. The C-terminal 

cytoplasmic domain serves as a kinase which directly phosphorylates eIF2a.. The 

regulatary domain of PERK is distantly related to that of IREI (Inositol-Requiring 

Enzyme 1), a different ER stress transducer that activates gene expression in the UPR 

(Unfolded Protein Response). PERK exists in an inactive form through binding of the 

chaperone protein BiP to its N-terminus. Upon conditions of ER stress, BiP dissociates 

from PERK to assist the proper folding of the misfolded proteins. Dissociation of BiP 

results in oligomerization, trans-autophosphorylation and activation of PERK, which 

leads ta phosphorylation of eIF2a. and inhibition of translation. Through this 

mechanism, PERK provides a balance between the capacity of ER and protein synthesis 

(121,122). 

3.2 Double stranded RNA-activated protein kinase 

PKR (Protein Kinase RNA activated) is a serine/threonine and tyrosine protein 

kinase with an important role in diverse processes such as anti-viral defense, signal 

transduction, cellular growth, differentiation and apoptosis (123-125). It is ubiquitously 

expressed in all eukaryotic cells at low levels and is transcriptionally induced by type 1 

interferon (IFNa./~), a family of cytokines with anti-viral and anti-proliferative actions 

secreted from virus infected cells. PKR is unique among the eIF2a. kinase family for its 

ability ta respond to virus infection (123,126). It is activated by viral double stranded 

RNA (dsRNA) products. Binding of PKR to dsRNA produced during virus replication 
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induces dimerization and conformational changes that result in kinase activation by 

autophosphorylation on multiple sites (123). Activated PKR then phosphorylates the 

eIF2a at serine 51 causing the inhibition of protein synthesis. Through this capacity, the 

kinase functions as a mediator of the anti-viral and anti-proliferative effects of IFNs and 

as an inducer of apoptosis (Fig.9A). 
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Figure 9. PKR activation and structure 

A. Activation of PKR through dsRNA-mediated dimerization and autophosphorylation, 

results in phosphorylation of eIF2a and inhibition of translation initiation. 

B. Structural representation of PKR showing the dsRNA binding motifs (dsRBMs) 

located at the dsRNA binding domain (dsRBD) or regulatory domain, the third basic 

region and eleven conserved kinase subdomains at the kinase domain (KD). 

The structure ofPKR was adapted from Williams B, Oncogene 1999 
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3.2.1 The structure of PKR 

PKR is a 551 amino acid protein with two functionally distinct domains: an N­

terminal regulatory domain or dsRNA binding domain; and a C-terminal kinase 

catalytic domain (127,128) (Fig.9B). The regulatory domain contains two dsRNA 

binding motifs (dsRBM) that are rich in basic residues and are separated by a 20 amino 

acid linker. Although both dsRBMs are required, the dsRBMI shows a greater 

importance in dsRNA binding. These 65 amino acid motifs exist in several dsRNA­

binding proteins. The two dsRBM of PKR show 49% homology with 29% identity in 

their sequence (129). In addition to regulation of PKR activity, the regulatory domain 

serves to target PKR to ribosomes (130). The C-terminus of PKR contains a conserved 

protein kinase consisting of eleven conserved kinase subdomains that characterize the 

members of serine/threonine kinase subfamily (124,131). This region which extends 

from amino acid 273 to 551 contains the ATP-binding region with the lysine residue at 

position 296 which is essential for the phosphate transfer reaction. Mutation of this 

residue to arginine, proline or histidine renders the kinase catalytically inactive 

(132,133). The interaction between PKR and eIF2a. is mediated by a region located at 

amino acids 367-551 (134). 

3.2.2 Regulation of PKR 

Activation of PKR is subjected to regulation at several levels: transcriptional 

activation, binding to dsRNA, autophosphorylation and association with cellular 

regulator proteins (135-138). 

The promoter of PKR contains a number of regulatory elements such as 

IFNa./13 responsive ISRE, IFNy responsive GAS, IL-6 sensitive NF-IL6, the acute phase 
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responsive' factor (APRF) and NF-KB elements (139,140). The structure of PKR 

promoter, however, suggests that other signaling pathways are also involved in 

regulation of transcription. It has been demonstrated that IRF-l plays a role in induction 

of PKR transcription through activation of the ISRE element. TNFa. and TGF~ are also 

involved in modulation of PKR (141). Specifically, TNFa. induces both rnRNA and 

protein levels of PKR and (142) and TGF~ can inhibit the induction of PKR that occurs 

during myogenesis (143). 

Activation of PKR is triggered by binding to dsRNA. In the inactive form, the 

dsRNA binding domain of PKR interacts with the substrate binding domain exerting an 

inhibitory effect on the catalytic activity. Upon viral infection, dsRNA is produced as a 

byproduct of viral replication. Binding of dsRNA to PKR dsRBMs, induces a 

conformational change, in which the dsRBD swings away from the rest of the protein 

leading to exposure of the C-terminus for autophosphorylation. Dimerization of PKR is 

essential for its autophosphorylation and activation. PKR homodimer is formed either 

by direct interaction of its dsRBD and part of the catalytic domain (amino acids 244-

296), or by dsRNA bridging the two proteins. PKR homodimer is then 

autophosphorylated in trans at Thr446 and Thr451 residues located between kinase 

subdomains VII and VIII, which are essential for PKR kinase activity. Other 

phosphorylation sites inc1ude Ser342, Thr255 and Thr258, which play a less important 

role on PKR activity (144-146). Phosphorylation within the third basic region results in 

securing PKR in an active conformation, while phosphorylation in the activation loop 

facilitates substrate binding and catalysis (136). 
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3.2.3 Cellular inhibitors and activa tors of PKR 

PKR activity can also be modulated by cellular proteins. PKR can directly bind 

to inhibitory proteins such as P58IPK
, TRBP (TAR RNA Binding Protein), p67 and dRF. 

P58IPK belongs to eukaryotic stress response protein family and is involved in stress 

pathways. It is activated by influenza virus infection and appears to bind to the third 

basic domain of PKR and inhibits both autophosphorylation and phosphorylation of 

eIF2a. (147). TRBP is another cellular inhibitor of PKR, which like PKR, contains 

dsRBM and forms nonfunctional heterodimers by interacting with dsRBMs of PKR or 

through a direct protein interaction (148-150). p67 is an eIF2a. associated glycoprotein, 

which binds to eIF2a. and prevents its phosphorylation by PKR (151). An additional 

PKR inhibitor is dRF, which inhibits binding of dsRNA to PKR and its 

autophosphorylation (152). TRBP may inhibit PKR function by sequestering dsRNAs 

In addition to the inhibitory proteins, cellular proteins exist that activate PKR. PACT 

(Protein ACTivator of PKR) is one such example, which is a dsRNA binding protein 

and acts as an activator of PKR (153). 

3.2.4 Viral inhibitors of PKR 

Because of the deleterious effects of host's protein synthesis inhibition, many 

viruses have evolved distinct mechanisms to counteract PKR activation and eIF2a. 

phosphorylation as a means to evade, at least in part, the antiviral action of IFN. These 

mechanisms inc1ude direct inhibition of the kinase, down-regulation of PKR protein, 

regulation of eIF2a. phosphorylation or translational pathways downstream of eIF2a. 

phosphorylation (154,155) (Fig.lO). 
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Sorne viruses inhibit PKR activation through inhibition of dsRNA binding to 

PKR or by sequestering dsRNA. Adenovirus, Epstein-Barr virus and human 

immunodeficiency virus (mV) synthesize inhibitory dsRNAs. Adenovirus V AI RNA 

(Virus-Associated RNA) is a 260 nucleotide RNA transcribed by host RNA polymerase 

III. It accumulates in the cytoplasm of the infected cells and inactivates PKR through a 

direct interaction with the kinase at its dsRBMs, thus acting as a competitive inhibitor 

(156). Epstein-Barr virus-encoded RNAs (EBERs) are similar to VAl RNA in size, 

mode of transcription and function. EBER RNAs are found at high levels and bind to 

and inactivate PKR (157,158). HIV transactivator responsive region (TAR) RNA was 

shown to bind to PKR at low levels and activate the kinase, whereas high levels of this 

RNA inactivates PKR (159,160). TAR RNA can also recruit a cellular protein termed 

TRBP that can interact with PKR and inhibit its function (149). Vaccinia virus, a 

member of poxvirus family, encodes two proteins termed E3L and K3L, which inhibit 

PKR through distinct mechanisms (161). E3L binds to dsRNA with high affinity and 

belongs to the family of dsRNA binding proteins. It inhibits PKR activation by 

sequestering dsRNA activators of PKR that are produced as a result of viral replication 

(162). Influenza virus non structural (NS) 1 protein also acts as an antagonist of the 

dsRNA-PKR binding reaction. NSI is an RNA binding protein, which binds to both 

poly(A) RNA and dsRNA; however, unlike E3L, it does not possess any dsRBM. NS1, 

which is a nuclear protein, sequesters the primary viral transcription products in the 

nucleus and prevents their transport to cytoplasm where they bind and activate PKR 

(163). Reovirus cr3 protein, a structural component of the reovirus outer shell, is a 

member of the dsRNA binding protein homology family and similar to E3L, it inhibits 

53 



PKR by sequestering dsRNA (164). Influenza virus activates the cellular protein P58IPK
, 

which forms a physical complex with PKR by binding to its dimerization domain and 

inhibits PKR autophosphorylation and activation (165). Hepatitis C virus nonstructural 

(NS) 5A protein binds to PKR and inactivates the kinase (166). Vaccinia virus K3L 

inhibits PKR by acting as a pseudosubstrate. K3L binds to catalytic domain of PKR 

between amino acids 366-415 (167). K3L shows sequence similarities with eIF2a and 

since it acts as a pseudosubstrate, it lacks the Ser51 phosphorylation residue (168). HIV 

transactivator (Tat) protein physically interacts with PKR and acts as both a substrate 

and an inhibitor of the kinase (169). Sorne virus es impede PKR function by affecting its 

protein levels. Several studies suggest that HIV Tat protein expression could result in 

reduction of PKR protein levels. This could also partly explain the inhibition of PKR 

activity by Tat (170,171). 

Poliovirus infection also decreases PKR levels, which is speculated to be 

mediated by degradation of the kinase (172). In herpes simplex virus (HSV)-infected 

cells, despite PKR activation, eIF2a phosphorylation is impaired (173). HSV encodes a 

protein which is a product of Y134.5 gene, which is functionally related to the cellular 

GADD34 (Growth Arrest and DNA Damage Gene product 34). Dephosphorylation of 

eIF2a in cells subjected to ER stress is mediated by protein phosphatase 1 (PPl)­

GADD34 holophosphatase complex, where PPI is the catalytic subunit and GADD34 is 

the regulatory subunit. HSV Y134.5 gene product functions as GADD34 and recruits PPI 

to dephosphorylate eIF2a (174). Simian virus 40 (SV40) T antigen is capable of 

relieving translation inhibition by activated PKR. Since eIF2a phosphorylation occurs at 
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elevated levels in SV 40-infected cells, this regulation is likely to be exerted at a step 

downstream of eIF2a phosphorylation, which remains to be identified (175,176). 
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Figure 10. Regulation PKR expression and function and its viral inhibitors 

PKR is transcriptionally induced by type 1 interferons (IFNs) and activated through 

dsRNA-dependent dimerization and autophosphorylation, leading to phosphorylation of 

eIF2cx.. Viral products inhibit PKR expression and function through distinct 

mechanisms, which are indicated at each lev el. 

Adapted from Gale and Katze, Pharmacology and Therapeutics 1998 
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3.2.5 Substrates of PKR 

The best characterized substrate of PKR is eIF2a, which is phosphorylated at 

Ser51. This phosphorylation site is located in a basic region and is flanked by four 

arginine residues on its C-terrninal side (177). PKR induces NF-KB (Nuc1ear Factor K­

B) activity through inactivation of its kinase IKB. Phosphorylation of an unknown 

protein in IKB kinase complex by PKR results in degradation of IKBa (178). PKR also 

enhances transcription activity of p53 (179). PKR physically interacts with p53 and 

phosphorylates Ser392 residue (180). In a recent report, we have shown that PKR 

negatively regulates Statl and Stat3 through phosphorylation and activation of TC-PTP, 

a tyrosine phosphatase which targets active Statl and Stat3 and decreases their 

cytokine-induced phosphorylation and transcriptional activities (181). 

3.2.6 Biological functions of PKR 

Although PKR was originally characterized as a translational inhibitor in an 

antiviral pathway regulated by IFNs (182), there is increasing evidence indicating the 

role of PKR in other signal transduction pathways. PKR is involved in signaling 

pathways such as NF-KB (183), interleukine 3 (IL-3) (184) and IFN~ (185,186). It is 

also implicated in the activation of immediate early gene expression by platelet-derived 

growth factor (PD OF) (187). PDOF activates PKR autophosphorylation, which can be 

blocked by activated p21 ras (188). PKR has been demonstrated to play a role in 

regulating transcription of genes such as immunoglobin K (189), IRFI (190), IFNa and 

IFN~ (191), the vascular epithelial cell adhesion molecule (VCAMl) (192), major 

histocompatibility complex (MHC) c1ass 1 (193), Fas ligand and other members of the 
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apoptotic pathway (194,195). Furthennore, activation of PKR has been shown to play a 

role in differentiation of myoblasts and preadipocytes (196,197). 

PKR is also involved in regulation of cell growth and proliferation and, thus, is 

suspected to exert an anti-tumor function. Overexpression of PKR results in inhibition 

of growth in yeast, mouse and in sect cells and induces apoptosis in human cells. 

Expression of mutant fonns of PKR which inactivates the kinase, as well as 

overexpression of PKR inhibitors result in exhibition of a transfonned phenotype (141). 

This phenotype results from reduction of eIF2a phosphorylation, enhanced translation 

of critical regulatory gene products and deregulation of cell growth. PKR is speculated 

to inhibit cell proliferation and growth by inhibiting protein synthesis and thereby 

targeting proteins involved in cell division or by interacting with the ligands of growth 

factors (198). PKR is also an inducer of apoptosis in response to various stimuli such as 

LPS (199), dsRNA (200), serum deprivation or TNFa treatment (201). 

Following dsRNA treatment, protein levels of Fas and Bax are upregulated, 

which are mainly regulated at posttranscriptional level. Phosphorylation of eIF2a is 

suspected to be involved. Although phosphorylation of eIF2a results in inhibition of 

global protein synthesis, the translation of several rnRNAs, including those involved in 

apoptosis is increased. Bax rnRNA is one example which resembles yeast GCN4 

rnRNA translation in response to amino acid starvation and eIF2a phosphorylation. The 

5' UTRs of these rnRNAs have several open reading frames (ORPs) (4 in GCN4 and 3 

in Bax), which facilitates their translation upon eIF2a phosphorylation (117). 
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4. Human papillomaviruses 

Papillomaviruses are small DNA virus es which induce papillomas (or warts) in 

a variety of higher vertebrates including hum an (202). Discovery of the major role of 

human papillomaviruses (HPV) in human cancers, most notably human cervical 

carcinoma, has drawn great attention to the study of HPV sand their mechanism of 

action. 

4.1 Classification 

Papillomaviruses were originally classified in papovaviridea family of viruses. 

The name papovavirus is derived from its members, papillomavirus and poliovirus and 

simian vacuolating virus. This classification was based on the fact that all members 

have small size, a nonenveloped virion, an icosahedral capsid, a double-stranded 

circular DNA genome, and utilize the nucleus as a site of multiplication. As it was later 

recognized that these virus groups have different genome sizes, completely different 

genome organizations, and no major nucleotide or amino acid sequence similarities, 

they are now officially recognized by the International Committee on the Taxonomy of 

Viruses (ICTV) as two separate families, Papillomaviridae and Polyomaviridae (203). 

Papillomaviruses infect a wide range of animaIs from birds to mammals, including 

humans, and are highly species specifie, i.e. cross-species transmission of the virus is 

very rare. The majority of papillomaviruses have a specifie tropism for squamous 

epithelial cells. Sorne HPVs preferentially infect cutaneous epithelia, whereas another 

groups target mucosal epithelia (204). To date, over 100 different HPV types have been 

identified, the classification of which is based on the sequence of their LI genes (205). 

HPVs are divided into two groups: the low-risk HPVs, such as types 6 and 11, which 
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are rarely found in malignant tumors but induce benign genital warts, and the high-risk 

types, such as 16 and 18, which are frequently detected in cervical carcinoma (206,207). 

4.2 Virion structure 

Papillomavisuses are smalI, nonenveloped, icosahedral DNA viruses that 

replicate in the nucleus of squamous epithelial celIs. Papillomavirus particles measure 

55 nm in diameter. The capsid consists of 72 pentameric capsomers arranged on a T=7 

surface lattice, which wraps around the genome; a single circular double-stranded DNA 

of approximately 8000 bp. The capsid contains two structural proteins, which are 

encoded by the virus (208,209). 

4.3 The genome 

Papillomavirus genome is consisted of three regions; two coding regions and a 

non-coding regulatory region (Fig. 11). The open reading frames are divided into early 

(E) and late (L) folIowed by a number which represents their coding potential; the lower 

the numbers, the longer the open reading frames. The early region encodes 8 open 

reading frames which are involved in regulatory functions required for invasion of the 

host cell by the virus and the production of the progeny virus (206). The late open 

reading frames encode genes for viral capsid proteins. Sorne early proteins such as E2 

and E4 also play a role in the late stages of viral life cycle. AlI open reading frames 

(ORPs) and, thus, aH genes are located on one strand of the viral DNA indicating that 

only one strand serves as the template for transcription. The non-coding regulatory 

region of papillomavirus genome, also known as the long control region (LCR) , 

upstream regulatory region (UUR) or non-coding region (NCR) , does not contain any 
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major open reading frames but includes the origin of DNA replication, and a large 

number of binding sites for cellular and viral transcription factors (206). 

4.3.1 The early region 

The genes located at the early region encode for viral factors involved in viral 

plasmid replication, regulation of viral transcription and cellular transformation (204). 

Transcription of the early genes is initiated at a promoter located upstream of E6 ORF. 

The papillomavirus El is a nuclear phosphoprotein which is involved in initaition of 

DNA replication (210). It is an ATPase and has ATP dependent helicase activity which 

unwinds the dsDNA. It interacts with DNA polymerase a-primase and recruits it to the 

origin of replication. El binds the origin of replication forming a trimeric ring-like 

structure. El also binds to E2, an interaction that is essential for viral DNA replication 

(211). The E2 regulatory protein is a viral transcription factor with important role in 

viral transcription and replication (212). The structure of E2 protein consists of a 

transactivating domain at its N-terminus and a sequence-specific DNA binding and 

dimerization domain at its C-terminus (202). E2 exists as a dimer and is speculated to 

mediate the binding of El to the origin of replication. Most importantly, expression of 

E2 acts as a transcriptional repressor of E6 an E7 and is believed to tightly regulate the 

expression of the se proteins, which play a role in viral oncogenesis (210). Although 

located in the early region, the E4 protein is expressed at a later stage of infection. It 

associates with the keratine cytoskeleton and has been shown to induce the collapse of 

the cytokeratin network suggesting a role in release of viral particles from the cell 

(202,213). 
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Figure 11. Human papillomaviruses genome and life cycle 

A. Schematic structure of HPV-16 genome. The LCR (Long Control Region) is the 

non-coding regulatory region which contains the viral origin of replication. The early 

region contains 6 open reading frames an of which fulfill regulatory functions for viral 

replication and production of progeny virus. The late region encodes for the two viral 

capsid proteins. 

B. HPV life cycle is illustrated in epithelial cens. Normal epithelial cens division and 

differentiation is compared to abnormal differentiation of HPV -infected cens. HPV 

infection occurs through rnicrotramas in the basal layer of the epithelium. HPV genome 

replicates with each cen division and the infected daughter cens rnigrate to the 

suprabasal layers and start differentiation. Unlike, normal keratinocytes, the infected 

differentiated cens enter S phase which results in vegetative viral DNA replication. 

Subsequently virions are assembled and released into environment. 

Adapted from Munger K, Frontier in Biosciences 2002, and Fehrmann and Laimins LA, Oncogene 2003. 
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4.3.2 The HPV oncoproteins 

The ability of HPV infection to progress to malignancy is attributed to the 

transforming properties of three proteins; E5, E6 and E7 (214). 

E5 is a highly hydrophobie protein, which is localized at the endosomal membranes, 

Golgi apparatus and plasma membrane. Unlike bovine papillomavirus (BPV) E5 which 

plays a central role in transformation, HPV E5 only exerts weak transforming activity 

(215). HPV E5 increases cell growth and proliferation possibly through regulation of 

epidermal growth factor (EGF) and its receptor (EGFR). It has been demonstrated that 

E5 interacts with a vacuolar A TPase and interferes with the acidification of the 

endosomes. The inhibition of PH change in endosomes results in rapid turnover of 

EGFR to the plasma membrane and prolongs the signaling mediated by EGF (216). 

Recent studies have shown an important role of E5 in regulation of viral late gene 

expression and amplification (214). 

E6 is one of the first genes expressed during viral infection and plays an 

important role in cell immortalization (217). The E6 protein lacks any intrinsic 

enzymatic activities and exerts its function through interaction with key regulatory 

cellular proteins. E6 is a 150 amino acid protein containing two zinc finger domains. 

These domains are formed as a result of disulfide bonds between four C-x-x-C motifs 

and are involved in protein-protein interaction. One of the most important and the best 

characterized target of E6 is p53 (218) (Fig. 12). The tumor suppressor p53 is a 

transcription factor that mediates cell cycle arrest or apoptosis in response to DNA 

damage, and acts as a guardian of the genome by inducing growth arrest to allow cells 

to repair the damage or apoptosis, if the damage is too severe and beyond repair. Thus, 
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although it is not required for nonnal cell proliferation, it plays a central role in cellular 

response to a variety of stress conditions, which may affect genomic integrity and 

ultimately lead to the abnonnal cell proliferation. It is thus not surprising that 

mutational inactivation of p53 is detected in more than 50% of human cancers (219). In 

the absence of DNA damage, Mdm2 binds to p53 and promotes its degradation. In 

response to DNA damage, the protein kinase ATM binds to p53 and phosphorylates 

serine 15, which prevents Mdm2 binding. In cells infected with high-risk HPV types, 

E6 oncoprotein binds to p53 and mediates its ubiquitination and degradation through 

recruitment of a cellular ubiquitin ligase E6AP (E6 Associated Protein) (218) . 

E6 also interacts with paxillin, a cytoplasmic protein involved in actin organization and 

attachment of cells to the extracellular matrix via focal adhesion proteins, such as F AK 

(Focal Adhesion Kinase) and vinculin (220). E6 proteins from high-risk HPV scan bind 

paxillin, and it is therefore possible that abrogation of paxillin binding to vinculin by E6 

allows these papillomaviruses to interfere with the differentiation pro gram of the ho st 

cells (221). E6 oncoprotein is also able to bind to the PDZ domain-containing proteins 

such as hDIg, hScrib, Muppl, MAGI-l, -2, -3, leading to their ubiquitination and 

degradation (214). PDZ domain is found in proteins involved in cell-cell contact and it 

may play a role in signal transduction. E6-induced degradation of these proteins results 

in disruption of cell contact and contributes to neoplastic transfonnation. E6 from high 

risk HPV s has also been shown to disrupt the transcriptional machinery through its 

association with the transactivator CBP/p300 protein, a function with important 

implications in cellular immortalization and transfonnation (204,222). E6 oncoprotein 

is capable of activating telomerase, a multi-subunit enzyme responsible for replicating 
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telomeric DNA at the ends of the chromosomes, activation of which is a critical step in 

cellular transformation. Under normal conditions, the telomerase is inactive and cell 

division results in shortening of telomeres, which will eventually lead to senescence and 

cell death (223-225). Therefore, in most tumor cells telomerase is activated to maintain 

the telomere length. E6 oncoprotein is speculated to upregulate the catalytic subunit of 

telomerase by transcriptional activation of its promoter (226). Furthermore, E6 from the 

high-risk HPVs can efficiently immortalize human mammary epithelial cells and induce 

epithelial hyperplasia and skin tumors in transgenic mice (204,204). In addition to 

oncogenesis, E6 has a significant contribution in altering the immune response through 

its ability to inhibit apoptosis and suppress IFN action. This may account, at least in 

part, for the poor responsiveness of HPV infected cells to IFN treatment in vitro and in 

vivo (227). 
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Figure 12. HPV E6-mediated degradation of p53 

The tumor suppressor p53 induces cell cycle arrest at Gl phase in response to DNA 

damage or un der cellular stress conditions. The best characterized function of HPV E6 

oncoprotein is to inactivate p53. E6 oncoprotein binds to a cellular ubiquitin ligase 

termed E6-associated protein (E6AP). The E6-E6AP complex then targets p53 for 

degradation by recruiting the ubiquitin complex of enzymes, which ubiquitinates lysines 

on p53 and promotes its proteasome-dependent degradation. 
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E7 is a 100 amino acid, nuclear protein, containing a zinc finger motif at its C-terminus. 

The best characterized target of E7 is the tumor suppressor retinoblastoma protein (pRb) 

(Fig. 13). The pRb is an important regulator of cell cycle entry. Hypophosphorylated 

pRb binds E2F transcription factor and suppresses its transcription activity. pRb is 

hyperphosphorylated at early Gl and towards S phase, allowing E2F to induce the 

transcription of several genes involved in DNA synthesis, such as DNA polymerases 

and thymidine kinases (228,229). E7 promotes cell cycle progression by binding to 

hypophosphorylated pRb and inhibiting its interaction with E2F (230). Inactivation of 

pRb by E7 is also important in induction of replication of viral DNA in differentiated 

cells. Normal, uninfected epithelial cells exit cell cycle upon differentiation, a 

regulation which is attributed to pRb function. Binding of E7 to pRb, causes the 

differentiated cells to undergo cell division, which provides the optimal environment for 

viral replication and amplification (231). E7 is also capable of binding to two members 

of the same family, p107 and 130, which also negatively regulate E2F (232). Recent 

studies suggest a negative effect of E7 on cyclin-dependent kinase inhibitors (CDKs) 

such as p21 (233,234) and p27 (235), which results in inhibition of p53-dependent cell 

cycle arrest (236). 
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Figure 13. HPV E7 inactivates pRb to promote cell cycle progression. 

The pRb tumor suppressor regulates cel cycle progression from G 1 to S phase. Under 

normal conditions, pRb is hypophosphorylated in early Gland becomes 

hyperphosphorylated towards S phase. Hypophosphorylated pRb binds to E2F 

transcription factors and inhibits the transcription of genes required for DNA synthesis. 

HPV E7 oncoprotein binds to hypophosphorylated pRb and inhibits its interaction with 

E2F allowing for cell cycle progression in differentiated epithelial cells, which leads to 

productive replication of HPV genes. 
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4.3.3 The late region 

The genes located at the late region encode for the capsid proteins LI and L2. 

The major capsid protein (LI) is a 55 kDa protein, which represents 80% of the total 

viral proteins. The minor capsid protein (L2) is 70 kDa. The late rnRNAs are 

transcribed from a specifie promoter, termed late promoter (Pd, which is only active in 

terminally differentiated cells (208,209). 

4.3.4 The long control region 

The LCR is located at the 5' of the early genes and 3' of the late genes and 

regulates viral DNA replication and transcription. It contains a transcription enhancer 

which is only activated in epithelial cells (202). 

4.4 Virallife cycle 

The life cycle of the virus can be divided into early and late stages. These stages 

are linked to the differentiation state of the epithelial cells. HPVs rely on the ho st cell 

machinery for synthesizing their genomes and the replication takes place in squamous 

epithelial cells. Initial infection of papillomaviruses occurs through the basal cells, a 

single layer of undifferentiated proliferating cells at the basal levels of a stratified 

squamous epithelium, which are protected with several layers of non-dividing 

differentiated cells (Fig. lIB). Vegetative viral replication including DNA synthesis, 

production of viral capsid proteins and viral assembly, however, are aH restricted to the 

terminally differentiated cells. The DNA of the virus can only be detected in the middle 

and upper layers of squamous epithelium but not within the cells at the lower layer or in 

the fibroblasts in the dermis (213). The cellular receptors and the mode of viral entry is 
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mainly unknown; however, it has been shown that papillomaviruses can bind a variety 

of cell types, suggesting that the receptor is a widely expressed and evolutionary 

conserved protein and that the specificity of the virus is not controlled at the levels of 

entry (202). The infection may also occur through microtraumas in the epithelium, 

which expose the basal cells to viral entry. Following entry, the viral DNA is stablished 

as an episome with approximately 50 copies per cell. Expression of early genes 

involved in replication, El and E2, and those encoding the oncoproteins, E5, E6 and E7, 

is essential for the establishment and maintenance of the viral genome. The viral DNA 

replicates in synchrony with cellular DNA replication (237). Thus, upon cell division, 

the infected daughter cells carrying copies of viral DNA, migrate to the suprabasallevel 

and begin to differentiate. Uninfected keratinocytes exit cell cycle once they reach the 

suprabasallayer. The HPV -infected cells, however, enter the S phase, which allows the 

replication of viral DNA to thousands of copies per cell (238). At this stage, the late 

genes are expressed, virus particles are assembled, and released with the upper layer of 

the epithelium (239). 

4.5 HPV and cancer 

Infection with high-risk HPV s is associated with tumors in various tissues and 

organs and is clearly implicated in the development of cervical cancer with an incidence 

rate of -500,000 cases per year, globally (206,207). High risk HPVs are found in 100% 

of cervical cancer, which provides strong evidence that these viruses are the major 

etiological cause of such malignancies (206,207). In addition, HPVs are associated with 

head and neck cancer and cutaneous tumors, in particular epidermodysplasia 

verruciformis and non-melanoma skin cancers (206). 
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In early infection and in low-grade cervicallesions, the viral genome is present 

as an episome. In later stages of cervical carcinomas, the high-risk HPV genome is 

found integrated in the ho st DNA. The outcome of this integration, which is the 

hallmark of malignant progression, is the loss of E2 regulatory genes, which under 

normal conditions control the expression of the viral oncoproteins (240). The loss of 

such control results in aberrant expression of the E6 and E7 oncoproteins, which 

contributes to cellular transformation and eventually leads to cancer (241,242). In 

general, integration of the HPV genome into a host cell chromosome is the first step in 

initiation of HPV -associated cancers. This process is an accidentaI event and is terminal 

for the viral life cycle. Even though integration does not occur at specific chromosomal 

hot spots in the human genome, it follows a consistent pattern with respect to the viral 

genome (214). Malignant progression often occurs in conjunction with other risk factors 

such as decreased immlfne function, or often a long latency period after other genomic 

alterations in the ho st cell DNA have occurred (206). 

Recent studies have characterized the cellular targets of HPV oncoproteins; 

however more effort is nessecary to fully understand the mechanism of action of these 

viruses, in order to design strategies to combat HPV -associated diseases. 
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Specifie Researeh aims 

The objective of this research was to characterize the signaling pathways induced upon 

activation of PKR and to study the link between the two mechanisms involved in 

regulation of translation initiation, i.e. 4E-BPl phosphorylation and eIF2a 

phosphorylation pathways. Although believed to possess anti-proliferative properties, 

several studies have suggested a role for PKR in signaling pathways leading to 

induction of growth and proliferation. In this regard, experiments were performed to 

explore the role of PKR in induction of PI3K pathway. These studies identified a novel 

property of PKR to induce PI3K activity leading to phosphorylation of 4E-BPl and S6 

ribosomal protein. Furthermore, this study focused on the functional interactions 

between HPV-18 E6 and PKR. Initial studies have investigated the application of IFNs 

in therapies against HPV-associated malignancies. However, the effectiveness of the 

IFN treatment appears to be dependent on the HPV subtype. Therefore, experiments 

were conducted to investigate the molecular mechanisms of HPV E6 oncoprotein to 

evade the anti-viral and anti-proliferative effects of IFNs. These studies identify 

functional interaction of HPV E6 with several members of the IFN signaling pathway 

inc1uding its downstream effector, PKR. Further experiments were performed to 

characterize the mechanism of action of HPV E6 to combat PKR and eIF2a 

phosphorylation pathway. 
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Chapter II 

Materials and Methods 
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Chapter II - Materials and Methods 

1. Plasmid Constructs 

FLAG-tagged HPV-18 E6 and HPV-ll E6 in pcDNA3.1/Zeo vector 

(Invitrogen, Inc.) were constructed by cloning the CMV-FLAG polylinkerregion of the 

pFLAG-CMV-2 vector (Sigma) intothe multiple cloning region of pCDNA3.1/Zeo 

(Invitrogen) and the E6 sequences were then cloned between the EcoRI and EcoRV 

restriction sites of the newly generated vector. GyrB-PKR cDNAs in pSG5 vector 

(Stratagene, Inc.) were provided by Dr. T. Dever (243). pCMV-FLAG wild-type PTEN 

construct was kindly provided by Dr. Georgescu (42). pMV7/HA-eIF4E and pMV7 

were described elsewhere (244). Dominant negative p85 expressing adenovirus or 

control adenovirus, were provided by Dr. Mossman (McMaster University). FLAG­

GADD34 constructs were kind gifts of Dr. Shenolikar (245). 

2. Cell culture and reagents 

2.1 CelIlines 

To generate HT1080 cens expressing GyrB-PKR or GyrB-PKRK296H, cens 

were transfected with either GyrB-PKR or GyrB-PKRK296H cDNA in pSG5 vector 

together with pcDNA3.1/Zeo vector at a ratio 5:1. GyrB-PKR or GyrB-PKRK296H 

cens expressing the HPV E6 proteins were generated by transfecting HT1080 cells with 

either GyrB-PKR or GyrB-PKRK296H cDNA together with either FLAG-18 E6 or 

FLAG-ll E6 in pcDNA3.1/Zeo vector at a ratio 5:1. The generation of HT1080 cens 
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expressing FLAG-18 E6 was performed using FLAG-18 E6 in pcDNA3.lIZeo vector 

(246). Transfection was performed with Lipofectamine reagent (Invitrogen, Inc) 

according to manufacturer' s instructions. CeUs were selected in the presence of 200 

Jlg/ml of Zeocin (Invitrogen), and clones were isolated, expanded and characterized. To 

generate ceUs expressing HA-eIF4E, HT1080/GyrB-PKR ceUs were transfected with 

either pMV7/HA-eIF4E or pMV7 vector (generous gift from Dr. N. Sonenberg's lab) 

and were selected in the presence of 400 Jlglml of G418 (Bioshop). Spontaneously 

immortalized mouse embryonic fibroblasts (MEFs) from isogenic PKR+1+ and catalytic 

PKR-1
- mice (198,198) were generated as described (247). 

2.2 Cell culture 

The human fibrosarcoma HT1080 ceUs (ATCC CCL-121), and PKR+1+ and 

PKR-1
- MEFs, were maintained in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with 10% calf serum and antibiotics (penicillin-streptomycin, 100 U/ml; 

ICN Biomedicals, Inc.). Ruman kidney embryonic (HEK) 293T ceUs were maintained 

in DMEM supplemented with 10% heat-inactivated fetal bovine serum, 1 mM L­

glutamine (CeUgro) and antibiotics. 

2.3 Transfection 

Transfections were performed using 3 ,.11 FuGENE 6 (Roche), Lipofectamine 

Plus (Invitrogen) or Lipofectamine 2000 (Invitrogen) reagents according to 

manufacturers' instructions. Briefly, 6 x 105 ceUs were seeded in 6-cm plates. The day 

after, ceUs were incubated with reagents and 2 JLg of vector DNA in serum-free medium 
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at 37°C for 5 h. The medium was then replenished with 10% serum and cens were 

incubated for an addition al 24 hours. 

2.4 RNA Interference 

For siRNA transfection, 1 x 105 cens were seeded in 6-cm plates. The fonowing 

day, cens were transfected with 200 pmoles siRNA (scrambled (SCR) or human 

PIK3Rl (Dharmacon) using 4 JlI Lipofectamine 2000 (Invitrogen) in medium lacking 

serum. Six hours post-transfection, the plates were washed with serum-free DMEM and 

replenished with medium containing 10% serum. cens were incubated at 37°C for an 

additional 72 hours before being treated with coumermycin. 

2.5 Biochemical reagents 

For IFN treatment, 100 lU/ml of mouse IFNy (Cedarlane, CL9209R) was used. 

Treatment with coumermycin (Biomol, GR-317) was performed at a concentration of 

100 ng/ml. Rapamycin (Bioshop, RAP004), LY294002 (Sigma, L-9908) and 

Wortmannin (Bioshop, WOR222) were used at a concentration of 20 nM, 20 !lM and 10 

JlM, respectively. MG-132 (carbobenzoxY-L-leucyl-L-leucyl-L-leucinal) (Calbiochem, 

474790) was used at 40 JlM. For thapsigargin treatment 1 !lM was used (sigma, T9033). 

2.6 Adenovirus infection 

For virus infection, 2 x 105 cells were seeded in 6-cm plates. The following day, 

cells were infected with control adenovirus (Ad BHGdelEl, E3) or dominant negative 

p85 expressing adenovirus (Ad5dnp85) (MOI: 250) in serum-free medium. Cells were 

incubated at 37°C for 24 hours before being treated with coumermycin. 

80 



3. Protein analysis 

3.1 Protein extraction 

Cells were washed twice with ice-cold phosphate buffer saline (PBS) solution 

(140mM NaCI, 15mM KHZP04 pH 7.2,2.7 mM KCI), and proteins were extracted with 

a lysis buffer containing 10 mM Tris-HCl pH 7.5, 50 mM KCI, 2 mM MgC}z, 1% 

Triton-X-100, ImM dithiothreitol (DTT), 1 mM phenylmethylsulfonyl fluoride 

(PMSF), 3 J,.lglml aprotinin, 1 J,.lglmlleupeptin and 1 J,.lglml pepstatin. After incubation on 

ice for 20 min, the lysates were centrifuged at 14,000x g for 10 minutes at 4°C. The 

supematant was transferred to a fresh tube and the protein concentration was measured 

by Bradford assay (BioRad). Samples were stored at -85°C. 

3.2 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein extracts were subjected to sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAOE) and transferred to polyvinylidene difluoride membranes 

(Immobilon-P; Millipore Corp.) according to standard protocol. 

3.3 Isoelectric focusing and two-dimensional (2D) gel electrophoresis 

Cells were lysed with 8 M urea, 4% (wtlvol) CHAPS(248), 65 mM DTT, and 

0.5% (vol/vol) IPO buffer (pH 3 to 10 NL or pH 4 to 7) (Bio-Rad). Isoelectric focusing 

(IEF) step was performed by using an Ettan IPOphor IEF unit (Amersham) and 7-cm 

strips at pH 3 to 10 NL or pH 4 to 7 (Bio-Rad). The strips were passively rehydrated 

with 125 IÛ of rehydration buffer containing 80 Jlg of the protein extracts, 8 M urea, 2% 

(wtlvol) CHAPS, 10 mM DTT, 0.5% (vol/vol) IPO buffer (pH 3 to 10 NL or pH 4 to 7), 
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and a trace amount of bromophenol blue for 10 hours. IEF was performed at 150 V for 

40 min, 500 V for 40 min, 1,000 V for 40 min, and 5,000 V for 2.5 hours. The strips 

were then equilibrated for 12 minutes in 50 mM Tris-HCl (pH 8.8), 6 M urea, 30% 

glycerol, 2% SDS, 1 % (wt/vol) DTT, and a trace amount of bromophenol blue. For the 

second-dimension analysis, the strips were incubated for 5 min in 50 mM Tris-HCI (pH 

8.8), 6 M urea, 30% glycerol, 2% SDS, 2.5% (wt/vol) iodoacetamide, and a trace 

amount of bromophenol blue. The equilibrated strips were then subjected to SDS-lO% 

PAGE, followed by immunoblot analysis. 

3.4 Immunoblot analysis 

Immunoblottings were performed according to the standard protocol (249). 

Briefly, the membranse were blocked in phosphate-buffered saline (PBS) or Tris­

buffered Saline (TBS) (according to antibody specification sheet) containing 0.5% 

Tween-20 (PBST or TBST) and 5% milk for one hour at room temprature. The primary 

antibody was diluted in PBST or TBST containing 5% BSA and added to the membrane 

for 16 hours at 4°C. After six 5-minute washes with PBST or TB ST, the membrane 

were incubated in peroxidase-conjugated secondary antibody diluted in PBST or TBST 

containing 5% milk for one hour at room temperature. Subsequently, the membrane was 

subjected to another six 5-minute washes and the reaction was visualized with enhanced 

chemiluminescence (ECL) detection system as detailed by manufacturer (Perkin 

Elmer). Quantification of the bands in the linear range of exposure was performed by 

densitometry using the NIH Image 1.54 software. 
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3.4.1 Primary antibodies 

The primary antibodies were as follows: anti-FLAG M2 mou se monoclonal 

antibody (Sigma; 2 j.1g1ml), anti-human PKR mouse monoclonal antibody [clone F9 or 

E8 (250); 1 j.1g1ml] , anti-GyrB mouse monoclonal antibody (clone 7D3, John Innes 

Enterprises; 0.2 j.1g1ml), anti-human eIF2a rabbit polyclonal antibody (Cell signaling; 1 

j.1g/ml) , phosphospecific antibodies against eIF2a-pSer51 [(251); 1 j.1g/ml], anti-Bik 

mouse monoclonal antibody (clone C33-1, BD Biosciences; 1 j.1g1ml) , anti-p53 mouse 

monoclonal antibody (Ab-2, Oncogene Science; 1 j.1g1ml). The following antibodies 

were used from the APOPTOPAK miniature set from Upstate Biotechnology: Anti­

Bcl2 mouse monoclonal IgG (clone 124, 1 j.1g1ml) , anti-Bak rabbit polyclonal IgG (1 

j.1g1ml) and anti-Bax rabbit polyclonal IgG (1 j.1g1ml). The following antibodies were 

purchased from Santa Cruz Biotechnology: Anti-GADD153 (CHOP) rabbit polyclonal 

IgG (sc-575; 1 j.1g1ml) , anti-PPI mouse monoclonal IgG (sc-7482; 2 j.1g1ml), anti-FAS 

rabbit polyclonal IgG (sc-715; 1 j.1g1ml), phosphospecific antibodies against 4EBP­

Thr37/46, -Ser65 and -Thr70 (Cell Signaling; 1 Ilglml), anti-4EBP rabbit polyclonal 

antibody «Sonenberg);l j.1g1ml), anti-S6-Ser2351236 rabbit polyclonal antibody (Cell 

Signaling; 1 Ilglml), anti-S6 rabbit polyclonal antibody (Cell Signaling; 1 Ilglml), anti­

PKB/Akt-Thr308 rabbit polyclonal antibody (Cell Signaling; 1 Ilglml), anti-PKB/Akt­

Ser473 rabbit polyclonal antibody (Cell Signaling; 1 Ilglml), anti-PKB/Akt rabbit 

polyclonal antibody (Cell Signaling; 1 Ilglml), anti-Ras mouse monoclonal antibody 

(upstate, 1 Ilglml), anti-4E rabbit polyclonal antibody (Sonenberg; 1 Ilglml), anti-4GI 

rabbit polyclonal antibody (Sonenberg; 1 Ilglml), anti-HA rabbit antibody (Upstate, 1 

Ilglml), anti-actin mouse monoclonal IgG(ICN; 0.1 j.1g1ml). 
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3.4.2 Secondary antibodies 

The secondary antibodies were horseradish peroxidase (HRP)-conjugated anti­

mouse IgG antibody or HRP-conjugated anti-rabbit IgG antibody (Amersham 

Pharmacia Biotech.; dilution 1: 1000). 

3.3 Immunoprecipitation and pull-down assays 

3.3.1 Immunoprecipitation 

Equal amounts of protein extracts were incubated with 2 J..lg of the specified 

antibody for 2 hours in 4°C with rotation. Proteins were then immunoprecipitated using 

50 ml of a 50% suspension of anti-mouse IgG (whole molecule) agarose beads (sigma) 

or protein A sepharose beads (Pharmacia). The samples were then rotated for addition al 

2 hours at 4°C. The immunopercipitates were washed three times in the lysis buffer, and 

subjected to SDS-PAGE and immunoblot analysis. 

3.3.2 GST pull-down assay 

For GST pull-down assays equal amounts of GST fusion proteins were 

precipitated with glutathione Sepharose 4B beads, while incubated in 4°C for 2 hours, 

washed with lysis buffer and resuspended in 200 J..lI lysis buffer. The protein extract 

from transfected cells were subsequently added to the suspension and rotated for 2 

hours at 4°C. The beads were then washed with lysis buffer and precipitated proteins 

were subjected to SDS-PAGE. 
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3.3.3 Cap-binding assay 

Cap binding assay was performed as described by Lekmine et al. (252). Cells 

were subjected to the indicated treatment, and lysed in cold cap binding buffer (100 mM 

KCI, 20 mM HEPES, pH7.6, 7 mM f3-mercaptoethanol, 0.2 mM EDTA, 10% glycerol, 50 

mM f3-glycerol phosphate, 50 mM NaF, 100 JlM sodium orthovanadate, and 1 mM 

phenylmethylsulfonyl fluoride) with 4 cycles of freeze and thaw. Protein extracts (250 

)..tg) were subsequently incubated with m70TP-agarose resins at 4°C. The resin was then 

washed with cap-binding buffer, once with 500 ml and twice with 1 ml, resuspended in 

Laemmli sample buffer, boiled and resolved on SDS-PAOE. 

3.3.4 Ras activation assay 

Ras activation was assessed using Ras activation assay kit (upstate, 17-218). 

Briefly, 500 )..tg of protein extracts were incubated with Raf-l RBD (Ras Binding 

Domain) agarose beads to pull down activated Ras. The precipitates were then 

subjected to immunoblotting with anti-Ras antibody to assess the levels of activated 

Ras. 

4. PI3K protein and lipid kinase assay 

The PI3K assay was performed as described (253) with sorne modifications. 

Briefly, cells were subjected to indicated treatments and proteins were extracted in lysis 

buffer containing 1 % Nonidet P-40, 10% glycerol, 137 mM NaCl, 20mM Tris-HCl pH 

7.4, 1 mM sodium orthovanadate, 1 mM phenylmethylsulphonyl fluoride (PMSF), 20 

mM NaF, ImM sodium pyrophosphate, 2 ~g/ml leupeptin and aprotinin. Protein 

extracts (500 ~g) were subjected to immunoprecipitation with anti-PI3K p85 (Upstate) 
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in presence of protein A-agarose. The samples were centrifuged at 13,000 rpm and 

sedimented beads were washed once with lysis buffer, twice with PBS containing 1 % 

NP-40 and 100 J..lM sodium orthovanadate, three times with 100 mM Tris-HCI pH 7.4, 

containing 5 mM LiCI and 100 J..LM sodium orthovanadate, twice with TNE (10 mM 

Tris-HCl pH 7.4,150 mM Nacl, 5 mM EDTA and 100 J..LM sodium orthovanadate). The 

last traces of buffer were completely removed and the pelleted beads were resuspended 

in 50 Jd fresh TNE. To the resuspended pellet, we added 10 JLl of 100 mM MgCh and 

20 /lg of L-a-Phosphatidylinositol (PI) (Jena Biosciences) which were previously 

sonicated in a water bath sonicator for one hour. The reaction was started by adding 10 

/lCi [y}2p] ATP, and incubated at 23°C for 15 min with continuous agitation. The 

reactions were stopped with 20 /lI 6N HCL Extraction of the lipids were done by adding 

160 /lI of chloroform:methanol (1:1) and the samples were vortexed and centrifuged at 

room temperature to separate the phases. The lower organic phase (30 /lI) was spotted 

onto the silica-coated glass TLC plates (Sigma Aldrich) precoated with 1 % potassium 

oxalate. The spots were allowed to dry and resolved chromatographically with 2M 

acetic acid/isopropanol (1 :2). The plates were dried and exposed to film, and the 

autoradiographic signaIs were quantified using Scion Image 4.0.3.2 software. The lipid 

standards were run as a separate lane on the TLC plate to identify the migration of PIP3 

(Echelon). TLC plates were stained with iodine to identify the formation of 

phosphorylated lipid products. For the protein kinase assay H2B was added to the 

resuspended pellet as substrate The reaction was started by adding 10 /lCi [y_32p ] ATP, 

and incubated at 23°C for 15 min and radioactive protein were visualized by subjecting 

the supematant to SDS-PAGE. 
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5. eIF2a dephosphorylation assay 

Purified recombinant histidine-tagged eIF2a was prepared and phosphorylated 

by a purified OST-fusion protein of human PKR in vitro based on a previously 

published protocol (254). The unincorporated [y_32p] ATP was removed using 

MicroSpinTM 0-25 columns (Amersham Pharmacia Biotech). An aliquot of 32P-eIF2a 

was then incubated with anti-FLAO immunoprecipitates in a 1O-j.t1 dephosphorylation 

reaction (dephosphorylation buffer: 20 mM Tris-HCl, pH 7.4, 50 mM KCI, 2 mM 

MgCh, 0.1 mM EDTA, 0.8 mM ATP). The reaction was incubated at 30°C for the 

specified time and was terminated by boiling the sample in an equal volume of 2% SDS 

loading buffer. Phosphorylated eIF2a was detected by SDS-PAOE and 

autoradiography. 

6. In vivo 35S labeling 

For in vivo 35S labeling, cens were subjected to the indicated treatment in 

DMEM plus 10% calf serum for the appropriate time. The medium was subsequently 

replaced by DMEM lacking methionine and supplemented with 10% dialyzed fetal 

bovine serum for 2 hours in the presence of the treatment. Tran35S-label (ICN) was then 

added to the cens at a concentration of 100 J,.lCi per 106 cens and culture continued for 

an addition al 2 hours. Protein extracts were subjected to SDS-PAOE and radioactive 

proteins were visualized by autoradiography. 

7. Cell staining and flow cytometry analysis 

cens were prepared for flow cytometry analysis as described (255) with a few 

modifications. Briefly, approximately 106 cens per lO-cm-diameter dish were detached 
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in PBS plus 0.1 mM EDTA and washed in ice cold PBS. Following centrifugation at 

900xg for 5 min, cells were suspended in 0.5 ml of cold PBS and fixed by adding 4.5 ml 

of ice cold ethanol drop wise with gentle mixing. Fixed cells were stored at -20°C for 

at least 8 hours. For staining, pelleted cells were washed once with PBS, and suspended 

in 0.5 ml of PBS containing 50 /tg/ml of propidium iodide (Sigma) and 20 /tg/ml of 

RNase (Sigma). Cells were incubated at 37°C for 30 min and maintained at 4°C for 

8 hours before subjected to flow cytometry analysis on a FACScan. 

8. Immunofluorescence microscopy 

Cells grown on 22-mm coverslip (Fisher) were treated as indicated, washed with 

PBS, fixed with 1% formaldehyde for 15 min at room temperature, and then blocked 

with 5% BSA, PBS, 0.1 % TX-lOO for 1 hour. To detect p53, cells were stained with a 

mixture of 1 :200 diluted indicated antibodies. Cells were incubated with primary 

antibodies for 16 hours at 4°C, washed with PBS, and incubated for 1 hour with Alexa 

Fluro-488-conjugated secondary antibody or Alexa Fluro-546-conjugated secondary 

antibody (Molecular Probes). To visualize the nucleus, cells were counterstained with 1 

JLg/mL 4, 6-diamidino-2-phenylindole (DAPI, Sigma). After mounting, cells were 

analyzed with Carl Zeiss (axioskop 40) fluorescence microscope and Axio Vision Rel. 

4.5 software. 

9. Cell proliferation assay 

The proliferation rate of cells were assessed using the CellTiter 96® AQueous One 

solution assay kit (Promega), a colorimetric method for determining the number of 

viable cells in culture in multiwell plate format. Briefly, cells were grown for the 
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indicated time and the assay was perlormed by adding a small amount of the CellTiter 

96® AQueous One Solution Reagent directly to culture wells, incubating for 1-4 hours 

and then recording absorbance at 490nm with a spectrophotometric plate reader. The 

quantity of formazan product as measured by the amount of 490nm absorbance is 

directly proportional to the number of living cells in culture. 

10. Microarray analysis 

For cDNA microarray analysis, total RNA was isolated by lusing cells in Trizol 

reagent (Gibco BRL)(256). Generation of cDNA, fluorescent labeling and hybridization 

to the Affymetrix human U133A cDNA chip, which covers 22,000 genes(257), were 

perlormed by Genome Quebec (Montreal, Quebec). For each cell line, the values 

obtained after coumermycin treatment were normalized to those in the absence of the 

antibiotic. We focused on those genes whose expression was either induced or 

suppressed at a minimum of 5-fold in GyrB-PKR cells and remained unaffected in 

GyrB-PKRK296H cells (less than 3-fold induction or suppression) after coumermycin 

treatment. 
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Results 

90 



Chapter III - Results 

1. PKR inducible system 

PKR is believed to exist in latent form in cells. Upon virus infection, dsRNA 

produced as a byproduct of viral replication, binds to dsRNA binding domain of PKR 

and activates the kinase through its dimerization and autophosphorylation. In most in 

vitro assays virus infection or dsRNA transfection is used as a means to activate PKR. 

Employing these approaches; however, does not only result in activation of PKR; 

rather, it leads to induction of a variety of signaling pathways such as toll-like receptors 

3 (TLR3) and RNase L pathway. On the other hand, considering that the antiviral, anti­

proliferative and tumor suppressor functions of PKR were assigned by in vitro 

experiments, generation of the PKR knockout (PKR-1
-) mice was initially considered as 

an optimal system to examine these effects in vivo. Characterization of the two different 

PKR knockout mice; however, did not yield the anticipated results. In addition, 

experiments performed using cells from these PKR-1
- mice have led to contradictory and 

confusing results. Recently, experiments done in our laboratory demonstrated that 

neither of the PKR-1
- mice are completely devoid of PKR, and that truncated forms of 

the kinase is still expressed in both mice (258). 

To overcome the se obstacles and to generate a proper system to study the 

biological functions of PKR, we established an inducible system to manipulate PKR 

activity by employing an alternative approach: GyrB-PKR. 
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1.1 GyrB-PKR fusion proteins 

To study the role of dimerization on PKR autophosphorylation and activation, 

Dever' s group generated constructs to express fusion proteins consisting of the first 220 

amino acid of the B subunit of bacterial enzyme DNA Gyrase (GyrB) and the wild-type 

kinase domain of PKR (residues 258-551) or the same domain containing the 

inactivating K296H mutation (GyrB-PKR or GyrB-PKRK296H) (243) (Fig. 14A). DNA 

gyrase is a topoisomerase expressed in Escherichia Coli, which introduces negative 

superhelical tums into double-stranded closed circular DNA and therefore plays a role 

in bacterial DNA replication. It has been documented that the presence of 

coumermycin, leads to dimerization of DNA Gyrase. It has also been reported that 

coumermycin-mediated dimerization of Rafl-GyrB fusion protein results in activation 

of the Rafl kinase, through induction of dimerization (259). Addition of coumermycin 

will, therefore, induce dimerization of GyrB-PKR fusion proteins. This mimics 

dimerization of PKR by dsRNA and leads to its autophosphoryaltion and activation 

(Fig. 14B). 

1.2 Generation of GyrB-PKR stable celllines 

GyrB-PKR constructs were primarily used in transient transfection system to 

analyze the role of dimerization in PKR activation (243). Since this system was proven 

to be functional, we decided to generate stable celllines which permanently express the 

GyrB-PKR fusion proteins. These cell lines establish an optimum system to study 

kinase-dependent functions of PKR, without activation of other pathways, which 

normally occurs when dsRNA is used to activate PKR. 
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Figure 14. The GyrB-PKR inducible system 

A. A schematic representation of PKR and GyrB-PKR proteins. The dsRNA binding 

regulatory domain of PKR wild-type or a kinase dead mutant (bearing a mutation at 

lysine 296 in the ATP-binding pocket) was replaced by the N-terminus of Gyrase B 

from E.Coli to form the GyrB-PKR fusion protein. 

B. In the presence of antibiotic coumermycin, GyrB domain mediates cross-linking of 

the GyrB-PKR fusion protein, mimicking dsRNA-mediated dimerization of PKR. This 

results in PKR autophosphorylation and activation. 

C. HT1080 human fibrosarcoma cells were stably transfected with GyrB-PKR 

constructs. Cells were treated with coumermycin (100 nglml) and expression and 

activation of PKR was assessed. Cell extracts were subjected to immunoblot analysis 

with immunoblotting with anti-GyrB antibody (a), phosphospecific antibody against 

eIF2a-pSer51 (b) and anti-eIF2a antibody (c). 
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1.3 Characterization of HTI080/GyrB-PKR celllines 

To verify that the GyrB-PKR inducible system is functional, HT1080 cells 

expressing GyrB-PKR and GyrB-PKRK296H cells were treated with coumermycin for 

6 hours and phosphorylation of eIF2a was assessed (Fig.14C). We observed an 

induction in PKR activation in GyrB-PKR expressing cells as indicated by upregulation 

of eIF2a phosphorylation, whereas no induction was observed in GyrB-PKRK296H 

cells (panel b). Immunoblot analysis with an anti-GyrB antibody showed an equal 

expression of GyrB-PKR and GyrB-PKRK296H (panel a). 

2. Signaling properties of PKR 

Given that PKR is a serine/threonine and tyrosine kinase (125), the only weIl 

characterized substrate of PKR so far is eIF2a. PKR, however, has been demonstrated 

to be involved in other signaling pathways through interaction with their components. 

Therefore, we sought to identify other pathways which lie downstream targets of PKR. 

2.1 Activation of PI3K and mTOR pathways by PKR 

Translational control at initiation step proceeds through two distinct pathways 

including phosphorylation of 4E-BPl, which controls the availability of eIF4F complex 

and phosphorylation of eIF2a, which controls the availability of the temary complex. 

Our studies started from an initial hypothesis and preliminary observation and led to 

investigation of any relationship between the two pathways involved in this regulation. 
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2.1.1 Activation of GyrB-PKR induces the phosphorylation of 4E-BP1. 

Investigating the signaling properties of GyrB-PKR, we made the observation 

that activation of GyrB-PKR led to a transient induction of 4E-BPI phosphorylation 

(Fig. 15A). SpecificalIy, treatment of GyrB-PKR-expressing cells with coumermycin 

significantly induced the phosphorylation of 4E-BPI at Thr 37/46 and Thr 70 (panels a 

and c, lanes 1-5). Activation of GyrB-PKR also enhanced the phosphorylation of Ser65 

of 4E-BPI but to a lesser extent than the phosphorylation at the threonine sites (panel b, 

lanes 1-5). In fact, the basal levels of Ser65 phosphorylation were elevated in HT1080 

cells possibly due to their transformed phenotype (compare lane 1 in panels a, band c). 

Interestingly, coumermycin treatment also induced 4E-BPI phosphorylation in ceUs 

containing the catalyticaUy inactive mutant GyrB-PKRK296H, which was expressed at 

equallevels to GyrB-PKR (260) (panels a-c, lanes 6 to 10). Phosphorylation of 4E-BPI 

by GyrB-PKRK296H; however, took place to a lesser extent than phosphorylation by 

active GyrB-PKR (compare lanes 1-5 with lanes 6-10). Because PKR can exhibit 

kinase-independent properties by acting as a scaffold protein for other kinases 

(186,261,262), we speculate that dimerization of GyrB-PKRK296H upon cross-linking 

of the GyrB domain by coumermycin may be capable of inducing a pathway(s) leading 

to the phosphorylation of 4E-BPl. Immunoblotting with an anti-4E-BPI antibody 

further demonstrated the phosphorylation of the protein in cells expressing either GyrB­

PKR or GyrB-PKRK296H as documented by the slow migration of the 

hyperphosphorylated forms of 4E-BPI (panel d, lanes 2, 3, 7 and 8). Interestingly, 

prolonged treatment with coumermycin resulted in the dephosphorylation of 4E-BPI in 

both GyrB-PKR and GyrB-PKRK296H-expressing cells (panels a-c, lanes 4, 5, 9 and 
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10) and in the upregulation of total 4E-BPl levels only in cells expressing GyrB-PKR 

(panel d, lanes 4 and 5). These data indicated the presence of both positive and negative 

regulatory mechanisms of 4E-BPl phosphorylation in GyrB-PKR-expressing cells. 
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Figure 15. Conditional activation of GyrB-PKR induces the phosphorylation of 

4E-BPI via activation of PI3K and FRAP/mTOR pathways. 

A. Protein extracts (50 J..lg) from HT1080 cells expressing either GyrB-PKR or GyrB­

PKRK296H, treated with coumermycin (100 nglml) for 0-24 hours, were subjected to 

immunoblotting with phosphospecific antibodies against 4E-BPI-pThr37/46 (a), -

pSer65 (b), -pThr70 (c) or anti-4E-BPI antibody (d). Actin levels show an equal 

loading (e). 

B. HT1080 cells expressing GyrB-PKR were left untreated or treated with 

coumermycin (100 nglml) in the absence or presence of rapamycin (20 nM) and/or 

L Y294002 (20 ~), as indicated. Protein extracts (50 Jlg) were subjected to 

immunoblotting with phosphospecific antibodies against 4E-BPI-pThr37/46 (a), -

pSer65 (b), -pThr70 (c), anti-4E-BPI antibody (d) or phosphospecific antibody against 

eIF2a-pSer51 (e). 

C. Protein extracts (80 Jlg) were subjected to 2D gel electrophoresis followed by 

immunoblotting with antibodies against total 4E-BPl. Differences in migration of 4E­

BPI are indicated by arrows in panel c and d. (C: coumermycin, R: rapamycin, L Y: 

LY294002) 
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2.1.2 PKR-mediated phosphorylation of 4E-BPl proceeds through PI3K and 

mTOR pathways. 

Since 4E-BPl is a downstream target of PI3K and FRAP/mTOR, we wished to 

detennine whether phosphorylation of 4E-BPl by GyrB-PKR is mediated through the 

PI3K pathway. When GyrB-PKR cells were treated with LY294002; the inhibitor of 

PI3K, or rapamycin; the inhibitor of FRAP/mTOR, we noticed a reduction in the basal 

levels of phosphorylated 4E-BPl (Fig.15B, panels a-c, lanes 3 and 5). The basallevels 

of 4E-BPl phosphorylation were further reduced when both inhibitors were used (lane 

7). When ceUs were treated with coumermycin in the presence of rapamycin, we 

observed that activated GyrB-PKR was partially capable of inducing the 

phosphorylation of 4E-BPl at Thr37/46 and Ser65 (panels a and b, lane 4). This 

indicates that GyrB-PKR can affect the phosphorylation of these sites either 

independently of FRAP/mTOR or through a rapamycin-insensitive function of 

FRAP/mTOR as recently reported (55,263). When the PI3K inhibitor was used; 

however, we noticed that induction of 4E-BPl phosphorylation at Thr37/46 by GyrB­

PKR was not possible (panel a, compare lane 5 with lane 6) whereas phosphorylation of 

4E-BPl at Ser65 and Thr70 was below detectable levels (panels band c, lanes 5 and 6). 

Similar results were obtained when both L Y294002 and rapamycin were used (panels a­

c, lanes 7 and 8). Immunoblot analysis with anti-4E-BPl antibody showed the lack of 

the hyperphosphorylated forms of the protein in the presence of the kinase inhibitors 

(panel d) confinning the phosphorylation pattern of 4E-BPl obtained with the 

phosphospecific antibodies. SignificantlY' the presence of L Y294002 and rapamycin 
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did not affect GyrB-PKR activity, since induction of eIF2a phosphorylation took place 

efficiently in cells treated with the inhibitors (panel e, lanes 2, 4, 6 and 8). 

Phosphorylation of 4E-BPI was further confirmed by isoelectric focusing (IF) 

and two-dimensional) gel electrophoresis (2DGE) (Fig.15C). Specifically, we saw that 

treatment with coumermycin yielded more acidic forms of 4E-BPI (panel b) compared 

to untreated cells (panel a) indicative of phosphorylation. Cells treated with both 

LY294002 and rapamycin (panel c) produced 4E-BPI forms that were shifted to the 

basic region of the gel compared to 4E-BPI in untreated cells (panel a). This was 

consistent with the ability of both inhibitors to reduce the basal levels of 4E-BPI 

phosphorylation in the absence of coumermycin (Fig. 15B). Activation of GyrB-PKR 

by coumermycin in the presence of both inhibitors resulted in sorne minor differences in 

the migration of the 4E-BPI forms as indicated (Fig.15C, compare panels c and d) 

suggesting that induction of 4E-BPI phosphorylation by GyrB-PKR is mainly through 

the activation of the PI3K pathway. The additive effects of both inhibitors indicated that 

the PI3K-PKB/Akt and FRAP/mTOR form a branched rather than a linear pathway 

leading to 4E-BPI phosphorylation in HT1080 cells. AIso, phosphorylation of Thr70 

and Ser65 was much more sensitive to inhibition by rapamycin than Thr37/46 

phosphorylation as shown in previous studies (18,263,264). 

2.1.3 Activation of GyrB-PKR results in induction of PI3K pathway. 

To date, the best characterized pathway leading to phosphorylation of 4E-BPI 

involves the activation of PI3K and FRAP/mTOR, which also results in the 

phosphorylation of PKB/Akt and the ribosomal S6 protein (15). First we assessed the 

effect of PKR activation on PI3K pathway and verified PKB/Akt phosphorylation. We 
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observed that phosphorylation of PKB/Akt at Thr308 and Ser473 was induced by 

activated GyrB-PKR (Fig.l6A, panel a and b). Treatment of GyrB-PKRK296H­

expressing cells with coumermycin; however; did not exhibit similar effects. Induction 

of both PKB/Akt in GyrB-PKR cells occurred in a time-dependent manner and was 

reduced after 24 h of treatment (panel a, lane 5) following a pattern similar to 4E-BPl 

phosphorylation (Fig.l5A). Consistent with the activation of PKB/Akt, induction of 

GyrB-PKR resulted in phosphorylation of GSK313 at Ser9 (Fig.l6B). 

2.1.4 Activation of GyrB-PKR results in induction of mTOR pathway. 

Next, we examined if PKR was able to activate mTOR pathway. We observed 

that S6 phosphorylation at Ser2351236 was induced upon GyrB-PKR activation 

(Fig.l6C, panel a) in a time-dependent manner. In fact, S6 phosphorylation declined 

after 24 hours of treatment (lane 5) following a pattern similar to 4E-BPl 

phosphorylation (Fig. l6C). When we assessed the eIF2a phosphorylation levels, we 

found that Ser5l phosphorylation of eIF2a reached a peak at 6 hours after coumermycin 

treatment and remained high as long as the treatment lasted (Fig. l6D). This showed 

that the decrease in the phosphorylation levels of 4E-BPl and S6 was not due to a 

downregulation of the GyrB-PKR activity. It is noteworthy that, although the above 

experiments were performed in the absence of serum to diminish the background effects 

of growth factors on protein phosphorylation, GyrB-PKR is capable of inducing the 

phosphorylation of PKB/Akt, S6 and 4E-BPl in the presence of serum (Fig. 17A). 

Furthermore, treatment of parental HT1080 cells with coumermycin did not induce 

PKB/Akt, S6, eIF2a or 4E-BPl phosphorylation (Fig.l7B), demonstrating the lack 

nonspecific effects of coumermycin. 
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Figure 16. Conditional activation of GyrB-PKR induces the PI3K1mTOR pathway. 

HT1080 cells expressing GyrB-PKR were left untreated or treated with coumermycin 

(100 ng/ml) for 0-24 hours. Protein extracts (50 Ilg) were subjected to SDS-PAGE and 

immunoblotting with the following antibodies; 

A. phosphospecific antibody against PKB/Akt-pThr308 (a), phosphospecific antibody 

against PKB/Akt-pSer473 (b) or anti-PKB/Akt antibody (c) 

B. phosphospecific antibody against GSK3p-pSer9 (a) or anti-GSK3p antibody Cb) 

C. phosphospecific antibody against S6-pSer 235/236 (a) or anti-S6 antibody (b) 

D. phosphospecific antibody against eIF2a-pSer51 (a) or anti-eIF2a antibody (b) 
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Figure 17. Phosphorylation of components of the PI3K pathway in GyrB-PKR and 

HT1080 parental cells 

A. Protein extracts (50 Ilg) from HT1080 cells expressing either GyrB-PKR or GyrB­

PKRK296H, untreated or treated with coumermycin (100 ng/ml) in the presence of 

serum for up to 24 hours, were subjected to immunoblotting with phosphospecific 

antibody against PKB/Akt-pSer473 (a), anti-PKB/Akt antibody (b), phosphospecific 

antibody against S6-pSer 235/236 (c) or anti-S6 antibody (d), phosphospecific antibody 

against eIF2a-pSer51 (e) or anti-eIF2a antibody (f) and anti-4E-BPl antibody (g). 

B. Serum-deprived HT1080 parental cells were left untreated or treated with of 

coumermycin in the absence of serum for up to 24 hours. Protein extracts (50 Ilg) were 

subjected to immunoblotting with a phosphospecific antibody against PKB/ Akt­

pSer473 (a), anti-PKB/Akt antibody (b), phosphospecific antibody against S6-pSer 

235/236 (c) or anti-S6 antibody (d), phosphospecific antibody against eIF2a-pSer51 (e) 

or anti-eIF2a antibody (f) and anti-4E-BPl antibody (g). 
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2.1.5 PKR acts upstream of PI3K to induce PKBI Akt and S6 phosphorylation. 

We further tested the effects of L Y294002 and rapam ycin on PKBI Akt and S6 

phosphorylation, respectively. Induction of PKB/Akt phosphorylation at Ser473 in cells 

with activated GyrB-PKR was undetectable in the presence of LY294002 (Fig.18A) 

indicating that PKR functions upstream of PI3K. Similarly, induction of S6 

phosphorylation by activated GyrB-PKR was not possible in the presence of rapamycin 

indicating that PKR acts upstream of the FRAP/mTOR kinase (Fig.18B). To further 

confirm these observations, we used wortmannin, which at concentration of 10 IlM 

inhibits PI3K without affecting FRAP/mTOR activity (265). We noticed that 

wortmannin eliminated the induction of PKB/Akt and S6 phosphorylation by activated 

GyrB-PKR (Fig.18C, panels a and c) without affecting eIF2a. phosphorylation levels 

(panel e). 

Collectively, these data demonstrated that induction of 4E-BPI phosphorylation 

by GyrB-PKR proceeds through the activation of the PI3K and its downstream effectors 

PKBI Akt and mTOR kinases. 
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Figure 18. GyrB-PKR acts upstream of PI3K 

A. Serum-starved HT1080 celIs expressing GyrB-PKR were left untreated or treated 

with coumermycin (100 ng/ml) in the absence or presence of LY294002 (20 ~) for 0-

24 hours. Protein extracts (50 Jlg) were subjected to immunoblotting with 

phosphospecific antibody against PKB/Akt-pSer473 (a) or anti-PKB/Akt antibody (b). 

B. HT1080 celIs expressing GyrB-PKR were left untreated or treated with 

coumermycin (100 ng/ml) in the absence or presence of Rapamycin (20 nM) for 3 

hours, in the absence of serum. Protein extracts (50 Jlg) were subjected to 

immunoblotting with phosphospecific antibody against S6-pSer 235/236 (a) or anti-S6 

antibody (b). 

C. Serum-deprived HT1080 celIs expressing GyrB-PKR were left untreated or treated 

with coumermycin (100 ng/ml) in the absence or presence of wortmannin (10 ~) for 

0-24 hours. Protein extracts (50 Jlg) were subjected to immunoblotting with a 

phosphospecific antibody against PKB/Akt-pSer473 (a), anti-PKB/Akt antibody (b), 

phosphospecific antibody against S6-pSer 235/236 (c), anti-S6 antibody (d), 

phosphospecific antibody against eIF2a-pSer51 (e) or anti-eIF2a antibody (f). 
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2.2 Induction of PI3K activity by PKR 

Given that PKR activation induces phosphorylation of the components of PI3K 

and mTOR pathways, we wished to examine if PI3K activity is affected upon activation 

ofPKR. 

2.2.1 PKR induces PI3K lipid and protein kinase activity. 

PI3K activation was assessed by testing the phosphorylation of 

phosphatidylinositols (PIs) in GyrB-PKR ceUs upon activation of the eIF2a kinase 

(266). A significant induction of PI3P formation was observed in GyrB-PKR ceUs 

compared to GyrB-PKRK296H ceUs after coumermycin treatment (Fig. 19A). 

PI3K has been shown to possess protein kinase activity (33). To verify further 

the effect of PKR, PI3K activity was assessed in extracts from GyrB-PKR-expressing 

ceUs using histone 2B (H2B) as substrate. Stimulation of GyrB-PKR activity by 

coumermycin induced H2B phosphorylation by -50% (Fig.19B, panel a), which was 

equivalent to the induction of H2B phosphorylation by PI3K from serum-stimulated 

HEK293 ceUs. 

CoUectively, the above data demonstrate that GyrB-PKR acts upstream of PI3K 

and induces both lipid and protein kinase activity. 
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Figure 19. Activation of GyrB-PKR results in induction of PI3K activity. 

A. Serum-starved GyrB-PKR or GyrB-PKRK296H-expressing cells were left untreated 

or treated with coumermycin (100 ng/ml) for 6 hours. Protein extracts (500 J-lg) were 

subjected to immunoprecipitation with an anti-PI3K p85 antibody followed by in vitro 

lipid kinase assay in the presence of e2p_y] ATP and phosphatidylinositol (PI) as 

substrate. Radioactive PI3P was visualized by thin layer chromatography (TLC) and 

autoradiography. 

B. Human embryonic kidney cells (HEK) 293T cells or HT1080 cells expressing GyrB­

PKR were deprived from serum for 16 hours. 293T cells were left untreated or treated 

with 10% serum for 1 hour and GyrB-PKR-expressing cells were left untreated or 

treated with coumermycin (100 ng/ml) for 6 hours in the absence of serum. Protein 

extracts (500 J-lg) were subjected to immunoprecipitation with an anti-PI3K p85 

antibody followed by in vitro protein kinase assay in the presence of [32p_y] ATP and 

Histone 2B (H2B) as substrate. Radioactive H2B was visualized by autoradiography, 

whereas H2B and PI3K p85 protein levels were detected with anti-H2B and anti-p85 

antibodies (b and c, respectively). 
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2.2.2 Activation of PI3K is required for induction of PKBI Akt phosphorylation. 

To address whether PI3K is required for PKR-mediated induction of 

phosphorylation of the components of the pathway, several experiments were 

performed. First, GyrB-PKR-expressing cells were transfected with RNAi against the 

p85 subunit of PI3K. Downregulation of the p85 subunit by RNAi prevented the 

induction of PKB/Akt phosphorylation at Ser473, upon coumermycin treatment, 

suggesting a role of p85 in PKR-mediated activation of the components in PI3K 

pathway (Fig.20A). Moreover, overexpression of PTEN in cells expressing GyrB-PKR, 

which results in dephosphorylation of the phosphorylated lipids, resulted in inhibition of 

PKR-mediated PKB/Akt phosphorylation (Fig.20B). This suggests that induction of 

PKB/ Akt phosphorylation by PKR is dependent on formation of PIP3 and therefore on 

PI3K activity. Furthermore, infection of cells containing GyrB-PKR with adenovirus 

expressing a dominant negative mutant of the p85 subunit prevented the induction of 

PKB/Akt phosphorylation at Ser473 by activated GyrB-PKR, suggesting that p85 

function is required for PKR-dependent phosphorylation of PKB/ Akt. (Fig.20C). In 

these experiments GyrB-PKR activity was not affected as indicated by the induction of 

eIF2a phosphorylation. 

Collectively, these data demonstrate the role of PI3K in PKR-dependent 

activation of PKB/Akt. Based on these data it is concluded that GyrB-PKR acts 

upstream of PI3K as an activator of the pathway. 
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Figure 20. PKR-mediated induction ofPKB/Akt phosphorylation requires PI3K. 

A. HT1080 cens expressing GyrB-PKR were transiently transfected with scrambled 

(SCR) or PI3K p85 siRNA for 72 hours. cens were then treated with coumermycin 

(100 nglml) for 6 hours. Protein extracts (30 Ilg) were subjected to immunoblot analysis 

with a phosphospecific antibody against PKB/Akt-pSer473 (a), anti-PKB/Akt antibody 

(b) or anti-p85 antibody (c). 

B. GyrB-PKR-expressing cens were transiently transfected with pCMV/FLAG wild­

type PTEN or the empty vector for 24 hours, fonowed by coumermycin treatment (100 

nglml) for 6 hours. Protein extracts (30 Ilg) were subjected to immunoblotting with 

phosphospecific antibody against PKB/Akt-pSer473 (a), anti-PKB/Akt antibody (b), 

anti-FLAG antibody (c), phosphospecific antibody against eIF2a-pSer51 (d) or anti­

eIF2a antibody (e). 

C. HT1080 cens expressing GyrB-PKR were infected with adenovirus expressmg 

dominant negative p85 (dnp85) or the control virus (MOI 500). 24 hours post-infection 

cens were treated with coumermycin (100 nglml) for 6 hours. Protein extracts (30 Ilg) 

were subjected to immunoblotting with phosphospecific antibody against PKB/ Akt­

pSer473 (a), anti-PKB/Akt antibody (b), anti-p85 antibody (c), phosphospecific 

antibody against eIF2a-pSer51 (d) or anti-eIF2a antibody (e). 

114 



A 

B 

c 

Figure 20 

GyrB-PKR 

RNAi SCR p85 
Coumermycin + + 

a 1 - 1. - .-.1- Akt-pSer473 

b 1 ~ ~ __ .... 1- Akt 

c I~~~ __ 1_ p85 

Ratio a/b: 1 1.6 0.9 0.9 

234 Lane 1 

GyrB-PKR 

Transfection Mock FL-PTEN 
Coumermycin + + 

a 1- .. • 1_ Akt-pSer473 

b 1 III I-Akt 

c 
1 

~ ~I- FLAG-PTEN 

d 1--- 1111 1 • 1- elF2a-pSer51 

e 1 .... • l-e'F2a 

Ratio a/b: 1 4.2 1 0.8 

Lane 1 2 3 4 

GyrB-PKR 

Adenovirus control dnp85 

+ Coumermycin + 
r-------------~ 

a 'al: .... _ Akt-pSer473 

b ~--.""""-$,,,~- Akt 

c - p85 

d I~'" - '-'1- elF2a-pSer51 

e 1 ft • - - 1- elF2a 
Ratio a/b: 1 5 1.5 1.2 

Lane 1 2 3 4 



2.2.3 Activation of PI3K by PKR is not mediated by Ras. 

The HT1080 cens contain an active form of N-Ras (267). Given the ability of 

Ras to activate PI3K through a direct interaction with its catalytic subunit, pll0 (31,32), 

we wished to determine whether GyrB-PKR had an effect on Ras activity. To this end, 

we assessed the levels of activated Ras by measuring the amount of Ras bound to c­

Ran (Fig.21, panel a) versus the total Ras protein (panel b). We did not notice any 

significant differences in Ras activation in GyrB-PKR or GyrB-PKRK296H cens before 

or after coumermycin treatment (panel a) suggesting that PKR does not modulate Ras 

activity. HT1080 cens were not refractory to signaling leading to Ras activation since 

serum stimulation of the parental cens increased the levels of activated Ras bound to c­

Ran (panel a, compare lanes 7 and 8). 

Furthermore, conditional media from GyrB-PKR-expressing cens was not able 

to mimic the effects of activated GyrB-PKR excluding the possibility of secretion of a 

growth factor or a cytokine leading to the activation of the PI3K in an autocrine fashion. 
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Figure 21. PKR-mediated PI3K activation is independent of Ras. 

HT1080 cells expressing GyrB-PKR or GyrB-PKRK296H were treated with 

coumermycin (100 ng/ml) in the absence of serum. Protein extracts (500 Ilg) were 

subjected to pull-down assay with Raf-l RBD agarose beads followed by 

immunoblotting with anti-Ras antibody (a). Total Ras protein levels were assessed in 50 

Ilg of protein extracts using anti-Ras antibody (b). Extracts from HT1080 cells 

incubated in serum-free medium or stimulated with 20% serum were used as negative 

and positive controls. 
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2.3 Functional interaction between PKR and PI3K pathway 

Since PKR possesses inhibitory effect on translation and proliferai on , induction 

of PI3K pathway, which has positive effect on translation and proliferation, was 

intriguing. To address the functional interaction between the two pathways, the effect of 

PI3K activation by PKR on translation and apoptosis was assessed. 

2.3.1 PKR activation does not disrupt 4E-BP1 interaction with eIF4E. 

Sequential phosphorylation of 4E-BPI at Thr37/46, Thr70 and Ser65 is required 

for its dissociation from eIF4E in response to mitogenic signaling (16). To examine the 

physiological relevance of 4E-BPI phosphorylation in cells with activated GyrB-PKR, 

we assessed the interaction of eIF4E with 4E-BPI in binding assays to the cap analogue 

(252). We found that activation of GyrB-PKR by coumermycin did not cause the 

dissociation of 4E-BPI from eIF4E (Fig. 22, panel a, lane 2) despite the induction of 

4E-BPI phosphorylation as described above. Treatment of GyrB-PKR-expressing cens 

with rapamycin led to a higher amount of eIF4E14E-BPI complex formation (panel a, 

lane 3) as previously demonstrated (268,269) indicating that HT1080 cens do not 

contain lesions that affect the eIF4E pathway. When the GyrB-PKRK296H-expressing 

cens were used, we found that eIF4E/4E-BPI interaction was also unaffected by 

coumermycin treatment (panel a, lanes 5). We observed, however, that the background 

binding of 4E-BPI to eIF4E was higher in GyrB-PKRK296H than in GyrB-PKR­

expressing cens (compare lane 4 to 2). It is not immediately clear what caused these 

differences in 4E-BPlIeIF4E complex formation between the two cen lines. One 

possibility is that the higher background phosphorylation of Ser65 in GyrB-PKR than in 

GyrB-PKRK296H-expressing cens (Fig. 15A, panel b) caused the decrease in 
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eIF4E14E-BPI association since previous reports indicated that Ser65 phosphorylation 

may play a role in the dissociation of eIF4E and 4E-BPI (270,271). 

From the cap-binding assays we also observed that phosphorylated eIF2a at 

Ser51 was part of the eIF4E/4E-BPI complex, whose presence in the complex was 

enhanced after GyrB-PKR activation (Fig. 22, panel c). This was an unexpected finding, 

which we further pursued by immunofluorescence rnicroscopy. We exarnined the 

localization of eIF4E and 4E-BPI before and after activation of GyrB-PKR by 

coumermycin. We observed the formation of distinct cytoplasrnic foci upon activation 

of GyrB-PKR, which consisted of eIF4E and 4E-BPI (Fig. 23A) as weIl as 

phosphorylated eIF2a (Fig. 23B). We also assessed the localization of eIF4E with 

eIF4G in ceIls treated with coumermycin and observed that eIF4E co-Iocalizes with 

eIF4G in the distinct cytoplasrnic foci (Fig. 24). The cytoplasrnic granules were not 

detectable in coumermycin treated GyrB-PKRK296H-expressing cells (Fig. 25A and B) 

suggesting that their formation is dependent on the catalytic activity of PKR. 

Collectively, these data show that activation of GyrB-PKR does not cause the 

dissociation of 4E-BPI from eIF4E. In fact, it appears that induction of eIF2a 

phosphorylation by GyrB-PKR results in the formation of cytoplasrnic granules 

consisting of eIF4E, 4E-BPI and eIF4G. 
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Figure 22. The effeet of PKR-mediated 4E-BPI phosphorylation on eIF4E/4E-BPl 

association 

Serum-deprived GyrB-PKR and GyrB-PKRK296H-expressing cells were left untreated 

or treated with either coumermycin (100 nglml) or rapamycin (20 nglml) for 6 hours in 

the absence of serum. Cap binding assay was performed to assess the eIF4E/4E-BPI 

interaction. Protein extracts (250 J..lg) were subjected to 7-methyl GTP-sepharose 

chromatography m7GTp-agarose resins, and immunoblotting with antibodies against 

4E-BPI (a), eIF4E (b) or eIF2a-pSer51 (c) .. 

121 



GyrB-PKR GyrB-PKRK296H 

Rapamycin + + 
Coumermycin + + 

a - - 4E-BP1 

b - elF4E 

c Id'> ....... ~ -"",- 1- elF2a-pSer51 

Lane 1 2 3 4 5 6 

Figure 22 



Figure 23. Activation of PKR results in formation of stress granules containing 

eIF4E, 4E-BPl and phosphor-eIF2a. 

HTI080/GyrB-PKR cells were grown on 22-mm coverslips, left untreated or treated 

with coumermycin for 6 hours and subjected to immunofluorescence analysis. 

A. Cells were immunostained with anti-eIF4E and anti-4E-BPI antibodies. 

B. Cells were subjected to immunostaining with anti-eIF4E and phosphospecific 

antibody against eIF2a.-pSer51. 
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Figure 24. eIF4GI co-Iocalizes with eIF4E in stress granules. 

HT1080 cells expressing GyrB-PKR were grown on 22-mm coverslips, left untreated or 

treated with coumermycin for 6 hours and subjected to immunofluorescence analysis 

with anti-eIF4E and anti-eIF4G antibodies. 

125 



o 
+ 



Figure 25. Coumermycin treatment of GyrB-PKRK296H does not induce the 

formation of stress granules and the colocalization of eIF4E and 4E-BPl. 

HT1080/GyrB-PKRK296H cens were grown on 22-mm coverslips, left untreated or 

treated with coumermycin for 6 hours and subjected to immunofluorescence analysis. 

A. cens were immunostained with anti-eIF4E and anti-4E-BPI antibodies. 

B. cens were subjected to immunostaining with anti-eIF4E and phosphospecific 

antibody against eIF2a-pSer51. 
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2.3.2 Induction of 4E-BPl phosphorylation upon PKR activation can not bypass 

the translation inhibitory effects of eIF2a phosphorylation. 

We further examined the role of the PI3K pathway in inhibition of protein 

synthesis by activated GyrB-PKR. The levels of global protein synthesis were assessed 

by 35S-methionine labeling of GyrB-PKR-expressing cells treated with L Y294002 

and/or rapamycin in the absence or presence of coumermycin (Fig. 26A). We found that 

in cells with latent GyrB-PKR (i.e. without coumermycin treatment), inhibition of PI3K 

by L Y294002 resulted in -40% decrease of global protein synthesis. In cells with 

activated GyrB-PKR (i.e. coumermycin-treated cells), we measured a -50% inhibition 

of cellular protein synthesis, which was further reduced by -40% upon inhibition of 

PI3K by L Y294002. Treatment with L Y294002 resulted in the same degree of protein 

synthesis inhibition in cells expressing GyrB-PKRK296H either in the absence or 

presence of coumermycin. Given that PI3K inhibition by LY294002 did not further 

enhance eIF2a phosphorylation by GyrB-PKR (Fig. 15B) this indicates that the PI3K 

pathway counterbalances the inhibitory effect of PKR on protein synthesis without 

interfering with eIF2a phosphorylation. Treatment with rapamycin did not further 

enhance global protein synthesis inhibition by activated GyrB-PKR (Fig. 26A). 

Interestingly, we noticed that rapamycin treatment did not inhibit the overall 

levels of protein synthesis in cells with latent GyrB-PKR indicating that inhibition of 

the FRAP/mTOR pathway does not affect global protein synthesis. This is consistent 

with previous observations (272) and our data that rapamycin induces qualitative rather 

than quantitative effects on protein synthesis. Since eIF4E interaction with 4E-BPl is 

higher in rapamycin-treated than in coumermycin-treated GyrB-PKR cells (Fig. 22, 
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compare lane 3 with 2), eIF4E14E-BPl complex fonnation can not account for the 

global inhibition of protein synthesis by activated GyrB-PKR. 

2.3.3 Overexpression of eIF4E cannot bypass inhibition of protein synthesis by 

PKR-mediated phosphorylation of eIF2a. 

To further address the role of the eIF4E14E-BPl interaction in translational 

control by eIF2a phosphorylation, eIF4E was overexpressed in cells containing GyrB­

PKR and tested the regulation of global protein synthesis in these cells (Fig. 26B, panel 

a). Activation of GyrB-PKR by coumennycin led to the induction of eIF2a 

phosphorylation at equallevels in HA-eIF4E-expressing cells and control cells (panel b) 

indicating that eIF4E does not interfere with eIF2a phosphorylation by the activated 

kinase. We further observed that the protein levels of both endogenous and HA-eIF4E 

were resistant to the protein synthesis inhibitory effects of eIF2a phosphorylation (panel 

a). When global protein synthesis was assessed, we found that HA-eIF4E induced the 

synthesis of certain polypeptides suggesting that eIF4E overexpression was functional 

and capable of stimulating cap-dependent translation of specifie mRNAs (Fig. 26C, 

compare panels a and b). However, activation of GyrB-PKR by coumennycin 

dramatically decreased protein synthesis even of the polypeptides that were induced by 

the overexpression of HA-eIF4E (compare panels c and d). Thus, protein synthesis 

inhibition by eIF2a phosphorylation exerts a dominant effect over the stimulation of 

cap-dependent translation by eIF4E. 
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Figure 26. Regulation of eap-dependent translation in GyrB-PKR eeUs 

A. m'1080 cells expressing either GyrB-PKR (open bars) or GyrB-PKRK296H (c1osed 

bars) were incubated in media lacking methionine and supplemented with 10% dialyzed 

serum for 1 hour. Cells were then treated with L Y294002 (20 J..I.M) or rapamycin (20 

nM) for 1 hour followed by the addition of coumermycin (100 nglml) for addition al 4 

hours. After these incubations, 35S-methionine (100 J..I.Ci per 106 cells) was added to cells 

for further 2 hours followed by the quantification of radioactive TCA precipitates. 

Values represent the average of three separate experiments performed in triplicates. (C: 

coumermycin, R: rapamycin, LY: L Y294002). 

B. m'1080/GyrB-PKR cells stably transfected with either pMV7 vector (control) or 

pMV7/HA-eIF4E were left untreated or treated with coumermycin (100 nglml) for the 

indicated time points. Protein extracts (50 J..I.g) were subjected to immunoblotting with 

anti-eIF4E antibody (a) or phosphospecific antibody against eIF2a.-pSer51 (b). 

C. Control cells or cells overexpressing HA-eIF4E were incubated in methionine-free 

medium supplemented with 10% dialyzed serum for 2 hours, left untreated or treated 

with coumermycin (100 nglml) for 4 hours and followed by 3sS-methionine labeling 

(100 J..I.Ci per 106 cells) for additional 2 hours. Protein extracts (80 J..I.g) were subjected to 

2D gel electrophoresis and radioactive bands were visualized by autoradiography. 
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2.3.4 The PI3K pathway antagonizes GyrB-PKR-mediated cell death. 

We previously demonstrated that activation of GyrB-PKR leads to the induction 

of cell death as a result of eIF2a phosphorylation (260). As such, we wished to examine 

the role of the PI3K pathway in PKR-mediated cell death. To this end, we assessed the 

apoptotic function of GyrB-PKR in the presence of L Y294002 or rapamycin (Fig. 27 A). 

In the absence of coumermycin, treatment of GyrB-PKR cells with either rapamycin or 

L Y294002 did not induce cell death. When cells were treated with coumermycin, 

activation of GyrB-PKR led ta a significant induction of cell death as previously 

described (260). The presence of rapamycin, however, did not significantly affect cell 

death induced by GyrB-PKR as opposed to treatment with L Y294002, which resulted in 

a considerable (-50%) increase in GyrB-PKR-mediated cell death. These results 

demonstrated that activation of PI3K pathway antagonizes cell death induced by 

activated PKR. 

Given that PKR passes ses antiproliferative activities, cells devoid of PKR 

activity (PKR knockout: PKR-/) are expected to exhibit a higher rate of growth, if not 

the same, than their wild-type counterparts (PKR+1+). However, our observations 

indicate that mouse embryonic fibroblasts (MEFs) from a catalytic knockout of PKR 

(198) grow slower than PKR+1+ MEFs in culture. To further investigate these 

observations, the proliferation rate of these cells was assessed under normal conditions 

(Figure 27B). The higher rate of proliferation in PKR+1+ MEFs, correlates well with the 

ability of PKR to activate the PI3K pathway, which exerts a positive effect on cell 

growth and proliferation. This indicates that PKR may possess dual activity; i.e. under 

physiological conditions PKR may exhibit a stimulatory effect on growth and 
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proliferation, whereas under stress conditions it serves as a negative regulator by 

inhibiting protein synthesis and inducing apoptosis. 
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Figure 27. Control of PKR-mediated apoptosis by PI3K pathway 

A. HT1080 cens expressing GyrB-PKR were treated with coumermycin (100 nglml) in 

the absence or presence of either L Y294002 (20 /lM) or rapamycin (20 nM) for 24 

hours. cens were harvested, fixed in ethanol, stained with propidium iodide and 

subjected to flow cytometry analysis. The percentage of apoptotic cens or cells in 

various phases of the cell cycle is indicated. Data represent one of four reproducible 

experiments. 

B. PKR+1+ and PKR-1- MEFs were grown for 5 days and the proliferation rate was 

assessed every day by adding the CellTiter 96® AQueous One Solution Reagent directly 

to cultured cens and reading the absorbance at 490 nm. 
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2.4 Biological relevance of PI3K activation by PKR 

To better address the physiological relevance of these findings, the role of 

endogenous PKR in the induction of 4E-BPI phosphorylation was examined ln 

response cytokines. Recent findings have provided evidence for the ability of 

interferons (IFNs) to induce the phosphorylation of 4E-BPI through the activation of 

PKB/ Akt (273). To address the possible role of PKR in this process, we assessed 4E­

BPI phosphorylation in PKR+1+ and PKR-1
- MEFs (198). These PKR-1

- MEFs are devoid 

of the C-terminus of PKR and its kinase activity. They only express the N-terminal 

domain of PKR which still retain functions attributed to this region. However, in this 

experiment we would like to study the role of kinase activity of PKR and thus these 

cells would serve the purpose. We found that IFNy treatment resulted in a higher 

induction of 4E-BPI phosphorylation at Thr37/46, Ser 65 and Thr70 in PKR+1+ than in 

PKR-1
- MEFs (Fig. 28, compare lanes 1-4 to 5-8). 

These findings further demonstrate the role of PKR in 4E-BPI phosphorylation 

through the activation of the PI3K pathway and support the notion that PKR may play a 

role in signaling pathways in response to cytokines. 
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Figure 28. PKR is involved in activation of the PI3K pathway in response to 

cytokines. 

PKR+1+ and PKR-1
- MEFs were maintained in the absence of serum for 16 hours 

followed by 100 IU/ml of mouse IFNy treatment for the indicated time points. Protein 

extracts (50 ~g) were subjected to immunoblotting with phosphospecific antibodies 

against 4E-BP1-pThr37/46 (a), -pSer65 (b), -pThr70 (c), anti-4E-BP1 rabbit polyclonal 

antibody (d). 
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2.5 Role of other eIF2a kinases in activation of PI3K pathway 

While an eIF2a kinases share a homologous kinase domain, GyrB-PKR not only 

represents the kinase activity of PKR, but also it mimics the activation of other eIF2a 

kinases. Therefore, it is highly possible that activation of other eIF2a kinases also result 

in activation of PI3K. Accordingly, induction of ER stress in PERK+1+ MEFs resulted in 

induction of PKB/ Akt phosphorylation which was not observed in PERK/- MEFs (Fig. 

29). Treatment of cens with thapsigargin induces ER stress through depletion of 

lumenal calcium stores. Activation of PERK in wild-type cens resulted in induction of 

PKB/ Akt and eIF2a phosphorylation (panels a and c), whereas in cens devoid of PERK 

this induction was aboli shed. 

These data indicate a possible role of all eIF2a kinases in induction of the PI3K 

pathway. Further studies, however, is required to address this issue. On the other hand, 

since a cross-talk between PERK and PKR in response to viral infection has been 

demonstrated (274), it is reasonable to speculate that the two kinases also cooperate in 

induction of the PI3K pathway. 

140 



Figure 29. Activation of PERK in response to ER stress results in activation of the 

PI3K pathway. 

PERK+f+ and PERK/- MEFs were treated with thapsigargin (1 ~) in the presence of 

serum for the indicated time points. Protein extracts (50 Ilg) were subjected to 

immunoblotting with phosphospecific antibody against PKB/Akt-pSer473 (a), anti­

PKB/Akt antibody (b), phosphospecific antibody against eIF2a-pSer51 (c) or anti-eIF2a 

antibody (d). 
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Figure 29 
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3. Human Papillomaviruses and PKR 

Development of cervical cancer has been demonstrated to be strongly associated 

with HPV infection. Therefore, the use of IFNs as antiviral agents for therapy against 

cervical cancer has been under investigation. The efficiency of this method, however, 

depends on the HPV type and the immune system of the patients. The molecular basis 

of this resistance is not fully understood; therefore a better knowledge of the molecular 

mechanism of IFN sand their inducible genes in HPV infected cells may contribute to 

the development of strategies to combat HPV -associated diseases including cervical 

cancer. In this regard, our laboratory has focused on studying HPV oncoproteins and 

their functional interaction with interferon signaling pathway. 

The HPV E6 oncoprotein contributes in virus-induced pathogenicity through 

multiple mechanisms including the inhibition of apoptosis and the blockade of IFN 

action. Therefore, it was of interest to investigate functional interaction of HPV E6 with 

PKR which is a mediator of anti-viral and anti-proliferative activities of type 1 IFNs. 

3.1 Regulation of HPV -18 E6 protein synthesis by PKR 

Activation of PKR results in inhibition of global protein synthesis through 

phosphorylation of eIF2a. This leads to decreased expression of cellular and viral 

proteins. In this regard we investigated the regulation of HPV E6 oncoprotein by PKR. 

3.1.1 Inhibition of HPV-18 E6 protein synthesis by IFNa 

Human epithelial-like fibrosarcoma HT1080 cell line carrying a FLAG-tagged 

form of the high-risk HPV-18 E6 were established (246). When these cells were treated 

with IFNa, we noticed a decrease in FLAG-18 E6 expression levels compared to 
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untreated cells (Fig. 30A, panel a, compare lane 3 with 1). Inhibition of FLAG-18 E6 

expression, however, was not observed in cells treated with IFNy (lane 5). Since E6 

protein stability is controlled by the 26S proteasome (275), we tested whether inhibition 

of FLAG-18 E6 by IFNa involved the proteasome-dependent degradation of the viral 

protein. Incubation of HT1080 cells with the proteasome inhibitor MG-132 equally 

increased FLAG-18 E6 levels in untreated as well as in IFNa or IFNy-treated cells 

(panel a, lanes 2, 4 and 6). MG-132, however, failed to completely recover FLAG-18 

E6 levels in IFNa-treated cells (lane 4) as opposed to untreated (lane 2) or IFNy-treated 

cells (lane 6), suggesting that the inhibitory effect by IFNa is not exclusively based on 

the proteasome-mediated degradation of the viral protein. Since FLAG-18 E6 

expression in HT1080 cells was mediated by a heterologous promoter, whose activity is 

not affected by IFNs (246), our findings implied a translational regulation of FLAG-18 

E6 by IFNa. This notion was supported by our observation that downregulation of 

FLAG-18 E6 was associated with an induction of the eIF2a kinase PKR protein in IFNa 

treated cells (panel b, lanes 3 and 4). 

3.1.2 E6 protein synthesis is controlled by eIF2a phosphorylation. 

To establish a direct link between E6 protein synthesis and PKR and to study 

their functional interaction, we utilized the GyrB-PKR system. Given that the GyrB­

PKR system was functional in HT1080 cells, we further established cells expressing 

FLAG-18 E6 together with either GyrB-PKR or GyrB-PKRK296H. GyrB-PKRlFLAG­

Il E6 expressing cells were also established to serve as a negative control for oncogenic 

properties of 18 E6. Cells were stably transfected with GyrB-PKR or GyrB-PKRK296H 

cDNA in pSG5 vector together with either FLAG-18 E6 or FLAG-ll E6 in 
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pcDNA3.lIZeo vector at a ratio 5: 1. Monoclonal populations with equallevels of GyrB­

PKR and GyrB-PKRK296H, as well as 18 and Il E6 were selected. 

Treatment of these cells with coumermycin resulted in a rapid repression of 

FLAG-18 E6 levels in GyrB-PKR cells but not in GyrB-PKRK296H cells (Fig. 30B, 

panel a, compare lanes 1-4 with 5-8). Northem blot analysis showed that 18 E6 rnRNA 

levels were not diminished by coumermycin treatment of GyrB-PKR or GyrB­

PKRK296H cells (Fig. 30C). Collectively, these data suggested that E6 expression is 

translationally suppressed by PKR-mediated eIF2a. phosphorylation. 
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Figure 30. E6 protein levels are down regulated upon treatment with IFN-a. 

A. HTI080 cells expressing FLAG-tagged HPV 18 E6 were left untreated or treated 

with either IFNa or IFNy (100 ill/ml) for 18 hours followed by MG-132 treatment (40 

).tM) for additional 2 hours. Protein extracts (50 ).tg) were subjected to immunoblot 

analysis with anti-FLAG antibody (a), anti-human PKR antibody (clone F9) (b) or anti­

actin antibody (c). 

B. HT1080 cells expressing FLAG-18 E6 together with either GyrB-PKR or GyrB­

PKRK296H were incubated with 100 ng/ml coumermycin for up to 4 hours. Protein 

extracts (50 ).tg) were subjected to immunoblot analysis with anti-FLAG antibody (a) or 

anti-actin antibody (b). 

C. HT1080 cells expressing FLAG-18 E6 and either GyrB-PKR or GyrB-PKRK296H 

treated with coumermycin (100 ng/ml) were subjected to Northem blot analysis using 

10 ).tg of total RNA followed by hybridization with either e2p]-labeled 18 E6 cDNA (a) 

or e2p]-labeled glyceraldehydes-3-phosphate dehydrogenase (GAPDH) cDNA (b). The 

radioactive bands were quantified by densitometry and the ratio of FLAG-18 E6 to 

GAPDH is shown. 
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3.2 Modulation of PKR funetions by HPV -18 E6 

Over the course of time, virus es have evolved in such a way to bypass the 

cellular antiviral response pathway inc1uding PKR. The vaccinia virus E3L and K3L 

proteins, NS 1 protein of influenza virus, HSV Y134.5 gene product and adenovirus V AI 

RNA are examples of viral products that antagonize PKR function. In this regard, it was 

intriguing to determine the effect of HPV encoded proteins such as E6 oncoprotein on 

PKR functions. 

3.2.1 HPV -18 E6 decreases phosphorylation levels of eIF2a. 

To address the mechanism of translational control by E6, we assessed the 

phosphorylation levels of eIF2a in GyrB-PKR cells lacking or expressing FLAG-18 E6 

(Fig. 31A). Immunoblot analysis with phosphospecific antibodies against serine 51 of 

eIF2a showed that phosphorylation was significantly reduced in coumermycin-treated 

cells expressing GyrB-PKR and FLAG-18 E6 compared to cells expressing GyrB-PKR 

only (panel b). We further verified this finding by testing eIF2a phosphorylation by 

isoelectric focusing (IEF) , 2D gel electrophoresis and immunoblotting with 

phosphospecific antibody against eIF2a-pSer51 (Fig. 31B). We found that eIF2a 

phosphorylation was highly induced in GyrB-PKR cells after coumermycin treatment. 

The levels of phosphorylated eIF2a induced in coumermycin treated GyrB-PKR cells 

expressing FLAG-18 E6 were; however, lower than in GyrB-PKR cells lacking the viral 

oncoprotein. We also noticed that several species of phosphorylated eIF2a were 

recognized by the phosphospecific antibodies based on their migration to acidic pH 

upon coumermycin treatment. This data indicated that activation of GyrB-PKR leads to 

hyperphosphorylation of eIF2a at multiple sites inc1uding serine 51. It is noteworthy 

148 



that, although serine 51 is the only residue directly phosphorylated by PKR (276), 

hyperphosphorylation of eIF2a is indirect most probably due to the ability of GyrB­

PKR to activate pathways leading to multiple phosphorylation of eIF2a. Nevertheless, 

the above data clearly demonstrated the inhibitory effect of FLAG-18 E6 on GyrB­

PKR-mediated eIF2a phosphorylation. We also compared eIF2a phosphorylation in 

GyrB-PKR cens expressing either FLAG-18 E6 or FLAG-ll E6 (Fig. 31C). We found 

that the induction of eIF2a phosphorylation by activated GyrB-PKR was higher in cens 

expressing FLAG-ll E6 than in FLAG-18 E6 expressing cens (panel b, compare lanes 

1-4 with 5-8) indicating a higher capacity of FLAG-18 E6 to inhibit eIF2a 

phosphorylation than FLAG-ll E6. 
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Figure 31. E6 impairs eIF2a phosphorylation in response to GyrB-PKR activation. 

A. HT1080 cells expressing GyrB-PKR alone or in the presence of FLAG-18 E6 were 

induced by 100 ng/ml coumermycin for 2 or 4 hours. Protein extracts (50 Jlg) were 

subjected to immunoblot analyses with anti-human PKR antibody (clone E8) (a), 

phosphospecific antibody against eIF2a-pSer51 (b) or anti-eIF2a antibody (c). The 

slower migrating band recognized by the anti-PKR antibody (a) is the fusion GyrB-PKR 

protein, which is slightly smaller in size than endogenous PKR. 

B. Detection of eIF2a phosphorylation by isoelectric focusing (IEF) and 2D gel 

electrophoresis. Protein extracts (100 J..lg) of untreated or coumermycin treated (4 hours; 

100 ng/ml) HT1080 cells expressing GyrB-PKR in the absence or presence ofFLAG-18 

E6 were subjected to IEF and 2D gel electrophoresis. The phosphorylated forms of 

eIF2a were detected by immunoblotting with phosphospecific Ser51 eIF2a specifie Ab. 

C. HT1080 cells containing GyrB-PKR in the presence of either FLAG-18 E6 or 

FLAG-ll E6 were treated with 100 ng/ml coumermycin for the indicated times and 

subjected to immunoblotting analysis with anti-human PKR antibody (clone E8) (a), 

phosphospecific antibody against eIF2a-pSer51 (b) or anti-eIF2a antibody (c). 
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We next addressed the specificity of FLAG-18 E6 to inhibit eIF2a 

phosphorylation. If eIF2a phosphorylation was generally inhibited by E6, this should 

also take place in cells subjected to endoplasmic reticulum (ER) stress, which induces 

eIF2a phosphorylation through the activation of the PKR-like ER-resident kinase PERK 

(277). When cells expressing either GyrB-PKR alone or GyrB-PKR and FLAG-18 E6 

were treated with the ER stress-inducer thapsigargin in the absence of coumermycin, 

induction of eIF2a phosphorylation was reduced in cells expressing the viral 

oncoprotein compared to cells lacking it (Fig. 32A, panel a, compare lane 2 with 6 and 

lane 3 with 7). It has been weIl established that induction of eIF2a phosphorylation in 

ER stressed ceIls leads to the expression of CIEBP homologous protein (CHOP), which 

is also known as growth arrest and DNA damage gene 153 (GADDI53) (278,279). 

When CHOP/GADD153 was used as a marker for responses to eIF2a phosphorylation 

in thapsigargin-treated ceIls, we found that CHOP/GADD153 protein levels were more 

highly induced in ceIls with GyrB-PKR alone than in ceIls with GyrB-PKR and the viral 

oncoprotein (Fig. 32B, panel c, compare lane 2 with 6 and lane 3 with 7). 

Taken together, these findings demonstrated that the ability of FLAG-18 E6 to 

impair eIF2a phosphorylation is not specific for the PKR pathway but can be seen in 

other eIF2a kinase pathways such as ER stress, which induces eIF2a phosphorylation 

through the activation of PERK. 
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Figure 32. E6 impairs eIF2a phosphorylation in response to ER stress. 

HT1080 cells expressing GyrB-PKR alone or together with FLAG-18 E6 were treated 

with 1 ~ thapsigargin for short (a and b) or long time periods (c and d). Protein 

extracts (50 Ilg) were used for immunoblot analysis with phosphospecific antibody 

against eIF2a.-pSer51 (a), anti-eIF2a. antibody (b), anti-CHOP antibody (c) or anti-actin 

antibody (d). 
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3.2.2 HPV 18 E6 promotes eIF2a dephosphorylation by recruiting GADD34 and 

PPl. 

The growth arrest and DNA damage gene product 34 (GADD34) is a stress­

inducible regulatory subunit of a holophosphatase complex, which contains the catalytic 

subunit of protein phosphatase 1 (PPlc) and specifically promotes the 

dephosphorylation of eIF2a in cells subjected to ER stress (245,280,281). Because 

eIF2a phosphorylation is reduced in ER stressed cells expressing FLAG-18 E6, we 

hypothesized that E6 might play a role in eIF2a dephosphorylation via GADD34IPPl. 

To test this hypothesis, we first tested for a possible interaction between E6 and 

GADD34 or PPI (Fig. 33A). To this end, we used either FLAG-GADD34 or different 

mutants of FLAG-GADD34 with a deletion of the last 121 aa in the C-terminus (1-

553), deletion of the first 179 aa in N-terminus (180-674) or substitutions of the highly 

conserved KVRF sequence involved in PPI-binding (KARA mutant) (245). FLAG­

GADD34 proteins were transiently expressed in HeLa cells, and binding to E6 was 

assessed in pull down assays with a GST-18 E6 fusion protein (246). Immunoblot 

analysis with anti-FLAG antibody revealed the interaction between E6 and the FLAG­

GADD34 proteins independently of the type of mutation (panel a). The interaction of 

E6 with GADD34 was further tested in transient transfection assays in HeLa cells. That 

is, co-expressed FLAG-GADD34 and FLAG-E6 proteins were subjected to 

immunoprecipitation with anti-GADD34 antibody followed by immunoblotting with 

anti-FLAG antibody (Fig. 33B). We found that both E6 subtypes were co­

immunoprecipitated with GADD34 (lanes 1 and 2), thus confirming the interaction. 
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We also examined the ability of E6 to interact with PPl. To this end, FLAG-E6 

proteins transiently expressed in HeLa cells were immunoprecipitated with anti-FLAG 

antibody followed by immunoblotting with anti-PP1 antibody (Fig. 33C). We observed 

that a higher amount of endogenous PP1 was bound to FLAG-18 E6 than FLAG-ll E6 

(compare lanes 2 and 3). It is noteworthy that in this experiment the amount of 

transfected FLAG-18 E6 DNA was 5 fold higher than FLAG-ll E6 DNA in order to 

achieve equal levels of expression of the two viral proteins. This data suggested that 

PP1 interacts more efficiently with FLAG-18 E6 than FLAG-ll E6. To verify the 

significance of the interaction, we performed an eIF2a-dephosphorylation assay by 

incubating FLAG-E6 immunoprecipitates with 32P-Iabeled eIF2a in vitro (280). We 

found that a higher amount of 32P-eIF2a was dephosphorylated by immunoprecipitated 

FLAG-18 E6 than FLAG-ll E6 (Fig. 33D, lane 2 and 3) suggesting that 18 E6 

promotes eIF2a dephosphorylation. 
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Figure 33. E6 recruits GADD34IPPI complex to induce eIF2a dephosphorylation. 

A. HeLa cells were transiently transfected with FLAG-GADD34 or FLAG-GADD34 

mutants bearing either deletions or the KARA mutation in the PPI binding site. Protein 

extracts (500 /lg) were used in pull-down assays with 1 mg of purified GST alone or 

GST-18 E6. Protein extracts (25 /lg) from each transfection was used as positive 

control. GADD34 proteins were detected by immunoblotting with anti-FLAG antibody 

(a). GST proteins were visualized by Coomassie blue staining of SDS-PAGE (b and c). 

B. HeLa cells were transfected with 1 /lg of either FLAG-18 E6 DNA or FLAG-ll E6 

in the presence of 1 /lg pcDNA3 vector DNA or 1 /lg of FLAG-GADD34 cDNA. 

Protein extracts (500 /lg) were then subjected to immunoprecipitation with anti­

GADD34 antibody followed by immunoblotting with anti-FLAG antibody to detect the 

levels of the viral proteins (a) or GADD34 (b). 

C. HeLa cells were transiently transfected with 2 /lg of pcDNA3 vector DNA, 2 /lg of 

FLAG-18 E6 DNA or 0.4 /lg of FLAG-ll E6 DNA and 1.6 /lg pcDNA3 vector. Protein 

extracts (500 /lg) were subjected to immunoprecipitation with anti-FLAG antibody. The 

immunoprecipitates were immunoblotted with anti-PPI antibody (a) or anti-FLAG 

antibody for detection of viral protein levels (b). 

D. Protein extracts (500 /lg) from HeLa cells transfected as in C were subjected to 

immunoprecipitation with anti-FLAG antibody. The immunoprecipitates were then 

subjected to dephosphorylation of 32P-Iabelled histidine-tagged eIF2a. Phosphorylated 

eIF2a was detected by autoradiogrpahy (a) whereas E6 protein levels were detected 

immunoblotting with anti-FLAG antibody (b). 
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3.2.3 High-risk 18 E6 impairs translational control by PKR. 

Since PKR-mediated cell death is tightly associated with protein synthesis 

inhibition (282), we next sought to examine the regulation of protein synthesis in 

HT1080 cells expressing GyrB-PKR in the absence or presence of the E6 proteins. 

SpecificaIly, coumermycin-treated cells were labeled with 35S-methionine, and protein 

extracts were subjected to SDS-PAGE and autoradiography (Fig. 34A, lanes 5-8). We 

observed that, although total protein load measured by Coomassie blue staining was 

equal in aIl cells (lanes 1-4), treatment with coumermycin drastically inhibited protein 

synthesis in cells with GyrB-PKR (lane 5) as opposed to cells bearing the catalytic 

mutant GyrB-PKRK296H (lane 6). Interestingly, the presence of FLAG-18 E6 relieved 

the inhibition of protein synthesis by GyrB-PKR significantly (compare lane 7 with lane 

5). Contrary to FLAG-18 E6, expression of FLAG-ll E6 did not affect inhibition of 

protein synthesis by GyrB-PKR (compare lane 8 with lane 5). To better assess the 

differences in protein synthesis, cells were labeled with 35S-methionine and radioactive 

proteins were extracted and quantified (Fig. 34B). We observed that protein synthesis 

was inhibited after 6 hours or 12 hours of coumermycin treatment of GyrB-PKR cells or 

GyrB-PKR cells expressing FLAG-ll E6. On the other hand, protein synthesis was still 

reduced in GyrB-PKR cells expressing FLAG-18 E6 but to a lesser extent than GyrB­

PKR cells or GyrB-PKR cells containing FLAG-ll E6 particularly at 6h after 

coumermycin treatment. These data showed the ability of FLAG-18 E6 to relieve the 

translational blockade induced by PKR-mediated eIF2a phosphorylation. 
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Figure 34. Regulation of GyrB-PKR-mediated inhibition of protein synthesis by E6 

A. HT1080 cells expressing GyrB-PKR, GyrB-PKRK296H, or GyrB-PKR together 

with either FLAG-18 E6 or FLAG-ll E6 were treated with 100 nglml coumermycin for 

10 hours followed by labeling in vivo with 3sS-methionine for addition al 2 hours. 

Protein extracts (50 ~g) were subjected to SDS-PAGE. Total protein was visualized by 

Coomassie blue staining whereas radioactive proteins were detected by 

autoradiography. 

B. HT1080 cells were left untreated or treated with 100 nglml coumermycin for 4 or 10 

hours followed by eSS]-methionine labeling for addition al 2 hours. The radioactive 

proteins were quantified in 10 ~g of total protein extract after trichloroacetic acid (TCA) 

precipitation and counting (66). Values represent the average percentage of protein 

synthesis (i.e.3sS-methionine incorporation) calculated from 2 independent experiments 

performed in triplicates. 
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3.2.4 HPV-18 E6 inhibits PKR-mediated apoptosis. 

The inhibition of E6 protein synthesis by GyrB-PKR prompted us to examine a 

possible role of the viral protein in the biological effects of PKR activation. Considering 

that activation of PKR promotes apoptosis (282), we assessed the induction of death in 

HT1080 cells expressing GyrB-PKR in the absence or presence of either FLAG-18 E6 

or FLAG-ll E6 (Fig. 35A). When control HT1080 cens (i.e. cens transfected with the 

expression vector bearing the zeocin resistant gene only) were treated with 

coumermycin, we observed that neither the growth nor the viability of the cens was 

affected by the presence of the antibiotic (left panels). On the other hand, HT1080 cells 

expressing GyrB-PKR underwent massive death (see increased sub-G1 population) after 

treatment with coumermycin (panels second from the left). Interestingly, death was 

significantly lower in coumermycin-treated cells expressing GyrB-PKR and FLAG-18 

E6 (panels third from the left). Contrary to this, the percentage of dead cells was not 

di mini shed in GyB-PKR cells ex pressing FLAG-ll E6 compared to GyrB-PKR cells 

after treatment with coumermycin (right panels). Quantitative analysis of cell death 

induced by GyrB-PKR activation in the absence or presence of E6 proteins is shown in 

Fig. 35B. Collectively, these findings clearly demonstrated the killing potential of 

activated GyrB-PKR and the ability of the high-risk 18 E6 only to rescue cells from 

PKR-mediated death. 
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Figure 35. Control of GyrB-PKR-mediated cell death by E6 

A. HT1080 control cells (i.e. expressing the zeocin-resistant plasmid only) and cells 

expressing either GyrB-PKR alone or GyrB-PKR in the presence of either FLAG-18 E6 

or FLAG-ll E6 were treated with 100 ng/ml coumermycin for 24 or 48 hours. Cells 

were harvested, fixed in ethanol, stained with propidium iodide and subjected to flow 

cytometry analysis. The percentage of apoptotic cells or cells in various phases of the 

cell cycle is indicated. Data represent one of four reproducible experiments. 

B. Quantification of c~Il death. The values represent the average percentage of ceIl 

death (sub-G1 population) for each cell line treated with coumermycin from three 

independent experiments. 
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3.2.5 HPV 18 E6 inhibits Bax induction by activated PKR. 

Considering the anti-apoptotic role of FLAG-18 E6 in coumermycin-treated 

GyrB-PKR cens, we next sought to identify proteins implicated in the anti-apoptotic 

function of E6 (Fig. 36). Oncogenic forms of E6 were shown to activate Bc12 and 

inactivate p53, Bak or Bax (222), whereas induction of apoptosis by PKR was found to 

be associated with an increase in Bax and Fas protein synthesis (141,195,283). 

Immunoblot analysis showed that expression of the anti-apoptotic Bc12 was resistant to 

GyrB-PKR activation (panel a, lanes 1-4), although its overan protein levels were 

elevated in cens expressing FLAG-18 E6 (lanes 5-8). On the other hand, expression of 

the pro-apoptotic Bak (panel b) was not affected by the induction of GyrB-PKR (lanes 

1-4) nor was its expression impaired by the presence of FLAG-18 E6 (lanes 5-8). 

Contrary to the above proteins, the pro-apoptotic Bax (panel c) was highly induced 

upon GyrB-PKR activation (lanes 1-4). Significantly, Bax induction did not take place 

in cens expressing FLAG-18 E6 (lanes 5-8) suggesting a specific regulation of this 

protein in GyrB-PKR-mediated apoptosis. Unlike Bax, the pro-apoptotic Fas protein 

(panel e) was not affected significantly by GyrB-PKR either in the absence or presence 

of FLAG-18 E6. When we probed for p53, we found that its protein levels were reduced 

by 80% in cens expressing FLAG-18 E6 prior to GyrB-PKR activation (panel f, 

compare lane 1 with 5). This effect was most likely due to the proteasome-dependent 

degradation of the tumor suppressor protein by E6 in HT1080 cens (284). We also 

observed that p53 protein levels were upregulated in coumermycin treated GyrB-PKR 

cells containing FLAG-18 E6 (lanes 5-8). Since FLAG-18 E6 protein synthesis is 

rapidly repressed by activated GyrB-PKR (Fig. 30B); the most conceivable explanation 
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is that downregulation of FLAG-18 E6 contributes to stabilization of p53. From the 

above data, we concluded that FLAG-18 E6 specifically targets Bax protein in cells 

with activated PKR. 
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Figure 36. Expression of anti- or pro-apoptotic proteins in response to eIF2a. 

phosphorylation 

HT1080 cells expressing GyrB-PKR alone or together with FLAG-18 E6 were induced 

with 100 ng/ml coumermycin for up to 24 hours. Protein extracts (50 J..Lg) were subjected 

to immunoblot analysis with antibodies against the indicated proteins. 
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3.2.6 Transcriptional responses induced by eIF2a phosphorylation are mitigated 

by 18 E6. 

In addition to protein synthesis, induction of eIF2a phosphorylation can control 

gene transcription in response to diverse stressful conditions (277,285). Based on this, 

we sought to identify genes that are transcriptionally regulated by GyrB-PKR in the 

absence or presence of E6. To this end, GyrB-PKR cells were subjected to cDNA 

microarray analysis using the human U133A DNA chip from Affymetrix that contains 

22,000 genes (257). Genes that were either induced or suppressed more than 5-fold in 

coumermycin-treated GyrB-PKR cells are shown in Table 1. Among the 9 genes that 

were suppressed by GyrB-PKR, sorne have been clearly implicated in cell cycle 

progression, such as the cyclin El and E2 (286) and the centromere-associated protein E 

(CENPE) (287), in DNA repair, for instance the radiation sensitivity RAD54L (288), or 

cell signaling, such as the Rho GDP dissociation inhibitor beta (RhoGDI~) (289), the 

regulator of G-protein signaling 4 (RSG4) (290) and peroxiredoxin 1 (PRDX1) (291). 

On the other hand, among the 22 genes induced by GyrB-PKR, sorne encode for 

proteins involved in apoptosis, such as the growth arrest and DNA damage gene 

(GADD45) A and B (292), the natural born killer and BH3-only Bcl-2 homologous 

protein (NBKlBIK) (293), the interferon regu1l:1tory factor 1 (!RF1) (294) as weIl as the 

forkhead transcription factor FOX03A1FKHRL1 (7). Interestingly, regulation of 

expression of these genes by GyrB-PKR was significantly mitigated by FLAG-18 E6 

and to a much lesser extent by FLAG-ll E6 (Table 3). This data provided strong 

evidence for a role of E6 in gene transcription induced by the activation of PKRleIF2a 

phosphorylation pathway. 

169 



Table 3. HPV-18 E6 modulates transcriptional function ofPKR. 

HT1080 cells expressing GyrB-PKR, GyrB-PKRK296H, GyrB-PKRl18 E6 or GyrB­

PKR /11 E6 cells were treated with coumerrnycin for 12 hours and subjected to cDNA 

rnicroarray analysis using the human U133A DNA chip from Affymetrix containing 

22,000 genes. Genes that were either induced or suppressed more than 5-fold in 

coumerrnycin-treated cells are shown in the table. 
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Chapter IV - Discussion 

1. Functional interaction between PKR and PI3K pathway 

1.1 Activation of PI3K pathway by PKR 

Originally, PKR has been implicated In mediating the antiviral and anti­

proliferative effects of IFNs in response to virus infection (123,182,295). The best 

characterized role of PKR is to inhibit translation and induce apoptosis, through which 

it is believed to exhibit tumor suppressor activity in vitro (141,282,296,297). Activation 

of PKR results in inhibition of cell growth in yeast (133) and induction of apoptosis in 

mammalian cells (195,283,298-300). Compelling evidence for a role of PKR in tumor 

suppression is provided by experiments where the expression of dominant negative 

catalytically inactive or dsRNA-binding defective mutants of PKR in immortalized NIH 

3T3 cells resulted in inactivation of PKR and induction of tumors upon injection to 

nude mice (136,301,302). 

Although PKR is best known for its role in ho st viral defense and under stress 

conditions, there is growing evidence for the role of PKR in other cellular processes, 

such as transcription and signal transduction under normal conditions. In this regard, 

PKR targets several cellular proteins such as IRF1(303), p53 (179,180), NF-KB 

(261,304), c-Fos (183), Statl (305) and Stat3 (306) which are involved in transcription, 

and mediates signaling pathways in response to PDGF, IL-3 and IFNs (184,187,306). 

Since PKR possesses growth inhibitory and apoptotic effects, it is reasonable to 

speculate that PKR-deficient mice (PKR-1
-) would exhibit higher rates of growth and 

proliferation comparing to their wild-type counterparts. However, both available PKR-1
-
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models did not show any growth abnormalities or tumorigenic properties (307). On the 

other hand, PKR has been demonstrated to be necessary for proper progression of the 

cell cycle and inhibition of PKR leads to cell cycle arrest in G liS phase (307). PKR also 

functions as a mediator of severa! signal transduction pathways with growth promoting 

effects, such as PDGF (187,306). 

Moreover, despite its growth suppressive activities, the role of PKR as a tumor 

suppressor has not been established in vivo. This is partly due to the fact that mutational 

inactivation or deletion of pkr gene does not induce tumor formation in animaIs or 

humans. Interestingly, several studies show that PKR is overexpressed and overactive in 

sorne human cancers such as breast cancer (308,309), melanoma and colon cancer 

(310). Elevated expression of the pkr gene, and higher activity of the kinase, correlates 

with neoplastic progression and is suggested to play a role in promotion of neoplasticity 

of breast cancer cells (308). 

These findings suggest a requirement for PKR in cell growth and proliferation. 

In this regard, we have investigated the possible role of PKR in the regulation of 

signaling pathways downstream to growth factors and cytokines. One such signaling 

pathway is the weIl characterized PI3K pathway, which is induced upon stimuli such as 

hormones, mitogens, cytokines, and growth factors and mediates their proliferative 

effects. Our data provide strong evidence for a novel function of PKR, which is its 

ability to induce the PI3K pathway. Utilizing a conditionally active form of PKR, we 

observed that GyrB-PKR acts upstream of PI3K. 

These data demonstrate that indeed PKR is capable of inducing the lipid and 

protein kinase activity of the PI3K. In proliferating ceIls, PI3K activity is induced upon 
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binding of the growth factors and cytokines to their cognate receptors. There is also 

evidence for activation of PI3K through a direct interaction of the catalytic subunit with 

Ras (31,32). Our observations indicate that PKR-mediated PI3K activation is 

independent of Ras, since the Ras activity is not subjected to regulation by PKR in this 

system. Moreover, the possibility of an autocrine effect through secretion of a growth 

factor was ruled out by using the conditional media from cells with activated PKR to 

treat the HT1080 parental cells. 

Induction of PI3K activity by PKR leads to phosphorylation of the downstream 

target PKB/Akt on two residues which are necessary for its activation; Thr308 and 

Ser473. Activation of PKB/Akt, results in the induction of proliferative and anti­

apoptotic responses. One downstream target of PKB/Akt is GSK3, whose 

phosphorylation by PKBI Akt results in its inactivation and relief of its inhibitory effect 

on its downstream pathways such as glycogen synthesis (44). Our data indicate an 

induction of phosphorylation of both GSK3 isoforms upon activation of PKR. 

Another pathway regulated by PI3K-PKB/Akt is FRAP/mTOR (43). 

FRAP/mTOR is an indirect target of PKB/Akt, which plays a role in cell growth by 

regulating translation, transcription, ribosome biogenesis, nutrient transport and 

autophagy in response to nutrient availability (311). Our data demonstrate that 

activation of PKR also results in upregulation of mTOR activity as assessed by 

phosphorylation of 4E-BPI and S6 ribosomal protein. 

Induction of FRAP/mTOR activation and GSK3 phosphorylation suggests that 

phosphorylation of PKB/Akt by PKR' indeed stimulates the pathways lying 

downstream PKBI Akt. 
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1.2 Phosphorylation of 4E-BPI upon PKR activation 

Upon activation of GyrB-PKR an induction of 4E-BP1 phosphorylation on 

several residues was observed. This induction is aboli shed in the presence of PI3K and 

FRAP/mTOR inhibitors indicating that induction of 4E-BP1 phosphorylation is an 

indirect effect of PKR and is mediated through the PI3K signaling pathway. 

Based on the ability of GyrB-PKRK296H mutant to partially induce 4E-BP1 

phosphorylation compared to catalytically active GyrB-PKR, it appears that both the 

dimerization and kinase activity of PKR are required for the efficient induction of the 

PI3K pathway. Induction of PI3K activation and 4E-BP1 phosphorylation declined after 

prolonged treatment with coumermycin in GyrB-PKR-expressing cells. This negative 

regulation of the PI3K pathway may be mediated by the inhibition of protein synthesis 

from the prolonged induction of eIF2a phosphorylation. That is, activation of GyrB­

PKR may tum off the synthesis of a protein(s) required for maintaining PI3K activity. 

Part of the downregulation of the PI3K pathway may proceed independently of the 

kinase activity of PKR based on the data with the GyrB-PKRK296H cells (Fig. lA). 

Thus, dimerization of PKR may also be capable of switching on a pathway that 

antagonizes PI3K. 

There are reports indicating the activation of PI3K in response to IFN signaling. 

This include both type 1 and II of IFNs and involves IRS1 (Insulin Receptor Subsrate 1) 

and possibly c-CBL, respectively (252,312). Thus, it is logical to speculate that as a 

downstream target of IFN signaling PKR is likely to mediate IFN-dependent PI3K 

activation. 
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1.3 The role of PKR-mediated 4E-BPl phosphorylation in translation 

Activation of GyrB-PKR led to the induction of 4E-BPI phosphorylation at 

Thr37/46, Thr70 and Ser65, which were previously shown to be involved in the 

dissociation of 4E-BPI from eIF4E (16). Interestingly, despite the phosphorylation of 

4E-BPl at these residues, its interaction with eIF4E was not blocked by activated GyrB­

PKR. These data reveal that 4E-BPI phosphorylation is necessary but is not always 

sufficient for its dissociation from eIF4E. It is possible that dissociation of the 

eIF4E14E-BPl complex is facilitated by a factor(s), whose expression is sensitive to the 

inhibition of protein synthesis by activated PKR. Another possibility may be the ability 

of PKR to phosphorylate and modify the function of a protein(s) required for the 

dissociation of 4E-BPlIeIF4E complex. 

We also show that the interaction of eIF4E with 4E-BPI takes place in distinct 

cytoplasmic foci induced by activated PKR. These foci are reminiscent of stress 

granules, which are formed upon conditions that favor the phosphorylation of eIF2a 

inc1uding endoplasmic reticulum (ER) stress and oxidative stress by arsenite (313,314). 

Interestingly, eIF4E is recruited to the cytoplasmic granules in a complex with either 

4E-BPl or eIF4GI in cells with activated GyrB-PKR. This may indicate the presence of 

a pool of eIF4E in equilibrium between its eIF4GI and 4E-BPI-bound forms. Since 

stress granules consist of components of the 48S pre-initiation complex, the presence of 

eIF4E, 4E-BPI and eIF4GI in them could be explained by a situation in which the 

eIF4F complex is unstable thus allowing an interchange between the 4E-BPI-bound and 

eIF4GI-bound eIF4E. Another possibility is that activation of PKR favors the formation 

of the 48S pre-initiation complex independently of the eIF4F activity. This is in line 
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with other findings suggesting that inhibition of eIF4F formation by Maskin and Cup 

proteins through their interactions with eIF4E may not prevent the recruitment of the 

48S pre-initiation complex (2). Inhibition of PI3K and/or FRAP/mTOR activity is not 

sufficient to induce the cytoplasmic granules unless is accompanied by the induction of 

eIF2a phosphorylation. This indicates that eIF4E14E-BP1 interaction by itself is not 

sufficient for the formation of the cytoplasmic granules. The biological significance of 

the cytoplasmic granules induced by various forms of stress remains speculative (315). 

Since formation of stress granules is dependent on eIF2a phosphorylation, they might 

play a role in regulation of PKR-dependent apoptosis. 

Given the important role of eIF4E in cap-dependent translation, induction of 

eIF4E/4E-BP1 interaction could serve as a mechanism of translation inhibition that acts 

synergistically with eIF2a phosphorylation. We obtained evidence; however, that eIF2a 

phosphorylation exerts a dominant inhibitory effect on global protein synthesis 

regardless of the level of eIF4E and its interaction with 4E-BPl. Specifically, induction 

of eIF4E14E-BP1 interaction by rapamycin treatment did not further decrease 

translation inhibition by activated GyrB-PKR. Conversely, overexpression of eIF4E 

was not capable of overcoming the translational inhibitory effects of activated PKR. 

Therefore, it appears that eIF2a phosphorylation is the rate limiting step for the 

inhibition of cap-dependent translation. Unlike rapamycin, L Y294002 treatment 

decreased the overall protein synthesis either in the absence or presence of activated 

GyrB-PKR. This indicated that the PI3K facilitates protein synthesis without interfering 

with the eIF2a phosphorylation pathway. In fact, inhibition of the PI3K pathway by 

L Y294002 treatment did not affect eIF2a phosphorylation by activated GyrB-PKR 
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providing further evidence that the translational effects exerted by each pathway 

proceed independently. 

1.4 The biological efTects of PI3K activation by PKR 

Activation of the PI3K pathway serves as a negative feedback mechanism 

against GyrB-PKR-mediated apoptosis. This anti-apoptotic function of PI3K may not 

be exerted at the translationallevel through 4E-BPI and its interaction with eIF4E since 

treatment with rapamycin, which further induced the interaction between the two 

proteins, did not increase PKR-mediated apoptosis. It is interesting that overexpression 

of eIF4E was not able to rescue GyrB-PKR-dependent apoptosis consistent with its 

incapability to relieve cells from the translational inhibitory effects of GyrB-PKR. 

Given that eIF4E is an important anti-apoptotic component of the PI3K pathway (316), 

inhibition of PKR-dependent apoptosis by the PI3K is most probably mediated at the 

post-translational level and may involve the inactivation of apoptotic proteins by 

phosphorylation as a result of PKB/Akt activation (317,318). 

Our findings provide evidence for a role of PKR in PI3K activation and 4E-BPI 

phosphorylation in response to mitogenic signaling. In the first instance, this was an 

unexpected finding given the well-established anti-proliferative and apoptotic properties 

of the kinase. PKR-dependent apoptosis, however, is dependent on eIF2a 

phosphorylation (260,283,319), and conditions that lead to PKR activation without 

inducing the phosphorylation of eIF2a may turn PKR from an inhibitor to an inducer of 

cell proliferation. Serum induces eIF2a dephosphorylation (320) and stimulates eIF2B 

activity (321), both of which are capable of neutralizing the anti-proliferative effects of 

PKR at the translational level. The induction of the PI3K pathway by PKR may have 
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important implications in tumor biology. For instance, it was reported that both PKR 

protein and activity are induced in breast cancer cells (308,309) in which PI3K pathway 

is constitutively active (268). It is conceivable that in tumors with inactivated eIF2a , 

activation of PKR might contribute in the induction of cell proliferation through the 

activation of the PI3K pathway and/or the induction of the anti-apoptotic NF-KB 

pathway (322). 

The PI3K pathway is induced by IFNs and utilizes at least two distinct pathways 

for the regulation of mRNA translation (273). One involves the activation of p70 S6 

kinase and phosphorylation of ribosomal protein S6, and the other involves 

phosphorylation and inactivation of 4E-BPI (252,312). Our data show that PKR is 

required for the induction of 4E-BPI phosphorylation in response to IFN-y thus 

providing evidence for a potential role of the kinase in regulating antiviral responses 

through eIF4E. Although the PI3K-PKB/Akt-FRAP/mTOR pathway is activated by 

growth factors and other mitogenic stimuli to transduce pro-survival and growth­

promoting signaIs, its activation by IFNs, which suppress growth and can mediate pro­

apoptotic effects, indicates that differential regulation of the cascade by various stimuli 

can le ad to divergent biological responses (273). 

Activation of the PI3K pathway by PKR is a novel finding that reveals a dual 

but opposing biological function of the kinase. That is, PKR may have the capacity to 

inhibit or promote cell proliferation depending on a functional interplay between the 

PI3K and eIF2a phosphorylation pathways. Under conditions that eIF2a 

phosphorylation is blocked activation of PKR may facilitate cell proliferation through 

the induction of the PI3K pathway. Conversely, under conditions that eIF2a 
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phosphorylation is induced, the apoptotic function of PKR prevails over the induction 

of the survival PI3K pathway. 

1.5 The role of PI3K activation by PKR in Virus infection 

Activation of PKR by viral dsRNA is an important defense against viral 

infection, through inhibition of protein synthesis and induction of apoptosis. The 

significance of regulating PKR activity is appreciated by the distinct mechanisms 

evolved by DNA tumor viruses to circumvent PKR activation and eIF2a 

phosphorylation. During the course of evolution, viruses have developed mechanisms to 

modulate a variety of host cell signaling pathways, most importantly, those regulating 

apoptosis and cell survival (323). During acute infection, inhibition of apoptosis results 

in short-term cell viability, which creates a favorable condition for viral replication. 

Persistent inhibition of apoptosis, however, contributes to latency and chronic infection, 

which in the case of certain viruses leads to cellular transformation. Inhibition of 

apoptosis can be achieved through induction of anti-apoptotic or inhibition of pro­

apoptotic proteins. Given the important role of the PI3K pathway in cell survival, virus 

modulation of this pathway provides an alternative to the expression of viral oncogenes 

or the direct inhibition of pro-apoptotic proteins. It has bec orne evident that many 

viruses require up-regulation of this pathway to sustain long-term infections and it is 

modulated, in sorne cases, by specific viral products to create an environment favorable 

for cellular transformation. In other cases, PI3K-PKB/Akt signaling simply helps to 

create an environment favorable for virus replication and virion assembly. Thus, PKR­

mediated activation of PI3K may be utilized by the virus to facilitate its replication. 

There is actually a pre-incidence of PKR acting as a molecular clock through 
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chronological regulation of cell survival and death through activation of NF-KB and 

phosphorylation of eIF2a, respectively and this is mediated by catalytic-dependent and -

independent activities of PKR (324). Thus, the same mechanism could apply to 

upregulation of survival pathways through activation of PKB/Akt. 

1.6 PKR and PKBI AKT in aging and neurodegenerative diseases 

Recently, PKB/Akt has been implicated in senescence (325), an irreversible 

growth arrest which occurs at the end of replicative lifespan of cells and plays an 

important role in human aging and age-associated diseases (326). SignaIs other than 

extended proliferation have also been shown to induce premature senescence. These 

signaIs inc1ude mitogenic signaling, DNA damage or oxidative stress (327-329). 

Activation of p53 and telomerase deficiency also cause premature aging (330,331). A 

recent study has shown that PKB/Akt activity increases with cellular senescence and its 

inhibition extends the lifespan of human primary endothelial ceHs. Constitutive 

activation of PKB/Akt results in phosphorylation and inactivation of the forkhead 

transcription factors, which leads to accumulation of oxygen reactive species (ROS), 

which in tum induces p53 activation and premature senescence (332). 

On the other hand, PKR has been implicated in aging and neurodegenerative 

diseases such as Huntington disease (RD), Parkinson's disease (PD), Alzheimer disease 

(AD), and Amyotrophic Lateral Sc1erosis (333). The study of PKR in aging has been 

restricted to mice. In aH tissues examined which inc1uded kidney, li ver, colon, brain, 

testes, pancreas, lung, and heart, the expression of PKR was negligible in 2-month-old 

mice and significantly increased in mice 20 months of age. The function of PKR, and in 

particular active PKR, in the normal adult brain is unc1ear; however, its increase in 
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normal aging could reflect an increased vulnerability to cellular and/or environmental 

stressors that occurs concomitant with disease processes. 

In regard to neurodegenerative diseases, nuclear aggregation of phosphorylated 

PKR in the hippocampus of brain tissues has been detected. The expression of 

phosphorylated PKR in cytoplasm was not associated with neuronal cell death 

indicating that translocation of phosphorylated PKR into the nucleus might play a 

pivotaI role in neurodegenerative pathology (334). Taken together, the PKB/Akt­

dependent regulation of forkhead transcription factor in the nucleus resulting in 

senescence, accumulation of PKR in the nucleus in HD, PD and AD and our data 

indicating activation of PKB/Akt by PKR, there may be a link between PKB/Akt 

activation, induction of senescence and generation of neurodegenerative diseases by 

PKR. Based on the data collected in this part of our studies we propose a model which 

is presented in Figure 37. 
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Figure 37. A model representing activation of PI3K pathway by PKR 

Activation of PKR in response to stress condition results in phosphorylation of eIF2a 

and induction of PI3K pathway. In addition PKR is involved in activation of PI3K upon 

stimulation with growth factors and cytokines. Induction of PI3K activity results in 

activation of the downstream effectors, such as PKB/Akt and FRAP/mTOR leading to 

phosphorylation of 4E-BP1 and S6 ribosomal protein. PKR-mediated phosphorylation 

of 4E-BP1, however, does not result in its dissociation from eIF4E under stress 

conditions. 
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2. Functional interaction of HPV-18 E6 and PKR 

Regulation of protein synthesis by eIF2a. phosphorylation plays an important 

role in host cell defense against viral infection (154,155,285). Therefore, it is not 

surprising that several RNA and DNA viruses have evolved mechanisms to target PKR. 

Our findings further ex tend these observations and demonstrate a functional relationship 

between E6 and eIF2a. pathway. 

2.1 Regulation of E6 protein synthesis by PKR 

Specifically, E6 protein level is tightly regulated through post-transcriptional 

modifications. The E6 protein is maintained at low levels possibly to escape the 

immune surveillance of the host cell. Our data demonstrate that E6 protein from both 

high-risk and low-risk HPVs is subjected to proteasome-dependent degradation. In this 

regard, our data reveal a potentially important common feature, which is the first 

identified biochemical process shared between low- and high-risk HPV E6 proteins, 

with respect to both being targeted for ubiquitination and proteasome-mediated 

degradation. In addition to acting as a target for degradation, it is possible that 

ubiqutination may enhance biological function(s) of the E6 proteins. Recent reports 

have shown roles for ubiquitination in cellular trafficking, kinase activation and 

transcriptional regulation (335), and may be relevant with respect to HPV E6 

modification by ubiquitin; however, since both low-risk and high-risk HPV E6 proteins 

became polyubiquitinated this argues that ubiquitination does not contribute to the 

oncogenic properties of high-risk HPV E6. 

E6 protein is also subjected to translational control. Specifically, E6 protein 

synthesis is rapidly decreased in cells with activated PKR. The levels of 18 E6 rnRNA 
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is not decreased upon coumermycin treatment and inhibition of the proteasome pathway 

does not rescue this downregulation, which together suggest that decrease of E6 protein 

is indeed at the translationallevel. 

2.2 Inhibition of PKR-mediated eIF2a. phosphorylation by 18 E6 

Despite the significant downregulation of the viral protein, the remainder of E6 

is able to partially rescue cells from the translational blockade posed by eIF2a. 

phosphorylation. This is possibly mediated, partly, by the ability of E6 to promote the 

dephosphorylation of eIF2a. through the GADD34IPP1 holophosphatase complex. This 

notion is based on our observations that high-risk E6 interacts with both GADD34 and 

PP1 and promotes the dephosphorylation of eIF2a. in vitro. In fact, a higher amount of 

PP1 was bound to 18 E6 than 11 E6 consistent with the higher degree of eIF2a. 

dephosphorylation by the high-risk viral protein. Although the precise mechanism 

utilized by E6 to promote eIF2a. dephosphorylation through GADD34IPP1 is currently 

not known, this may be facilitated, partly, by the ability of high-risk E6 protein to be 

localized both in the nucleus and cytoplasm as opposed to low-risk viral protein, which 

exhibits predominantly nuclear localization (336). Mapping of the interaction between 

E6 and GADD34 showed that the domain of GADD34 required for binding to the viral 

protein is within the region between residues 180 and 553. The interaction is not 

mediated by the KVRF PP1-binding sequence of GADD34 since the KARA mutation, 

which abolishes PP1 binding to GADD34 (245), did not affect the interaction between 

GADD34 and 18 E6. These findings also indicate that binding of 18 E6 to GADD34 

does not interfere with GADD34IPP1 complex formation. Interestingly, PP1 was 

previously found to directly bind and nullify PKR activity through the 
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dephosphorylation of the activated kinase (337). GyrB-PKR; however, is unlikely to be 

affected by PPI since the N-terminus regulatory domain of the kinase, which is required 

for PPI binding (337), is missing from the fusion protein. In addition, PKR 

autophosphorylation is not affected in E6 expressing ceUs further supporting the notion 

that the viral protein exerts its effects downstream of the activated kinase. A role of the 

GADD34IPPI complex in eIF2a dephosphorylation is further supported by the cDNA 

microarray analysis data showing the regulation of GADD34 gene expression by GyrB­

PKR. Specifically, the rnRNA level of GADD34 is induced almost lü-fold in 

coumermycin-treated GyrB-PKR ceUs and only 2-fold in GyrB-PKRK296H cells 

(Table 1). Interestingly, GADD34 rnRNA expression was inhibited by 50% in GyrB­

PKR cells expressing FLAG-18 E6 and remained unaffected in GyrB-PKR cells with 

FLAG-ll E6 (Table 1). Since induction of GADD34 rnRNA levels was previously 

shown to be dependent on eIF2a phosphorylation (281), its inhibition by the HPV-18 

E6 further supports the inhibitory role of the viral oncoprotein in eIF2a 

phosphorylation. 

2.3 The biological effects of PKR-E6 functional interaction 

The biological consequences of eIF2a phosphorylation and induction of 

apoptosis can be best explained in the context of virus infection. The ability of viruses 

to exert total control over the apoptotic response in infected cells is critical to their 

replication and induction of pathogenicity (338). For example, inhibition of early 

apoptosis is a necessary step to ensure efficient viral replication and facilitate virus 

spread by supporting replication in a broad range of ceUs and tissues. As such, viruses 

have evolved sophisticated means to inhibit apoptosis in infected cells. For example, 
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adenoviruses and herpesviruses contain homologues of the Bcl-2 family and anti­

apoptotic proteins, whereas other viruses encode inhibitors of caspases (339). In case of 

HPV, it has become clear that E6 plays a prominent role in prevention of apoptosis 

through the proteolytic inactivation of the pro-apoptotic p53, Bak or Bax (222). Our 

findings further substantiate the anti-apoptotic function of the oncogenic E6 and provide 

strong evidence that it can be mediated through the regulation of eIF2a 

phosphorylation. Our data support the notion that the anti-apoptotic activities of E6 are 

mediated by its ability to attenuate both transcriptional and translational responses 

induced by the PKRleIF2a phosphorylation pathway. At the translational level, we 

show that inhibition of apoptosis is likely to be mediated, at least in part, by 

downregulating the pro-apoptotic Bax. Interestingly, a role of Bax in PKR-dependent 

apoptosis was previously described in mouse cells expressing a tetracycline (Tet)­

inducible PKR (195). Mechanistically, it was proposed that increased Bax protein 

synthesis resembles the translational regulation of yeast GCN4 rnRNA (141). That is, 

translation of GCN4 is controlled by the presence of 4 upstream open reading frames 

(uORFs) within the 5' untranslated region (UTR) of its rnRNA (7). Induction of eIF2a 

phosphorylation facilitates the correct initiation at the GCN4 AUG codon leading to 

increased GCN4 protein synthesis (7). In analogy to GCN4, Bax rnRNA possesses 3 

upstream AUGs, all in frame with the authentic initiation codon, the first and third of 

which are followed by a termination codon (141). This striking similarity between 

GCN4 and Bax rnRNAs has led to the hypothesis that the unusual 5' UTR of Bax plays 

a role in its translational induction upon eIF2a phosphorylation (141). It is also possible 
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that translation of anti-apoptotic genes is facilitated in FLAG-18 E6 cells and this may 

play a role in the inhibition of cell death by PKR activation. 

2.4 E6, PKR and transcription 

ln addition to translation, we provide evidence for a role of E6 in PKR-mediated 

gene transcription and apoptosis. For example, transcription of severa! pro-apoptotic 

genes is induced in cells with activated GyrB-PKR (Table 1). Expression of the se genes 

is strongly suppressed by HPV-18 E6 and to a lesser degree by HPV-ll E6. These 

genes inc1ude GADD45, whose dependency on eIF2a. phosphorylation was previously 

demonstrated in mouse cells containing a homozygous mutation at serine 51 

phosphorylation site of eIF2a. (eIF2a.S51A) (279). Specifically, GADD45 transcription 

was induced 15-fold in ER-stressed cells from wild type mice but was completely 

aboli shed in knock-in cells with the eIF2a.S51A mutation (279). Among the genes 

induced by GyrB-PKR, the melanoma differentiation-associated gene 7 (Mda-7) is an 

interesting target because of its strong apoptotic functions (340). It was recently shown 

that Mda-7 induces and activates PKR in lung cancer cells leading to the destruction of 

the tumor cells by apoptosis (341). The interferon regulatory factor 1 (IRF1) is another 

gene induced by GyrB-PKR activation (Table 1). IRFI is a protein with antiviral and 

tumor suppressor activities (294). Previous data provided evidence that transcription of 

IRFl is defective in a PKR null mouse (303) whereas the antiviral and anti-proliferative 

effects of !RF1 are mediated, at least in part, by the activation of PKR (190,342). It 

should be emphasized, however, that we do not as yet know whether transcription of aU 

the genes in Table 1 is solely dependent on eIF2a. phosphorylation. Inasmuch as PKR 

has been implicated in signaling to gene transcription through its functional interaction 
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with transcriptional factors (285), it is conceivable that transcriptional control of sorne 

of the above genes could be exerted independently of eIF2a. phosphorylation. Based on 

the data presented in this section, we propose a model for functional interaction of HPV 

E6 oncoprotein and PKR (Fig. 38). 

In addition to the data presented here, we have prelirninary observations 

indicating antagonizing effect of HPV-18 E6 on PKR-mediated PI3K activation. 

Further analysis; however, is required to address the mechanism and the significance of 

this property of E6 oncoprotein. 

Collectively, our findings provide strong evidence for a role of the oncogenic 18 

E6 in gene translation and transcription modulated by the eIF2a. phosphorylation 

pathway. Our data reveal a novel mechanism utilized by HPVs to bypass the 

translational blockade of eIF2a. phosphorylation and the induction of an antiviral 

response by activated PKR. Although the role of eIF2a. phosphorylation in virus­

mediated tumorigenesis has already been established (285), the possibility that E6 

affects various levels of translation in addition to eIF2a. phosphorylation cannot be ruled 

out. Further understanding of the molecular functions of HPV oncoproteins in 

translational control and the identification of genes that are translationally regulated in 

HPV infected cells may prove helpful in the design of strategies to combat HPV 

infection and associated disease. 
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Figure 38. A model for regulation of PKRleIF2a. phosphorylation pathway by E6 

During infection, HPV gene expression produces transcripts containing dsRNA 

structures able to activate PKR by autophosphorylation (step 1). Activated PKR then 

catalyzes the phosphorylation of eIF2a at serine 51 (step 2), an event that leads to the 

translational inhibition and induction of apoptosis (step 3). Although most of the genes 

are translationally repressed by eIF2a phosphorylation, translation of specific rnRNAs 

is likely to escape from this general translational blockade. These rnRNAs may encode 

for proteins that are involved in the inhibition of cell proliferation and induction of 

apoptosis. Translational inhibition by PKR rapidly downregulates 18 E6 protein 

synthesis (step 4). However, the remainder of 18 E6 is capable of counteracting this 

translational blockade by facilitating the dephosphorylation of eIF2a through the 

recruitment of GADD34IPP1 holophosphatase complex (step 5). This results in a 

translational relief that permits the expression of proteins with anti-apoptotic properties. 

This may represent an important mechanism utilized by the high-risk HPVs to 

counteract the antiviral properties of PKR activation and promote virus-mediated 

oncogenesis. 
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Chapter V - Contribution to the original knowledge 

Research presented within this document has provided evidence for a novei function of 

PKR in activating the PI3K pathway. These studies are sorne of the first ones to 

demonstrate a role of PKR in growth stimulatory pathways. Moreover, it provides new 

insights into molecular mechanisms of HPV E6 to counteract the anti-proliferative and 

anti-virai functions of PKR. The candidate's major contributions are summarized as 

follows: 

1. The candidate generated inducible cell lines, expressing GyrB-PKR fusion 

protein. This inducible cell line is provides an excellent tool for analyzing kinase­

dependent functions of PKR, and since aIl eIF2a kinases share homologous kinase 

domain, this system could represent aIl eIF2a kinases. Presently, these cell lines are 

used in different projects in our laboratory and our collaborator' s. 

2. The candidate demonstrated for the first time, the activation of PI3K pathway by 

PKR in response to stress conditions and growth factors. These experiments 

demonstrated that PKR induces PI3K lipid and protein kinase activity and induces the 

downstream targets involved in cell growth and survival. These studies provide further 

evidence for dual activity of PKR in regulating cell growth and apoptosis. 

3. Studies conducted by the candidate shows, for the first time, coIocaIization of 

4E-BP1 with other initiation factors to the stress granules formed in cytoplasm upon 

PKR activation. These data explains the association of 4E-BP1 with eIF4E despite 4E-
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BPI phosphorylation and dominant inhibitory effect of eIF2a. phosphorylation on 

translation. 

4. In order to address its mechanism of evasion of the host immune system and 

antiviral defense, the candidate has contributed to the studies of functional interaction 

between HPV E6 oncoprotein and the components of IFN signaling pathway, and the 

regulation of E6 expression and its stability. The contents of these studies are beyond 

the scope of this document. 

5. The candidate was first to investigate molecular mechanisms of HPV to combat 

translational inhibitory and apoptotic functions of PKR and eIF2a. phosphorylation. 

Moreover, microrray analysis performed by the candidate demonstrates that HPV 

mitigates transcriptional functions of PKR. 

6. Experiments performed by the candidate demonstrated that HPV E6 oncoprotein 

exerts antagonizing effect on eIF2a. phosphorylation pathway by recruiting 

GADD34IPPI phosphatase and promoting eIF2a. dephosphorylation. 
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