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ABSTRACT 

Optimal partitioning of three-dimensional (3-D) mesh applications necessitates 

dynamically determining and optimizing for the most time-inhibiting factors, such as load 

imbalance and communication volume. One challenge is to create an analytical model 

where the programmer can focus on optimizing load imbalance or communication 

volume to reduce execution time. Another challenge is the best individual performance of 

a specific mesh refinement demands precise study and the selection of the suitable 

computation strategy. Very-Iarge-scale finite element method (FEM) applications require 

sophisticated capabilities for using the undedying parallel computer' s resources in the 

most efficient way. Thus, c1assifying these requirements in a manner that conforms to 

the programmer is crucial. 

This thesis contributes a simulation-based approach for the algorithm analysis and 

design of parallel, 3-D FEM mesh refinement that utilizes Petri Nets (PN) as the 

modeling and simulation tool. PN models are implemented based on detailed software 

prototypes and system architectures, which imitate the behaviour of the parallel meshing 

process. Subsequently, estimates for performance measures are derived from discrete 

event simulations. New communication strategies are contributed in the thesis for parallel 

mesh refinement that pipeline the computation and communication time by means of the 

workload prediction approach and task breaking point approach. To examine the 

performance of these new designs, PN models are created for modeling and simulating 
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each of them and their efficiencies are justified by the simulation results. Aiso based on 

the PN modeling approach, the performance of a Random Polling Dynamic Load 

Balancing protocol has been examined. Finally, the PN models are validated by a MPI 

benchmarking pro gram running on the real multiprocessor system. The advantages of 

new pipelined communication designs as weU as the benefits of PN approach for 

evaluating and developing high performance paraUel mesh refinement algorithms are 

demonstrated. 
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SOMMAIRE 

Pour partitionner des applications de maillage tridimensionnel (3-D) de façon 

optimale, il faut déterminer et optimiser dynamiquement les facteurs qui ralentissent le 

plus le processus, comme le déséquilibre de charge et le volume de communication. Un 

des défis les plus difficiles à relever consiste à créer un modèle analytique dans lequel le 

programmeur puisse se concentrer sur l'optimisation du déséquilibre de charge et du 

volume de communication afin de réduire le temps d'exécution. Autre défi: pour que la 

décomposition d'un maillage spécifique se traduise par une excellente performance 

individuelle, il est impératif d'étudier et de choisir soigneusement la stratégie 

informatique la mieux adaptée. Les applications FEM (Méthode des éléments finis) à très 

grande échelle nécessitent des fonctionnalités sophistiquées pour pouvoir exploiter le plus 

efficacement possible les ressources parallèles sous-jacentes d'un ordinateur. Par 

conséquent, il est essentiel de classer ces spécifications de façon à faciliter au maximum 

le travail du programmeur. 

Cette thèse propose une approche fondée sur la simulation pour l'analyse 

algorithmique et la conception d'une méthode de décomposition de maillage 3-D FEM 

utilisant les réseaux de Petri (RdP) comme outil de modélisation et de simulation. Les 

modèles RdP mis en œuvre reposent sur des architectures système et des prototypes 

logiciels détaillés, qui reproduisent le comportement du processus de maillage parallèle. 

Par la suite, les estimations effectuées pour les mesures de la performance sont dérivées 
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de simulations par événements discrets. Cette thèse présente de nouvelles stratégies de 

communication pour la décomposition de maillage parallèle qui canalisent le temps de 

communication et de calcul informatique via deux approches: l'une repose sur la 

prédiction de la charge de travail, l'autre sur le point de rupture de processus. Pour étudier 

la performance de ces nouvelles stratégies, nous avons procédé à leur modélisation et à 

leur simulation par le biais de modèles RdP créés à cet effet. Les résultats de la 

simulation prouvent l'efficacité de ces modèles. Nous avons étudié la performance du 

protocole équilibrage de charge dynamique. En dernier lieu, les modèles RdP ont été 

validés par un programme MPI de conduite de tests de performance 

benchmarking tournant sur le véritable système multiprocesseur. Nous démontrons ainsi 

les atouts de ces nouvelles méthodes de communication ainsi que les avantages d'une 

approche utilisant les RdP pour évaluer et développer des algorithmes de décomposition 

de maillage parallèle hautement performants. 
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PREFACE 

Concerning the Format of This Thesis 

This thesis is prepared in the form of five self-contained research papers designated 

Chapters 3-7. 

Chapter 3 entitled "A preliminary Approach to Simulate ParaUel Mesh Refinement 

with Petri Nets for 3-D Finite Element Electromagnetics" appears in the refereed 

conference proceedings of the 10th International Symposium on Antenna Technology 

and Applied Electromagnetics (ANTEM 2004). 

Chapter 4 entitled "Analysis and Design of paraUel 3-D Mesh Refinement Dynamic 

Load Balancing Aigorithms for Finite Element Electromagnetics with Tetrahedra" and 

Chapter 5 entitled "ParaUel Mesh Refinement for 3-D Finite Element Electromagnetic 

with Tetrahedra: Strategies for Optimizing System Communication" are published in the 

IEEE Transactions on Magnetics, Volume 42, Issue 4, Pages 1235-1238 and pages 1251-

1254, respectively. 

Chapter 6 entitled "Efficient Pipelined Communicaiton Design for ParaUel Mesh 

Refinement in 3-D Finite Element Electromagnetics with Tetrahedra" and Chapter 7 
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entitled "Parallel Hierarchical Tetrahedral-Octahedral Subdivision Mesh Refinement: 

Performance Modeling, Simulation and Validation" are submitted to the IEEE 

Transactions on Magnetics. 

The five papers are organized into a cohesive dissertation with the addition of three 

chapters and five connecting pages: Chapter 1 serves as an introduction to the thesis, 

Chapter 2 gives a comprehensive literature review, and Chapter 8 provides the discussion 

and conclusion. The short linking pages are also included to provide logical bridges 

between the different papers, one of each conjunction of two papers. 

Contributions of Authors 

The applicant, Da Qi Ren is the primary author of chapters 1-3, 5-8, and the second 

author of chapter 4 of which Prof. Dennis D. Giannacopoulos is the primary author. 

Prof. Dennis Giannacopoulos initiated the research, and contributed ideas, suggestions, 

guidance, challenges, inspirations, insightful discussions, manuscript editing, support and 

other invaluable supervision through out the thesis. The design, execution, interpretation 

and reporting of the research were primarily performed by the applicant Da Qi Ren. 

Prof. Steve McFee is the co-author of chapter 7 and 8 who contributed suggestions, 

insightful discussions and manuscript editing. 
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Chulhoon Park and Baruyr Mirican are co-authors of chapter 8. They contributed the 

MPI co ding work. 

3 



CHAPTER 1: Introduction 

1.1 Mesh Retinement in Finite Element Method 

The finite element method (FEM) is a powerful numerical technique for the 

approximate solution of continuum electromagnetic problems [1]. The FEM requires the 

discretization of the spatial domain with finite elements: for two dimensional problem 

triangles and rectangles, in three dimensions tetrahedral and hexahedral elements are 

commonly used. Aiso a mixture of different types of elements is possible, but after the 

evaluation of various other implementations and for simplicity, tetrahedral discretization 

is the most popular to be applied in solving the electromagnetic problems. 

The resolution of the finite element mesh, i.e. the maximum size of the finite elements, 

is determined by the smallest features in the solution of the goveming partial difference 

equations. These features need to be properly resolved, and the approximation of the 

exact solution by the test functions has to be sufficiently accurate to give meaningful 

results. In order to reduce the size of the initial finite element mesh so as to make it fine 

enough to resolve the details of the geometrical model, global or partial mesh refinement 

can be do ne at mn time. This makes the mesh geometry in the input data files much 

smaller. Moreover, convergence of the results will usually be checked with a refined 

4 



finite element mesh. Thus, the creation of the geometrical model and its mesh refinement 

are very demanding tasks, which require sophisticated tools [2][3]. 

An ideal mesh generation and refinement method can lead to optimal complexity and 

give the most accurate results with the smallest numerical computational effort. High 

performance mesh refinement algorithm development is a very active research are a, 

which is significant in many FEM applications such as numerical electromagnetics. 

1.2 Statement of Problem 

Determining accurate 3-D finite element solutions for very-large-scale problems in 

electromagnetics can be highly challenging and computationally expensive. A number of 

the component procedures and stages involved in the FEM solution process can be 

accelerated with parallel processing. 3-D mesh refinement is one of them, because 

modem FEM applications can require extremely large numbers of elements. 

There are two basic issues to consider in parallel 3-D mesh refinement. The first is 

data parallelism: i.e. exploiting the concurrency in the mesh refinement by subdividing 

the complete space into sub-domains. The second is function parallelism and distributed 

shared memory management: i.e. exploiting parallelism inherent in the algorithm itself, 

including the load balancing, inter-processor communication etc. In data parallelism, an 

existing method to handle the complexities of full 3-D mesh refinement is geometry 

decomposition. This takes apart the topological features of the upper level domain into 
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sub-domains, refines meshes in each sub-domain, and then reassembles the sub-domains 

to create a comprehensive model for the complete space [4]. Function parallelism 

manages the mapping of logical shared address space and the locating and accessing of a 

needed data item among processing elements (PEs), and facilitates an efficient 

communication scheme in a parallel or shared memory system. Most approaches handle 

this by utilizing sorne kind of distributed shared memory management and inter processor 

communication method. 

Complexities of load balancing and inter-processor communications are two of the 

crucial challenges in developing high performance parallel mesh refinement software. In 

a parallel program the problem is initially split up into parts and assigned to each 

processor in the parallel system. In order to achieve the maximum parallel speedup, 

every processor working for the parallel pro gram should be busy all the time, otherwise 

delays and idle time will reduce the overall performance. For a heterogeneous 

environment composed of different speeds and capabilities processors, the numerical 

problem has to be distributed following an approach that makes all processors complete 

their assignment at the same time, thus no one has to wait for others to synchronize their 

results. [5] Dynamic load balancing (DLB) schemes are taken into consideration to 

efficiently utilize the computing resources provided by distributed systems. The 

underlying DLB algorithm methods insert and remove finite elements and modify the 

number of unknowns at run time, thus, the computational effort will increase for 

processors working on a partition of the finite element mesh where elements have been 

inserted, and decrease for those where elements have been removed. These operations 
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will disturb the initial load balancing and require a new partitioning of the finite element 

mesh, redistribution of the current data to the processors and re-initialization, before the 

calculation can be resumed [6]. The partitions generated by load balancing algorithms 

should be optimized with the following goals in mind: first to balance the workload on 

every level; second to maintain data locality; third to minimize inter-processor 

communication; and fourth to minimize number and optimize the size of patches. A patch 

is a piece of space in a sub-domain that is to be relocated by the load balancing algorithm. 

On the other hand, research in inter-processor communication (IPC) on parallel and 

distributed memory multiprocessors involves the investigation of efficient routing and 

collective communication algorithms relative to different kinds of networks. IPC has 

generally been implemented using shared memory, local networks, seriaI communication 

links or first in first out ports [7]. The performance of shared memory systems is limited 

by the multiprocessor bus bandwidth. As processors are added to the system, message 

traffic may overload the bus and performance may degrade. In cases where bus 

bandwidth is not a limiting factor, shared memory systems offer the advantage that 

globally accessible data is directly available for every task. In general, the performance 

requirements inc1ude high throughput, low latency and low overhead. To analyze a 

parallel algorithm' determining the number of computational steps, estimating 

communication overhead and transmission speed are integral. In a message passing 

system, the time required to send any message must be considered in the overall 

execution time of a problem. The parallel execution time is composed of two parts: a 

computation part and a communication part. The computation time can be estimated in a 
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similar way to that of a sequential algorithm. In the case when more than one process is 

being executed simultaneously, the computation time is the steps of the most complex 

process. In the analysis of the computation time it is usually assumed that aIl the 

processors are identical and operating at the same speed. This is suitable for a specially 

designed multiprocessor, but may not be the case for workstation clusters because one of 

the powerful features of such clusters is that the computers need not be the same. Taking 

into account heterogeneous computers would be difficult in a mathematical analysis, 

which is why the use of identical computers is assumed. Different types of computers are 

taken into account by choosing implementation methods that balance the computational 

load across the available computers. The communication time depends upon the size of 

the message, the underlying interconnection structure, and the mode of data transfer [8]. 

The high performance IPe for parallel mesh refinement requires maintaining data locality 

and communication in the synchronization phase when adjacent patches are not in the 

same partition. The efficient inter-processor communication strategy does the following: 

first it minimizes inter-processor data transmission latency; second it minimizes the 

number of patches; third it adjusts the size of patches for cache optimizations; and fourth 

it minimizes data movements while re-balancing [9]. 

Due to the computational complexity of paraUe1 mesh refinement systems, the 

parallelisation of real applications is a complex and time consuming task. Even with 

powerful multiprocessors and distributed systems, the performance of paraUe1 FEM mesh 

refinement is highly dependent on the efficiency of programming paradigms and the 

architecture of parallel computing systems. In the development of a parallel mesh 
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refinement system the programmer must consider both the results generated by the 

pro gram under development and the behaviour of the parallel pro gram in order to obtain 

the best possible performance. 

1.3 Challenges of Algorithm Design Development in the Scope of the Thesis 

The main challenge is to create an analytical model where the programmer can focus 

on optimizing load imbalance or communication volume to reduce execution time in 

parallel 3-D mesh refinement. A desired model helps the programmer select and 

configure the optimal mesh configuration, simulation and computer characteristics. 

Individual suitability needs to be considered. No single partitioning scheme performs 

best for all types of parallel mesh refinement applications and systems. For a given 

application, the most suitable partitioning technique depends on input parameters and the 

application's run-time state [10]. This necessitates adaptive run-time management, 

inc1uding the use of application runtime state to select and configure the best partitioning 

strategy. 

Another challenge arises from large-scale parallel mesh refinement applications, such 

as meshing implementations which produce up to 109 elements. Parallel mesh refinement 

applications place different requirements on the partitioning strategy to enable efficient 

use of computer resources. Significantly improving the scalability of large-scale mesh 

refinement requires sophisticated capabilities for using the resources of the underlying 
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parallel computer in the most efficient way. A way of classifying these requirements in a 

way that conforms to the programmer is crucial. 

Parallel mesh refinement methods offer the potential for more efficient accurate FEM 

solutions in electromagnetics, however, its parallel implementation presents many 

challenges in dynamic resource allocation, data-distribution, load-balancing, and run-time 

management. The implementation efficiency of parallel mesh refinement applications is 

limited by the computational capacity, parallel infrastructure, load balance, 

communication and synchronization overheads minimization. 

Finally, validating the performance predictions of the model by comparing them with 

actual measurements from real computation is another challenge. The results must show 

that the proposed model generally captures the inherent optimization needs in parallel 

mesh refinement applications. To conclude that a model is making a useful contribution, 

tracking and adapting to the behaviour of the model optimization should potentially lead 

to a decrease in execution times. 

1.4 Motivation 

The primary motivation for this research is to explore performance prediction facility 

in the development of parallel mesh refinement, with the focus on the usability of 

simulation tools for reducing the user effort in the parallel programming cycle. Based on 

the prediction facility, the programmer can pro vide a synthetic skeleton of the parallel 
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meshing application, including sorne parameters that characterise it. This skeleton can be 

used as input to the simulator and the performance prediction analysis can be done before 

completely developing the application. Therefore, the information obtained is related to 

an application that has not been completely developed and this fact saves the time and 

effort of the programmer. 

A secondary motivation is to investigate the improvement of the scalability of large

scale mesh refinement from the underlying simulation model, and to explore the 

dependency between the computation performance and the number of processing 

elements in the computer resource. 

The final motivation is to explore efficient communication strategies to reduce latency 

for paraUel 3-D finite element mesh refinement in electromagnetics. 

1.5 Thesis Objectives 

The goal is to investigate effective modeling and simulation technologies for the 

performance and computational complexity prediction in the design development and 

optimization of three-dimensional (3-D), paraUel mesh refinement. It is also to design 

and test new pipelined communication strategies for minimizing the inter-processor 

communication costs in this mesh refinement. The outcome from this analysis will help 

paraUel program developers determine which options provide the best performance. In 

detail, the objectives are described as follows. 
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The first objective is to model and simulate the performance of parallel Hierarchical 

Tetrahedral-Octahedral (HTO) Subdivision mesh refinement by Petri Nets, and provide 

the paraUel speedup results with increasing number of elements. The second objective is 

to sample and translate to latency characteristics in the simulation model from the given 

application parameters such as the grid hierarchy and the number of processors; and 

system parameters such as CPU speed and communication bandwidth. Thirdly, to model 

and simulate the performance of the Random Polling Dynamic Load Balancing (DLB) in 

parallel HTO mesh refinement, and examine the results by comparing them with the 

performance of parallel HTO mesh refinement without DLB. The fourth objective is to 

develop efficient communication strategies for improving the parallel inter-processor 

communication performance. The finally objective is to conduct an experimental 

evaluation and validation of this PN model, showing its effectiveness for accurately 

capturing the dynamic behaviour of parallel mesh refinement applications. This will be 

achieved using MPI benchmarks running on the real parallel computer. 

The following research achievements are produced: first, the performance model and 

simulation of parallel HTO mesh refinement by Petri Nets is created, and the speedup 

results are measured; second, the system parameters are successfully abstracted and 

verified through the model validation; third, the Random Polling Dynamic Load 

Balancing is applied to parallel mesh refinement and the performance is examined by its 

PN models; fourth, two pipelined communication strategies are designed, prediction 

scheduling strategy and break point strategy. Finally, the performances of the two new 

designs have been examined by PN models and the validation of the PN models are 
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successfully performed by MPI benchmarks. Note that, the tetrahedral elements 

considered in this work are appropriate for use in both vector and nodal finite element 

implementations. 

1.6 Claim of Originality 

This thesis, to the best of author' s knowledge, presents the following original 

contributions: 

• A methodology ofmodeling and simulating the performance ofparallel3-D mesh 

refinement by using Petri Nets; 

• A new pipelined communication design: prediction scheduling approach, and its 

performance examination; 

• A new pipelined communication design: break points approach, and the design's 

performance examination; 

• A performance study for the application of Random Polling Dynamic Load 

Balancing on the parallel 3-D HTO mesh refinement and; 

• Inception of concepts: Workload Prediction Pipelined Communication; Breaking 

Points Pipelined Communication; Load Imbalance Ratio. 
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1. 7 Overview of the Thesis 

Chapter 2 presents a comprehensive review of the literature conceming the existing 

approach for performance prediction. It addresses the following themes: formaI modeling 

and simulating techniques; the application of Petri Nets (PN); the design and 

development of Dynamic Load Balancing (DLB); and inter-processor communication in 

parallel mesh refinement. Chapter 3 introduces the preliminary approach to apply the PN 

method in modeling and simulation of parallel 3-D mesh refinement. In Chapter 4 both 

the application of PN method for the performance evaluation of a specifie DLB scheme 

in 3-D parallel mesh refinement and the Random Polling Dynamic Load Balancing 

Protocol are described. Chapter 5 presents a new pipelined communication design in 

parallel mesh refinement, namely load prediction approaches, and examines its 

performance with the PN method. Chapter 6 elaborates on another new pipelined 

communication design for efficient inter-processor communication, namely, a breaking 

point approach, and the efficiency of the design is also examined by the PN model. To 

validate the PN method in developing high performance parallel mesh refinement 

algorithms, the PN models and simulations in terms of MPI benchmark computation 

results obtained from actual software implementation and experimental performance 

measurement on the real parallel environment are compared and evaluated. The 

validation results are provided in Chapter 7. Chapter 8 is a brief summary and conclusion, 

and suggestions for future work. 
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CHAPTER 2: Literature Review 

2.1 Problem Formulation and Component Issues of the Thesis 

The structured contents of the research include the design, modeling, implementation 

and evaluation ofparalle13-D mesh refinement, as shown in Figure 2.1. 

Dcsign Dcvcloprncnt 

Parallel Algoritluns in 3-D FEM Mesh Refmernent 

! 
Dcsign Modcling - Validation Tirned Petri Nets 

l Modeling J Simulation Expcrimcnts 
Vs. 

Dcsign Simulation ExperirnentsJ Computing C J MPI Irt;'lernentation 
1---

Tirned Petri Nets 

l 
Output ofDcsign Analysis 

Performance Results and 
Best Solution 

Figure 2.1: Components of the research. 
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As part of this research, techniques for parallelization, task mapping and parallel 

pipelined communications have been developed and deployed. Another important goal of 

this project is to "develop a performance modeling tool in parallel FEM mesh refinement 

optimization by using the Petri Nets approach. As shown in Figure 2.1, the work 

involves: (1) the design model and design simulation by timed Petri Nets created for 

examining and evaluating the performance of the new algorithm design; (2) experimental 

evaluation of the new algorithm design by applying MPI benchmarks running on the real 

parallel computer; (3) validation of the correctness of the PN models by checking the 

simulation results with the computation results; (4) determining the best solution to a 

specific problem by analyzing the results from PN modeling and performance simulation. 

Other studies have shown significant efforts related to the work in each component of 

the the sis shown in Figure 2.1. The literature review below is discussed and organized 

thematically and methodologically. 

2.2 Modeling and Simulation for Performance Prediction in Parallel Algorithm 

Design 

Performance prediction evaluates an algorithm with modeling and simulation tools in 

the earlier design stage of software development to provide valuable information and 

optimizations that will result in increased performance. Performance study requires an in

depth knowledge of the system being evaluated and a careful selection of the 

performance evaluation technique depending on the intended goals of that study. 
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Converting a given performance problem to a form in which established performance 

evaluation techniques are applicable and time constraints imposed by system designers 

can be met constitutes an important part of the performance analyst art. 

Simulation models can be categorized broadly as being probabilistic or deterministic. 

Trace driven and execution-driven simulation belong to deterministic simulation. Among 

situations where probabilistic models are more suitable, often a representation is given by 

considering a collection or a family of random variables instead of a single one. 

Collections of random variables indexed by a parameter such as time and space are 

known as stochastic processes. CUITent performance prediction techniques are 

investigated in the literature review and sorne typical simulation modeling techniques and 

architectures developed by research institutes and technology companies are summarized. 

A traditional modeling and simulation technique is using benchmarking and cyc1e

accurate simulators to enable quantitative modeling of performance for high performance 

computing applications. Performance Modeling and Characterization (PMac) developed 

by the San Diego Supercomputer Center [11] characterizes influential factors affecting 

performance by measuring each in isolation, and then integrating these factors to arrive at 

models predictive of performance. PMac is built upon three distinct techniques: first, they 

use machine profiles for the characterizations of the rates at which a machine can carry 

out fundamental operations abstract from the particular application; second, the memory 

access pattern signature for determining the loads and stores depending on the size of the 

problem and access pattern; and third, the application signatures, i.e. the characterizations 
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of an application which independent of host machine, III detailed summaries of the 

fundamental operations to be carried out. 

Trace driven and execution-driven simulation are very popular in computer system 

analysis due to their high credibility. In trace driven simulation, data parameters 

previously measured from traces of memory references have been first collected, these 

data are the input of system model that simulates the behavior of the computer system 

under consideration. A trace is a time-ordered record of events of the system under 

construction. Both trace-driven and execution-driven simulation belong to the class of 

deterministic performance evaluation techniques because each simulation repetition 

produces exactly the same results for the measures of interest and there is no randomness. 

Integrated Software Infrastructure Centers (ISIC) in Scientific Discovery through 

Advanced Computing created automated modeling tools that are able to characterize 

large applications running at scale while simultaneously simulating the memory 

hierarchies of multiple machines in parallel [12]. They ported the requisite tracer tools to 

multiple platforms, added control-flow and data dependency analysis to the tracers used 

in the performance tools. Also they used the modeling tools to develop performance 

models for certain strategic codes and applied the modeling methodology to make a large 

number of "blind" performance predictions on certain applications targeting the most 

available system architectures at present. Researchers at the University of Califomia at 

San Diego address the problem of modeling time-sensitive, dynamic and heterogeneous 

performance information and using it to predict performance of distributed applications 

in a meta computing environment [13]. This methodology involves the design and 
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development of structural models / performance grammars. Performance predictions 

made by the system are generated from compositional models. Structural models consist 

of components which represent the performance activities of the application. Each 

component can be instantiated using time-dependent dynamic parameters at the level of 

"accuracy" appropriate for its use. Quality of Information (Qoln) measures measure each 

prediction generated by a processing element (PE). Qoln measures and values provide a 

way of quantifying qualitative information so that it can be used to improve application 

schedules and ultimately application performance. 

In parallel stochastic processes, the knowledge of the behavior of the stochastic 

process is highly desirable in understanding the real-life situation. Stochastic modeling is 

a more high-Ievel abstraction of the system. The Chaos Project is the performance 

prediction for large scale data intensive applications on large scale parallel machines at 

the University of Maryland [14]. The Chaos project mainly focuses on performance 

prediction for applications for existing and future parallel machines. The vast amount 

data processed requires expensive hardware configurations and renders direct 

experimentation on the target machine virtually impossible. Chaos developed a 

simulation-based framework to predict the performance of data intensive applications for 

it. The framework consists of two components: application emulators and a suite of 

simulators. Application emulators accurately capture the behavior of data intensive 

applications. The simulators model the IIO and communication subsystems of the parallel 

machine at a level sufficient for accurately predicting application performance. They 

introduced a new technique called loosely coupled simulation that abstracts the 
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processing structure as a simple dependency graph into the simulator while preserving the 

application workload. The technique allows accurate and relatively inexpensive 

performance prediction for very large scale parallel machines. 

Analytical / numerical models and queumg theory are used to explore and solve 

fundamental, theoretical problems in the analysis of application data, mathematical 

models of system, workloads and performance. The IBM research group has focused on 

the analysis of data from a wide range of systems to demonstrate complex arrivaI and 

service patterns that include timing dependencies and non-stationary effects. The IBM 

research group shows that these complexities can have a significant impact on 

performance. These theoretical results may be further exploited to develop practical 

solutions for performance problems in many different areas of research such as traffic 

generation and benchmarking, model validation, workload and performance 

forecasting [15]. 

A modem complex system is often composed of many interconnected components that 

exhibit rich behaviors due to the complex system-wide interactions. Modeling these 

systems leads to complex stochastic hybrid models that capture the large number of 

operational and failure modes. The distributed and parallel systems group at the 

University of Innsbruck separates the performance simulation into two parts: system level 

prediction [16] and application level prediction [17]. In system level prediction, a 

distributed system called "network weather service" is used to periodically monitor and 

forecast the performance of the network and the computational resources. The 

20 



information can be delivered over a given time interval. Also they designed a Resource 

Prediction System which is an extensible toolkit for designing, building, and evaluating 

systems that predict the dynamic behavior of resources in distributed systems. 

Application level prediction including the application behavior, data transfer predictions, 

grid information, and run times use historical information. In detail, the hybrid approach 

is implemented in two steps. (1) Modeling: employs the Unified Modeling Language 

(UML) to model parallel and distributed applications. To provide an adequate tool 

support they have developed Teuta, which is a graphical editor for UML. (2) Simulation: 

a parameterized simulation tool was developed for cluster and grid architectures based on 

the UML model of an application and a simulator for a target architecture in the building 

blocks approach. 

2.3 Modeling and Simulation Tools Design 

This is a review of the design of modeling and simulation software in author' s scope 

during the research work. A modeling and simulation tool is always required to 

accurately demonstrate all aspects of parallel systems, especially sorne graphical based 

software packages are used for model debugging, validation, and verification. 

UML (Uniform Modeling Language) has been used to model the application and a 

simulator for target paraUel architecture which can predict the execution behavior of the 

application model on cluster and grid architectures. Researchers at the University of 
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Innsbruck developed the UML based modeling tool "The Performance Prophet" [18] for 

high performance computing system modeling and simulation. 

Based on the MPI and OpenMP paradigms, IBM High Performance Computing 

Toolkit (HPCT) [19] is an integrated environment for performance analysis of sequential 

and parallel applications. It provides a common framework for IBM's mid-range servers, 

including pSeries and eSeries servers and Blue Gene systems, for both AIX and Linux. 

They also have projects that aim to strengthen the HPCT toolkit and exp and to coyer 

most aspects of performance analysis for high-performance computing, including CPU, 

memory, communication and 1/0 profiling. 

VHDL based simulation kemel has been implemented on top of general purpose time 

warp simulation kemel, this combination provides paraUel VHDL simulation capability, 

namely TyVIS. The TyVIS aUows user to simulate and execute VHDL codes that have 

been translated into the TyVIS C++ intermediate form. The VHDL simulator provides 

the functionality required by a VHDL simulation kemel as specified by the VHDL LRM 

[20]. 

C-based simulation language is developed by the ParaUel Computing Laboratory at 

UCLA, namely Parsec, for sequential and parallel execution of discrete-event simulation 

models. It can also be used as a paraUel programming language. It is available in binary 

form for academic institutions only [21] [22]. GloMoSim is a scalable simulation 

environment for wireless and wired network systems. It employs the parallel discrete-
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event simulation capability provided by Parsec. GloMoSim currently supports protocols 

for a purely wireless network. If s anticipated that in the future it will be possible to 

simulate a wired as weIl as a hybrid network with both wired and wireless capabilities. 

GloMoSim and the binary code can be downloaded by academic institutions for research 

purposes only. Commercial us ers must use QualNet, the commercial version of 

GloMoSim [23]. 

Software Performance Engineering (SPE) techniques have the potential to reduce cost 

and improve a systems' reliability. These techniques use performance models to provide 

data for the quantitative assessment of the performance characteristics of software 

systems as they are developed. SPE·ED is a tool designed specifically to support the SPE 

methods and models defined in Connie U. Smith's book [24]. Using a small amount of 

data about envisioned software processing, SPE·ED creates and solves performance 

models, presenting visual results. It provides performance data for requirements and 

design choices and facilitates the comparison of software and hardware alternatives for 

solving performance problems. 

2.4 Petri Nets 

A Petri Net (PN) is a graphical and mathematical modeling tool which consists of 

places, transitions, and arcs that conne ct them. The concept of Petri Nets has its origin in 

Carl Petri's 1962 dissertation. Petri Nets are a promising tool for describing and studying 

systems that are characterized as being concurrent, asynchronous, distributed, paraIlel, 
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deterministic, and stochastic. The development of high-Ievel Petri Nets in the late 70's 

and hierarchical Petri Nets in the late 80's promoted Petri Nets with data concepts and 

hierarchy concepts. Coloured Petri Nets (CPN) is one of the two most weU known 

dialects of high level Petri Nets. CPN incorporates both data structuring and hierarchical 

decomposition without compromising the qualities of the original Petri Nets. CPN 

combine the strengths of ordinary Petri Nets with the strengths of a high-Ievel 

programming language. Petri Nets provide the primitives for process interaction, while 

the programming language provides the primitives for the definition of data types and the 

manipulations of data values. A CPN model consists of a set of modules and each 

contains a network of places, transitions and arcs. The modules interact with each other 

through a set of well-defined interfaces, which is similar to many modem programming 

languages. Another most weU known approach, Stochastic Petri Nets, were formaUy 

developed in the field of computer science for modeling system performance. They 

exponentiaUy distribute firing time which is attached to each transition. In Generalized 

Stochastic Petri Nets (GSPN), transitions are aUowed to be either timed exponentiaUy 

distributed firing time or immediate zero firing time. Immediate transitions always have 

priority over timed transitions. GSPN analysis can be separated into four stages: 

generating the extended graph which contains the markings of stochastic information 

attached to the arcs so aU the markings are related to each other; eliminating the 

vanishing markings with zero sojoum times and the corresponding transitions; analyzing 

the steady state transient and cumulative behaviour; outputting the measures such as the 

average number of tokens in each place and the throughput of each timed transition. 
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Petri Nets are popular in computer performance study and evaluations. There are 

existing varieties of Petri Nets software developed for different purposes in system 

modeling and simulation. We review sorne typical approaches in this chapter. 

The work in [25] presents an experimental implementation of the asynchronous 

decomposition method for the high level Petri net named Stochastic Well formed Nets 

(SWN). The method combines multi-valued decision diagram methods for structured 

Markov chains with the theoretical results for decomposable SWN. The implementation 

allows computing performance indices for very large and very symmetric systems. 

Jeremy T. Bradly [26] present an extended Continuous Stochastic Logic (eCSL) that 

provides an expressive way to articulate performance queries at the Semi-Markov 

Stochastic Petri Nets (SM-SPNs) model. SM-SPNs are a high level formalism for 

defining semi-Markov processes. It supports queries involving steady-state, transient and 

passage time measures. Computational Algorithm for Product-Form of Competing 

Markov Chain [27] considers a particular class of stochastic Petri Nets exhibiting a 

product form solution over sub-nets. The considered product form solution criterion is 

based on a factorisation of the equilibrium distribution of the model in terms of 

distributions of the continuous time Markov chains of the basic sub-models. They can 

easily be adapted for other performance formalisms where the identification is considered 

in [27]. There are different kinds of stochastic Petri Net-based modeling paradigms in 

[28]: Generalized Stochastic Petri Nets (GSPNs), Deterministic and Stochastic Petri Nets 

(DSPNs), and Fluid Stochastic Petri Nets (FSPNs). Marsan et al. modeled a wireless 

internet access system via the global system for mobile (GSM) communications [29]. 
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Their work shows that aIl three Petri Net-based paradigms considered provide very 

similar performance predictions for sorne configurations of GSM/GPRS systems, and for 

sorne of the performance metrics of interest. A timed hierarchical coloured Petri Nets 

framework for modeling distributed computing environments is used in the web server 

performance analysis [29]. Analysis of the performance of the web server model reveals 

how the web server will respond to changes in the arrivaI rate of requests, and alternative 

configurations of the web server model were examined. 

In this thesis, Petri Nets is introduced for the modeling, analysis and design of 

algorithms in parallel finite element mesh refinement. Petri Nets-based models allow for 

a relatively detailed description of a system due to their formaI syntax and functional 

semantics, and can reveal key characteristics of system performance stochastically. While 

Petri Nets have been used for discrete event-based simulation of various applications, to 

our best knowledge, they have not been considered previously for parallei 3-D mesh 

refinement for finite element electromagnetics with tetrahedra. In addition, we use the 

proposed approach for the design of a random polling (RP)-DLB algorithm and new 

design of pipelined communication algorithms for a specific 3D parallei mesh refinement 

model suitable for FEM electromagnetics with tetrahedra. 

2.5 Dynamic Load Balancing for Structured Adaptive Mesh Retinement 

Load balancing is an important performance issue in parallel algorithm design. It 

intends to achieve the minimum execution time by spreading the tasks evenly across the 
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processors. Based on this, the redistribution of load among the processors during 

execution time is performed in order to make each processor have the same or nearly the 

same amount of work load. Dynamic load balancing (DLB) methods decide which 

processor an idle processor should ask for more work, these methods can be divided into 

two categories: (1) in the pool-based method (PBM), one control processor has all the 

incomplete work, and an idle processor asks this fixed processor for more work. (2) In a 

peer-based DLB method, aIl the work is initially distributed among different processors, 

and an idle processor selects a peer processor as the work donor by using a DLB method 

such as random polling, nearest neighbour, and global round robin (GRR) or 

asynchronous (local) round robin (ARR). This thesis examines the performance of 

random polling DLB in parallel HTO mesh refinement, and this review lists the CUITent 

dynamic load balancing approaches for parallel3-D mesh refinement applications. 

There are a number of infrastructures that support dynamic load balancing for parallel 

and distributed implementations of a parallel mesh refinement application algorithm. 

Pollack [33] proposed a scalable hierarchical approach that considers dynamic load 

balancing in parallel and distributed systems, and implemented a system named Parallel 

Load Balancer (PaLaBer) on the Intel Paragon XP/S. It uses multilevel control for 

dynamic load balancing and for the communication manager. This hierarchical load 

balancer uses both a non-pre-emptive and pre-emptive process migration to balance load 

between the processors. PaLaBer targets overall scheduling and load-balancing of tasks 

from multiple applications rather than dynamic load-balancing for adaptive applications 

such as parallel mesh refinement. 
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Hierarchical Partitioning Aigorithms (HP A) partitions the computational domain into 

sub-domains which assign each sub-domain to dynamically configure hierarchical 

processor groups. Processor hierarchies and groups are formed to match natural 

hierarchies in the grid structure [34]. This approach is more flexible and can be static or 

adaptive, allowing the distribution to reflect the state of the adaptive grid hierarchy and 

exploit it to reduce synchronization requirements, improve load-balance, and enable 

concurrent communications and incremental redistribution. 

In addition, there are adaptive computational and data-management engines for 

parallel mesh refinement, such as: Paramesh [30], which adds adaptation to existing seriaI 

structured grid computations; SAMRAI [31], which is an object-oriented framework for 

implementing parallel structured adaptive mesh refinement simulations; and other 

approaches such as AMROC [32]. 

2.6 Inter-Processor Communication in Parallel Mesh Refinement 

The network connection and communication speed, and the communication patterns of 

the parallel programs can critically affect the performance of the message passing 

machines. In distributed-memory multi-computers, synchronization, data sharing and the 

speed and efficiency of communication are very important for overall performance. The 

general study of inter-processor communication is not covered in this review. The inter-
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processor communication in parallel mesh refinement has its specific characteristics to be 

investigated in this thesis. 

Two important factors are the size of work transfer and the data arrangement. If 

communication cost is negligible, the smallest possible piece of work may be transferred 

for achieving best possible performance. In general, the size of work-transfer depends on 

communication cost among other parameters. The data arrangement in parallel inter

processor communication between each adjunct do main is another important issue that 

can affect the blocks in communication. This review provides in detail the inter-processor 

communication schemes that are currently used in 3-D parallel meshing software. 

To optimize inter-processor communication at the level of algorithm design, a typical 

method is patch strategy. Patch strategy is an algorithm that supports solution at the 

algorithm level description of data transfer [36]. It works as an interface to user-defined 

coarsen 1 refine operations and boundary conditions. The phases of computation are 

expressed using variables, and coarsen/refine operators that are independent of mesh 

configuration. The communication schedule manages data transfers, and the algorithm 

automatically treats complexity of different data types. 

Sorne existing schemes in parallel mesh refinement software are developed to manage 

data transfer between adjacent partitions. The approach is defined in the data packaging 

level of the communication layers. Amortize cost [35] is one of the inter-processor 

communication approaches for structured adaptive mesh refinement. It creates sending 
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and receiving sets over multiple communication cycles, data from various sources are 

packed into single message stream. This approach supports complicated variable-Iength 

data, one send per processor pair with low latency. 

Another approach developed at the task level parallel implementation is given in [37]. 

It aims to reduce the re-gridding cost of parallel mesh generation for large-scale parallel 

computers. The clustering algorithm is parallelized by packaging the SPMD (Single 

Program Multiple Data) implementation as asynchronous, interruptible tasks. A task 

manager selects active tasks to minimize communication wait times. This task parallel 

implementation significantly Improves scaling trend over the synchronous 

implementations. Clustering cost scales much better than output globalizing cost. 

Different from the above inter-processor communication approaches, the goal of the 

research in this thesis is to design new pipelined communication methods, and apply 

the se new designs to the specific problem of hierarchical tetrahedral and octahedral 

subdivision. Aiso the behaviour of the communication components in the new designs are 

modeled, and their performances are simulated. 
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CHAPTER 3: A Preliminary Approach to Simulate 

Parallel Mesh Refinement with Petri Nets for 3-D Finite 

Element Electromagnetics 

Preface 

The following chapter is included as a paper published in the Conference Proceedings 

of the 10th International Symposium on Antenna Technology and Applied 

Electromagnetics (ANTEM 2004), pages 127-130, Ottawa, Canada, July 20-23,2004. 

The paper's role is to introduce the Petri Nets methodology and the preliminary 

application ofPN on modeling and simulating parallel3-D mesh refinement, specifically, 

the Hierarchical Tetrahedral and Octahedral Sub-division mesh refinement algorithm. 

Based on the PN model presented in this paper Random Polling Dynamic Load 

Balancing protocol was examined in chapter 4 and the new design of pipelined 

communication approaches were evaluated in chapters 5 and 6. 
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CHAPTER 3: A Preliminary Approach to Simulate Parallel Mesh 

Refinement with Petri Nets for 3-D Finite Element Electromagnetics 

Da Qi Ren and Dennis D. Giannacopoulos 

Abstract: 

An approach utilizing Petri Nets for modeling and evaluating parallel, unstructured 

mesh refinement is developed. A model is implemented based on a detailed software 

prototype and system architecture, which mimics the behavior of the parallel meshing. 

Subsequently, estimates for performance measures are derived from discrete event 

simulations. The potential benefits and related costs of this new approach for developing 

high performance parallel mesh refinement algorithms are examined. 

Key Words: 

Finite Element Method, Performance Modeling, Parallel Mesh Generation, Petri Nets 

3.1 Introduction 

The finite element method (FEM) is a powerful numerical technique for the 

approximate solution of electromagnetic engineering problems. Due to the computational 
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complexity of three-dimensional (3-D), paraUe1, unstructured mesh generation for 

modem applications, the performance of the method is highly dependent on the 

efficiency of programming paradigms and the architecture of paraUe1 computing systems: 

for example, the underlying algorithm; the inter-processor communication pattern; the 

synchronization of tasks; etc. The goal of modeling paraUel computing systems is to 

examine the specific paraUe1 system architecture and software techniques in advance, in 

order to enhance the paraUe1 computing performance. The main advantage of this 

approach is that the design and implementation of a paraUe1 mesh generator can, 

potentiaUy, be optimized in order to achieve the best performance for a given cost among 

different alternatives. 

Today, several techniques are used for paraUe1 meshing performance analysis. 

However, many of them are based on benchmarks, i.e., executing programs on known 

environments. Unfortunately, these types of deterministic evaluation techniques are 

inefficient for performance studies in the early design stages of a computer system. On 

the other hand, Petri Nets mode1s can reveal the key characteristics of a system 

stochasticaUy. Moreover, Petri Nets aUow for a relative1y detailed description of systems 

due to their formaI syntax and functional semantics. In addition, algebraic reasoning, 

deduction of properties and equational transformation preserving behavior are valuable 

characteristics of Petri Nets. These properties have proven useful for the functional and 

temporal specification of both software and hardware for paraUel and distributed systems. 
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3.2 Geometrie Mesh Refinement Model 

The quality of finite element solutions depends on several factors including the size 

and shape of the elements, the approximation properties of the underlying finite element 

solution space, and the nature of the true solution to the problem under consideration. For 

3-D electromagnetic analysis and design with the FEM, tetrahedra are often employed to 

achieve the geometric discretization of the problem domain [38]. From a computational 

viewpoint, tetrahedra possess several desirable modeling properties, such as the ability to 

define complete polynomial interpolation functions throughout their volume. However, 

one difficulty associated with employing tetrahedra, is the geometric complexity involved 

in mesh refinement, which is often necessary to improve the solution accuracy to required 

engineering tolerances [39]. 

To solidify concepts, consider the subdivision of a tetrahedron. As shown in Fig. 3.1, 

one method consists of cutting every edge into two and every face into four subtriangles 

[38] [39]. This results in four tetrahedra, each a half-scale duplicate of the original, and 

an octahedron, as shown in Fig.3.1. The resulting octahedron can, subsequently be 

subdivided in various ways. For example, one approach is to cut it along its vertices from 

one on top to another on the opposite bottom, so that each tetrahedron has one edge 

which is the line joining these two vertices. However, these tetrahedra are no longer 

similar to the original one. Another approach is to cut the Octahedron into 6 half-size 

octahedra and 8 tetrahedra, as shown in Fig. 3.2 [38][39]. For this refinement scheme, the 
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interface between the resulting tetrahedra and octahedra is shown in Fig. 3.3. It is a set of 

triangles, where each triangle is created in each mesh refinement iteration i . 

Figure 3.1: Subdivision of a tetrahedron for mesh refinement. 
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Figure 3.2: Octahedron subdivision. 

i=O 

Figure 3.3: The adjacent surface between each element after subdivision. 
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3.3 Parallel Algorithm Analysis 

To parallelize the refinement strategy described in Section 3.2, each processor may be 

assigned to one or more tetrahedra and octahedra. Computationally, the geometric model 

can be described by a boundary representation consisting of free form entities: vertices, 

curves, surfaces, and regions. We use the following terms in this paper: 

i: Iteration number of each refinement; 

7;: Number oftetrahedra at refinement iteration i; 

0i: Number of octahedra at refinement iteration i; 

Tpartitioning : Tetrahedron partitioning algorithm; 

o partitioning : Octahedron partitioning algorithm; 

The initial tetrahedron Ta in the ith (i ~ 1) refinement can generate 7; =47;-1 +8 0i-1 and 

Oi = 7;-1 +6 OH . There are 5 computational steps in partitioning a tetrahedron and 14 

steps in partitioning an octahedron. Thus the computation time and communication time 

for a single processor p is 

i-l 

Pi (tcomputal;o n) = l (5Ti-! + 140;_1 +)t part (3.1) 

(3.2) 
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Here {part represents time cost of one unit step of mesh partitioning. {startup is the startup 

time, l.e. message latency. {data is the transmission time to send data of one element. 

These parameters are dependent on the actual parallel computing system employed, and 

can be assumed constant corresponding to the actual environment. 

For p CPUs in a master-slave mode, there will be p -1 slave processors in charge of 

p -1 sub-domains. The overall run time including communication will be 

p 

Toveral/ = max(p i (t computation)) + L Pi (t communication) 
i;1 (3.3) 

The sub-domain partitioning is given in Table 3.1. Theoretical timing estimations are 

given in Table 3.2 for the case {startup' {part and {data are constants. 

Table 3.1: The sub-domain partitioning. 

1 CPU 1 tetrahedron 

3 CPUs Pl: 3 Tetrahedra; P2: 1 Tetrahedron+ 1 Octahedron 

4CPUs Pl: 2 Tetrahedra; P2: 2 Tetrahedra; P3: IOctahedron 

6 CPUs PI-P4: 1 Tetrahedron; P5: IOctahedron 
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Table 3.2: Theoretical timing estimations. 

Overall Time (time units) 
Number of Elements 

ICPU 3CPUs 4CPUs 6CPUs 

5 15 Il 9 7 

34 112 78 66 64 

260 858 620 540 538 
2056 6766 4968 4368 4366 

16400 53910 39776 35064 35062 
131104 430822 318288 280776 280774 

3.4 Parallel Meshing Environments 

A weU-known paradigm for paraUel computations is the divide-and-conquer approach. 

It consists of solving a problem by dividing it into several sub-problems, solving the sub-

problems and then merging the partial solutions together [40]. In the case of our mesh 

refinement model, the problem domain can be easily divided into a set of fairly balanced 

sub-domains, i.e. the divide-and conquer approach divides each initial tetrahedron into 

four tetrahedra and one octahedron, for a total of 5 entities. 

The paraUelization strategy involves two levels: the model level (partitioning will be 

done by the master processor of a multiprocessor system); and the entity level (single 

processor assigned to a sub-domain). Specifically, the parallel mesh refinement 

environment consists of: (1) a meshing algorithm run by a processing element assigned to 

a sub-domain; (2) a data exchange and control substrate that implements low-Iatency 

message passing among the processing elements (we model this based on the 

communication functions in MPI); and (3) a global address space and automatic message 
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forwarding for load balancing (in a master-slave model, this will be handled by the 

master processor). A conceptual diagram ofthis paraUel mesh refinement environrnent is 

shown in Fig. 3.4. 

The Master Proeessor 

P-1 :number of slave proeessors 
beast(Graphic_Data. p-1. P _slaves); 
reev(): Wait for results from slaves; 

Buildup new graphic file and rearrangement 

The Slave Processor 

1 

beast(Graphic_Data. P-1. P _master); 
start meshing ........ 

Buildup new graphie file 
Send( Graphic_New. P _master) 

1 

The Slave Processor 

bcast(Graphic_Data, P-1, P _master); 
start meshing 

Buildup new graphic file 
Send( Graphic_New. P _master) 

Figure 3.4: ParaUel mesh refinement environrnent. 

The paraUel meshing scenario is straightforward. The initiaUy partitioned 4 tetrahedra 

and one octahedron are first sent from the master processor to slave processors. The slave 

processors load the Tpartitioning and 0 partitioning algorithms for subdividing the entity assigned 

to them, operating independently and concurrently. Once an iteration is complete, the 

output data is written back to the master processing element. The master processor will 

merge the meshing surfaces between each sub-domain. FinaUy, the master processor adds 

the partial meshes to form the result. The output of an iteration of mesh refinement will 

be the input of the next iteration. For this work, the data dependency is managed by a 

queue structure. 
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3.5 Modeling of Components 

The Petri Nets simulation model is a specification of the parallei mesh refinement 

system in terms of a set of states and events. Performing the simulation is, essentially, 

mimicking the occurrence of events as they evolve in time and recognizing their effects 

as represented by states during the parallel meshing. We selected two parts of our model 

for illustrating our methodology. The entire model is available upon request. The first 

part represents a processor assigned to a sub-domain, and is shown in Fig. 3.5. One 

tetrahedron produces 5 entities. The nurnber of entities produced is defined in the model 

by weights and the timing delay is defined in the transitions. The octahedron is among the 

5 entities produced, and will be subdivided subsequently within the same iteration. The 

number of elements is represented by tokens. Once the subdivision of the tetrahedron is 

completed, a synchronizing token will be sent to the control part of the model. At this 

time, the octahedron subdivision will commence. The control part will wait for the end of 

the octahedron subdivision, and then one iteration is completed for the slave processor. A 

token will be fired to the master processor and then aIl the data will be written back to the 

master processor. 

Fig. 3.6 shows the second part, which is the data collecting and broadcasting process 

in the master processor for a 6 CPU system. The data writing delay is defined in the 

transitions. Once aIl the data from slave processors have been collected at the end of an 

iteration, the master processor will merge the results together. AIso, the data is distributed 

to each slave processor for the next iteration of mesh refinement. 
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Figure 3.5: Petri Nets model of a processor assigned to a sub-domain. 
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Figure 3.6: Petri Nets model for master processor in 6 CPU system. 
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Table 3.3: Simulation results for 1,3,4 and 6 CPUs in a Mater-Slave model. 

lCPU 3CPUs 

Elements Number Simulation Time Elements Number Simulation Time 

(time units) (time units) 

1 36 16 36 14 

2 624 198 624 162 

3 10368 3174 10368 2598 

4 171648 48046 171648 42918 

5 2840832 867462 2840832 710214 

4CPUs 6CPUs 

Elements Number Simulation Time Elements Number Simulation Time 

(time units) (time units) 

1 176 30 176 18 

2 2976 390 2968 198 

3 49344 6342 48848 3174 

4 816768 104838 171648 52422 

5 13459588 1734918 13077128 867462 

Table 3.4: Comparison ofload imbalance (number of elements). 

1 CPU 3 CPUs 4CPUs 6CPUs 

1 0 12 1 0 

2 0 192 22 6 

3 0 3168 372 20 

4 0 52416 6168 1822 

5 0 867456 102096 29120 
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3.6 Simulation Results 

The performance results presented below have been obtained from the Petri Nets model 

described above with the analysis tool Hpsim [41]. In the model, we set {part =2 and 

{data =1 (time units). Table 3.3 presents the simulation results for parallel mesh refinement 

using 1,3,4, and 6 CPUs .. 

Fig. 3.7 shows a comparison ofmesh refinement estimation times (E-l, E-3, E-4, E-6) 

with corresponding Petri Nets simulation times (R-l, R-3, R-4, R-6). We can observe that 

the Petri Nets simulation results are in close agreement, to within a time constant related 

the selection of system parameter values (part' (data and (startup in the Petri Nets model 

that was used. 

The time estimation curve of 6 CPUs, (E-6), is almost identical to the curve for 4 CPUs 

(E-4). Similarly, there is sorne overlap of the 6 CPUs (R-6) and 4 CPUS (R-4) Petri Nets 

simulation results. This may be attributed to the overall computation time being 

determined by the most complex processor. In our case, they are P3 of the 4 CPUs system 

and P5 in the 6 CPUs system (refer to Table 3.2). 

The load balancing (see Table 3.4) in this case is closely related to the sub-domain 

partitioning used. To minimize the algorithmic complexity, we partitioned the sub

domains by subdividing the original tetrahedron into 5 geometric entities, and assigning 

one or more entities to each slave processor according to the total number of CPU s 
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employed. Obviously, computation In a 3 CPU system has the most senous load 

balancing problem, because the sub-domains could not be created fairly. This is actually 

a trade-offbetween load balancing and algorithmic complexity. 

(IJ 
"-
Q) 

> 
0 

107r-----------.------------r-----------,----------~ 
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...... E-6-CPUs 
-e- R-6-CPUs 

10° 
10° 10

4 

Number of Elements 

Figure 3.7: Number of geometric entities vs. execution time. 

3.7 Conclusion and Future Work 

Parallel mesh refinement can be effectively described and analyzed using the timed 

Petri Nets formalism. The system execution time and load balancing situation can be 

estimated in our example. Future work should include utilizing Petri Nets for adynamie 
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load balancing protocol analysis, and more detailed communication cost analysis in order 

to optimize parallel mesh refinement performance. 
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CHAPTER 4: Analysis and Design ofParallel3-D Mesh 

Refinement Dynamic Load Balancing Aigorithms for Finite 

Element Electromagnetics with Tetrahedra 

Preface 

The following chapter is inc1uded as a paper published by the IEEE Transactions on 

Magnetics, Volume 42, Issue 4, Pages 1251-1254, April 2006. 

The paper's role is to apply the Petri Nets methodology introduced in Chapter 3 for 

modeling and simulating a Random Polling Dynamic Load Balancing (RPDLB) 

algorithm for parallel Hierarchical Tetrahedral and Octahedral Sub-division mesh 

refinement. The Performance of RPDLB is examined in this chapter, and through this 

work the benefits of the PN approach for developing high performance parallel mesh 

refinement algorithms are demonstrated and evaluated. 
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CHAPTER 4: Analysis and Design ofParallel3-D Mesh Refinement 

Dynamic Load Balancing Aigorithms for Finite Element Electromagnetics 

with Tetrahedra 

Dennis D. Giannacopoulos and Da Qi Ren 

Abstract: 

We develop a simulation-based approach for the computational analysis and design of 

dynamic load balancing algorithms in parallel, 3-D, unstructured mesh refinement with 

tetrahedra. A Petri Nets model is implemented based on a random polling algorithm and 

the target multiprocessor architecture, which simulates the behavior of the parallel mesh 

refinement. Subsequently, estimates for performance measures are derived from discrete 

event simulations. The benefits of this new approach for developing high performance 

parallel mesh refinement algorithms are demonstrated with results for an example 

geometric mesh refinement mode!. 

Index Terms: 

Adaptive systems, electromagnetic analysis, finite element methods, parallel 

processing, software methodology. 
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4.1 Introduction 

The finite element method (FEM) is a powerful numerical technique for the 

approximate solution of continuum electromagnetic problems. However, efficient and 

accurate solutions for sorne 3-D modem applications require extremely large numbers of 

elements. In such cases, parallel processing is beneficial for each stage of the FEM 

including mesh refinement [40], [42], [43]. Due to the computational complexity of 3-D, 

parallel, unstructured mesh generation and refinement, the performance of the method is 

highly dependent on several factors, e.g., the underlying algorithm, the inter-processor 

communication pattern, the synchronization of tasks, etc. The goal of modeling and 

simulating parallel mesh refinement is to examine the specific parallel system 

architecture and software techniques in advance, in order optimize its design and thus 

achieve the best possible performance for a given cost. 

Today, techniques used for parallel mesh refinement performance analysis are, 

typically, based on benchmarking programs on known environments. Unfortunately, 

these types of deterministic evaluations are inefficient for performance studies in the 

early design stages of a parallel system. For example, various analysis and design 

methodologies reported in the literature have been used to address separately specific 

load balancing algorithms or mesh refinement models. In other words, these approaches 

focus, typically, on only one particular aspect of a whole parallel mesh refinement system 

[43]-[45]. Thus, such separately focused analyses, cannot predict the performance of the 

whole parallel mesh refinement system accurately. One promising route for overcoming 
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these limitations is based on extending a preliminary approach developed previously by 

the authors for using Petri Nets to simulate parallel mesh refinement [46]. In order to 

obtain more accurate simulation results for the performance analysis of a whole parallel 

mesh refinement system, the distributed data structure, geometric mesh refinement 

model, dynamic load balancing (DLB) algorithm, parallel system architecture, and the 

inter-processor communication details must all be incorporated in the Petri Nets model in 

a realistic fashion. This type of holistic simulation is an original approach that we believe 

willlead to improved analysis and design methods for parallel3-D mesh refinement DLB 

algorithms for finite element electromagnetics. 

In this paper, we develop a new approach for the modeling, analysis and design of 

DLB algorithms in parallel finite element mesh refinement that utilizes Petri Nets. Petri 

Nets-based models allow for a relatively detailed description of a system due to their 

formaI syntax and functional semantics, and can reveal key characteristics of system 

performance stochastically. While Petri Nets have been used for discrete event-based 

simulation of various applications, to our knowledge, they have not been considered 

previously for parallel 3-D mesh refinement DLB for finite element electromagnetics 

with tetrahedra [46]-[48]. In addition, we use the proposed approach for the design of a 

random polling (RP)-DLB algorithm for a specific 3D parallel mesh refinement model 

suitable for FEM electromagnetics with tetrahedra [46], [48], [49]. 
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4.2 Geometrie Mesh Refinement Model 

For 3-D electromagnetic analysis and design with the FEM, tetrahedra are often 

employed to achieve the geometric discretization of the problem domain, because they 

possess several desirable computational modeling properties. However, one difficulty is 

the potential geometric complexity involved in mesh refinement, which is often necessary 

to improve the solution accuracy to within required tolerances. There are several 

tetrahedral mesh refinement strategies. To solidify concepts, consider the subdivision of a 

tetrahedron as shown in Fig. 4.1(a). This method consists of cutting every edge into two 

and every face into four triangles, resulting in four tetrahedra, each a half-scale duplicate 

of the original, and an octahedron [49]. The octahedron is kept in an element list, and it is 

temporarily split into four tetrahedra just for matrix assembly purposes if necessary, as in 

Fig. 4.1(c). These four tetrahedra are not similar to the original one and they cannot be 

used for further subdivision because this may result in the progressive deterioration of 

mesh quality. In order to maintain the original mesh quality, the octahedron kept from the 

element list are subdivided in the next iteration by bisecting each edge, i.e. cut into six 

smaller size octahedra and eight tetrahedra as shown in Fig. 4.1 (b). These eight tetrahedra 

are similar to the original tetrahedron, though reduced by a factor of four in each 

dimension. The four temporary tetrahedra are then discarded. In finite element 

applications, the subdivisions of Figs. 4.l(a) and (b) are repeated until all of the new 

tetrahedra satisfy specified mesh criteria. Any remaining octahedra are each cut into four 

additional tetrahedra as shown in Fig. 4.1(c). This mesh refinement model is considered 

because ofits potential to produce high quality tetrahedral elements [43]. It may be noted 
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that the tetrahedral and octahedral refinement rules of Fig. 4.1(a) and (b) generate 

tetrahedra of the same quality as the original [49]; however, this is not necessarily the 

case when the sub-division rule of Fig. 4.1 (c) is applied to terminate the mesh refinement 

process for FEM applications, and other mesh optimization techniques can be applied to 

improve the quality of the resulting elements. 

(a) 
1 Tetrahedron 4 Tedrahedra 1 Octahedron 

(b)~q©+j) 
1 Octahedron 6 Octahedra 8 Tetrahedra 1 Octahedron 4 Tetrahedra 

Figure 4.1: Mesh refinement model: (a) tetrahedron subdivision; (b) primary octahedron 

subdivision; (c) secondary octahedron subdivision. 

4.3 RP-DLB Parallel Mesh Refinement Model 

In this section, the RP-DLB modeling strategy is briefly explained, and key algorithmic 

details are given. A master-slaves parallel computing scheme is considered for this work. 

A. RP-DLB Algorithm 

1) Overview of Parallel Mesh Refinement with RP-DLB 

Fig. 4.2 shows a conceptual outline of the key elements for our parallel mesh 

refinement with RP-DLB algorithm. To begin, the input data are read, parsed, and 
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checked by the master processor. The initial geometric mesh model is then broadcast to 

aIl slave processing elements (PEs), which, in tum, estimate their anticipated work load 

and send it to the master PE. Model entities with an expected excessive work load are 

split into smaller units by slave PEso During this phase, a RP-DLB mechanism is applied 

[44]: while the work is not finished aIl slave PEs will work in parallei asynchronously; 

however, if a PE's local tasks are done, it will repeat sending a request R to other 

randomly determined PEs until R is not rejected. The "polled" PE will split its remaining 

tasks and reinitialize them asynchronously as sorne are sent to the PE that initiated R . 

Master PE 

Broadcast complete domain 
decomposition and 

sub-domain 
assignrnent to slave PEs 

Slave PEs 

Random Polling Dynamic Load Balancing 
among the slave PEs 

Build up new data flle and 
send itback 

to the master PE • • • 

Build up new data flle and 
senditback 

to the master PE 

Figure 4.2: Conceptual outline ofparallei mesh refinement with RP-DLB. 

o 
::l 
(1) 

A discrete events chart for the operation of a slave PE performing mesh refinement in 

our model is shown in Fig 4.3; it is constituted of five states and eight transitions. The 

slave PE starts with tasks assigned by the master PE, and subsequently its state will 
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change between Idle, Waiting for Response, Data Transfer, Job Division, and Meshing. 

The transitions represent the events occurring between the states. 

sent request 

Received response 
and new tasks 

Time 
Out 

Figure 4.3: Discrete events chart for a slave PE. 

2) Performance Measurement Parameters 

Let 7;(k) and qk)represent the quantity oftetrahedra and octahedra produced, respectively, 

in iteration i by PE~. In Fig. 4.1 (a) and (b) subdivisions, for iteration i each tetrahedron 

of iteration i-l can be subdivided into 4 smaller tetrahedra and 1 octahedron, and each 

octahedron of iteration i-l can be subdivided into 8 tetrahedra and 6 smaller octahedra. 

Thus we have 

T(k) = 4T(k) + 80(k) 
i ;-1 ;-1 (4.1) 

O(k) = r(k) + 6O<k) 
, 1-1 ,-1 (4.2) 
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In any iteration of the mesh refinement, if matrix assembly is required, aIl the octahedra 

in the element list will be subdivided into 4 tetrahedra each as in Fig. 4.1 (c), and in this 

case 

T(k) = T(k) + 40(k) 
j ;-} 1-1 (4.3) 

O(k) =0 
1 

(4.4) 

Let tpart and Opart be the time required for a tetrahedron or octahedron subdivision, as 

shown in Figs. 4.1(a) and (b), respectively. For iteration i, the computation time t;omp and 

communication time çmm for p" are given by (4.5) and (4.6), respectively. Here tstartup 

represents the message startup time and tdata is the transmission time to send the data for 

one element. These parameters can be adjusted to simulate their effect on the parallei 

computing environment performance. For n PEs in a master-slave model, there will be 

n-l slave PEs in charge of n-l sub-domains. The time ti for the slave PEs to complete the 

mesh refinement for iteration i satisfies (4.7), (since the PEs start the refinement iteration 

i at the same time in our model) [51]. The proofis shown in Fig.4.4. 

to
mp

( ) = 5T(k)·t + 140(k) '0 
1 Pk 1-1 parI 1-1 parI (4.5) 

tomme )=t +(rk
) +OCk))"t 

1 Pk slartup 1 1 data (4.6) 

n-I 

ti ::; max(tt
omp 

(Pk)) + L (ttomm (Pk)) (4.7) 
k=1 

A standard performance measure is the parallel efficiency E: 
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E = n.t W 
parallel(n,w) 

(4.8) 

where w is the size of the mesh refinement process measured in units of sequential 

execution time, and tparalle/(n, w) is the parallel execution time for a system consisting of n 

identical PEs [44]. In this work we examine the performance of our approach both with 

respect to parallel speedup and efficiency. 

B. Modeling Framework 

Our Petri Nets model is a specification ofthe parallel mesh refinement system with RP-

DLB in terms of a set of states and events. Performance simulation involves modeling the 

occurrence of events as they evolve in time and recognizing their effects as represented 

by transitions of states during the parallel mesh refinement process[ 47], [48]. 

, 
:. 

:Tcomm(P 1) : Teom", (Pli) :Teo .... (P 2) 

PG~ ____________________ ~I ____ ~I ______ ~ __ -+-. 
, , 

Teo",p (P 1) :Teo .... (P 1) : 
P'-L __________________ L--JI ____ ~I ______ ~ __ ~ __ 

Tco",p (P 2) Teo",", (P 2): 

" 
max(tcomp (Pk» L (t~omm(Pk» 

k-1 

Figure 4.4: Timing diagrarn for proof of (4.7). 

-, , , 
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Parallel Mesh Reflnem ent Discrete Events Simulation 

The Geometty Entity Mesh r----- Support Functions Refme ment Algorithm Layer 3 

'" 
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Parallel Computing Sehe me Diserete Events Modeling 
Load Balane ing Algorithm f+----. SynchrolÙZation Simulation Layer 2 

"- + 
Me$age Passing Intenace 

~ 
Model of Timed TIallSitions 

Parallel System Structure Parameters S etup Layer 1 

Figure 4.5: Framework for mesh refinement Petri Nets model. 

We map the algorithm with the supporting formulae (4.1)-(4.7) into the Petri Nets 

model by modifying the parameters related to the states, events and transition delays. The 

parallel mesh refinement process can be conceived at three levels, each corresponding to 

one layer of our Petri Nets model, as shown in Fig 4.5. The first layer comprises the 

parallel computing environment module. The parameters involved in this layer are the 

communication timing delay and computation cost. The value estimation of the 

parameters are conc1uded from the system implementation (we use the MPI of SUN 

HPC5.0). The corresponding part in the Petri Nets model is the timed transitions. Layer 2 

is the parallelization and load balancing algorithm module. The specification of the 

processor interactions and the DLB schemes is built up in this layer. In the Petri Nets 

model, this part is the discrete events logic. Layer 3 is the application layer. The 

geometrical properties of the tetrahedral and octahedral subdivisions are specified in this 

module. On the right, for the same layer of the Petri Nets model, we use the transition-

arc-weight to model the geometrical mesh refinement scheme. The details of the model 

are provided below. 
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C. Petri Nets Model 

1) RP-DLB Protocol 

FigA.6 (a) shows the Petri-Nets model of the RP-DLB proto col. In a PE, tasks to be 

executed are stored in Data _ Storage, while the geometric computations are being 

processed. When a request R arrives, the PE wiU send half of the tasks in Data _ Storage to 

the sender of R. When the PE has executed aU the tasks in Data Storage, it will send R to 

another randomly selected PE and simultaneously start to build up a new data file. 

2) Meshing Computation 

The Petri Nets model in Fig.4.6 (b) shows the procedure of tetrahedral and octahedral 

subdivision: this starts with a scan of tetrahedral/octahedral entities; next the refinement 

rule is applied to each individual tetrahedron/octahedron. Once an individual element is 

processed, a signal is generated by Scan Trigger for loading the next geometrical entity. 

3) ParaUel System Model 

The overaU model we developed is shown schematicaUy in FigA.7. It involves six 

modules, representing one master and five slave PEs that we have in a symmetric 

multiprocessor. The communication costs are defined by transitions that connect the PEs 

in the system, as shown in the figure. The system parameters (part, 0part, (data, and (startup, 

are defined in the transition delays in each stage of the mesh refinement model. 
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Request Received ~-------~-------~ 
• )----t---fI._ If the task pool Il Building up the new data file 1 

is not empty 1 1 
spltt half of 1 T35 
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1 Half of the task 
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1 request sender 1 

1 
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remain local hosto 

1 

l ____ ~_~=-1 -+-__ ...... --~ Send Request 
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(b) 

P26 
1 
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Il T elrahedra 1 1 1 1 

Data Wr~e 1 Il 1 Octahedra 1 
1 Baek 1 Data Write 1 

1 Back 1 

1 1 

1 1 

1 J 

-----, 
1 

Geomelry Sean Trigger: 
T elrahedra 1 

1 1 Part~io~ing Done 

Figure 4.6: Petri Nets Module: (a) RP-DLB task sub-division; (b) tetrahedron and 

octahedron sub-division. 
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3) Parallel System Model 

The overall model we developed is shown schematically in Fig.4.7. It involves six 

modules, representing one master and five slave PEs that we have in a symmetric 

multiprocessor. The communication costs are defined by transitions that connect the PEs 

in the system, as shown in the figure. The system parameters tparr, Opart, tdata, and tstartup, 

are defined in the transition delays in each stage of the mesh refinement model. 

4.4 Results 

The efficiency of a RP-DLB algorithm specifically designed for the mesh refinement 

model described in this work is examined in this section. Performance results for the RP

DLB parallel mesh refinement simulation are shown in Fig.4.8. It may be noted from Fig. 

4.8(a) that the parallel speedup for different numbers of PEs differs with increasing 

problem size as the mesh refinement progresses. In each case, RP-DLB improves the 

performance compared to the same number of PEs without DLB. Furthermore, it can 

bene fit the system by saving PEs: (e.g., 5 PEs with RP is as good, or better, than 6 PEs 

without RP). Fig. 4.8(b) shows the parallel efficiency versus the number of PEs in the 

system. The results are based on the mean speedups observed over the entire range of the 

number of elements produced during the refinement procedure. Clearly, the parallel 

efficiency of the new RP-DLB mesh refinement model is better than without load 

balancing. In addition, note that the parallel efficiency increases as the number of PEs 

increases up to the 6 PEs in our model. 
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Figure 4.7: The Overall structure ofPN model for parallel mesh refinement in a 6 PE 

system. (a)Workload Reassigning; (b) Polling Process. (Note: this is a complete version 

of the original figure in the paper.) 
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Figure 4.8: RP-DLB performance results: (a) speedup vs. number of elements for 

different numbers of PEs; (b) parallel efficiency vs. number of PEso 
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4.5 Conclusion 

A new approach for the modeling, analysis and design of DLB algorithms in parallel 

finite element mesh refinement that utilizes Petri Nets has been proposed and evaluated. 

This new simulation-based approach allows for a relatively detailed description of a 

system and can reveal key performance characteristics. The results for the 3D parallel 

mesh refinement model considered demonstrate the benefits of the new approach for 

developing RP-DLB algorithms for the target parallel architecture. Future work should 

include further performance optimization of the new RP-DLB parallel tetrahedral mesh 

refinement algorithm for systems of heterogeneous multiprocessors and through a more 

detailed communication cost analysis. Finally, the new modeling approach may be 

extended to other aspects of the FEM, such as matrix assembly and solution methods. 
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CHAPTER 5: Parallel Mesh Refinement for 3-D Finite 

Element Electromagnetics with Tetrahedra: Strategies for 

Optimizing System Communication 

Preface 

The following chapter is included as a paper published by the IEEE Transactions on 

Magnetics, Volume 42, Issue 4, Pages 1235-1238, April 2006. 

Continuing with the aim of improving the parallel mesh generator's performance, the 

workload prediction approach, which is a new pipelined communication design, is 

introduced in this chapter. The Petri Nets methodology form Chapter 3 is applied to 

model and simulate this new workload prediction pipelined communication approach 

through a case study in parallel Hierarchical Tetrahedral and Octahedral Sub-division 

mesh refinement. The performance efficiency of the new design is examined. 
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CHAPTER 5: Parallel Mesh Refinement for 3-D Finite Element 

Electromagnetics with Tetrahedra: Strategies for Optimizing System 

Communication 

Da Qi Ren and Dennis D. Giannacopoulos 

Abstract: 

Communication strategies in parallel finite element methods can greatly affect system 

performance. The communication cost for a proposed parallel 3-D mesh refinement 

method with tetrahedra is analyzed. A Petri Nets-based model is developed for a target 

mesh refinement algorithm and parallel computing system architecture, which simulates 

the inter-processor communication. Subsequently, estimates for performance measures 

are derived from discrete event simulations. The potential benefits of this approach for 

developing high performance parallel mesh refinement algorithms are demonstrated by 

optimizing the system communication costs for varying problem size and numbers of 

processors. 

Index Terms: 

Adaptive systems, electromagnetic analysis, finite element methods, parallel 

processing, software methodology. 
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5.1 Introduction 

The accuracy and efficiency of approximate solutions obtained with the finite e1ement 

method (FEM) for practical electromagnetic problems can be highly dependent on 3-D 

mesh refinement algorithms. Advances in parallel computing have made higher fidelity at 

finer solution resolution possible. However, inter-processor communication costs in 

parallel FEM can greatly degrade the system performance and diminish the potential 

benefits of utilizing increased numbers of processors. The communication cost in paralle1 

mesh refinement is dependent on the underlying computational algorithm as well as the 

system architecture. The objective of analyzing paralle1 communication paradigms for 

specific architectures in advance is to optimize use of system resources and improve 

performance. 

In this paper, we develop a new approach for the modeling, analysis, and design of 

communication schemes in parallel finite e1ement mesh refinement that utilizes Petri 

Nets. Petri Nets-based models allow for a relative1y detailed description of a system due 

to their formaI syntax and functional semantics, and can reveal key characteristics of 

system performance stochastically. While Petri Nets have been used for discrete event

based simulation of various applications, to our knowledge, they have not been 

considered previously for communication costs in paralle1 3-D FEM mesh refinement 

[46]-[48]. In addition, we use the proposed approach for the optimization of the 

communication strategy for a 3-D paralle1 mesh refinement model suitable for FEM 

e1ectromagnetics with tetrahedra [49], [51]. 
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5.2 Parallel Mesh Refinement Approach 

Tetrahedra are employed frequently in 3-D electromagnetic analysis and design with 

the FEM to achieve the geometric discretization of the problem domain. Several 

tetrahedral mesh refinement schemes are possible to improve the solution accuracy 

required for engineering tolerances [51]. To solidify concepts, consider the subdivision of 

a tetrahedron indicated by Fig. 5.1. This refinement rule initially subdivides a tetrahedron 

into four scaled duplicate tetrahedra and one octahedron as shown in Fig. 5.1(a). Next, 

the octahedron is further subdivided into six octahedra and eight tetrahedra, as illustrated 

in Fig. 5.1 (b). Finally each octahedron from Fig. 5.1 (b) will be subdivided into four 

tetrahedra as shown in Fig. 5.l(c) [40], [43], [46], and [49]. 

A master-slaves parallel computing model is assumed for implementing the mesh 

refinement method considered in this work [40], [46]. The master processing element 

(PE) initiates the pro gram by checking the input data, gathering load information from 

slave PEs, and partitioning the initial set of geometric entities into sub-domains. The 

master PE then broadcasts the complete domain decomposition data and sub-domain 

assignments to corresponding slave PEs, which proceed with the mesh refinement of their 

assigned sub-domains, as shown in Fig. 5.2. The time for each slave PE to finish 

receiving a workload assignment from the master PE may not be the same because of 

differences in the workloads and communication delays. At this stage, the master PE will 

wait until each slave PE has acknowledged complete receipt of its workload assignment. 

Next the master PE broadcasts an instruction to aIl slave PEs to (approximately) 
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synchronously start parallel computing [51]. The slave PEs executing the tetrahedral-

octahedral subdivision algorithm (Fig. 5.1) work in parallel independently in each 

domain. When a slave PE completes its local tasks its data are written back to the master 

PE, where data from each sub-domain is merged to form the global result for the overall 

problem domain. 

~ ~~ 
(a) ~qLl>~+ ~ 

1 Tetrahedron 4 Tedrahedra 1 Octahedron 

(.)~q©+4 
1 Octahedron 6 Octahedra 8 Tetrahedra 1 Octahedron 4 Tetrahedra 

Figure 5.1: Mesh refinement model: (a) tetrahedron subdivision; (b) primary octahedron 

subdivision; (c) secondary octahedron subdivision. 
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Figure 5.2: Parallel mesh refinement approach. 
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5.3 Communication Model 

In this section, a Petri Nets-based communication model is developed for the parallel 

mesh refinement strategy considered. Let T,(k) and d;k) represent the quantity of tetrahedra 

and octahedra produced, respectively, in iteration i by PE ~ . In Fig. 5.1(a) and (b) 

subdivisions, for iteration i each tetrahedron of iteration i-1 can be subdivided into four 

smaller tetrahedra and one octahedron, and each octahedron of iteration i -1 can be 

subdivided into eight tetrahedra and six smaller octahedra. Thus we have 

r(k) = 4r(k) + 80(k) 
i ;-} ;-1 (5.1) 

O(k) = r(k) + 60(k) 
1 1-1 1-1 (5.2) 

In any iteration of the mesh refinement, if matrix assembly is required, each octahedron 

in the element list will be subdivided into four tetrahedra as in Fig. 5.1 (c), and in this case 

r(k) = r(k) + 40(k) 
1 I-} 1-1 (5.3) 

O(k) = 0 
1 (5.4) 

Let tpart and Opart be the time required for a tetrahedron or octahedron subdivision, as 

shown in Figs. 5.1(a) and (b), respectively. For iteration i, the computation time tjcomp and 

communication time çmm for ~ are given by (5) and (6), respectively [51]. 
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tomp ( ) = 5T(k) . t + 140(k) . 0 
1 Pk 1-1 part 1-1 part (5.5) 

t comm ( ) = t + (T(k) + O(k)) . t 
1 Pk starlup 1 1 data (5.6) 

Here t"ar'ur represents the message startup time and t dala is the transmission time to send the 

data for one element. 

For n PEs in a master-slave model, there will be n-l slave PEs in charge of n-l sub-

domains. Let t,-'(po)be the time for the master PE po to broadcast sub-domain workload 

assignments to an slave PEso In total, n processors participate in the broadcast operation 

and the broadcast procedure involves log(n) point-to-point simple message transfers [51], 

each at a time cost of t'tartup +tdata '(0;-1 + 1";-1)' Therefore, the total time taken by the 

procedure is 

(5.7) 

The time I, to complete the mesh refinement for iteration i satisfies (5.8)-(5.9). The proof 

is given in the timing chart of Fig. 5.3. 

.-1 

t < t comm () (t comp ( )) " (t comm ( )) 
i - i Po + max i Pk + ~ i Pk (5.8) 

k=1 

t> (t
comm

() t comp
( )) i - max i Pk + i Pk (5.9) 
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After each iteration of its computationalloop (Fig. 5.2), a slave PE performs point-to-

point communication to send data back to the master PE. As shown in the timing chart of 

Fig. 5.3, a PE's communication will be potentially blocked until another PE has fini shed 

sending/receiving data to/from it (point A and B). It would be preferable if we could 

overlap the transmission of these blocks with the computation for the mesh refinement, as 

many recent distributed-memory parallel computers have dedicated communication 

controllers that can perform the transmission of messages without interrupting the PE's 

cpu. 

, , 

Po 
1 , 
c===] 

, , 
1 1 

1 j t,.comp(p\) 
P1 t==d 
P2 

1 1 t j

comp
(P2) 

~l 
Pk , t/omp(p,.) 

1 
1 

tcomm~o).--- max(tcomp(Pk» , . ' 

B: .. 
1 1 1 • 

n 1 

--._,'-2: (t/om"'(Pk» i 
, k=! 

Figure 5.3: Timing for parallel mesh refinement in typical master-slave model. 

5.4 Pipelined Communication Design 

A pipelined communication strategy is designed for our mesh refinement scheme, 

which overlaps communication and computation in order to avoid inter-processor 

communication blocks (as described above). Briefly, the idea is to adjust the workload 

assigned to each PE so as to create load imbalances in the of sub-domain partitioning 

stage. The load imbalances will result in differences in computation times for each PE. 

This time difference between PEs is used for overlapping (pipelining) one PE's 
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computation time with the data transmission time of another PE. This is illustrated in 

Fig. 5.4. 

respectively. The difference in computation time between Pk and Pj is tjcomf..p)_tjcom'(A) 

(assuming that Pk finishes its computation first). Thus, the overlap in the communication 

time for Pk' in this case, is given by (5.10). When Pk finishes its computation it starts 

transferring result to the master PE Pa, while Pj keeps computing results for its domain. 

After tjcom~)_({)mf..pk)' Pk completes its data transfer and Pj finishes computing, and then 

Pj starts sending data to Po . The time slot tjcomf..p)_tjcomf..pk) allows pipelining the 

communication of Pk and computation of Pj. To achieve this communication pipeline 

that satisfies (5.10), the appropriate difference in workloads between Pk and 1'; must be 

determined, and is given by (5.11); where IJ.1';_1 and IJ.0i _1 are the required differences 

in quantities of the input tetrahedra and octahedra, respectively, between the two PEs 

~and~. 

( (k) 140 (k») 
t startup + 51(i-l) + (i-I) • t data 

= 5 . t part· (1';-1 (j) - 1';-1 (k») + 14 . 0 part· (0(i-I) (j) - 0(i-I) (k») 

= 5 . t part • IJ.1';_1 + 14 . 0 part • IJ.0i _1 

(5.10) 

(5.11) 
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Figure 5.4: Timing for pipelined communication design. 

It should be noted that, the sub-domain workload adjustment is justified based on the 

properties of the refinement rule in Fig. 5. 1 (a)-(c). That is, each element is covered 

exactly by its parent element, and all meshes in the hierarchy are conforming (no hanging 

nodes exist). Thus, the rule can be applied to neighbouring elements in adjacent sub-

domains without mesh consistency problems [43], [46], [49], [52]. 

5.5 Petri Nets Model and Simulation 

The Petri Nets simulation developed for our parallel mesh refinement algorithm 

involves modeling the occurrence of events as they evolve in time and their effects as 

represented by transitions of states during the parallel mesh refinement process. We map 

the algorithm with the supporting formulae (5.1)-(5.11) into the Petri Nets model, which 

involves six modules: one master and five slave PEso The Petri Nets Model and initial 

sub-domain distribution table are shown in Fig. 5.5 and Table 5.1, respectively. A 

representative workload adjustment between two slave PEs is shown in Table 3.2, and the 

corresponding Petri Nets module is shown in Fig. 5.6. The communication costs are 

defined by transitions that connect PEs in the system together (Fig. 5.5). The system 
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parameters {part, Opart, {startup and {data are defined in the transition delays in each stage of 

the computation and communication model. Note that the computation time of the mesh 

refinement processes is comprised of tetrahedron and octahedron subdivision and data 

preparation. An individual module named 'Co-Module' was developed for modeling this 

computation time. In both Fig. 5.5 and Fig. 5.6 the 'Co- Module' is abbreviated as a 

transition, namely "computation time". 

Table 5.1: Workload Assignment: 

T and 0 represent the number oftetrahedra and octahedra, respectively, assigned to each 

slave PE at the 2nd or 3rd iteration refinement. 

3 PEs 4 PEs 5 PEs 6 PEs 

2nd iteration 3rd iteration 2nd iteration 

PO: Master PO:Master PO:Master PO:Master 

Pl:T=3 Pl:T=2: Pl:T=8,0=2 Pl:T=l 

P2:T=1,0=11 P2:T=2 P2:T=8,0=2 P2:T=1 

P3:0=1 P3:T=4,0=3 P3:T=1 

P4:T=4, 0=3 P4:T=1 

P5:0=1 
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1 lime to Return New Data File 
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T_data=l 
T-part=5 
O-part=5 

T_startup=100 

Figure 5.5: Petri-Nets parallel communication model for 6 PEso 

Table 5.2: Number of Elements: 

M(i) is the total number oftetrahedra and octahedra to be adjusted between two slave 

PEs at iteration i+ 1. F(i) is the final number oftetrahedra for iteration i after performing 

the refinement mIe in Fig. 5.l(c). 

Iteration MU) T(i) OU) FU) 

4 52 176 84 512 

5 410 1376 680 4096 

6 3277 10944 5456 32768 

7 26215 87424 43680 262144 

8 209716 699136 349504 2097152 

1 
1 

1 

1 

1 

1 

1 

J 

74 



T_startup=100 Assignment 8roadcasting 

T_data=l 
T ---.P art=5 
o ---.P art=5 
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start Receiving T asks P48 

• )----...... _1--.,..; r.----i_ .... --------{ • 
o 

Data Transfer 

Time to Return New Data File Time to Return New Data File 

Figure 5.6: Petri Nets module for pipelined communication of Pk and Pj . 

5.6 Results 

The performance results of the Petri-Nets simulations for 3 to 6 PEs are shown in 

Fig. 5.7 (non-pipelined) and Fig. 5.8 (pipelined). It may be noted from Fig. 5.7(a), that 

when the message size is greater than a specifie value (~ 450,000 bytes) the system 

communication costs for 5 or 6 PEs are less than for 3 or 4 PEso This is due to the 

'natural' pipelining effect caused by the increased number ofPEs, so that communication 

and computation overlap to decrease the number of block points. Fig. 5.7(b) shows the 

load imbalance ratio for different numbers of PEs over the range of communication costs 

considered. The load imbalance ratio is the difference in work load between PEs divided 

by the total work load in a given iteration i. Load imbalances cause PEs to complete their 

individual tasks asynchronously, and can slow down the parallel computing speed. 
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However, differences in computing ending times can allow for effective overlap of 

computation with communication, which can reduce the overall communication cost. It 

may be noted from Fig. 5.7(b), that for a given system communication cost, different load 

imbalance ratios result for different numbers of PEso This information is useful for 

optimizing the design of the communication component of our mesh refinement strategy. 

The corresponding results for the new pipelined design are shown in Fig. 5.8. The 

curves in Fig. 5.8 (a) are ordered consistently, because the designed pipelined 

communication is scheduled intentionally to optimize system resources. For example, the 

communication cost for 6 PEs is greater than those for 5, 4, or 3 PEs at each iteration, 

because the parallel scheduling is controlled and increases in complexity with the number 

ofPEs. The system communication costs are comparable with Fig. 5.7(a) until the fourth 

iteration, because the parallel scheduling cost is relatively large for smaller message 

sizes. However, there is a significant reduction in cost for the new pipelined design 

beginning with the fourth iteration. Fig. 5.8(b) shows a consistent increase in the load 

imbalance ratio for increasing PEs, as the system overlaps more computation and 

communication time. This is in agreement with the observation above: having more PEs 

incurs more scheduling cost. However, this is a beneficial trade off required to avoid the 

block points in the system. 
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Figure 5.7: Performance results (without designed pipeline): (a) communication cost; 

(b) load imbalance. 
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Figure 5.8: Performance results (with designed pipeline): (a) communication cost; 

(b) load imbalance. 
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5.7 Conclusion 

A new approach has been proposed and evaluated that utilizes Petri Nets as a modeling 

formalism for the analysis and design of communications strategies for parallei finite 

element mesh refinement systems. Modules have been developed for modeling each stage 

of the parallei algorithm, as weIl as the structure of the parallei system. The benefits of 

the new approach for overall system performance evaluation and design optimization are 

illustrated by the results for the new pipelined communication algorithm considered. 

Future work should include further performance optimization of the computation and 

communication cost in parallei FEM mesh refinement algorithm as weIl as other aspects 

of the FEM. 
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CHAPTER 6: Efficient Pipelined Communication Design 

for Parallel Mesh Refinement in 3-D Finite Element 

Electromagnetics with Tetrahedra 

Preface 

The following chapter has been submitted to the IEEE Transactions on Magnetics. 

Another new pipelined communication approach called the Task Break Point 

approach, which is fundamentally different from the workload predication approach in 

chapter 5 is introduced in this chapter. Once again the Petri Nets methodology of chapter 

3 is applied to model and simulate this new approach in the case of parallel Hierarchical 

Tetrahedral and Octahedral Sub-division mesh refinement. The performance efficiency of 

the Task Break Point approach is examined. 

The benefits of the PN approach for developing high performance parallel mesh 

refinement algorithms are also demonstrated and evaluated in regards to chapter 1-3. 
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CHAPTER 6: Efficient Pipelined Communication Design for ParaUel Mesh 

Refinement in 3-D Finite Element Electromagnetics with Tetrahedra 

Da Qi Ren, Dennis Giannacopoulos and Steve McFee 

Abstract: 

Minimizing communication latency is an essential aspect of designing co st-effective 

parallel finite element methods (FEM). A new, efficient pipelined communication 

strategy that significantly reduces latency for parallel 3-D finite element mesh refinement 

with tetrahedra is proposed. A Petri Nets (PN) based model is developed to simulate the 

inter-processor communication costs for both the target mesh refinement algorithm and 

parallel architecture. Performance measures derived from discrete event simulations 

show that the new pipelined design yields improved communication speedup for a range 

of refinement problem sizes, using different numbers of processors. In addition, the 

potential benefits of using the PN-based model simulations for optimizing utilization of 

the parallel system resources are demonstrated. 

Index: 

Parallel processing, finite element methods, mesh generation, Petri nets. 

81 



6.1 Introduction 

ParaUel tetrahedral mesh refinement can be use fui for the modeling and simulation of 

complex electromagnetics problems that require very large numbers of elements to obtain 

high-accuracy 3-D finite element results. However, with sorne formulations, significant 

inter-processor communication costs can significantly degrade system performance and 

diminish the potential benefits of the paraUel processing approach. Further, 

communication costs in paraUel mesh refinement are strongly dependent on the 

underlying computational algorithm, as weU as the computational system architecture. 

Therefore, accurately modeling and simulating the performance of communication 

schemes in advance can help to yield improved paraUel speed-up, by optimizing the use 

of the available system resources [53]. Recently it was shown that PN-based modeling 

approaches can aUow for specific and detailed representations of paraUel mesh 

refinement algorithms, which can be used effectively to reveal key characteristics of 

paraUel system performance [46], [47], [53], and [54]. 

The primary objective of this contribution is to introduce a new and efficient pipelined 

paraUel processing communication strategy for tetrahedral FEM mesh refinement. The 

method is designed to minimize inter-processor communications latency, in order to limit 

the potential performance degradation that can occur in paraUel tetrahedral mesh 

refinement implementations. The new pipelined strategy is fundamentaUy different from 

the communications strategies the authors reported earlier, and in particular, the previous 
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ca1culation and assignment of specific net workload imbalances for the processors is not 

required [53]. 

A PN-based model is developed and used to investigate the performance of the new 

pipelined communications design with detailed simulations of practical mesh refinement 

applications, for a range of mesh sizes, and different numbers of processors. The parallel 

processing performance characteristics of the new design are evaluated and compared to 

non-pipelined methods, to assess the reduction in communications latency that can be 

achieved and the potential impact on overall parallel speedup. 

6.2 Parallel Hierarchical Tetrahedra and Octahedra Subdivision 

Tetrahedral elements are often used in 3-D electromagnetic FEM to represent the 

geometric discretization of the problem. Several tetrahedron refinement schemes are 

possible for FEM applications, ranging from basic bisections to nested multi-cut 

refinement schemes designed to preserve different aspects of the geometric quality of the 

resulting mesh. To fix concepts, consider the subdivision of a tetrahedron illustrated by 

Fig. 6.1. This refinement rule involves three steps: first, the tetrahedron is broken down 

into four scaled duplicate tetrahedra (one for each corner) and one octahedron 

(remainder) as shown in Fig. 6.1(a). Second, the resultant octahedron is then subdivided 

into six octahedra and eight tetrahedra, as illustrated by Fig. 6.1 (b). Finally each of the 

octahedra from Fig. 6.1 (b) is subdivided into four tetrahedra as given in Fig. 6.1 (c) [46], 

[49], [53], and [54]. The recursive application of these tetrahedral and octahedral 
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refinement rules generate elements that belong to two congruence classes: one consisting 

of all generated tetrahedra, and one consisting of all generated octahedra. This 

refinement property is intentional, and it is useful for subsequent computations [53], [54]. 

~q~+A (a)~ ~& ~ 
1 Telrahedran 4 Tedrahedra 1 Oclahedran 

~) E©q@+Lî> (,)~q S~ 
1 Octahedran 60clahedra B Telrahedra 1 Oclahedran 4 Telrahedra 

Figure 6.1: Mesh refinement model : (a) tetrahedron subdivision; (b) primary octahedron 

subdivision; (c) secondary octahedron subdivision. 

A master-slaves parallel computing model is assumed for implementing the mesh 

refinement method considered in this work [51], [53]. The master processing element 

(PE) initiates the pro gram by gathering load information from the slave PEs and then 

partitioning the initial set of geometric entities into sub-domains. The master PE then 

broadcasts the complete domain decomposition data and sub-domain assignments to the 

related slave PEs, which proceed with the refinement of their assigned sub-domains, as 

shown in Fig 6.2. Once each of the slave PEs has acknowledged the receipt of its full 

workload assignment, the master PE broadcasts an instruction to all of the slave PEs to 

(approximately) synchronously start parallel computing [51], [53]. Each of the slave PEs 

executing the tetrahedral-octahedral subdivision algorithm (Fig. 6.1) work in parallel 

independently in each sub-domain. Once a slave PE completes its assigned task its result 
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data must be sent back to the master PE, where the data associated with each refinement 

sub-domain is merged to form the global result for the overall problem domain. 

6.3 Communication Model 

A straightforward PN-based communication model suitable for representing parallei 

tetrahedral mesh refinement strategies based on the elemental subdivision scheme 

described above is developed below. AlI the relevant modeling parameters and relations 

between them need to be established at this time. To simplify the parallel model, it is 

assumed that the slave PEs are initially assigned only one tetrahedron each. Let T(k) and , 

d;k) represent the numbers of tetrahedra and octahedra produced, respectively, by PEp", 

in iteration i. For the Fig. 6.1(a) and (b) subdivisions, in iteration i each tetrahedron of 

iteration i. 1 can be subdivided into four smaller similar tetrahedra and one octahedron, 

and each octahedron of iteration i. 1 can be subdivided into eight tetrahedra and six 

smaller octahedra. Therefore: T,(k) = 4T,~~) + 80i~i and O,(k) = T,~:) + 60i~I). The Fig. 6.1 (c) 

subdivision is not covered in this accounting because it only occurs in the case that 

matrix assembly is required. Let tpart and Opart be the times required for one tetrahedron 

and one octahedron subdivision, respectively, as defined by Figs. 6.1(a) and (b). Then, 

for iteration i, the computation time çm
p and communication time tjcomm for PE lt can be 

determined as [47]: 

("omp ( ) = 5T(k) . t + 140(k) ·0 , Pk ,-( parI ,-( parI (6.1) 
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{comm( )=( +(T(k)+O(k»).{ 
1 Pk slartup 1 1 data (6.2) 

Here ~'tartuf represents the message startup time and (data is the transmission time required 

to send the data for one element. 

For n PEs used in a master-slaves model, there will be n-l slave PEs available to 

retine n-l sub-domains. Let li~(Po) be the time required for the master PE, po, to 

broadcast the sub-domain workload assignments to aIl slave PEso In total, n processors 

will participate in this broadcast operation, and the broadcast procedure will involve 

log(n) point-to-point simple message transfers, with each transfer counting for a time cost 

of t'tartup + t data . (0 i-l + T;_l) [51]. Therefore, the total time required for one complete 

broadcast procedure is 

(6.3) 

Finally, the overall time li required to complete aIl the mesh retinements for iteration i 

will satisfy both (4) and (5) [46], [53], [54]. 

n-l 

l, ~(NnmCp.)+maxCti""''I'CPk))+ LCÇ-CP.)) (6.4) 
k=l 

{ > ((""""'(p) (c,,",P(p)) 
;_rnax; k +; k (6.5) 
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. r___ 

Following each iteration of its computationalloop (Fig. 6.2), a slave PE initiates a point-

to-point communication to send data back to the master PE. As shown in the timing chart 

of Fig. 6.3, a PE's communication can be potentially blocked until another PE has 

fini shed sending/receiving data to/from it (point A). If practical, it would be preferable to 

overlap the transmission of these blocks with the computation for the mesh refinement, as 

many recent distributed-memory parallel computers now have dedicated communications 

controllers which can perforrn the transmission of messages without interrupting the PE's 

cpu. 

MasterPE Slave PEs 

Read, pme and check input data 

Broadcast model description to slave PEs Rece ive model description 
! ! 

1 Loon Start 
l l 

[ Broadcast complete domain decomposition H Receive complete domain decomposition 
and sub-domain assignment to slave PEs Receive sub-domain assigrunent 

l 

0 Refme mesh on assigned sub-domain 
and build up MW data f!le 

l 
Receive MW data file from all slave PEs Send MW data file b ack to the master PE 

l 

Checking data and scheduling MW iteration 
l 

1 Loo]:) End 
l 

Write output data of meshes 

Figure 6.2: Parallel mesh refinement approach . 
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Figure 6.3: Timing for parallel mesh refinement in typical master-slaves design. 

6.4 Pipelined Communication Design 

A new pipeline communication strategy that can effectively overlap communication 

and computation operations to reduce inter-processor communication blocks without 

compromising the load balancing is introduced. This approach is related to, but 

fundamentally different from, the method proposed by the authors in [53]. Essentially, 

this earlier contribution is based on pre-calculating and imposing systematic workload 

imbalances across the processors to achieve the overlap. With the present scheme, the 

master PE is free to assign the workload for each slave PE according to whatever net load 

balancing allocation is most appropriate, provided that the master PE also specifies a 

unique partitioning of each slave PE's total workload into a specifie number of equal 

length sub-task segments. Based on this model it should be possible to ensure that each 

slave PE receives a time period of unobstructed communication with the master PE, 

immediately upon completion of each sub-task. An example, theoretical, limit case 

overlap for communication and computation possible with this approach is illustrated in 

Fig.6.4. 
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An efficient algorithm to partition the slave PE's workloads is the key to approach 

realizing this potential performance. To meet this goal, recaIl that the workloads for 

represent the number of the workload segments assigned to PE Pk and PE Pj' respectively. 

For simplicity, aIl the workload segments for each individual slave PE can be set to equal 

size. However, the segment size used for one slave PE can not be set the same as that of 

any other. Then, for iteration i, the computation times per segment for PE Pk and PE lj 

are: 

comp( Q(k») (k) 140 (k) )/Q(k) 
f; Pk'; = 5Ti-! . (pari + ;-1 • 0 pari ; (6.6) 

comp(p Q (j) ) (5T (j) 140 (j) ) / Q (j) 
(; j'; = i-! . (pari + ;-1 . 0 pari ; (6.7) 

Therefore, the difference between the times defined by (7) and (6) defines the time 

interval that can be used for pipelining the communications of PE p" with the 

computations of PE p, i.e. 
} 

(camp( . Q(j») _(camp( Q(k») = (camm( Q(k») 
1 PI' 1 1 Pk' 1 1 Pk' 1 (6.8) 

To achieve the communication pipeline that satisfies (8), the required difference in 

workload segment size between PE Pk and PE Pj should be determined by: 
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( 
(k) 40 (k)) / Q (k) t startup + 5TO_1) + 1 (i-I) . t data i = 

Q (j) .T. (k) _Q (k).T (j) 
i (,-1) i (i-I) 5 

(k) () • t part + 
Qi ·Qi J 

QU) .0 (k) _ Q(k) .0 (j) 
, ,-1 , ,-1 140 

(k) (j) part 
Qi ·Qi (6.9) 

c:::::::J Computation time c:::J Communication time 

Q (1) = 1 (2) _) (3) _ 1 Q (k) = k <:< 
i ,Qi -""". Qi - 3 aIlC i . e.:=o .• 

t comm(p~ Q (3) = t comp ( Q (2)) _ t comp ( Q (3) ) 
i 3 • i i P2 'i i P3 • i 

Figure 6.4: Timing for parallel mesh refinement of pipelined communication design. 

6.5 Petri Nets Model and Simulation 

The efficacy of the new pipelined communication design is investigated using the 3-D 

rectangular resonant cavity model, illustrated in Fig. 6.5. The cavity was initially 

discretized to six smaller rectangular blocks (A-F), and each of these blocks was 

subdivided into 6 tetrahedra. The resulting 36 tetrahedra are sub-domains assigned to the 

slave PEs in the parallel system. The PN simulation developed for the parallel mesh 

refinement algorithm involves modeling the occurrence of events as they evolve in time 

and their effects as represented by transitions of states during the parallel mesh 
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refinement process. The mesh refinement algorithm and the supporting formulae, (6.1)-

(6.9), are mapped into the PN model, which has six modules: one master and five slave 

PEs, as described in Fig. 6.6. The communication costs are defined by transitions that 

connect PEs in this system. The system parameters (part, 0part, (data, and (startup are defined 

in the transition delays in each stage of the computation and com-munication model. 

Note that the computation time of the mesh refinement processes includes both 

tetrahedron and octahedron subdivision and data preparation; an individual module 

named 'Co-Module' was defined for modeling this computation time. In Fig. 6.6, the 

'Co-Module' is abbreviated as a transition called "computation time". 

1 
~.15 
() 

3S1 
'-' 

Figure 6.5: Sub-domain decomposition ofrectangular resonant cavity. 
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6.6 Results 

The performance results of the PN simulations for parallel refinement of the resonant 

cavity using 3 to 8PEs are shown in Fig.6.7 and Fig. 6.8. Fig. 6.7(a) describes the regular 

parallelization speedup without pipelined communication: using 3-8 PEs can yield a 

speedup of 1.45~2.15 times faster than one PE. For the initial iterations, 5-6 PEs yields a 

better speedup than 7-8 PEs, because the message size is too small, relative to the parallel 

overhead. Fig. 6.7 (b) shows the parallel speedup achieved with the pipelined 

communication design: for the initial iterations, the speedups of 7-8 PEs are less than 1, 

because the workloads in the initial iterations are rather small and the pipelining cost 

counteracts the design benefit; for the second iteration 3-8 PEs yields speedups of 

1.65~2.5 times more than one PE. In each iteration of Fig. 6.7(b), 6PEs performed better 

than 5, 7-8 PEso The reason is increasing the number of breakpoints can reduce the 

probability of a collision between any oftwo slave PEs in the data transmission, but when 

the number of segments is also increased, the pipelining cost and communication 

overhead are increased accordingly. This is a beneficial trade off required to avoid the 

block points in the system. The peak performance result for a specifie number of PEs 

and break points, based on the different scenarios considered in this study, was achieved 

for the case is 6 PEs with 1-6 breakpoints. To verify the computational advantage 

provided by the new pipelined communication design, the performance of pipelined and 

non-pipelined communication approaches are compared in Fig. 6.8. The plotted results 

represent 3-8 PEs, operating over six mesh refinement iterations, ranging from 288 to 

9,437,184 elements. Starting from the third iteration, there is an average speedup of 
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~ 10% compared to non-pipelined communication. It should be noted, this speed-up is in 

addition to the paraUel speed-ups observed as the number ofPEs are increased for a given 

mesh size. For more than 4 or 6 PEs in the first and second iterations, respectively, no 

speed-up occurs because the message size is too small relative to the communication 

startup frequency required, which decreases the pipeline efficiency. 
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Figure 6.7: ParaUel Speedup: (a) non-pipelined communication, (b) with pipelined 

communication. 
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Figure 6.8: Pipeline Speedup: Pipeline vs. non-pipelined communication. 

6.7 Conclusion 

A new, efficient pipelined communication strategy to reduce latency for parallel 

tetrahedral finite element mesh refinement applications has been introduced, and a PN-

based model has been developed to evaluate its performance. The PN model is a fully 

detailed system representation, designed to simulate the actual inter-processor 

communication costs associated with the mesh refinement algorithm and the parallel 

architecture. The value of this model is illustrated by the variety of simulations obtained 

for the new pipelined algorithm. It should be noted that this new pipelined 

communication design is intrinsically different from that previously reported in [53] for 

the following important reason: all slave PEs can be allocated, ideally, the same 
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(balanced) overall computational workload. Compared with the prevlOUS approach, 

which required the master PE to compute optimal workload imbalances for each PE to 

pipeline the communications, the new pipeline method avoids both this costly calculation 

and also the idle periods that can occur when significant load imbalances are distributed 

over the slave PEso 
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CHAPTER 7: Parallel Hierarchical Tetrahedral-Octahedral 

Subdivision Mesh Refinement: Performance Modeling, 

Simulation and Validation 

Preface 

The following chapter has been submitted to the IEEE Transactions on Magnetics. 

A modeling and simulation approach for Hierarchical Tetrahedral and Octahedral 

(HTO) subdivisions suitable for parallel 3-D unstructured mesh refinement in FE 

electromagnetics was developed based on PN in chapters 3-6. The key value ofPN-based 

approaches is that they are capable of representing systems which are characterized by 

concurrent, distributed, parallel, nondeterministic and stochastic operation. As a 

mathematical tool, PN make it possible to set up and use state equations, algebraic 

equations, and related mathematical models which can be used to represent the behaviour 

of parallel computations executed on very-large-scale architectures. 
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The mam objective of Chapter 7 is to validate the use of the PN approach for 

developing and simulating high performance parallel mesh refinement algorithms. To 

accomplish this goal, detailed estimates for key performance measures for the target 

mesh refinement algorithm and parallel system configuration, which are determined from 

PN simulations, are compared with and evaluated in terms of Massage Passing Interface 

(MPI) benchmark computation results obtained from actual hardware implementations. 

The computing architecture used in this work is modeled on the MPI for 

multiprocessors. The model assumptions are based on the actual environment of the 

CLUMEQ supercomputer facilities, which were used to perform the MPI benchmark 

computations. 
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CHAPTER 7: Parallel Hierarchical Tetrahedral-Octahedral Subdivision 

Mesh Refinement: Performance Modeling, Simulation and Validation 

Da Qi Ren, Chulhoon Park, Baruyr Mirican, Dennis D. Giannacopoulos and Steve McFee 

Abstract 

Designing efficient parallel finite element methods is a complex task that can benefit 

by simulating models of them. However, such simulations are useful only if they can 

accurately predict the performance of the parallel system represented. An approach for 

modeling and simulating Hierarchical Tetrahedral-Octahedral (HTO) subdivision in 

parallel 3-D unstructured mesh refinement was recently developed based on Petri Nets 

(PN). The purpose of this contribution is to validate that approach. To meet this goal, a 

model is implemented based on a detailed software prototype, and parallel system 

architecture parameters, to fully simulate the functionality and runtime behavior of the 

algorithm. Estimates for key performance measures are derived from these simulations, 

and the potential benefits of using this approach for developing high performance parallel 

mesh refinement algorithms are validated with Message Passing Interface (MPI) 

benchmark HTO subdivision problem computations obtained using McGill University's 

CLUMEQ Supercomputer Centre facilities . 
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Index Terms 

Parallel processing, finite element methods, mesh generation, Petri nets. 

7.1 Introduction 

Determining accurate finite element (FE) solutions for very-large-scale 

electromagnetics problems can be highly challenging and computationally expensive. A 

number of the component procedures involved in the FE solution process can be 

accelerated with parallel processing; one important example is mesh refinement. 

Programming parallel FE methods can be a very demanding and complex task, and 

designing parallel FE systems can benefit significantly by simulating them first. For 

example, modeling and simulation methods that can accurately predict the efficacy of 

proposed parallel algorithms before they are implemented could provide system designers 

with essential performance characteristics required for optimizing efficiency. However, 

before such methods can be used with confidence, it is essential to be certain of the limits 

imposed by the modeling approximations and to validate the accuracy of the simulations. 

A modeling and simulation approach for HTO subdivisions suitable for parallel 3-D 

unstructured mesh refinement in FE electromagnetics was recently developed based on 

PN [46], [53], and [54]. The key value ofPN-based approaches is that they are capable of 

representing systems which are characterized by concurrent, distributed, parallel, 

nondeterministic and stochastic operation. As a mathematical tool, PN make it possible to 

set up and use state equations, algebraic equations, and related mathematical models 
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which can be used to represent the behavior of parallel computations executed on very

large-scale architectures. 

The mam objective of this paper is to validate the use of the PN approach for 

developing and simulating high performance parallel mesh refinement algorithms. To 

accomplish this goal, detailed estimates for key performance measures for the target 

mesh refinement algorithm and parallel system configuration, which are determined from 

PN simulations, are compared with and evaluated in terms of MPI benchmark 

computation results obtained from actual hardware implementations. 

GeneraIly, models are created as simplified representations of a system at particular 

key points in time, which are critical to the specific operation and functionality of the 

system. The objective of a simulation is to facilitate the manipulation of the model in a 

manner appropriate for the way the system would operate. A model is considered valid 

for a set of experimental conditions if its accuracy is within its acceptable range, which is 

the amount of accuracy required for the intended purpose of the model [55]. Therefore, 

validating a model typically requires comparing the input-output operations predicted by 

the model to the corresponding input-output operations ofthe system. 

The computing architecture used in this work is modeled on the MPI for 

multiprocessors; the multiprocessors are assumed to operate independently however they 

share the same memory resource. The MPI is a platform-independent communications 

library that manages aIl aspects of inter-node communications and data transfers. The 
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model assumptions are identical to the actual environment of the CLUMEQ 

supercomputer facilities, which were used to perform the MPI benchmark computations. 

7.2 Parallel HTO Subdivision 

Consider the HTO subdivision of a tetrahedron as shown in Fig. 7.l(a). This method 

consists of bisecting each edge and sub-dividing every face into four similar triangles, 

which results in four tetrahedra, each a half-scale duplicate of the original, and one 

octahedron [49]. The octahedron is kept in an element list, and it is temporarily 

subdivided into four tetrahedra for matrix assembly purposes, if necessary, as shown in 

Fig.7.1(c). These four tetrahedra are not similar to the original and they will not be used 

for further subdivisions because this may result in the progressive deterioration of mesh 

quality. In order to maintain the original mesh quality, these octahedra are each 

subdivided in the next iteration by bisecting each octahedron edge to yield six smaIler 

sized octahedra and eight new tetrahedra, as shown in Fig. 7.1 (b). These eight tetrahedra 

are similar to the original tetrahedron, but reduced by a factor of four in each dimension. 

The four temporary tetrahedra are then discarded. In FE applications, the subdivisions of 

Figs. 7.1(a) and (b) are repeated until aIl of the new tetrahedra satisfy specified mesh 

criteria. Any remaining octahedra are each cut into four additional tetrahedra as shown in 

Fig. 7.1(c). This mesh refinement model is considered because ofits potential to produce 

high quality tetrahedral elements [49]. It may be noted that the tetrahedral and octahedral 

refinement rules of Fig. 7.l(a) and (b) generate tetrahedra of the same quality as the 

original [49]; however, this is not necessarily the case when the subdivision rule of 
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Fig. 7.l(c) is applied to terminate the mesh refinement process for FEM applications, and 

other mesh optimization techniques can be applied to improve the quality of the resulting 

elements. 

A master-slaves parallel computing model was applied for implementing the mesh 

refinement method considered in this work [51], [53]. The master processing element 

(PE) initiates the pro gram by partitioning the initial set of geometric entities into sub-

domains. The master PE then broadcasts the full domain decomposition data and sub-

domain assignments to the corresponding slave PEs, which proceed with the mesh 

refinement of their assigned sub-domains, as indicated in Fig 7.2. Next the master PE 

broadcasts an instruction to aIl slave PEs to (approximately) synchronously start 

computing [51]. The slave PEs executing the tetrahedral-octahedral subdivision 

algorithm (Fig.7.1) work in parallel independently in each domain. When a slave PE 

completes its local tasks its data will be sent back to the master PE, where data from each 

sub-domain is merged to form the global result for the overall problem domain. 

~ ~~ 
(a) ~q&&+ij 

1 Telrahedron 4 Tedrahedra 1 OctahedrDn 

(.)~c)O+4 
1 OctahedrDn 6 Oclahedra 8 Telrahedra 1 OctahedrDn 4 Tetrahedra 

Figure 7.1: Mesh refinement model: (a) tetrahedron subdivision; (b) primary octahedron 

subdivision; (c) secondary octahedron subdivision. 
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1 Checking data and scheduling new iteration 1 
L 

1 Looll &Id. 
L 

1 Write output data of meshes 1 --

Figure 7.2: Parallel mesh refinement approach. 

7.3 Modeling with Petri Nets 

A tedrahedra file in Object File Format (OFF) is used in the algorithm. The OFF file 

uses 3 ASCII integers to specify: Vertices, Faces, and Edges. The parallel program starts 

with reading the geometry file. The time cost for mesh computation and inter-processor 

data transmission are linear in the size of the data file, i.e. the number of mesh elements, 

therefore its computational complexity iSO(n) , where n is the number of vertexes. To 

assemble the final geometry file, the results data are put into OFF format. This requires 

determining the vertex coordinates and the face number by computing the coordinates 

offsets for different PEs in the parallel system. Theoretically, the average data sorting 

complexity is G(4n/3)3). The precise performance is analyzed using the PN model. 
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The key aspects of a PN-based model designed to represent the mesh refinements 

defined by Fig.7.1 are summarized below. To simplify the development, it is assumed 

that each slave PE is initially assigned only one tetrahedron. Let T/ k
) and d,k) be the 

number of tetrahedra and octahedra produced, respectively, by PE Jt during iteration 

iCi ~ 1). For the Fig. 7.1 (a) and (b) subdivisions, in iteration i each tetrahedron ofiteration 

i -1 can be subdivided into four smaller similar tetrahedra and one octahedron, and each 

octahedron of iteration ~-1 can be subdivided into eight tetrahedra and six smaller 

octahedra. Therefore: T(k) = 4T(k) + 80(k) and O(k) = T(k) + 60(k). The Fig. 7.1(c) 
1 1-1 1-1 l ,-1 1-1 

subdivision is not covered in this accounting because it only occurs in the case that 

matrix assembly is required. Let (part and Opart be the times required for one tetrahedron 

and one octahedron subdivision, respectively, as defined by Fig. 7.1(a) and (b). Then, for 

iteration i, the computation time çmp and communication time çmm for PE Jt can be 

determined as: 

(7.1) 

(7.2) 

Here I"artul represents the message startup time and I
dala 

is the transmission time to send the 

data for one element. 

For n PEs used in a master-slaves model, there will be n-1 slave PEs available to 

refine n-1 sub-domains. Let t,~(PO) be the time required for the master PE, Po, to 
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broadcast the sub-domain workload assignments to aIl slave PEso In total, n processors 

will participate in the broadcast operation and the broadcast procedure will involve log(n) 

point-to-point simple message transfers, with each transfer counting for a time cost of 

tstartup + t data . (OH + Ti_ l ) [54]. Therefore, the total time that is required for one complete 

procedure is 

(7.3) 

FinaIly, the overall time t, required to complete aH the mesh refinements for iteration i 

will satisfy both (7.4) and (7.5), as se en from the timing chart presented in Fig. 7.3. 

n-I 

fi ~ ("""'(po) + max(fioomp(Pk)) + L(ticomm(Pk)) (7.4) 
k:1 

= computation time = c o:m:munic ation time 
'1 ;:;;. 

p~ ~C_-_-_""~~-~J~ __________ ~I---__ t~-~_-_=1~·_· __ "_~4j--~--~~. 
Il t/'"1V(P.) t/':'''!"'(Pj : ; 1 h j 1 1 : ; r • 

l'"~-I-)!..-- rn"wl '--(P» 
• ~. .~J k 

Figure 7.3: Timing for parallei mesh refinement in master-slaves model. 
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An individual module, named 'Co-Module', was developed for modeling the mesh 

computation process, as shown in Fig. 7.4. The operation of the Co-Module procedure 

starts with a scan of the tetrahedralloctahedral entities; then, the refinement rule is applied 

to each individual tetrahedron/octahedron. Once an individual element is processed, a 

signal is generated by Scan Trigger for loading the next geometrical entity. 

The overall PN model development is shown schematically in Fig. 7.5. It involves six 

modules, representing one master and five slave PEs, belonging to a symmetric 

multiprocessor. The communication costs are defined by transitions that connect the PEs 

in the system, as indicated by Fig. 7.5. The system parameters tpart. 0part, tdata, and tstartup, 

are each defined in the transition delays in each stage of the mesh refinement model. In 

Fig. 7.5, the 'Co-Module' is abbreviated as a transition called "computation time". 

t part 

1 Tetrahedra 

1

°8ta'lNrite 
Bock __ '----< 

1 

1 

1 

-----, 
1 Geometry Scan Trigger: 1 

1 T elrahedra 
1 partlion"'\j Dono 1 

P13 

Octahedra 1 

DataWrite 1 
8ack 1 

1 

1 
_J 

Figure 7.4: The PN Co-Module: tetrahedron and octahedron sub-division. 
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AlI application characteristics, such as real-time throughput and CPU timing statistics, 

were obtained from the CLUMEQ Menu. AIso, other required system parameters, 

including data transmission speed and the communication startup time, were obtained 

experimentalIy. These numbers are used to configure the parameter values in the PN 

Model. AlI the performance results are derived from the simulations performed with this 

PN model; the software used is HPsiml.l. 

7.4 MPI Benchmark 

The MPI program designed to validate the PN simulation results has been implemented 

using the hardware facilities at McGilI's CLUMEQ Supercomputer Centre. The 

background parallei computing platform is 6 AMD Athlon 1900+ running at 1.6 GHz 

with 1.5 GB RAM, using a Myrinet-2000 Switch. 

7.5 Results 

The validation of the PN model is approached in three main ways, by examining three 

procedures of the parallel processes, as described by Figs. 7.6-7.8. The performance 

characteristics of the PN model simulations are compared with the results from the 

benchmark program. In particular, the time consumptions of each PE, for each aspect of 

the geometry computation and communication, predicted by the PN model are compared 

with actual time measurements of the MPI benchmark program. 
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The validation results for the mesh refinement computation performance for each PE in 

the paraUel system are provided in Fig. 7.6. The master PE (0) does not have a mesh 

computation workload; its dut y is to initiate slave PE processes at the start of each 

iteration, and therefore the time costs of the master PE are approximately the same for 

each iteration. Slave PEs 1 to 4 show similar computation times for each iteration since 

their workloads are perfectly balanced. However, slave PE 5 was initiaUy assigned to 

refine one octahedron, which is a larger workload than the other slave PEs, therefore its 

time costs are higher. 

The validation results for the data formatting processes are shown in Fig. 7.7. The 

master and slave PEs work to write the result data into OFF files, to provide a graphical 

file for each slave PE. During this phase of operations, the master PE will make every 

slave PE wait until the master completes fixing an the coordinates offsets for an the 

slaves; then the master win release an the slave PEs simultaneously. AH the PEs will 

work synchronously in the system during this stage of operation. 

The validation results for the data gathering processes are shown in Fig. 7.8. In this 

stage, the master PE gathers data from each slave PE and writes out the final data file. 

Each slave PE sends its data to the master PE asynchronously, and the master will wait 

until the last communication is completed, usuaHy the last one is from PE 5 because PE 5 

has the largest workload. 
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In summary, Figs. 7.6-7.8 all show close agreement between the timing results for the 

PN model simulation (light symbols) and the corresponding MPI benchmarks (dark 

symbols) for a series of five mesh refinement iterations. The small discrepancies 

between the simulation and benchmark results may be due, in part, to the fact that the 

potential effects of the processor cache is not accounted for in these PN model simulation 

results. 

7.6 Conclusion 

A recently developed approach for modeling and simulating hierarchical tetrahedral-

octahedral mesh refinement in parallel has been validated using direct comparison with 

measurements obtained from a prominent large-scale computing facility. The 
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comprehensive PN-based simulation model was implemented for the specifie HTO mesh 

refinement algorithm under study, and the specifie computing architecture utilized at the 

facility, in order to simulate the full functionality and runtime behavior of the combined 

system. The HTO refinement algorithm was also implemented, according to the same 

operating standards, for actual execution on the CLUMEQ supercomputer system. The 

full series of primary comparative investigations examined confirm strong agreement 

between the simulated performance results and the actual system performance results, 

and together serve to validate the correctness of the PN modeling scheme. Further, as 

indicated and illustrated by the model development and wide range of detailed simulation 

results available, the PN approach has been demonstrated to be a versatile and powerful 

modeling tool for producing realistic and detailed performance simulations for advanced 

3-D FE mesh refinement algorithm implementations on large-scale parallel computing 

facilities. 
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CHAPTER 8: Conclusion 

8.1 Summary and Discussion 

An effective modeling and simulation methodology is investigated for the performance 

and computational complexity prediction in the design development and optimization of 

3-D, parallel mesh refinement. The Petri Nets approach is proposed and evaluated as a 

promising tool for describing and studying parallel meshing systems with properties of 

being concurrent, parallel, and stochastic. This new mesh refinement simulation method 

allows for a relatively detailed description of a system and can reveal key performance 

characteristics in the parallel processes. The PN approach for modeling and simulating 

the performance of the Random Polling Dynarnic Load Balancing protocol in parallel 

Hierarchical Tetrahedral and Octahedral mesh refinement was applied. The efficiency 

was exarnined by comparing the results with the algorithrn without a load balancing 

mechanism. 

New communication strategies were introduced for parallel mesh refinement that can 

effectively overlap communication and computation operations to reduce inter-processor 

communication blocks without compromising the load balancing. These are the 

workload prediction approach and the task breaking point approach. 
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In the workload prediction approach, the workload is assigned to each slave PE by 

predicting the consistency between each slave PE's local computation time and its result 

data transmission time. The concept "load imbalance ratio" is introduced to de scribe the 

workload difference between each slave PE, and it is the key parameter to pipeline the 

computation time and communication time to make the slave PEs in the parallel system 

communicate with the master PE one after another. Chapter 5 shows the improvement of 

the speedup when workload prediction approach is applied to HTO mesh refinement. 

The Task Break Point approach is fundamentally different from the workload 

predication approach. The latter is based on pre-calculating and imposing systematic 

workload imbalances across the processors to achieve the overlap. With the Task Break 

Point scheme, the master PE is free to assign the workload for each slave PE according to 

whatever net load balancing allocation is most appropriate. The master PE also specifies 

a unique partitioning of each slave PE's total workload into a specific number of equal 

length sub-task segments. This model ensures that each slave PE can receive a time 

period of unobstructed communication with the master PE, immediately upon completion 

of each sub-task. The Task Break Point pipelined communication can yield an average 

speedup of ~ 10% compared to non-pipelined communication for large mesh refinement 

in the resonant cavity case of chapter 6, and this speedup is in addition to the parallel 

speedups. 

The developed approach for modeling and simulating hierarchical tetrahedral

octahedral mesh refinement in parallel has been validated using direct comparison with 
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measurements obtained from a prominent large-scale computing facility. The 

comprehensive PN-based simulation model was implemented for the specific HTO mesh 

refinement algorithm under study, and the specific computing architecture utilized at the 

facility and to simulate the full functionality and runtime behaviour of the combined 

system. The HTO refinement algorithm was also implemented, according to the same 

operating standards, for actual execution on the CLUMEQ supercomputer system. The 

full series of primary comparative investigations examined confirms that there is a strong 

agreement between the simulated performance results and the actual system performance 

results. Together they serve to validate the PN modeling scheme. Further, as indicated 

and illustrated by the model development and the wide range of detailed simulation 

results available, the PN approach has been demonstrated to be a versatile and powerful 

modeling tool for producing realistic and detailed performance simulations for advanced 

3-D FE mesh refinement algorithm implementations on large-scale parallel computing 

facilities. 

8.2 Future Work 

Future work should include utilizing Petri Nets for further performance optimization of 

the computation and communication cost in parallel FEM mesh refinement algorithm for 

systems of heterogeneous multiprocessors. Finally, the new modeling approach may be 

extended to other aspects of the FEM, such as matrix assembly and solution methods. 
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