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Sommaire 

La déchirure à chaud est un défaut commun pendant la coulée OC de lingot de laminage 

de quelques alliages d'aluminium commerciaux et peut entraîner une perte de 

productivité considérable. Afin d'améliorer la compréhension sur la déchirure à chaud, 

une technique originale, le DCSS pour « Direct Chili ~urface ~imulator » ou le simulateur 

de surface de coulée OC, a été développée pour reproduire les conditions de 

refroidissement à l'interface du métal liquide et du moule et reproduire la surface unique 

ainsi que la microstructure de sous-surface du lingot OC. L'appareil a été aussi conçu 

pour appliquer et mesurer une force en tension et la déformation de la surface. Ces 

quantités mécaniques ont été alors utilisées pour dériver les courbes de contrainte et 

déformation qui représentent mieux le comportement du matériau pendant la 

solidification et sa capacité pour résister à la déchirure à chaud. 

Le travail présent décrit l'approche a utilisé pour déterminer la résistance mécanique de 

trois alliages binaire d'aluminium et de silicium (AI-O.5wt%Si, AI-1.5wt%Si, et AI-

2.5wt%Si). En plus, ce travail couvre le modélisation du transfert de chaleur à l'aide d'un 

logiciel commercial (ProCASTTM) pour comprendre les champs de température durant la 

solidification et traquer l'évolution de la fraction solide. Des analyses de la microstructure 

ont été réalisées afin de déterminer la morphologie des grains et leur taille, les mesures 

physiques et l'investigation minutieuse des surfaces déchirées. L'information a été 

utilisée comme entre autres dans divers modèles développés et utilisés dans le présent 

travail. 

Un modèle théorique a été amélioré en incorporant des quantités métallurgiques plus 

réalistes. Cette recherche a mené aussi au développement d'un modèle de probabilité 

(automate cellulaire) pour simuler la microstructure des alliages étudiés et déterminer un 

coefficient de propagation de la déchirure à chaud (CPC). 

Les phénomènes complexes et couplés tels que le fluage et la microségrégation ne sont 

pas couverts dans de ce travail. Plutôt, des hypothèses sont proposées selon les 

observations expérimentales et leurs plus probables contributions. 



Ces études ont avancé à un certain degré la compréhension scientifique de la déchirure 

à chaud et le comportement mécanique pendant la solidification. En plus, le DCSS a été 

utilisé avec succès pour l'ordonnancement des alliages commerciaux selon la 

susceptibilité à la déchirure à chaud. 

Abstract 

Hot tearing is a common defect during OC casting of some commercial aluminum alloys 

and can result in considerable productivity loss in the cast-house. In order to better 

understand the hot tearing, a novel technique, dubbed DCSS for Direct Chili §.urface 

§.imulator, has been developed to reproduce the cooling conditions at the mouldlliquid 

metal interface and to generate the unique surface and sub-surface microstructure of the 

OC ingot. The apparatus has been designed also to apply and measure a tensile load 

and the surface strain. These mechanical quantities were then used to derive the stress­

strain curves that best represent the material behaviour during solidification and its 

capacity to resist hot tearing. 

The present work describes the approach used ta determine the mechanical resistance 

of three different aluminum-silicon binary alloys (AI-O.5wt%Si, AI-1.5wt%Si, and AI-

2.5wt%Si). In addition, the present work covers the modeling of the heat transfer 

encountered during the test using commercial software (ProCASTTM) to better 

understand the temperature field upon solidification and tracking the solid fraction. 

Microstructure analyses were made to obtain various metallurgical quantities (e.g., grain 

morphology, size), physical measurements and thorough investigation of the tom 

surfaces. Information was used as inputs to the various models developed and used in 

the present work. 

A theoretical model was updated from previous work using more realistic metallurgical 

quantities. This research led also to the development of a probalistic model (cellular 

automata) to simulate the microstructure of the cast sample. The model has been used 

to determine a crack propagation coefficient (CPC) that was used in the theoretical 

model to better represent the hot tear propagation. 
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Work to include even more complex coupled phenomena such as creep phenomena and 

microsegregation are not covered in the present scope of this work. Hypotheses are 

raised according to experimental work and observations made that suggest their most 

probable contributions. These studies have advanced to a certain degree the scientific 

understanding of hot tearing such as the inherent mechanical behaviour during 

solidification. In addition, the DCSS was used successfully to rank DC cast commercial 

wrought alloys in terms of hot tearing susceptibility. 

Preface 

This thesis is a description of work that 1 performed for the Department of Mining, Metals 

and Materials Engineering at McGili University. The work described on the method to 

quantify the hot tearing propensity is original to that of others as it involved the 

development of a novel apparatus to reproduce more realistically the conditions 

encountered during DC-casting of ingot. No part of this work has been or is being 

submitled for any other qualification at this or other academic institution. The work 

described is original except where due reference is given to that of others. 

Related Publications 

Sorne parts of the work have already been published as author or co-author. The tirst 

publication [102,103] described the original approach (DCSS) to characterize the 

mechanical behaviour of AI-Si alloys during solidification. The hot tearing propensity was 

presented as the inverse of the maximum tensile force. This work allowed ranking 

different commercial alloys in terms of tendency to hot tear during casting. One 

publication [104] described the impact of the chili plate surface roughness on the 

microstructure development at the interface mould/metal. The last paper on the DCSS 

has been co-authored and presents a constitutive model for the tensile deformation of a 

binary aluminum alloy at high fractions of solid [114]. 
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Contribution to Research 

This work has advanced the scientific understanding of hot tearing mechanisms using a 

unique method to apply a displacement and measure a tensile load during solidification. 

ln addition, a theoretical model has been adapted which allows understanding the impact 

of tensile loading, loading rate and metallurgical values on the ove ra Il material response. 

ln 50 doing, the degree to which the behaviour of aluminum alloys can be explained has 

progressed. The DCSS technique has been used industrially to rank different alloys and 

to study the impact of alloying addition and grain refinement. This approach has 

contributed to improve the OC casting of specifie alloys. The hot tearing study using the 

DCSS technique is part of the continuing research program at Laval University. 

iv 



Acknowledgements 

1 am extremely grateful to my supervisor, Professor John Gruzleski from McGili 

University, and co-supervisor, Professor Daniel Larouche from Laval University, for their 

guidance and help throughout my Ph.D. works. 1 am not only grateful for the scientific 

guidance, but also to have given me the wisdom and displaying great patience. It is 

undeniable that both are responsible for creating an enjoyable, challenging and mostly 

stimulating work. 1 would like to express my sincere gratitude to Professor Mihriban 

Pekguleryuz (McGili University) who first convinced me to embark on this amazing 

journey. 1 would like to express my sincere thanks to Messrs. Ghyslain Dubé (Alcan­

ARDC) and Jean-Pierre Martin (NRC-ATC) who immediately endorsed my goal. 1 am 

also grateful to Alcan to have provided me with financial support. 1 am indebted to many 

people, especially at the Arvida Research & Development Centre, who believed in me 

and supported me until the end, despite their already overloaded agendas. Special 

thanks go to the technical staff, Mr. Gilles Lemire of the Alcan Chaire at the Université du 

Québec à Chicoutimi (UQAC) and Mr. Luc Belley (STAS) who helped me on the 

experimental aspects. Special thanks also go to Mrs. Lise Castonguay who kindly 

supported me and found the good words to motivate me in completing the final stretch. 1 

also wish to thank my colleagues who provided many useful ideas and fruitful 

discussions. Last but not least is an utmost thank you to my wife Johanne and my son 

Thomas who gave me their unconditional support and love to continue and reach the 

sometimes unattainable goal. 

... all those memories will be fost in lime as a tear in rain 

v 



Table of Contents 

Sommaire ........................................................................................................................ i 

Abstract ......................................................................................................................... ii 

Preface .......................................................................................................................... iii 

Related Publications .................................................................................................... iii 

Contribution to Research ............................................................................................ iv 

Acknowledgements ....................................................................................................... v 

Table of Contents ......................................................................................................... vi 

Nomenclature ............................................................................................................... ix 

List of Tables .............................................................................................................. xvi 

List of Equations ....................................................................................................... xvii 

Chapter 1: Introduction ................................................................................................. 1 

1.1 The Direct Chili (OC) Casting Process ............................................................... 1 

1.2 Hot Tearing of OC Cast Ingot.. ........................................................................... 3 

Chapter 2: Hot Tearing Theory and Literature Review ............................................... 5 

2.1 Introduction ........................................................................................................ 5 

2.2 Basic Theories of Hot Tearing Mechanisms ....................................................... 5 

2.2.1 Shrinkage-brittleness theory ................................................................. 6 
2.2.2 Strain theory ........................................................................................ 8 
2.2.3 Generalized Theory ............................................................................ 12 
2.2.4 Effect of Solute Additions ................................................................... 20 

2.3 Methods of Assessing Susceptibility to Hot Tearing ......................................... 20 

2.3.1 Methods of Testing and Quantification of Hot Tearing Susceptibility .. 21 
2.3.2 Prediction of Hot Tearing Susceptibility .............................................. 43 
2.3.3 Mathematical Model ........................................................................... 49 

2.4 Influencing Variables on Hot Tearing ............................................................... 52 

2.4.1 Alloy - Solidification interval- Amount of residual eutectic liquid ......... 52 
2.4.2 Trace Elements .................................................................................. 52 
2.4.3 Casting design - Geometry of the hot spot - Strain rate ...................... 53 
2.4.4 Grain size - Residual melt distribution ................................................ 53 
2.4.5 Gas content ....................................................................................... 54 
2.4.6 Healing of incipient tear ...................................................................... 54 

2.5 Development of Stresses and Strains .............................................................. 54 

2.5.1 Strain Concentration .......................................................................... 58 
2.5.2 Stress Concentration .......................................................................... 58 
2.5.3 Hot tearing model based on a critical deformation rate ....................... 59 

vi 



2.5.4 Hot tearing model based on a stress limit.. ......................................... 62 
2.5.5 Summary of the literature survey ........................................................ 64 

Chapter 3: DCSS Experimental Procedure ................................................................ 67 

3.1 Introduction ...................................................................................................... 67 

3.2 Experimental Set-Up ........................................................................................ 68 

3.3 Testing Procedure ........................................................................................... 75 

Chapter 4: Experimental Solid Fraction Determination ............................................ 77 

4.1 Thermal Analysis ............................................................................................. 78 

4.1.1 Thermal analysis curves .................................................................... 79 
4.2 Lever rule ........................................................................................................ 82 

4.3 Gulliver-Scheil model ....................................................................................... 84 

4.4 Solid fraction evolution of commercial alloy systems ........................................ 87 

4.5 Volume solid fraction ....................................................................................... 88 

Chapter 5: DCSS Experimental Conditions ............................................................... 89 

5.1 Container pre-heating ...................................................................................... 89 

5.2 Container rotation time and free surface .......................................................... 92 

5.3 3D Thermal Model ........................................................................................... 99 

5.4 Heat Transfer Coefficient (HTC) .................................................................... 100 

5.5 Cooling Curves .............................................................................................. 101 

5.6 Thermal Gradient. .......................................................................................... 101 

5.7 Solid Fraction ................................................................................................. 102 

5.8 3D Thermo-mechanical Model ....................................................................... 104 

5.9 Impact of anchor design on stress distribution ............................................... 104 

Chapter 6: Experimental Results: Thermal Behaviour of AI-Si Binary Alloys ....... 106 

Chapter 7: Experimental Results: Tensile Behaviour of AI-Si Binary Alloys ........ 116 

7.1 Experimental stress-strain curves .................................................................. 116 

7.2 DCSS repeatability ........................................................................................ 118 

7.3 Impact of strain rate on stress-strain curves .................................................. 121 

7.4 Theoretical model vs. DCSS Experimental stress-strain results ..................... 127 

7.5 Microstructure analyses of the test samples .................................................. 130 

Chapter 8: Experimental Results: Industrial Applications of the DCSS Unit ........ 139 

8.1 Castability prediction for commercial alloys ................................................... 139 

8.2 Impact of copper addition on AA-6111 alloy ................................................... 140 

8.3 Impact of grain refiner addition on AA-1050 alloy ........................................... 140 

8.4 Impact of AA-5182 alloy composition change on HTS ................................... 141 

vii 



Chapter 9: Theoretical Model for Hot Tearing ......................................................... 143 

9.1 Theoretical Model .......................................................................................... 143 

9.2 Creep Law ..................................................................................................... 149 

Chapter 10: Cellular Automaton and Crack Propagation Coefficient (CPC) ......... 156 

10.1 Nucleation law ............................................................................................... 156 

10.2 Growth law .................................................................................................... 157 

10.3 Microstructure results from the Cellular Automaton ........................................ 160 

Chapter 11: Conclusions .......................................................................................... 165 

11.1 Overview ....................................................................................................... 165 

11.2 Main conclusions ........................................................................................... 166 

11.3 Future Investigations ..................................................................................... 168 

APPENDiCES ............................................................................................................. 169 

Appendix 1. Mathematical Development of the Viscous Model ............................ 169 

Appendix II. DCSS test configuration and set-up ................................................. 191 

Appendix III. Container preparation and thermocouple installation ....................... 192 

Appendix IV. Typical DCSS experimental procedure ........................................... 193 

Appendix V. Solid fraction from thermal analysis results ..................................... 196 

Appendix VI. Thermo-physical properties of AI-Si alloys ...................................... 200 

Appendix VII. Cellular Automaton Program algorithm .......................................... 203 

References ................................................................................................................. 210 

viii 



/--

Nomenclature 

A list of symbols is given with a brief description and units used. 

Symbol Definition and Units 

B 
Bc 
Cot 
CEt 
CL 
DL 
dt 
fs 
fL 
gs 
gL 
G 
h 
h 
h; 
hh 
k 
L 
1 
1 
ml 
il 
no 
nmax 
n 
P 
P 
Pc 
POh 
Po; 
Pc 
Qa 

r 
SATn 
SATS 
BATn 
BATS 
# 
T 
TL 
Ts 

TL 

side dimension of the hexagon in the idealized microstructure (m) 
new side dimension of the hexagon in the idealized microstructure (m) 
bulk solute content (wt.%; at.%) 
eutectic concentration 
CSt interfacial solute content in liquid and sol id (wt.%; at.%) 
diffusivity of solute in the melt (m2 S-1) 
time interval (s) 
solid fraction 
liquid fraction 
solid volume fraction 
solid volume fraction 
temperature gradient (K m-1) 
heat-transfer coefficients 0N m-2 K-1) 
liquid film thickness (special case in the idealized microstructure (m) 
liquid film thickness in the inclined channel of the idealized microstructure (m) 
liquid film thickness in the horizontal channel of the idealized microstructure (m) 
solute partition coefficient (Cs 1 Cl) 
length of a sample in reference to E=aATL r1 (m) 
length of a hot spot in reference to E=aATL r1 (m) 
CA model network step value representing a numerical cell size (m) 
liquidus slope with respect to solute content (K wt.% -1; K at.%-1) 
nucleation rate with respect to temperature 
initial nucleation site density (m-3

) 

maximum nucleation sites (m-3
) 

a special case representing a material constant (Equation 49) 
distribution coefficient (Equation 55) 
pressure distribution (idealized microstructure, Appendix 1) 
pressure distribution at corner (idealized microstructure, Appendix 1) 
maximum tensile pressure in the horizontal channel (MPa) 
maximum tensile pressure in the inclined channel (MPa) 
pressure distribution at corner (idealized microstructure, Appendix 1) 
activation energy (kJ mole-1) 
radius of grain (m) 
maximum rate for the surface nucleation law 
standard deviation (solutal undercooling) for the surface nucleation law 
maximum rate for the bulk nucleation law 
standard deviation (solutal undercooling) for the bulk nucleation law 
number of numerical cells between surface asperities 
tempe rature (K) 
liquidus temperature (K) 
solidus temperature (K) 
a special case (Equation 18) of temperature at the dendrite tips (K) 
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Ts a special case (Equation 18) of temperature at the root of the dendrites (K) 
TL a special case (Equation 18) of temperature at the tip of the dendrites (K) 
Tm a special case (Equation 35) of temperature of fusion of the alloy (K) 
T a special case (Equation 35) of temperature given by Tm-liT (K) 
~ T a special case (Equation 35) of temperature gradient (K) 

T cooling rate (K s-1) 
t time (s) 
V velocity (m S-l) 
v velocity (m S-l) 
v velocity (m S-l) 
W a average velocity of the flow in the channel of the idealized microstructure (m S-l) 
~ T total undercooling (Tliq :-T) (K) 
~ TL temperature difference between liquidus and solidus (K) 
~ Tmax maximum undercooling experienced during recalescence (K) 
~ Tn constitutional undercooling available for nucleation events (K) 
~ Ta solutal undercooling termed standard deviation in the CA (K) 
a thermal diffusivity (m2 S-l) 
a a special case representing the material thermal expansion (m K-1) 
att a special case representing a material constant (Equation 49) 
13 solidification contraction 
I3tt a special case representing a material constant (Equation 49) 
L deformation or strain 
& deformation or strain rate (S-l) 
Lf strain to fracture 
Lb strain in material related to Lb = a~ TL<I>/12 
<1> microstructure grain size related to Lb = a~ TL<I>/12 (m) 
YGS interfacial energy between gas and solid (J m-2) 
YSL interfacial energy between solid and liquid (J m-2) 
YLG interfacial energy between liquid and gas (J m-2) 
k thermal conductivity 0N m-1 K1) 
À,1 primary dendrite arm spacing (m) 
À,2 secondary dendrite arm spacing (m) 
A the Greek letter describing the Lambda-curve (hot tearing sensitivity) 
Jl coefficient of viscosity (Pa s) 
n dimensionless supersaturation parameter 
't shear stress 
e wetting angle (a special case of the contact or dihedral angle) 
crf stress to fracture (MPa) 
crmax maximum tensile stress (MPa) 
cravg average tensile stress (MPa) 

t Solute contents are generally designated by either x or C depending on whether 
they are quantified by fractions or percentages respectively. 

tt This is used in the power law proposed by Sellars and Tegart [95] 
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Constant 

Symbol Name Value 

R perfect gas constant 8.314 J K 1 mole-1 

Abbreviations 

CA Cellular-Automaton 
CPC Crack Propagation Coefficient 
DC Direct Chili 
DCSS Direct Chili Surface Simulator 
HTC Heat Transfer Coefficient 
HTS Hot Tearing Sensitivity 
SEM Scanning Electron Microscopy 
2D two dimensions 
3D three dimensions 
DICTRA Diffusion Controlled Transformation 
DGM DICTRA ™ variable representing the diffusion driving force 
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Chapter 1: 1 ntrod uction 

Hot tearing is recognized as one of the most common and serious defects encountered 

during casting and ingot making and closely related defects occur during fusion welding, 

soldering and brazing. This phenomenon (hot tearing) is also referred to as solidification 

cracking, hot shortness, super-solidus cracking, and shrinkage britlleness and has been 

the subject of numerous studies [1-6]. 

Hot tearing is associated with both ferrous and non-ferrous systems. In general, the 

phenomenon of hot tearing is defined by the formation of a macroscopic fissure in a 

casting as a result of stresses (and the consequential strains) generated during cooling, 

at a temperature above the non-equilibrium solidus. The hot tear nucleates and grows 

interdendritically within the solidifying material. 

During the liquid-to-solid transition most metals undergo a certain amount of volume 

contraction, 13, which generates strain (usually 13 - 5 to 6 percent). The latter can be 

reinforced by thermal contractions in the solid. If this contraction is hindered or cannot be 

freely accommodated by mechanisms such as plastic deformation and movement of 

solid or liquid, then regions of the solidifying mass may be subjected to strains being 

imposed upon a material having very poor mechanical properties in the solidification 

interval. 

1.1 The Direct Chili (OC) Casting Process 

OC casting process is used for the production of aluminum sheet ingots and extrusion 

billets. A diagram of the OC casting process and the cooling zones is shown in Figure 1. 

The process [7] is essentially an open mould used to confine the molten metal and 

distribute the cooling water around its periphery via a water chamber. The mould 

opening is closed during the start-up with a bottom block mounted on a vertical lowering 

table. The molten metal is transferred (trough/tube arrangement) into the cavity on the 

boUom block (starting block) where solidification begins. The metallevel in the mould is 

kept constant as the boUom block is lowered at a specifie rate. 
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Chapter 1: Introduction 

The liquid metal is subjected to primary cooling by conduction of heat through the water 

cooled mould wall. The secondary cooling is obtained through direct impingement of 

water onto the solidified shell exiting the mould cavity. 

PRIMARY COOLING 
(Mou Id COntact) 

Figure 1: DC casting process 

The secondary cooling achieved by the cooling water is approximately 95 to 98% while 

the primary cooling represents 2 to 5% of the total heat extraction. The DC casting 

process is divided into three distinct phases: the start-up phase, the transition phase, 

and the steady-state phase. During these phases, the ingot is subjected to many 

distortions [8,9] which are the result of coupled thermal and mechanical effects. 

The most critical phases (start-up and transition phase) typically represent a small 

percent of the ove ra Il ingot casting length. The direct contact between melt and mould 

(primary cooling) results in a rapidly growing shell zone while the secondary heat 

extraction (cooling water) produces an advanced solidification front. Figure 2 shows a 

diagram of the typical heat extraction paths and solidification fronts observed during DC 

casting of a sheet ingot. 

During solidification, the shell starts to shrink and pull away from the mould wall to form 

an air gap. The heat extraction is greatly reduced in the air gap causing reheating and 

sometimes local remelting. This results in a cyclical movement of the solidified shell. 

2 
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Figure 2: Diagram of the Solidification Fronts during OC Casting 

The action of both primary and secondary cooling generates stresses in the thin 

solidified shell which could induce surface hot tearing. The presence of such a defect 

causes, in most cases, the rejection of the entire cast ingot. In fact, hot tears will 

propagate over the full ingot length if they reach the steady-state phase of the cast. 

1.2 Hot Tearing of OC Cast Ingot 

Hot tearing is a recurrent defect during DC casting of commercial aluminum alloys such 

as 3XXX and 6XXX series. The phenomenon occurs as a result of distortions due to 

differential contractions of the ingot during solidification and results in considerable 

defect levels and metal loss in the cast-house. Grain refining or trace elements that alter 

growth kinetics and prevent early grain coherency may be effective in reducing 

susceptibility to hot tearing. 

Hot tearing that occurs during the DC casting of certain alloys has been the subject of 

studies for sorne years [10,18]. Information exists on the theories of hot tearing and on 

the importance of various process parameters related to it. Most of these studies have 

been conducted on hot-tearing problems that occur in the bulk of the cast. What needs 

more study is the hot tearing problem that occurs at the surface of a solidifying DC ingot, 

i.e. in the shell region. Figure 3 shows a hot tear generated at the surface (shell region) 

of a DC cast ingot. The morphology of the surface hot tear shows a typical interdendritic 

separation. 
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Figure 3: Surface Hot Tearing on DC Cast Ingot (a) and interdentritic details (b) 

The hot tearing phenomenon in the shell region of a OC-cast ingot is a complex 

interaction (Figure 4) between, inverse segregation, properties of the interdendritic liquid, 

second phases and intermetallics that precipitate in the interdendritic liquid and surface 

strains and stresses. 

Solidification 
Conditions 

Mechanical 

Figure 4: Diagram of the complex interactions related to the hot tearing phenomenon 
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Chapter 2: 

2.1 Introduction 

Hot Tearing Theory and 
Literature Review 

Hot tearing is recognized as one of the most common and serious defects encountered 

during casting and ingot making and closely related defects occur during fusion welding, 

soldering and brazing. 

This phenomenon (hot tearing) is also variously referred to as solidification cracking, hot 

shortness, super-solidus cracking, and shrinkage brittleness and has been the subject of 

numerous studies [1-6]. This phenomenon is associated with both ferrous and non­

ferrous systems. 

ln general, the phenomenon of hot tearing is essentially defined by the formation of a 

macroscopic fissure in a casting as a result of strains (and the consequential stresses) 

generated during cooling, at a temperature above the non-equilibrium solidus. The 

fissure nucleates and grows interdendritically within the solidifying material. 

During the liquid-to-solid transition most metals undergo a certain amount of volume 

contraction,J3 which generates strain (usually J3 - 5 percent). The latter can be reinforced 

by thermal contractions in the solid. If this contraction is hindered or cannot be freely 

accommodated by mechanisms such as plastic deformation and movement of solid or 

liquid, then regions of the solidifying mass may be subjected to strains being imposed 

upon a material having very poor mechanical properties in the solidification interval. 

It should be noted that most of the figures presented in this chapter were adapted from 

the original for better clarity. 

2.2 Basic Theories of Hot Tearing Mechanisms 

8ased upon experimental investigations, many theories have been proposed to explain 

the occurrence of hot tears in casting. However, it is unanimously agreed that the 

me chanis ms involved in the intercrystalline separation of the material are a combination 
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of metallurgical and mechanical effects. In fa ct , hot tearing requires both a sufficient 

amount of mechanical restraint (strain) and a susceptible microstructure [48]. 

2.2.1 Shrinkage-brittleness theory 

The shrinkage-brittleness theory [1,7-9,14] results from numerous studies of hot tearing 

susceptibility of aluminum alloys. A theory accounting for the hot tearing observed in 

specifie aluminum alloy systems (Le., AI-Si) was first advanced by Vero [7]. During the 

liquid-solid stage, the primary crystals growing at the expense of the decreasing volume 

of liquid come into contact (coherency temperature) and form a coherent network. The 

theory postulated was that tearing was caused by the contraction strains of the primary 

dendrites during subsequent cooling between the liquidus and solidus. It also mentioned 

that in the presence of more than a certain critical proportion of liquid any incipient 

fissures between the prima ries were healed by liquid feeding as they were formed. 

Figure 5 summarizes Vero's results according to the AI-Si phase diagram. 

~ 100 
w 
0 
Il:: 
w 80 
a. 
en en 
w z 40 l-
D:: 
e 
::I: 20 en 
1-e 
::I: 2 4 6 8 10 12 

SILICON, PER CENT. 

0 u: 
ci 640 1184 

ci 
w w 
0 0 

W 620 1148 ui 
Il:: Il:: 
:::J :::J 

~ 600 1112 
l-

i::! 
W SOLI W 
a. 580 SOL. a. 
::::!il ::::!il 
W 

SOLIO SOLUTION + EUTECTIC 
W 

l- I-
560 

0 2 4 6 8 10 
SILICON, PER CENT. 

Figure 5: Relationship between hot tearing and alloy constitution for the AI-Si binary 
system [7] 
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However, Vero [7] stipulated that the healing process was prevented by the narrowness 

of the interdendritic channels when the remaining liquid was less than the critical 

proportion. In addition, he assumed that the formation of a fissure could occur only 

during contraction of the dendrites and that no tearing was possible when the amount of 

liquid freezing at constant temperature (eutectic temperature) was greater than the 

critical value. 

The experimental results indicated that in aluminum-silicon alloys, the hot tearing 

increased from zero at low silicon content to a maximum at approximately 1.6 percent 

silicon and then decreased abruptly to zero at 1.88 percent silicon. Alloys with higher 

silicon content were not prone to hot tearing. The critical amount of liquid (necessary to 

heal cracks) was calculated to be between 12 and 13 percent for the AI-Si binary system 

using the effective solid solubility at the eutectic temperature of approximately 0.4 

percent. 

However, it was indicated [1,14] that the sudden decrease in hot tearing cannot be 

explained by Vero's theory as it stands. In fact, based on a simple binary system, the 

modified theory, which included, in a modified form, the concept of freezing range [8] and 

the volume proportion of eutectic (eutectic index [9]), specified that the severity of tearing 

will depend on the amount of contraction while the hottest zone of the casting passes 

through the critical hot tearing range. It appeared that tearing was possible even though 

the residual liquid solidifies at constant temperature. Consequently, the hot tearing of 

castings was accounted for theoretically by a single factor, the extent of the hot tearing 

temperature range. The tears are unlikely to be formed when the alloy has passed below 

the solidus. Hot tearing is only likely to occur in the "brittle range" or the so-called 

effective interval of solidification which is the range of temperature between the 

coherency temperature and the solidus (Figure 6). 

Hot tearing is prevented during the "brittle range" by "accommodation [31]". The latter 

designates the degree to which an alloy is able to withstand shrinkage strains by 

movement of the grains within the semi-solid mass. It has been mentioned [31] also that 

the hot tearing tendency is proportional to the extent of the "brittle range". Other factors 

affecting the incidence of hot tearing were given by Lees [9,13]. These factors included 

the effect of mould variables (Le., moulding materials, cores in hindering contraction), 
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constitution of the alloy (especially the proportion of eutectic), grain size, and gas 

content. 

(!)~ z­_...J 
~­o~ «1-
a::: a.. 
OW 
.... 0 
O~ 
:::ttn 

c Brittle range = effective 
1 interval of solidification 

a-d Liquidus 
1 a-c Coherent temperature 

a-b Solidus 
A----~~----------~---------------B 

Figure 6: Hot Tearing Susceptibility of Eutectiferous Alloy 
(Shrinkage-Brittleness Theory) [7] 

The basic relationship between these factors is related to the extent of mechanical 

restraint, the promotion of grain boundary film, coherent temperature modification, and 

their impact on the mobility of the grains and the liquid feeding behaviour. 

2.2.2 Strain theory 

The first new theory to explain the mechanisms of hot tearing is undoubtedly that 

aUributed to Pellini [2] and his co-workers [3]. They published a new idea about the strain 

theory based on the film stage concept. This theory suggests that hot tearing is caused 

by the localized strains, generated by thermal gradients that tend to pull apart solid 

masses of material separated by essentially continuous films of liquid. This liquid film 

results from the segregated residual melt. Because of its fundamental nature, the 

strength and ductility of a mass of solid grains separated by liquid films is of an extremely 

low order. The strain theory provides a generalized explanation of the mechanism of hot 
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tearing in terms of the strain rate imposed on the liquid film regions. Figure 7 illustrates 

the theory schematically. 

STRAIN THEORY OF HOT TEARING 

, " " T ......... . 

CRITICAJ ________ ~ ==:i.:.:- .......... :-:-:--1 "~A~"/ 
AMOUNT OF :-:-:-FILM':-:-: :-: ·:SOLlD.:-:- .. ' .... '~' .. 
STRAIN FOR ------- - - - .----- .................... . .................. . 

TEARING 

t 

...,' •.. 
.1 ...IL • .:.& 

FILM STAGE STRAIN LESS THAN STRAIN GREATER THAN 
REACHED CRITICAL AMOUNT CRITICAL AMOU NT 
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(1) STRAIN RATE 

LlQUIDUS 

(2) TIME OF FILM LlFE 
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NORMAL FILM STAGE *-~"Io.:-
SEGREGATE 
FILM STAGE 

~f00.7-SEGREGATE 
SOLIDUS 

4 ~ 

TIME OF NORM_As... TIME OF SEGREGATE 
FILM LlFE ~ FILM LlFE 

TIME_ 

Figure 7: Diagram iIIustrating basic concepts of the theory [2] 

The strain rate of the film regions may vary widely due to various factors that contribute 

to the development of hot tearing. These factors include; a) large regions undergoing 

contraction, b) fast cooling of regions undergoing contraction, and c) small regions 

undergoing extension. 

ln slight contrast to the previous theory (Shrinkage-Britlleness), it has been suggested 

that hot tearing cannot take place during the mushy-stage of solidification since the 

shrinkage strains are uniformly distributed. In fact, the interdendritic liquid zones are 

relatively large and general feeding of the mushy mass could result. Hot tearing occurs 

only when the film stage is reached and the strain within the hot spot is concentrated into 

narrow liquid films of low strength. Low melting point segregates which exist, in the 
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molten state, below the equilibrium solidus of the material are the most detrimental in this 

respect. 

Figure 8 shows schematically the strain distributions within a hot spot (extension and 

contraction) during various stages of solidification. 

1 ~ If ~ :~TZONEINMUSHYSTAGE 
------- --- ------ ·o~ EXTENSION OF HOT ZONE IS 

. . ~ ESSENTIALLY UNIFORM 

HOT 
RESTRAINT Ifo~ RESTRAINT 

--+ +--1111--+ +--
RESTRAINT RESTRAINT 

RESULTING IN LOW UNIT STRAINS 
WHICH ARE INSUFFICIENT TO 
CAUSE A SEPARATION 

------t· :!z: :~T ZONE IN LQUID FILM STAGE 
~ EXTENSION IS HIGHL y 
a CONCENTRATED IN FILM REGIONS 
U RESULTING IN HIGH UNIT STRAINS r= -1;;'~~r- :=l WII<HMAYBESUFF<IENTTO 

~~_:--e:----"=:,,,--_~~ CA"" SEPARATION 

1 ~ It~ ~~TZONEINSOUDSTAGE 
- - - - - - - - - - - 'R~ EXTENSION OF HOT ZONE OCCURS 

. . ~ BY UNIFORM CREEP FLOW OF 
--1 HOT HIGHLY DUCTILE SOUD METAL 

[; ~~~ ~ 
Figure 8: Diagram showing the strain distribution within a hot spot [2] 

The length of the hot spot must be considered as an important factor determining the 

occurrence of hot tears. A small hot spot that contains few liquid films must 

accommodate a great amount of strain on each film. Conversely, a longer hot spot will 

contain many liquid films and the strain per film will be less important. 

If separation (fissure) does not occur during the film stage of solidification, then, hot 

tearing is no longer possible below the true solidus temperature. Actually, the strains in 

the hot spot are distributed relatively uniformly across the coherent and ductile solid 

metal. Further cooling of the casting will cause the stresses to continue to build-up. 

Creep flow will occur after the low yield point of the hot metal is exceeded. 
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The dependence of the hot tearing mechanism on the microstructure was mentioned by 

Dodd [13]. The latter considered that during the solidification of solid solution alloys, 

deep channels of liquid metal are formed between the growing dendrites. These deep 

channels could act as "stress-raisers" in the final stage of solidification if they are isolated 

from the liquid feeding metal. However, this approach implies that tearing occurs through 

solid metal which is a fundamentally different assumption from that of Pellini [2]. Apblett 

and Pellini [10] showed clearly (Figure 9) the relationship between the force absorption 

capacity and the elongation-to-fracture during the various stages of the solidification. 
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Figure 9: Diagram showing the tensile strength and elongation versus 
the microstructure [10] 

Figure 9 shows the decrease in the elongation during the transition from the early liquid 

film stage to the late film stage. It has been shown schematically that the development of 

the microstructure decreases the ove ra Il mobility of the grains. It has been mentioned 

[11,12] that during the solidification interval of almost every casting material, the tensile 

strength and elongation-to-fracture were very low compared with the values in the solid 
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state. The eventual occurrence of hot tearing during the critical temperature range 

depends mainly on the strain rate, the increase of the liquid film stage as a function of 

time and the amount of segregated material, and grain size. 

2.2.3 Generalized Theory 

Various attempts to explain hot tearing formation lead to various theories that are 

supported by experimental evidence. Among them is the generalized theory by Borland 

[5,16,17] (supported by others [9,14,26]). It is intended to explain the mechanisms of hot 

tearing as a combination of the "Shrinkage-Britt/eness Theory" (brittle temperature 

range), and the "Strain Theory" (Iiquid film stage). The main objective was to modify and 

extend both theories and explain how the liquid quantity and distribution during 

solidification affects the hot tearing tendency. 

The theory on the liquid film stage is limited to the temperature range around the solidus. 

On the other hand, the shrinkage-brittleness theory commences at the so-called 

coherency temperature. The coherency temperature is defined [18,19,20] as the 

temperature at which the fraction of solid (f5 ) at which the growing equiaxed dendrites 

begin to interact mechanically and grow to form a coherent network. Figure 10 also 

shows the subdivision of the solidification process into four different stages and the 

associated risk for hot tearing. 

The generalized theory suggested, in particular, that the distribution of liquid is largely 

influenced by the ratio of the interphase (solid-liquid) and intercrystalline boundary 

energies. The development of a liquid film covering the entire surface of a grain (faces 

and edges) is associated with a low ratio while a high ratio will restrict the remaining 

liquid to edges and corners. The latter arrangement appears to be beneficial because a 

relatively larger area of the grain can interconnect and create a more coherent network 

to accommodate the thermal stresses created during cooling. In general, fissures are 

less likely to be formed with this liquid film distribution. 

The hot tearing tendency will be affected by various considerations during the cooling 

between the liquidus and solidus. These include; a) the effect of solidification mode, b) 

effect of interphase and grain boundary energies (dihedral angle), and c) effect of solute 

elements. 
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possible if "accommodation" strain exceeded 

Stage 4 - Solidification. No Cracking 

Figure 10: Effect of constitutional features on tearing 
susceptibility in binary systems [16] 

Effect of the Solidification Process 

The solidification process may be described in four stages [16]. 

Stage 1: 

Stage 2: 

(Primary dendrite formation) - The solid phase is dispersed while the 

liquid is continuous; both liquid and solid phases are capable of relative 

movement. 

(Dendrite interlocking) - Both liquid and solid phases are continuous, but 

only the liquid is capable of relative movement and is able to circulate 

freely between the interlocking dendrites. 
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(Grain boundary development) - The solid crystals are in an advanced 

stage of development and the semi-continuous network restricts the free 

passage of liquid. Relative movement of the two phases is impossible. 

(Solidification) - The remaining liquid has solidified 

It has been postulated that materials are susceptible to hot tearing once the coherency 

temperature is reached; this is Stage 2 in the solidification process. During this stage the 

healing process by liquid feeding of tears is possible whereas further development of the 

microstructure prevents the free movement of liquid. The accommodation of strains by 

movement of the grains within the mushy mass becomes important in Stage 3 where 

tears that have been initiated cannot be healed by the remaining liquid. 

Stage 3 is termed [16] the "Critical Solidification Range" (CSR) and the temperature at 

the beginning of this stage is the critical temperature (Tc). However, the liquid melt does 

not solidify according to equilibrium conditions and, consequently it is possible that the 

liquidus and solidus are depressed by undercooling. In addition, the solidus may be 

further depressed by the lack of diffusion and will increase the CSR (hot tearing). 

2.2.3.2 Effect of Interphase and Grain Boundary Energies (Dihedral 

Angle) 

The occurrence of hot tearing is not related only to the condition where a large freezing 

range exists. The condition requires that the liquid should also be present over a 

relatively wide temperature interval (Iiquid film life [2,27]) in a form that will permit high 

stresses to build up between grains. High stresses will be developed, during 

solidification, on the narrow bridges joining adjacent grains in the case where the liquid is 

covering almost ail of the grain face. On the other hand, even higher stresses will be 

required to cause hot tearing when the liquid is restricted to the grain edges and corners. 

The distribution of liquid during the solidification process is related to the liquid/solid 

interfacial energies. However, it has been mentioned [16] that the process of adjustment 

to equilibrium conditions is not instantaneous and depends strongly on the cooling rate. 

The shape of the liquid phase at the grain boundaries is determined to a large extent by 

the ratio between the solid/liquid interfacial energies (YLS) and grain boundary energies 
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(Yss). The distribution and quantity of liquid is influenced by the grain size and shape, and 

the effect of temperature (and cooling rate) on the slope of liquidus and solidus lines. 

The slopes determine the composition of the liquid (Iargely determines the value of the 

ratio YSL /yss) in contact with the growing crystals. Smith [21] was the first to establish the 

concept of the wettability of grain boundaries by the presence of a liquid phase. He 

determined the ratio YSL Iyss (the relative interface energy) in terms of the dihedral angle 

(8) of the solid/liquid interface as given by Equation 1, 

YSL 1 

Y ss 2 . cos( () ) 
Equation 1 

where: solid/liquid interfacial energy, 

Yss: grain boundary energy, 

B: dihedral angle. 

The dihedral angle can be determined by quantitative measurements of the shapes of 

the liquid films from metallographic sections [5,16,22,43]. Rogerson and Borland [5] 

determined the dihedral angles of the solid/liquid interfaces of sorne binary systems. 

They concluded that the shape (type and distribution) of intergranular liquid regions is 

one of the metallurgical factors determining the tendency to hot tearing during 

solidification. In fact, liquid in the form of globules should be less harmful than liquid 

having continuous films because of the possibility of having more intergranular cohesion. 

Figure 11 shows the effect of dihedral angle on shapes of liquid regions [5]. 

The most suitable shape of the interdendritic regions in the solidifying metal may be 

obtained by compositional changes in the liquid phases in order to reduce the hot tearing 

propensity. 

The ratio YSL /Yss is designated t for convenience and the dihedral angle is zero for t = 

0.5. Figure 12 shows the effect of the ratio between the solid/liquid interfacial energies 

(t) as a function of the dihedral angle for t ::?: 0.5. It has been suggested [21] that almost 

complete wetting of the grain faces and edges will take place when the liquid and the 

previously solidified material is of similar chemical composition. The value for t must be 

slightly greater than 0.5 to have this nearly complete wetting state. Hot tearing could 

develop under adverse strain conditions if this situation exists over a relatively wide 
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temperature interval during solidification because high stresses build up on adjacent 

grains joined by only small regions. 

20= 00 

20 = 1800 

Figure 11: Effect of dihedral angles on shapes of liquid regions [5] 
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Figure 12: Ratio of the solidlliquid interfacial energies as a function of dihedral angle [5] 

On the other hand, the hot tearing susceptibility will be lower in systems where the liquid 

is mainly restricted to grain edges and corners since higher stresses are required to 

separate the large interconnected areas of the grains. Figure 13 shows a diagram of the 

effect of dihedral angle on distribution of liquid phase (on grain corners, edges, and 

faces). 
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Figure 13: Diagram of the effect of dihedral angle on distribution of liquid phase [21] 

The relationship between the area of the boundary which is occupied by the liquid, the 

dihedral angle, and the volume fraction of liquid involves complicated geometrical 

calculations which were addressed by subsequent researches [23,24,25]. 
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Figure 14: Models [15] showing the mechanisms of pre-tear extension 

17 



Chapter 2: Hot Tearing Theory and Literature Review 

Figure 14 shows [15] hexagonal and square models of grains, size lia", surrounded bya 

liquid film having a thickness "b" to illustrate the mechanisms of pre-tear extension. 

The geometrical models show that the pre-tear extension (E), for a grain size of average 

diameter lia", and a liquid film thickness lib", is approximately equal to b/a. The 

relationship is given by b/a = fL/3 and b/a = fL/2 (fL is the volume fraction of liquid) for a 

three and a two-dimensional model, respectively. 

The model shows that the pre-tear extension is proportional to the amount of liquid 

present and the extension is inversely proportion al to the grain size. Consequently, more 

strain can be accommodated without hot tearing by easy slipping along the lubricated 

boundaries in the case of more residualliquid and finer grain size. It has been mentioned 

also by other researchers [15] that even the smallest strain values (typically less than 1 

to 2 percent strain) in the briUleness temperature interval are of significance in the 

reduction of stresses to avoid material separation (pre-tear extension). 

Therefore the grain size, shape and distribution as weil as the wettability of the residual 

liquid are important parameters for the reduction of stresses during the solidification of 

material. 

Figure 15 shows [30] three possible strain curves as a function of the temperature. The 

curves are the difference between good wetting of the grain structure by residual liquid 

brittleness at the grain boundaries (1), good wetting without brittleness (2), and poor 

wetting (3), respectively. 
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Figure 15: Elongation properties as a function of temperature [30] 
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Typical behaviour for industrial alloys is characterized by a drop in elongation with 

decreasing temperature followed by a steep increase immediately after the solidus 

temperature Tso1 (Figure 15, curve 2). The film stage is generally present until the end of 

solidification due to the good wettability. 

It has been mentioned [12,27] that only the interdendritic liquid films which are 

perpendicular to the stress axis will be decisive for the tensile strength. Figure 16 shows 

hot tearing mechanisms based on this assumption. 

This theory could be used for both columnar and equiaxed grain structures. The 

measured elongations are attributed to the plastic deformation of the solid matrix. 

d tA 
0 

A @ 
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Hot cracking 

Liquid film 

B 

!B 

Figure 16: Hot tearing mechanisms based on liquid film perpendicular 
to the stress axis [30] 

The tensile strength corresponds only to the stress required to separate two grains 

(assuming plane surfaces) between which exist a liquid film of thickness "b" with a known 

surface tension YLG. The required tensile stress" d' can be determined by Equation 2. 

2·YLG 
(J' 

b 
Equation 2 

A similar description was given by Pellini [2] but without mention of a specifie orientation 

of the stress axis in relation to the liquid films. It should be noted here that the present 

approach will be used in the theoretical model to determine the AI-Si binary alloy fracture 

stress. 
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2.2.4 Effect of Solute Additions 

The shape of the equilibrium diagram (Figure 10) showing the hot tearing propensity in a 

binary system [16] is accounted for by the increasing amounts of solute. The critical 

temperature (Tc) will be depressed because of the greater amount of liquid persisting to 

lower temperatures. Simultaneously, the solidus is lowered because of changes in solid 

solubility. Consequently, the critical solidification range (CSR) increases concurrently. 

Similarly the hot tearing tendency increases due to the greater amount of non-equilibrium 

solidification. 

It has been mentioned [16] that one fundamental reason for hot tearing formation during 

the early stage of solidification can be the nearly similar chemical composition of the 

liquid (at the grain faces and edges) and the solid being frozen. Based on the latter 

statement, it has been stipulated [16,28,29] that hot tearing may be prevented by 

modifying the liquid phase composition in order to that this composition is very different 

from that of the solid. 

2.3 Methods of Assessing Susceptibility to Hot Tearing 

Various methods have been used to assess the relative susceptibility of different alloys 

to hot tearing. The important reasons for determining the alloy susceptibility to hot 

tearing are to allow theories to be assessed, and then to enable predictions to be made 

about the alloy behaviour in industrial casting and welding situations. Basically, the 

simplest methods were designed to mechanically restrain the casting or welding during 

freezing in order to produce contraction conditions varying from mild to severe. 

The AI-Si and AI-Cu binary alloys are among the few which have been selected in order 

to study the mechanisms of hot tearing and its dependence on various parameters such 

as the alloy, trace elements, grain size, melt superheat, and gas content. These 

particular binary alloys were selected due to their relative simplicity but also because 

sorne experiments have already been carried out by other investigators. 

Different hot tearing tendencies result from variations in mechanical factors (stress, 

strain). In general, the test methods are designed to induce stresses by external factors 

[35]. The factors which produce hot tearing are; a) restraint of metal contraction caused 

20 



.~ 

Chapter 2: Hot Tearing Theory and Literature Review 

by mould or cores, b) restraint of contraction caused by the casting itself or the gating 

system, c) temperature gradients or "hot spots" operating in conjunction with restraint of 

contraction. 

2.3.1 Methods of lesting and Quantification of Hot learing Susceptibility 

ln order to produce stress conditions in a solidifying material, a sufficient level of 

mechanical constraints is required to prevent the shrinkage of the test piece in order to 

induce material separation eventually. An early attempt [34] to evaluate hot tear 

susceptibility was in conformity with the belief that low mechanical properties at elevated 

temperatures were conducive to hot tearing. The test involved a solidifying casting which 

raised a weight which was being increased gradually until a fracture occurred. However, 

one of the earliest investigations of hot tearing in aluminum alloys was by Archbutt [33] 

who prepared die castings in several alloys in common use. Two types of casting were 

used, a complicated branched tubular casting and a shouldered tensile test piece. The 

alloys were classified in terms of mechanical properties and their tendency to fissure. 

However, the choice of alloys was such as to be of liUle value in forming a theory of hot 

tearing. 

Vero [7] made a more valuable contribution by casting U-shaped test pieces consisting 

of one horizontal and two vertical bars each 10 mm in diameter. Both vertical parts 

formed by the pouring and the rising gate resist the contraction of the horizontal bar in 

which a tear would arise in castings of alloys prone to hot tearing. The mould was made 

of mild steel and used without coatings. The degree of hot tearing was determined by the 

relative quantity of cracked castings (expressed as a percentage of ail castings) in the 

horizontal section caused by the mechanical restraint imposed by the vertical arms. The 

evaluation of different alloys was made with 12 to 14 castings. Castings without tears 

were valued as 0, castings with a flaw as 0.5 and those showing deep tears as 1. 

ln addition, Vero [7] determined the strength of a number of aluminum alloys, including 

aluminum-silicon series, at temperatures both below and above the solidus. The castings 

from his U-shaped mould gave suitable test pieces for the later strength tests (bending 

and tensile tests). Figure 17 shows both pieces of apparatus [7] used to evaluate the 

mechanical properties of the castings. The results (Figure 18) show essentially that the 

bending strength of ail alloys decreased (more or less) rapidly with increasing 
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temperature. However, the attempt to correlate mechanical properties with hot tearing 

was abandoned because of contradiction between the strength measurements and the 

casting experiments. 

a) 

2 test piece 
3 hook 
4 thermocouple 

o 2 3 4 5 cm 
1 1 1 1 1 

Figure 17: Holders used in bending and tensile tests [7] 
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Figure 18: Bending strength of aluminium alloys in the melting range [7] 
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An investigation was carried out by Lees [9] to determine the hot tearing tendencies of 

aluminum alloys. Two tests were developed, one in sand moulds and the other in copper 

dies. Tests were made to determine the stage in freezing at which the alloys show 

substantial strength and to relate the results to hot tearing behaviour. The test casting in 

sand moulds (Figure 19) requires chili inserts connected to the steel moulding boxes to 

restrain contraction externally rather than by means of the sand (strength properties of 

sands and cores are difficult to standardize). The results of the hot tearing tests were 

expressed by a letter ranging from A to C for the sand mou Ids and from A' to E' for the 

copper dies. The liA" rating indicates a superior resistance to hot tear. Various 

modifications were made to improve this approach. However, experiments failed to 

produce a more discriminating test and subsequent work was oriented to tests in metal 

moulds. Tatur's [37] modifications of Lees' original tests in copper dies (Figure 20) is an 

attractive method and appears to work weil but apparently it suffers from the 

disadvantage that it does not include a hot spot. 

Figure 19: Test casting in sand moulds [9] 

Figure 20: Test casting in copper dies [37] 

Singer and Cottrell [14] carried a stage further the work do ne by Vero [7] on the hot 

tearing of aluminum-silicon alloys. The tensile properties were determined at 

temperatures in the region of the solidus to explain the mechanisms of hot tearing. Sorne 
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experiments on cast steel bars were carried out by Hall [36] where the tensile strengths 

and elongation were determined during and shortly after solidification. The results, 

however, were made difficult to interpret by the steep thermal gradient present in the 

castings at the time of testing. Hall concluded that it was necessary to go sorne distance 

below the solidus before a significant elongation was observed and hot tearing was no 

longer possible. 

Singer and Cottrell [14] used a Hounsfield tensometer in combination with a tube furnace 

(Figure 21) for testing materials both below and above the solidus. 
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Figure 21: Apparatus used for testing the tensile 
properties in the region of the solidus [14] 

Figure 22 and Figure 23 show the tensile strength of the alloys at temperatures in the 

region of and above the sOlidus, respectively. The main conclusion was that there exists 

a range of temperature above the solidus over which sorne alloys have a finite strength 

and coherence, and at the same time a negligible ductility. It was suggested from this 

work that the extent of the hot tearing temperature range is one of the most important 

factors in determining the hot tearing properties of the alloys. 
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Figure 22: Tensile strength properties of AI-Si alloys 
at temperatures near the solidus [14] 
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The greater the range, the greater would be the bulk thermal contraction in portions at a 

more advanced stage of solidification, and, consequently, the greater would be the 

propensity to hot tearing. It was stipulated from the results that in simple binary alloy 

systems, the degree of hot tearing taking place above the solidus reaches a maximum in 

the alloy having the composition corresponding to the maximum solid solubility of the 

alloying elements. The more important results are incorporated in Figure 24 which 

reveals that the hot tearing range rises to a maximum at 1.8 percent silicon. 
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Figure 24: Relationship between hot short temperature range and composition of AI-Si 
alloys as determined by high temperature tensile tests [14] 

Singer and Jennings [1] conducted work on the hot tearing of aluminum-silicon alloys of 

commercial purity by casting alloys into cylindrical metal ring moulds (Figure 25). 
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Figure 25: Mould for ring castings [1] 
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The test employed consisted of casting an annular ring in an open mould made up of a 

plate on which rested concentric ring and core. 

The mould material was cast iron. One stipulated advantage is that the whole process of 

solidification of an alloy could be observed visually. The tensile stress was given by 

contraction around the core which caused fissuring on alloys prone to hot tearing. The 

results were influenced significantly by altering the pou ring temperature which was 

maintained 100 oC above the liquidus. The mould was used uncoated to ensure uniform 

chilling effect and the mould temperature was kept at approximately 150 oC. The 

evaluation required between 4 and 14 ring castings followed by an examination to 

determine the extent and the nature of the hot tears. The seve rit y of tearing is expressed 

numerically as the total length of the hot tears on ail surfaces. It has been mentioned that 

the procedure has the disadvantage that it does not take into account the width or depth 

of the hot tears. 

Figure 26 shows the results from the experiments using the ring casting method to 

evaluate the hot tearing propensity of aluminum-silicon alloys. The results [1] indicate 

that the seve rit y of hot tearing increases to a maximum with increasing silicon content 

from 0 to 0.7% and then decreases to zero at 3% silicon. There was no hot tearing 

observed for alloys containing more than 3% percent silicon. The curve behaviour was 

described by Feurer [75] as the lambda curve (after the shape of the Greek capital 

letter, A). 
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Figure 26: Average length of cracking of ring castings in AI-Si alloys [1] 

The methods involving casting fiat rings around sand or metal cores have been quite 

widely used [29,38-40]. According to Dodd [13], it is not easy to visualize a logical basis 

for this test, but the method has been used with particular success by Singer and 
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Jennings [1] and also in modified forms [37]. This test method is still used by sorne 

researchers, alone or sometimes in combination with other analytical methods, to 

evaluate the hot tearing susceptibility of aluminum alloys such as the AI-Cu binary 

[41,42] and the AI-Zn-Mg ternary [44] systems. 

Other methods to evaluate the hot tearing susceptibility of an alloy involve the 

contraction of cylindrical bars of different diameters with flanged ends to restrain their 

free contraction (i.e., constrained rad casting). Dodd [13] mentioned that based on the 

strain theory [2], the most logical tests are those employing test castings in which the 

strain arising fram the solid contraction is concentrated in a narrow hot spot. The hot spot 

may be at a junction of a runner [39] or riser but more commonly at the junction of 

different sections [3,7]. The majority of these tests do not, however, permit easy 

alteration of the strain applied to the hot spot. In addition, it is necessary to assess the 

severity of tearing by visual estimation of the length, width and extent of the cracks. 

Hall [45] conducted the development of what is believed to be the first test method 

(before the description of the strain theory [1]) which employs flanged bars of different 

lengths containing hot spots of constant dimensions in the middle of the bar (Figure 27). 
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Figure 27: Hot tear test [45] employing flanged bars 
and containing a hot spot 
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Figure 27 shows the resulting castings (sand mould) with flanged bars and a bigger 

section at the middle of the bars to simulate hot spots. 

Hall [45] stipulated that if there is a hot spot, the casting length determines the strain 

developed in the hot spot and, therefore, whether or not the casting will break. The 

reliability of this test, however, is upset if the ramming density or sand composition is not 

kept constant. Lees [9] comments adversely on this test for this reason and better 

consistency could be achieved by using metallic or ceramic moulds [8,37]. 

Rosenberg, Flemings and Taylor [4] developed and adapted a test for studying the 

relative hot tearing tendencies of non-ferrous alloys. The test pattern consists of a long, 

thin cylinder joined to a heavier cylindrical section (Figure 28). The ends of the test 

pattern are restrained by flanges. The lengths of the thin cylindrical bars can be altered 

to vary the severity of hot tearing. The seve rit y of hot tearing for each alloy was rated as 

the maximum length test casting showing no tears. Castings were considered free of hot 

tears if no hot tear was visible using micrographie examination of a section 

(magnification 10X). 

r 
Hriser 

LL...-_t-i ~::-+--.l-~-' 1;·'I2.~;:·:~~~~te, ~ 
j+- 3" 1/2" 

11/2" 

---....,~ 

. ~-I 
1 
1'" - 61/8" 
1 
1 

1/2" R 

21/2" 
~ -1+--+--- to 17" ---~ 
1 

Figure 28: Plan view of the test pattern [4] 

29 

3/4" 

I..J+ 
11/8" 



Chapter 2: Hot Tearing Theory and Literature Review 

Tearing in the AI-Mg, AI-Sn, AI-Cu, Mg-AI, and Mg-Zn binary systems was studied [4]. An 

example of the results is shown in Figure 29 where hot tearing characteristics for grain 

refined and non-grain refined aluminum-copper alloys are compared. The curve relating 

hot tearing resistance is superimposed on the phase diagram. 
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Figure 29: Hot tearing characteristics of the AI-Cu binary system [4] 

Numerous designs of the constrained rod casting test can be found in the literature 

[37,46,47]. Gamber [46] developed a test method (C-shaped bar casting) to impose a 

stress to be concentrated at a fillet radius to evaluate the resistance to hot tearing of 

commercial alloys (Figure 30). The stress is maximum when the radius is zero and 

decreases as the ratio of the fillet radius over the bar thickness tends to one (rIt = 1). 

The specifie design is associated with a corresponding stress concentration factor (Kt). 

Figure 31 shows the relationship between fillet radius, stress concentration and 

castability at the hot spot location (L-junctions). Gamber's method offers several 

advantages such as: a direct and simple relative rating system, increased sensitivity 

(wider rating range), and a directional solidification, that forces the hot spot ta be located 

at the fillet radius. 
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Figure 30: Diagram of the C-shaped testing method [46] 
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The rating consists of ascribing a severity factor of 1 for alloys that do not hot tear in the 

sharp-notched mould. The seve rit y factor increases to 9 for the test bar showing a hot 

tear with the largest fillet radius and shortest length. A typical representation of the 

results is shown in Figure 32 for the hot tearing resistance of commercial aluminum­

silicon alloy. 
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Figure 32: Representation of the hot tearing resistance of commercial AI-Si alloy [46] 

Liu's [47] modification consisted basically in having horizontal rads of various lengths 

positioned randomly (Figure 33). The metal is fed to the flanged rads by a common 

sprue. The severity of hot tear was designated by a number from 0 (free of crack) to 5 

(completely cracked bar) to each casting bar based on visual examination. 

Warrington and McCartney [49,50) developed a hot cracking test for aluminum alloys. 

The main objective was to investigate hot tearing behaviour of aluminum alloys in a way 

which is relevant to the shell zone of DC cast ingot. 

The test method consisted of an internally tapered steel crucible he Id in an open-ended 

tube furnace together with a separate water-cooled copper chili with a tapered conical 

portion. The chili section of the apparatus was inserted at a pre-determined depth into 

the molten alloy. Figure 34 shows a diagram of the test method used to assess the 

effects of grain structure and alloy composition on the hot tearing susceptibility of AI-Cu 

binary alloys. 
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Several tests [49] were performed with temperature measurements which allowed 

thermal conditions to be characterized. Two conical chills with a 17.5° taper angle were 

used during the course of their work. The smaller chili had maximum and minimum 

diameters of 38 mm and 15 mm, respectively. The larger chili had maximum and 

minimum diameters of 60 mm and 20 mm, respectively. The taper arrangement of the 

chili and the crucible provided castings with 1 Omm wall thickness. 

The melt temperature and the insertion depth were important parameters. However, the 

surface finish of the chili was a crucial element in reproducibility of the tests. 

Cémsequently, the surface was cleaned and polished prior to each test. An important 

feature about this test, is the ability to include a hot spot by simply painting a strip (8mm 

wide) of colloidal graphite on the chili surface to reduce the local heat transfer. 

The crack length was used to express the hot tearing susceptibility [49,50] of each alloy. 

Figure 35 shows the crack length as a function of alloy composition. 
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ln general, the compositional dependence of hot tearing was found to be broadly similar 

to that determined by others [1,7,9,14]. The hot tears produced with the apparatus were 

always intergranular in nature. 

The methods described above were also used to determine the weldability of alloys. In 

fa ct , the weldability is often defined as the hot tearing susceptibility of alloys. Generally, 

the study of the weldability of alloys lead to the development of various techniques and 

approaches [51-55] dealing with both fixed and variable mechanical restraint [74] of the 

weld test. 

The most popular technique to evaluate the relative hot cracking sensitivity of materials 

is attributed to Savage and Lundin [52] who developed the Varistraint. The augmented­

strain concept for synthesizing full-scale restraint has proved useful in the studies of, 1) 

hot cracking sensitivity of filler metals, b) the effect of specifie alloying elements, and 3) 

establishing the basic mechanisms of hot cracking. Briefly, the Varistraint technique 

utilizes a small specimen supported as a cantilever beam (Figure 36). 
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Chapter 2: Hot Tearing Theory and Literature Review 

A load is applied at a certain point to bend the specimen downward (augmented-strain) 

as the weld is deposited. Figure 37 shows the total crack length, measured directly from 

the as-welded surface, as a function of augmented-strain percentage. 
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Figure 37: Total crack length as function of 
augmented-strain percentage [52] 

Clyne and Davies [57,58] assessed the severity of cracking by monitoring the effect of 

the cracking on electric current flow. The method involves measuring resistance across 

different locations on the cast specimen. The experimental apparatus (Figure 38) 

consists of a dog-bone shaped mould (to create restraint) which is made of steel. Each 

end is water-cooled and the central portion of the mou Id is seated on a firebrick heater. 

The mould is positioned beneath a graphite crucible heated by an induction coil. The 

crucible has a hole, plugged temporarily with a graphite rod, at its bottom to allow quick 

filling of the mould at the appropriate time. 

The experimental setup is such that the cracking is restricted to the 20mm wide central 

portion of the dog-shaped mould (Figure 39). 
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Figure 38: Diagram of the casting apparatus [58] 

After pou ring the melt and solidification is completed, the test specimen is removed and 

the central portion is machined to a uniform section for resistance measurements. The 

reduction in cross sectional area from the initial value to the obtained final value due to 

cracking of the test piece is related to the resistance measured and expressed as 

fractional area of cracking, Xcr. 

Consequently, the parameter extracted Xcr 0 represents a completely uncracked 

specimen and Xcr 1 a fully cracked section. Figure 40 shows the variation of cracking 

fraction X cr as a function of alloying element and melt superheat. It has been shown to 

represent in a meaningful way the severity of the cracking based on the two assumptions 

a) that the values of Xcr represent an actual reduction of the cross section area or the 

crack surface area, and b) that the changes in the resistance are a direct consequence 
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of the presence of cracks only and not the results of changes in composition produced 

by macrosegregation or microstructure. 
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Figure 41 shows a typical comparison of theory and experiment for the AI-Si alloys; the 

hot cracking susceptibility of AI-Si alloys measured by Clyne and Davies (through 

electrical resistance [58] and by Feurer (through direct measurement of the crack length 

[75]). The experimental results are from the ring test and the dog-bone test. 
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The observation of hot tears formation allowed a better understanding of this 

phenomenon. Fredriksson [59] observed initiation and propagation of hot tears during 

tensile testing under a scanning electron microscope (SEM). Two alloys were used (AI-

4wt%Sn and AI-4wt%Cd). The samples were heated between the liquidus and the 

solidus temperature before tensile testing. These two alloys showed completely different 

behaviours. The alloy AI-4wt%Sn presented a fragile rupture while the alloy AI-4wt%Cd 

was ductile. In fa ct , the eutectic liquid located at the grain boundary wets the grain that 

favours hot tearing when a tensile load is applied. On the other hand, the eutectic liquid 

did not wet the grain boundaries of the AI-4wt%Cd. In fa ct , the eutectic liquid remained 

under the form of spherical drops. These results showed the important role of the wetting 

ability of the grain boundaries by the liquid metal and the formation of the hot tears. 
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Grasso [60] used an organic alloy of succinonitrile-acétone and a device (Figure 42) to 

perform unidirectional solidification in order to observe in situ the hot tear formation. The 

use of this organic alloy avoided the problems related to visual observation at high 

temperature with metallic alloys. The device was composed of a small cavity containing 

the alloy subjected to a thermal gradient. A lever allowed initiating hot tears while 

separating the dendrites of one another. The temperature of the solid liquid front was 

measured by thermocouples. 

Figure 42: Deviee to observe in-situ hot tearing [60] 
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These two studies showed that the hot tear will be healed by the surrounding liquid if the 

dendrites are separated at lower solid fraction (Le., no coherency between dendrites). 

Nevertheless when the permeability becomes too low (Le., no inflow), pores will form at 

the extremity of the healed hot tear. The liquid will spread itself in the perpendicular 

direction until separation. These studies show that the phenomenon of hot tearing is not 

only interdendritic but also intergranular. 

Tensile testing of aluminum alloys during solidification requires that the sample start at 

the liquid state. The tensile test concept by Ackerman [60] is certainly a completely 

different experimental approach. The experimental set-up (Figure 43) used two water­

cooled movable copper cylinders that were immersed in the molten metal. The 

solidification began immediately and a shell zone surrounded the water-cooled device 

shortly after. When the formed shell aUained a certain thickness, the lower portion of the 
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cylinder moved downward to apply a tensile load perpendicular to the direction of the 

solidifying shell. 

Figure 43: Experimental to apply tensile force during solidification [60] 

This configuration does not allow a direct measurement of the strain in the molten metal. 

The strain rate was determined by assuming that the shell is strained over the total 

height, Lo. The latter can be affected by the friction between the shrinking shell and 

internai stresses can develop but are not considered in the tensile strength 

determination. In addition, molten metal will penetrate between the incipient hot tear. 

This makes the hot tear zone and the load bearing area difficult to evaluate. This 

approach gave results that were in agreement with previous studies. However, the 

approach does not cover the range of interest in the solidification interval and completely 

different failure mechanisms might probably take place. 

Ohm and Engler [62-65] represents the first and only documented attempts to measure 

the stress and strain at the surface of a casting chilled by a metallic mould. The 

apparatus included an insulated U-shaped crucible on which a water-cooled copper 
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mould is positioned (Figure 44). The crucible is filled with the molten alloy which makes 

contact with the water-cooled copper mould almost simultaneously over the total contact 

area. The alloy is therefore solidified directionally from the top and a shell grows 

downwardly into the metal pool. The supplementary cooling of the mould ends ensures 

that the hot tearing will take place at the centre of the sample. After reaching the target 

temperature, the mould is removed and a constant displacement velocity is applied to 

the cast sample using the specially designed jaw or cast-in anchors. The force and the 

displacement velocity were recorded. 
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Figure 44: Diagram of the apparatus designed by Olm and Engler [62-65] 

Magnin et al [63] used the apparatus developed by Ohm and Engler [64,65] for the 

tensile testing of a solidifying shell cooled by a chili plate. They presented stress-strain 

curves for aluminum alloys above their solidus temperature. The measured tensile 

strengths were in the range of 0.25 to 2 MPa and elongations at maximum stress were 

typically less than 0.5%. The alloys investigated were AI-0.9Mg-0.6Si (6063) [62], AI-4Cu 

(A295.2) [62] and AI-4.5Cu (2024) [63]. 

Colley et al [67] measured the tensile properties of as-cast aluminum alloy AA5182 in the 

500-580 oC interval using the reheated bar technique equipped with a digital video 

camera to evaluate the instantaneous true strain from diameter measurements. They 

observed a sharp decrease in strength as the temperature raised above 570 oC giving 

42 



Chapter 2: Hot Tearing Theory and Literature Review 

mass fraction liquid greater than 5% according to Arnberg et al [68]. The cause of such a 

decrease in strength was not associated to a visible change in the microstructure in the 

570-575 oC interval, but an increase in the proportion of liquid was evident above 575°C. 

The maximum stress measured at 575 oC was around 2.5 MPa. The loading portion of 

the stress-strain curve was unfortunately too steep to evaluate the strain at maximum 

stress. Applied strain rates were between -10-2 and -104 
S-1. 

2.3.2 Prediction of Hot Tearing Susceptibility 

Over the years, there have been many attempts to define an effective working theory of 

hot tearing. The most useful work has been the attempt to predict the hot tearing 

susceptibility as a function of composition for binary alloys. This is considered [32] as a 

severe and discriminating test because the theory has to contend with a pure metal, 

having low solute content (only solid solution dendrites), and eutectic concentrations 

increasing with solute levels. Consequently, the ability to deal with ail of these aspects in 

a single alloy system represents a test of the theory which covers the majority of 

solidification structures in real castings. 
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However, there are relatively few usefully predictive models and it is difficult ta derive a 

satisfactory theoretical description from decades of research on hot tearing. One 

particular example is the typical experimental result (Figure 45) which reveals a steeply 

peaked curve (relative hot tearing tendency) which Feurer [75] called a lambda curve 

(after the shape of the Greek capital letter,A). The problem is to find a theoretical 

description which will allow the lambda curves ta be simulated for different alloy systems. 

Generally, the tendency to hot tearing is based on balancing parameters having a 

positive or negative effect on one another. Quantitative characterization using computer 

simulation of solidification and the prediction of hot tearing cannat be built on experience 

or estimates of influencing variables. In this case, it is necessary ta deal with parameters 

which can be described mathematically and be determined from measurable quantities. 

The theoretical approaches and the known concepts ta explain the experimental results 

are presented in this section. 

According ta Fortina [66,70] the curve for the solid fraction curve as a function of 

temperature, fs, deviates greatly from a hypothetical linear curve. The positive or 

negative deviation, LlT, should describe the hot tearing tendency according ta 

Equation 3, 

Fe (~TpoJmax·S+ -(~Tneg)max·S­

Rmc 
Equation 3 

where: (iJTpos)max: largest positive temperature deviation rC), 
+ s: fs value of Ll T pos, 

(iJTneg)max: largest negative temperature deviation (oC), 

s-: fs value of LlTneg, 

Rmc: hot tensile strength of the solidified alloy (MPa), 

(1- s-): liquid fraction (1-fs ). 

The value of the hot tearing coefficient Fe should be as low as possible. This coefficient 

was used by Fortina [66,70] to make a relative estimate of the hot tearing tendency of 

wrought aluminum alloys. 
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Flender and Hansen [71] sees the hot tear development as a competition between the 

solidification rate, v, and the contraction rate, u. The solidification front requires a certain 

time to pass through a critical zone of length a, at a rate, v. During this time, the 

considered zone contracts with the rate component (Uk • cos cp). The strain forced in this 

direction should be less than the critical strain (t! . LiL) where e* represents a material 

property. The condition for the occurrence of a hot tear is, therefore, given by Equation 4, 

where: v: 

a: 

Uk: 

e*: 

LiL: 

cp: 

v 

Kw a < 1 
uk·cosrp e*·f).L 

K crit 
w 

solidification rate (OC/s), 

Equation 4 

length of the critical temperature range (m), 

free contraction rate, 

critical strain, 

length of the critical zone (m), 

angle between Uk and the perpendicular to v. 

Feurer [75,94] derived a mathematical model for the hot tearing tendency of hypoeutectic 

alloys based on solidification shrinkage and its feeding by the residual interdendritic 

liquid. The hot tearing criteria is given by Equation 5, 

(
d lnV] 0 

dt total < 
Equation 5 

with; (dlnVJ (6InV] (6InV] 
dt total = 6 t feeding + 6 t shrinkage 

where uV', represent the positively acting part (feeding) or the negatively acting part 

(shrinkage) of the volume deficiency. However, this description does not take into 

account any small elastic or plastic deformation [12]. 

Clyne and Davies [58] define a cracking susceptibility coefficient (CSC) assuming that the 

local liquid fraction, fL, in any volume element decreases monotonically until the 
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solidification is complete. It is indicated that in the vicinity of the hot spot (the most 

vulnerable region) the following processes can occur: 

i) Strain accommodation by solid movement (mass feeding) 

ii) Strain accommodation by liquid movement (interdendritic feeding) 

iii) Interdendritic separation (interdendritic film stage) 

iv) Interdendritic bridging 

The cracking susceptibility coefficient was defined according to Equation 6 where tv is 

the vulnerable time period and IR is the time available for stress relief processes. 

Equation 6 

It is necessary, however, to obtain the fL/time curves corresponding to a range of initial 

compositions to predict the variation of CSC with composition. In order to calculate these 

times, it is necessary to have a fL(t) or fs(t) relationship. This can be achieved using a 

microsegregation model (Scheil or with some back diffusion) and knowing the local 

thermal history. The first approximation to the fL limits can be taken from previous work 

concerned with liquid-solid rheologyand interdendritic mobility [72] which suggested the 

following: 

i) mass and liquid feeding: 

ii) interdendritic separation: 

iii) interdendritic bridging: 

0.1 < fL < 0.6 

0.01 < fL < 0.1 

fL < 0.01. 

Figure 46 shows the model for the regimes during which either stress relaxation or 

vulnerability to hot tearing occur. The model is used to determine the tR and tv values. 

During the time tR (0.40 < fs < 0.90) liquid and mass feeding will prevent or heal any 

incipient hot tear. On the other hand, in the period Iv (0.90 < fs < 0.99) structural 

separations are possible. 

Consequently, to avoid the occurrence of hot tears, it is necessary to have the lowest 

values for the CSC coefficient. The agreement was improved later by Katgerman62 for the 

AI-Mg system. 
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Figure 46: Model for the determination of tR and tv [58] 

ln addition, Campbell [15], has suggested a modified criterion for the susceptibility to hot 

tearing as shown by Equation 7. 

Equation 7 

where "LlT' is the interval of solidification, ilL" is the overaillength of the casting, lia" the 

grain size, and Il d' the coefficient of thermal expansion. The first term on the right hand 

side refers to the thermal strain accumulated in the hot spot with grains of size lia", and 

"f' the length of the hot spot measured in the direction of the strain. 

Feurer [75] has proposed a theory to explain hot tearing tendency from a concept which 

is in fact more relevant to microporosity formation. First, he considered the suction of 

liquid that is needed to compensate for the shrinkage of the metal without formation of 

pores. On the other hand, he calculated the pressure drop associated with a given flow 
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of liquid through a mushy region (Darcy's law) and estimated that hot tears will form 

when the feeding cannot compensate for the shrinkage. 

This appraach [75] assumes a pressure drap in the mushy zone (i.e., which normally 

leads to micraporasity formation) and not uniaxial tensile stresses. However, Guven and 

Hunt [93] have shown that hot tears form in the aluminum-copper system only if the 

casting is restrained fram opposite solidifying zones; this situation generates a hot spot 

under tensile stress. Consequently, the appraach by Feurer [75] to explain the form of 

the lambda curves can be discounted because it is based on the modeling of liquid flow 

and hence the development of hydrostatic stress, not uniaxial tension as presented by 

Campbell and Clyne [32]. Figure 47 shows the hot tearing response of AI-Cu alloys with 

a peak at appraximately 0.7% Cu fram the conical ring test by Warrington and 

McCartney [49] compared with various theoretical models. 

100 

90 

Non-equilibrium 
freezing range ---- ,/ ----- --- --- -- ---

80 

• 70 

~:::-

Maximum cr~tk t:::.:::.:::.:::.:::.:::.:::.:::. 

... length for ,uEquilibrium 
• co ne test,' freezing 

60 

50 

, , , , , , , 
1 

40 Crackin9.' 
, ,susceptlbil 

30 : : coeffléient 
:~' 

1 
1 

1 

1 
1 

1 
1 

1 

20 ' :,' Hydrostatic 
~,' tension 

" 10 , " \ , " \ 
f, " 

" range 

• -
• 
•• 

o ~--~~~--~--~--~~~~~--~ 
o 1 2 3 4 5 6 7 8 

Copper (wt per cent) 

Figure 47: Hot tearing response of AI-Cu alloys 
compared with various theoretical models - Freezing 

ranges and hydrostatic tension [76] and CSC [58] 

48 



Chapter 2: Hot Tearing Theory and Literature Review 

During their studies on the computer simulation and modeling of the hot tearing 

behaviour, Flender, Hensen, and Sahm [71] show the most advanced formulation of a 

hot tearing criterion as being given by Equation 8. 

Equation 8 

u=La.~y.r . c·r ( )' ( )-112 

where v: solidification rate, 

u: contraction rate in y-direction, 

• 
T: cooling rate, 

Gs: temperature gradient at the solidification front, 

L: length of the stress relief, 

a: coefficient of thermal expansion, 

~y: shrinkage length of an element, 

C: constant, 

Kw: parameter for the hot tearing criterion, 

n, m, 1: weighting constants. 

However, the use of the above calculation methods can be made significantly more 

difficult by taking into account factors such as, phase transformation, segregation of 

alloying and trace elements, grain size and distribution, wetting behaviour of the residual 

liquid as weil as the mobility of the grain and melt system under stress. 

2.3.3 Malhemalical Model 

Mathematical models that predict the evolution of temperature, stress, and strain fields in 

metals during industrial processing have become an important tool in obtaining a better 

understanding of the processes and in optimizing them. 
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An important problem in casting is the formation of thermally induced strains and 

stresses, which can lead to defects such as hot tearing, hot cracking, and cold cracking 

during or at the end of the process. 

Approaches to modeling the magnitude of thermal stresses and strains during 

solidification for the prediction of hot tears have been covered by several researchers 

[77-83]. A specifie objective is to establish a mathematical model to predict the hot 

tearing susceptibility of aluminum alloys. 

Chandra [77,78] described the development and application of a new approach for the 

prediction of hot tears in castings. The proposed methodology is based upon Pellini's 

theory and is divided into two main parts: 1) prediction of grain size and thickness of 

liquid film around solid grains at various stages of solidification, and 2) development of a 

strain based hot tear or fracture criterion. 

Hannard [84] used a specifie finite element program (MARC) to model the butt curl and 

stress built up during DC casting of aluminum sheet ingot. The magnitude of the stress is 

used to predict the cold cracking tendency. Figure 48 shows the boundary conditions 

used to calculate temperature distribution and thermal stresses during both the start-up 

and the steady-state regime of the cast. 
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Drezet [85,86] developed a thermo-mechanical model to describe the stress generation 

in the solidifying ingot. The main objectives of the work included the understanding of the 

basic mechanisms responsible for the non-uniform lateral face pull-in and to quantify the 

shape of the final cold ingot through numerical simulation. 

Purvis [87,88] used acoustic emission (AE) to determine the precise moment for the 

occurrence of a hot tear during solidification. Larikov [89] used the same method to 

determine stress generation during liquid embrittlement of aluminum. The AE signal 

generated during solidification provided various pieces of information concerning the 

liquid-solid phase change such as primary and eutectic phase formation, and 

intermetallic phase precipitation. The approach was also able to detect certain casting 

defects such as hot tearing, hot cracking and porosity [88] formation. He conducted 

solidification experiments [87, 88] with cast restrained bars of variable length and used 

acoustic emission in combination with thermal analysis to investigate hot tearing 

mechanisms. It was found that the acoustic emission signal tended to increase abruptly 

during the generation of a hot tear. Figure 49 shows an example of the results obtained 

during solidification with acoustic emission and thermal analysis. 
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2.4 Influencing Variables on Hot Tearing 

Hot tearing is likely to be found in ail material groups. The aluminum-silicon and 

aluminum-copper binary systems are prone to hot tear and were intensely investigated 

by, among the others, Verë [7], Singer and Jennings [1], and others like Warrington and 

McCartney [49] or Chadwick [42]. 

Numerous studies in the steel industry summarize the latest development in the research 

on hot tearing and consistent agreement can be found in the literature for most groups of 

influencing variables. The results concerning the impact of specifie parameters and 

variables are compiled under the following descriptions. 

2.4.1 Alloy - Solidification interval - Amount of residual eutectic liquid 

The extent of the solidification interval depends on the principal components of the alloy. 

Beginning with pure metal (not susceptible to hot tearing), the solidification interval of a 

A-B binary alloy usually increases rapidly when the quantities of the B atoms of the 

alloying element increase. Further addition of the alloying element will result (in the case 

of binary systems with eutectic and a partition coefficient k<1) in a continuous drop in the 

solidification interval from the maximum solubility in the a phase to the eutectic 

composition. In general, an alloy having a wide solidification interval is considered ta be 

more prone to hot tearing [9,10] and the susceptibility to hot tearing reaches its 

maximum at approximately the maximum solubility. Although the solidification interval 

usually decreases almost linearly between the maximum solubility and the eutectic 

composition, the hot tearing phenomenon has already started to diminish. Based on this 

fact, the increase of the content of residual eutectic liquid proved to be beneficial 

[6,9,29]. 

2.4.2 Trace Elements 

The effects of trace elements or impurities are detrimental because during solidification 

the strong segregation will cause the remaining liquid to be much below the equilibrium 

temperature of the alloy. Indeed, sulfur and phosphorous are known [2] to promote hot 

tearing in the steel industry. In addition, below the true solidus temperature, undesired 
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trace elements could also form brittle, plate or needle-like phases at grain boundaries. 

This could prevent the usually strong increase in elongation immediately below the 

solidus temperature [13]. Trace elements could also reduce the surface tension of the 

interdendritic residual liquid. Consequently, the hot tearing susceptibility increases 

because of the improved wetting [21]. 

2.4.3 Casting design - Geometry of the hot spot - Strain rate 

During solidification, the first solidified material induces, due to shrinkage, stress or 

pressure on the hot spot. When the hot spot itself solidifies completely, its own shrinkage 

is accommodated by the surrounding thin sections in which tensile stresses develop. 

Since the thermal expansion coefficient and the low ductility of a volume element in the 

solidification interval are set values, the risk of hot tearing can only be reduced if the thin 

contracting zones are as long as possible. The tensile stress can therefore be distributed 

over a larger number of liquid films [2,3]. The strain rate is recognized as the determining 

factor for hot tearing [2]. 

2.4.4 Grain size - Residual melt distribution 

During solidification, a coarse grain size or a columnar structure shows considerable 

segregation at the grain boundaries; this leads to the formation of deep notches [13] or 

partial melting [10]. In addition, the mobility of large grains is limited or restrained within 

the solidifying network and reduces the duration of the mass feeding stage. The free 

movement (rotation) of the large or elongated grains within the residual eutectic liquid is 

limited. Indeed, larger grains cause mechanical interactions (coherency) to take place 

earlier in time; this results in a larger solidification interval. 

The equalization of the concentration across the microstructure is difficult to achieve 

because of the long diffusion paths. Lower hot tearing propensity associated with the 

extent of grain refining was determined by many different techniques and approaches 

[6,9, 10,14,29]. It has been mentioned [9] as an explanation that the improved strain 

properties could be associated with crystal rotation, displacement or slippage. 
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Hot tearing resistance could only be improved by a reduction in grain size in the case 

where good wetting conditions exist between the residual eutectic liquid and the solid 

grain. On the other hand, bridging can take place between the grains in the early stage 

of solidification if the residual liquid is restricted to the grain corners and edges 

[16,17,21]. During this particular condition, the matrix can accommodate a considerable 

amount of strain. 

2.4.5 Gas content 

Gas content has been the subject of an investigation by Lees [9], who studied many 

aluminum alloys and found that the effect of dissolved gas was to reduce hot tearing in 

specifie alloys which have a relatively high eutectic content. In fa ct , gas rejected from 

solution during solidification reduces the linear shrinkage or contraction [6]. In addition, 

the gas rejection sets up an internai pressure sufficient to force liquid eutectic into 

incipient tears. The effect of gas rejection during solidification is stronger on alloys with 

larger solidification intervals. However, a reversed effect could be that the generated gas 

pressure forces the replenishing eutectic liquid away from the tip of the tear. 

2.4.6 Healing of incipient tear 

Hot tearing can be healed if the quantity of eutectic liquid is sufficient during the last 

stage of solidification. The flow resistance in the interdendritic channels, which are 

growing with increasing solid fraction, can hinder the healing process of incipient tears 

[7]. The interdendritic melt transport and the feeding mechanisms during solidification are 

described by others [15,91]. The dendrite coherency defines the transformation from 

mass feeding to interdendritic feeding. Flow resistance through the dendrite network is 

described by the filtration laws [91] (Le., Kozeny-Carman equation: permeability, Darcy's 

law: flow through porous media). 

2.5 Development of Stresses and Strains 

The stresses and strains which might develop when a metal is cooled down from the 

solidus (or eutectic) temperature, T5 , are briefly described in this section. However, the 
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complex phenomena occurring in the mushy zone during the solidification process will be 

neglected. It is assumed that the newly formed solid is free of stress and strain, Le., the 

solidification shrinkage was accommodated properly by the proper feeding mechanisms. 

Consider first the simple thermo-elastic situation (Figure 50) to iIIustrate the change 

taking place during cooling. It is assumed that the solid previously formed is already at 

room temperature, T o. Cooling of the newly formed solid layer from T s to T 0' would 

normally generate a thermal contraction ~L given by a(To -Ts), (~L < 0), where L is the 

length of the plate and a the linear coefficient of thermal expansion. Without the base 

material, this contraction would correspond to a thermal strain (Figure 50b) given by Eth = 
-a(T s - T 0). If the already cold material cannot deform, then the ove ra Il deformation of the 

newly formed layer must be zero. In other words, the elastic deformation Eel must 

compensate for the thermal deformation estimated before (Eel = _Eth) and residual 

stresses will build up (Figure 50c). In this ideal elastic case, the residual stress will be 

given by cr = EEel = Ea(Ts - To), where E is Young's modulus. 

aATL 
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Figure 50: One-dimensional thermo-mechanical situation 

Consequently, the surface layer is in tension whereas the base material is in 

compression. In the case where the plate and the new surface layer are allowed to 

deform, both deformation and residual stresses will be observed (Figure 50d). This non­

symmetric temperature situation induces a bending of the test specimen as a result of 

the equilibrium of bath forces and momentum. 
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Figure 51: Ideal visco-elastic behaviour of a material 

Creep mechanisms (nearly-instantaneous plasticity is included in this definition) will tend 

to relax stresses. For example, if the new layer has the ideal elastic-viscous behaviour 

(Figure 51) while the base plate cannot deform, it will have a final residual stress given 

by the yield stress limit, cry (providing this limit was reached during cooling). The 

remaining deformation given by a(Ts - To) - ay/E will be accommodated by plastic strains 

(Le., slight change in the thickness of the newly formed layer). 

ln a general situation, the strain tensor [8] or the strain rate tensor [;] of the material 

can be decomposed into four components [92] given by Equation 9. 

• • • • • 
[8]= [BJh + [Byl+[B]PI+ [Br or [B]= [Br + [Br + [Byl+[BJr Equation 9 

where the suffix th, el, pl, and tr are the thermal, elastic, plastic and transformation 

contributions to strain or strain rate, respectively. The first three components of the strain 

tensor are associated with the simple one-dimensional situation (Figure 50). The last 

component is the contribution associated with the volume change during solid state 

transformation (e.g., austenite-ferrite transformation). 

The thermal strain is a diagonal tensor given by Equation 10. 
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Equation 10 

where [1] is the identity tensor and T the cooling rate. The elastic strain can be related to 

the stresses using the elastic tensor [E] (Hook's law) given by 

Equation 11 

The strain rate component related ta phase transformation has the same diagonal form 

as the thermal strain rate. In this case, the evolution of the volume fraction of the phase 

transformed, pT , replaces the cooling rate and is given by Equation 12. 

Equation 12 

where 118fT is the normalized volume change associated with solid state transformation. 

Finally, the plastic strain rate is supposed to occur through creep mechanisms. It can be 

related ta the deviatoric part of the stress tensor, [s] = [0-] - 1/3 [0-] [1], using a Norton­

Hoff law (Equation 13): 

Equation 13 

where "A" and "m" are two parameters (fluidity and strain rate sensitivity coefficient [13]), 

o-eq is the von Mises equivalent stress (Equation 14): 

Equation 14 

The Equations 8 ta 14 have ta be complemented by the equation describing the 

equilibrium of forces (Equation 15): 

div[CT 1+ pg=O Equation 15 
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where pg is the volumetrie force associated with gravity. Providing the appropriate 

boundary conditions and the cooling history, Equations 8 to 15 allow the calculation of 

deformation and the residual stresses of any domain cooled from high temperature. 

Such calculations were used by Drezet [85,86] for the determination of stresses during 

Direct Chili (DC) casting of aluminum alloys. 

2.5.1 Strain Concentration 

Pellini's theory may be quantified by the following [15] simple steps. Consider a casting 

in which both ends are restrained from moving. During cooling from the liquidus 

temperature, T, the casting having a length, L, and a coefficient of thermal expansion, a, 

will contract by a~ TL. If this contraction is concentrated over a hot spot of length l, then 

the thermal strain in this region is given by Eth = a~ TUI. It is clear that because the 

deformation is assumed to occur preferentially in the weakest part of the casting, the 

thermal contraction is magnified by a factor of UI in the hot spot regions. 

ln addition, it is also necessary to consider the number of grain boundaries on which the 

total amount of strain will be acting. The finer the grain size is, the more widely 

distributed will be the strain. Assuming that the average grain size is, ~, then the number 

of grains in the length, l, of the hot spot is, II~. The strain acting at each grain boundary is 

given by Eb = a~TL~/l2. This simple quantification indicates clearly that reduced 

temperature differences, smaller ove ra Il length between hot spots, and finer grain size ail 

contribute to reducing the strain. 

2.5.2 Stress Concentration 

Guven and Hunt [93] have measured the stress in solidifying AI-Cu alloys. Although the 

stresses are small, they are real and a release of stress is shown each time a crack 

forms. Another stress which might be present could be hydrostatic tensile stress in the 

liquid phase. However, the hydrostatic stress may contribute to the nucleation of a pore 

that would assist in the nucleation of a tear. Nevertheless, it has been mentioned [15] 

that the presence of hydrostatic stress is clearly not a necessary condition for the 

formation of a tear. Hot tearing is the result of uniaxial tensile stress. It is important to 
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mention also that because of the creep of the solid at high temperatures, any stress will 

be dependent on the rate of strain. In fa ct , the faster that strain is forced into the solid, 

the higher is its resistive stress. 

2.5.3 Hot tearing model based on a critical deformation rate 

A new criterion was developed by Rappaz [95] and is based upon a mass balance over 

the liquid and solid phases. This criterion is most probably the only one taking into 

account the complex interaction between the tensile deformation and liquid /solid 

interactions. This model is based on the sa me principle as the one presented by Feurer 

[94] which considers a lack of feeding during the solidification and the deformation 

related to shrinkage and/or applied by the process, e.g., constrained casting. It basically 

stipulates that a hot tear initiates when the pressure difference generated by the ove ra Il 

mechanical and shrinkage deformation reaches a critical value equal to or greater than 

the pressure required to generate a cavity. Figure 52 shows the schematic formation of a 

hot tear between the columnar grains as a result of localized strain with the pressure in 

the interdendritic liquid during solidification. 

--+---'----'-------------L..-+x 
Xcg Xcd X q 

Figure 52: Schematic of the formation of a hot tear 
between columnar dendrites (Rappaz (95]) 
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The dendrites are assumed to grow directionally in a given temperature gradient (G) and 

with a velocity (V) equal to the speed of the liquidus isotherm. The dendritic network is 

submitted to a tensile deformation rate (t = ds / dt) perpendicular to the growth 

direction. The flow of liquid should compensate for the ove ra Il deformation when there is 

no hot tear. The liquid inflow is related to the pressure gradient in the liquid using the weil 

known Darcy's law that considers the permeability of the mushy zone. 

The liquid must be able to feed the zone experiencing deformation to prevent hot tearing. 

Consequently, during solidification and deformation, the pressure (Figure 52) decreases 

from the metallostatic pressure, Pm' at the dendrite tips. If the pressure falls below a 

critical pressure or cavitation pressure, ~, a void may form (hot tear initiation). 

Therefore, a hot tear will appear when the critical pressure is reached according to the 

following: 

Equation 16 

where ~ and ~h are the pressure drop coming from the imposed deformation and the 

shrinkage, respectively. 

Considering the pressure gradient in the liquid obtained from Darcy's law along with the 

Carman-Kozeny [15,91] approximation and that the deformation is uniform, the following 

expression is obtained. 

Equation 17 

Equation 18 

where: J.1: Liquid viscosity 

f3 : Shrinkage factor 

Â2: Secondary dendrite arm spacing (SDAS) 

TL: Temperature at the dendrite tips 

Ts : Temperature at the dendrite roots 
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E(T): Cumulated deformation rate 

PL and Po are the pressure at the tip and at the roots of the dendrites, respectively, over 

which the expression is integrated, Le., over the entire length of the mushy zone. The 

integral over the length of the mushy zone has been replaced by the temperature to 

introduce the temperature gradient (G), fs and E are two functions of Tas given below. 

By combining, Equations 16 and 17 the maximum deformation rate (tp,maxJ before a hot 

tear nucleates at the roots of the dendrites can be obtained, 

with 

and, 

2 

F(i J= Â2 G M -v LH 
p,max 180(1+PJJl c T 1+ p 

F(i J= TfL E(TJfs(TY dT. 
p T

s 
(1- fs (T JY , 

H = 1 fs(T l 2 dT 
~ (1- fs(T JJ s 

Equation 20 

Equation 21 

Equation 22 

Equation 19 

Using these equations, it is possible to establish the maximum strain rate that can 

sustain the mushy zone (semi-solid) before a void is nucleated at the roots of the 

dendrite. The hot tearing phenomena will take place when the strain rate is larger than 

the maximum established. Using the above approach, one can derive a hot cracking 

sensitivity index (HCS) of the alloy in terms of the maximum strain rate at the deepest 

part of the mushy zone before a void is formed, Le., a hot tear is initiated. The HCS index 

is assumed to be proportion al to 1/ t p,max' The HCS index is one of the most used or 

referred to in the literature so far and is able to reproduce the weil publicized À-curve. 
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The main limitations associated with the present criteria are: 

a) predicting the void formation (hot tear initiation) and not propagation 

b) that the cavitation pressure is according to capillarity force, Le., (J' = 2 r 
r 

c) assuming that the deformation of the solid network is known 

d) no contraction of the solid phase 

e) solid fraction limit is 0.98 if less than 2 percent eutectic form 

2.5.4 Hot tearing model based on a stress limit 

A model based on the maximum stress limit was first developed by Drucker [96] to 

analyze the mechanical response of an idealized semi-solid body. The body was 

assumed to be made of equally spaced regular hexagonal cylinders representing the 

columnar structure of the primary solid phase. Drucker [96] derived an expression 

(Equation 23) for the average stress at the onset of deformation (& = 0) in terms of 

strain rate, viscosity and fraction solid. 

Equation 23 

The expression given by Drucker [96] is able to predict the stress as a function of the 

strain rate as given by the following: 

Equation 24 

Figure 53 shows the idealized structure at different strain levels used to derive the model 

associated with the resistance of the liquid film. The model from Drucker [96] was 

extended by Lahaie [99] to predict the average stress at different levels of strain 

(Equation 25). In order to physically model the deformation of a semi-solid, an idealized 

microstructure was used. 
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E=O 

Figure 53: Schematic of the idealized microstructure with h«a [96,99] 

The microstructure is assumed to be composed of solid and mechanically rigid 

hexagonal grains of size a with a uniformly distributed viscous liquid having a thickness 

h separating the grain network (Figure 53). 

During the deformation, the idealized grain is not deformed and the liquid migrates from 

the inclined channel into the horizontal ones. The structure is completely locked when 

the maximum strain, Gmax. ' is reached. When a tensile strain rate, & , is applied, the semi­

solid body will deform by local viscous flow of the intergranular liquid. The average 

tensile stress, Œ generated by this process is given by: 

Equation 25 

where ft is the Newtonian viscosity of the liquid, G is the tensile strain, fs is the solid 

fraction and m represents a microstructural parameter having the values of 1/2 and 1/3 

that represent the columnar and equiaxed microstructures, respectively. This viscous 

flow mechanism will terminate at a maximum strain, Gmax. ' such as defined by: 

Equation 26 
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where ~im is the limiting film thickness on the inclined channels (Figure 53). At this point, 

the liquid films in the horizontal channels will be constrained and the semi-solid will 

deform by dilation according to the following equation: 

Equation 27 

where Kr is the isothermal compressibility of the liquid. As the stress builds up in the 

semi-solid body, there will be a competition between the deformation mechanisms 

described previously and fracture processes such as hot tearing. The criterion for 

fracture by hot tearing was based on the force necessary to separate the two solid 

surfaces connected by a capillary liquid film. The criterion is given by 

(Y.= 4Yl/ g '[1+( fsm J&)-1 
1 3h 1- fsm 

Equation 28 

where rll g is the surface tension of the liquid/gas interface. 

This model gives the hypothesis that ail the deformation is accommodated by the liquid 

and no re-arrangement of the dendrites and no liquid inflow are proposed. In addition the 

only metallurgical parameter used in the equation is related to the grain structure which 

is either columnar or equiaxed. Other metallurgical criteria should be added to better 

understand the close relationship with tensile strength resistance. The model shows that 

the stress evolution is closely related to the liquid fraction and film thickness. 

2.5.5 Summary of the literature survey 

The shrinkage-brittleness theory was first advanced by Vero [7] and stipulated that 

tearing was caused by the contraction strains of the primary dendrites during cooling 

between the liquidus and solidus. The first new theory to explain the mechanisms of hot 

tearing is undoubtedly attributed to Pellini [2] and co-workers [3]. They suggest that hot 

tearing is caused by localized strains, generated by thermal gradients that tend to pull 

64 



Chapter 2: Hot Tearing Theory and Literature Review 

apart solid masses of material separated by essentially continuous films of liquid 

(segregated residual melt). 

The generalized theory proposed by Borland [5,16,17] attempts to explain the 

mechanisms of hot tearing as a combination of the "Shrinkage-Brittleness Theory" and 

the "Strain Theory". The main objective was to modify and extend both theories. 

Basically, the generalized theory suggested that the distribution of liquid is largely 

influenced by the solidification mode, ratio of the interphase (solid-liquid) and 

intercrystalline boundary energies and the effect of solute elements. The most important 

reason for determining alloy susceptibility to hot tearing is first to allow theories to be 

assessed, and then to enable predictions to be made about the alloy behaviour in 

industrial casting and welding situations. 

ln general, the test methods are designèd to induce stresses by external factors in order 

to produce hot tearing. These factors are: a) restraint of metal contraction caused by 

moulds or cores, b) restraint of contraction caused by the casting, and c) temperature 

gradients or "hot spots" operating in conjunction with restraint of contraction. 

Ohm and Engler [62-65] represents the first and only documented attempts to measure 

the stress and strain at the surface of a casting chilled by a metallic mould. However, 

there are needs to simulate more precisely the phenomena occurring in vertical DC 

casting such as the heat transfer conditions, the mould filling stage, the metal head, the 

horizontal solidification and associated solutal convection in order to reproduce the 

associated conditions and microstructural features. This original approach is the subject 

of the present work which is presented in more details in the following chapters. It is 

worth to note that in the light of the tensile property results from the literature, it seems 

that when the liquid phase content is typically below 15% and above a certain level, a 

stress in the order of 1 MPa and elongations generally less than 1 % are expected in 

metallic systems. Constitutive relationships were proposed by many authors to correlate 

their data but most ignored the influence of strain in the semi-solid range. As pointed out 

by Martin et al [69], the introduction of strain effects is desirable to pertorm predictions in 

situations like continuous casting, where strains may not be sufficiently high to induce 

failure. Considering the very low strains obtained at failure when fraction liquid is typical 

to what is encountered in hot tearing situations, it is clear that predictions of failure will 

require constitutive relationships including strain and covering the loading stage. 
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Attempts to predict hot tearing susceptibility as a function of composition for binary alloys 

is considered to be the most useful work. However, there are relatively few usefully 

predictive models and it is difficult to derive a satisfactory theoretical description from 

decades of research on hot tearing (e.g., lambda curve by Feurer [75]). An advanced 

formulation of a hot tearing criterion is given by Flender [71] after their studies on 

computer simulation and modeling of hot tearing, the behaviour of the residualliquid, the 

mobility of the grain, and the melt system under stress. 

Mathematical models that predict the evolution of temperature, stress, and strain fields in 

metals have become an important tool in obtaining a beUer understanding of the 

processes and in optimizing them. An approach was proposed by Chandra [75,77] for 

the prediction of hot tears in castings. The proposed methodology is divided into several 

parts (grain size, thickness of the liquid film, and fracture criterion). Yet another 

constitutive equation that described the hot tearing mechanisms is given by Rappaz [95]. 

The latter also propose a hot tearing criterion based on a cavitation threshold that 

creates a defect on which hot tears do initiate. The calculation methods can be made 

significantly more difficult by taking into account factors such as, phase transformation, 

segregation of alloying and trace elements, grain size and distribution, and wetting. 

However, it is recognized that the model from Rappaz [95] represents one of the most 

classic models that take into account the liquid movement and solidification contraction. 

The present model derived from Lahaie [99] shows that the stress evolution is closely 

related to the liquid fraction. It gives also the hypothesis that ail the deformation is 

accommodated by the liquid and no re-arrangement of the dendrites and no liquid inflow 

are proposed. In addition the only metallurgical parameter used in the equation is related 

to the grain structure which is either columnar or equiaxed. Nevertheless the model can 

be used to predict the onset of hot tearing in a similar way to the Rappaz [95] model. 

Continuous improvement of these phenomenological models and relationships with more 

precise metallurgical phenomena could certainly improve them. 
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Chapter 3: 

3.1 Introduction 

DCSS Experimental 
Procedure 

The majority of the tests described in Chapter 2 are related to the bulk of the alloy and 

are not concerned with the problem of shell zone formation and characteristics. In 

addition, these approaches do not take into account the real and unique features of the 

solidification process during OC casting such as the cooling rate, microstructure 

evolution, or stable/metastable phase formation. In fa ct , the definition of the true hot 

tearing temperature and the correlation of stress direction and crystal growth direction or 

grain boundary orientation become difficult. Figure 54 shows a diagram of the nucleation 

and crystal growth of commercially pure aluminum in a OC casting [112]. The primary 

nucleation of crystals takes place upon contact of the molten metal with the mould wall. 

The crystals that are formed first are equiaxed. The latent heat resulting from the 

nucleation and grain growth causes recalescence and no new nucleation sites are 

formed. Crystals with a favourable orientation grow against the heat flow in a columnar 

fashion (coarse and elongated grains). 

Equiaxed 
Grains 

Columoar 

Liquid 

Figure 54: Diagram of Solidification of Commercially 
Pure Aluminum in a OC Casting [112) 

The need to define both the precise dependence of hot tearing on the alloy system and 

process parameters and the mechanisms responsible for this dependence requires an 

experimental approach which is able to reproduce and/or simulate attributes 
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(i.e., microstructure, mechanical quantities) encountered during DC casting of an 

aluminum ingot. 

The new approach consists of solidifying a volume element reproducing the shell zone of 

a DC cast ingot and measuring its mechanical resistance as a function of physical (e.g., 

cooling rate, superheat) and chemical parameters (e.g., alloying elements, trace 

elements, grain refiner and modifier). The objective is to explain the mechanisms 

responsible for the change in the mechanical resistance to hot tearing. 

The solidification apparatus is built to simulate the primary solidification ta king place 

during DC casting. The experimental concept is based on the solidification of a volume 

element that produces a similar microstructure observed at the surface of a DC ingot. 

The novelty consists of having a pool of liquid metal maintained at a specifie temperature 

prior to solidification. The solidification unit rotates to make liquid metal contact the chili 

plate. This allows better control of metal superheat and produces a smooth solidified 

surface. The unit is built to simulate an air gap (heat accumulation), metal level 

(metallostatic head) and to mimic mould filling (container rotation) observed during DC 

casting. 

The force acting on the solidifying material is essentially tensile with a tensile stress 

perpendicular to the heat extraction. This ensures that the tensile stress is applied in a 

direction also perpendicular to the growth axis of the columnar crystals which contribute 

to the mechanical strength of the shell. 

3.2 Experimental Set-Up 

This novel experimental approach was developed specifically to study the surface hot 

tearing during DC casting of aluminum. The experimental set-up is dubbed DCSS for 

Direct Chili §.urface §.imulator. The DCSS acronym will be used throughout the thesis to 

refer to the experimental set-up. The DCSS was developed to better quantify the hot 

tearing susceptibility of aluminum alloys and to assess their castability as a function of 

alloying element addition and grain refiner. The main goal was to obtain quantitative 

measurements by providing fundamental information such as mechanical properties. The 

latter are essential to improve mathematical models and to predict and develop more 

reliable hot tearing criteria. 
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The DCSS is composed of a conventional horizontal tensile testing machine (Tinius­

Olsen™) on which a unique solidification unit is installed (Figure 55). Basically, the 

solidification unit consists of a specifically designed container of refractory material and a 

chili plate. 

Figure 55: DeSS Unit built on a Tinius Olsen ™ horizontal tensile testing machine 

The DCSS was designed to process a representative volume of aluminum 

(approximately 2 kg) and to record the mechanical resistance of the shell zone during 

deformation and as it solidifies. Temperature history of the solidifying metal is also 

recorded to determine physical and metallurgical values (e.g., temperature gradient, 

cooling rate, solidification front velocity). The thermocouples are inserted and secured 

into the container base during the initial preparation. The temperature history is recorded 

at different positions from the surface towards the centre of the casting. Three 

thermocouples are typically located at 5, 10, and 15 mm. Their exact positions are 

determined after the experiments using X-ray or during metallographic examination. 

Figure 56 shows an X-Ray of a torn sample from which the exact thermocouple positions 

are determined. The thermocouple positions were determined for each experiment and 

used in the numerical model to derive the temperature profile and solid fraction 

distribution. 
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Figure 56: X-ray indicating each thermocouple position (arrows) 

The experimental concept includes a better metal temperature control, a more uniform 

chilled surface, and the capability to instantaneously record temperature and load 

measurements. Other features of the experimental set-up include a computer interface 

program to adjust the testing parameters and experimental data acquisitions, e.g., 

temperature and load. Figure 57 shows a specifie window of the computer interface 

program and buttons to access other menu and adjust parameters accordingly. 

Figure 57: Computer control interface (Data acquisition window) 
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The criteria for starting the tensile test are based on previously determined thermal and 

metallurgical values (solid fraction vs. temperature, solidification front velocity, etc.). 

The specific criteria are entered into a dedicated control interface program, which 

controls the solidification and loading sequence. This ensures optimum repeatability for 

starting temperature by eliminating bias associated with manual operation. The 

temperature and load data are acquired simultaneously. 

The DCSS is engineered to allow anchors to be positioned and used to apply and 

measure tensile stress. The chili plate has similar characteristics as the primary cooling 

zone of a conventional DC casting mould (i.e., material, cooling intensity, microstructure 

features). Figure 58 shows a diagram of the experimental approach with anchors 

positioned in the sam pie. The apparatus integrates a directional solidification unit into a 

horizontal tensile testing machine. The solidification unit is composed of a refractory 

container closed in one direction by an aluminum chili plate, which is water cooled and 

whose surface is prepared to simulate the primary cooling intensity of a conventional DC 

casting mould. 

Tensile Load 

Figure 58: Diagram of the Experimental Concept 

The inner lateral walls of the container are covered with ceramic fiber blankets 

(KoawooI™), which allow axial displacement of the test specimen with a minimum of 

interference. This is made possible because of the small displacement experienced 

during the test and the fact that the ceramic fiber blankets do not oppose a high 

mechanical resistance to compression in comparison to the stresses applied in the semi­

sol id material. Figure 59 presents a diagram of the refractory container with the ceramic 

fiber blankets and the two anchors used to transmit the force to the solidifying specimen. 
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Z\"'Kaowool blanket 12.5 

\-.----------====-:--lJ .JIll" ~mm thick (absorb sample deformation) 

Isocast container 

•• -. ~-+---+-- 3 mm refractory seal 
recess (5 mm thick 
refractory seal) 

Carriage boit 8 mm 
diameter - 102 mm 
long (fiat he ad at 6 
mm fram the surface) 

Figure 59: Refractory container with anchors 
and ceramic fiber blankets (mm) 

The container is placed in a pre-heating fumace (Figure 60) until it reaches 

approximately 725 oC before filling it with superheated molten metal (approximately 

100 oC above the liquidus temperature). 

Figure 60: Pre-heating furnace (a) and container (b) 

The container and its content remained in the pre-heating fumace until the temperature 

was stabilized at approximately 25 oC above the testing temperature (750 OC). 

Preliminary tests indicate that this procedure permits the superheat temperature to be 

kept within ± 5 oC which allowed enough time to perform the necessary manipulation. As 
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a matter of fact, the container and its content are transferred from the pre-heating 

furnace and positioned between the jaws of the tensile tester. 

The anchors that will be frozen-in during solidification are carefully positioned (Figure 

61). The anchors were installed in their holders to touch the melt prior to installing two 

small pieces of ceramic fiber blanket that sealed the two small openings by which the 

anchors reach the jaws. A thin ceramic fiber seal (approximately 5 mm) was positioned 

on top of the container to prevent liquid metal leakage. 

Figure 61: Anchors position and alignment along their axis 

The chili plate was sited on top of the ceramic seal to close the container completely and 

prevent any leakage. Solidification is not initiated at this moment because the chili plate 

is not yet in contact with the liquid metal. In fact, the solidification unit is designed to 

rotate 90° around the anchors to put the metal in contact with the chili plate. The 

rotational motion makes the metal contact the chili plate progressively and simulates the 

mould filling behaviour encountered during the OC casting operation. 

The rotation of the container is instigated automatically when the temperature of the 

metal at 10 mm from the surface reaches a pre-set value of 725 oC. This causes the 

liquid metal to contact the chili plate on which solidification begins. The solidification front 

moves horizontally. The triggering temperature can be easily changed in the control 

program. Figure 62 shows a diagram of the solidification unit after a 90° rotation as weil 

as the metal head simulated by the calculated volume of liquid metal in the L-shape 

design. The metal head used during ail experiments was approximately 35 mm at the 
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centre of the test sample, i.e., at the centre of the chili plate in contact with the liquid 

metal. 

Container 
(refractory 
material) 

Meta! Head 

Figure 62: Diagram of the Solidification Unit after a Rotation of 90° 

The solidification lasts for a few moments until the melt reaches another triggering 

temperature that makes the chili plate slide automatically upward to position precisely a 

small window (1 cm high by 9 cm wide) that exposes the cast surface. The chili plate 

completely surrounds the window and the solidification is not interrupted during this 

stage. A limit switch is located at the top of the rail on which the chili plate slides up and 

down. This switch is used to send a signal that causes the strain gauge probes to be 

positioned automatically on the cast surface. This arrangement allows the strain to be 

measured in real time during solidification. 

Immediately after the strain gauge is in place, a tensile force, caused by the carriage boit 

moving at a constant rate of displacement, is applied on the solidifying shell. The 

displacement is triggered by a temperature, given by the thermocouple positioned at 10 

mm from the surface, corresponding to a solid fraction of 0.95. This temperature related 

criteria was chosen to ensure that the solid fraction at the surface of the sam pie remains 

below unit y or above the non-equilibrium solidus. 

Ali temperature criteria used for the different triggering needs were previously 

determined from thermal analyses of the AI-Si binary alloys. Figure 63 shows the window 

in the chili plate and the strain gauge equipped with long rods (arrow) to reach the 

sample surface. The force is measured via the tensile tester load cell measuring the 

torque, from which the axial force is calculated according to the lever arm's length. 
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Figure 63: Chili plate with (a) window and, (b) extensometer (strain gauge) 

3.3 Testing Procedure 

It is worth mentioning that the present section describes the testing procedure and that 

details regarding the experimental set-up can be found in the appendix section. The tests 

were conducted by first pou ring the melt at 750 oC into the refractory container 

previously preheated to approximately the same temperature. The tests were conducted 

on AI-Si binary alloys and three different alloys were tested, i.e., AI-0.5 wt% Si, AI-1.5 

wt% Si, and AI-2.5 wt% Si. Figure 64 shows a diagram of the AI-Si phase diagram with 

the aluminum-rich corner. These compositions were selected to cover the hypoeutectic 

range of the aluminum binary system where it is weil known [75] that the hot tearing 

sensitivity changes drastically. 
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Figure 64: AI-Si phase diagram with the AI-rich corner (right-hand-side) 
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The alloys were prepared using commercial pu rit y aluminum (99.97 wt% AI) with no 

grain refiner addition. A sufficient quantity of alloys was prepared in advance to minimize 

manipulation but also to ensure similar chemical compositions between tests. 

Appraximately 15 kg of AI-Si alloy was melted in a small holding furnace and the 

container, previously prepared and assembled, was placed in the preheating furnace. 

The liquid metal was poured inside the container already placed inside the pre-heating 

furnace. The container and the liquid metal remained in the pre-heating furnace for a 

sufficient time to homogenize the temperature. After the target temperature is reached, 

the container and the molten aluminum was transferred and positioned precisely 

between the tensile testing jaws. 

The melt cooled slowly mainly by conduction through the refractory wall. The unit was 

ratated 90-degrees to begin solidification when the melt reached the target temperature 

measured at 10 mm fram the surface. Tensile testing started when the temperature at 

the thermocouple located at 10 mm from the chili plate reached a preset value 

representing a solid fraction of 0.95 determined fram thermal analyses. According to the 

alloy systems, the preset values selected for the AI-Si experiments were 627 oC (AI-

0.5%Si), 573 (AI-1.5%Si), and 572 oC (AI-2.5%Si). The rate of displacement of the 

actuator was 0.16 mm/s. Other tests with AI-1.5 wt% Si were performed at a different 

displacement rate to study the impact of the strain rate on the resulting resisting load 

(tensile strength). The rates of displacement of the actuator were 0.35, 0.72, and 1.39 

mm/sec. After the tests, the specimens were investigated by cutting the surface to reveal 

the torn section and to estimate the load bearing area. This was used later to determine 

the mechanical resistance (Le., engineering strength given by the force over the area, 

F/A) of the solidifying alloys. On sorne occasions, the torn surface was not visible 

because of liquid inflow during testing. However, comparison between the section 

obtained at 10 mm fram the surface (Le., solid fraction of 0.95) and the torn surface 

shows similar results (approximately ±10% difference). Consequently, the section 

obtained fram the temperature measurement and the exact thermocouple position (X­

Ray) was used. In addition the stress-strain curves were determined to compare at 

different straining conditions the resulting resisting strength of the material being tested. 
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Knowledge of the solid fraction evolution as a function of temperature and/or time is of 

tremendous importance in the study of hot tearing. In fact, the complex interactions 

between the solid phase and the liquid phase distribution will inevitably reach a critical 

solidification interval. During this critical solidification interval, the strain and stress 

accommodated by the microstructure could promote incipient hot tear resulting from 

grain de-cohesion. Further thermo-mechanical influence would promote the propagation 

of the hot tear until, in some case, the complete separation of the cast piece or casting 

occurs. 

Consequently, the solid fraction determinations are mandatory for the development of 

models that best describe the hot tearing behaviour. The solid fraction can be 

determined by various methods. The most conventional method is from cooling curves 

analyses, where the temperature history of a specific alloy is recorded and analyzed. 

The cooling curve is the fingerprint of the alloy and can be used to define the entire 

solidification path (product reaction for each phase) from liquid to solid. Another way of 

estimating the fraction of solidifying phases uses mathematical models. Nevertheless, 

the basis for accomplishing good results with thermodynamic modeling is the quality of 

the thermodynamic database of individual substances. The assumptions made also 

contribute to some errors and validation should be done with precise thermal analysis 

and phase characterization of the material. 

ln the present work, the sol id fractions were determined using a thermal analysis 

apparatus and results compared against both the Gulliver-Scheil model (no back­

diffusion) and the Brody-Flemings expression (diffusive term). The solid fraction 

determination using these models assumes a unique solidification pa th related to the 

temperature field only, even though it can depend also on the cooling rate due to back­

diffusion. The main goal was to determine the closest match with the experimental 

results. The model that showed the best fit was used in the hot tearing theoretical model 

and for the probabilistic microstructure model to derive the relaxation coefficient (RC). In 

fact, the use of a thermodynamic model greatly facilitates the solid fraction determination 

for different alloy system. 
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It should be noted that the thermal history and metallurgical parameters can be extracted 

from experimental data, and better describe the solid fraction evolution during the time 

interval of solidification. This is crucial information that further refines existing numerical 

models and improves predictives capability. 

4.1 Thermal Analysis 

The thermal analyses of the three aluminum-silicon alloys were performed using a 

standard apparatus that was first described by Backerud [112]. Figure 65 shows the 

apparatus which consists of a perforated cylinder made to hold a small steel cup 

(approximately 100 9 of liquid aluminum) in its cavity. The perforated cylinder is used to 

force air into the cavity and change the cooling rate of the sample. The cooling rates 

could be varied from approximately 0.1 to 5 oC/sec. A cooling rate of 1-2 oC/sec has 

been used in this work to determine the solid fraction. This represents the average 

cooling rates observed in the shell zone of the DC cast ingot at approximately 5-10 mm 

from the surface. 

Two thermocouples are used in order to determine the temperature gradient and the 

coherency point. The latter indicates the temperature at which the microstructure starts 

to bridge and develop some mechanical resistance. Owing to the fact that the coherency 

point is the beginning of the bridging between dendrites, it is still too early in the 

solidification process for hot tears to develop. 

Figure 65: Thermal analysis (a) set-up and (b) sam pie 

This was observed during the DCSS experiments where strength started to develop at a 

sol id fraction above about 0.95. This is far from the coherency point determined from the 
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twin thermocouples used in the set-up. The coherency point is derived from the 

maximum temperature difference recorded between the thermocouple positioned near 

the wall and the one at the centre of the sample. 

Two K-type thermocouples (1/16 "-diameter, shown on Figure 65) were mounted on a 

holder that can be precisely positioned (radial and vertical) in the melt. One 

thermocouple is located at the exact centre of the small steel crucible and the other is 

placed very close to the wall. The technique allows precise measurements of the 

temperature evolution during solidification. The resulting curves are used to derive the 

solid fraction and other values such as the coherency point. 

4.1.1 Thermal analysis curves 

The experimental solid fraction values were determined by thermal analyses and used 

as inputs in the numerical model, ProCASTTM, to better reproduce the thermal fields in 

the solidifying section. This gives also the solid fraction evolution in the solidifying section 

that can be compared with interrupted experiments and physical values such as solid 

front position can be calculated. The results obtained with the thermal analyses were 

compared with different thermodynamic models. The Brody-Flemings expression (Scheil­

modified equation) gave the best match and therefore was selected to be incorporated 

and used in the analytical models (cellular automata, and the thermo-mechanical 

models). This approach is easier and faster to compute the solid fraction when the alloy 

system permits it (binary alloys) or is changed to make a sensitivity analysis on variables 

(e.g., alloy composition). 

The solid fraction was determined from the cooling curves by using a three step 

approach: i) the first derivative of the cooling curve is calculated, b) a zero-curve is 

computed between the beginning and the end of solidification, and c) the solid fraction is 

determine from the integral of the area contained between the zero-curve and the 

cooling curve. The derivative allows identifying not only the solidification boundaries but 

also the position of possible reaction compounds (solidification path). Figure 66 shows 

an example of the cooling curve along with the first degree derivative and the zero-curve. 

Figure 67 shows the solid fraction curves obtained from the thermal analyses of the AI­

O.5%Si, AI-1.5%Si and AI-2.5%Si, respectively. The change in the liquidus temperature 
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as weil as the inflection point for each system can be seen. In addition the increase in 

the solute content (Si) caused the isothermal eutectic plateau to be longer (higher 

eutectic portion) before reaching unit y (Le., completely solid). 
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Figure 66: Example of the cooling curve and subsequent treatment (derivative) 
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Figure 67: Solid fraction determined from thermal analyses 

From the information that can be extracted from the cooling curves, the coherency point 

is of certain interest. Indeed, the coherency temperature gives information regarding the 

feeding behaviour of the alloy. Figure 68 shows the coherency point given by the largest 

temperature difference (Le., peak of the dT curve) reading between the centre and the 
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wall thermocouple. The temperature at which dendrites begin to interact will affect the 

ove ra Il capacity to eventually feed any incipient hot tear. 
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Figure 68: Cooling curves and coherency point (AT peak) 

Figure 69 shows the coherency temperature as a function of the silicon concentration. It 

is seen that the coherency temperature for a given alloy corresponds to a different solid 

fraction. The latter will change the feeding mechanism that takes place during the 

solidification. 

AI-Si Thermal Analysis 
Coherency Temperature vs Alloys and Solid Fraction 
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Figure 69: Coherency temperature vs. alloy systems 
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The corresponding solid fractions for each coherency temperature imply mass and liquid 

feeding (0.4 < fs < 0.9). However, one can say that the feeding mechanism will be 

affected depending on the temperature interval at the coherency point. 

Figure 70 shows that the AI-1.5wt%Si exhibits the largest temperature difference at the 

coherency point. This corresponds also to the alloy showing the highest hot tearing 

propensity. A larger temperature difference indicates a tendency to have more sol id 

network bridging that might prevent liquid movement and feeding during the critical 

stage. 
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Figure 70: Temperature difference at coherency point 

4.2 Lever rule 

During extremely slow cooling, thermodynamic equilibrium allows a complete diffusion of 

ail solute elements and the phase composition is homogeneous. For equilibrium 

solidification described by the lever rule and with linear liquidus and solidus lines (Figure 

71) the partition coefficient can be determined by k=CsICL where Cs and CL are the 

equilibrium solute composition of the solid and liquid in weight percent, respectively. 
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Concentration 

Figure 71: Portion of a phase diagram 

The partition coefficients for aluminum alloys are generally below unit y (k < 1), this 

implies that the liquid is always enriched during solidification, Le., the liquid is richer in 

solute elements than the solid primary phase. Consequently, the solid fraction 

transformed (fs) is given by: 

Cs 
fs (k - 1) + 1 

Equation 29 

where k is the partition coefficient and Co is the composition of the original liquid alloy. 

This can be rearranged to obtain: 

fs Equation 30 

where T is the temperature below the liquidus and TL and Ts are, respectively, the 

equilibrium liquidus and solidus temperatures. 

However, this condition is not representative of the solidification encountered during DC 

casting of sheet ingots. A complementary limiting case to equilibrium solidification is to 

assume that there is virtually no back diffusion (Le., solute diffusion in the solid phase is 

small enough to be considered negligible) and that diffusion in the liquid is fast enough to 

assume that diffusion is complete. There is also a complete mixing in the liquid which 

has a uniform composition CL. This relation is the Gulliver-Scheil equation or more 

simply known as the Scheil model. 
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4.3 Gulliver-Scheil model 

The Scheil model describes relatively weil the solid fraction evolution in the case of 

unidirectional solidification such as experienced in the DCSS unit. For simple binary 

alloys, the Scheil equation, also known as the non-equilibrium lever rule, can be used for 

the analytical determination of the weight solid fraction as a function of temperature. The 

results can been used to obtain high quality input for casting simulations. Figure 72, 

shows a diagram of the solidification front (solid/liquid) with the corresponding change in 

solid fraction and concentration after an interval of solidification. 
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Figure 72: Solidification front moving with complete mixing 
in the liquid after an interval of solidification (dashed line) 

The conservation of solute requires that for a solid fraction, fs' that has solidified the 

change is given by: 

( C L - kC L ) df s = (1 - fs) dC L Equation 31 

and integrating according to the following: 

fJ df s _ C

J 
dC L 

o (1 - fs ) caC L (1 - k ) 
Equation 32 

The resulting relationship is known as the Scheil Equation. 

Cs = k Co (1 - fs /k-l) Equation 33 
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The integration fram T to TL will result in the classical Scheil equation: 

Equation 34 

where TL and Tf are the liquidus temperature and the melting temperature of the pure 

aluminum, respectively. 

Thermodynamic database software such as ThermoCalc™, can be used to determine 

the weight solid fraction in simple and complex multi-component alloy systems. Figure 73 

shows the solid fraction determination using the ThermoCalc ™ and the Scheil model. 

The results show the limitations associated with the model where a straight line is drawn 

when the eutectic temperature is reached. Consequently, this renders difficult any 

quantitative approach based on the knowledge of the solid fraction evolution to 

characterize and understand the hot tearing phenomena especially in the solid fraction 

region ranging between 0.95 and 1. 
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Figure 73: Solid fraction from the Scheil model 
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Figure 74 shows the impact of back-diffusion on the resulting solid fraction evolution. It 

can be seen that there is sorne discrepancy between Dictra ™ (Aluminum database from 

Alcan International Ltd) results and the thermal analysis in the solid fraction ranging from 

o to 0.95. However, the fit is much beUer in the zone of interest for hot tearing 

phenomena (Le., solid fraction above 0.95). 
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Figure 74: Difference in solid fraction obtained from different methods 

The use of models (e.g., Dictra™) that deals with back diffusion greatly reduces the 

discrepancy between the thermal analysis and the mathematical results, especially in the 

high solid fraction region. The DICTRA ™ calculation was performed using a ceeling rate 

of 1.5 oC/sec and a driving force of 1 E-5. The driving force is a variable (DGM) from 

DICTRA ™ related te the temperature gradient accerding te Equation 35. 

DGM = M . (L . 11 T J 
R T·T m 

where; 

M : Molar mass, (g/mole) 

R: Perfect gas constant (J/Klmole) 

L: Latent heat (J/g) 

86 

Equation 35 



/)"T: Thermal gradient (K) 

T: Temperature (K) 

Tm: Melting temperature, (K) 
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Consequently, the mathematical treatment used in the present work is based on the 

Brody-Flemings expression. The Brody-Flemings expression is basically the standard 

Scheil equation to which a diffusion term has been added and adjusted to fit the thermal 

analyses results obtained from the cooling curves. Equation 36 below is the weil known 

expression proposed by Brody-Flemings. This equation takes into account the diffusion 

in the solid state. 

fs 
1 

Equation 36 
(l-2ak) 

ln addition, the coefficient, a., can be adjusted accordingly to better represent the solid 

fraction evolution during solidification. It should be noted that in the case of no diffusion, 

i.e., a.=0, the Brody-Flemings equation becomes the Scheil equation. 

4.4 Solid fraction evolution of commercial alloy systems 

Figure 75 shows the thermodynamic calculation of the solid fraction for three different 

commercial alloys. The traditional derivations of the Scheil and Brody-Flemings 

equations have severe restrictions when applied to multi-component alloys. It is not 

possible to derive this equation, using the same mathematical method, if the partition 

coefficient, k, is dependent on temperature and/or composition. 

The binary Scheil-type (Equation 34) is applicable only to dendritic solidification and 

cannat, therefore, be applied to eutectic alloys. Further, it cannot be used to predict the 

formation of intermetallics during solidification. Using ThermoCalc™, ail of the above 

disadvantages can be overcome, reducing the need to perform exhaustive thermal 

analyses. However, the latter becomes necessary, especially in the higher solid fraction 

range (>0.95) when building coupled thermo-mechanical and microstructure models with 
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predictive hot tearing capability. This is not part of the present work where the study is 

more focused on mechanical measurements and hot tearing trends. 
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Figure 75: Solid fraction of different commercial alloys 

4.5 Volume solid fraction 

The change in the quantity of solid is expressed as the weight solid fraction (fs) or 

volume solid fraction (gs). In the present work the volume solid fraction is used for the 

theoretical model and defined according to Equation 37 below. 

fs g s = ____ .::......0:. ___ _ 

fs + (1- fs)* (PS ) 
PL 

Equation 37 

where fs is the weight solid fraction and Ps 1 PL is the ratio of densities in the solid and 

liquid phase, respectively, and depends on the composition and temperature of the 

phases. It is assumed in the present work that the solid and liquid densities are constant 

but not equal. 
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Numerical simulations were done to verify different aspects related to the DCSS testing 

procedure. First, the impact of the pre-heating time of the refractory container on the 

initial temperature was verified to ensure proper testing procedure and test repeatability. 

Second, the influence of the container rotation speed on the metal free surface 

movement was simulated to identify the speed that ensures minimum turbulence. This 

was done also to determine the impact of the liquid metal momentum on the overall heat 

flux. Third, the extent of heat transfer between the chili plate and the solidifying metal 

was assessed to determine the sensitivity of the metal/chili plate contact and its impact 

on solid fraction evolution and distribution across the mushy zone. 

The numerical modeling gave many advantages for understanding overall temperature 

and flow behaviour. Vet another advantage was the ability to improve the testing 

procedure based on initial parameters and simple temperature measurements. 

The modeling work used thermal data obtained from standard testing set-up and 

conditions using a binary AI-1.5wt% Si. However, no load was applied during tests 

planned to collect thermal history data only (model input). This preliminary work was 

intended to identify or confirm that the initial conditions were appropriate. 

5.1 Container pre-heating 

The heating of the ceramic container (lsocasFM) was simulated using the radiative 

module of the ProCASTTM software package. The container was assumed to be 

positioned at the center of a plane 25.4 mm above the bottom of a virtual box 

representing the inner furnace dimensions of 508 x 254 mm x 254 mm. The temperature 

of the furnace wall was assumed to be uniform and set to 752 oC (i.e., 2 oC above the 

target temperature to compensate for the typical furnace controller fluctuations). The 

initial container temperature was assumed to be 20 oC (room temperature). 

Figure 76 to Figure 79 show the isotherms generated at approximately 3, 7, 15, and 32 

minutes, respectively, within the refractory container material. 
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Figure 76: Isotherms after approximately 3 minutes 

Figure 77: Isotherms after approximately 7 minutes 
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Figure 78: Isotherms after approximately 15 minutes 

Figure 79: Isotherms after approximately 32 minutes 
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Figure 80 shows the temperature as a function of time for a point located inside the 

coldest zone found on the container. It can be seen that a minimum time of 70 minutes is 

required to obtain a prescribed temperature of 750 oC. It should be noted that this point 

represents the coolest zone; this means that a uniform temperature condition is achieved 

after this delay. 

Therefore, based on the modeling results the pre-heating was set to 2 hours to achieve a 

uniform temperature throughout the refractory container and to minimize temperature 

1055 during pou ring the liquid metal. 
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Figure 80: Calculated Heating Curve of the Refractory Container 

5.2 Container rotation time and free surface 

160 

The rotation speed of the container and its impact on the free surface was simulated 

using the fluid flow and thermal modules with ProCASTTM. The tirst objective was to 

analyze the free surface turbulence and to visualize the liquid metal behaviour resulting 

from the rotation. The second objective was to determine the impact of the rotation 

speed on the thermal history. Indeed, a fast rotation will cause excessive turbulence and 
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affect the thermal field and the resulting microstructure. In addition, a very slow rotation 

will make the solidification front grow unevenly (Le., wedge-type section) with a thicker 

section at the botlom (first contact with the chili plate) and thinner at the top (last contact 

with the chili plate). 

The main elements composing the test specimen included the refractory container, the 

isolating materials, the chili plate with water cooling channels, the anchors and the liquid 

metal. A planar symmetry was assumed at mid-position perpendicular to the anchors' 

axis (Figure 61). 

The boundary conditions used for the thermal simulation were natural cooling for ail 

external surfaces and a heat transfer coefficient of 42 W Im2/K with an ambient 

temperature of 24 oC. Convective heat transfer coefficient was used at the water and the 

inner wall interface. The convective heat transfer coefficient was obtained from basic 

heat transfer theory using the dimensionless Nusselt number. The heat transfer 

coefficient used was 8,000 W/m2/K and the average water temperature was set to 18 oC. 

The rotation time is the time required to turn the refractory container 90° around the axis 

of the anchors from the initial position (Figure 81). Two fluid flow simulations were 

performed with rotation times of 0.5 and 1 second to evaluate the impact of this 

parameter on the turbulence generated inside the container. Figure 82 to Figure 86 show 

the resulting liquid metal movement experienced using the fastest rotation time of 

0.5 second and the growing solidification front expressed as solid fraction evolution 

ranging. 
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Figure 81: Initial condition at time=O sec 

Figure 82: After approximately 0.25 second 
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Figure 83: After approximately 0.5 second 

Figure 84: After approximately 3.5 seconds 
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Figure 85: After approximately 18 seconds 

Figure 86: After approximately 88 seconds 
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It can be seen that the liquid free surface is relatively smooth and gradually touches the 

chili plate without overlapping or air pocket entrapment. Considering that the present 

simulation using 0.5 second, Le., faster rotation, indicated no major problems associated 

with air pockets or entrapment (oxide generation), then it is obvious that a slower rotation 

speed could only improve the present results. 

Consequently, the DCSS rotation time was set to a slower rotation time of 1 second 

(twice as slow) to ensure minimum turbulence. The selected rotation time of 1 second 

was also the minimum delay required for smooth operation with the DCSS air actuator. 

This condition was tested experimentally and results confirm the absence of thick oxide 

films at the surface even after validation test with high magnesium alloy (AI-4.8wt%Mg). 

Nevertheless, the convective current within the liquid metal also affects the local 

temperature gradient. Figure 87 shows the resulting cooling curves obtained from two 

different rotation times. 
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Figure 87: Calculated cooling curves from measurements at 0.5 and 1 second rotation time 
(AA5182 alloy) 
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It can be seen that the impact of the convective flow on the thermal history is important 

near the surface (Iess than 10 mm) and much deeper (50 mm) within the bulk. It should 

be noted here that the phenomenon associated with liquid metal superheat was not 

considered in the present modelling. Nevertheless, the rotation speed could play an 

important role on the solidification undercooling which is based mainly in this case on the 

cooling rate. In fact, the slow rotation could generate a less intimate contact between the 

liquid metal and the chili plate because of the lower momentum and metal head. 

This might hinder the formation of pre-dendritic nuclei [66,104] at the interface and lead 

to a greater undercooling. On the contrary, a faster rotation speed could promote an 

intimate metal/chili plate contact (momentum and metal head) and therefore the 

formation of pre-dendritic nuclei resulting from a lower undercooling. It should be noted 

here that the temperature differences at the beginning of the cooling curves were 

induced by the initial conditions after the waiting period. 

Considering that hot tearing is particularly sensitive to surface and sub-surface 

temperature gradients and microstructure evolution, it is essential to control this 

particular aspect to ensure good repeatability. The fluid flow simulations show that the 

rotation of the container had to control and improve the repeatability of the tests. A 

rotation time of 1 second makes the liquid move smoothly toward the surface and 

turbulence effects are small and almost negligible. Consequently, this value was 

selected and kept constant for ail tests to minimize possible bias. 

ln addition, the rotation of the container makes the solidification front start from the 

bottom to the top of the section thus generating a slightly angled solidification front 

(Figure 88). However, this should not influence the results since the load is applied 

perpendicularly to the growing microstructure. In addition, it simulates the OC casting 

mould filling during the initial stage and the characteristic shell zone. 

These tests were also used to determine the solidification front velocity between 

approximately 0 to 20 mm from the chili plate (typically 0.4 mm/sec). Figure 88 shows 

the cast sections along with the drawings representing the overall profiles where !chili 

represents the time during which the liquid metal was in contact with the chili plate and 

Wfront the width of the solidification front at the centre of the cast section. 
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!chili = 60 seconds 
Wfront= 18.3 mm 

!chili = 80 seconds !chili = 160 seconds 
Wfront= 26.7 mm Wfront= 31.7 mm 

Figure 88: Casting sections obtained from interrupted solidification (1 square = 25 mm) 

The average distance fram the chili plate was measured at the middle of each section as 

indicated by the arrows. The solidification front velocity obtained from these experiments 

and from the thermocouple measurements was used in the different models presented in 

this work. 

5.3 3D Thermal Model 

The 30 thermal model was essentially identical to the above mentioned model except 

that the simulations were dedicated to studying the impact of the heat transfer coefficient 

at the interface (HTC). The thermal resistance due to air gap formation and/or surface 

conditions (e.g., roughness, lubricant) will modify the resulting HTC. 

Ouring testing, a poorly controlled surface condition will contribute dramatically to the 

variability of the HTC; this could introduce more variation in the cooling conditions and 

affect the mechanical response of the solidifying material. More specifically, simulations 

were made in order to quantify the impact of HTC variability on the solid fraction 

evolution and distribution across the shell zone to select the most appropriate conditions. 
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5.4 Heat Transfer Coefficient (HTC) 

Figure 89 shows the HTC used in the numerical simulations. These HTC values are 

typically associated with the primary cooling conditions of OC casting. 
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Figure 89: Theoretical HTC curves (AA-6111) 

Knowing the potential test sensitivity to the HTC variation, it was important to better fit 

the cooling curves to predict the solid fraction distribution. The ultimate goal will be to 

obtain the effective test section, based on solid fraction, at the exact moment the load is 

applied and to derive the stress distribution over this section. In fact, the test section is 

used to calculate the stress applied on the test specimen. The best modeling approach is 

to use an inverse thermal model to determine the specific HTC evolution by tracking the 

experimentally obtained cooling curves. Unfortunately, the inverse thermal model was 

not available to perform this task during this work. Consequently, the HTC were adjusted 

manually in ProCASTTM to fit the experimental curves and the solid fraction distribution in 

the test section. 
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5.5 Cooling Curves 

Figure 90 shows the calculated cooling curves at 10 mm below the surface using the 

HTC curves (Figure 89). 
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Figure 90: Calculated cooling curves at 10 mm below the surface (AA-6111) 

ln the DCSS testing procedure, the tensile loading is started when the temperature at 10 

mm below the surface reaches a pre-determined value. Depending on the HTC, that 

condition is met at different times as deduced from the cooling curves presented in 

Figure 90. This time ranges from 48 to 80 seconds as a function of the HTC used. It is 

worth mentioning that these time delays could be encountered during the experimental 

tests performed under poorly controlled surface conditions. 

5.6 Thermal Gradient 

Figure 91 shows the temperature gradient across the shell zone for the three HTC 

curves when the temperature reaches 600 oC at 10 mm from the surface in each case. It 

can be seen that the surface temperature ranges from approximately 564 oC to 575 oC. 

Similarly, the bulk temperature is also affected due to the different heat flux experienced 
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at the time when the tensile load is applied. Notice that the temperature at a distance of 

10 mm is the sa me for the 3 cases since this was the condition for the beginning of 

tensile loading. 
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Figure 91: Calculated temperature gradients at loading condition (AA-6111) 

The impact of the variability of the contact heat transfer coefficient (HTC) was assessed 

and quantified in terms of temperature gradient and solid fraction distribution. In fact, the 

HTC determined the overall heat flux and therefore the thermal gradient and the solid 

fraction distribution across the mushy zone. 

5.7 Solid Fraction 

Basically the average stress is derived from the measured load divided by the effective 

test section. The latter can be estimated from the solid fraction distribution as a function 

of the distance from the surface. The critical solid fraction above which the semi-solid 

material has a measurable mechanical resistance by the DCSS is expected to be above 

0.95. The load recorded by the DCSS could be different because of the slightly different 

effective test section. The time of tensile loading sometimes differed substantially from 

one test to another depending on the overall conditions (metal temperature, mould 
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surface, lubricant, etc). As a consequence, the maximum force required to create hot 

tearing might be different should the time of testing be delayed and/or the initial solid 

fraction and temperature gradient conditions differs. A deeper effective shell when the 

conditions change could result in a different maximum load. 

Consequently, it was essential to measure the temperature evolution during every test 

and ensure that the solid fraction during the initial loading was above 0.95 and below 

unit y to remain in the semi-solid state (Le., hot tearing condition). In addition, it was 

necessary to have the isotherms parallel fram surface to bulk to generate a more uniform 

section while targeting a temperature gradient between 2 to 3 OC/mm. This was made 

possible by keeping good contrai of the mould surface conditions to enhance the 

repeatability and simplify the comparison between tests. Tests that did not fulfill the 

thermal conditions were simply rejected. 

Figure 92 shows the different solid fraction distributions pertaining to the 3 different 

thermal gradients existing at the time of tensile loading. This indicates that the solid 

fraction distribution after a waiting time of 48 to 80 seconds does not change too much at 

the surface. This confirms that the selected criteria prior to applying the tensile load are 

retained. 
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5.8 3D Thermo-mechanical Model 

The main objective in this section was to use a mechanical model to determine the 

overall stress distribution especially at the anchors' heads. The main reason was to 

understand the cause of premature failure in the initial anchors' head region. In fact, the 

container was designed to generate a bone-shaped sam pie and force, upon applying the 

tensile force, the hot tear to initiate and propagate at the centre of the smaller section. 

The preparation of each test takes approximately a few hours. Premature fracture at the 

anchors' heads needed to be eliminated to minimize test rejection and obtained betler 

and valid results. 

This was achieved by using a 3D thermo-mechanical model (ProCASTTM) under 

constrained solidification conditions, Le., without applying externalload. The presence of 

fixed anchors located inside the liquid metal that undergoes solidification creates a 

condition where the shell is put under tension (constrained). As mentioned above, under 

ideal conditions, the hot tear must take place between the anchors (reduced section) 

otherwise the test was meaningless and rejected. 

For this particular case, a linear relationship was assumed between the stress and the 

strain of the test material. The task was to iIIustrate the stress concentration arising from 

the solidification contraction and distribution around or near the anchors. 

5.9 Impact of anchor design on stress distribution 

The anchor used in this work was a standard carriage boit with a round head. This 

creates a condition such that a hot tear might initiate and propagate preferentially at or 

near this region. In order to validate this hypothesis, a numerical simulation was 

performed to determine the stress distribution. The results confirmed that the anchor 

design was inappropriate because of the stress concentration at the tip of the boit head. 

Figure 93 shows the stress distribution on the cross section located at the middle of the 

sample from the surface (chili plate) towards the bulk of the liquid. It should be noted that 

under the present configuration, the stress concentration migrates to the surface of the 

sample. 

Based on these results, the anchor design has been modified such that the top portion of 

the rounded head was flattened (Figure 94) to minimize stress concentration. The new 
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design allowed positioning closer to the surface to improve the sensitivity and 

reproducibility of the DCSS. 

The new design has been tested in the field without further numerical modelling. The 

results indicated that the modifications reduced significantly the occurrence of hot tear 

near or at the boit head region. Consequently, this improved the overall DCSS unit 

performance and minimized the number of tests rejected. 

Figure 93: Horizontal stress distribution 

Figure 94: Modification of the anchor set-up to minimize stress concentrations 
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The hot tearing mechanism is based on the fact that a liquid portion is present between 

the dendritic networks upon fracture. Any means used to measure the mechanical 

properties of a semi-solid material in order to establish the hot tearing propensity must 

rely on precise measurements. Therefore, it is important to know the thermal conditions 

that prevail during the test. Surface temperature measurements using contact 

thermocouples were taken to evaluate the solid fraction at the surface of the sample 

during testing. Figure 92 shows the two surface temperature measurements along with 

the calculated average taken once during testing on the AI-0.5wt%Si alloy. It is seen that 

the average surface temperature in the testing zone (time equal 6 seconds) corresponds 

to a solid fraction below unit y during testing (large arrow). 
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Figure 95: Surface temperature measurements with 2 contact thermocouples 
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Since precise surface temperature measurements are relatively difficult to acquire, 

numerical simulations were then performed to validate and predict the surface 

temperature (inverse model) of the aluminum sample from cast-in thermocouples 

positioned at 5, 10 and 15 mm from the surface, respectively. This was done specifically 

to confirm that the mechanical properties were obtained in the temperature or sol id 

fraction range critical for hot tearing (typically 0.95 to 0.99). As mentioned above, the 

specimens were investigated by cutting the surface to reveal the torn section and to 

estimate the load bearing area. This was used later to determine the mechanical 

resistance (Le., engineering strength given by the force over the area, FIA) of the 

solidifying alloys. In cases where the torn surface was not visible (Iiquid inflow) the 

section was obtained from the temperature measurement (Le., solid fraction of 0.95) and 

the exact thermocouple position (X-Ray). 

Numerical simulations using ProCASTTM were done to determine the temperature profile 

inside the test sam pie and at the surface. The results show that the model fits the 

experimental data and predict a volume solid fraction less than unit y at the surface of the 

sam pie during the DCSS testing. The results agree also with surface temperature 

measured during the test using surface thermocouples. In addition, the data and 

modeling results indicate that the isotherms are parallel from the surface to the bulk. This 

contributes also to having conditions that are more repeatable and minimizes bias from 

test-to-test. 

Figure 96 to Figure 101 show the temperature measurements (dotted lines) and the 

modeling results (smooth lines) that fit the experimental data relatively weil. The 

beginnings of the experiment are indicated on the graphs. It can be seen that the waiting 

time before testing is different for the AI-0.5SL This could be atlributed to the heat 

transfer across the refractory container and the chili plate along with the pou ring 

temperature. However, the most critical factor was to proceed with the DCSS testing 

when the temperature criteria were met, Le., applying tensile load at a volume solid 

fraction above 0.95 and below unit y at the surface of the sample. 
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Figure 101: Temperature evolution trom the chili plate (AI-2.5Si: zoom) 
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The temperature profiles were then obtained from the modeling work to determine the 

solid fraction profile from the surface to the bulk of the sample. This was used to 

calculate various thermal values such as the temperature gradient and the solidification 

front velocity. Nevertheless, the most important goal was to ensure that the temperature 

profile remained in the range corresponding to a solid fraction between 0.95 and unit y at 

the surface. 

The latter solid fraction was used as a trigger to apply tensile force on the sample. Figure 

102 to Figure 104 show the solid fraction curves obtained from the test samples during 

solidification of AI-0.5 wt% Si, AI-1.5 wt% Si, and AI-2.5 wt% Si, respectively. It can be 

seen that ail samples met the initial requirements for the solid fraction. 

Consequently, ail the tests were accepted and used to derive the mechanical properties 

of the semi-solid AI-Si binary alloys during tensile loading. Figure 105 to Figure 110 show 

the mapping of the temperature fields and the corresponding solid fractions 

(ProCASTTM). 
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Figure 102: Solid fraction evolution with time and temperature (AI-0.5Si) 
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Figure 103: Solid fraction evolution with time and temperature (AI-1.5Si) 
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Figure 104: Solid fraction evolution with time and temperature (AI-2.5Si) 
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Figure 105: Temperature field evolution before tensile loading (AI-0.5wt%Si) 
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Figure 106: Temperature field evolution before tensile loading (AI-1.5wt%Si) 
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Figure 107: Temperature field evolution before tensile loading (AI-2.5wt%Si) 
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Figure 108: Solid fraction distribution obtained from ProCASTTM (AI-0.5wt%Si) 
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Figure 109: Solid fraction distribution obtained from ProCASTTM (AI-1.5wt%Si) 
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Figure 110: Solid fraction distribution obtained from ProCASPM (AI-2.5wt%Si) 

Numerical modeling shows that the temperature field is such that the solid fraction near 

the chili plate is below unit y and decreases with the position going towards the bulk 

(Iiquid). 

ln addition the temperature distribution during the tensile loading was quite uniform. As 

explained above this is important since a large difference between loading times will 

affect the section on which the tensile force is applied. Consequently, the results will be 

less representative of the material resistance as the section changes. Nevertheless, 

since there is a variation in the solid fraction fram the chili plate to the bulk, the stress will 

always be distributed along the solid fraction change with higher resistance at the 

surface. The solid fraction curve evolution is changing according to the isotherms shown 

in Figure 99 to Figure 101 above. 

This approach has been used later to validate the section obtained fram the temperature 

profile and to determine the stress-strain curves. In addition, the tom section was 

characterized by a grayish and fibraus zone after the sample solidified. The strain was 

obtained from a strain gauge touching the surface of the sam pie during the loading. 

Consequently, the initial gauge length (La = 23 mm) and the final gauge length were used 

to derive the engineering strain or the elongation, i.e., (L-Lo)/Lo. 
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Behaviour of AI-Si Binary 
Alloys 

7.1 Experimental stress-strain curves 

The DCSS apparatus has been designed to apply and measure a tensile load and the 

surface elongation. Consequently, these mechanical values are used to derive the 

stress-strain curves that best represent the material behaviour during solidification and 

its capacity to resist hot tearing. 

Figure 111 shows the DCSS tensile testing results (stress-strain curves) for the binary 

AI-Si alloys that were used in this work and compared with the theoretical model. The 

tests were done under the same experimental conditions under a constant anchor 

displacement speed that generated a quite similar average strain rate (0.028 S-1). The 

results show a typical behaviour with strength building up during the first portion of the 

curve followed by a "creep separation" and the rupture characterized by the sudden 

change in the slope. The plastic region and the rupture zone are associated with the hot 

tearing propagation. 

Stress-Strain Curves 
AI-Si Binary Alloy5 (Strain Rate @ 0.028 5-1) 
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Figure 111: DCSS tensile testing results on binary AI-Si alloys 
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ln this work, the theoretical model attempts to reproduce the characteristic stress-strain 

curves obtained by the DCSS unit. First, a viscous model is used in the first portion of 

the curve in combination with a creep law for the visco-plastic region. The hot tearing 

propagation that is leading to the separation of the microstructure uses a crack 

propagation coefficient or CPC (Chapter 10:) based on the microstructure to relate the 

film thickness and stress proportionality. To sorne extent, the combination of a theoretical 

visco-plastic model and a microstructure coefficient to explain the hot tear propagation is 

not common. The CPC is based on the film thickness according to the grain size in the 

surface and sub-surface region. The grain size has been derived from a cellular 

automaton that predicts the grain structure based on a nucleation and growth law for 

each given AI-Si alloys covered in the present study. 

The stress-strain curves are the ultimate results that are obtained from the tensile test 

measurement in the semi-solid state. However, there are many publications by Clyne 

and Davies [58] and Feurer [75] describing hot tearing sensitivity based on the well­

known lambda-curve (A-curve). The latter was obtained in different ways mostly related 

to physical measurements such as direct measurement of the crack length. 

The present work allows use of real mechanical quantities (inverse of the maximum 

stress) to determine and confirm the distinctive A-curve previously obtained by others. 

Figure 112 shows the resulting A-curve obtained from the inverse of the maximum stress 

for the tested binary alloys. 

The first approach used the inverse of the maximum tensile load (Langlais [102,103]) 

obtained from the DCSS measurements. Improvements made on the DCSS unit (strain 

gauge, computer control, etc.) made it possible to use more standard properties such as 

the maximum stress to fracture. Owing to the fact that the ove ra Il results are comparable, 

the mechanical quantities used here to derive the A-curves are more representative of 

the material. 

It should be noted that the section used to determine the tensile properties were 

determined from the thermal history of the sam pie being tested and the investigation of 

the tom section characterized by a grayish and fibrous zone. As mentioned above, the 

strain values were measured using a strain gauge touching the surface of the sample 
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during the loading. The elongation or engineering strain were derived accordingly from 

the change in the gauge length, Le., (L-Lo)/Lo. 

Hot Tearing Sensitivity 
Lamda-Curves - AI-Si Binary Alloys (0.028 S-1) 
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Figure 112: Lamba-curves (smoothed) obtained from DCSS experimental results 

7,2 DCSS repeatability 

The DCSS unit is an apparatus to measure material properties during solidification. The 

results depend on many parameters that need to be checked carefully. It also involves 

the probalistic behaviour related to the pre-dentritic grain formation and growth. 

Consequently, extra care is required for the preparation of the chili plate surface in 

contact with the liquid metal. It was shown that the surface roughness of the chili plate 

influences the number of nuclei and pre-dendritic grain formation (Fortier [104]). The 

grain size will play an important role in the liquid film distribution and impact the hot 

tearing behaviour. 

The use of a data acquisition system allowed installation of several thermocouples at 

different locations to verify and accept or reject the test. In fa ct , ail tests that met the 

temperature criteria with hot tear located between the anchors, Le., at the centre of the 

reduced section, were accepted (Figure 113). Rejection of a test was based mainly on 
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the temperature profiles or gradients in the sample along with data collection points on 

the DCSS unit to ensure set points are followed (e.g., rotation speed, water temperature, 

etc.). Hot tears outside the reduced section or at the anchors' heads were automatically 

rejected even if the thermal criteria were respected. This was done to minimize bias in 

the results and produce more reliable mechanical values for a given alloy. 

Figure 113: Accepted sam pie with hot tear located at the centre of the reduced section 

Figure 114 to Figure 116 show examples of the repeatability obtained with three different 

tests when ail parameters and the set-up are precisely weil adjusted. The initial test 

preparation (i.e., container, metal temperature, insulating material, strain gauge 

positioning, etc) is crucial to obtain such repeatability. Any mistake during the test 

preparation could dramatically affect the final results. 

It can be seen that the repeatability in the first region (viscous portion) is relatively good. 

More variation is observed in the peak and the plastic region. The solidifying 

microstructure is continuously changing with time (i.e., volume solid fraction, 

morphology). It is therefore impossible to expect perfectly superposed curves from test­

to-test. Nevertheless, the present repeatability is more than acceptable knowing the 

stochastic nature of the solidification process during which the material is being tested. 

The analyses of the tensile testing results were performed on these results and the 

theoretical or phenomenological model was then used to evaluate the impact of specific 

parameters such as the strain rate, the volume solid fraction and morphology (columnar 

vs. equiaxed). 
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Stress-Strain Curves 
AI-0.5Si Binary Alloys (strain rate @ 0.028 S-1) 
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Figure 114: Repeatability on three DeSS test - AI-O.5wt%Si 

Stress-Strain Curves 
AI-1.5Si Binary Alloys (strain rate @ 0.028 S-1) 
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Figure 115: Repeatability on three DeSS test - AI-1.5wt%Si 
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Stress-Strain Curves 
AI-2.5Si Binary Alloys (strain rate @ 0.028 S-1) 
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Figure 116: Repeatability on three DCSS test - AI-2.5wt%Si 

7.3 Impact of strain rate on stress-strain curves 

It must be noted that the maximum stress is intimately related to the strain rate. Indeed, 

a higher strain-rate will result in a higher reactive stress (Figure 117). Consequently, the 

relative hot tearing sensitivity will change according to the strain rate used in the 

experiment. It is important to note here that the strain rate normally varies with time. The 

DCSS tests were performed using different displacement speeds and the average strain 

rates were determined fram the time versus strain measurements. Consequently, the 

strain rates presented in this work are, for simplicity, the average of the time-strain 

curves, Le., dE/dt. 

It is therefore mandatory to use the same strain rate to perform such analysis. In the 

case of the ring mould testing, the shape is permanent and the resulting strain rate is 

basically linked to the solidification rate around the solid core. In this case, the testing 

parameters (e.g., metal temperature, cooling rate, etc.) need to be the same to improve 

repeatability and quality of the results. 
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Stress-Strain Curves 
Impact of the Average Strain Rate (AI-D.5Si Binary Alloy) 
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Figure 117: Impact of the average strain rate on the resulting stress 

The impact of the strain rate was also evaluated using the microstructure taken from the 

test samples of the AI-D.5 wt% Si alloy. Figure 118 to Figure 121 show the resulting 

microstructure response to the imposed strain rate. It can be seen that the material is 

able to accommodate a certain level of resistive stress to the imposed deformation. As 

the solidification proceeds at low strain rate, the material can sustain the tensile load with 

a minimum of hot tear propagation. On the contrary, a higher strain rate does not allow 

accommodation by grain rearrangement and fluid movement. Consequently, the higher 

the strain rate, the higher is the resistive stress and the lower is the capacity for the 

microstructure to accommodate the deformation. The energy is then released by hot tear 

propagation after the maximum strain is attained. The same analogy applies to DC 

casting where hot tear propagation is more likely to occur at faster casting speed. One 

simple solution (at the expense of the production) is to reduce the casting speed to 

minimize hot tear initiation or to stop their propagation. 

It is worth mentioning here that the concept of hot tearing sensitivity using the inverse of 

the measured stress cannot be applied for the change in the strain rate. This concept 

was defined to compare alloy families using the same displacement rate. 
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Figure 118: Strain rate impact on AI-0.5Si @ 0.008 5.1 

Figure 119: Strain rate impact on AI-0.5Si @ 0.014 5-1 
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Figure 120: Strain rate impact on AI-0.5Si @ 0.028 5-1 

Figure 121: Strain rate impact on AI-0.5Si @ 0.055 5-1 

The theoretical model has been used to evaluate the impact of the strain rate on the 

resulting stress. Figure 122 shows the resulting stress-strain curves. Only the viscous 

flow portions (green or first shaded area) of the curves are affected by the different strain 

rates. The present model allows creep (blue or second shaded area) to take place after 

the volume solid fraction criteria is reached (0.97). Consequently, the final result shows 

essentially the same behaviour in the plastic region and the macroscopic separation 

(yellow or last shaded area) or fracture region (after volume solid fraction reached 0.99). 

It can be seen that the theoretical results are in good agreement with the trend shown by 

the experimental results, Le., increasing the strain rate, increases the resistive stress. 
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The absolute values are relatively similar except for the lowest strain. Again, the 

discrepancy at the lowest strain between the experimental result and the theoretical 

results could arise from the difference between reality and the idealized microstructure. 

ln addition, the sample during testing undergoes constant change in the grain structure 

and morphology. 

Theoretical Stress-Strain Curves 
Impact of Avg Strain Rate on the Resistive Stress (AI-O.5Si) 
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Figure 122: Model results of the impact of the average strain rates on the resistive stress 
(viseo-plastie) 

Figure 123 shows the effect of grain size (depicted by the primary arm spacing in the 

columnar structure) on the resistive stress (stress-to-fracture) for the AI-0.5 wt% Si for a 

constant volume solid fraction of 0.99. It can be seen that the resistive stress is 

decreasing rapidly as the grain size increases. The solid fraction and the grain size are 

determining the initial liquid film thickness, h. Consequently, the film thickness, h, 

increases with increasing grain size which results in decreasing the ove ra Il strength of 

the material. The larger grain size will increase the impact which mostly depends on the 

creep contribution at higher volume solid fraction. It should be noted that the combined 

effect of the grain size (primary arm spacing) and the solid fraction is shown here while 

the initial film thickness was calculated according to Equation 49. 
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Theoretical Model Results 
Grain Size vs. Stress to Fracture (AI-O.5Si) 
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Figure 123: Effect of grain size on stress to fracture (AI-O.5Si) 

Figure 124 shows the calculated fracture stress and fracture strain as a function of the 

volume sol id fraction. It is clearly shown that the volume solid fraction is a parameter of 

importance. 

Theoretical Model Results (viscous) 
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Figure 124: Impact of volume solid fraction on stress and strain to fracture (AI-O.5Si) 
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This parameter is intimately linked with the film thickness and grain size (primary arm 

spacing) according to Equation 49. It can be seen that the stress to fracture increases 

sharply when approaching the maximum strain (&max). This is similar to the results 

obtained by Lahaie [99] for the viscous regime. 

7.4 Theoretical model vs. DCSS Experimental stress-strain 
results 

Results of the theoretical model indicate that the higher tensile strength is localized at 

the center of a channel submitted to perpendicular tensile forces. Figure 125 shows the 

microstructure of the AI-1.5wt%Si alloy with a hot tear that initiated and propagated 

within the horizontal channel under tensile loading. This confirms the results suggested 

by the viscous model where the maximum negative pressure (tensile) takes place at the 

centre of the horizontal channel. This is obtained when the film in the horizontal channel 

is constrained and further tensile loading creates a void (hot tear initiation). The creation 

of this void can be affected by other means such as the presence of oxides (nucleation 

site) or dissolved gas. 

Hot Tearing at (J'max 

Figure 125: Hot tearing within the horizontal channel and analogy to the ideal model 

During solidification of alloys, eutectic liquid is rejected at the grain boundaries. 

Depending on the solidification pa th (trace of liquid or solid composition as a function of 

volume solid fraction, (gs) a temperature range normally exists in which the solid grains, 

that form an almost continuous network, trap sorne of the remaining liquid. 
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Different studies [5] of the solidification of aluminum castings indicate that the shape and 

distribution of the liquid phase near the end of solidification has important effects on hot 

tearing characteristics. The volume of the remaining liquid is usually small 

(approximately 10% by volume). As solidification proceeds, the remaining eutectic is 

depleted by the growth of the solid from the grain boundary area of the dendritic network. 

Figure 126 to Figure 128 show the DCSS experimental results plotted along with the 

theoretical model. It can be seen that there is a good agreement between the DCSS 

results (stress-strain curve) and the theoretical model. The main differences could be 

associated with the fact that the theoretical model is based on an idealized 

microstructure using a hexagonal array structure. However, a real aluminum sample that 

undergoes deformation during solidification shows a much more complex arrangement. 

The microstructure is composed of a mixture of small and large grains having different 

morphologies and orientations. This leads to a microstructure where sorne grains are 

almost touching each other while sorne are weil surrounded or separated by a thicker 

liquid film. 

It is seen in ail cases that upon tensile loading, the microstructure accommodates the 

load by deformation (strain) until the structure is locked and the liquid films are 

constrained. At this stage of the deformation, the strength builds up until plastic 

deformation by solid/liquid movement is taking place. The strength continues to build 

slightly until it reaches the maximum stress and separation occurs. In the present work, 

the viscous-plastic model was arbitrarily chosen to cover a volume solid fraction ranging 

between 0.95 and 0.99. The volume solid fraction below 0.95 was not able to build 

significant strength. 

The creep law appears to fit quite weil the plastic portion of the curve. The number of 

parameters available allowed identification of the proper combination that best described 

the material behaviour at high temperature. The CPC (Crack Propagation Coefficient) is 

triggered at the volume solid fraction of 0.99. 
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Stress-Strain Curves 
AI-0.5Si Binary Alloys (strain rate @ 0.028 S-1) 
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Figure 126: Theoretical model results along with DCSS experimental results (AI-O.5Si) 

Stress-Strain Curves 
AI-1.5Si Binary Alloys (strain rate @ 0.028 S-1) 
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Figure 127: Theoretical model results along with DCSS experimental results (AI-1.5Si) 
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Stress-Strain Curves 
AI-2.5Si Binary Alloys (strain rate @ 0.028 S-1) 
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Figure 128: Theoretical model results along with DCSS experimental results (AI-2.5Si) 

7.5 Microstructure analyses of the test samples 

The microstructure of the tested samples was investigated to confirm the fracture 

mechanism taking place during the test and to identify characteristic features related to 

hot tearing (e.g., liquid film). The investigation was also made to support the use of a 

capillary force prior to fracture or separation. In fact, one observed phenomenon during 

the test suggests the use of capillary force at the maximum deformation. 

Surface exudation of eutectic liquid was commonly observed at the surface of the 

sample just prior to applying the tensile loading (Figure 129). As soon as the deformation 

of the semi-solid body begins, this eutectic liquid is sucked back inside the interdendritic 

channels. The small interdendritic channels are communicating with the surface and are 

stretched open by the anchors' displacement (strain). This creates a suction to 

compensate for the solid being pulled away (conservation of mass). This suggests also 

that the hot tearing is certainly initiating from the ingot surface and propagating inward. 
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Figure 129: Liquid exudation at the surface of the sam pie and schematic representation 

Figure 130 shows a diagram explaining the surface exudation formation and liquid 

movement upon straining the structure. This suggests that the fracture criterion can be 

estimated from the stress needed, when the liquid film is constrained (Le., no inflow), ta 

separate two plates bonded by capillary force. This has been reported in the literature 

and was used in the present work ta express the fracture stress at high solid fraction 

(>0.99). The tensile stress will decrease as the separation distance, h, is increasing. This 

behaviour was used ta depict the catastrophic fracture propagation in the theoretical 

mode!. 

Surface 
exudate 

No Strain 

~_~Â~_~ 
( '\ 

"'-,.. 

Tensile loading 

------------~------------r 
Liquid suction 
upon straining 

"'-,.. 

Constrained 
liquid film & 
meniscus 
formation 

....... ml 
h 

l 

Figure 130: Diagram of the surface liquid exudates and meniscus formation (hot tear 
initiation) 

Further microstructure investigation allowed confirmation of the above described hot 

tearing mechanism at the surface of a OC ingot. It can be seen that the hot tear initiated 
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and propagated from the surface. Generally, the mechanism is similar for ail alloys 

except that sorne variant is observed depending on the solidification range of the alloys. 

ln fact, the present investigation using three different AI-Si binary alloys shows that liquid 

migration can play an important role to prevent or heal incipient hot tears. Figure 131 to 

Figure 133 show the behaviour of the eutectic liquid upon hot tearing using the sa me 

strain rate. The low solute content alloy (AI-O.5Si) can accommodate the tensile loading 

from a continuous resistive stress from the constrained liquid film (Iow eutectic liquid 

volume available). On the other hand, the AI-1.5Si alloy has the largest solidification 

range and a fair amount of eutectic liquid. 

Figure 131: Surface hot tear on AI-O.5Si alloy 

Figure 132: Surface hot tear on AI-1.5Si alloy 
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Figure 133: Surface hot tear on AI-2.5Si alloy 

During straining, it is observed (Figure 132) that numerous incipient hot tears appear in 

the sample. As soon as the liquid films are constrained, hot tears initiate and propagate 

towards the bulk. At this point, the eutectic liquid moves towards the surface (mass 

conservation) to fill any hot tears. 

However, the number of incipient hot tears is such that the eutectic liquid volume is not 

sufficient to feed themall.Consequently.this makes the AI-1.5Si alloy the weakest 

among the three alloys tested. 

ln the case of the AI-2.5 wt% Si alloy, the solidification range is smaller than the AI-1.5Si 

and there is a larger amount of eutectic liquid available compared with the other two. 

This makes the alloy behave differently when submitted to a tensile load. Figure 133 

shows fewer hot tears generated in the strained sample. The large amount of eutectic 

liquid is immediately rushed towards the hot tears that have initiated during the tensile 

loading and further propagation is prevented (hot tear healing). 

The microstructures show the eutectic liquid behaviour on the different binary alloys 

submitled to tensile loading. The larger solidification range of the AI-1.5wt%Si shows to 

sorne extent the rnechanisrn taking place during the tensile loading. It can be seen that 

many channels opened up at various locations followed by the migration of the eutectic 

liquid towards the incipient hot tears. The eutectic liquid is in a relatively smaller portion 

compared with higher solute ri ch alloys (AI-2.5 wt% Si) and not able to back fill the 

numerous channels. Consequently, the probability of having an incipient hot tear 

propagate under the load is larger for this alloy or an alloy showing similar behaviour. On 
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the contrary, the AI-2.5Si contains more eutectic liquid available to migrate towards the 

incipient hot tears. In addition, it appears that the strain was more localized. This might 

also play an important role during the tensile loading of the microstructure. In fact, the 

liquid movement is migrating towards the sa me critical spots (volume conservation) that 

heal and stop the hot tear propagation. As the eutectic liquid is moving towards the 

surface (colder area) it wets and solidifies almost instantaneously upon reaching the 

solidus temperature. This process can accommodate further strain and stress before 

complete separation takes place. 

Figure 134 to Figure 136 show the characteristic microstructure skew caused by thermal 

convection in the liquid also emphasized by the rotational force of the container. These 

figures also show the change in the microstructure scale between the surface and the 

sub-surface. This change in the microstructure scale is the basis of the proposed crack 

propagation coefficient (CPC). It appears that the effect is more pronounced in the higher 

solute concentration alloy (AI-2.5wt%Si). This could be related to the solid/liquid interface 

disturbances that have affected both the constitutional undercooling and growth 

direction. Indeed, the liquid movement induced by thermal convection and by the rotation 

(forced convection) caused the columnar grain to grow with a certain angle. 

However, it is believed that this particular microstructure orientation might have a 

minimum impact on the final results. In fa ct , ail samples were subjected to a similar 

convective current (same rotational speed for the container). 

Figure 134: Typical skewed microstructure caused by thermal convection (AI-O.5wt%Si) 
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Figure 135: Typical skewed microstructure caused by thermal convection (AI-1.5wt%Si) 

Figure 136: Typical skewed microstructure caused by thermal convection (AI-2.5wt%Si) 

The higher solute alloy (AI-2.5 wt% Si) shows a somewhat more skewed microstructure. 

Nevertheless, the columnar grains were growing in the opposite direction from the heat 

flux (chili plate) and remained perpendicular to the tensile loading. 

Figure 137 shows that upon separation of the microstructure under the tensile loading, 

ail individual grains were separated along the grain boundaries without noticeable 

deformation. This suggests that a liquid film was still present during the tensile loading of 

the samples; this is typical of a hot tear which takes place at temperature above the non­

equilibrium solidus (higher cooling rate will suppress the solidus line). Scanning Electron 
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Microscopy (SEM) allowed study of the torn surfaces of the samples in much more 

detail. 

Figure 137: Individual grain separation upon tensile loading (AI-1.5wt%Si) 

Figure 138: Fracture zone with fibrous-like structure (AI-1.5wt%Si) 
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Figure 139: Fibrous-like structure with hot tear and liquid film (AI-1.5wt%Si) 

Figure 140: Typical hot tear showing the dendritic skeleton (AI-1.5wt%Si) 
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Figure 141: SEM picture confirming the presence of a liquid film upon tearing 

Figure 138 shows the fibrous-like microstructure which represents the columnar grain 

separated from each others at rupture under the tensile strength. Figure 139 indicates 

that the hot tear microstructure is clearly separated with virtually no solid deformation. 

Figure 140 shows the characteristic structure observed on the torn surface where the 

dendrite trunk is shown with the secondary arms (rounded structure). Figure 141 

demonstrates at higher magnification that a constrained liquid film was present upon 

separation. Its presence is confirmed by the characteristic wrinkles of the oxide films 

trapping the liquid underneath. It is seen also that the liquid was surrounding the grain 

structure and localized, after tearing the material, at the interface of neighbor grains or 

dendrites. 
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Chapter 8: Experimental Results: 
Industrial Applications of the 
DCSS Unit 

The DCSS has been used as a tool to evaluate the hot tearing susceptibility associated 

with alloy castability as a function of alloying element addition and grain refiner practices 

based on quantitative measurements. The DCSS provided also fundamental information 

such as mechanical properties (stress-strain relationship) required to improve 

mathematical model predictability and to develop more reliable hot tearing criteria. The 

results below show some examples of the DCSS results used to support specific R&D 

activities on OC casting and alloy development program at the Arvida Research & 

Development Centre (Alcan). 

8.1 Castability prediction for commercial alloys 

The DCSS was able to rank commercial alloys in terms of their maximum tensile 

strengths (hot tearing resistance). The ranking was compared against low solute content 

aluminum alloy (AA-1050). The results showed that the resistance to hot tearing 

decreases as follow: AA1050 > AA-3104 > AA-5182 > AA-6111. Figure 142 shows the 

results presented as the inverse of the maximum tensile strength to fracture and dubbed 

HTS for Hot Tearing Susceptibility coefficient. 

DCSS Industrial Applications 
Ranking of Commercial Aluminum Alloys (1/0" f) 
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Figure 142: Ranking of commercial alloys using the DCSS 
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The DCSS unit was used successfully to rank commercial alloys and suggested that AA-

6111 automotive alloy is the most sensitive to cast among the selected ones. DC casting 

production of the AA-6111 alloy variant tested with the DCSS confirmed the hot tearing 

sensitivity compared with standard production alloys (e.g., AA-31 04). The present results 

were obtained according to the DCSS procedures and set-up described above. 

8.2 Impact of copper addition on AA-6111 alloy 

The determination of the global impact of copper addition in a AA-6111 automotive alloy 

was determined using the DCSS unit. The results (Figure 143) suggest that the 

castability of the AA-6111 alloy decreases significantly with copper addition as indicated 

by the higher HTS with increasing level of copper. It should be noted also that the 

addition of a specifie alloying element might create a combined effect that could be 

discriminated using a proper design of experiment with the DCSS. The results are 

presented using the inverse of the maximum tensile stress to fracture to determine the 

hot tearing susceptibility index. 
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Figure 143: Impact of copper addition on AA-6111 alloy 

8.3 Impact of grain refiner addition on AA-1050 alloy 

The technique was also used to evaluate the impact of grain refiner on the hot tearing 

resistance. One specifie example is given below (Figure 144) where it is possible to 
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differentiate the material behaviour with small grain refiner addition (2 ppm TiB2) for AA-

1050 alloy. 

DCSS Industrial Applications 
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Figure 144: Impact of grain refiner addition (AA-1050) 

8.4 Impact of AA-5182 alloy composition change on HTS 

The ranking of different AA-5182 alloy variants using the DCSS apparatus indicated that 

small changes (5-10%) in the alloy chemistry can modify substantially the alloy hot 

tearing sensitivity index (Figure 145). The tendency indicates that the variants No.2 and 

No.3 offer less resistance to strain and consequential stress during solidification. 
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Figure 145: Effect of alloy composition change on HTS (AA-5182) 
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The results were confirmed during large scale DC casting of sheet ingot where attempts 

to cast variants No.2 and No.3 required major changes in the casting practices to 

prevent hot tearing. The main change was related to the casting speed which is a direct 

relation with the strain rate known to affect the strength to fracture during DCSS 

experiments. 
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Chapter 9: Theoretical Madel for Hot 
Tearing 

9.1 Theoretical Model 

The present work proposes an improved version of the model initially developed by 

Drucker [96] and later extended by Lahaie [99] to predict the average stress at different 

levels of strain. Drucker [96] analyzed the mechanical response of an idealized semi­

solid body (Figure 146). The body was assumed to be made of equally spaced regular 

hexagonal cylinders representing the columnar structure of the primary solid phase. 

Drucker [96] derived an expression for the average stress at the onset of deformation in 

terms of strain rate, viscosity and fraction solid. 

8=0 8 max 

Figure 146: Schematic of the deformation of a semi-solid body 

It should be noted that the development made by Drucker [96] follows from the zero 

relative motion condition, Le., no strain. On the contrary, the analysis performed by 

Lahaie and Bouchard [99] included a non-zero strain consideration. Nevertheless, the 

model did not take into account sorne important metallurgical features that best describe 

the solidifying material (e.g., dendrite arm spacing) and the crystallographic 

representation was not complete (Le., fully symmetrical) which made the final 

mathematical expression somewhat more complicated. Consequently, the model 

presented in this work includes important metallurgical features along with a much more 

symmetric and representative compact structure in 3D using a rhombic-dodecahedra 

crystal. More details about the complete mathematical development and relationships 

are found in Appendix 1. 
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ln fact, the physical model of the grain boundary is idealized by using an array of 

hexagons with edges of size, a, surrounded by a continuous liquid film thickness, h. 

This assumption suggests that the dendrite trunk arrangement is a close-packed 

hexagonal. This approach was first presented by Drucker [96] and later by Campbell [15] 

and also by Lahaie [99] to conceptualize hot tearing me chanis ms and analyze the impact 

of various contributive parameters. The present work will use the basis of this physical 

model as it idealizes simply the development and growth of the microstructure. Figure 

147 shows the physical correspondence of the model to the hexagonal microstructure. 

Figure 147: Diagram of the close-packed hexagonal 
arrangement of the dendrite trunks 

Other quantities such as the growth velocity, V and the temperature gradient, G were 

determined from the experimental results and used in a probalistic model (cellular 

automata) to simulate the microstructure near the surface of the chili plate. The present 

work is intended to explain analytically the mechanisms that deal with the contribution of 

thermal, mechanical and fluid flow. The main objective is to identify the specifie 

contribution of various parameters on hot tearing propensity. The liquid movement 

caused by solidification contraction and the imposed strain would impact to a certain 

extent the hot tearing mechanism. However, these aspects were not included in the 

present work since it is believed that the surface hot tears observed at the surface of the 

OC cast ingot involve other mechanisms. Actually, the liquid movement from the surface 
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was frequently observed during the DCSS experiments (Figure 129). This suggests that 

only this segregated liquid (exudates) plays a role during the first stage of the surface 

deformation (small strain). 

The maximum stress builds rapidly to reach the maximum stress causing the separation 

of the microstructure. The fracture stress, at this stage, is governed by the surface 

tension of a thin liquid film constrained between two horizontal plates. Nevertheless, a 

more complete analysis would have dealt with complex coupled phenomena that can be 

addressed only by mathematical models and proper constitutive laws. The cou pied 

phenomena would have involved the contribution from thermal, mechanical, fluid flow 

and microstructural evolutions but this was not within the scope of this work. 

ln addition, to the rationalized model, a creep law is added to describe the plastic 

behaviour of the stress-strain curves obtained from the experiments. Finally, a 

propagation coefficient is suggested based on the predicted microstructure obtained 

from a cellular automaton (probalistic model) to depict the typical material behaviour 

during the complete separation (Le., propagation and separation). The general 

expression (see Appendix 1 for the complete mathematical development) for the 

viscosity-induced stress can be re-written as below: 

Equation 38 

where Ys is the volume solid fraction, m a microstructure factor, Il the viscosity of the 

liquid phase, Ethe uniaxial strain and Ë the uniaxial strain rate. The strain was defined 

(see Appendix 1) to take into account the film thickness and the primary arm spacing as: 

h -h e=---,-,-h_-
~ 

Equation 39 

As mentioned above, the primary arm spacing Â1 has been added to the model to define 

the strain. The term Â 1 is the center-to-center distance between two adjacent grains and 

by definition represents the grain size. It is therefore more representative of the 

microstructure under the tensile stress. In addition, the primary arm spacing Â1 is related 

to the channel thickness h and the volume fraction solid gs. 
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The idealized equiaxed grains in a spatial representation are shown in Figure 148. The 

three equally spaced rhombic dodecahedra show similarities with the hexagonal 

structure when looking at the trunk of the columnar structure (Figure 147). The solid 

fraction evolution in the theoretical model is defined according to Figure 149. 

h 

Figure 148: Rhombic-dodecahedra separated 
by a liquid film of thickness, h 

Figure 149: Hexagonal grain showing the liquid film solidification 
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The volume fraction solid for equally spaced hexagonal prisms, is given by: 

Equation 40 

where 

Â., -h 
a = ----"-=--

Ji 
Equation 41 

and 

Equation 42 

Solving for h, one obtains: 

Equation 43 

Figure 150 shows the rhombic dodecahedron arrangement composed from a cube of 

edge length Be , upon which is affixed a square pyramid of height % Be on each of the six 

faces. 

Hexagonal contour 
projection in the Z-axis 
direction 

Z 

Figure 150: Diagram of the packed hexagonal grains 
projection towards the Z-axis 
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The parent cubes are shown in Figure 150 when 100 king at the line at the base of the 

pyramid of three rhombic dodecahedra. The volume of the rhombic dodecahedron is 

equal to 2ae
3

• This includes the volume of the parent cube (ae
3

) and the volume of the six 

square pyramids, each having a volume equal to ae
3/6. 

ln order to calculate gs for equally spaced rhombic dodecahedra, one can consider that 

the space is filled with rhombic dodecahedra having a parent cube edge length ae , each 

enclosing a smaller and centered (solid) rhombic dodecahedron having a parent cube 

edge length a. This is the sa me analogy to a sphere having a radius r1 that grows to a 

new radius r2. The change in volume is given by the ratio of the radii to the cube. For this 

arrangement the volume fraction solid is given by: 

Equation 44 

Figure 148 shows that the liquid channel thickness h, and the primary arm spacing Àt are 

connected with the parent cube edge lengths. According to this figure, we have the 

following relationships: 

Equation 45 

Equation 46 

À -h 
a = ---,-:1 =--

J2 
Equation 47 

Solving for h, one obtains: 

h = ~ (1 _ g / /3 ) Equation 48 

Therefore, assuming a microstructure made of equally spaced hexagonal cylinders (m = 

1/2) or equally spaced rhombic dodecahedra (m = 1/3), the channel thickness can be 

expressed by Equation 49. 
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Equation 49 

The factor m takes a value of Yz for equally spaced hexagonal cylinders (columnar 

microstructure) and 1/3 for equally spaced rhombic dodecahedrons (equiaxed 

microstructure). Even though Equation 49 is exact for a microstructure composed of 

equally spaced rhombic dodecahedrons, the applicability of Equation 38 has not been 

validated so far and therefore the present analysis will involve the 20 case only where m 

=1/2. 

9.2 Creep Law 

The improvement made to the viscous model in the present work allowed better 

visualization of the role of the primary arm spacing and the impact of a more appropriate 

crystal structure on the final mathematical notation. However, the theoretical model could 

not reproduce the stress-strain curves generated by the OCSS unit especially in the 

plastic portion and the propagation of the hot tear. In fact, the real metallurgical 

microstructure shows a complex morphology that is not equally spaced or perfectly 

oriented in space. Consequently, strain accommodation of the network should involve 

some sliding and pushing of the grains (Figure 151). As the strain increases, the grain 

boundaries become more and more subjected to friction sliding and oppose a higher 

resistance than a fully lubricated sliding condition (Iiquid surrounding the grains). 

Tensile loading 

Figure 151: Diagram of grain sliding touching and pushing upon tensile loading 
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This results in a graduai increase of strain with stress. Figure 151 suggests the 

mechanism that might occur during the tensile 10ading.Some grains are taking more 

loading force and push away others that are less constrained within the network. This 

rearrangement still take place at a relatively low strength since virtually no deformation is 

observed on the torn surfaces. 

Nevertheless, a close look at the microstructure (Figure 152) shows apparent 

mechanical locking or welding that certainly contributed to sorne extent to the ove ra Il 

strength of the mate rial. 

Figure 152: Hot tear trom the DCSS experiment showing a torn surface (arrow) on a 
dendrite arm initially surrounded (wrinkle) by the eutectic liquid (AI-1.5wt%Si) 

Indeed, Figure 152 shows a dendrite surface zone where an intimate contact has been 

broken or torn. The wrinkles observed on the dendrite arm surface indicate that liquid 

was present during the tearing process. The interface compatibility between the liquid 

and the solid is such that the remaining eutectic liquid welds the structure upon 

solidification. Therefore, based on the DCSS results and the microstructure investigation, 

a more complete model is proposed using the following two main mechanisms, a) a 

viscous flow, and, b) a creep behaviour to sustain the high temperature deformation at 

slightly higher stress. 
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The first portion of the model deals with the viscous behaviour during deformation of a 

semi-solid material but cannot alone explain the stress at higher deformation. In order to 

better describe the material behaviour in the plastic region, a typical creep law was 

added to the model based on a specifie solid fraction ranging from 0.97 to 0.99. After this 

solid fraction is reached, a microstructure coefficient is used to explain the rapid and 

catastrophic propagation and the complete separation. The microstructure coefficient is 

dubbed CPC for Crack Propagation Coefficient. The latter is based on the fact that the 

sol id fraction and grain morphology form a tight interdendritic bridging such that no flow 

is possible, i.e., ail liquid films are constrained. Upon reaching the maximum stress and 

strain, the catastrophic rupture and propagation is believed to be the result of the 

distribution of the tensile load over a uniformly and geometrically distributed thicker liquid 

film. Consequently, the maximum fracture strength, (Jcap (Equation 53) is rapidly inversely 

proportional to the change in the film thickness to which the maximum load is applied. 

The proposed CPC is covered in more detail in the section related to the microstructure 

modeling using a cellular automaton (Chapter 10:). 

However, this proposed theory assumed that the local solid fraction is variable and 

depends on the strain, & because of the liquid segregation and inflow that might also 

affect the local temperature. 

The creep law applied in the present work considered the dependence of a dissipation 

potential for the visco-plastic deformation that is a function of the volume solid fraction 

and deformation. One of the possible forms of this dependence is given by a hyperbolic 

sinus type semi-empirical power-Iaw as proposed by Sellars and Tegart [105] for creep 

deformation (Equation 50). 

Equation 50 

The terms in the creep law are: 

é: Strain rate, (5-1) 

{J,a,n: Representative material constants that fits the experimental results 

(J"c: Critical fracture strength (MPa) 

Q: Activation energy that fits the experimental results, (kJ/mol) 
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R: Perfect gas constant, (J/Klmole) 

T: Temperature, (K) 

Chapter 9: Theoretical Model for Hot Tearing 

This creep law is recognized [106,107,108] to fit the experimental results relatively weil 

over a wide range of strain rates (10-8 to 102 
S-1) or stresses for high temperature 

deformation of various metals and in particular for aluminum and its alloys. 

The creep law was derived as a function of time to determine the strain and the stress at 

different temperatures and then applied to the volume solid fraction ranging between 

0.97 and 0.99. The total strain corresponds to the maximum strain obtained from the 

viscous flow model and the plastic strain (creep). In other words, the activation of the 

third creep stage (Figure 153) normally termed plastic in this work takes place when the 

solid fraction is between 0.97 and 0.99, Le., when & = &0.97 and & = &0.99' 

Stage 1: Transient phase 

Stage Il: Plastic deformation, diffusion, grain boundary sUding 

Stage III: Creep separation, Grain boundary voids formation 

Fracture 

-' .-;-- ... ............. : 

..... -=:-•• ::: •• -::. •••••••••••••••••••••• ~ 

Stage III 

Minimum 
Creep 
Rate 

Figure 153: Diagram showing the three creep regimes proposed in this work 

However, the validity of this type of creep law must be done over a larger range of 

temperature and strain rate in the second stage (Stage Il). In the case of the DCSS, 
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these two variables are quite similar. It is assumed that hot tearing or fracture takes 

place when the solid fraction is greater than 0.95 (Le., fs (1)) >0.95). Consequently, in the 

present context the term "Creep Separation" is proposed as a stage close to the third 

creep stage (Stage III) during which there is formation of voids. It is recognized [113] that 

grain boundary sliding stimulates nucleation of grain boundary voids. 

Table 1 below shows the creep parameters used for the different binary alloy systems. 

This volume solid fraction criterion was arbitrarily chosen based on values stipulated in 

the literature but also measurements taken on the microstructure at high magnification 

(SEM). This confirmed the presence of a thin film of a few microns surrounding the 

grains prior to separation (Chapter 7:, Figure 141). 

Table 1: Creep law parameters for each AI-Si binary alloys 

Parameters AI-O.5Si AI-1.5Si AI-2.5Si 

a (MPa-1) 0.09 0.08 0.08 

n 4.7 4.7 4.7 

Oa (kJ/mole) 190 196 196 

In{~) 43.6 48 48 

~ 8.61 E+18 7.02E+20 7.02E+20 

R (J/Klmole) 0.008314 0.008314 0.008314 

& (S-l) 0.026 0.026 0.026 

These parameters allowed reproduction of the plastic portion of each stress-strain curve 

in good agreement with the experimental results. It is interesting to note also that the 

apparent activation energies for ail AI-Si binary alloys are significantly higher than the 

self-diffusion energy of pure aluminum (Qa == 150KJ / mole). This suggests that the 

deformation process of the selected AI-Si binary alloys is not controlled by diffusion for 

the present experimental strain rate and temperature. 

ln the present work, it is assumed that the creeping mechanism takes place when the 

local volume solid fraction is between 0.97 and 0.99. It is assumed also that only two 

mechanisms are present based on the change in the film thickness, h. The thickness of 

the liquid film, h, was transposed into volume solid fraction where the viscous flow is 
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suggested to operate between a volume solid fraction of 0.95 and 0.97 and the creep law 

from 0.97 to 0.99. 

Consequently, the average stress will be given by the following statement: 

0.97 
gs 

0' = JO' dg avg vise s 

gs 
0.95 

Equation 51 

ln the above equation, avise is the viscous strength component of the stress given by 

Equation 38 and aereep is deduced from the creep law given by the Equation 50. The total 

strain is assumed also to have only two components, i.e., the viscous and the creep 

contributions, respectively. 

Equation 52 

Finally, it is proposed that when the maximum stress is exceeded, Equation 53 will 

predict the complete separation and represent a fracture criterion for a semi-solid body 

with constrained capillaries at its free surface. 

21/1g 
O'cap = 

hcap 

Equation 53 

This approach has been used previously [27,95,99,109] to determine the fracture stress 

during hot tearing. Indeed, the critical fracture strength, acap represents an inherent 

property of the microstructure. The results obtained were in the range of 0.1 to 10 MPa 

and correspond quite weil to the experimental DCSS results. It should be mentioned 

here that the hot tearing observed during OC casting of sheet ingot is a surface or sub­

surface defect. Consequently, the present fracture criterion should describe the hot 

tearing based on numerous observations made during casting, the DCSS results 

(surface liquid exudates back flow upon applying the tensile load) and microstructure 

investigations showing hot tears open to surface (Figure 154, Figure 118, Figure 120). 

This fracture stress was used in the creep law to determine the last creep stage after the 

viscous flow regime ended upon reaching a volume solid fraction of 0.97. In fa ct , it is 
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assumed that the end of the visco-plastic regime corresponds to a solid fraction of 0.97 

followed by "Creep Separation" (Figure 153) for solid fraction above 0.97. 

Figure 154: Typical hot tear at the surface of a OC cast ingot 

The DCSS experimental results of the AI-Si binary alloys showed that the strength is built 

almost immediately after the tensile load or force was applied. The model suggested in 

the present work reproduced the stress-strain behaviour of the DCSS experimental 

results as presented in Chapter 7:. 
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Crack Propagation Coefficient 
(CPC) 

The microstructure evolution during solidification plays a major role in the hot tearing 

phenomena. As a general rule, the hot tearing susceptibility increases as a function of 

the grain size and morphology. Consequently, predicting the microstructure of a given 

alloy during solidification gives insights to determine key parameters related to the hot 

tearing phenomena. In this work, a model microstructure that includes the mechanisms 

of heterogeneous nucleation and grain growth was applied for two purposes, a} to 

simulate the pre-dendritic surface microstructure (i.e., nucleation sites) obtained during 

the experiments and, b} to derive a crack propagation coefficient (CPC). In fact, the CPC 

will be used to simulate more specifically the stress-strain curves zone indicating the 

microstructure de-cohesion (visco-plastic zone) as seen during the OCSS experiments. 

The model is based upon a 20 cellular automata technique. This method based on a 

finite element using a 20 cellular automaton has been proposed by Rappaz [97,98] to 

model microstructure. However, Brown and Spitle [100] have developed the approach 

based on a probalistic concept. These authors have adapted to the case of solidification, 

the Monte Carlo procedure which has been developed by Srolovitz [101] for treating 

grain growth. 

The modeling uses a matrix with a number of cells having the sa me dimensions. The 

cells are attributed with different properties such as the state (liquid or solid) and the 

crystallographic orientation. The cell properties evolve according to the nucleation and 

growth laws. 

10.1 Nucleation law 

Figure 155 summarizes this nucleation model which assumes a continuous dependence 

of n(t) to temperature (T). The initial nucleation site density is represented by no and is 

directly related to the size of the matrix described in the cellular automaton (CA) model 

(Appendix VIII). 
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The nucleation rate assumes a Gaussian distribution with respect to the undercooling 

I1T where 11T" represents the average undercooling and I1TO' the solutal undercooling 

termed standard deviation in the CA model. At a given undercooling, ilT, the grain 

density is given by the integral of the nucleation site distribution from 0 undercooling to 

ilT. The number of nuclei, n, within the liquid is given by the integral of the distribution. 

T 

dn 
d(AT) 

-- --------------- -~~~---------

ATmax 

AT AT 

Figure 155: Nucleation model giving the nuclei density distribution probability (Gaussian) 

Equation 54 

These parameters have been adjusted in the cellular automaton model to reproduce as 

closely as possible the surface and sub-surface microstructures of the DCSS samples. 

10.2 Growth law 

The growth law is derived from the solid and liquid concentration at the liquidus 

temperature of the alloy (Cs' CL)' the partition coefficient (k), the distribution coefficient 

(p ), the temperature difference between the liquidus and the solidus (!1TL _ S ), and finally 

the undercooling (!1T). 
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n 

v 

k 

p 1 - k 

~T 

k~TL_S 

1 - Op 

Equation 55 

Equation 56 

Equation 57 

Equation 58 

Table 2: Growth law parameters (AI-Si alloys) 

Parameters 
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Figure 156: Growth law curves (AI-Si growth parameters) 
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Table 3: Input variables for the Cellular Automaton model 

Parameters Descriptions Values 

dt Time interval between each step (sec) 0.005 

1 Network step value, cellsize (meter) 0.000001 

ilT Undercooling removed before every iteration rC) 0.01 

SilTn Maximum rate for the surface nucleation law 0.2 

SilTs Standard deviation for the surface nucleation law 0.1 

BilTn Maximum rate for the bulk nucleation law 2.35 

BilTs Standard deviation for the bulk nucleation law 0.2 

# Number of cells between surface asperities 4 

The cooling rate is simulated by choosing the undercooling and the time step 

accordingly. A cooling rate of 2°C/sec was selected and represents the average cooling 

rate measured near the ingot surface during DC casting. 

The microstructure model was built to study the impact of various conditions on the 

resulting microstructure. This approach is believed to ease sensitivity analyses to identify 

the main governing factors. In fa ct, the model was able to reproduce relatively weil the 

surface microstructure encountered in the DCSS unit. The change in the surface and 

bulk nucleation coefficient as weil as the surface roughness allowed identification of a 

general trend for the surface microstructure, namely the grain size and the derivation of 

the liquid film thickness near the surface. It is difficult to determine precisely the liquid 

fraction during hot tearing because of the liquid segregation. Consequently, the film 

thickness was derived from the number of grains (nucleation sites) and the size (primary 

dendritic arm spacing, Â.1) according to the equation proposed by Upaddhya [77]. 

Therefore, the results from the microstructure allowed a simple Crack Propagation 

Coefficient (CPC) to be built. 

The CPC is essentially based on the change in film thickness on which the maximum 

fracture stress (Ioad) is applied. Consequently, the strength during the hot tear 

propagation will change according to the microstructure scale defined by the cellular 

automaton modal. It represents essentially the ratio of the film thickness at the maximum 

fracture strength (hcap) over the new film thickness obtained from the numerically 
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generated microstructure (hmicro). The maximum fracture strength is described (Equation 

53) for a semi-solid body with constrained capillaries at its free surface [109]. It was 

reported [111] that the tensile stress on the parallel plates decreases as the separation 

distance increases. In the case of hot tearing, it is assumed that when the maximum 

strain is reached, the separation is taking place suddenly along the increasing liquid film 

thickness. In fact, the grain size increases (growth competition, coarsening) from the 

surface to a few microns towards the bulk. Considering a constant volume liquid fraction 

at this moment, an increase in the grain size will cause the liquid film surrounding the 

grains to be thicker (Iess solid surface area). In reality, liquid segregation and inflow will 

contribute to increase the local liquid fraction. However, the impacts of these 

mechanisms are beyond the scope of the present work. 

10.3 Microstructure results from the Cellular Automaton 

Figure 157 to Figure 160 show the results of the cellular automaton with the parameters 

used to simulate the microstructure. The results presented here are the AI-0.5 wt% Si. 

Basically the outputs were similar for the AI-1.5 wt% Si and AI-2.5 wt% Si alloys 

depending on the nucleation and growth parameters used. 

Figure 157: Columnar structure (CA) 
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Figure 158: Columnar to equiaxed (CA) 

Figure 159: Nearly fully equiaxed (CA) 
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Figure 160: Equiaxed structure (CA) 
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Nevertheless, the change in the alloy parameters did not affect by much the growth law 

curves (Figure 156). Consequently, the microstructures generated at the surface were 

quite similar and essentially driven by the number of nuclei. It is worth mentioning here 

that it is beyond the scope of this work to reproduce the entire microstructure obtained 

during the DCSS tests. In fa ct, the interest was focused on the resulting microstructure 

at the surface of the cast sample (i.e., at the mould/metal interface). 

The latter was kept constant in the model for simplicity. Only the parameters that were 

changed appear in the legend while the others are found in Table 3. It is seen that the 

microstructure morphology changes from a columnar to an almast fully equiaxed 

structure. 

The present study is related to surface hot tearing and the microstructures obtained 

during the experiments are essentially columnar. Therefore, only the columnar 

microstructure at the very near surface was used to determine the CPC. Figure 161 

shows the curve generated from the primary arm spacing (Cellular Automaton) and the 

change in the film thickness. This represents the Crack Propagation Coefficient (CPC) 

that could be simplified by a power law with the proper terms describing the 

microstructure. Since hmicro is proportional to Â1' then h cap is an independent variable (or 
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linked to other parameters) that could be deduced from Equation 53 using direct 

measurements of the microstructure. Nevertheless, this section introduces a possibility 

of explaining the catastrophic failure as indicated by the stress/strain curves using 

change in the microstructure surface and sub-surface scale and advanced solidification 

modeling software. 

Crack Propagation Coefficient 
AI-Si Binary Alloys 
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Figure 161: Crack Propagation Coefficient (CPC) 

As mentioned above, the CPC corresponds to the ratio of hca,lhmicro which generates a 

coefficient that varies from 0 to 1 and it is applied when the maximum strain (B"max) is 

attained and the volume solid fraction is 0.99. Equation 59 shows the general form of the 

CPC where, Â 1, is the primary arm spacing (grain size in columnar structure), and A, a 

constant obtained tram the microstructure analyses. 

CPC = A . Â 1-0.9989 Equation 59 
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The impact of the CPC on the stress is essentially a coefficient which is proportionally 

related to the change in the film thickness, h. Nevertheless, this is not universal since we 

must generate a certain number of numerical microstructures and extra ct a 

representative average of the grain intercepts used to calculate the change in liquid film 

thickness. The results of this approach suggest a potential way to describe the 

propagation after the maximum strain is taken by the semi-solid material and the hot tear 

is initiated. 

The process could become more standard by characterizing the surface and sub-surface 

samples obtained from the DC casting process. The cooling conditions and mould 

surface conditions are relatively the sa me for the primary cooling zone and therefore a 

quite reproducible microstructure is anticipated. 

The CPC does not fit ail curves for ail other alloys but it represents a criterion for the 

propagation and loss in strength for the alloys covered in the present work. The CPC is 

also based on true metallurgical features known to affect the semi-solid strength of the 

material under strain/stress during solidification. 
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11.1 Overview 

The goal of the present thesis was to understand the hot tearing mechanisms of AI-Si 

binary alloys. The work has been divided into various parts. The first part was related to 

the study of the microstructure of the hot tearing zone to be able to understand better its 

origin during DC casting of sheet ingot. The results of this investigation confirm that hot 

tearing during DC casting is a surface defect. Consequently, the second part of the work 

consisted of having a better experimental procedure to study the hot tearing behaviour. 

Consequently, a novel apparatus capable of reproducing microstructural features 

encountered during DC casting has been built. The unit was dubbed DCSS for Direct 

Chili Surface Sim ula tor. The DCSS can apply and measure tensile force and surface 

deformation during solidification. Many tests were done with the DCSS unit to measure 

the mechanical response of specifie alloys subjected to a tensile load during 

solidification. The ultimate goal was to obtain the stress-strain curves and quantify the 

alloys in terms of hot tearing sensitivity. A non-negligible aspect of the work was to use 

numerical modeling to be able to understand better the DCSS approach and identify the 

testing conditions and parameters. 

The third part of the work consisted of explaining the behaviour of the semi-solid material 

being tested and the relationship with metallurgical and mechanical features. This work 

consisted of deriving the equation to lead to a representative theoretical or 

phenomenological modal. The model was based on work previously done but adapted 

with better use of the true metallurgical factor that best characterizes the tested material 

(AI-Si). The novelty resides in the use of known metallurgical factors combined with a 

creep law and a crack propagation coefficient (CPC) to beUer reproduce the typical 

stress-strain curves. The CPC was derived using a Cellular Automaton that was built to 

determine a general trend in the microstructure. This trend was transformed into a 

mathematical equation and used in the model to suggest the catastrophic separation of 

the microstructure upon reaching the maximum deformation. 

The theoretical model has also been used to perform a sensitivity analysis on different 

parameters to isolate the most critical one. 
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It turned out that the liquid film thickness and distribution are among ail, the most critical 

parameters. The liquid film thickness is intimately linked with the grain size and the 

solidification range of the alloy. 

The DCSS apparatus has also been used to quantify the hot tearing sensitivity of 

commercial alloys. The results showed that the DCSS apparatus could be used to 

evaluate new alloys and their hot shortness prior to large scale casting. 

11.2 Main conclusions 

• A novel method to assess the hot tearing sensitivity of aluminum alloys has been 

developed (DCSS) and used successfully to quantify the mechanical behaviour of 

a material undergoing solidification. The DCSS reproduces the complex 

metallurgical features observed at the surface of a DC cast ingot and allows 

application and measurement of the tensile load on the solidifying material. The 

experimental results such as the stress-strain curves could be used as input to 

simply rank alloys, determine constitutive laws or to generate data to improve 

numerical model predictive capability. 

• A theoretical model has been adapted and used to explain and reproduce 

relatively weil the general behaviour of the stress-strain curves derived from the 

DCSS experiments. Indeed, the combination of a viscous flow model along with a 

creep law allowed beUer reproduction of the stress-strain curves especially in the 

creep separation region. This was made possible by using metallurgical values 

that best describe the material being tested and the use of a creep law along with 

an original crack propagation coefficient (CPC). 

• The proposed hot tearing sensitivity index derived from the DCSS measurements 

has been used successfully on the AI-Si binary alloys. The well-known A-curve 

was reproduced and indicated that the AI-1.5 wt% Si alloy was the most prone to 

hot tear. 

• The DCSS was proven to be useful in understanding the effect of different 

variables on hot tearing propensity of aluminum alloys and to save time and effort 

compared with casting large scale DC ingot. 
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• The viscous model shows similarities with experimental work except that the 

starting point and the progressive strength built up are difficult to match precisely. 

The structure and morphology of the solidifying sample is somewhat different 

from the idealized structure and the discrepancy arises from those differences. In 

addition, there is rearrangement of the microstructure during straining and grain 

boundary movements might have created conditions to further resist local 

deformation. 

• The present technique offers the possibility of obtaining real quantitative 

measurements to characterize the hot tearing phenomenon. Furthermore, it can 

be used to rank commercial alloys and improve castability during alloy 

development. 

• The theoretical model proposed in the present work resulted in an understanding 

of the impact of various parameters such as the liquid film thickness, h, grain 

size, and the strain rate. It was capable to reproduce the experimental stress­

strain curves of a semi-solid material under tensile loading. The model can be 

further improved by considering the addition of solidification contraction and liquid 

inflow (Darcy's Law) during deformation. Yet another addition will be to 

implement solidification along with a segregation model that will consider the 

effect of microstructural changes during tensile loading. 
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11.3 Future Investigations 

Further investigations to extend the work presented in this thesis would be useful for the 

industry and can bring much interest for the scientific community. A proposai for 

experimental work is presented below with some suggestions for modelling. 

The DCSS experiments are relatively complex and require much attention to ensure that 

results are representative. The relationship between industrial OC casting and the DCSS 

technique is important to ascertain. This knowledge strongly influences the extent to 

which results obtained in the laboratory can be used to predict the hot tearing during OC 

casting. In fact, the solidification conditions and the resulting strain and stress 

encountered during OC casting need to be reproduced precisely. This could be done 

approximately using the same technique as presented in this thesis but including the 

impact of secondary cooling (Le., water quenching). Indeed, the secondary cooling can 

play an important role during the initial stages of casting such as solid contraction, 

change in the microstructure scale and impact on solute rich liquid movement and 

distribution. One aspect that can be investigated further is the combined effects of trace 

elements, modifiers and grain refining techniques on the characteristics of the liquid film 

at very high solid fraction (>0.95). 

ln addition, improvements to the model presented in the present work can include the 

effect of microsegregation and liquid inflow from the bulk during solidification and 

deformation of the microstructure. Current results suggest that the liquid film thickness 

play a major role in the hot tearing mechanism. However it remains to be investigated 

how the second phase precipitates and morphologies affect the liquid movement and 

distribution. Even further improvements could consider the effect of convection, solute 

transport, and grain movement to establish accu rate hot tearing predictions. 

The investigations presented in this thesis have advanced the understanding of hot 

tearing by measuring mechanical quantities during solidification. During this 

investigation, many new questions and potential areas of further work emerged. This 

revealed that this industrially important and scientifically fascinating subject is yet to 

relinquish ail of its secrets. 
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Appendix 1. Mathematical Development of the Viscous Model 

The analysis is similar to Drucker [96] and Lahaie [99] regarding constrained liquid film, 

except as mentioned previously, the model was improved by considering the primary 

arm spacing, À1' term which is much more representative of the metallurgical 

microstructure (Figure 1.1 to Figure 1.4). In addition, a more uniform and symmetrical 

crystallographic structure was selected to betler represent the idealized structure and 

simplify the mathematical development. In addition, the crystal structure allowed 

simplifying the original equation for the volume solid fraction terms. The shape of the 

dendrites represents a two-dimensional channel, with the wall spacing decreasing 

gradually in the direction of flow. Given the volumetrie flow rate and the local half-

height, ~ (x), the objective was to determine the velocity and pressure distribution in the 

interdendritic channels. First, the pressure distribution within the liquid film thickness h 

was determined and represents the stress generated on the film during straining the 

material. The average and maximum stress for the viscous flow regime is described 

below. Second, a creep law was used for the plastic behaviour experienced during the 

tensile loading. Indeed, the development made so far on the viscous flow only did not 

reproduce the ove ra Il mechanical behaviour observed during the DCSS tensile testing. 

Finally, a crack propagation coefficient (CPC) is suggested for the hot tear propagation. 

The objective of the CPC is to explain the stress-strain behaviour during catastrophic 

microstructure separation. The CPC is explained in Chapter 10: on the microstructure 

model with a cellular automaton 
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E=O Emax 

Figure 1.1: Schematic of the deformation of a semi-solid body 

Figure 1.2: Diagram of the close-packed hexagonal arrangement of the dendrite trunks 
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Figure 1.3: Hexagonal grain showing the liquid film,h, upon solidification 

h 

Figure 1.4: Rhombic-dodecahedra separated 
by a liquid film of thickness, h 

The definitions of the terms are: 

hi: film thickness in the inclined channels 

hh: film thickness in the horizontal channel 

a : side dimension of the hexagon 

v: velocity of the hexagon (tensile) 

À1 : primary arm spacing 

x and y : symmetrical position 

Note: h/a« 1 where "h" is a thin film separating the hexagonal array of the idealized 

microstructure. 
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Continuity equation or conservation of volume 

The mass conservation in the liquid (where pis approximately constant) is given by: 

v'(pV)=o 

Ovx+OvY=o 
ôx Gy 

d(vx ) + d(vy ) =0 
dx dy 

where (vx ) and (vy ) are the average velocities of the flows. 

ln the horizontal channel, it is assumed that: 

such that: 

/ v ) = .!.. ahh = V at y = hh and (v ) = 0 at y = 0 
\ y 2 at 2 y 

We insert (vy ) in the mass conservation equation: 

d(vx ) _ d (2YV) _ 2V 
----- -- ---

dx dy hh hh 

thus: 

(vx ) 
= - 2

h
V . x 

--- Note: ln compression, the minus sign disappear. 
h 

The last expression can be arranged using the same terminology than Drucker [96] such 

as the average velocity of the flow in the horizontal channels (Vx ) becomes w
a 

and the 

large V (displacement velocity of the hexagons) becomes v 
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We are now back to the original expression by Drucker [96] for the continuity or 

conservation of volume due to the displacement of the hexagons and first expressed by: 

2vx = W a hh 
~ \ J v 
Volume! Volume 2 

where V is the displacement velocity of the upper and lower hexagons, x, the position 

fram the axisymetric position, wa ' the average velocity of flow in the horizontal channels, 

and hh the liquid film thickness. In fact, liquid flowing in long, narraw channels, and in 

thin films often have these characteristics of being nearly unidirectional and dominated 

by viscous stresses. 

The left-hand-side is the "Volume 1" that represents the volume/time accommodated by 

flow and the right-hand-side the "Volume 2" that represents the volume/time created by 

deformation (strain). 

The speed of the hexagon (top and bottom) is 2v, x is the axisymetric position, hh is 

the liquid film thickness and the average velocity in the horizontal channel during is given 

by wa . If only one hexagon moving then, V x = Wa hh 

Because "v" is negligible in comparison with "wa " over most of the distance "a". The 

distribution of "w" through the thickness "hh" is parabolic. The maximum velocity is 

3wa /2 and the maximum velocity gradient in the vertical direction is given by: 

"v" is considered negligible because "hh" is very small (hh «a) and a slow speed "v" 

will make the liquid film" hh " to be displaced rapidly. 
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By definition: 

dv 
T=-JL­

dy 

where; 

T is the shear stress 

JL is the coefficient of viscosity 

(Laminar and incompressible flow) 

........ J ......................................... ,........;----..+----f-----. 

dy ! 
········l·····ëïy········· 

··l···· .. ~-+----r+-+----I 

Appendices 

Note: The velocity profile drafted here is for compressive as per the work from Drucker 

[96]. The sign will be reversed accordingly to adapt it in tensile mode. This will be change 

at the end of the mathematical derivation process to obtain the maximum and average 

viscous stress during tensile loading. 

Y=O-l(~:J ··················t···hh 
........................ 

, 

x=O 

at hh the shear is maximum and at y=O (centre of the film thickness), the shear is zero. 
2 
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Film thickness, h 
This section explains the relationship between the film thickness and the strain (Figure 

1.5). The terms hi and hh refers to the liquid film thickness in the inclined and horizontal 

channels, respectively. 

x=O 

Figure 1.5: Hexagonal arrangement and description 

The liquid will move from the inclined channel towards the horizontal channel when strain 

is applied while respecting the volume conservation. The liquid portion is assumed to be 

constrained until fracture and separation of the idealized microstructure. 

The relationship between hi, hh, strain (deformation), strain rate, and the primary arm 

spacing, 1...1, is described below. This will be used for the complete mathematical 

derivation of the viscous model based on the pressure distribution within the channels. 

The film thickness "h" is a function of strain and defined by "hh" (film in the horizontal 

channel) and "hl' (film in the inclined channel). At outset "hh" and "hl' are equal to "h". For 

incompressibility, there is no volume change and the total volume is given by the volume 

in the inclined and the horizontal channels: 
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The film thicknesses (Figure 1.6) described in this section are also referred to the 

description made for the Strain and Strain Rate in the following sections. 

~ ....... .J .. 
·········l 

hh 

Figure 1.6: Liquid film in the inclined (h;) and horizontal (hh) channels 

2(~}j 
'----..r---' 

volume inc/ined channel 

thus; 

+ (~)hh 
~ 

volume horizontal channel 

=3(~} 
~ 
total volume 

The film thickness in terms of the strain is; 

Consequently the film thicknesses in the inclined and the horizontal channels can be 

described as: 

or 
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and; 

h.=h _ eÀI 
1 2 

or; 

h .= h (1 - e ÀIJ 
1 2h 

Strain, s 

The strain is also given by the film thickness reduction over the hexagon mid-height 

(Figure 1. 7) where; 

-J3a 
y=-

2 

e (h h - h) (b d f' 't' ) = ~ y e Inllon 

at e =0, hh = h and, at hi =0, S = Smax 

When h,=O, Le., no more liquid in the inclined channel, then: 

Smax 
2h 

ÂI 

-----8-------------------·1; 
---------- ------ ---

-----\9----·,····------1--hh Y 
----- -----------_._----_ .. _---

Figure 1.7: Change in film thickness for & -::j:. Oand & = 0, respectively 
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It should be noted that Âl is the distance between the hexagons including the liquid film 

thickness "h" when completely solidified . 

. 
5train rate, & 

The relative motion of the hexagon is related to the strain rate. This is the change in 

strain (displacement) as a function of the film thickness. 

~v 
y=o ·······················r·······················! 

··········· .. ····t·····hh 
........................ 

~v 
x=o 

and thus: 

. d8 dh 1 dh 
8=-=-=--

dt ;L ..1,1 dt 

The change in "h" as a function of time represents the speed of the hexagon and given 

by: 

dh/2 
v=--

dt 

Consequently, the relative speed for the two hexagons (opposite direction) is given by: 

2v = dh or dh = 2v dt 
dt 
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This is the change in "h" as a function of time given by the speed of the hexagon. 

Nevertheless, the relative speed is the displacement of the two hexagons in opposite 

direction (tensile). The strain rate is the change in the strain with time by the following; 

· 2v 
e =~ and the strain rate is: 

· de e=-
dt 

de= dh = 2vdt 

~ ~ 

thus, the strain rate as a function of the hexagon speed and the primary arm spacing is 

given by; 

· 2v e=-
~ 
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Shear stress 

From the volume conservation equation; 

2vx =Wa hh 
~~ 
Vo/umel Vo/ume2 

Appendices 

Note: The maximum velocity gradient in the centre of the horizontal channel (htJ2). At the 

edge of the hexagon, the velocity is "0" because "v" is negligible with "wa" over most of 

the length "a". The distribution of the velocity is assumed parabolic. 

w=w (1- x
2

) 
max L2 

(a parabolic velocity profile) 

(w) = ± fOL W dy (average velocity) 

where; 

2 ~ 2y 

( ( J
2J wa = hh f/ w max 1 - hh dy 

w =w [Zll _~1] 
a max 0 3 

o 
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Therefore the maximum velocity at y=O is given by: 

3w w = __ a 
max 2 

thus; 

and the maximum velocity gradient is given by; 

and, 

and in terms of strain for the horizontal channel; 

12JlV x 12Jlv x r - - ----=----
- h/ -(h+&ÂJ2 
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Horizontal pressure gradient 

T----+. 

!p"';,=o 
1" LIx --..... : 

h 
a) y =_h 

2 

b) high pressure (more compressive) is at the edge 

c) lower pressure (more tensile) is at the centre. 

-=L=--F_x =o=p .y-P 'y-T;}.x 
width HAt x 

where y= htJ2 and hh is the film thickness in the horizontal channel. 

T = dP (~) 
dx 2 

thus; 

r = 12,u v x = dP (hh J 
h/ dx 2 
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where Poh represents the maximum tensile pressure on the horizontal face, Le., at the 

centre or at x=a/2 

At this point the sign is positive since pressure increases and more compressive towards 

the end. The sign is reversed accordingly to simulate tensile or compressive force. 

ln the inclined channel, we must find Vi which is the separation velocity (or compression). 

Vi = vcosB 

V 
v.=-

1 2 

From the conservation of volume: 

This is the average flow velocity in inclined channel. 

Similarly, the maximum velocity gradient in the inclined channel is: 

pdv - 6wa f.1 - 6vxf.1 - 6vxf.1 
T - -- - - - ---=----...,... 

- dy - hi - h,' - (h _ .,; )' 
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The inclined channel pressure gradient is given by: 

dP (li) - r 
dx 2 -

(Note: similar to equation for hh) 

f dP = _ rx 12 f.1 v x dx 
~i Jo h: 

1 

P = P. _ 6f.1vx
2 

Dl ( &" ~ J3 h--
2 

Note: Poi is the maximum tensile pressure at the centre of the inclined channel. 

At present, we must find the Poh that represents the maximum tensile pressure on the 

horizontal face, Le., at the centre. In fact, Poh is the maximum tensile stress O"max at x=O. 

/~ Pc ~ ! ~ ................. y=O 

x=O 

P at corner equal P at x = Â} /2-13 which equal Pc (Pressure at the corner of the 

inclined and horizontal channels) 

Note: Total stress perpendicular to the face of the inclined channel must be zero. 

!Pdx=O 
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dx=O 

We now substitute Poi to evaluate P at corner in the following: 

( )

2 

6JlV ~ 
P =P,_ 2J3 

C 01 ( li Âl)3 
h--

2 

~ = ( Â )3 
6 h_li21 

-JlVÂ
2 

~ = ( ~ )3 
3 h_li21 
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Substituting Pc in the POh equation (horizontal channel) below: 

f.1 v Â.,2 
P =p-----

oh c (h+&Â.J3 

then: 

Appendices 

(negative sign remove for tension) 

ln fact, POh is the maximum tensile stress amax at x=O, and positive sign for tensile, thus 

we reverse the sign to obtain: 

This equation can be expressed in terms of the strain rate related to displacement 

speed, v, and film thickness, h, (see Strain and Strain Rate development section) such 

as: 
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Similarly, the equation can be expressed in terms of the volume solid fraction based on 

the following: 

Average stress on the face of the hexagon 

The maximum stress is depicted in the figure below as the peak of the parabola while the 

average stress is distributed along the face from x=O to x = ~ of the hexagon (straight 
Ji 

line). 

/~ Pc ~ i ~ ................ y=o 

x=o 

1 IL P =- Pdx 
allg L 0 

Œ = (~J-l r!:n P dx 
allg C .L 

2...;3 
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Using the equation below; 

(ï - 1 ~(p + --;-1_2~f.1_V_X2c-::-Jdx 
avg - Â

1
/2-J3 1· oh (h-&Â,] 

Using the equation for Poh and substituting it in the average stress we obtain: 

(ïavg 

(ïavg 

- f.1 v Â/ 
3 

1 3 
--------,--+----

( h - e :'J' (h +e À, ) , 

1 2 
-----+----
( h - e :'J' (h + d,) , 

Appendices 

Similarly to the maximum stress, a substitution to obtain the average stress as a function 

of strain rate. 

• '1 3 
- f.1 & /L, 

6 

1 2 
------:-+----

( h - e :' J (h + d,) , 
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Again, the substitution is made to obtain the average stress as a function of solid 

fraction. 

~vg 

~Vg 

-JL&~3 1 2 
----------~+-----------

6 (~(I-g;.)-"; J (~(I-g.)+,,~)' 

• ;/3 -JL& ,~ 

6 

1 2 
------,-3 + ---------
(l-g: _ ~) (l-g: +e)' 

Finally, the average stress is determined according to the following figure to normalize 

on a periodic section: 
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thus: 

3 
0' =-0'. 

avg 2 VISCOUS 

or, 

2 
0' viscous = 3" 0' avg 

Consequently the viscous flow is determined by the following equation (sign is inversed 

for tension): 

O'. = Jl t((l_g m _ &)-3 +2 (l-g m +&)-3J 
VIS cous 9 S 2 s 

Note: Equation not valid if no liquid in inclined channel, Le., &max = 2(1- gs m) 
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Appendix Il. DCSS test configuration and set-up 

The experimental conditions are defined in a dedicated computer control program using 

data obtained from thermal and microstructure analyses. Figure 11.1 shows the main 

experimental parameters set-up window used to enter the alloy characteristics used to 

trigger various conditions such as the container rotation and the strain gauge positioning. 

Figure Il.1: Example of the computer control program 

Figure 11.2 shows the data acquisition window that appears on the computer screen 

during the experiments. This shows the main measurements taken during the test as 

weil as the main activation button to start or stop the experiment or activate other specifie 

functions. 

Figure Il.2: Example of the data acquisition window 
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Appendices 

Container preparation and thermocouple 

installation 

Installation of the ceramic blanket inside the container to absorb solid metal 

displacement during traction (Figure 111.1 a) and V-shaped cutting to receive the anchor 

stem (Figure 111.1 b). 

Figure 111.1: Ceramic blanket (a) and V-shaped cut (b) 

Installation and positioning of the thermocouples inside the container (Figure 1I1.2a and 

Figure 111.2b). 

Figure 111.2: Thermocouple installation (a) and positioning (b) 
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Appendix IV. Typical DCSS experimental procedure 

Check list: 

• Ensure water is circulating inside the chili plate and adjust water temperature 

(20 OC) and flow rate to 14 I/min. 

• Check ove ra Il plate condition and refurbish the surface with 600 grit sand paper 

using parallel movement fram top to bottom. 

• Liquid metal temperature to 750 oC before pouring in container. 

• Install safety pin to prevent rotation during manipulation 

• Reset ail parameters in the computer control program "Stress.exe" 

• Check load cell calibration and reset 

Main experimental steps: 

• Step 1: Skim the surface of the aluminum melt before filling the container. 

• Step 2: Start data acquisition. 

• Step 3: Fill the pre-heated container with liquid metal at 750 oC (±5 OC) 

• Step 4: Transport and position the container and its content on the DCSS 
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• Step 5 : Remove oxydes present at the surface 

• Step 6: Position the anchor stems and seals 

• Step 7: Put a ceramic fiber seal on top of the container and anchor stems 

• Step 8: Install the large ceramic fiber seal on top of the container 
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• Step 9: Install the chili plate and lock in place (clamp) 

• Step 10: Connect thermocouples 

• Step 11: Start experiment and wait until the container rotates 90 degree 

(temperature criteria) 

• Step 12: Wait until windows slides up. Install and align strain gauge probes 

(automatic start when load is applied) 

• Step 13: Stop experiment and let water running during 1 hour 
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Appendix V. Solid fraction from thermal analysis results 

Table VI.1: Solid fraction results (AI-Si binary alloys) 

fs AI-0.5Si 
0.000 657.21 
0.126 657.12 
0.242 657.12 
0.354 657.09 
0.461 657.07 
0.563 657.03 
0.663 656.88 
0.752 655.52 
0.818 649.02 
0.884 642.99 
0.934 634.12 
0.954 627.08 
0.964 621.14 
0.974 611.90 
0.978 604.70 
0.983 596.01 
0.988 591.22 
0.989 587.97 
0.990 571.65 
0.992 569.76 
1.000 563.18 

Table VI.2: Summary of coherency temperature 

Alloy system 
AI-0.5wt%Si 
AI-1.5wt%Si 
AI-2.5wt%Si 

Temperature (oC) 
647.5 
640.2 
637.2 

Alloy system Temperature CC) dT at Coherency 
AI-0.5wt%Si 647.5 9 
AI-1.5wt%Si 640.2 10.5 
AI-2.5wt%Si 637.2 8 
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Figure V.1: Cooling curves and coherency point for AI-O.5Si (âT peak) 
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Cooling Curve and Analysis 
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Figure V.3: Cooling curves and coherency point for AI-2.5Si (âT peak) 
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Figure V.5: Cooling curves with first derivative and zero curve (AI-1.5Si) 
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Appendix VI. Thermo-physical properties of AI-Si alloys 

The main thermo-physical properties of the AI-Si alloys, such as the density, the heat 

capacity, and the thermal conductivity, were calculated, or determined using numerical 

approaches from ThermoCalc. The values obtained were used in the ProCASTTM model 

and other theoretical models developed during this work, Le., mechanical and the 

microstructure (cellular automata) models. 

Density vs. Temperature 
AI-Si Alloys 
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Figure VI.1: Calculated density variation with temperature 

200 



Heat Capacity vs. Temperature 
AI-Si Alloys 
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Figure VI.2: Calculated heat capacity versus temperature 
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Figure VI.3: Calculated conductivity versus temperature 
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Table VII.1: Main data and equation used to determine the physical properties 

Density 
pAl = 2.7568-3.935 x 10" • T g1cm3 (T> Tm) 

ps; = 2.53 g/cm3 

pAI_""d = 2.7 g1cm3 

p = MN M=D<i*Mi 

V=I;xi"Vi 

Vi=MVpi 

Ms, 28.086 g/mole 

g1mole 

P = (I;xi*MiY(D<i'(Mi/pi)) 

26.98 

Molar Fraction 
x" = [M.,' Co ]/[M.,' Co + Ms,'(l-Co)] 

lIoJ = 1 -Xs, 

Heat Capacity (lIquid) 
Cp "qu,de = a + b'T - c'T 2 

a=lIoJ'(a"~1q + Xs,'(as;~1q 

b=lIoJ'(b"~1q + Xs,'(bs;~1q 

c=lIoJ'(c"~1q + Xs,'(cs'~'q 

AI 

Si 

0.004804051 

0.995195949 

a=29.3 Jlmole/K 

a=25.61 Jlmole/K 

b=0 

b=0 

c=O 

c=O 

cp=CplM Jlg/K cp as a runction of mass imply di\iding Cp molar by the molecular mass M 

J/m.K 

Heat Capacity (solid) 
Cp"" ... = a + b'T _d'T-2 

(a.,l. = 20,7 

(as,)s = 23,85 
a=lIoJ'(a.,}.., + Xs,'(as;}.., 

(b.,)s = 1,238 E-2 (CA')S = 0 

(bs;l. = 4,3E-3 (cs,)s = 0 

b=lIoJ'(b.,}.., + Xs,'(bs,}.., 

c=lIoJ'(c.,}.., + Xs,'(cs;}.., 

d=lIoJ'(d.,}.., + Xs,'(ds;}.., 

Thermal Conductlvity 
k=Ào TOI = 1.0 T(X.,.(a.,) + Xs,'(aS'~Iq) 

(a.,~1q = (10.7+0.0145"1)"' IJÛhm-'cm-' 

(as,~", = 0.0123 IJÛhm-lcm-l 

(a.,}..IId = (10.7 +0.0145'1)"' IJÛhm-'cm-' 

(as;}..,'d = 0.0123 IJÛhm-lcm-l 

k=V AI·kA/ + VSi*kSi 

k., = 2.34 

kSi = 1.48 

A1-Si phase diagram data 

W/cm/K 

W/cm/K 

(d.,)s = 0 

(ds,)s = 4,44E5 

Uquidus slope: (577-660.5)/12.6 = 
Solute partition coeff.: 1.6112.6 = 

Diffusi\ity : 

-6.626984127 'CIwt% 
0.126984127 

3.00E-09 m2/s 
CE (12.6%Si@577·C) 0.126 

Co (initial concentration) 0.005 

Temperature data 

Tm pure AI = 

Tm pure Si = 

li"ulduo AI-O.5wt%Si = 

Tsolidus AI-O.5wt%5i = 

933.65 K 

1687.15 K 

930.24 K 

838.33:K 

660.5 ·c 
1414'C 

657. 09 ,·C 

563.18·C 
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Appendix VII. Cellular Automaton Program algorithm 

Program Aigorithm for modeling microstructure by 

"CELLULAR AUTOMATA" 

by 

Joseph Langlais 

Appendices 

Simulation of surface and sub-surface microstructure 

Language: FORTRAN 
USE DFLlB 

1 nteger: maxwidth, maxheigth, maxcond itions 
Integer: i,j,k,p,asperities,surface,rnd48 
Real: a,solrange,diffusion,Gibbs,cs,cl,pi 
Real: L, ~T,t,Lt,undercooling 
Real: nmax,S ~Ts,S ~Tn,B ~Ts,B ~Tn,nucleaterate,nuclei,nucleateprob,kdistr 
Real: pdistr,omega,vel,rnd 
Real: endgrowth, solidification_complete 
Real: germe,divis,rand 
Real: allocatable:: matrix(:,:,:) 

a=1 
solrange=94 

diffusion=0.000000003 
Gibbs=0.00000009 
cs=0.5 

cI=0.065 

pi=3.14159 
maxwidth=501 
maxheigth=50 1 
maxconditions=5 

Constant definition 

a: growth constant formula 
solrange: solidification range for AI-Si alloys 
(AI0.5Si: 657-563= 94°C; AI1.5Si: 652-562.6= 89.4°C; and 
AI2.5Si: 646.6-559.7= 86.9°C) 
diffusion coefficient (m2ls) 
Gibbs Thompson coefficient 
solid concentration (AI-Si Alloys: 0.5 wt%Si, 1.5 wt% Si, 
and 2.5 wt% Si) 
cl: liquid concentration (AI-Si Alloys: 0.065 wt%Si, 0.195 
wt%Si, and 0.325 wt%Si) 

maxwidth: number of X-cell in mesh 
maxheigth: number of Y-cell in mesh 
maxconditions: number of information per cell 

allocate (matrix(maxheigth+1 ,maxwidth+1 ,5» 
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cali SEED(RND$TIMESEED) 
cali RANDOM(rand) 
germe=rand 

Variables definition 

L: cell width/step of the matrix in meter, m 
~ T: temperature extracted every dt 
matrix: matrix defining the meshing 
t: time interval for one loop 
Lt: growth length for interval t 
undercooling: total undercooling at time t 
i,j,k,p: loop counters 
asperities: spacing between surface asperities 

Appendices 

S ~Ts: standard deviation related to ~T for surface nucleation (solutal undercooling) 
S ~ Tn: undercooling corresponding to the highest surface nucleating rate 
B ~ Ts: standard deviation related to ~ T for bulk nucleation (solutal undercooling) 
B ~ Tn: undercooling corresponding to the highest bulk nucleating rate 
nucleaterate: surface nucleation rate 
nuclei: number of nuclei generated at a given undercooling 
nucleateprob: nucleation probability at each cell 
surface: number of surface cell 
kdistr: liquid concentration/solid concentration (CliCs) 
pdistr: 1-kdistr 
omega: growth law parameter 
vel: growth rate (rn/sec) 
rnd= random 
rnd48= random(48) 
endgrowth: growth step finish 
solidification_complete: solidification is completed 
input: file containing nucleation and growth law values 
output: file containing the matrix results 

Initialisation Procedure (Initial state resetingJ 

t=O. 
kdistr=O. 
pdistr=O. 
omega=O. 
vel=O. 
i=O 
j=O 
k=O 
p=O 
nmax=O. 
surface=O 
undercooling=O. 
Lt=o. 
nucleaterate=O. 
nuclei=O. 
nucleateprob=O. 
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solidification _ complete=O. 
do i=1 ,maxheigth 
do j=1 ,maxwidth 
do k=1 ,maxconditions 
matrix(i,j,k)=O. 
enddo 
enddo 
enddo 

End of Initialisation_Procedure 

File Reading Procedure 

open (1,file='input.txt',status='old') 
Read (1,*)t 
Read (1,*)L 
Read (1,*) Ll T 
Read (1,*)8 LlTn 
Read (1,*)8 LlTs 
Read (1,*)BLlTn 
Read (1 ,*)B LlTs 
Read (1, *)asperities 

End of file_reading procedure 

solidification_complete=O. 
Beginning of Do While loop 
do while(solidification_complete.eq.O.) 

Surface Nucleation Procedure 

Appendices 

nmax=(float(maxwidth)*L)/(asperities/1.0e6) ........... Total number of asperities = number 
of nuclei 

nucleaterate=«nmax/(sqrt(2.*pi)*8 LlTs»*exp«(undercooling-8 LlTn)**2.)/(-
2.*(8 LlTs)**2.))) 
nuclei=nucleaterate* Ll T 
nucleateprob=nuclei/maxwidth ........................... .. Number of nue/ei generated during 

the iteration 
write(*,*) '8',nucleateprob,surface 
do j=1 ,maxwidth 
if (matrix(1 ,j, 1 ).eq.O.)then 
cali gen(germe,divis) 
if (divis.LE.nucleateprob)then ... '" .... " '" ...... '" ... ... Random nucleation probability 
cali gen(germe,divis) 
rnd48=int( divis*48.) 
matrix( 1 ,j, 1 )= «float( rnd48) *90./48. )-45. ) 
surface=surface+1 .......... " ...... '" ..................... .. Nucleation assign a crystal/ographic 

orientation of -45 0 to +45 0 in 48 
different/possible orientations 

matrix(1 ,j,4)=1 ....................................... '" ...... .. No growth during the first interval 
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matrix(1 ,j,5)=L *(cos(matrix(1 ,j, 1 )*pi/180.)+abs(sin(matrix(1 ,j, 1 )*pi/180.))) 
endif 
endif 
enddo 

End of Surface_Nue/eation Procedure 

Bulk Nucleation Procedure 

nmax=(float(maxwidth )*float( maxheigth) )-float( surface) 
nucleaterate=«nmax/(sqrt(2. *pi)*B liTs »*exp«(undercooling-B li Tn)**2.)/(-
2.*(B liTs)**2.))) 

Appendices 

nuclei=nucleaterate* liT ........................... Number of nuclei generated during this time 
interval 

nucleateprob=nuclei/nmax 
write(*, *) 'B' ,nucleateprob,surface 
do i=1 ,maxheigth 
do j=1 ,maxwidth 
if «matrix(i,j,2).EQ.0.).and.(matrix(i,j, 1 ).EQ.O.» then 
cali gen(germe,divis) 
if (divis.LE.nucleateprob) then .................... rnd 
cali sleepqq(1 0) 
cali SEED(RND$TIMESEED) 
cali RANDOM(rand) 
divis=rand 
rnd48=int( divis*48.) 
matrix(i,j, 1 )=(float(rnd48)*90./48.)-45. 
surface=surface+1 .................................. Nucleation assign a crystallographic 

orientation of -45 0 to +45 0 in 48 
different/possible orientations 

matrix(i,j,4)=1 ....................................... .. No growth during the first interval 
matrix(i,j,5)=L *(cos(matrix(i,j, 1 )*pi/180.)+abs(sin(matrix(i,j, 1 )*pi/180.») 

Compute the length to surround the next cell 

endif 
endif 
enddo 
enddo 

End of Bulk_Nucleation Procedure 

Growth Procedure 

kdistr=cs/cl 
pdistr=1.-kdistr 
omega=undercooling/«undercooling*pdistr)+(solrange*kdistr» 
vel=(diffusion*(omega)**2.)/(Gibbs*(pi**2.»*«solrange*kdistr)/(1-(omega*pdistr»)!!! 
Growth rate in mIs 
Lt=vel*t. ................................................ Growth in m 
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do i= 1 ,maxheigth ................................... . Incrementalloop for growth 
do j=1 ,maxwidth 
if«matrix(i,j, 1 ).NE.O.).and.(matrix(i,j,4).EQ.O.» then 

Check if cell is solid and growth not computed 

matrix(i,j,3)=matrix(i,j,3)+Lt ......................... Increment growth of grain size by L(t) 
endif 
enddo 
enddo 
endgrowth=O. 
Beginning Do while loop 
do While (endgrowth.EQ.O.) 
endgrowth=1. 
do i=1 ,maxheigth ........................... ....... Growth loop 
do j=1 ,maxwidth 
if«matrix(i,j,1 ).NE.O.).and.(matrix(i,j,4).EQ.O.» then 
endgrowth=O ........................................ Check if cell is solid and growth not computed 
matrix(i,j,4)=1 .................................... ... Indicate that growth is done 
if (matrix(i,j,3).GE.matrix(i,j,5» then 

Loop to capture neibourg cell at assign orientation 

if(Ü+1.LE.maxwidth).and.(matrix(i,j+1,1 ).EQ.O.» then 
matrix(i,j+1,1 )=matrix(i,j, 1) 
matrix(i,j+1,5)=matrix(i,j,5) 
matrix(i,j+1,3)=matrix(i,j,3)-matrix(i,j,5) 
surface=surface+ 1 
endif 

Assign remaining growth length to the new cells 

if(Ü-1.GE.1.).and. (matrix(i,j-1, 1 ).EQ.O.» then 
matrix(i ,j-1 ,1 )=matrix(i,j, 1 ) 
matrix(i,j-1,5)=matrix(i,j,5) 
matrix( i ,j-1 ,3)= matrix( i,j, 3 )-matrix( i,j, 5) 
surface=surface+1 
endif 

Assign remaining growth length to the new cells 

if((i+1.LE.maxheigth).and.(matrix(i+1 ,j, 1 ).EQ.O.» then 
matrix(i+1 ,j, 1 )=matrix(i,j, 1) 
matrix(i+1,j,5)=matrix(i,j,5) 
matrix(i+ 1 ,j,3)= matrix(i,j, 3 )-matrix(i,j, 5) 
surface=surface+1 
endif 

Assign remaining growth length to the new cells 

if((i-1.GE.1 ).and.(matrix(i-1,j, 1 ).EQ.O.» then 
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matrix(i-1 ,j, 1 )=matrix(i,j, 1) 
matrix(i-1,j,5)=matrix(i,j,5) 
matrix(i-1,j,3)=matrix(i,j,3)-matrix(i,j,5) 
surface=surface+1 
endif 

Assign remaining growth length to the new cells 

endif 
endif 
enddo 
enddo 

End of Do while loop 

enddo 

Write (*,*) 'Growth rate =', vel 
Write(*,*) 'Growth (m)',Lt 

Validation Initialisation Procedure 

solidification_complete=1. 
do i=1 ,maxheigth 
do j=1 ,maxwidth 
matrix(i,j,4)=O. 

Re-initialise growth indicator for the next step 

if(matrix(i,j, 1 ).EQ.O.)then 
solidification_ complete=O. 

Cellliquid indicate that solidification is not completed 

endif 
enddo 
enddo 

End of Va'idation_'nitialisation Procedure 

undercooling=undercooling+ L\ T 
Write (*,*) 'Undercooling =', undercooling 

End of Do While loop 
enddo 

File Writing Procedure 

open(2, file='output. txt' ,status='unknown') 
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do j=1 ,maxwidth 
write(2, 100) (/ (matrix(i,j, 1),i=1 ,maxheigth) /) .................. .. Output microstructure matrix 
100 format (501 (F7.2,','» 
write(2, *)' , 
enddo 

End of File_Writing procedure 

Write (*,*) , 
Write (*,*) 'End of solidification' 
end 

SUBROUTINE gen(germe,divis) .................................. Subroutine for random number 
real germe, divis 
germe=dmod(16807.dO*germe,2147483647.dO) 
divis=germe/2147483647.dO 
end 
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