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ABSTRACT 

Soybean (Glycine max (L.) Merr.) is one the major crops produced worldwide. However, soybean is 

susceptible to many diseases. Sclerotinia stem rot (SSR) disease caused by Sclerotinia 

sclerotiorum (Lib.) de Bary is considered one of the most important fungal diseases of soybean. It 

can be controlled by chemicals (e.g. fungicides), by breeding cultivars with disease resistance and 

by cultural control (e.g. increasing the width between rows, reducing plant populations). A 

promising and complementary method of controlling SSR disease in the field is the application of 

biological control agents. Biological control agents introduced in a soil environment will interact with 

other soil food web organisms, as do the pathogenic organism and infected plants, which may 

change the genetic and functional diversity in soil microbial communities. Profiling these changes 

may lead to an improved understanding of the interactions between these players (biological 

control agents, pathogens, soil biota and plants) in the biological control phenomenom, permiting 

us to exploit naturally-occurring ecological relationships and develop more sustainable approaches 

to control soybean diseases. Fatty acid biomarkers analysis was used to profile microbial 

communities in soils. Two laboratory studies were conducted to evaluate the methods used for 

extraction and profiling the fatty acid biomarkers from soil samples with a range of soil properties 

(clay content, organic matter content). The first study investigated the best solvent mixture for 

recovering fatty acid biomarkers from soil using an automated pressurized solvent extraction (PSE) 

system. Solvent mixtures containing chloroform and methanol were more efficient at extracting fatty 

acids from agricultural soils than hexane:2-propanol and acetone. The second study presented an 

exploratory pyrolysis-mass spectrometry technique to rapidly fingerprint soil lipids extracted from 

different agroecosystems. Pyrolysis-mass spectrometry discriminated among soils and crop 

production systems in the sa me way as the fatty acid profiling. 1 also report on the efficicacy of 

biological control agents to control Sclerotinia stem rot disease in soybean. A two-year study was 

conducted in soybean fields under conventional or no tillage to determine whether Trichoderrna 

virens (SoiiGard™) and arbuscular mycorrhizal fungi (a mixture of G/omus intraradices and G. 

mosseae), used alone or in combination, could reduce sclerotinia stem rot (SSR) disease 

incidence. Generally, SSR disease indicators, as weil as the soybean yield, were not affected 

significantly by the biological control treatments. 1 then studied whether changes in microbial 

community composition were related to the inoculation of the biological control agents and the 



disease incidence in soybean fields. Inoculation of biological control agents changes the expression 

of many soil fatty acids during both years of the trial. Also, in the plots with severely diseased 

plants, fatty acids biomarkers of gram positive and actinomycetes bacteria were significantly 

greater than in plots with healthy plants. 1 conclude that further improvement in laboratory 

techniques and procedures will permit researchers to efficiently extract and characterize soillipids, 

providing new insight into soil organic matter dynamics and soil microbial ecology. Further study will 

be needed to verity the efficacy and optimize the application method, dose and timing of biocontrol 

agents to provide protection against SSR disease in soybean fields. 
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RESUME 

Le soya (Glycine max (L.) Merr.) est une des cultures les plus importantes dans le monde entier. 

Cependant, le soya est sensible à beaucoup de maladies. Le pourridié sclérotique causé par 

Sclerotinia sclerotiorum (Lib.) de Bary est consideré comme une des maladies fongiques les plus 

importantes du soya. Cette maladie peut être contrôlée par des produits chimiques (par exemple, 

des fongicides), par des croisements de cultivars résistants à la maladie et par des pratiques 

culturales (par exemple, en augmentant la largeur entre les rangs, en réduisant la densité des 

semis). L'utilisation d'agents de lutte biologique est une méthode prometteuse et complémentaire à 

ces moyens pour contrôler le pourridié sclérotique. Les agents de lutte biologique introduits dans 

un sol interagiront avec d'autres organismes du sol, de même qu'avec l'agent pathogène et les 

plantes infectées. Cette interaction pourrait changer la diversité génétique et fonctionnelle des 

communautés microbiennes du sol. La caractérisation de ces changements pourrait amener à 

comprendre les interactions entre les différents éléments impliqués (les agents de lutte biologique, 

les agents pathogènes, les composants vivants du sol et les plantes) dans le phénomène du 

contrôle biologique. Cette caractérisation permet d'exploiter les relations écologiques naturelles et 

de développer des approches plus durables pour contrôler cette maladie du soya. L'analyse des 

acides gras biomarqueurs a été employée pour caractériser les communautés microbiennes dans 

les sols. Dans un premier temps, deux études de laboratoire ont été entreprises pour évaluer les 

méthodes employées pour l'extraction et la caractérisation des acides gras biomarqueurs à partir 

d'échantillons de sol présentant une gamme de propriétés spécifiques (par exemple, quantités 

d'argile et de matière organique). La première étude évaluait le meilleur solvant organique pour 

extraire les acides gras biomarqueurs du sol au moyen d'un extracteur à solvant pressurisé. Les 

mélanges de solvants contenant le chloroforme et le méthanol étaient plus efficaces pour extraire 

les acides gras à partir des sols agricoles que les solvants organiques tels que l'hexane:2-propanol 

et l'acétone. La deuxiéme étude présentait une technique exploratoire de pyrolyse couplée à la 

spectrométrie de masse qui permet de prendre plus rapidement les empreintes lipidiques de sols 

provenant de différents agroécosystèmes. La pyrolyse couplée à la spectrométrie de masse permet 

de différencier les sols et les systèmes de production de culture de la même façon qu'en utilisant la 

technique de caractérisation par les acides gras biomarqueurs. Je présente aussi une étude sur 

l'efficacité des agents de lutte biologique contre le pourridié sclérotique du soya. Dans un deuxième 
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temps, une étude de deux ans a été effectuée dans les champs de soya en labour conventionnel 

ou en semis direct afin de déterminer si le Trichoderma virens (SoiiGard™) et les champignons 

mycorhiziens à arbuscules (un mélange de G/omus intraradices et G. mosseae), utilisés seuls ou 

combinés ensemble, pourraient réduire l'incidence du pourridié sclérotique du soya. Généralement, 

les indicateurs du pourridié sclérotique du soya, de même que le rendement en graines de soya, 

n'ont pas été significativement affectés par les traitements de lutte biologique. Par la suite, j'ai 

étudié si des changements dans la composition des communautés microbiennes étaient reliés à 

l'inoculation des agents de contrôle biologique et à l'incidence de maladie dans les champs de 

soya. L'inoculation d'agents de lutte biologique changeait les niveaux de plusieurs types d'acides 

gras durant les deux années de l'expérience. De plus, dans les parcelles très affectées par la 

maladie, les niveaux des acides gras biomarqueurs des bactéries Gram+ et d'actinomycètes 

étaient significativement plus élevés que dans les parcelles avec des plantes saines. En 

conclusion, je pense que des améliorations dans les techniques de laboratoire et les 

méthodologies vont permettre aux chercheurs d'extraire et de caractériser plus efficacement les 

lipides dans les sols, ouvrant de nouvelles perspectives dans l'étude de la dynamique de la matière 

organique et de l'écologie microbienne du sol. D'autres études seront nécessaires afin de vérifier 

l'efficacité et d'optimiser la méthode, le dosage et le temps d'inoculation des agents de lutte 

biologique pour pouvoir protéger les champs de soya contre le pourridié sclérotique. 
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PREFACE 

This Ph.D. thesis is composed of five chapters. The first chapter is a review of the literature 

regarding the ecology of the soybean disease Sclerotinia stem rot, its biological control by soil 

microorganisms, and fatty acid biomarker analysis as a method to evaluate the dynamics of 

indigenous and introduced microorganisms in soil systems. Chapters 2 to 5 will be submitted for 

publication in scientific journals. Since fatty acid profiling is widely used in soil science for 

characterizing organic matter and microbial communities, we performed two laboratory experiments 

to verity the utility of this technique for soils with a broad range of characteristics (clay content, 

organic matter content) known to affect microbial survival and activity. Chapter 2 investigates the 

best solvent mixture for recovering fatty acid biomarkers from soil using an automated pressurized 

solvent extraction system. This chapter was submitted to the Soil Science Society of America 

Journal (R. Jeannotte, C. Hamel, S. Jabaji-Hare and J.K. Whalen). Chapter 3 presents a study 

using pyrolysis mass spectrometry to rapidly fingerprint soil lipids as a complementary tool to gas 

chromatography-flame ionization detection in the characterization of soillipids and will be submitted 

to the Journal of Analytical and Applied Pyrolysis (R. Jeannotte, C. Hamel, S. Jabaji-Hare and J.K. 

Whalen). Chapters 4 and 5 are based on a two year field trial. This field trial was to test biological 

agents in their capacity to control Sclerotinia stem rot disease in soybean crops. Chapter 4 

presents the results of the assessment of BCAs on crop characteristics and disease incidence. This 

chapter will be submitted for publication in the journal Phytoprotection (R. Jeannotte, C. Hamel, R. 

Hogue, J.K. Whalen and S. Jabaji-Hare). Chapter 5 investigates the microbial changes related to 

the inoculation of the biological control agents and the disease in soybean fields. This chapter will 

be submitted for publication in the journal Plant & Soil (R. Jeannotte, C. Hamel, R. Hogue, J.K. 

Whalen and S. Jabaji-Hare). A comprehensive conclusion reviews the major aspects of this 

research and suggests areas for further investigations. Finally, the contributions of this Ph.D. thesis 

to science are summarized and explicited after the general conclusions of the thesis . 

v 



CONTRIBUTION OF AUTHORS 

ln this thesis, the work done is described using the first person singular form "1" rather than the first 

person plural form "we" because this is the convention in thesis writing, but the reader should be 

aware that the work was a team effort. Ali of the publications coming from the thesis will have 

multiple authors, to recognize the valuable contributions of team members to the work. 

The manuscripts included in this thesis as Chapters 2 to 5 will be submitled for publication in 

scientific joumals; the candidate and his supervisors, Dr. Joann K. Whalen, Dr. Suha Jabaji-Hare 

and Dr. Chantal Hamel, will appear as co-authors on the four papers. Dr. Richard Hogue, a co­

investigator in the field project, contributed in the field work, in doing specifie laboratory analyses 

(detection by PCR analysis of mycorrhizal fungi and Trichoderma spp. in soil and root samples as 

weil as the evaluation of the percentage root colonization by mycorrhizal fungi) that will be included 

in chapters 4 and 5, as weil as in editorial revisions of the manuscripts. The candidate was 

responsible of conducting the research, analyzing the data and preparing the manuscripts. Dr. 

Su ha Jabaji-Hare, Dr. Chantal Hamel, and Dr. Joann K. Whalen provided general guidance and 

editorial revisions throughout the entire process. 

My specifie contributions to each chapter were as follows: For chapters 2 and 3, 1 selected 

experimental protocols, designed the experiments, analyzed the results and wrote the manuscripts. 

For chapters 4 and 5, 1 contributed to the development of the field experiment (experimental 

design), was responsible for the field work and laboratory analyses, performed the statistical 

analyses and prepared the manuscripts. 

VI 



ACKNOWLEDGEMENTS 

My first acknowledgement goes to God. He is the origin and the foundation of my life. His Presence 

sustains me and helps me through my life and 1 acknowledge Him particularly for giving me the 

opportunity to achieve this work and to meet ail the nice people 1 met during this journey. 

Doing a Ph.D. is a complete human experience that brings you knowledge, expertise, and humility. 

Moreover, it helps people around you develop the virtue of patience. 

1 would like to thank very much Dr. Joann K. Whalen who provided me guidance and assistance 

throughout the completion of this thesis. 1 appreciated a lot her patience and always positive 

attitude toward my work. 

1 would like to thank my co-advisor, Dr. Suha Jabaji-Hare, who allowed me to work on this project, 

for her patience and understanding. Also, 1 would like to thank my first and former advisor, Dr. 

Chantal Hamel, who supported my entry into the world of soil science and for her ever supporting 

attitude. 

1 would like to thank two co-investigators on this research project, Dr. Marc St-Arnaud for our fruitful 

discussions at the beginning of the research as weil as Dr. Richard Hogue for his help and 

participation in the field sampling, specific laboratory analysis and our fertile discussions on the 

project and research in general. 

1 would like to thank Ors. Bruce M. Shore, Brian T. Driscoll, Ajjamada C. Kushalappa and Lyle G. 

Whyte for accepting to participate in my thesis evaluation and defense as weil as for their 

constructive suggestions in order to improve my work. 

1 would like to acknowledge the FCAR-IRDA for funding this project as weil as the FCAR, QSPP 

and McGili University for student scholarships. 

VII 



1 would like to thank Dr. Henri Dinel and Dr. Morris Schnitzer, whom 1 had the chance to meet 

during the course of my Ph.D. studies. They stimulated my interest in studying the molecules under 

our feet and especially the lipids and the organic matter. They will remain inspiring models of 

researchers. 

1 would like to thank Dr. Anne Vanasse and Antonin Martin as weil as the students that worked with 

them for ail the work they accomplished in the fields and ail the help they pravided me for doing this 

research. 

1 would like to acknowledge ail the students who helped me in the fields as weil as in the lab. 1 

thank especially Martin Soucy, Xilan Liu, Jennifer Reynolds, Marie-Eve Lepine and many others. 

For those 1 forgot to cite, please accept my apology and my appreciation of the work you did for me. 

1 appreciate ail the quality of their work and their professionalism. A special thank to Helene 

Lalande, for her invaluable expertise and help in the lab. 

1 would like to thank my colleagues fram Dr. Hamel and Dr. Whalen's laboratories, especially Aiguo 

Liu, Sabine Caniquitte, David W. Sommerville and ail the others, for their help, stimulating 

discussions, and camaraderie. A special thank to Luis Sampedro, postdoctoral researcher in Dr. 

Whalen's lab, for his help, our always interesting discussions, and for his friendship. 

1 would like to thank my fellow students and ail the personnel of the Natural Resource Sciences 

Department for their support. 

1 would thank my family for the unconditional support. Finally, 1 would like to thank and 

acknowledge the support and love of my wife, Myriam. Without her, 1 could not go through this 

journey. 1 acknowledge her patience, support, understanding and inspiration. 

For ail the persans that contribute ta deepen my understanding of sail and my everlasting desire to 

make it healthier. 

VIII 



· TABLE OF CONTENTS 

ABSTRACT ........................................................................................................ . 
RÉSUMÉ........................................................................................................... iii 
PREFACE......... .............................. ............... ........................... ......................... v 
CONTRIBUTION OF AUTHORS....................................... ...... ...... ... ......... ............. vi 
ACKNOWLEDGEMENTS........................... .............................. ............................ vii 
TABLE OF CONTENTS......... ........................................................................ ....... ix 
llST OF TABLES......... ........................... ............... ........................... ................... xii 
llST OF FIGURES......... ........................... ......... ...... ........................... ......... ....... xiv 
LIST OF APPENDiCES..................... .......................................... ......................... xvi 
LIST OF ABBREVIATIONS........................ .............................. ............ ......... ........ xvii 
INTRODUCTION......... ................................. ............... ......... ......... ....... ............. 1 
1. LlTERATURE REVIEW............................................................................ 3 
1.1 Soil biodiversity in a sustainable agriculture perspective.................. ...... .......... 3 
1.2 Functions of soil communities............................................................... .... 3 
1.3 Soil biota as a source of pathogens - case of Sclerotinia sclerotiorum, 

causal agent of Sclerotinia stem rot, and its control in soil-plant systems... . .. .. . .. 4 
1.4 Trichoderma virens and mycorrhizal fungi as candidates biological control 7 

of Sclerotinia stem rot disease ................................................................. . 
1.4.1 Interactions of Trichoderma virens with soil-bome plant pathogens............ ....... 7 
1.4.2 Interactions of mycorrhizal fungi with soil-bome plant pathogens...................... 9 
1.5 Measuring soil microbial diversity...................................................... ......... 11 
1.6 Signature lipid biomarkers: methods and applications in agroecosystems......... 12 
1.6.1 Soillipids ....................................................... , ............ , ... ... ... ......... ........ 12 
1.6.2 Methods for extracting lipids..................................................................... 14 
1.6.3 Analysis of soillipids ............. ,. ... ...... ... ... ... ... ... ...... ... ... ... ... .. . ... ... ...... ... .... 15 
1.6.4 Use of lipid analysis in soil microbial ecology................... ............................. 18 
1.7 General objectives and hypotheses............................................................ 21 
2. COMPARISON OF SOlVENT MIXTURES FOR PRESSURIZED SOlVENT 

EXTRACTION OF SOll FATTY ACID BIOMARKERS.................................. 24 
2.1 Abstract.. . .. . .. . .. . .. . .. .. .. .. . .. .. .. .. . .. . .. . .. . .. . .. . .. . .. . .. . . .. .. . .. . .. . .. . .. . .. . . .. .. . .. . .. . .. . ... 25 
2.2 Introduction......... ......... ............ ............................................................. 26 
2.3 Materials and methods............... ............................................................. 29 
2.3.1 Soil collection and handling...... .................. ...... ........................................ 29 
2.3.2 Reagents and glassware........................ ...... ......... ............... ... ......... ........ 29 
2.3.3 Pressurized solvent extractor (PSE) system..................... ............................ 29 
2.3.4 Quantification and identification of TL-FAMEs .................... , ............. ,. ... .... .... 30 
2.3.5 TL-FAME nomenclature, chemical and biological groups................................ 31 
2.3.6 Statistical analysis......... ......................................................................... 31 
2.4 Results................................................................................................. 32 
2.4.1 Chemical classes ofTL-FAMEs in soillipid extracts.............................. ......... 33 
2.4.2 Biological groups ofTL-FAMEs in soillipid extracts....................................... 34 
2.4.3 Classifying soil chemistry and biology with TL-FAME profiles... .................. ...... 35 
2.5 Discussion............... ......... .................................................................... 36 
2.6 Conclusions... .................................... .................. ............... .................. 36 

,- 2.7 Connecting Paragraph.................. ........................................................... 47 

IX 



~. 

3. 

3.1 
3.2 
3.3 
3.3.1 
3.3.2 

3.3.3 
3.3.4 

3.3.5 
3.3.6 
3.4 
3.4.1 
3.4.2 
3.4.3 
3.4.4 
3.5 
3.6 
4. 

-~, 

4.1 
4.2 
4.3 
4.3.1 
4.3.2 
4.3.3 
4.3.4 
4.3.5 
4.3.6 
4.3.7 
4.3.8 
4.3.9 
4.4 
4.4.1 
4.4.2 
4.4.3 
4.4.4 
4.4.5 
4.5 
4.6 

PYROlYSIS·MASS SPECTROMETRY AND GAS CHROMATOGRAPHY· 
FLAME IONIZATION DETECTION AS COMPlEMENTARY TOOlS IN THE 
CHARACTERIZA TION OF SOll LlPIDS.................. ...... ............... ............. 48 
Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 49 
Introduction .......................... , ......................... , .......................... ,. ... ... .... 50 
Materials and methods............................................................................ 52 
Soil collection and handling............ ............................................. ............. 52 
Preparation of total lipid extracts using a pressurized solvent extraction 
procedure................................................................................................................ 52 
Analysis oftotallipid extracts using the PyMAB-TOF-MS system..................... 53 
Preparation of the ester-linked fatty acid methyl esters (EL-
FAMEs)................................................................................................ 53 
Analysis of EL-FAMEs by GC-FID............ ............... ............... ...... .............. 54 
Statistical analysis............... .................. ............... ............... ... ................ 54 
Results and discussion................................................ ...... ... ... ............ .... 55 
Lipid fingerprinting by Py-MAB-TOF-MS...... ......... ............ ............ ............... 56 
Fingerprinting fatty acid biomarkers by Py-MAB-TOF·MS...... ...... ...... ...... ........ 57 
Fatty acid profiling by GC-FID...... ...... ...... ...... ...... ...... ............ ............ ....... 58 
Complementarity of Py-MAB-TOF-MS and GC-FID in studying soillipids... ........ 59 
Conclusions... .................. ..................................................................... 61 
Connecting paragraph...... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...... ... ... ... ... ..... 72 
FIELD ASSESSMENT OF TR/CHODERMA VIRENS (SOllGARDTM) AND 
MYCORRHlZAl FUNGI AS POTENTIAl BIOCONTROl AGENTS AGAINST 
SClEROTINIA STEM ROT IN SOYBEAN......... ............ .............................. 73 
Abstract.. . .. . .. . .. .. .. .. . .. . .. . . .. .. . .. . . .. .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. .. . . .. . .. . . .. .. . .. . .. . .. . 74 
Introduction........................................................................................... 74 
Materials and Methods............................................................................ 77 
Site description .................... , ............. ,. ...... ...... ... ... ... ... ... ... ... ... ...... ... ..... 77 
Experimental design............ .................. ............... ............... ... ... .............. 78 
S. sclerotiorum apothecia and SSR disease seve rit y index (SSR-DSI)............... 79 
Plant biomass and root mycorrhizal colonization...... ...... ...... ...... ............ ....... 79 
DNA extraction............ ...................................................................... ..... 80 
Detection of G. intraradices and G. mosseae in soil and root samples........... ..... 81 
Detection of Trichoderma virens in soil total DNA extracts by nested PCR.......... 81 
Plant populations and soybean yield............ ...... ...... ...... ...... ...... ...... ...... ..... 82 
Statistical analysis............... .................. ............... .................. ............ .... 82 
Results and Discussion......... .................................................................. 82 
Levels of infestation by Sclerotinia sclerotiorum ... .. , ......................... ,. ... ........ 83 
Effect of BCAs on SSR disease in Soybean............... ...... ............................ 85 
Detection of G. intraradices and G. mosseae by specifie nested PCR............... 86 
Detection of T. virens by a nested PCR-SSCP analysis.................. ............... 87 
Effects of BCAs on Soybean yield.......................................... ............ ....... 87 
Conclusions ...................................... , ... ... ... ...... ...... ... ... ... ... ... ... ... . .. ... ... 88 
Connecting Paragraph............................................................................. 98 

x 



5. PROFILING OF SOll MICROBIAl COMMUNITIES USING FATIY ACID 99 
ANAL YSIS IN A SOYBEAN AGROECOSYSTEM INFESTED WITH 
SClEROTINIA STEM ROT DISEASE ......... .............................................. . 

5.1 Abstract....................................... ........................ ......... ..................... ... 100 
5.2 Introduction........................................................................................... 100 
5.3 Materials and Methods..................... ..................... ............ ............... ....... 102 
5.3.1 Soil collection and handling...................................................................... 103 
5.3.2 Preparation of the ester-linked fatty acid methyl esters (EL-FAMEs)............... ... 103 
5.3.3 Analysis of EL-FAMEs by GC-FID ....................... , ......................... ,. ... ........ 103 
5.3.4 Statistical analysis ........................................... , ............ , ... ...... ... ...... ....... 105 
5.4 Results and discussion ..................................... , ............ , ... ... ... ... ...... ... .... 105 
5.4.1 Selection of the site...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 105 
5.4.2 Effect of the inoculation of Trichoderma virens and mycorrhizal fungi as potential 

biocontrol agents against Sclerotinia stem rot on microbial communities in soils 
under soybean crop... ...... ... ...... ... ... ... ......... ... ...... ... ...... ............ ...... ...... ... 106 

5.4.3 Relationships between SSR-DSI and fatty acids.................. ......... ......... ........ 108 
5.4.4 Concentrations of fatty acid chemical classes and biomarker groups from field A 

in 2000 and 2001.............................. ...... ................................ ............ .... 110 
5.4.5 Conclusions........................................................................ ...... ............ 112 
GENERAL CONClUSiONS........................ ............... ............... ............... ............. 119 
CONTRIBUTIONS TO SCiENCE........................ ............... ...... ...... ... ............... ....... 121 
REFERENCES ... .... , ............ , ............. , ............ , .......................... , ... ... ... . .. ... . .. ... .. . 123 
APPENDiCES......... ...... ......... ............................................. ...... ............ .............. 152 

XI 



LIST OF TABLES 

Table title Page 

CHAPTERTWO 

1. Selected properties of the soils (Typic Endoquents,· 0-15 cm depth) used in the 
experiment. 40 

2. Chemical classes of TL-FAMEs in soillipids extracted with various solvents using a 
PSE system. 41 

3. Biologically relevant groups of TL-FAMEs in soillipids extracted with various solvents 
using a PSE system. 42 

4. Selected loading values from principal components analysis of TL-FAME profiles from 
the dataset of the individual TL-FAMEs identified in soils extracted with various 
solvents. 43 

CHAPTER THREE 

1. Selected properties ofthe soils (Typic Endoquents) used in the experiment. 62 

2 Selected loading values from PCA of molecular fragment masses detected in lipid 
extracts from 6 different soils by Py-MAB-TOF-MS system. 63 

3 Table of fatty acids detected by GC-FID, their masses, formulas as weil as masses of 
their common fragments. 64 

4 Fatty acids with highest loadings from PCA of EL-FAME datasets from 6 different soils 
(From PCA of the EL-FAMEs, only loadings from PC1 are presented here). 66 

CHAPTER FOUR 

1. Location, agricultural practices and soil characteristics (0-15 cm depth) at the 
experimental sites under soybean production used in this study. 90 

2. Monthly averages for precipitation and air temperature at weather stations near the 
study sites during the 2000 and 2001 field seasons (Environment Canada 
Meteorological Service, unpublished data). 91 

3. Incidence of Sclerotinia stem rot disease in soybean fields inoculated with the 
biocontrol agents T. virens (TRI) and a mixture of G. intraradices and G. mosseae 
(AMF), alone or in combination. 92 

XII 



4. Detection of G. intraradices, G. mosseae and T. virens in soybean plots by PCR 
analysis during 2000 and 2001 field seasons. 93 

CHAPTER FIVE 

1. Fatty acids significantly altered by BCA treatments in field A in 2000 and 2001. 113 

2. Fatty acid biomarkers, chemical classes of fatty acids and biological groups 
significantly different in "healthy" vs "diseased" plots. 114 

3. Concentrations (mean ± sem) of fatty acid chemical classes and biomarker groups in 
field A, trial years 2000 and 2001. 115 

.,-----

XIII 



LIST OF FIGURES 

Table title 

CHAPTERTWO 

1. Principal components analysis of the TL-FAME profiles (dataset of the identified 
individual TL-FAMEs in samples) of the soillipids extracted with various solvents 

Page 

using a PSE system. 44 

2. Discriminant analysis of the TL-FAME profiles (dataset of the identified individual 
TL-FAMEs in samples) of the soir lipids extracted with various solvents using a 
PSE system. 46 

CHAPTER THREE 

1. Examples of mass spectra (% Total Ion Count per mass-to-charge ratio, m/z) of 
pyrolyzed totallipid extracts of soils cropped with soybean (soils 1 to 4), corn and 
asparagus obtained by Py-MAB-TOF-MS. 68 

2 Plots of the scores from the PCA of molecular fragment masses detected in lipid 
extracts from 6 different soils by Py-MAB-TOF-MS system. 69 

3 Plots of the scores from the PCA of fatty acid biomarker fragment masses 
detected in lipid extracts from 6 different soils by Py-MAB-TOF-MS system. 70 

4 Plot of the scores (PC1 (80.6%) vs PC2 (3.7%)) from the PCA of the dataset of 
EL-FAMEs from 6 different soils. 71 

CHAPTER FOUR 

1. Number of apothecia (per m2) (mean ± sem) in fields inoculated with the 
biocontrol agents T. virens (TRI) and a mixture of G. intraradices and G. mosseae 
(AMF), alone or in combination, in 2000 (A) and 2001 (B). 94 

2. Relationship between the number of apothecia and the incidence of SSR disease, 
expressed as the Sclerotinia stem rot disease severity index (SSR-DSI), in 
soybean fields during the 2000 and 2001 seasons. 95 

3. AMF root colonization (%) of soybean plants grown in fields inoculated with the 
biocontrol agents T. virens (TRI) and a mixture of G. intraradices and G. mosseae 
(AMF), alone or in combination, in 2000 (A) and 2001 (B). 96 

XIV 



4. Soybean grain yield (kg ha-l, adjusted to 13% humidity) in fields inoculated with 
the biocontrol agents T. virens (TRI) and a mixture of G. intraradices and G. 
mosseae (AMF), alone or in combination, in 2000 and 2001. 97 

CHAPTER FIVE 

1. Box-plot SSR-DSI in fields used to study BeAs in 2000 and 2001. 116 

2. Principal components analysis of the individual EL-FAMEs detected in soil 
samples tram field A in 2000 (Figure 2a) and in 2001 (Figure 2b). 118 

xv 



LIST OF APPENDICES 

Appendix title Page 

A Fatty acids detected by GC-FID using a Simplicity Wax capillary column 153 

B Fatty acids detected by GC-FID using an Ultra-2 column 15r:ï 

C Experimental design in the soybean fields 158 

D list of primers and PCR programs used in the detection of arbuscular mycorrhizal 
fungi (Glomus spp.) 160 

E list of primers and PCR programs used in the detection of Trichoderma spp. 161 

F Detection of Trichoderma virens in soil total DNA extracts by nested PCR 162 

XVI 



ABBREVIATION 

A 
AMF 
ANOVA 
ASE 
BCA 
CM 
CMB 
CT 
CTAB 
CycioFA 
DA 
DF 
DGGE 
DNA 
DS 
ECL 
EDTA 
EL-FAME 
FA 
FAME 
G.i. 
G.m. 
GC 
GC-FID 
GC-MS 
HCI 
HP 
HPLC 
HYFA 
KOH 
LSD 
MAB 
MDE 
MIS 
MixedFA 
MonoUFA 
NaCI 
NT 
OM 
PC 
PCA 
PCR 

LIST OF ABBREVIATIONS 

SIGNIFICATION 

Acetone 
Arbuscular mycorrhizal fungi 
Analysis of variance 
Accelerated solvent extractor 
Biological control agent 
Chloroform:methanol 
Chloroform:methanol:buffer 
Conventional tillage 
Hexadecyltrimethylammonium bromide 
Fatty acid with a cyclopropyl ring 
Discriminant analysis 
Discriminant function 
Denaturing gradient gel electrophoresis 
Deoxyribonucleic acid 
Dry soil 
Equivalent chain length 
Ethylenediaminetetraacetic acid 
Ester-linked fatty acid methyl ester 
Fatty acid 
Fatty acid methyl ester 
G/omus intraradices 
G/omus mosseae 
Gas chromatography 
Gas chromatography-flame ionization detector 
Gas chromatography- mass spectrometry detector 
Hydrochloric acid 
Hexane:2-propanol 
High pressure liquid chromatography 
Hydroxy fatty acid 
Potassium hydroxide 
Least significant difference 
Metastable atom bombardment 
Mutation Detection Enhancement 
Microbial identification system 
Fatty acid containing more than one chemical feature 
Mono unsaturated chain fatty acid 
Sodium chloride 
No tillage 
Organic matter 
Principal component 
Principal components analysis 
Polymerase chain reaction 

XVII 



PLFA 
PolyUFA 
PSE 
PVP 
Py-GC-MS 
Py-MAB-TOF-MS 
Py-MS 
SAFA 
Sem 
5MB-C 
SSCP 
SSR 
SSR-DSI 
T.v. 
TBE 
TL-FAME 
Total FA 
T-RFLP 
TRI 
UFA 
UnspecificFA 

Phospholipid fatty acid 
Poly unsaturated chain fatty acid 
Pressurized solvent extraction 
Polyvinyl pyrrolidone 
Pyrolysis gas chromatography-mass spectrometry 
Pyrolysis metastable atom bombardment time-of-flight mass spectrometry 
Pyrolysis mass spectrometry 
Saturated chain fatty acid 
Standard error of the mean 
Soil microbial biomass carbon 
Single-strand conformation al polymorphism 
Sclerotinia stem rot 
Sclerotinia stem rot disease severity index 
Trichoderma virens/Trichoderma harzianum. 
Tris-Borate-EDTA 
Totallipid-fatty acid methyl ester 
Total fatty acid 
Terminal restriction fragment length polymorphism 
Trichoderma virens 
Unsaturated chain fatty acid 
Fatty acid not specifie to any biological group 

XVIII 



INTRODUCTION 

Soybean (Glycine max (L.) Merr.) is a major food crop produced in many parts of the world. In 

Canada, soybeans are an important component of human and animal diets, and more than 3 

millions tons of soybeans were produced in 2005 alone (Statistics Canada, 2006). However, 

soybean is susceptible to diseases caused by viruses, bacteria, fungi and nematodes. Sclerotinia 

stem rot [caused by Sclerotinia sclerotiorum (Lib.) de Bary] is a fungal disease that was reported to 

be the cause of significant yield reductions in Quebec soybean fields during 2000 (Rioux, 2001). 

Since Sclerotinia stem rot could be devastating many other field crops such as canola, sunflower, 

pea, and bean, as weil as vegetables like carrot, lettuce and cabbage (Purdy, 1979; Boland and 

Hall, 1994), there is an urgent need to find efficient ways to control this disease. Several options 

exist for control of Sclerotinia stem rot, including chemical control (e.g. fungicides), disease 

resistance by cultivar breeding, cultural control (e.g. increasing the width between rows, reducing 

plant populations) and biological control (Tu, 1997; Zhou and Boland, 1998; Bardin and Huang, 

2001). Biological control is a natural function of soil biota that could be stimulated indirectly using 

complex substrates like composts (Noble, 2005) or directly by the introduction of organisms with 

specific spectra of activity toward the target pathogen/disease (Zhou and Boland, 1998). 

The growing importance of sustainable development in national and international policies, as weil 

as in the public and scientific opinions, is leading us to consider an ecological approach to control 

crop diseases. Biocontrol strategies, which rely on predator-prey interactions to control pathogens 

and diseases, are consistent with the development of more sustainable agricultural systems. Soil is 

the origin of many, if not ail, pests and the source of many, if not ail, biological agents developed for 

controlling pathogens responsible for crop diseases. For example, Sclerotinia sclerotiorum, the 

causal agent of Sclerotinia stem rot disease, lives most of its life in the soil as sclerotia and 

apothecia (Willetts and Wong 1980). Potential biological control agents, such as Trichoderrna 

virens, have been isolated from sclerotia (Phillips, 1986b), while Coniothyrium minitans was 

discovered by simply baiting the sclerotia with soil (Whipps et aL, 1993). 

Although several biocontrol agents for Sclerotinia stem rot have been identified, there is a major 

gap in our knowledge of how effective these biocontrol agents are in the field. Although biocontrol 
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agents may act specifically to suppress or eliminate Sclerotinia sClerotiorum, they are expected to 

interact with other organisms in the soil food web. These interactions may be direct (e.g., 

competitive, synergistic, antagonistic) between the biocontrol agent and indigenous soil 

microorganisms, or indirect (e.g., a reduction in Sclerotinia sclerotiorum may improve soybean 

growth, thus stimulating more root growth and leading to an increase in microbial activities or a 

change in microbial communities in the rhizosphere). We must profile and monitor changes in soil 

microbial communities to better understand the complex interactions between biocontrol agents, 

the pathogen Sclerotinia sclerotiorum and indigenous soil microorganisms as weil as the plant; 

such research will permit us to optimize control strategies for plant diseases based on an ecological 

approach. 

However, quantifying the genetic and functional diversity of soil microbial communities still presents 

a challenge because we are unable to culture many of these microorganisms. As weil, collecting 

representative samples of soil microorganisms is difficult due to the high spatial and temporal 

variability of these organisms (Kirk et aL, 2004). Yet, progress has been made and soil microbial 

communities can be described using molecular [e.g., DNA (Deoxyribonucleic acid)-based profiling 

methods such as DGGE (Denaturing gradient gel electrophoresis), T-RFLP (Terminal restriction 

fragment length polymorphism)], biochemical (e.g., phospholipid fatty acids, total fatty acids, 

sterols, etc.) and physiological approaches (e.g., community-Ievel physiological profiling using 

Biolog microplates). The strengths and limitations of each approach have been reviewed by Kirk et 

al. (2004), Spiegelman et al. (2004), Leckie (2005) and Liu et al. (2006). 

This thesis describes a biochemical approach to evaluate soil microbial communities, based on 

fatty acid biomarker analysis. This analysis could involve different procedures such as direct 

saponification-methylation, direct in situ transesterification, and lipid extraction-fractionation of lipid 

classes-transesterification of soil lipids that permits researchers to extract specific fatty acid 

biomarkers of various microbial groups such as bacteria, actinomycota, saprophytic fungi, 

mycorrhizal fungi (White and Ringelberg, 1998; Zelles, 1999; Schutter and Dick, 2000). The 

analysis of fatty acid biomarkers is a quantitative procedure giving insight into the viable biomass, 

community composition, nutritional/physiological status and metabolic activity. It may be capable of 

discriminating the effects of environmental and anthropogenic factors on soil microbiota, as weil as 
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changes in soil microbial communities related to their interactions with biocontrol agents, the 

pathogen Sclerotinia sclerotiorum and the soybean plant. 

1. LlTERATURE REVIEW 

1.1 Soil biodiversity in a sustainable agriculture perspective 

The most important, fundamental, resource for agriculture is the sail. Vast communities of bacteria, 

fungi, plants, animais, and their detritus inhabit and interact in the sail. The activity of these 

organisms modifies the nature of the sail, and thus, the growth potential of crops. The sail is not an 

isolated, closed system, but one that interacts vitally with the above-ground plant and animal 

communities, biologically and physically (Thomas and Kevan, 1993). 

The importance of the biodiversity of soil biota to the integrity, function and long term sustainability 

of natural and managed terrestrial ecosystems is increasingly recognized (Pankhurst, 1997). There 

is a need ta better understand the biodiversity of soil communities, their functions and their 

interactions within the agroecosystem. 

1.2 Functions of soil communities 

Sail organisms live in complex communities. They are largely responsible for key global 

biogeochemical processes such as storing world's carbon as organic matter, cycling nutrients, 

creating new biomass, mixing and redistribution of organic matter and organisms, stabilization of 

soils and sediments, physical shredding of organic matter and its preparation for further decay by 

other organisms, and biological nitrogen fixation (Paul and Clark, 1996). Below surface biota also 

provide critical links between the atmospheric, terrestrial and aquatic realms. Some functional 

groups, for example, the bioturbators (gophers, ants, termites, and earthworms in soils), function 

across surface interfaces and act ta aerate and redistribute organic matter, speeding decay and 

nutrient cycling. Soil and sediment biota also clean water, bioremediate pollutants, enhance soil 

fertility, serve as or undergird the food supply, and provide biological control of pests and parasites 

(Gilleret aL, 1997; Groffman and Bohlen, 1999; Wall, 1999). 
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Biological control is a natural function of sail biota. Many pests spend part of their life in the sail and 

many, if not ail, biological agents used ta control pathogens responsible for crop diseases were 

found in soils. In this chapter, 1 review the literature related ta the control of Sclerotinia sclerotiorum, 

the causal agent of Sclerotinia stem rot disease in soybean crop. 1 describe two biological control 

agents, mycorrhizal fungi and Trichoderma virens, that have been used to control various plant 

diseases, and explain the possible mode-s of action of each. 1 also explain how signature lipid 

biomarkers can be used to evaluate how inoculation with biological control agents affects soil 

microbiota, and how the soil microbial communities respond to the presence of the pathogen S. 

sclerotiorum as weil as the presence of healthy or infected soybean plants. 

1.3 Soil biota as a source of pathogens - case of Sclerotinia sclerotiorum, causal agent 

of Sclerotinia stem rot, and its control in soil-plant systems 

Soybean (Glycine max (L.) Merr.) is one the major crops in the world food agricultural production. 

For example, in Canada, the field production of soybeans, with more than 2000 to 3000 thousand 

tonnes from 2002 to 2006, is among the major field crops such as, in order of importance, tame 

hay, wheat, barley, grain corn, canola (rapeseed), oats, soybeans, flaxseed and rye (Statistics 

Canada, 2006). 

Soybean is qualified the 'miracle' crop because it could be used in many different products for 

human and animal nutrition, sorne known and others unexpected, as weil in the industry (The 

American Soybean Association, 2005a,b). Soybean is omnipresent in our lives and fields. However, 

soybean is susceptible to many pests (weeds, pathogens and animal pests). The total potentialloss 

around the world due to pests was estimated, for the period of 2001 to 2003, to be around 26-29% 

for soybean (Oerke, 2006). Many diseases, of various biological origins (virus, bacteria, fungi, 

nematodes), were reported to substantially reduce the harvest yield in soybean in the top 10 

soybean-producing countries (these countries produced more than 97.6% of the world's total 

soybean crop in 1998). The diseases causing the major los ses were soybean cyst [Heterodera 

glycines Ichinohe], brown spot [Septoria glycines (Hem mi)], charcoal rot [Macrophomina phaseolina 

(Tassi) Goidanich], and sclerotinia stem rot [Sclerotinia sclerotiorum (Lib.) de Bary] (Wrather et aL, 
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2001). In 2000, in the province of Quebec, sclerotinia stem rot was reported to be the major 

disease attacking soybean (Rioux, 2001). 

Since Sclerotinia stem rot could be also devastating for a numerous number of field crops such as 

canola, sunflower, pea, bean, etc., and vegetables such as carrot, lettuce, cabbage, etc. (Purdy, 

1979; Boland and Hall, 1994), there is an urgent need to find efficient ways to control this disease. 

The life cycle of Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot, begins in the soil 

as vegetative bodies, the sclerotia, that germinate to produce apothecia which release ascospores. 

Germinating ascospores colonize senescing or dead flower petais in the phyllosphere and, after 

colonizing such nutrient sources, the pathogen invades adjoining living tissue and initiates disease 

(Abawi and Grogan, 1979; Adams and Ayers, 1979; Willetts and Wong, 1980; Zhou and Boland, 

1998). 

Up to now, the main ways to reduce the impact (or to control) of SSR disease on soybean yields is 

to select resistant cultivars (Grau et aL, 1982; Grau and Radke, 1984; Boland and Hall, 1986, 1987; 

Buzzell et aL, 1993; Wegulo et aL, 1998; Kim et aL, 1999). Also, management practices that can 

lower the incidence of SSR disease in soybeans include the use of crop rotations with non-host 

plants like corn or wheat, increasing row width, reducing plant populations and conservation tillage 

(e.g., no-till) (Grau and Radke, 1984; Buzzell et aL, 1993; Kurle et aL, 2001; Gracia-Garza et aL, 

2002). Soybean could be protected from SSR disease by the application of fungicides (Tu, 1997; 

Bardin and Huang, 2001) as weil as of chemicals su ch as 2,6-dichloroisonicotinic acid, 

benzothiadiazole, and lactofen that induce resistance in plants (Dann et aL, 1998, 1999). The 

various means used to control SSR disease were reviewed by Tu (1997), Zhou and Boland (1998), 

as weil as Bardin and Huang (2001). 

A promising and complementary way of controlling SSR disease in the field is the application of 

biological control agents (BeAs). The development of biological agents to control Sclerotinia stem 

rot is an important task considering the widespread distribution of the disease, its importance on 

agriculture economy (in soybean, for example, see Wrather et aL, 1997,2001) and its wide range 

of plant hosts (Boland and Hall, 1994). 
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The keen interest in biological control in the last decade is based on the increased concern over the 

environ mental impact of chemical pesticides and the desire to develop integrated pest- and 

disease-management practices for more sustainable agriculture. The development of realistic, 

economical and sustainable biological control strategies requires a clear understanding of the 

mechanisms of biocontrol, the impact of environmental factors (abiotic and biotic) and the 

complexity of the interactions that occur among the plant, the pathogen, the biocontrol agent and its 

surroundings. The best approach is to customize biocontrol strategies by studying naturally 

occurring biocontrol systems, to understand the ecology of pathogen and its potential biocontrol 

agents under local growing conditions, to devise biocontrol systems with multiple mechanisms of 

antagonism, and to integrate biological control with other methods of disease suppression such as 

reduced chemical treatments (fertilizers and pesticides), appropriate tillage methods, organic 

amendments, crop rotation, and moderate cultivar resistance (Traquair, 1995; Pankhurst, 1997). 

Various biocontrol strategies have been examined for Sclerotinia sclerotiorum. The general 

approach to the biological control of this pathogen is (i) to reduce the inoculum potential of the 

pathogen by the destruction of spores and vegetative propagules, by the prevention of inoculum 

production, and by displacement of the pathogen or reduction of its virulence; (ii) to protect plant 

surfaces from invasion; and (iii) to restrict the progress of the pathogen inside the plant by induced 

resistance or cross protection (Zhou and Boland, 1998). 

There are several BCAs that are effective against Sclerotinia sclerotiorum and related species have 

been reviewed by Tu (1997), Zhou and Boland (1998) as weil as Bardin and Huang (2001). Among 

the various microorganisms evaluated as potential BCAs to control Sc/erotinia sclerotiorum in the 

soil, Bacillus spp., Pseudomonas spp., Coniothyrium minitans, Dictyosporium elegans, Penicillium 

citrinum, Sporidesmium sc/erotivorum, Talaromyces fla vus, Teratospenna oligocladum, 

Trichodenna spp. and Trichodenna virens proved to be successful. 

Although several biocontrol agents for Sclerotinia stem rot have been identified and tested in 

controlled environments (in vitro culture, growth chamber, greenhouse), there is a major gap in our 

knowledge of how effective these biocontrol agents are in the field with uncontrolled climatic 

conditions and soil biotic composition, for example. The selection of two following groups of fungi 
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are based on evidences of their capacity to control many different pathogens, such as Sclerotinia 

sclerotioum, at least in in vitro studies, in the case of Trichoderrna virens, and their well-recognized 

beneficial and biocontrol capacities, such as mycorrhizal fungi. Also, in both cases, commercial 

products were available, thus facilitating field application and study. 

1.4 Trichoderma virens and mycorrhizal fungi as candidates biological control of 

Sclerotinia stem rot disease 

1.4.1 Interactions of Trichoderrna virens with soil-borne plant pathogens 

One promising BCA for Sclerotinia sclerotiorum control is Trichoderrna virens (formerly classified as 

Gliocladium virens (Rehner and Samuels, 1994), whieh is sold as SoilGard™ by Certis USA 

(Columbia, MD, USA). This fungus occurs naturally in agricultural soils (Davet, 1985; Vardavakis, 

1990; Park et aL, 1992). Several studies have shown that Trichoderrna virens provided good 

biological control against pathogenic mieroorganisms including Botrytis cinerea (Di Pietro et aL, 

1993; Lonto et aL, 1994), Pythium ultimum (Roberts and Lumsden, 1990; Paulitz and Linderman, 

1991; Lumsden et aL, 1992a, 1992b; Howell et aL, 1993; Wilhite et aL, 1994; Koch, 1999), 

Rhizoctonia solani (Lewis and Papavizas, 1985; Lumsden et aL, 1992a, 1992b; Howell et aL, 1993; 

Lartey et aL, 1994; Mukhe~ee et aL, 1995; Koch, 1999), Sclerotinia rolfsii (Papavizas and Collins, 

1990; Ristaino et aL, 1991, 1994; Lumsden et aL, 1992a; Mukhe~ee et aL, 1995; Lewis and Fravel, 

1996) and Sclerotinia sclerotiorum (Tu, 1980; McCredie and Sivasithamparam, 1985; Mueller et aL, 

1985; Phillips,1986a, 1986b, 1990; Whipps and Budge, 1990). 

Synergistic antifungal activity of œil wall Iytic enzymes and antibiotics such as gliotoxin and 

gliovindin may play a role in biological control by T. virens (Roberts and Lumsden, 1990; Lumsden 

et aL, 1992a, 1992b; Di Pietro et aL, 1993; Howell et aL, 1993; Lorito et aL, 1994; Wilhite et aL, 

1994; Mukherjee et aL, 1995). The production of antifungal molecules and the overall biologieal 

control can be affected by various factors such as time, moisture, temperature, pH, nutrient status 

(sources of carbon and nitrogen, their C/N ratio) (Phillips, 1986a; Park et aL, 1991; Lumsden et aL, 

1992a, 1992b; Howell et aL, 1993). In vitro, T. virens was active as myeoparasite of selerotia over a 

broad range of soil moisture levels and over the entire range of agncultural pH. The temperature 
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seemed to be the main limiting factor of its activity (Phillips, 1986a). Electron microscopy showed 

that the mycoparasite formed appressoria-like structures on the mycelia of S. sclerotiorum and 

presumably achieved its infection by active penetration (Tu, 1980) and demonstrated internai 

parasitism (profuse internai sporulation of the mycoparasite) of sclerotial cells of S. rolfsii, R. solani 

(Mukherjee et aL, 1995) and S. sclerotiorum (Tu, 1980). The parasitized sclerotia were incapable of 

either myceliogenic or carpogenic germination (Tu, 1980; Mukhe~ee et aL, 1995). In contrast, T. 

virens did not penetrate plant pathogen Botryodiplodia theobromae, but, after initial hyphal contact, 

it produced wall Iytic enzymes and-or antifungal substances that caused wrinkling, bursting and 

collapsing of its mycelium (Gupta et aL, 1999). 

Thus, Tichoderma virens was proven to be able to provide specifie biological control against S. 

sclerotiorum in controlled environ ment (Tu, 1980; McCredie and Sivasithamparam, 1985; Mueller et 

aL, 1985; Phillips, 1986a, 1986b, 1990; Whipps and Budge, 1990). In laboratory and greenhouse 

studies, the biological control of SSR disease may be improved by synergistic interactions between 

T. virens endochitinases and antibiotics such as gliotoxin and glioviridin (Tu, 1980; Roberts and 

Lumsden, 1990; Lumsden et aL, 1992a, 1992b; Di Pietro et aL, 1993; Howell et al., 1993; Lorito et 

aL, 1994; Wilhite et aL, 1994; Mukherjee et aL, 1995). 

ln a field experiment, the application of T. virens as a wheat bran alginate pellet formulation with 

each seed at planting enhanced the emergence of snap beans (Phaseolus vulgaris) , increased 

nodulation of treated roots and reduced damping-off incidence (Smith, 1996). Paulitz and 

Linderman (1991) tested the effect of T. virens on the colonization of cucumber by vesicular 

arbuscular mycorrhizal fungi G/omus etunicatum and G. mosseae. Their results showed that T. 

virens does not have a detrimental impact on these mycorrhizal fungi, and would be compatible if 

applied as a dual-inoculum. However, it is not known how these fungi (T. virens and mycorrhizal 

fungi) will interact in field conditions and how these interactions could benefit the biological control 

of a disease such as SSR. 
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1.4.2 Interactions of mycorrhizal fungi with soil-borne plant pathogens 

Mycorrhizas are usually divided into three morphologically distinct groups depending on whether or 

not there is fungal penetration of root cells: endomycorrhizae, ectomycorrhizae and 

ectendomycorrhizae (Barea, 1991; Budi et aL, 1998). Arbuscular mycorrhizal fungi represent the 

most widespread, and most ancient, type of plant-fungus association in which the large majority of 

terrestrial plants must have evolved with compatibility systems towards the fungal symbionts 

(Gianinazzi-Pearson et aL, 1995; Lambais and Mehdy, 1995; Blee and Anderson, 1996). The 

infection of root tissues by mycorrhizal fungi modifies the morphology and the functioning of roots in 

promoting the growth of plants by enhancing water and nutrient adsorption (Barea, 1991; 

Munyanziza et aL, 1997; Budi et aL, 1998) and by improving their resistance against abiotic/biotic 

stresses and soil aggregation (see reviews by Barea, 1991; Munyanziza et aL, 1997). 

Just as pathogenic microorganisms on roots are influenced by saprophytic bacteria and fungi of the 

rhizoplane and rhizosphere, mycorrhizal fungi are affected by the activities of microbial epiphytes 

and microfauna in the mycorrhizoplane and mycorrhizosphere (Linderman, 1988, 1994). When 

mycorrhizal fungi are present, changes in the quality and quantity of root exudates le ad to a 

concomitant change in the microflora on and around the mycorrhizal root. This change is ca lied 

mycorrhizosphere effect (Linderman, 1988) and can have a pronounced influence on the activity of 

root pathogens. Similarly to roots, the extramatrical hyphae exude materials that exert a 

mycosphere effect on microorganisms (Linderman, 1994). Bacteria, including the nitrogen-fixing 

Bradyrhizobium spp, growth promoting bacteria, antagonistic actinomycetes, and saprophytic and 

antagonistic fungi such as Penicillium, Gliocladium, and Trichoderrna spp. in the mycorrhizosphere 

can modify the biocontrol activity of mycorrhizal fungi (Linderman and Paulitz, 1990). 

Cultural practices frequently used in low external-input agricultural systems affect strongly 

rhizosphere microorganisms, including mycorrhizal fungi. Practices such as no- or reduced tillage, 

intercropping, and crop rotation have been shown to favor the development of mycorrhiza. Other 

conventional agricultural practices such as pesticides or fertilizer application can stimulate or injure 

VAM populations according to the dose and chemical nature of the substances (see reviews by 

Barea, 1991; Bethlenfalvay, 1992; Munyanziza et aL, 1997). 
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Mycorrhizal fungi are promising candidates for biological control. They are environmentally safe, 

ubiquitous, mutualistic symbionts of roots which establish stable, long-term associations with the 

roots of most plants and they were shown repeatedly to protect plants against diseases (Traquair, 

1995). Many review articles summarize results on the use of arbuscular mycorrhizal fungi (AMF) as 

biocontrol agents (among them, see Linderman, 1988, 1994; Smith, 1988; Linderman and Paulitz, 

1990; St-Arnaud et aL, 1995a; Traquair, 1995; Azc6n-Aguilar and Barea, 1996; Harrier and 

Watson, 2004; Whipps, 2004). Consistent reduction of disease symptoms have been obtained, 

under controlled conditions, when AMF were used against fungal pathogens such as Phytophthora, 

Gaeumannomyces, Fusarium, Cha/ara (Thie/aviopsis) , Pythium, Rhizotonia, Sc/erotium, 

Verlicillium, Aphanomyces, and for nematodes such as Roty/enchus, Praty/enchus and 

Me/oidogyne (Azc6n-Aguilar and Barea, 1996; Harrier and Watson, 2004; Whipps, 2004). For 

example, Cylindrocarpon root rot was reduced by endomycorrhizal colonization ofpotted peach 

rootstocks with G/omus aggregatum under controlled environment conditions using Turface or 

natural, untreated orchard soils (Traquair, 1995). The disease incidence of Fusarium crown and 

root rot of tomato was significantly decreased by Trichoderma harzianum and G. intraradices used 

alone or in combination (Datnoff et aL, 1995). The inoculation of G/omus mosseae decreased the 

conidia number of Fusarium so/ani in the rhizosphere and decreased root rot caused on the 

common bean Phaseo/us vu/garis (Hassan Dar et al., 1997). Enrichment of the soil with G. 

intraradices reduced Fusarium root rot of tomato and the population of F. oxysporum in soil (Caron 

et aL, 1986). In another study, G. intraradices was grown on Daucus carota transformed roots in a 

two-compartiment in vitro system in absence of roots and under monoxenic conditions, G. 

intraradices stimulated F. oxysporum f. sp. chrysanthemi conidial germination and stimulated 

hyphal growth. This mechanism might reduce soil inoculum through exhaustion or Iysis of the 

germination hyphae (St-Arnaud et aL, 1995b). St-Arnaud et al. (1997) showed the inhibition of F. 

oxysporum f. sp. dianthi in the non-VAM species Dianthus caryophyllus by co-culturing this plant 

with Tagetes patu/a plants colonized by G. intraradices. Inoculation with G. intraradices reduced 

Pythum ultimum developement in roots and P. ultimum propagule numbers in the T. patula 

mycorrhizosphere (St-Arnaud et aL, 1994). 
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Numerous reviews indicate that, in most cases, mycorrhizal colonization of roots prior to challenge 

by pathogenic fungi reduces the severity of root diseases (Smith, 1988; Caron, 1989; Linderman, 

1994; St-Amaud et al., 1995a). Various mechanisms have been proposed to explain how AMF 

reduces the activity of fungal root pathogens (Azc6n-Aguilar and Barea, 1996; Harrier and Watson, 

2004; Whipps, 2004). They include (1) improved nutrient status of the host plant; (2) damage 

compensation; (3) competition for host photosynthates; (4) rhizosphere deposition; (5) competition 

for infection/colonization sites; (6) anatomical and morphological changes in the root system; (7) 

microbial changes in the mycorrhizosphere; and (8) activation of plant defense mechanisms. 

1.5 Measuring soil microbial diversity 

The development of a disease in a plantlcrop needs the synergism of many macro- and micro­

climatic, soil, plant and human factors as weil as the required presence of the pathogens in the soil 

environment. Biological control agents introduced in a soil environment are expected to interact 

with some of the soil biota, but even when no biocontrol agents are added, the pathogenic 

organism and the infected plant may also interact with the soil biota and cause changes in the 

microbial communities. For example, in the case of SSR disease and its biological control, little is 

known about the interactions, in field conditions, between the proposed BCAs, mycorrhizal fungi 

and T. virens, the pathogenic organism, S. sclerotiorum, other components of the soil biota, and the 

soybean plant. According to our knowledge, these aspects were never investigated using SSR 

disease as mode!. So, profiling these changes may lead to an improved understanding of the 

interactions between the organisms involved in biological control, permitting us to take advantage 

of naturally-occurring ecological interactions to control plant diseases. 

However, the study of genetic and functional diversity in the soil foodweb still presents a significant 

challenge and very little is known about the vast majority of soil organisms and their ecological 

function in soil. Some of the reasons for the paucity of knowledge are presented here (Pankhurst, 

1997; Wall, 1999; Kirk et al., 2004): 

1. The opaqueness of the soil which makes the in situ identification of most soil organisms 

impractical; 2. The large range in size of soil organisms (microbes to earthworms) makes their 
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interactions and ecological role difficult to assess; 3. The morphology of many organisms changes 

during their life cycle making them difficult to identify; 4. Methods for extracting and quantifying 

many microorganisms, fungi and mesofauna from soils have not been determined and techniques 

for culturing them have have not been developed; 5. The temporal and spatial scale of the niches 

occupied by different organisms in the soil varies greatly and thus, making difficult to collect 

representative samples of soil microorganisms; 6. The activity and abundance of different 

organisms changes in response to changes in the physico-chemical properties of the soil, the 

quality of organic matter, climate and geography, resulting in few comparisons of the ecological 

roles of soil taxa in different ecosystems. 

Generally, the methods overcoming the limitation of culturability methods could be classified in 

molecular (e.g., DNA-based profiling methods such as DGGE, T-RFLP), biochemical (e.g., 

phospholipid fatty acids, total fatty acids, sterols, etc.) and physiological approaches (e.g., 

community-Ievel physiological profiling using Biolog microplates). The strengths and limitations of 

each approach have been reviewed by Kirk et al. (2004), Leckie (2005), Spiegelman et al. (2005), 

and Liu et al. (2006). Singh et al. (2006) compared the effects of plants on the microbial community, 

using several methods, in three different types of soils. Pots containing soil from three contrasting 

sites were planted with Lolium perenne (rye grass). The change in soil microbial communities 

caused by the growth of rye grass was studied using physiological (Biolog), biochemica! 

(Phospholipid fatty acid, PLFA) and molecular (DGGE and T-RFLP) fingerprinting methods. Singh 

et al. (2006) concluded that molecular methods were the most discriminatory, but ail methods of 

microbial fingerprinting gave qualitatively similar results when samples were processed consistently 

and comparable statistical methods used. 

1.6 Signature Iipid biomarkers: methods and applications in agroecosystems 

1.6.1 Soillipids 

Ali animal, plant and microbial cells contain carbohydrates, lipids and proteins. Lipids are a rich and 

heterogenous group of organic molecules that could be operationally defined as being sparingly 

soluble or insoluble in water, but soluble in selected organic non-polar solvents such éiS 
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chloroform/dichloromethane, hydrocarbons (diethyl ether, hexane, etc.) or alcohols (methanol, 

ethanol, isopropanol, butanol, etc.) (Dinel et aL, 1990; Stevenson, 1994; Shahidi and 

Wanasundara, 2002). This group contains many different types of compounds, such as fatty acids, 

acylglycerols, sterols and sterol esters, waxes, phosphoglycerides (phospholipids), 

ether(phospho)glycerides (plasmalogens), glyceroglycolipids (glycosylglycolipids), sphingolipids, 

fat-soluble vitamins, hydrocarbons (Gunstone et aL, 1994; O'Keefe, 2002). The common and 

unique features of compounds classified as lipids relate to their solubility rather th an their structural 

characteristics (Shahidi and Wanasundara, 2002). 

Lipids in soils originate from animal, plant and microbial sources (Dinel et aL, 1990; Lichtfouse, 

1998; Lichtfouse et aL, 1998; Olsson, 1999; Zelles, 1999; Puglisi et aL, 2003). The characterization 

of lipid biomarkers such as totallipid fatty acids (Schutter and Dick, 2000; Drenovsky et aL, 2004; 

Hinojosa et aL, 2005), phospholipid fatty acids (PLFAs) (Vesta 1 and White, 1989; Zelles, 1999; 

Piotrowska-Seget and Mrozik, 2003), neutral lipid fatty acids (Olsson, 1999; Baath, 2003), 

respiratory qui nones (Hiraishi, 1998; Katayama et aL, 1998), sterols (Ruzicka et aL, 2000; Puglisi et 

aL, 2003; Mille-Lindblom et aL, 2004) as weil as their composition in stable isotopes (Boschker and 

Middelburg, 2002) in soil ecosystems is a powerfu1 tool helping us to understand the 

dynamics/changes in the microbial community structure following environmental and anthropogenic 

factors (Kennedy and Gewin, 1997). Lipid analysis is also used to monitor transformations in soil 

organic matter (Dinel et aL, 1998; Bull et aL, 2000; Wiesenberg et aL, 2004), as tracers of early life 

on earth and elsewhere (Simoneit et aL, 1998; Brocks and Summons, 2003), and in forensic 

science (Forbes et aL, 2003) and archeology (Simpson et aL, 1999a, 1999b). 

Lipids are a diverse class of chemical compounds and their importance for the life of any organism 

on earth is obvious. However, this richness remains to be fully exploited. The development of 

methods that use lipid compounds (such as fatty acids) as biomarkers (or diagnostic molecules) 

could lead to a better understanding of soil processes. 
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1.6.2 Methods for extracting lipids 

The extraction of soillipids is usually accomplished using a mixture of chloroform, methanol and a 

citrate or phosphate buffer (modified Bligh and Dyer method (1959) detailed in White and 

Ringelberg, 1998). Previously, many methods for extracting soil lipids, especially phospholipids, 

were elaborated. and were using generally long extraction times as weil as large quantities of 

solvents: (1) Hance and Anderson (1963) developed an effective method for extracting 

phospholipids using acid pretreatment and successive extractions with acetone, light petroleum, 

ethanol and benzene, methanol and chloroform; (2) Kowalenko and McKercher (1970, 1971) used 

an alternative to the Hance and Anderson (1963) method that consisted in two successive and 

vigorous extractions of the soil using a mixture of hexane-acetone; (3) Baker (1975), by 

successively refluxing the two last solvents (ethanol and benzene, methanol and chloroform) of the 

Hance and Anderson (1963) method using a Soxhlet extractor, was able to achieve comparable 

results of the Hance and Anderson (1963) in extracting soil phospholipids. Using a modified Bligh 

and Dyer method, White et al. (1979) developed a method for quantifying lipid phosphate in 

sediments. This method of extraction remained the one most frequently used for extracting soil 

lipids and characterizing their phospholipids in microbial ecology studies (Frostegard et aL, 1991; 

Tunlid and White, 1992; White and Ringelberg, 1998; Zelles, 1999). The extraction of lipids by 

chloroform:methanol mixture is indeed very efficient for many biological materials (Shahidi and 

Wanasundara, 2002; Christie, 2003). However, the extraction and study of soillipids is complicated 

because of their chemical structures and biological origins are very diverse and also because soil 

particles, such as clays, and organic matter that can interfere with their extraction (Hance and 

Anderson, 1963; Frostegard et aL, 1991; Nielsen and Petersen, 2000). 

The efficiency ('robustness') of chloroform:methanol mixtures in extracting lipids from soils with a 

range of properties was never fully investigated (Tunlid and White, 1992), according to our 

knowledge, and remains to be assessed. The capacity of chloroform:methanol mixtures to extract 

fatty acid biomarkers needs to be compared to other efficient solve nt mixtures. However, using an 

extraction mixture that contains chloroform and methanol should also be a concern because these 

solvents are toxic to humans when inhaled or adsorbed through the skin, and chloroform is 

carcinogenic (Ikeda, 1992; Golden et aL, 1997). The research for less toxic solvents to extract lipids 

is a long-lasting quest in the field of lipidology (Christie, 1993,2003). 
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Many solvents have been tested as alternatives to chloroform-methanol solve nt mixtures for lipid 

extraction (see reviews by Shahidi and Wanasundara, 2002 and Christie, 2003). The performance 

of these alternative solvent mixtures varies with the material tested. For example, Schâfer (1998) 

showed that more of the fatty acids contained in cereal and yolk lipids were extracted using a 

hexane:2-propanol (3:2, v/v) mixture than chloroform:methanol mixture, although the extraction of 

muscle lipids was more efficient with chloroform:methanol (2:1, v/v) than with other solvent 

mixtures. Solvents, such as acetone and a hexane:2-propanol mixture, are effective at extracting 

lipids from wood and other biological materials (Hara and Radin, 1978; Schâfer, 1998; Gonzalez­

Vila et aL, 2000; Shahidi and Wanasundara, 2002; Christie, 2003; Dodds et aL, 2004; Zarnowski 

and Suzuki, 2004; Tanamati et aL, 2005). Acetone is a common laboratory solvent and the 

hexane:2-propanol mixture is frequently compared with chloroform-methanol solvent mixtures for 

extracting lipids (Hara and Radin, 1978; Shahidi and Wanasundara, 2002; Christie, 2003). 

Moreover, an automated pressurized solvent extraction (PSE) system has been previously used to 

extract lipids from soils (Macnaughton et aL, 1997; Dinel and Nolin, 2000; Spedding et aL, 2004; 

Wiesenberg et aL, 2004; Hamel et aL, 2005; Jansen et aL, 2006). This technique accelerates the 

extraction process, reduces human contact with solvents, and reduces the volume of solvents 

used. The capacity of PSE system to extract soil fatty acid biomarkers in a range of soils was not 

fully optimized using various solvent mixtures. 

1.6.3 Analysis of soillipids 

Signature lipid biomarkers analysis is an approach composed of many methods from the high 

throughput analysis of fatty acids using fast and simple procedures to detailed analysis of specifie 

biomarkers such as sterols, phospholipid fatty acids, neutral lipids, quinones, etc. (White and 

Ringelberg, 1998; Zelles, 1999; etc.). Among these procedures/methods, we could find: direct 

profiling of fatty acids from solid soil samples or lipid extracts using pyrolysis-mass spectrometry 

(Py-MS) and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) with/without a 

methylation reagent such as trimethylammonium hydroxide (Dinel et aL, 1998; Jandl et aL, 2002, 

2004); direct profiling of fatty acids by saponification-esterification (Schutter and Dick, 2000; 

Drenovsky et aL, 2004) and mild alkaline transesterification (Drijber et aL, 2000; Schutter and Dick, 
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2000; Hinojosa et aL, 2005) followed by analysis with GC-flame ionization detector (FID) or GC-MS; 

finally, by extraction of soillipids followed or not by fractionation into lipid classes, derivatization and 

analysis by GC-FID or GC-MS (Zelles, 1999; Jandl et aL, 2005; Kaur et aL, 2005; Otto et aL, 2005). 

It is clear that generating lipid profiles demands intensive laboratory work and data analysis, which 

may be too time consuming and costly when a large number of samples are being screened to 

distinguish soil microbial communities among experimental treatments or sites. Simple cataloguing 

or classification of these samples can be accomplished with techniques that generate a 'fingerprint' 

of the soillipids extracted from living organisms and other sources. Fingerprinting techniques such 

as Fourier transform infra-red and Raman spectroscropic techniques as weil as direct infusion MS 

and Py-MS do not require chromatographic step, and the frequently needed derivatization of the 

targeted compounds (Goodacre and Kell, 1996; Sumner et aL, 2003; Dunn et aL, 2005; Villas-Bôas 

et aL, 2005). Generally, fingerprinting involves much larger numbers of measurements (high 

throughput) than profiling and requires chemometric interpretation of the complexity resulting from 

simultaneous acquisition of analytical data on hundreds of metabolites (Goodacre et aL, 2003; 

Sumner et aL, 2003). 

Of the techniques listed above, Py-MS has several advantages, such as speed of analysis, 

sensitivity, high sample throughput, minimal sample preparation, and low cost. In most Py-MS 

systems, the chemical compounds in a sample are desorbed and volatilized during a rapid heating 

phase, followed by ionization with electron impact, and detection by mass spectrometry (Goodacre 

and Kell, 1996). This technique was successfully used, sometimes with a thermally assisted 

hydrolysis and methylation step, to discriminate and classify bacteria (Basile et aL, 1998a,b; 

Brandâo et aL, 2002), fungi (Lilley et aL, 2001), yeasts (Timmins et aL, 1998), higher plants (Kim et 

aL, 2004) and organic matter (Peuravuori et aL, 1999; Magrini et aL, 2002; Marche et aL, 2003; 

Jandl et aL, 2004). The modified Py-MS system used in this study is pyrolysis metastable atom 

bombardment time-of-flight mass spectrometry (Py-MAB-TOF-MS). The metastable atom 

bombardment capacity allows beller control of the ionization energy and reduces chemical 

fragmentation during ionization, compared to electron impact ionization (Faubert et aL, 1993). The 

Py-MAB-TOF-MS system has recently been used for fingerprinting vegetable oils (Sanchez et aL, 

2002), animal fats (Beaudet et aL, 2003), microbes (Wilkes et aL, 2005), and steroids (Dumas et 
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aL, 2002). The use of pyrolysis-mass spectrometry, and especially the Py-MAB-TOF-MS system, to 

specifically fingerprint soil lipids in order to discriminate soils from various agroecosystems was 

never done. The main advantage of fingerprinting soil lipids is that this approach could allows to 

obtain a first level of information on the soil samples that could be deepen, if need, by a more 

detailed analysis of specifie signature lipid biomarkers such total ester-linked fatty acids, 

phospholipid fatty acids or sterols, for example. 

Soils are very complex matrix characterized by a wide diversity of physical-chemical properties and 

living organisms. Many factors could have important impacts on the quantity and the quality of soil 

lipids extracted: inherent properties of soils, preparation/pre-treatment of the mate rial 

(representative sampling, sieving and grinding, wetness and dryness (using fresh soil, fresh-frozen 

soil, air-dried soil, freeze-dried soil), storage time and conditions (exposure to light, heat and 

oxygen)) and the extraction process (size of subsample, extractant(s), extracting device and 

conditions, storage conditions of the extract, etc). Ideally, at any moment during the lipid analysis 

process, the raw material and the resulting lipid extract should not be exposed to light, heat and 

oxygen in order to keep the chemical integrity of lipid species composing the extract (Ackman, 

2000; Shahidi and Wanasundara, 2002). Some of these elements were already assessed to some 

extent (Hance and Anderson, 1963; Frostegàrd et aL, 1991; Petersen and Klug, 1994; 

Macnaughton et aL, 1997; Nielsen and Petersen, 2000; Schutter and Dick, 2000; Drenovsky et aL, 

2004; Allison and Miller, 2005). For example, Allison and Miller (2005) demonstrated that the 

grinding of soil samples reduces the variability in the microbial community composition, but could 

increase the relative abundance of eukaryote phospholipid fatty acids biomarkers in soils with high 

rooting densities. Moreover, Schutter and Dick (2000) showed that the storage duration influences 

the resulting soil fatty acids composition, but this effect was variable depending on the soil type. 

However, extensive studies remain to be do ne to fully assess the importance of the various soil 

properties and pre-treatment factors on the quantity and the quality of soillipids extracted. 

Finally, new developments in instrumentation and methods will permit to expand the use of lipid 

analysis, as weil as the array of lipid biomarkers detectable, in soil science by allowing direct 

analysis of lipids in biological samples and-or in lipid extracts by Raman (Beattie et aL, 2004; Krafft 

et aL, 2005) and infrared (Kujawa et aL, 2003; Tapp et aL, 2003) spectroscopies, molecular beam 
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static secondary ion mass spectrometry (Ingram et aL, 2003; Touboul et aL, 2005), electrospray 

ionization-mass spectrometry (Rütters et aL, 2002; Sturt et aL, 2004; Welti and Wang, 2004; Han 

and Gross, 2005) and matrix-assisted laser desorption/ionization mass spectrometry (Ishida et aL, 

2003; Schiller et aL, 2004). 

1.6.4 Use of lipid analysis in soil microbial ecology 

Environmental factors such as light, temperature, nutrient availability and so on are known to 

influence the lipid composition of living biota. Thus, the composition in lipids of a living organism 

could reflect the environment conditions in which this organism lives as weil as being specifie to the 

growth stage of the organism (Lechevalier and Lechevalier, 1989; Rose, 1989). Lipids are 

recognized to be very valuable biomarkers in chemotaxonomy and could be used to discriminate 

microorganisms up to the species level (Lechevalier and Lechevalier, 1989). Among the various 

types of lipids, the fatty acids of a wide range of microorganisms (e.g., bacteria, fungi, algae, 

protozoa) were extensively characterized. Since fatty acids do not occur in the cells in their free 

form, but linked to other compounds, their specificity as taxonomie biomarkers is increased when 

the lipids are fractionated into their difterent classes (eg., phospholipids, neutrallipids, glycolipids). 

Phospholipids, as the major class of lipids that are found in the membranes of ail living cells, make 

up a relatively constant proportion of œil biomass and are rapidly turned over on cell death 

(Lechevalier and Lechevalier, 1989). Thus, in a complex milieu like soil, the characterization of the 

fatty acids linked to the phospholipids (phospholipid fatty acids, PLFAs) will give us information 

about microbial communities living in the soil. A change in the composition of soil PLFAs indicates 

a shift in the soil microbial composition and the knowledge accumulated on the fatty acid 

composition of the various taxonomie groups of microorganisms will allow us to interpret this shift 

(Vestal and White, 1989; Tunlid and White, 1992). 

The characterization of microbial communities in the environment by the analysis of PLFAs was 

developed by the work of Dr White at the University of Tennessee (Vesta 1 and White, 1989; Tunlid 

and White, 1992) and was extensively reviewed (White and Ringelberg, 1998; Zelles and Alef, 

1996; Zelles, 1999; Piotrowska-Seget and Mrozik, 2003; Kaur et aL, 2005; Leckie, 2005). Briefly, in 

this method, the crude extract of soillipids is subsequently fractionated by solid-phase extraction on 
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silica gel column into the three main lipid classes according to their polarity: neutral lipids, 

glycolipids and phospholipids. The fatty acids esterified to the phospholipids are released using a 

mi Id alkaline methanolysis and analyzed by gas chromatography cou pied to flame ionization 

detector (GC-FID) or mass spectrometry detector (GC-MS). Or, prior to GC analysis, the PLFAs 

could be fractionated into various chemically relevant groups (hydroxy fatty acids; saturated, 

monosaturated and polyunsaturated fatty acids; unsaponifiable lipids) using aminopropyl-bonded 

and benzenesulphonic acid-bonded sol id-phase extraction columns. This latest strategy allows an 

accu rate and complete description ofthe PLFA fraction (Zelles and Alef, 1996; Zelles, 1999). 

Also, two methods were developed to rapidly characterize soil microbial community by whole-cell 

fatty acid analysis. One of the methods used the Microbial Identification System (MIS) protocol 

developed for releasing whole-cell fatty acids from microorganisms but adapted to soil samples. 

Briefly, this method is based on a saponification and methylation steps of the fatty acids directly 

from the soil samples, without lipid extraction (Haack et aL, 1994; Cavigelli et aL, 1995). In the 

second method, the ester-linked fatty acids are directly released from the soil sample by a mi Id 

alkaline methanolysis, either without lipid extraction. The basis of this method is that ester-bounds 

in soil are labile and most likely, ester-bound fatty acids should be derived from living organisms 

(Drijber et aL, 2000; Schutter and Dick, 2000). These methods were developed to facilitate the 

processing of large number of samples and to acquire data that could be valuable complement to 

the more extended PLFA methodology (Drijber et aL, 2000; Drenovsky et aL, 2004; Hinojosa et al., 

2005). However, these procedures may include fatty acids derived from both cells and soil organic 

matter (Zelles, 1999; Schutter and Dick, 2000; Petersen et aL, 2002; Drenovsky et aL, 2004; 

Hinojosa et al., 2005). 

Fatty acids (FAs) could be grouped according to their chemical structure (straight saturated chain 

FA, branched saturated chain FA, monounsaturated FA, polyunsaturated FA, hydroxy substitued 

FA, FA with cyclopropyl ring). They could be grouped also according to their biological origin: 

actinomycetes (e.g., 10Me-16:0, 10Me-17:0, 10Me-18:0, 19Me-19:0), mycorrhizal fungi (16:1ro5c), 

saprophytic fungi (18:1ro9c, 18:2ro6,9c, 1B:3ro6,9,12c), bacteria (e.g., i-14:0, i-15:1, i-15:0, a-15:0, 

15:0, i-16:0, 16:1ro7c, i-17:0, a-17:0, 17:0 cyclo, 17:0, 1B:1ro7c, 1B:1ro5c, 19:0 cyclo roBc), Gram+ 

bacteria (e.g., i-14:0, i-15:1, i-15:0, a-15:0, i-16:0, i-17:0, a-17:0) and Gram- bacteria (e.g., 
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16:1ro7c, 17:0 cyclo, 18:1ro7c, 18:1ro5c, 19:0 cyclo ro8c) (Lechevalier, 1977; Kroppenstedt, 1985, 

1992; Federle, 1986; Lechevalier and Lechevalier, 1988; D'Leary and Wilkinson, 1988; Ratledge 

and Wilkinson, 1988; Wilkinson, 1988; Vestal and White, 1989; Frostegard et aL, 1993; Graham et 

aL, 1995; Disson et aL, 1995; Frostegard and Bââth, 1996; Zelles, 1997, 1999; Disson, 1999; Hill et 

aL, 2001). The class of lipid from which the fatty acid is derived. For example, the PLFA 16:1ro5 is 

a specific biomarker of the active biomass of mycorrhizal fungi in sail. The neutral lipid fatty acid 

16:1ro5 in mycorrhizal fungi is associated with storage lipids present in vesicles and spores (van 

Aarle and Disson, 2003). Multivariate analysis of the fatty acid profiles could be used to detect 

changes in the microbial community composition (Hedrick et aL, 2005). 

Fatty acid biomarkers analysis is a suitable method for studying the changes in the soil microbial 

communities caused by plant diversity and physiology (eg., Sëderberg et aL, 2002; Dunfield and 

Germida, 2004; Carney and Matson, 2005), tillage (e.g., Drijber et aL, 2000; Feng et aL, 2003; 

Spedding et aL, 2004), fertilization (eg., Gryndler et aL, 2006; Sullivan et aL, 2006), pollution (eg., 

Kelly et aL, 2003), soil properties (e.g., Schutler and Dick, 2000). Fatty acid profiling has been also 

used in plant pathology in order to betler understand the impact of disease on soil microbial 

communities and also how inoculated biological control agents interact with these soil communities. 

Using phospholipid fatty acid (PLFA) approach, Hamel et al. (2005) showed that Fusarium crown 

and root rot of asparagus was associated with a profound cultivar-specifie, reorganization of the soil 

microbial community. Kozdr6j et al. (2004) showed that, using total fatly acid profiling, microbial 

communities in the rhizosphere of maize changed in response to inoculation with Pseudomonas 

spp. and the growth stage of the plant. Larkin and Honeycutl (2006) studied the effects of different 

cropping systems on soil microbial communities and Rhizoctonia diseases in potato. Many studies 

used the PLFA approach to study the interactions of arbuscular mycorrhizal fungi with other soil 

microbiota and plant (e.g., Disson et aL, 1996; Disson et aL, 1998; Green et aL, 1999; Sëderberg et 

aL, 2002; Gormsen et aL, 2004; Johansson et aL, 2004; Albertsen et aL, 2006). Mazzola (2004) 

proposed to use phospholipid fatty acid (PLFA) or fatty acid methyl ester (FAME) analysis in order 

to assess the biological nature of soil suppressiveness. Although, fatty acid profiling (and 

phospholipid fatty acid profiling) are sensitive enough for monitoring the global changes in the soil 

microbial community following inoculation of microorganisms and effect of plant disease, this 

approach was not report frequently used for such studies in field conditions. As far as we are 
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aware, there have been no published studies that report how soil microbial communities are 

affected by BeA treatments in a field trial, or whether soil microbial communities are affected when 

they inhabit the root-associated soil of plants with SSR disease. 

1.7 GENERAL OBJECTIVES AND HYPOTHESES 

Sclerotinia stem rot (SSR) disease caused by Sclerotinia sclerotiorum (Lib.) de Bary is considered 

one of the most important fungal diseases of soybean. The application of biological control agents 

is a promising way of controlling SSR disease in the field. Although several biocontrol agents for 

SSR disease have been identified, there is a major gap in our knowledge of how effective these 

biocontrol agents are in the field. Also, biological control agents introduced in a soil environment will 

interact with other soil organisms, the pathogenic organism and the infected plants, which may 

change the genetic and functional diversity in soil microbial communities. Profiling these changes 

may le ad to an improved understanding of the interactions between these players (biological 

control agent, pathogen, soil biota and plant) in the biological control phenomenom, permiting us to 

exploit naturally-occurring ecological relationships and develop more sustainable approaches to 

control soybean disease. Signature lipid biomarkers approach was used to profile microbial 

communities in soils. The improvement of laboratory techniques and procedures in the extraction 

and characterization of soillipids would benefit researchers and cou Id provide new insight into soil 

organic matter dynamics and soil microbial ecology. 

The general objective of this thesis was to study the impacts of introducing biological control 

agents such as Trichoderma virens and arbuscular mycorrhizal fungi in protecting soybean against 

Sclerotinia sclerotiorum pathogen, the causal agent of SSR, and their effects on soil microbial 

communities in order to develop develop more sustainable approaches to control soybean disease. 

The general hypotheses underlying this research work were (1) free-living fungi (Trichoderma 

virens) and arbuscular mycorrhizal fungi (Glomus intraradices and Glomus mosseae) will control 

SSR in soybean fields, by acting specifically against SSR, by inducing plant resistance 

mechanisms, through interactions with other microorganisms or by promoting the health of soybean 

plants, (2) soil inoculation with free-living fungi (Trichoderma virens) and arbuscular mycorrhizal 
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fungi (G/omus intraradices and G/omus mosseae) will impact the genetic and functional diversity of 

the soil microbial communties, and (3) changes in soil microbial communities will be detected with 

signature lipid biomarkers. 

The specifie objectives of this thesis were (1) to find the best solvent mixture for recovering fatty 

acid biomarkers from soil using a PSE system by comparing the soil lipids extracted with four 

organic solvent mixtures, namely chloroform:methanol:phosphate buffer (1 :2:0.8, v/v/v), 

chloroform:methanol (1 :2, v/v), hexane:2-propanol (3:2, v/v) and acetone, (2) to obtain, using a Py­

MAB-TOF-MS system, characteristic and specifc fingerprints of the whole lipid composition of six 

soils from various agroecosystems, (3) to compare the discrimination among the soils obtained by 

Py-MAB-TOF-MS lipid fingerprinting to the one obtained by the GC-FID profiling of the fatty acid 

biomarkers in the same soils; (4) to determine whether SoilGard™ (T.virens) and AMF (a mixture of 

G/omus intraradices and G. mosseae), used alone or in combination, could reduce SSR disease 

incidence in soybeans, (5) to assess the effect of these BCA treatments on soybean growth and 

yield, (6) to investigate the effect of the inoculation of BCAs on soil microbial communities, and (7) 

to explore the relationships between the SSR disease and the soil microbial communities in order 

to better understand how the "health" status of the plant, monitored by the SSR disease incidence, 

will influence the microbial communities in the vicinity of the plants. The specific objectives 1 to 3 

were needed to validate that signature lipid analysis techniques had sufficient efficiency for high­

throughput analysis of many soil samples from field sites, as weil as sufficient resolution to detect 

changes in microbial communities from diverse field sites. 

The specifie hypotheses underlying these studies were (1) that the PSE system using 

chloroform:methanol mixtures (chloroform:methanol:buffer and chloroform:methanol) should be 

also the most efficient solvents for extracting fatty acid biomarkers in soils with a range of clay and 

organic matter contents, (2) the Py-MAB-TOF-MS system will be able to rapidly generate a specific 

and discriminatory fingerprint of a soil based on its composition in lipids, similar to the 

discrimination that is achieved with fatty acid biomarker profiling by GC-FID. Thus, Py-MAB-TOF­

MS could be used as a tool for cataloguing the soils based on their lipid composition and eventually 

their microbial communities, (3) BCAs have a protective effect on soybean against SSR disease, 

(4) the combination of the BCAs allows a better protective effect, (5) the introduction of biological 
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control agents have effects on sail microbial communities, (6) plants infested with SSR disease 

have effects on sail microbial communities and (7) these effects (BeA treatments, plants infested 

by SSR disease) can be assessed by fatty acid analysis. 
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2. COMPARISON OF SOlVENT MIXTURES FOR PRESSURIZED SOlVENT EXTRACTION OF 

SOll FATTY ACID BIOMARKERS 
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2.1 Abstract 

The extraction and transesterification of soillipids into fatty acid methyl esters (FAMEs) is a useful 

technique for studying soil microbial communities. Traditionally, soil fatty acids were prepared by 

manually extracting soil lipids with a solvent mixture that contains a citrate or phosphate buffer, 

chloroform and methanol. The efficiency of the chloroform:methanol mixture in extracting lipids from 

soil samples with a PSE system, which uses less solvent and has a shorter extraction time than the 

traditional procedure, remains to be investigated. The objective of this study was to find the best 

method for extracting fatty acid biomarkers from soils with a range of clay and organic matter 

contents by comparing the soil lipids extracted with four organic solvent mixtures, namely 

chloroform:methanol:phosphate buffer (1 :2:0.8, v/v/v), chloroform:methanol (1 :2, v/v), hexane:2-

propanol (3:2, v/v) and acetone. Total lipid fatty acid methyl esters (TL-FAMEs) were identified 

using gas chromatography and flame ionization detection. The agricultural soils studied had TL­

FAME concentrations ranging from 57.3 to 542.2 nmoles g-l soil (dry weight basis). The TL-FAME 

concentration was greater when soil was extracted with chloroform:methanol:buffer and 

chloroform:methanol than with the hexane:2-propanol and acetone solvents. The concentration of 

TL-FAMEs in various chemical (saturated chain, branched saturated chain, monounsaturated 

chain, polyunsaturated chain, hydroxy substituted fatty acids) and biological groups (bacteria, 

mycorrhizal fungi, saprophytic fungi, higher plants/faunal biota) was affected by the type of solvent 

used. The extraction efficiency for the chemical and biological groups followed the general trend of: 

chloroform:methanol:buffer ~ chloroform:methanol > hexane:2-propanol = acetone. Discriminant 

analysis revealed differences in TL-FAME profiles based on soil characteristics and the type of 

solvent used to extract soil lipids, while principal components analysis indicated that TL-FAME 

profiles were strongly affected by the presence of saturated chain fatty acids and fatty acids 

originating from higher plants/faunal biota. Solvent mixtures containing chloroform and methanol 

were the most efficient for extracting lipids from the agricultural soils in this study. However, for 

soils with organic content of more than 69.1 9 kg-1 (soils 3 & 4), we recommend more than 3 static 

cycles of extraction with the PSE system. Researchers should consider soi! properties and the lipid 

groups to be studied when selecting a solvent mixture. 
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2.2 Introduction 

Soillipids are chemically and biologically diverse, since they come from plant, animal and microbial 

cells, and lipid extracts have been found to contain neutrallipids (e.g., sterols, monoacylglycerols, 

diacylglycerols, triacylglycerols, hydrocarbons, isoprenoids, free fatty acids), glycolipids, 

phospholipids and many others (e.g., Dinel et aL, 1990; Gunstone et aL, 1994; Bull et aL, 2000; 

Almendros et aL, 2001; O'Keefe, 2002; Otto et aL, 2005; Quénéa et aL, 2006). 

The characterization of fatty acid biomarkers from the total lipids (Schutter and Dick, 2000; 

Drenovsky et al., 2004; Sullivan et aL, 2006), phospholipids (Vestal and White, 1989; Zelles, 1999; 

Piotrowska-Seget and Mrozik, 2003) and neutrallipids (Olsson, 1999; Bââth, 2003), as weil as their 

stable isotope composition (Boschker and Middelburg, 2002), can reveal changes in the structure, 

nutritional status and living biomass of soil microbial communities (Vestal and White, 1989; White 

and Macnaughton, 1997; Zelles, 1999). Fatty acids were extensively characterized in a wide range 

of microorganisms (e.g., bacteria, fungi, algae, protozoa) and are recognized to be very valuable 

biomarkers in chemotaxonomy and could be used to discriminate microorganisms up to the species 

level (Lechevalier and Lechevalier, 1989). 

Traditionally, soil fatty acids were prepared by first extracting soil lipids with a solvent mixture that 

contains a citrate or phosphate buffer, chloroform and methanol (Frostegârd et aL, 1991; White and 

Ringelberg, 1998, adapted from Bligh and Dyer, 1959). Indeed, the extraction of lipids by 

chloroform:methanol mixture is very efficient for many biological materials (Shahidi and 

Wanasundara, 2002; Christie, 2003). However, the task of extracting and studying soil lipids is 

complicated because of 1) their diverse chemical structures and biological origins, and 2) soil 

particles, such as clays, and organic matter that can interfere with their extraction (Hance and 

Anderson, 1963; Frostegârd et aL, 1991; Nielsen and Petersen, 2000). Representative and 

quantitative extraction of soil lipids is desirable, so that comprehensive profiling of these 

compounds can be performed. Even if a specifie group of lipids is targeted, it is essential that the 

extraction process is optimized to permit comparisons within replicates and among treatments from 

single and multiple experimental sites. 
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Tunlid and White (1992) mentioned also that the efficiency of chloroform:methanol mixture in 

extracting lipids from soil samples was never fully investigated and according to our knowledge, it 

still remains to be performed. Considering its physical-chemical characteristics, its composition in 

biotic communities as weil as their organization in a three-climensional environ ment, a soil could be 

considered "unique" in its properties and the use of a 'universal' solvent to extract the lipids, if not 

optimized, cou Id end up in underestimating its composition in microorganisms. Thus, it is imperative 

to evaluate the performance ('robustness') of chloroform:methanol extractant in a range of soils as 

weil as in comparison with other efficient solvent mixtures in their capacity to extract fatty acid 

biomarkers. However, using an extraction mixture that contains chloroform and methanol should 

also be a concern because these solvents are toxic to humans when inhaled or adsorbed through 

the skin, and chloroform is carcinogenic (Ikeda, 1992; Golden et aL, 1997). The research for less 

toxic solvents to extract lipids is a long-lasting quest in the field of lipidology (Christie, 1993,2003). 

This brings us to consider less toxic alternatives in extracting lipids from soils. 

Many solvents have been tested as altematives to chloroform:methanol solvent mixture for lipid 

extraction (see reviews by Shahidi and Wanasundara, 2002 and Christie, 2003). In this study, we 

proposed to assess the efficiency of a mixture of chloroform:methanol:buffer (1 :2:0.8, v/v/v) in its 

capacity to extract soil fatty acid biomarkers in soils presenting a range of clay as weil as organic 

matter contents in comparison with chloroform:methanol (1 :2, vlv), hexane:2-propanol (3:2, v/v) and 

acetone. Chloroform:methanol is a similar extractant than chloroform:methanol:buffer (1 :2:0.8, 

v/v/v), but its use doesn't include a the time-consuming post-extraction step of phase separation 

that is usefull to remove non lipid molecules (ami no acids, carbohydrates, salts, etc) that coula 

interfere in the identification and quantification of fatty acids. Hexane:2-propanol is effective at 

extracting lipids from various biological materials and is commonly used as an equivalent 

alternative extractant to chloroform:methanol mixtures (Hara and Radin, 1978; Shahidi and 

Wanasundara, 2002; Christie, 2003; Dodds et aL, 2004; Tanamati et aL, 2005). This mixture was 

developed as a low toxicity alternative to chloroform:methanol for extracting lipids from tissues 

(Hara and Radin, 1978). However, its performance varies with the material tested. For example, 

Schi:ifer (1998) showed that more of the fatty acids contained in cereal and yolk lipids were 

extracted using a hexane:2-propanol (3:2, v/v) mixture than chloroform:methanol mixture, although 

the extraction of muscle lipids was more efficient with chloroform:methanol (2:1, v/v) than with other 
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solvent mixtures. Due to its popularity and widespread use, this mixture merits to be investigated in 

its capacity to extract fatty acid biomarkers from soil samples. Finally, acetone was selected 

because of its lower toxicity compared to ail the other mixtures as weil as its capacity to extract 

lipids form Eucalyptus globulus wood wood (Gonzalez-Vila et aL, 2000) and wheat grains 

(Zamowski and Suzuki, 2004). This solvent was also never used to extract lipids from soil samples. 

Even if the polarity index of the solvents and lipid solubilities in these solvents are known, it is 

difficult to predict the capacity of a given solvent to solubilize lipids in a given biological material and 

experimentation is often needed to assess solvent efficiency (Christie, 1993). 

Moreover, many techniques were designed to facilitate the extraction process from solid matrices 

(Camel, 2001). Among them, the PSE system has been previously used to extract lipids from soils 

(Macnaughton et aL, 1997; Dinel and Nolin, 2000; Spedding et aL, 2004; Wiesenberg et aL, 2004; 

Hamel et aL, 2005; Jansen et aL, 2006). This technique accelerates the extraction process, 

reduces human contact with solvents, and reduces the volume of solvents used. The capacity of 

the PSE system to extract soil fatty acid biomarkers in a range of soils was not fully optimized using 

various solvent mixtures. 

The hypothesis underlying this study are that pressurized solvent extraction using 

chloroforrn:methanol mixtures (chloroform:methanol:buffer and chloroform:methanol) should be 

also the most efficient solvents for extracting fatty acid biomarkers in soils with a range of clay and 

organic matter contents. The objective of this research was to find the best solve nt mixture (or 

extractant) for recovering fatty acid biomarkers from soil using a PSE system by comparing the soil 

lipids extracted with four organic solvent mixtures, namely chloroform:methanol:phosphate buffer 

(1 :2:0.8, v/v/v) , chloroform:methanol (1 :2, v/v), hexane:2-propanol (3:2, v/v) and acetone. In the 

choice of the best extractant, its toxicity should also be considered. Soillipids extracted with these 

solvents were transesterified and characterized chemically and biologically using TL-FAME profiles. 

We were thus able to quantify and compare the fatty acids extracted with each solvent based on 

their chemical structure (e.g., saturated, monounsaturated and polyunsaturated fatty acids) as weil 

as biological origin (e.g., fatty acid biomarkers of bacteria, mycorrhizal fungi, saprophytic fungi, 

higher plants/faunal biota). 
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2.3 Materials and methods 

2.3.1 Soil collection and handling 

The soils used in this study (mixed, frigid Typic Endoaquents) were collected from the top 15 cm of 

agricultural fields in southwestem Québec, Canada in August (soil4) and September (soils 1, 2 and 

3) of 1999 prior to crop harvest. These soils were sampled during a survey of 50 fields in which 4 

random composite samples were taken. Each of the four composite soil samples used in this study 

come fram a different field. After collection, half of each soil sample was air-dried, sieved « 2 mm 

mesh), stored at raom temperature and used for soil physical and chemical analysis, while the 

other half was frazen immediately and stored at -20°C until microbial biomass carbon and lipid 

analysis was conducted. Agricultural practices at each collection site and selected soil 

characteristics are reported in Table 1. 

2.3.2 Reagents and glassware 

Ali organic solvents used in this study were HPLC (high pressure Iiquid chromatography) grade, 

and ail glassware was either rinsed with methanol and chloroform or placed in a fumace at 360°C 

for at least 2 h. Laboratory equipment that did not tolerate heating at 360°C was rinsed with 

methanol and then chloroform, and allowed to dry at room temperature (20°C) before use. 

2.3.3 Pressurized solvent extraction (PSE) system 

Soil Iipids were extracted with an ASE 200 accelerated solvent extractor (Dionex Corporation, 

Sunnyvale, CA, USA) using the operating conditions described by Macnaughton et al. (1997), 

which consisted of one heating cycle at 80°C and 8280 kPa during 5 min, three static cycles of 15 

min each at the same temperature and pressure, rinsing of the transfer lines and sample cell with 

the solvent and purging with N2 for 180 s between each sample. Triplicate samples of each soil 

included in this study were extracted using the PSE system. Between 6 and 8 9 of freeze-dried soil 

was packed into a 11-mL stainless steel ASE vessel that had been rinsed with chloroform:methanol 

(1 :2) solution. Vessels were sealed at both ends with circular cellulose filters to prevent soil 
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particles from entering the extractor. The following solvents were used: (a) 

chloroform:methanol:phosphate buffer (1 :2:0.8, v/v/v), (b) chloroform:methanol (1 :2, v/v), (c) 

hexane:2-propanol (3:2, v/v) and (d) acetone. Additional chloroform and buffer were added to the 

extracts from solvent mixture (a) to allow the aqueous and organic phases to separate, so the final 

ratio of the chloroform:methanol:phosphate buffer was 2:2:1.8 (v/v/v). This procedure produced 20-

25 ml of an extract containing soil lipids and solvents. The organic phase was then removed by 

volatilization under N2 gas. 

2.3.4 Quantification and identification of TL-FAMEs 

TL-FAMEs were prepared by mild alkaline methanolysis of total soil lipid extracts according to 

White and Ringelberg (1998). Each Tl-FAME extract was dried completely under N2 and 

redissolved with 1-mL of iso-octane containing 25 ng IJL-l of methyl-nonadecanoate (C19:0) 

internai standard. Then, TL-FAMEs (5 J..Ll injected) were analyzed in split mode (50:1) with agas 

chromatograph (Hewlett Packard 6890) equipped with a Simplicity Wax capillary column (cross­

linked polyethylene glycol; length, 30 m; film thickness, 0.33 J..Lm; Supelco 2-4326), helium as 

carrier gas (constant at 9.5 psi) and a flame ionization detector. The oyen temperature was initially 

set at 60°C, then raised to 150°C (10°C min-1) and he Id for 5 min, after which it was raised by 3°C 

min-1 to a final temperature of 230°C and he Id for 20 min. Inlet and detector temperatures were 

200°C and 250°C, respectively. The linear flow velocity was at 32 cm/s. 

Identification of peaks was based on comparison of retention times to known standards (Supelco 

37 Component FAME Mix cat.#47885-U; Supelco Bacterial Acid Methyl Esters cat.#47080-U; 

Matreya PUFA-2 cat.#1081; Matreya Bacterial Acid Methyl Esters CP Mix cat.#1114; Matreya cis-

11-Hexadecenoic Acid cat.#1208 and Matreya 10-Methyloctadecanoate cat.#1763), used directly 

or derivatized if needed, containing FAMEs with chain length ranging from 8 to 24 carbon atoms. 

These standards allowed us to identify more than 50 different FAMEs (see Appendix A). 

The concentration of each TL-FAME (nmoles per gram dry soil (DS)) identified was calculated as 

using C19:0 as internai standard at a concentration of 25 ng IJl-1 (0.080 nmole C19:0 IJL-l) in each 

sample. The contribution of each identified Tl-FAME to the total TL-FAME concentration (ail Tl-
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FAMEs identified) in a sample, expressed as mole fraction (relative richness, % mole), was 

calculated and used in the multivariate analysis. 

2.3.5 TL-FAME nomenclature, chemical and biological groups 

We used the standard w-nomenclature (A:BwC) for designating the fatty acids (IUPAC-IUB, 1977). 

The TL-FAMEs identified in our samples were grouped according to their chemical class (straight 

saturated chain, branched saturated chain, monounsaturated chain, polyunsaturated chain, 

hydroxy substituted fatty acids) and biological origin (biomarkers of bacteria, mycorrhizal fungi, 

saprophytic fungi, higher plantlfaunal biota, general biota). The different biological groups were 

computed using the following TL-FAMEs: bacteria (i-15:0, a-15:0, 15:0, i-16:0, 16:10)7, i-17:0, 3-

OH-12:0, 17:0, 17:10)7, 17:0cy, 18:10)7, 10Me18:0), mycorrhizal fungi (16:10)5c), saprophytic fungi 

(18:10)9c/t, 18:20)6c/t, 18:30)6, 18:30)3) and a general biotic marker (16:0) (Federle, 1986; Vestal 

and White, 1989; Frostegàrd et aL, 1993; Graham et aL, 1995; Olsson et aL, 1995; Frostegàrd and 

Bààth, 1996; Zelles, 1997, 1999; Olsson, 1999; Hill et aL, 2001). Also, ail TL-FAMEs with more 

than 20 carbons (20:0,21:0,22:0,23:0,24:0,20:10)9,20:20)6, 20:30)3, 20:30)6, 20:40)6, 20:50)3, 

22:10)9, 22:20)6, 22:40)6, 22:50)3, 22:60)3, 24:10)9) were categorized as TL-FAMEs> 20 C 

because of the diverse origins (bacterial and fungal cells, plants, protozoa and other animais) of soil 

lipids in this group (Vestal and White, 1989; Schulten and Schnitzer, 1991; Zelles, 1999; Rezanka 

and Votruba, 2002; Jandl et aL, 2005; Otto et aL, 2005). 

2.3.6 Statistical analysis 

ln this study, from each of the four original soil samples, twelve subsamples were removed and 

extracted with the four extractants in triplicate, thus generating forty-eight samples. This experiment 

wanted to isolate the effect on the variability that could be attributed to the extraction itself by 

minimizing sample-to-sample variability, thus using "pseudo-replicates" or "analytical replicates". A 

follow-up experiment will be needed in order to assess the soil variability on the extraction using 

true replicates. 
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A one-way analysis of variance (ANOVA) was performed to determine how solvents 

(chloroform:methanol:phosphate buffer, chloroform:methanol, hexane:2-propanol and acetone) 

affected the quantity of TL-FAMEs (nmole/g DS, %mole) in the chemical classes and biological 

groups defined above. The ANOVA was performed using CoStat, version 6.003 (CoHort Software, 

Monterey, CA, USA) using LSD (Least significant difference), at a=0.05, as a post-hoc test for 

mean comparison. The values presented in graphs and tables are untransformed means (± 

standard errors of the mean) of triplicate soil samples. 

Principal components analysis (PCA) and discriminant analysis (DA) were performed on the 

dataset of individual TL-FAMEs identified in the samples (TL-FAME profiles) to explain sources of 

variation and to test the discrimination of the samples according to the soil and the solvent mixture. 

The data, expressed in % mole, were transformed with a IOg10X+1 transformation, where x is the % 

mole of each TL-FAME in a sam pie and analysed using SYSTAT software, version 10 (Systat 

Software Inc., Richmond, CA, USA). 

2.4 Results 

The soils chosen for this study had diverse characteristics, with clay contents ranging from 174 to 

795 mg kg-l, organic matter levels from 23.5 to 263.3 9 kg-1 and soil micrabial carbon fram 153.7 to 

452.3 mg C kg-1 (Table 1), and are representative of agricultural soils in southwestern Québec. The 

TL-FAME concentration in these soils ranged from 57.3 to 542.2 nmoles g-l DS (Table 2). In soils 1 

and 2, the TL-FAME concentration was greater when soil lipids were extracted with 

chloroform:methanol:buffer than other solvents (Table 2). Chloroform:methanol:buffer and 

chloroform:methanol mixtures gave greater TL-FAME concentrations than hexane:2-propanol or 

acetone in soil 3, but the results for soil 4 were not consistent among extraction procedures (Table 

2). Independent of the solvent used, the TL-FAME concentration followed the order soil4 > soil 3 > 

soil 2 > soil 1, which coincided with the organic matter and soil microbial carbon content in these 

soils. 
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2.4.1 Chemical classes of TL-FAMEs in soillipid extracts 

The TL-FAMEs in soil lipid extracts were grouped according to their chemical structure and 

analysed to determine whether any chemical groups were selectively extracted by the solvent 

mixtures tested (Table 2). The TL-FAME profiles contained between 26.8 and 342.0 nmoles/g OS 

of total saturated chain fatty acids (SAFAs), which is the sum of straight SA FAs and branched 

SAFAs. Straight SAFAs were the most common, accounting for 29.6 to 62.2 % of the total soil TL­

FAMEs. The concentration of total unsaturated chain fatty acids (UFAs), which are composed of 

monoUFAs (Mono unsaturated chain fatty acids) and polyUFAs (Poly unsaturated chain fatty 

acids), ranged from 28.8 to 223.1 nmoles/g OS. MonoUFAs accounted for 4.9 to 30.6 % of the soil 

TL-FAMEs, but the polyUFAs were more common (27.3 to 52.7 % of the soil TL-FAMEs). The 

hydroxy fatty acids (HYFAs) were less than 2 % of the soil TL-FAMEs and concentrations ranged 

from 0.0 to 4.8 nmoles/g OS (Table 2). 

The concentrations (in nmoles g-1 OS) of straight SAFAs in lipid extracts from soils 1, 2 and 3 were 

significantly (P<0.05, LSO test) greater with chloroform:methanol:buffer and chloroform:methanol 

than with acetone or hexane:2-propanol (Table 2). In soil 4, the concentration of straight SA FAs :~ 

lipid extracts was greatest with chloroform:methanol and lowest with hexane:2-propanol (Table 2). 

ln ail soils, the branched SAFAs concentrations were significantly (P<0.05, LSO test) greater with 

chloroform:methanol:buffer than other solvents. 

The concentrations of monoUFAs, polyUFAs and HYFAs in lipid extracts from soils 1 and 2 were 

greatest in chloroform:methanol:buffer, followed by chloroform:methanol; there was no difference iil 

the concentrations of monoUFAs, polyUFAs and HYFAs when lipids were extracted with hexane:2-

propanol and acetone (Table 2). For soils 3 and 4, the monoUFA and HYFA concentrations were 

greater (P<0.05, LSO test) when lipids were extracted with chloroform:methanol or 

chloroform:methanol:buffer than with acetone and hexane:2-propanol. PolyUFA concentrations 

were greater (P<O.05, LSD test) in soils 3 and 4 when the lipids were extracted with 

chloroform:methanol mixture and also as with acetone in soil4 (Table 2). 
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2.4.2 Biological groups of TL-FAMEs in soillipid extracts 

Biological groups of TL-FAMEs in soillipid extracts were analysed to determine whether any were 

selectively extracted by the solve nt mixtures tested (Table 3). The TL-FAME biomarkers were 

grouped as follows: bacteria were 3.2 to 26.8 % of TL-FAMEs, mycorrhizal fungi were 0.5 to 6.3 % 

of TL-FAMEs and saprophytic fungi were 7.8 to 20.8 % of TL-FAMEs. We also found that 36.5 to 

66.9 % of the TL-FAMEs had a chain length ~ 20C, which may indicate that these lipids were 

derived from higher plants and animais. The general microbial biomass marker, 16:0, representea 

5.3 to 10.9 % of the TL-FAMEs. 

The concentrations of bacteria and mycorrhizal fungi biomarkers in ail soils were greatest when 

chloroform:methanol:buffer was used, and there were significantly (P<0.05, LSD test) greater 

concentrations of bacteria and mycorrhizal fungi biomarkers when soils were extracted with 

chloroform:methanol than acetone and hexane:2-propanol mixtures (Table 3). In soils 1 and 2, 

fungal biomarker concentrations were greater when lipids were extracted with 

chloroform:methanol:buffer but there was no difference amongst solvents for soil 3. In soil 4, 

chloroform:methanol:buffer, chloroform:methanol and acetone mixtures were equivalently efficient 

(P<0.05, LSD test) in extracting fungal biomarkers compared to the hexane:2-propanol mixture. In 

soil 1, the concentration of TL-FAMEs ~ 20C was significantly (P<0.05, LSD test) greater when 

extracted with chloroform:methanol:buffer than with the other solvent. In soil 2, 

chloroform:methanol:buffer and chloroform:methanol gave an equal concentration of TL-FAMEs ~ 

20C, while in soil3, the chloroform:methanol extract had a greater TL-FAMEs ~ 20C concentration 

than the other solvents. In soil 4, the lipids extracted with acetone had a significantly greater 

(P<0.05, LSD test) concentration of TL-FAMEs ~ 20C than lipids extracted with the other solvents 

(Table 3). The general biomass marker (16:0) concentration tended to be greater when soillipids 

were extracted with chloroform:methanol:buffer and chloroform:methanol than acetone and 

hexane:2 propanol (Table 3). 
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2.4.3 Classifying soil chemistry and biology with TL-FAME profiles 

The PCA of TL-FAMEs led to the identification of eleven principal components (PCs) that explaihed 

more than 89 % of the variance in the dataset, however, the two first components, PC1 and PC2, 

explained more than 51% of the variance. The TL-FAME profiles from soils 3 and 4 gave scores 

that generally appeared in the negative PC1 quadrant, while the TL-FAME profiles of soils 1 and 2 

gave more disperse scores along the PC1 axis (Figure 1). We noticed that the scores coming from 

soil lipids extracted with chloroform:methanol:buffer and chloroform:methanol were distributed 

along the PC1 axis; in contrast, the scores from soil lipids extracted with hexane:2-propanol and 

acetone varied more along the PC2 axis (Figure 1). The composition in TL-FAMEs of hexane:2-

propanol and acetone extracts from soils 1 and 2 were similar (Figure 1). The TL-FAME profiles for 

soil 4 appeared in the upper left-hand corner of Figure 1 (negative PC1 values, positive PC2 

values), and were distinct from the scores reported for soils 1, 2 and 3. 

Analysis of the loading values (Table 4) generated by the principal components analysis of TL­

FAMEs dataset could give us insights about the chemical structure and biological origin of TL­

FAMEs appearing in the scores plot (Figure 1). Bacterial and mycorrhizal biomarkers contribute 

with high positive loadings to PC1 while TL-FAMEs ~ 20C contribute with high negative loadings to 

PC1 (Table 4). The largest positive values along the PC1 axis were from soil1 and 2 extracted with 

chloroform:methanol:buffer, which had 31 to 33% bacterial and mycorrhizal biomarkers in the total 

TL-FAME pool (Table 3). In contrast, TL-FAMEs ~ 20C represented 49 to 66% of the TL-FAMEs 

extracted from soils 3 and 4, and was the dominant biomarker group found in hexane:2-propanol 

and acetone extracts from soils 1 and 2 (Table 3). Eight of the ten TL-FAMEs having positive PC2 

loadings were straight chain saturated fatty acids, and most of the negative PC2 loadings were 

from unsaturated fatty acids (Table 4). It appears that the distribution of TL-FAME profiles along the 

PC2 axis was related to the concentration of straight SAFAs (Tables 2 and 4, Figure 1). Soil 4 had 

a greater straight SAFA concentration than the other soils, which explains why it appears in the 

quadrant with positive PC2 values. The concentration of straight SA FAs in soils 1, 2 and 3 was 

affected by the solvent used, with hexane:2-propanol and acetone extracting less straight SA FAs 

than chloroform:methanol:buffer and chloroform:methanol (Table 2). This is consistent with the 

distribution of TL-FAME profiles for these soils along the PC2 axis (Figure 1). 
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Discriminant analysis, based on the individual TL-FAMEs found in the soil lipid extracts, provided 

significant discrimination between soil types and solvent mixtures (Wilks' lambda=O.OOO at 

p<0.00005 for ail discriminant analysis tests) (Figures 2a, 2b). The best discriminating variables 

selected by the automatic backward stepwise procedure permitted us to correctly classify 98% of 

the solvent mixtures and 100% of soils (Figures 2a, 2b). 

2.5 Discussion 

Lipids can be selectively solubilized by organic solvents, depending on structural features such as 

the proportion of non polar hydrocarbon chains in the fatty acids or other aliphatic moieties and the 

presence of polar functional groups, such as phosphate and sugar moieties. Neutral lipids are 

highly soluble in hydrocarbon solvents (e.g. hexane, toluene, benzene or cyclohexane) and some 

polar solvents (e.g. chloroform and diethyl ether), although they are insoluble in methanol, a polar 

solvent. The solubility of such lipids in alcoholic solvents increases with the chain length of the 

hydrocarbon moiety of the alcohol: for example, nonpolar lipids are more soluble in ethanol and 

completely soluble in n-butanol. In the sa me way, the solubility of short fatty acids residues in the 

lipids increases when polar solvents are used. Polar lipids are only sparingly soluble in hydrocarbon 

solvents unless solubilized in association with other lipids; however, they dissolve readily in more 

polar solvents, such as methanol, ethanol, or chloroform (Christie, 1982; Christie, 1993; Shahidi 

and Wanasundara, 2002). The chloroform:methanol:buffer mixture contains an aqueous buffer as 

weil as chloroform and methanol, and it has been proposed that this type of monophasic solution 

should have a greater ability to break polar bonds and extract lipids from biological mate rials than 

the chloroform:methanol mixture alone (Bligh and Dyer, 1959). 

Despite methodological differences, the results for total concentration of identified TL-FAMEs as 

weil as the concentrations of TL-FAMEs in chemical and biological groups are in the range of 

published data (e.g., Bull et aL, 2000; Orenovsky et aL, 2004; Allison et al. 2005; Jandl et aL, 2005; 

Joergensen and Potthoff, 2005) for agricultural soils. For example, the total concentration of 

identified TL-FAMEs in the soils used in this study ranged from 57.3 to 542.2 nmoles g-1 DS (Table 

2). These values are in a similar range to the 160.8 to 341.2 nmoles g-1 OS of TL-FAMEs reported 
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by Drenovsky et al. (2004) for agricultural soils analysed with the Microbial Identification System 

(MIS, Microbial ID Inc., Newark, DE, USA), another method for directly characterized who le soil 

fatty acids. The TL-FAME concentration in ail soils was greater when solvents containing 

chloroform and methanol were used, which is consistent with other studies showing chloroform­

methanol mixtures to be the most efficient for extracting lipids from biological mate rials (Fishwick 

and Wright, 1977; Gunnlaugsdottir and Ackman, 1993; Undeland et aL, 1998; Ackman, 2000; 

Shahidi and Wanasundara, 2002; Gallina Toschi et aL, 2003). 

The TL-FAMEs ~ 20C detected and quantified in this study contributed to a large part of the total 

concentration of TL-FAMEs. Data on these FAMEs are not often presented in papers oriented on 

the understanding microbial community dynamics because they are not typically biomarkers of 

bacteria and fungi. However, when they are monitored, it could be observed that TL-FAMEs ~ 20C 

contributed to a larger part of the fatty acids pool in agricultural soils (Jandl et aL, 2002, 2005). 

Jandl et al. (2005) showed that these FAMEs and longer ones could came from different biological 

origins such as above- and below-ground crop residues, organic manure and soil organisms. 

However, not ail chemical compounds are extracted more efficiently with chloroform:methanol 

mixtures than other solvents. Several researchers found that the chloroform:methanol:buffer 

mixture extracted greater quantities of phospholipids than the hexane:2-propanol mixture, but there 

was no difference in the level of neutrallipids (triacylglycerols, cholesterol esters, free fatty acids) 

extracted with these mixtures (Erickson, 1993; Gunnlaugsdottir and Ackman, 1993; Undeland et al., 

1998). The 2-propanol in the hexane:2-propanol mixture is a less polar solvent than the methanol in 

the chloroform:methanol:buffer and chloroform:methanol mixtures. Thus, the poor solubility of polar 

components in hydrocarbon solvents (e.g. hexane), and the lower polarity of 2-propanol compared 

to methanol, might, in part, explain the trend of lower recovery of polar lipid classes and total TL­

FAMEs with the hexane:2-propanol mixture than with the chloroform:methanol:buffer and 

chloroform:methanol mixtures. Acetone is a solvent of medium polarity often used to extract simple 

lipids and glycolipids or precipitate phospholipids (Christie, 1993). Even if acetone is the standard 

solvent for wood extractives (Gonzalez-Vila et aL, 2000) and the best for extracting the highest 

amounts of total resorcinolic lipids from wheat grains (Zamowski and Suzuki, 2004), our results 
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show that this solvent was not generally efficient at extracting the various TL-FAME chemical 

classes and biomarkers from soils selected for this study. 

The principal components analysis showed that the TL-FAME profiles of soil4 were grouped in one 

quadrant, distinct from the TL-FAME profiles of the other three agricultural soils (Figure 1). This is 

likely related to the distinct soil properties of soil 4, which contained a greater TL-FAME 

concentration, organic matter and microbial biomass than the other soils. We believe the TL-FAME 

profiles for soil 4 to be representative and qualitative, but this remains to be confirmed. Spi king a 

soil with a known concentration of a particular lipid might seem like one way to evaluate the 

extraction efficiency of solvent mixtures, except that soils are biologically active and there is 2 

distinct possibility that newly-added lipids would be rapidly metabolized by soil microorganisms. We 

suspect that solvent mixtures can become saturated in soils with high soil organic matter content. 

due to the presence of readily available organic molecules (not necessarily lipids). If this is the 

case, then longer extraction times, a higher solvent mixture:sample ratio, or a solvent mixture 

containing more chloroform would be required to generate a representative sample of lipids. For 

example, Iverson et al. (2001) showed that in marine samples containing > 2% lipids, a ratio 1:2 of 

chloroform:methanol (or the extraction by the Bligh and Dyer method) underestimated the lipid 

contents of these tissues compared to the Folch method, which uses a ratio of 2:1 

chloroform:methanol. These considerations deserve further investigation in soils. 

2.6 Conclusions 

Fatty acids are major building blocks for many classes of lipids, including acylglycerols and 

phospholipids, and are widely used as biomarkers in microbial ecology and to characterize soil 

microbial communities. We found that chloroform:methanol:buffer and chloroform:methanol 

extracted a greater concentration of TL-FAMEs from soils than the hexane:2-propanol and acetone 

solvents. The chemical structure and biological groups of TL-FAMEs was affected by the type of 

solvent used, and the general trend for extraction efficiency was chloroform:methanol:buffer ~ 

chloroform:methanol > hexane:2-propanol = acetone. Solvent mixtures containing chloroform and 

methanol were the most efficient for extracting lipids from the agricultural soils in this study. To 

generate representative lipid samples from soils with a high organic matter content, we recommend 
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that researchers consider longer extraction times, a higher solvent mixture:sample ratio, or increase 

the chloroform content in the solvent mixture. Improved laboratory techniques and procedures that 

permit researchers to efficiently extract and characterise soil lipids will provide new insight into soil 

organic matter dynamics and soil microbial ecology. 
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Table 1. Selected properties of the soils (Typic Endoquents, 0-15 cm depth) used in the experiment. 

Soil Tillage systemt Crop pH~ OM§ Sand1f Clay1[ Silt1f Texturai class 5MB-C# 

9 kg·1 9 kg-1 9 kg-1 9 kg-1 mg C kg-1 

1 CT soybean 8.0 23.5 211 450 339 Clay 153.7 (±10.3) 

2 NT soybean 6.8 45.1 543 174 283 Sandy loam 215.3 (±18.4) 

3 NT soybean 7.0 69.1 0 795 205 

4 CT bean 6.1 263.3 149 433 418 

t CT: conventional tillage, NT: no-tillage. 

:j: Soil:water extracts (1:2 soil:solution ratio) (Hendershot et al., 1993). 

§ Organic Matter (OM) determined by loss on ignition (360°C for 4 h) (Schulte et aL, 1991). 

1fParticle-size analysis (Sheldrick and Wang, 1993). 

Clay 384.8 (±11.1) 

Silty clay 452.3 (±23.2) 

# 5MB-C is soil microbial biomass C, mean (± standard error of mean) of 3 replicate measures. 5MB-C = Chloroform labile C/KEC, 

using a KEC of 0.45 (Wu et aL, 1990; Voroney et aL, 1993; Joergensen, 1996). 
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Table 2. Chemical classes of TL-FAMEs in soillipids extracted with various solvents using a PSE system. For each soil, means in the sa me column 

followed by the same or no letters are not significantly different (LSO Test, p<0.05). 

Solvent mixture Total TL-FAMEs StraightSAF As! BranchedSAF As MonoUFAs POlïUFAs HYFAs 
mean {nmoles g-1 OS} 

Soil1 
Acetone 59.7c 25.0c 1.8c 11.0c 21.6c 0.3c 

Chloroform:methanol 101.0b 38.2b 5.6b 21.5b 34.7b 0.9b 
Chloroform:methanol:buffer 167.1a 49.4a 16.7a 51.1 a 47.0a 2.8a 

Hexane:2-propanol 57.3c 26.4c 1.8c 9.7c 19.1c O.4c 
Soil2 

Acetone 136.1c 66.4b 4.4c 21.5c 42.9c 0.9c 
Chloroform:methanol 216.2b 91.7a 13.2b 41.9b 66.7b 2.6b 

Chloroform:methanol:buffer 282.1a 93.4a 31.5a 73.0a 79.4a 4.8a 
Hexane:2-propanol 137.2c 63.4b 4.1c 20.2c 48.9c 0.7c 

Soil3 
Acetone 242.9b 85.7b 4.0c 28.9b 124.3bc O.Oc 

Chloroform:methanol 360.6a 122.2a 13.5b 69.8a 153.3a 1.9b 
Chloroform:methanol:buffer 361.7a 121.8a 30.6a 70.1a 135.6b 3.6a 

Hexane:2-propanol 216.8b n.6b 4.8c 20.2b 114.3c O.Oc 
Soil4 

Acetone 493.5ab 297.8a 6.4c 24.1b 164.8a O.7b 
Chloroform:methanol 542.2a 321.7a 20.3b 43.7a 153.2a 3.2a 

Chloroform:methanol:buffer 438.8b 233.9b 27.7a 54.7a 119.8b 2.6a 
Hexane:2-propanol 346.2c 215.3b 6.0c 18.0b 107.0b O.Oc 

t SA FAs are saturated chain fatty acids, UFAs are unsaturated chain fatty acids and HYFAs are hydroxy fatty acids. 

41 

) 



) 

Table 3. Biologically relevant groups of TL-FAMEs in soillipids extracted with various solvents using a PSE system. 

For each soil, means in the same column followed by the sa me or no letlers are not significantly different (LSD Test, p<0.05). 

Solvent mixture Total TL-FAMEs Bacteriat M~corrhizae Funai FAMEs ~ 20C General biomass marker 16:0 
mean (nmoles a,l DS) 

Soil1 
Acetone 59.7c 5.8c 1.4c 12.4c 30.6c 4.5c 

Chloroform:methanol 101.0b 15.3b 3.7b 16.5b 49.8b 8.1b 
Chloroform:methanol:buffer 167.1a 44.7a 10.6a 25.2a 61.0a 13.7a 

Hexane:2-propanol 57.3c 6.2c 1.3c 9.9d 31.0c 4.2c 
Soil2 

Acetone 136.1c 13.0c 3.7c 19.1c 82.1b 8.4c 
Chloroform:methanol 216.2b 31.7b 7.8b 28.5b 117.1a 16.1b 

Chloroform:methanol:buffer 282.1a 72.9a 15.4a 37.1a 118.2a 22.5a 
Hexane:2-propanol 137.2c 11.6c 3.5c 14.4d 91.8b 7.3d 

Soil3 
Acetone 242.9b 9.6c 3.6c 42.7 160.1c 13.8c 

Chloroform:methanol 360.6a 26.1b 8.5b 46.9 236.1a 22.2b 
Chloroform:methanol:buffer 361.7a 68.3a 17.1a 47.7 178.8b 28.1a 

Hexane:2-propanol 216.8b 9.6c 3.7c 36.2 143.8d 12.8c 
Soil4 

Acetone 493.5ab 15.8c 2.4c 39.5a 321.3a 37.1bc 
Chloroform: methanol 542.2a 45.5b 5.7b 49.4a 283.9b 59.1a 

Chloroform:methanol:buffer 438.8b 61.0a 9.6a 39.8a 216.3c 46.5b 
Hexane:2-propanol 346.2c 14.1c 2.0c 27.1b 2D4.8c 3D.8c 

tThe TL-FAMEs used to define (or used in) each grouping are detailed in the Materials and Methods section. 
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Table 4. Selected loading values trom principal components analysis of TL-FAME profiles from the dataset of the individual TL-FAMEs identified 

in soils extracted with various solvents. Values are the ten highest and ten lowest for each principal components (PC) axis. The chemical class and 

biological group of individual TL-FAMEs are provided. 

TL-FAME Chemical class Bioloaical arou~ PC110adina TL-FAME Chemical class Bioloaical arou~ PC210adina 
18:2ffi6t PolyUFAs Fungi -0.675 18:2ffi6c PolyUFAs Fungi -0.617 
20:2ffi6 PolyUFAs FAMEs ~ 20C -0.581 22:2ffi6 PolyUFAs FAMEs~ 20C -0.611 
20:0/19cyt StraightSAF As FAMEs ~ 20C -0.568 24:0 StraightSAFAs FAMEs~ 20C -0.582 
21:0 StraightSAF As FAMEs ~ 20C -0.568 20:5ffi3 PolyUFAs FAMEs~ 20C -0.561 
22:2ffi6 PolyUFAs FAMEs ~ 20C -0.521 18:1ffi9c/t MonoUFAs Fungi -0.542 
18:0 StraightSAFAs -0.473 22:6ffi3/24:1ffi9t PolyUFAs FAMEs ~ 20C -0.491 
22:5ffi3 PolyUFAs FAMEs ~ 20C -0.462 20: 3ffi 3 PolyUFAs FAMEs ~ 20C -0.462 
22:0 StraightSAF As FAMEs ~ 20C -0.456 22:1ffi9 MonoUFAs FAMEs ~ 20C -0.405 
22:1ffi9 MonoUFAs FAMEs ~ 20C -0.411 16:1ffi5 MonoUFAs Mycorrhizae -0.403 
14:0 StraightSAFAs -0.385 20: 2ffi 6 PolyUFAs FAMEs ~ 20C -0.400 
i-15:0 BranchedSAFAs Bacteria 0.867 22:5ffi3 PolyUFAs FAMEs~ 20C 0.542 
17:0cy BranchedSAFAs Bacteria 0.873 20:0/19cyt StraightSAFAs FAMEs ~ 20C 0.610 
20:1ffi9 MonoUFAs FAMEs ~ 20C 0.876 10:0 StraightSAF As 0.650 
18:3ffi3 PolyUFAs Fungi 0.881 20:2ffi6 PolyUFAs FAMEs20C 0.651 
16:1ffi5 MonoUFAs Mycorrhizae 0.885 18:0 StraightSAFAs 0.676 
18: 1ffi 7/1 OMe18:0t MonoUFAs Bactena 0.924 16:0 StraightSAFAs 0.759 
3-0H-C12:0 HYFAs Bacteria 0.954 15:0 StraightSAFAs Bacteria 0.811 
i17:0 BranchedSAF As Bacteria 0.956 13:0 StraightSAFAs 0.853 
i16:0 BranchedSAF As Bacteria 0.973 14:0 StraightSAF As 0.876 
16:1ffi 7 MonoUFAs Bactena 0.976 12:0 StraiahtSAF As 0.888 

tCo-eluting TL-FAMEs 
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Figure 1. Principal components analysis of the TL-FAME profiles (dataset of the identified individual TL-FAMEs in samples) of the soil lipids 

extracted with various solvents using a PSE system. The data presented in these figures are means of the replicates' scores and their standard 

errors of the mean. In the abbreviations used in the figure, the letters designate the extractants (A, acetone; CM, chloroform-methanol; CMB, 

chloroform-methanol-buffer, HP, hexane-2-propanol) and the numbers (1 to 4), the soils (Table 1). 
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Figure 2. Discriminant analysis of the TL-FAME profiles (dataset of the identified individual TL-FAMEs in samples) of the soillipids extracted with 

various solvents using a PSE system. Scores plots of discriminant analysis using two different grouping variables: soils (Figure 2a) and extractants 

(Figure 2b). For each of these DA, discriminant factors (DF) 1 and 2 were plotted. The data presented in these figures are means of the replicates' 

scores and their standard errors of the mean. In the abbreviations used in the Figure 2a, the letters designate the extractants (A, acetone; CM, 

chloroform-methanol; CMB, chloroform-methanol-buffer, HP, hexane-2-propanol). 
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2.7 Connecting paragraph 

ln Chapter 2, 1 used four solvent mixtures and an automated pressurized solvent extraction system, 

to efficiently extract soillipids. Soillipids were subject to alkaline methanolysis to release their fatty 

acid methyl esters (FAMEs) that were subsequently analyzed with agas chromatograph coupled to 

a flame ionization detector (GC-FID). Yet, this procedure is relatively time-consuming and would 

limit the number of samples that could be processed in the laboratory. Chapter 3 presents an 

exploratory study using pyrolysis-mass spectrometry that could directly and rapidly, without 

chromatography and derivatization steps, fingerprint microbial communities of soils, based on their 

composition in lipids, from various agroecosystems. 
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3. PYROl YSIS-MASS SPECTROMETRY AND GAS CHROMATOGRAPHY -FLAME IONIZA TION 

DETECTION AS COMPlEMENTARY TOOlS IN THE CHARACTERIZATION OF SOll LlPIDS 
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3.1 Abstract 

Profiling of lipid biomarkers is a very powerful tool for assessing changes in micrabial community 

structure and diversity in soils. However, generating lipid profiles using biomarkers such as 

phospholipid fatty acids demands intensive laboratory work and data analysis. This approach may 

not be appropriate when a large number of samples are being screened to distinguish differences 

among experimental treatments or sites. Simple cataloguing or classification of soil lipids can be 

accomplished with techniques such as pyrolysis mass spectrometry (Py-MS), which provides a 

rapid and sensitive 'fingerprint' of the se compounds. The objective of this work was to discriminate 

the soillipids extracted from different agroecosystems with a modified Py-MS system, the pyrolysis 

metastable atom bombardment time-of-flight mass spectrometry (Py-MAB-TOF-MS). Soil lipids 

were extracted with a 1:2 chloroform:methanol solvent from six soils collected fram fields under 

soybean, corn and asparagus production. Then, they were analyzed with Py-MAB-TOF-MS or 

futher derivatized into fatty acid methyl esters, analyzed by gas chromatography and used to 

identify microbial communities with the Sherlock Microbial Identification System (MIDI Inc.). 

Discriminant analysis of the Py-MAB-TOF-MS fingerprints and the ester-linked fatty acid profiles 

demonstrated significant differences among soils and among crop production systems (soybean, 

com, asparagus) (Wilks' lambda=O.OOO at p<O.00005 for ail discriminant analysis tests). Lipid 

fingerprints generated fram analysis of Py-MAB-TOF-MS spectra reflect the overall soil lipid 

composition (including lipids from microbes, animais, plants and non-living matter). In contrast, the 

ester-linked fatty acid profiles provide quantitative information on specifie groups of soil bacteria 

and fungi. Although these two methods do not provide exactly the sa me information, both were able 

to distinguish differences among soils and crop production systems. Further work is needed to 

identify diagnostic fragments from Py-MAB-TOF-MS that could be used as biomarkers for more 

detailed characterization of these microbial communities. 
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3.2 Introduction 

The characterization of lipid biomarkers in soils is proving to be a powerfu1 tool for studying the 

diversity and structure of living biotic communities as weil as the source, turnover and stabilization 

of non-living organic matter in many environments (e.g. Vestal and White, 1989; Dinel et aL, 1990; 

Zelles, 1999; Bull et aL, 2000; Piotrowska-Seget and Mrozik, 2003; Wiesenberg et aL, 2004; Otto et 

aL, 2005). A wide array of lipid molecules could be used as biomarkers such as fatty acids, sterols, 

respiratory quinones, alkanes, etc. In living biota, fatty acids are the major building blocks of the 

most abundant lipids such as phospholipids, glycolipids and neutral lipids (e.g., sterol esters, 

monoacylglycerols, diacylglycerols, triacylglycerols) (e.g., Gunstone et aL, 1994; Christie, 2003). 

Totallipid fatty acids (Schutter and Dick, 2000; Drenovsky et aL, 2004; Hinojosa et aL, 2005), fatty 

acids linked to phospholipids (Vestal and White, 1989; White and Macnaughton, 1997; Zelles, 

1999; Piotrowska-Seget and Mrozik, 2003; Kaur et aL, 2005) as weil as to neutrallipids (Olsson, 

1999; Bàâth, 2003) were used to evaluate the impact of land management practices and pollutants 

on soil microbial communities. Detailed analysis of lipid biomarkers (fatty acids, hydrocarbons, 

sterols, terpenes, etc.), and more precisely of fatty acid biomarkers, give qualitative (what type of 

lipid species?) as weil as quantitative (how much of eath lipid species?) informations on the 

composition in organic matter and microbial communities of a soil that are specifie for each soil due 

to the jointed action of environ mental and anthropogenic factors. 

However, it is clear that generating profiles of lipid biomarkers (or fatty acid biomarkers) demands 

intensive laboratory work (Iipid extraction, fractionation, derivatization, chromatography, etc.) and 

data analysis, which may be too time consuming and costly when a large number of samples are 

being screened to distinguish soillipid biomarkers among experimental treatments or sites. Simple 

cataloguing or classification of these samples can be accomplished with techniques that generate a 

'fingerprint' of the soil lipids extracted from living organisms and other sources. Fingerprinting 

techniques such as Fourier transform infra-red and Raman spectroscropic techniques as weil as 

direct infusion mass spectrometry and pyrolysis mass spectrometry do not require a 

chromatographie step, and the frequently needed derivatization of the targeted compounds 

(Goodacre and Kell, 1996; Sumner et aL, 2003; Dunn et aL, 2005; Villas-Bôas et al., 2005). 

Generally, fingerprinting involves much larger numbers of measurements (high throughput) than 
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profiling and requires chemometric interpretation of the complexity resulting from simultaneous 

acquisition of analytical data on hundreds of metabolites (Goodacre et aL, 2003; Sumner et aL, 

2003). 

Of the techniques Iisted above, pyrolysis mass spectrometry (Py-MS) has several advantages, 

such as speed of analysis, sensitivity, high sample throughput, minimal sample preparation, and 

low cost. In most Py-MS systems, the chemical compounds in a sample are desorbed and 

volatilized during a rapid heating phase, followed by ionization with electron impact, and detection 

by mass spectrometry (Goodacre and Kell, 1996). This technique was successfully used, 

sometimes with a thermally assisted hydrolysis and methylation step, to discriminate and classify 

bacteria (Basile et aL, 1998a,b; Brandâo et aL, 2002), fungi (Lilley et aL, 2001), yeasts (Timmins et 

aL, 1998), higher plants (Kim et aL, 2004) and organic matter (Peuravuori et aL, 1999; Magrini et 

aL, 2002; Marche et aL, 2003; Jandl et aL, 2004). 

The modified Py-MS system used in this study is pyrolysis metastable atom bomba rd ment time-of­

flight mass spectrometry (Py-MAB-TOF-MS). The metastable atom bombardment capacity allows 

better control of the ionization energy and reduces chemical fragmentation during ionization, 

compared to electron impact ionization (Faubert et aL, 1993). The Py-MAB-TOF-MS system has 

recently been used for fingerprinting vegetable oils (Sanchez et aL, 2002), animal fats (Beaudet et 

aL, 2003), microbes (Wilkes et aL, 2005), and steroids (Dumas et aL, 2002). 

Thus, Py-MS systems were proven to be powerful enough to discriminate biological mate rials of 

high degree of biochemical similarity (Iike genotypes of bacteria, virus, plants, etc.) by generating 

characteristic and rich mass spectrometry data for each of them. The Py-MAB-TOF-MS system 

uses a softer ionization energy resulting in less fragmentation of the characteristic molecular ions 

and thus could allow us to tentatively identity lipid species found in a given extract. However, this 

identification is putative and limited by the degradation of biomolecules in the pyrolysis process, the 

difference in ionization from one group of molecules to another, as weil as the occurrence of 

isobaric fragments, especially in very ri ch Iipid extract for a highly complex milieu such as a soiL 

The precise identification of the lipids in a given soil would need to be confirmed by other analytical 

means. In the other hand, the identification and quantification of fatty acids, by GC-FID and-or GC-
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MS, is a weil established approach to characterize microbial communities and organic matter in 

soil. However, it could be consider time-consuming especially with large number of samples to 

process. Thus, we hypothesize that Py-MAB-TOF-MS system will be able to rapidly generate a 

specific and discriminatory fingerprint of a soil based on its composition in lipids, similar to the 

discrimination that is achieved with fatty acid biomarker profiling by GC-FID. So, Py-MAB-TOF-MS 

could be used as a tool for cataloguing the soils based on their lipid composition. 

The objectives of this work was (1) to obtain, using a Py-MAB-TOF-MS system, characteristic and 

specifc fingerprints of the whole lipid composition of six soils from various agroecosystems, (2) to 

compare the discrimination among the soils obtained by Py-MAB-TOF-MS lipid fingerprinting to the 

one obtained by the GC-FID profiling of the fatty acid biomarkers in the same soils. 

3.3 Materials and methods 

3.3.1 Soil collection and handling 

The soils used in this study were mixed, frigid Typic Endoaquents collected from the top 15 cm of 

agricultural fields under soybean (Soils A to D), corn (Soil E) and asparagus (Soil F) production 

located in southwestern Quebec, Canada. After collection, half of each soil sample was air-dried, 

sieved « 2 mm mesh), stored at room temperature and used for soil physical and chemical 

analysis, while the other half was frozen immediately and stored at -20°C until lipid analysis was 

conducted. The six soil samples used in this study are composite samples from 18 (soil E), 24 

(soils A to D) and 25 (soil F) subsamples/plots. Each soil composite was analyzed five times 

(analytical replicates) by both methods described below. Agricultural practices at each collection 

site and selected soil characteristics are reported in Table 1. 

3.3.2 Preparation of totallipid extracts using a pressurized solvent extraction procedure 

Ali organic solvents used in this study were HPLC grade. Glassware and laboratory equipment 

were prepared as recommended according to White and Ringelberg (1998). Soil lipids were 

extracted with an ASE 200 Accelerated Solvent Extractor (Dionex Corporation, Sunnyvale, CA, 
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USA) using the operating conditions described by Macnaughton et al. (1997) as weil as in chapter 2 

(section 2.3.3), which consisted of one heating cycle at 80°C and 8280 kPa during 5 min, three 

static cycles of 15 min each at the same temperature and pressure, rinsing of the transfer lines and 

sample cell with the solvent and purging with N2 for 180 s between each sample. Between 6 and 8 

9 of freeze-dried soil was packed into a 11-ml stainless steel ASE vesse 1 that had been rinsed with 

chloroform:methanol (1 :2) solution. The soillipids were extracted with a chloroform:methanol (1 :2) 

solution. The lipids were dried under N2 gas and were quantitatively transferred to a GC vial using 

chloroform:methanol (1 :2) solution, dried under N2 gas and re-dissolved in 1 ml chloroform­

methanol (1 :2) prior to analysis with the Py-MAB-TOF-MS. 

3.3.3 Analysis of totallipid extracts using the Py-MAB-TOF-MS system 

The Py-MAB-TOF-MS (Dephy Technologies, Montreal, Canada) was used to discriminate between 

six total lipid extracts. The details related to the apparatus design and specifications are detailed 

elsewhere (Dumas et aL, 2002; Wilkes et aL, 2005). The ionization gas used was N2. This gas has 

an ionization energy of 8.67 eV (85 %) and 11.88 eV (15 %). A sample of 1-J.l1 was applied to the 

pyroprobe (Pyroprobe 2000 pyrolyzer; CDS Analytical, Oxford, PA, USA). Pyrolysis was achieved 

by ramping the probe temperature by 20 oC/ms from ambient to 1100-1200 oC, with a final ho Id 

time of at least 50 s. The probe was specially modified for enabling helium flow (1-2 mUmin) 

through the quartz capillary and then enhancing transfer of pyrolysis products into the MAB source. 

The mass range was scanned between 40 and 1000 m/z. Five analytical replicates of each lipid 

extract were analyzed. 

3.3.4 Preparation of the ester-linked fatty acid methyl esters (EL-FAMEs) 

Ali organic solvents used in this study were HPlC grade. Glassware and laboratory equipment 

were prepared as recommended in White and Ringelberg (1998). The in sffu transesterification 

procedure used in this study is detailed in Schutter and Dick (2000), but with some modifications. 

Prior to lipid analysis, the soils were freeze-dried and finely ground. Then, 3 to 5 9 of soil was 

incubated with 15 ml of 0.2 M KOH (potassium hydroxide) in methanol for 1-hour at 37°C. The 

reaction mixture was vortexed every 10-15 minutes. At the end of the reaction, the mixture was 

53 



cooled to room temperature and neutralized with 3 ml of 1 N glacial acetic acid. The EL-FAMEs 

were extracted from the mixture with phase partitioning using 3 x 5 ml hexane-chloroform (4:1). 

The organic phases were pooled and dried under a gentle steam of N2, then dissolved in iso-octane 

prior to analysis by GC-FID. 

3.3.5 Analysis of EL-FAMEs by GC-FID 

Each El-FAME extract was dried completely under N2 and redissolved with 1-ml of iso-octane. 

The El-FAME extracts (five analytical replicates, 5 /ll injected each) were analyzed in split mode 

(50:1) with agas chromatograph (Hewlett Packard 6890) equipped with an Ultra-2 capillary column 

(cross-linked 5% diphenyl-95% di-methylpolysiloxane; length, 25 m; internai diameter, 0.22 mm; 

film thickness, 0.33 /lm; Agilent J& W 19091B-102), hydrogen is the carrier gas (68.9 kPa), 

nitrogen is the "makeup" gas (30 mUmin), and air is used to support the flame of the FID. The 

temperature program ramps from 170°C to 270°C at 5°C per minute with a 2 min at 270°C. Inlet 

and detector temperatures were 250°C and 300°C, respectively. The settings were the same as 

those used in the MIS protocol (MIDI, Inc., Newark, Delaware, USA, www.midi-inc.com) (Sasser, 

1990; Schutter and Dick, 2000; Buyer, 2002). The retention times of the peaks were converted to 

equivalent chain length (ECl) values (Sasser, 1990). Identification of peaks was based on 

comparison of retention times (ECls) to commercial FAMEs standards (see chapter 2, section 

2.3.4, for details about the standards), and led to the identification of 70 and more FAMEs. Peak 

identifications were cross-validated by sending a subset of our samples to a certificated external 

laboratory (laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC) for analysis 

using the Sherlock Microbialldentification System® (MIDI, Inc., Newark, Delaware, USA). The fatty 

acids analyzed in our samples by this method are listed in Appendix B. FAMEs are described by 

standard ffi-nomenclature (IUPAC-IUB, 1977). 

3.3.6 Statistical analysis 

ln this study, from each of the six soil samples, one lipid extra ct as weil as one El-FAME extract 

were prepared. The lipid extract of each soil was analyzed five times by Py-MAB-TOF-MS and the 

El-FAME extract five times by GC-FID. This experiment was qualitative and exploratory and the 
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use of a limited number of samples was judged sufficient for meeting our objective. However, the 

differences observed between the soils, as enviranmental (or biological) 'entities' (or 'bodies'), 

could not necessarily be only attributed to their distinct lipid composition, because the effect of soil 

variability was not considered here. A follow-up experiment will be needed for studying the 

performance of the Py-MAB-TOF-MS system in its capacity to discriminate soils based on their lipid 

fingerprints using true replicates expressing the natural soil variability. 

Ali the statistical analysis were performed using SYSTAT software, version 10 (Systat Software 

Inc., Richmond, CA, USA). The Py-MAB-TOF-MS analysis of the total lipid extracts gave us ion 

masses ranging fram 40 to 1000 m/z (m/z, mass-to-charge ratio). The ion intensity for each mass 

was normalized to percent total ion counts and an analysis of variance (at p<0.05) allowed to retain 

the molecular fragments that discriminated the most the six different soils. Seventeen components 

fram the principal components analysis explained more than 99 % of the total variance 

With the GC-FID data, we calculated the percentage area of each EL-FAME as the (peak area of 

each identified FAME/total peak area of ail identified FAMEs) x 100%. The dataset of EL-FAMEs 

was analyzed using principal components analysis. Six components were extracted explaining 

more than 90% of the total variance. 

Discriminant analyses were conducted on the two datasets themselves and their respective 

resulting PCA scores as inputs (Radovic et aL, 2001; Goodacre et aL, 2003) to evaluate the 

discrimination between soils and the craps as weil as to reduce the variance among replicates of a 

given soil. 

3.4 Results and discussion 

Soils for this study came from agricultural fields in Southwestern Quebec (Canada) with a range of 

characteristics (Table 1) such as different levels of soil organic matter, which is expected to support 

distinct soil lipid biomarkers, more specifically distinct fatty acid biomarkers, and thus distinct soil 

micrabial communities (Palmborg et aL, 1998; Cahyani et aL, 2002; Biasi et aL, 2005; Otto et al.. 

2005). 
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3.4.1 Lipid fingerprinting by Py-MAB-TOF-M8 

A visu al examination of the mass ionization spectra, generated by the Py-MAB-TOF-MS system, ot 

the pyrolyzed soil lipid extracts from soybean, corn and asparagus fields (Figure 1) confirms that 

each soil has a distinctive lipid fingerprint. 

Since the Py-MAB-TOF-MS system did not generate an identity for the lipid biomarkers detected, it 

is beyond the scope of this thesis to include such detail. Moreover, identification of lipid biomarkers 

in soil lipid extract will require prealable work with standards of lipid compounds in order to better 

understand their volatility, fragmentation pattern, and ionization when analyzed by the Py-MAB­

TOF-M8 system. Thus, more work will be needed before being able to generate a list of 

compounds identified by this system. 

Semi-quantitative evidence of distinctive lipid fingerprints comes also from the principal 

components and discriminant analysis of spectra generated by the Py--MAB-TOF-MS system. The 

523 molecular fragments that were significantly different (at p<0.05, LSD test, data not shown) 

were retained and used as inputs into a PCA to reduce the dimensionality of the dataset, which 

produced 17 components that explained more than 99 % of the total variance. Figures 2a (PC1 vs 

PC2) and 2b (PC1 vs PC3) present the plots of the scores of the soils for the three first PCs (PC1, 

43.3%; PC2, 19.7%; PC3, 12.2% of variance). PC1 was able to separate the soils in three groups: 

one of the soybean soil (S1) and the asparagus soil (ASP) were separated from the group formed 

by the other soils (Figure 2a). The soils from soybean fields (82, 83 and S3) as weil as from the 

corn field were more efficiently resolved by PC3 (Figure 2b). A discriminant analysis (stepwise 

backward automatic) was conducted using the PCA scores, extracted from the dataset generated 

by the Py-MAB-TOF-M8 system, as inputs in order to test the discrimination between the soil type 

and crop type. This analysis provided significant discrimination between soils (soybean 81 to S4, 

corn, asparagus) and crops (soybean, com, asparagus) (Wilks' lambda=O.OOO at p<0.00005 for ail 

discriminant analysis tests) (data not shown). 

An examination of the PCA loadings of the molecular fragments (Table 2) reveals that fragments 

with masses between 250-292 m/z are negatively correlated with PC1 (with loadings > -0.900) and 
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fragments from 605 to 667 m/z are positively correlated with PC1 (with loadings > 0.900). 

Fragments from 354 to 482 m/z are negatively correlated with PC2 (with loadings > -0.725) and low 

m/z fragments (from 113 to 201 m/z) present high positive correlations toward PC2 (with loadings > 

0.800). Fragments that are positively (226, 546 to 614, 800 to 803 m/z) and negatively (40 to 63, 

281, 440-441 m/z) correlated with PC3 (with loadings > 1 0.6501) are more diverse in their 

molecular weights. It is interesting to observe that specifie ranges of masses are highly correlated 

with the PC1 and PC2, although is not the case for PC3. The chemical identify of these fragments 

remains to be determined, and will provide insight into ubiquitous lipids as weil as those that are 

site-specifie, perhaps due to the land use history, type of crop grown, soil microbial communities, or 

other factors. 

3.4.2 Fingerprinting fatty acid biomarkers by Py-MAB-TOF-MS 

Among the lipid biomarkers found in soils, the fatty acids are extensively used in the 

characterization of microbial communities (Vestal and White, 1989; Zelles, 1999; Schutler and Dick, 

2000; Bââth, 2003; Piotrowska-Seget and Mrozik, 2003; Drenovsky et aL, 2004). The fatty acid 

biomarkers, as diagnostic molecules of the living microbiota, have to be found linked by ester 

bonds to larger lipid molecules such as phospholipids, neutrallipids and glycolipids (Christie, 2003). 

The current way to release these fatty acids is by performing a transmethylation either directly from 

the soil or on the who le lipid extract or on specifie lipid fraction (White and Ringelberg, 1998; 

Christie, 2003). According to our best knowledge, the vOlatility, the ionization and the fragmentation 

of the large lipid molecules were never studied. However, the common mechanism of fragmentation 

of the large lipid molecules found using other ionization sources such as electron impact, chemical 

ionization, electrospray, etc. is that the fatty acyls are released by the breakage of their ester bonds 

(Murphy et aL, 2001). Thus, if we supposed that the different categories of large lipid molecules 

could enter intact the gas phase by the pyrolysis process, the fragmentation by the MAB source 

cou Id result in fatty acyls detected under the following forms: [RCO + 128]+, [RCO + 74]+, [RCO]+ 

and [RCO - 1]+ where RCO is an acylium ion (acyl cation) in which R is the carbon chain of the fatty 

acid (CH3-(CH2)n- where n=8 to 18) (Odham and Stenhagen, 1972; Murphy et aL, 2001). Table 3 

presents the fatty acids that we could. currently detected by GC-FID, their molecular formulas, 

masses as weil as the possible fragments of the fatty acids, after release from the larger lipid 
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molecules by the proposed fragmentation mechanism encountered here during ionization, that 

could be found in a mass spectrum. In order to explore this aspect, from the original dataset of 

molecular fragments, we prepared a subdataset composed of one ([RCO]+) of the putative 

molecular fragments of fatty acid biomakers. The resulting dataset was analyzed by PCA and DA. 

Figure 3 present the separation of the samples obtained. Discriminant analysis using the original 

subdataset as weil as the scores as inputs provided significant discrimination between soils 

(soybean S1 to S4, corn, asparagus) and crops (soybean, corn, asparagus) (Wilks' lambda=O.OOO 

at p<0.00005 for ail discriminant analysis tests) (data not shown). The discrimination of the soils 

was similar to the one obtain using the whole dataset of molecular fragments (Figure 2). These 

findings support our hypothesis that Py-MAB-TOF-MS can be used to discriminate amongst soil 

samples when analyzing soillipid extracts, similar to the discrimination that is achieved when fatty 

acid biomarkers are profiled by GC-FID. 

An ion monitoring of these specifie fatty acid fragments cou Id be target using the Py-MAB-TOF-MS 

in order to increase the selectivity and sensitivity in the detection of the fatty acid biomakers. 

However, if we limited our analysis to only selective ions, we maybe reduce the discriminating 

power of the Py-MAB-TOF-MS. Also, the identification of the biomarkers will remain tentative since 

many important fatty acids have overlapping masses. The use of TOF-MS detector in its capacity to 

obtain accu rate mass of a molecule could at least help in resolving fatty acids with similar masses 

but different formulas (see Table 3) (Esch et aL, 2007). For more precise identification, 

chromatographie separation by GC is needed. 

3.4.3 Fatty acid profiling by GC-FID 

We used an approach to directly extract ester-linked fatty acids (EL-FAMEs) from soil samples 

using a mild alkaline reagent (Schutter and Dick, 2000). Previously, analysis of EL-FAMEs was 

used to charaderize microbial communities that evolved during 25 years of wheat-fallow cropping 

after land conversion from a native mixed prairie (Drijber et aL, 2000), to study the impact of the 

season, the soil type and agricultural management practices on microbial communities (Schutter et 

aL, 2001) and to follow microbial changes during composting (Steger et aL, 2003). 78 EL-FAMEs 

were identified in the samples and 62 of them were significantly different among the soils (ANOVA, 
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at p<0.05) (data not shown). PCA of this dataset extracted 6 principal components explaining 93.3 

% of the variance. Figure 4 shows the scores of the samples for the two first PCs (84.3 % 

variance). The major part of the variance (80.6%) is summarized in PC1. A group formed by the 

corn and asparagus soils are opposite to the group formed by the soybean soils. However, this 

analysis was un able to separate the soils sufficiently (Figure 4). When these principal components 

were used as input variables in the discriminant analysis, there was a significant discrimination 

among soils and crops (Wilks' lambda=O.OOO at p<0.00005 for ail discriminant analysis tests) (data 

not shown). Table 2 show the fatty acids with high loading value for PC1. These fatty acids were ail 

tested significantly different at p<0.001 (LSD test). The fatty acids with the highest positive loadings 

for PC1 were the ones more significantly (at p<0.001 for ail of them, LSD test) abundant in the soils 

under soybean crop. Also, the highest negative loadings significantly (at p<0.001 for ail of them, 

LSD test) were from the fatty acids more contrastely abundant in soils under corn and asparagus 

compared to soils under soybean (Table 4). The biological meaning of these differences remains t;:, 

be determined. 

3.4.4 Complementarity of Py-MAB-TOF-MS and GC-FID in studying soillipids 

The pyrolysis of soillipids with the Py-MAB-TOF-MS system generates many molecular fragments 

(fram 40 to 1000 m/z) , but we did not have enough information to categorize these fragments into 

those from living cells and non-living organic matter. Therefore, we consider that the lipid 

fingerprints generated from analysis of Py-MAB-TOF-MS spectra reflect the overall soil lipid 

composition. In contrast, the analysis of EL-FAMEs with GC-FID focuses on fatty acids biomarkers 

associated with broad groups of organisms. Although, the FAMEs may also come from the non­

living fraction of soil organic matter, FAME profiles are believed to reflect the diversity of 

microorganisms present in a particular soil (Cavigelli et al., 1995; Drijber et al., 2000; Schutter and 

Dick, 2000; Drenovski et aL, 2004; Pankhurst et aL, 2005; Hinojosa et aL, 2005; Sullivan et aL, 

2006). While lipid fingerprinting and lipid profiles do not provide exactly the sa me information, the 

discriminant analysis of Py-MAB-TOF-MS and FAME data showed that the two methods were able 

to distinguish differences between soils and cropping systems. Also, the use of soft ionization, such 

as the MAB source in the system used in this study, that limits extensive fragmentation and provide 

more parent ions, cou Id be a major help in this task. Soft ionization cou pied to mass detector with 
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larger mass range could allow us to detect not only fatty acid fragments (9:0 to 20:0, for example, in 

the 140-300 m/z region of a mass spectrum) but also fragments from lipid biomarkers with higher 

masses such as hydrocarbons, waxes, sterols and steryl esters, glycerolipids, for example. Our 

results show that Py-MAB-TOF-MS could rapidly distinguish soils by fingerprinting their overall 

composition in lipid biomarkers. We propose that this approach could be used to distinguish soil 

microbial communities from various experimental treatments and sites, but further investigation is 

required. The data presented in this paper are from sites with distinctive site histories and soil 

properties. Although EL-FAMEs are sufficiently sensitive that they can be used to detect differences 

between experimental treatments within agronomic research trials (small scale, relatively 

homogenous soil characteristics), it is not known whether Py--MS is as sensitive. Further work on 

soillipid analysis with Py-MS is merited. 

There are a number of methods that can be used to generate lipid profiles, but we selected to use 

an in situ transesterification method (direct mild alkaline transesterification) (EL-FAMEs), which 

takes less time than the complete phospholipid fatty acid procedure and is easier than the Microbial 

Identification System (MIS) procedure which requires harsh saponification and methylation steps 

(Sasser, 1990; Petersen et al., 2002). A trained individual could complete the preparation of 

between 25 and 50 fatty acids extracts in two days. When fatty acid extracts are injected into a GC­

FID system equipped with an autosampler, the injections are mainly automatic, requiring little 

human supervision. Between 25 and 40 fatty acid extracts can be analyzed per day, depending on 

how many standards and washings are included in the run. Lipid fingerprinting with Py-MAB-TOF­

MS is relatively fast if the apparatus is equipped with an autosampler. Each lipid extract is analyzed 

in less than 5 minutes, so several hundred samples could be processed per day. If the Py-MAB­

TOF-MS does not have an autosampler, a dedicated person could manually inject 30 to 50 

samples per day. Clearly, the Py-MAB-TOF-MS system is a more efficient system for screening 

many samples, such as to differentiate between experimental treatments or sites. The short 

analysis time permits the user to in je ct multiple replicates of each sample, thus increasing the 

analytical precision. 

There is a growing body of work that demonstrates the utility of pyrolysis mass spectrometry for 

profiling targeted compounds such as fatty acids (Basile et al., 1998a,b; Barshick et al., 1999; Jandl 
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et aL, 2004). The works of Schulten and collaborators provides many examples of pyrolysis mass 

spectrometry applications in characterizing soil organic compounds. They extensively characterized 

compounds in solid soils and soil extracts generated from pyrolysis field ionization mass 

spectrometry (for example, see Schulten and Gleixner, 1999; Marche et aL, 2003; Smidt et aL, 

2005). To do such extensive work requires analysis of appropriate standards so that the molecular 

fragments generated by the Py-MS can be identified as belonging to target compounds and their 

masses quantified. To our best knowledge, this has not yet been done extensively and specifically 

for soillipid biomarkers. With further developments in this area, pyrolysis mass spectrometry could 

then be used to rapidly characterize soil microbial communities, i.e. to determine changes in the 

microbial diversity, by identifying specifie compounds such as fatty acids or sterols that are 

functionally important in the metabolism of certain groups of soil microorganisms. 

3.5 Conclusions 

ln conclusion, our results proposed for the first time the use of the Py-MAB-TOF-MS system as a 

rapid and globay way to fingerprint many types of lipids from soils including the fatty acids. We 

showed that selective monitoring of microbial fatty acid biomakers could be eventually performed 

using this tool and could then be used a rapid way to fingerprint them in soils. This application is 

novel and could offer soil scientists as weil as ecologists a efficient tool for the characterization the 

organic matter composition, and especially the fatty acid biomarkers, in a large sets of samples. 

However, the behavior of large lipid molecules during the pyrolysis process as weil as their 

fragmentation mechanisms need to be studied in depth using such system. Future studies should 

investigate the optimization of selective ion monitoring of fatty acid biomarker specifie fragments. 

However, the use of gas chromatography cou pied to flame ionization detector or mass 

spectrometer is required for confirming the identification of the compounds. 
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Table 1. Selected properties of the soils (Typic Endoquents) used in the experiment 

Soil S1 S2 S3 S4 CORN ASP 
Location Saint-Césaire Saint-Césaire Sainte-Brigide-d'Iberville La Présentation Ste-Anne-de-Bellevue Ste-Anne-de-

45°25'N 45°25'N 45°19' N 45°40'N 45°30'N Bellevue 
73°00'W 73°00' W 73°04' W 73°03'W 73°35'W 45°30'N 

73°35' W 
Crop Soybean Soybean Soybean Soybean Corn Asparagus 
Sampling Year 2000 2000 2000 2000 2001 2001 
Sampling depth 0-15 0-15 0-15 0-15 0-20 0-15 
pH a 6.7 6.3 6.2 6.3 6.1 6.0 
OM (g kg-1) b 42 36 51 40 45 48 
Sand (g kg-1) c 118 130 140 384 815 530 
Clay (g kg-1) c 321 353 367 246 96 170 
Silt (g kg-1) c 561 517 493 370 89 300 
Texturai Class Silty Clay Loam Silty Clay Loam Silty Clay Loam Loam Sandy loam Loamy sand 
a Soil:water extracts (1:2 soil:solution ratio) (Hendershot et al., 1993); 

b Organic Matter (OM) determined by loss on ignition (360°C for 4 h) (Schulte et al. 1991); 

C Particle-size analysis (Sheldrick and Wang 1993). 
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Table 2. Selected loading values from PCA of molecular fragment masses detected in lipid extracts from 6 different soils by Py-MAB-TOF-MS 

system. Values are the ten highest and ten lowest for each principal component (PC) axis. 

PC1 loading Fragment mass (m/z) PC2 loading Fragment mass (m/z) PC3 loading Fragment mass (m/z) 
-0.967 
-0.958 
-0.954 
-0.954 
-0.948 
-0.943 
-0.934 
-0.932 
-0.930 
-0.927 
0.925 
0.931 
0.932 
0.932 
0.936 
0.937 
0.940 
0.944 
0.951 
0.956 

266 
268 
290 
282 
292 
250 
270 
278 
284 
288 
666 
663 
639 
633 
605 
635 
621 
637 
667 
665 

-0.865 
-0.830 
-0.826 
-0.817 
-0.803 
-0.781 
-0.777 
-0.769 
-0.766 
-0.753 
0.807 
0.807 
0.812 
0.851 
0.876 
0.883 
0.888 
0.902 
0.913 
0.930 

354 
364 
366 
394 
424 
468 
370 
395 
434 
482 
137 
113 
123 
149 
153 
173 
181 
201 
159 
160 

';3 

-0.755 
-0.746 
-0.718 
-0.717 
-0.709 
-0.699 
-0.688 
-0.666 
-0.666 
-0.649 
0.651 
0.662 
0.663 
0.665 
0.676 
0.744 
0.748 
0.753 
0.786 
0.812 

40 
47 
58 
42 
63 
281 
50 
56 
440 
441 
580 
547 
614 
596 
226 
546 
801 
803 
800 
802 
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Table 3. Table offatty acids deteeted by GC-FID, their masses, formulas as weil as masses oftheir common fragments. 

Fattyaeid Formula Fatty Acid [RCOOH] Fragment [RCO]+ 
{m/z} {m/z} 

9:0 C9H1802 158 141 
8:0-30H C8H1603 160 143 

i-10:0; 10:0 C10H2002 172 155 
9:0-30H C9H1803 174 157 

i-11 :0; a-11 :0; 11:0 C11H2202 186 169 
10:0-20H; 10:0-30H C10H2003 188 171 

12:1 C12H2202 198 181 
12:0 C12H2402 200 183 

i-11:0-30H; 11:0-20H; 11:0-30H C11H2203 202 185 
13:1 C13H2402 212 195 

12:1-30H C12H2203 214 197 
i-13:0; a-13:0; 13:0 C13H2602 214 197 

12:0-20H; 12:0-30H C12H2403 216 199 
i-14:1; 14:1oo5e C14H2602 226 209 

i-14:0; a-14:0; 14:0 C14H2802 228 211 
i-13:0-30H; 13:0-20H C13H2603 230 213 

i-15:1 isomers 1; i-15:1 isomer2; a-15:1; 15:1oo6e; 15:1oo5c C15H2802 240 223 
i-15:0 isomer 3; a-15:0; 15:0 C15H3002 242 225 

16:0 N aleohol C16H340 242 225 
i-14:0-30H; 14:0-20H; 14:0-30H C14H2803 244 227 

i-16:1 isomer 1; i-16:1 isomer 2; i-16:1 isomer 3; 
C16H3002 254 

16:1(0 11c; 16:1(09c; 16: 100 7e; 16:1(05e 237 
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Table 3 (continued). Table of fatty acids detected by GC-FID, their masses (in m/z), formulas as weil as masses of their common fragments. 

Fattyacid Formula 
Fatty Acid [RCOOH] Fragment [RCO]+ 

(m/z) (m/z) 
i-16:0; a-16:0; 16:0 C16H3202 256 239 

i-15:0-20H; i-15:0-30H; 15:0-20H; 15:0-30H C15H3003 258 241 

i-17:1ro9c; i/a-17:1; a-17:1ro9c; C17H3202 268 
17:1ro9c; 17:1ro8c; 17:1ro7c; 17:0 cyclo 251 

16:1-20H C16H3003 270 253 
10Me-16:0; i-17:0; a-17:0; 17:0 C17H3402 270 253 

i-16:0-30H; 16:0-20H; 16:0-30H C16H3203 272 255 
18:3ro6c(6,9,12) C18H3002 278 261 

18:2ro6,9c C18H3202 280 263 
i-18:1; 18:1ro9c; 18:1ro7c; 18:1ro5c C18H3402 282 265 

a-18:0; 10Me-17:0; i-18:0; 18:0 C18H3602 284 267 
i-17:0-30H; 17:0-20H C17H3403 286 269 

i-19:1; 19:1ro11c; 19:1ro9c; 19:1ro6c; 19:0 cyclo ro10c; 
C19H3602 296 

19:0 cyclo ro8c; 11Me-18:1ro7c 279 
18:1-20H C18H3403 298 281 

10Me-18:0; i-19:0 C19H3802 298 281 
18:0-20H; 18:0-30H C18H3603 300 283 

20:4ro6,9, 12, 15c C20H3202 304 287 
20:2ro6,9c C20H3602 308 291 

20:1ro9c; 20:1ro 7c C20H3802 310 293 
10Me-19:0; i-20:0; 20:0 C20H4002 312 295 



') 

Table 4. Fatty acids with highest loadings from PCA of EL-FAME datasets from 6 different soils (From PCA of the EL-FAMEs, only loadings from 

PC1 are presented here). Relative abundances of these fatty acids across the 6 soils. 

EL·FAME PC110ading A5P CORN 51 52 53 54 
%area 

20:0 -0.997 8.57a 7.83b 2.50cd 2.56c 2.46cd 2.39d 
i-14:0-30H -0.997 0.15a 0.14b O.OOc O.OOc O.OOc O.OOc 

13:0 -0.997 O.14a 0.13b O.OOc O.OOc O.OOc O.OOc 
16:0 N alcohol -0.996 2.46a 2.46a 0.32b 0.29b 0.28b 0.26b 

14:0 -0.996 3.53a 3.33b 1.43e 1.61c 1.52d 1.46de 
10Me-17:0 -0.993 7.93b 8.71a 0.83c 0.66cd 0.68cd 0.61d 

18:3ro6c(6,9,12) -0.992 6.36b 7.16a 0.94c 0.91cd 0.96c 0.85d 
15:1ro6c -0.989 0.32a 0.33a 0.14b 0.15b 0.14b 0.14b 

i-16:1/14:0-30H -0.987 0.76a 0.71b 0.33c 0.33c 0.31c 0.30c 
10Me-19:0 -0.986 0.82b 0.93a O.OOc O.OOc O.OOc O.OOc 
10Me-18:0 0.989 0.30b 0.33b 1.45a 1.40a 1.42a 1.36a 

a-17:0 0.989 0.55c 0.52c 1.54a 1.40b 1.51ab 1.47ab 
i-15:0 0.991 1.43c 1.35c 4.05b 4.34a 4.26a 4.24a 
i-17:0 0.991 0.37b 0.34b 1.59a 1.49a 1.55a 1.54a 

19:0 cyclo ro8c 0.992 0.89c 1.01b 2.49a 2.53a 2.54a 2.57a 
i-16:0 0.993 1.06c 0.98d 2.13a 2.10ab 2.06b 2.14a 
a-15:0 0.994 0.65c 0.64c 2.65b 2.77a 2.69ab 2.71ab 

16:1ro 7c/i-15:0-20H 0.994 1.02c 0.98c 3.87b 3.88b 3.82b 4.11a 
cy-17:0 0.995 0.23c 0.22c 1.63a 1.51b 1.59ab 1.57ab 
16:1ro5c 0.998 O.28c 0.25c 4.80a 4.66b 4.72ab 4.64b 

61; 
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Figure 1. Examples of mass spectra (% Total Ion Count per mass-to-charge ratio, m/z) of 

pyrolyzed total lipid extracts of soils cropped with soybean (soils 1 to 4), corn and asparagus 

obtained by Py-MAB-TOF-MS. Each mass spectra is a mean of 5 replicates. 
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Figure 2. Plots of the scores from the PCA of molecular fragment masses detected in lipid extracts 

from 6 different soils by Py-MAB-TOF-MS system. In parenthesis, the percentage of variance 

explained by each principal component: (A) PC1 (43.3%) vs PC2 (19.7%) plot, (B) PC1 vs PC3 

(12.2%) plot. See Table 1 for the description of the abbreviations for the soils. 
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Figure 3. Plots of the scores from the PCA of fatty acid biomarker fragment masses detected in 

lipid extracts from 6 different soils by Py-MA8-TOF-MS system. In parenthesis, the percentage of 

variance explained by each principal component: (A) PC1 (52.6%) vs PC2 (19.4%) plot, (8) PC1 vs 

PC3 (8.6%) plot. See Table 1 for the description of the abbreviations for the soils. 
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Figure 4. Plot of the scores (PC1 (80.6%) vs PC2 (3.7%)) from the PCA of the dataset of EL-

FAMEs from 6 different soils. In parenthesis, the percentage of variance explained by each 

principal component. See Table 1 for the description of the abbreviations for the soils. 
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3.6 Connecting paragraph 

Chapters 2 and 3 provide information on methods and technologies that can be used to extract soil 

lipids and characterize soil microbial communities. These studies lead me to select soil fatty acid 

profiling, based on the analysis by GC-FID of ester-linked fatty acids generated from the direct 

esterification of soils, as the most suitable method for assessing soil microbial communities in my 

subsequent field studies. 1 hypothesized that soil microbial communities could be affected by the 

presence of plant diseases, like Sclerotinia stem rot of soybean, as weil as by the biocontrol agents 

applied to control this disease. Chapter 4 reports on two biocontrol agents (Trichoderma virens 

(SoiiGard™) and arbuscular mycorrhizal fungi) that were applied in the field, singly and in 

combination, to control Sclerotinia stem rot. Detection of biocontrol agents by DNA-based methods, 

as weil as their effects on disease incidence and soybean yield, are reported here. 
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4. FIELD ASSESSMENT OF TRICHODERMA VIRENS (SOILGARDTM) AND MYCORRHIZAL 

FUNGI AS POTENTIAL BIOCONTROL AGENTS AGAINST SCLEROTINIA STEM ROT IN 

SOYBEAN 
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4.1 Abstract 

Sclerotinia stem rot (SSR) disease caused by Sclerotinia sclerotiorum (Lib.) de Bary is considered 

one of the most important fungal diseases of soybean. A two-year study was conducted in soybean 

fields under conventional or no tillage to determine whether Trichoderma virens (SoiIGard™) and 

arbuscular mycorrhizal fungi (AMF, a mixture of G/omus intraradices and G. mosseae), used alone 

or in combination, could reduce sclerotinia stem rot (SSR) disease incidence in soybeans. 

Generally, SSR disease indicators were not affected significantly by the biological control 

treatments. The distribution of viable S. sc/erotiorum inoculum was probably non-uniform at the 

study sites, making it difficult to observe significant treatment effects, and weather conditions were 

not favourable for the development of SSR disease during one of the two study years. Soybean 

yields were consistent with provincial averages during this study, and were not affected by the 

levels of SSR disease (up to 25% SSR) found at the field sites. T. virens, G. intraradices and G. 

mosseae were detected by nested polymerase chain reaction (PCR) analysis in both control and 

inoculated plots, revealing indigenous presence of these fungi in the soils. Based on our results, it 

is not known whether the inoculum dose of T. virens and the AMF mixture of G. intaradices:G. 

mosseae applied were sufficient to provide protection against SSR disease under field conditions. 

Further studies are needed to verity the efficiacy and optimize the application method, dose and 

timing of biological control agents active against SSR disease in soybean fields. 

4.2 Introduction 

Sclerotinia stem rot (SSR) disease caused by Sclerotinia sclerotiorum (Lib.) de Bary is considered 

one of the most important fungal diseases of soybean, causing significant yield losses wherever 

soybean is cultivated (Wrather et al. 2001). The life cycle of Sclerotinia sclerotiorum, the causal 

agent of SSR disease in soybean, begins in the soil as asexual structures, the sclerotia, that 

germinate carpogenically to produce the teleomorphic stage, the apothecia, which then release 

ascospores. Germinating ascospores colonize senescing or dead flower petais in the phyllosphere, 

and the pathogen then invades adjoining living tissue and initiates disease (Willetts and Wong 

1980). 
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Several control methods have been reported in literature to reduce the impact of SSR disease on 

soybean yields. These include the use of resistant cultivars (Buzzell et al. 1993; Wegulo et al. 1998; 

Kim et al. 1999), management practices such as the use of crop rotations with non-host plants like 

corn or wheat, increasing row width, reducing plant populations, conservation tillage (e.g., no-till) 

(Kurle et al. 2001; Gracia-Garza et al. 2002) and the application of chemical inducers of resistance 

such as 2,6-dichloroisonicotinic acid, benzothiadiazole, and lactofen (Dann et al. 1998, 1999). 

A promising and complementary method of controlling SSR disease in the field is the application of 

biological control agents (BCAs) (Tu 1997; Zhou and Boland 1998; Bardin and Huang 2001). 

Among the reported BCAs, the mycoparasite Coniothyrium minitans is able to control Sclerotinia 

sclerotiorum in a range of crops in glasshouse and field trials (Huang 1977; Trutmann et al. 1980; 

Budge and Whipps 1991; McLaren et al. 1994; McQuilken et al. 1997; Gerlagh et al. 1999; Huang 

et al. 2000; Budge and Whipps 2001; Li et al. 2003). Another promising BCA is Gliocladium virens 

(reclassified as Trichoderma virens by Rehner and Samuels 1994), and sold as SoilGard™ by 

Certis USA (Columbia, MD, USA). This fungus occurs naturally in agricultural soils (Davet 1985; 

Vardavakis 1990; Park et al. 1992) and has provided specific biological control against S. 

sclerotiorum by attacking the sclerotia through the combined actions of endochitinases and the 

antibiotics gliotoxin and glioviridin, thus preventing their germination into apothecia (Tu 1980; 

Roberts and Lumsden 1990; Lumsden et al. 1992a, 1992b; Di Pietro et al. 1993; Howell et al. 1993; 

Lorito et al. 1994; Wilhite et al. 1994; Mukherjee et al. 1995). T. virens has been successfully tested 

in greenhouse/glasshouse trials for controlling a range of plant diseases and more specifically 

Sclerotinia stem rot in sunflower caused by Sclerotinia minor (Burgess and Hepworth 1996), 

damping-off in cucumber caused by Sclerotinia sclerotiorum (Ethur et al. 2005), onion white rot 

caused Sclerotium cepivorum (McLean and Stewart 2000) as weil as collar rot of mint (Singh and 

Singh 2004), damping-off and blight of snap bean (Papavizas and Lewis 1989; Papavizas and 

Collins 1990) ail caused by Sclerotium rolfsii. Fewer trials were reported on the use of T. virens for 

controlling plant diseases in fields. Among them, it was shown that it cou Id reduce southern blight 

(Sclerotium rolfsù) in bell pepper (Ristaino et al. 1996) and in carrot (Ristaino et al. 1994), damping­

off in snap bean (Smith 1996), Sclerotinia stem rot (Sclerotinia minor) of sunflower (Burgess and 

Hepworth 1996) and Sclerotinia stem rot (Sclerotinia rolfsil) of groundnut and betelvine (Maiti et al. 
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1991). To our knowledge, there are no reports of field studies where T. virens was used to control 

Sclerotinia stem rot (S. sc/erotiorum) in soybean. 

Another group of organisms that may act as BCAs against soil-borne pathogens are arbuscular 

mycorrhizal fungi (AMF) (Linderman 1988, 1994; St-Arnaud et al. 1995a; Azcon-Aguilar and Barea 

1996; Harrier and Watson 2004; Whipps 2004). Consistent reduction of disease symptoms caused 

by various pathogens have been documented, under controlled conditions, when AMF were used 

against fungal pathogens belonging to the genera Phytophthora Gaeumannomyces, Fusarium, 

Cha/ara (Thie/aviopsis), Pythium, Rhizotonia, Sc/erotium, Verticillium, Aphanomyces, and against 

nematodes such as Rotylenchus, Praty/enchus and Me/oidogyne species (Azcon-Aguilar and 

Barea 1996; Harrier and Watson 2004; Whipps 2004). Various mechanisms have been proposed to 

explain how AMF reduce the activity of fungal root pathogens (Linderman 1988, 1994; St-Arnaud et 

al. 1995a; Azc6n-Aguilar and Barea 1996; Harrier and Watson 2004; Whipps 2004). They include 

(1) improved nutrient status of the host plant; (2) damage compensation; (3) competition for host 

photosynthates; (4) modified rhizosphere deposition; (5) competition for infection/colonization sites; 

(6) anatomical and morphological changes in the root system; (7) microbial changes in the 

mycorrhizosphere; and (8) activation of plant defense mechanisms. Soybean is mycorrhizae 

dependant (Plenchette and Morel 1996), suggesting that the AMF associated with this crop could 

protect against S. sc/erotiorum in the field. Also, plant growth and overall health are expected to be 

better when soybean roots are colonized by AMF, which may reduce the incidence of SSR disease 

in this crop. Whether AMF colonization of soybean roots acts as a BCA against S. sc/erotiorum in 

the field remains to be confirmed. 

It is essential to evaluate BCAs against S. sc/erotiorum under field conditions because the 

incidence of SSR disease and response of soybean cultivars to the disease are environmentally 

sensitive (Pennypacker et aL, 1999; Bolton et aL, 2006). The difficulties in reproducing SSR 

disease in greenhouse are not trivial: suitable environmental condtions to promote the germination 

of significant number of sclerotia as weil as the release of ascospores, the timing by which the 

ascospores will be released should coincide with most susceptible stage of growth of soybean 

(senescing flower petais), etc. (Bolton et aL, 2006). The difficulties in reproducing SSR disease in 

greenhouse are not trivial. It is challenging to select conditions that permit the germination of a 
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significant number of sclerotia and the release of ascospores at a susceptible stage of soybean 

growth of soybean in the laboratory., We did not find any report where researchers were able to 

recreate the complete cycle of SSR disease on soybeans in a greenhouse or growth chamber. In 

fact, researchers generally bypass the sclerotia germination, ascospores' release and plant 

infestation by applying mycelia or ascospores at the susceptible growth stage (Rousseau et aL, 

2004; Chen and Wang, 2005). However, our working hypotheses were: 1) T. virens will provide 

specifie biological control over S. sclerotiorum by attacking the sclerotia and preventing their 

germination into apothecia, and 2) AMF will function as a biological control agent by supplying 

nutrients and water for soybeans, and by blocking infection of roots by ascospores of S. 

sclerotiorum. Thus, only field studies were appropriate for studying SSR disease and testing these 

hypotheses. 

The objectives of this research were (1) to determine whether SoilGard™ (T.virens) and AMF (a 

mixture of G/omus intraradices and G. mosseae), used alone or in combination, could reduce SSR 

disease incidence in soybeans, (2) to assess the effect of these BCA treatments on soybean 

growth and yield, and (3) to monitor the introduction and establishment of BCAs in fields using 

PCR-SSCP (Polymerase chain reaction single-strand conformational polymorphism) analysis. 

4.3 Materials and Methods 

4.3.1 Site description 

Based on a 1999 survey of SSR disease incidence of 39 soybean fields in the Montérégie region of 

southwestern Québec, Canada, four soybean (Glycine max (L.) Merrill) fields with a history of SSR 

disease were selected for this study. The disease incidence in the four fields selected ranged from 

22.9 to 31.9%, which was higher than the overall average of 12.5% (R. Jeannotte, unpublished 

data). Fields A and B were conventionally tilled, while fields C and 0 were under no-tillage. Fields A 

and B were ploughed to approximately 18 cm with a mouldboard plough in the fall, and harrowed in 

the spring before planting, while the no-till fields (fields C and 0) were directly seeded with a slot 

planter in the spring. Studies in these fields were conducted in 2000 and 2001, but it was not 

possible ta use the experimental plots established in 2000 for bath study years, since BCAs could 
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be transferred from one experimental plot to another during routine field operations such as harvest 

and fall plowing, or natural movement during the winter. Therefore, the 2001 measurements were 

taken from experimental plots established at an adjacent location within the same field (with similar 

soil properties, tillage practices and SSR disease incidence). Producers in this region of Ouebec 

generally grow soybeans every second year, in rotation with corn (Zea mays L.). The experimental 

plots established in 2000 were previously under soybean production, while the plots established in 

2001 were previously under corn production. The location, tillage system and general soil 

characteristics of each site are reported in Table 1 and climatic conditions for 2000 and 2001 are 

given in Table 2. 

4.3.2 Experimental design 

The experimental design was the same at each site, a randomized complete block design with 6 

blocks and four BCA treatments within each block, for a total of 24 plots per site. The BCA 

treatments were Trichoderma virens (TRI), arbuscular mycorrhizal fungi (AMF), Trichoderma virens 

plus arbuscular mycorrhizal fungi (TRI+AMF), and a control (CONTROL) that received no 

biocontrol agents (see Appendix C). Plots in each field were 3.5 m x 8 m, seeded each spring with 

soybean (Glycine max L. Merr. cv Bayfield) at a rate of 12-16 seeds m-1. The row spacing was 75 

cm, giving 5 rows of soybeans per plot. 

The TRI treatment received an application of T. virens as the commercial product SoilGard™ 12G 

(Certis USA L.L.C., Columbia, MD, USA; http://www.certisusa.com/). Since sclerotia could be 

distributed throughout the field, the TRI treatment was applied in three shallow trenches (5 cm 

deep) between planted rows in each plot about 6-8 weeks after seeding to ensure uniform 

coverage. In total, 1.25 9 m-1 of SoilGard™ 12G (corresponding to 12x104 cfu/g of inoculum) was 

applied between planted rows with 2.50 9 m-1 of cracked wheat, a bulking agent. This application 

rate (42.9 kg ha-1 of SoilGard™) is equivalent to the dose recommended by Certis USA. The AMF 

inoculant was a mixture of G/omus intraradices:G/omus mosseae (1 :1) formulated in a perlite-peat 

carrier provided by Premier Tech Uee (Rivière-du-Loup, Ouebec, Canada). To promote root 

mycorrhizal'colonization, the AMF inoculum was applied within 5 cm of the planted row within one 

week of seeding. The AMF application rate was 3.75 9 m-1 row (minimal inoculum density of 1 
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propagule g-1), which is equivalent to 53.6 kg ha-1 of G. intraradices:G. mosseae mixture, as 

recommended by the manufacturer. The TRI+AMF treatment received an application of G. 

intaradices:G. mosseae, within one week of seeding and an application of SoilGard™ about 6 to 8 

weeks after seeding, as described previously. The CONTROL treatment was amended with 2.5 9 

m-1 of cracked wheat and 3.75 9 m-1 of perlite-peat, both are bulking agents used in SoiiGard™ and 

AMF inocula, respectively. 

4.3.3 S. sclerotiorum apothecia and SSR disease severity index (SSR-DSI) 

The number of S. sclerotiorum apothecia was counted in four quadrats of 0.24 m2 within each plot 

in mid-August of 2000 and 2001, and the average number of apothecia per plot was calculated. At 

the end of August, when the plants had reached the pod-filling stage, the incidence of SSR disease 

was assessed visually by rating 20 consecutives plants in two pre-determined zones in each plot 

(one zone covering two rows) , for a total of 40 soybean plants. Disease seve rit y was classified 

based on the symptomatic scale described by Grau et al. (1982) where 0 = no symptoms, 1 = only 

lateral branches showing lesions, 2 = lesions on the main stem, but little or no effect on pod-fill; and 

3 = lesions on the main stem that cause poor pod-fill or plant death. The SSR disease severity 

index (SSR-DSI) was calculated using equation 1, and ranged from 0 (no disease) to 100% (poor 

pod fill or death of ail plants). 

SSR-DSI = [L (DCi x plantsi)/ (total plants*3)] x 100% (1 ) 

where DCi is the ith disease severity class (class = 0, 1, 2, 3), plantsi is the number of plants in the 

ith disease severity class, and total plants are the 40 soybean plants sampled in each plot. 

4.3.4 Plant biomass and root mycorrhizal colonization 

Between 5 and 10 soybean plants (shoots and roots) were collected from each plot at the end of 

August, when they were at the R4 to R6 stages of development (2000) or the pod forming stage 

(2001) (Fehr et al. 1971). They were placed in plastic bags, transported in coolers with ice packs 

and stored at 4°C until analysis. In the lab, the above-ground plant parts and the roots were 
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separated, and roots were washed thoroughly under running tap water, air-dried and cut into 1-2 

cm segments. Root samples were cleared with 2.5% KOH by autoclaving at 121 0C for 10 minutes, 

rinsed with water, then rinsed with 1 % HCI (hydrochloric acid) and stained with 0.2 % acid fuchsin 

dissolved in a lactoglycerol solution (1:1:1 ratio of lactic acid (80%), glycerol and distilled water) 

(Brundrett et al. 1984). The percentage of root length colonized by AMF was estimated using the 

gridline intersect method (Giovanetti and Mosse 1980) under a dissecting microscope. 

4.3.5 DNA extraction 

The presence of the BCAs in the field was verified by extracting DNA and conducting nested 

polymerase chain reaction (PCR) reactions to detect T. virens (SoiIGard™) and the AMF mixture of 

G. intraradices and G. mosseae. Two composite soil samples, trom the rows and between the 

rows, were taken per plot at 0-10 cm depth with a stainless steel piston sampler, weil mixed and 

stored at -20°C prior DNA extraction. Roots were collected as above, washed, dried, cut into 1 cm 

segments, mixed weil and stored at -20°C prior to DNA extraction. Each composite soil sample 

and two root subsamples from each plot were extracted and then combined to provide one soil or 

root total DNA extract per plot. The DNA extraction was as follows: five steel beads BB 4.5 mm 

Copperhead (Crosman, NY,USA) were added to a tube containing 1.5 9 of soil sample or 0.7 9 of 

roots sample mixed with 3.5 ml of CTAB (hexadecyltrimethylammonium bromide) Iysis buffer 

[100mM Tris-HCI pH 8.0, 20mM EDTA (Ethylenediaminetetraacetic aCid), 1.4M NaCI (sodium 

chloride), 2.0% (w/v) CTAB, 1.0% (v/v) PVP(polyvinyl pyrrolidone)-40 and 0.2% (v/v) mercapto-2-

ethanol]. The tube was shaken at high speed during 2 cycles of 30 sec before being incubated at 

60°C for 60 min. A volume of 3.5 ml chloroform was added to the homogenate, then the tube was 

weil shaken and centrifuged to extract 2.0 ml of the aqueous upper phase. A volume of cold 

isopropanol (-20°C) was mixed with the aqueous phase and DNA were pelleted after an incubation 

at -20°C for 60 min. DNA pellets were resuspended and purified with QIAquick spin column 

(QIAGEN, Mississauga, Canada) as described by the supplier. Integrity of the DNA was checked 

by gel electrophoresis. Gels were photographed using a CCD camera coupled to an Alphalmagcr 

software system (Alphalnnotech Corp, San Leandro, USA). 
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4.3.6 Detection of G. intraradices and G. mosseae in soil and root samples 

The DNA primers set LR1/ NDL22 was used to run a first PCR amplification with soil or root total 

DNA extracts as described by van Tuinen et al. (1998). Reaction mixtures contained 5 IJL of a 100 

fold dilution of total DNA extract in a 20 IJL of PCR buffer (1 x PCR buffer (QIAGEN) (1.5 mg 

MgCI2, 0.2 mM dNTPs, 0.5 mg ml-1 BSA, 0.5 IJM of each primer and 1.25 U of Hot start Taq 

Polymerase (QIAGEN)). Reactions were performed in an Amplitron Il thermocycler 

(BarnsteadlThermolyne, Dubuque, USA). A nested PCR protocol described by van Tuinen et al. 

(1998) was used with the primers set LR1/8.22 to amplify a DNA fragment of 455 bp specifie to G. 

intraradices while the primers set 5.21 / NDL22 was used to amplify a DNA fragment of 367 bp 

specifie to G. mosseae. Amplified products were analysed by electrophoresis on 1.2% (w/v) 

agarose gels, stained and photographed as described above. Further details of the primers and 

PCR programs used for detection are given in Appendix D. 

4.3.7 Detection of Trichoderma virens in soil total DNA extracts by nested PCR 

The DNA primers set ITS-1 F / ITS-4 was used to run a first PCR amplification for the detection of 

ribosomallTS regions of fungal DNA in each soil total DNA extract (White et al. 1990; Gardes and 

Bruns 1993). Reaction mixtures contained 5 IJL of a 100 fold dilution of total DNA extract in a 20 IJL 

of PCR buffer (1 x PCR buffer (QIAGEN)) and were performed as described in Appendix E. A 

nested PCR protocol was used with the primers set Virens-ITS.F1/ Virens-ITS.R1 to amplify a DNA 

fragment of about 450 bp from Trichoderma virens and T. harzianum using the PCR conditions 

described in Appendix E. The amplified products were characterized by a Single-Strand 

Conformation al Polymorphism (SSCP) analysis to assess the bands profiles and to distinguish 

between the Trichoderma spp. detected in each soil total DNA extract. SSCP analysis were run 

using a 0.7X MDE (Cambrex Bio Science Rockland, Rockland, USA) acrylamide gel under 240 

volts at 12°C for an electrophoresis of 5 hours in a Triple Wide Mini-Vertical tank (C.B.S. Scientific 

Co., Del Mar, USA). Gels were stained with SYBR Gold 1X (Molecular Probes, Eugene, USA) for 

10 min as described by supplier, and photographed using the system described above. Further 

details of the primers and PCR programs used for detection as weil as representative examples of 

gels are given in Appendices E and F. 
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4.3.B Plant populations and soybean yield 

Soybean grain yield was assessed by harvesting the plants in the center of each plot (2 rows of 4 m 

each) in September of both years. The development stage at harvest was RB, harvest maturity 

stage (Fehr et al. 1971). The number of plants in this swath were counted and then thrashed to 

collect the grain. Grain yield results were expressed on a 13 % moisture basis. 

4.3.9 Statistical analysis 

Data was transformed to achieve homogeneity of variance, and then evaluated by one-factor 

analysis of variance using Systat software (Version. 9.1, Systat Software Inc., Richmond, CA, 

USA). Significant (P<0.05) effects of BCA treatments on disease indicators (numbers of apothecia, 

SSR-DSI) and crop variables (root mycorrhizal colonization and yield) were assessed for each field 

site and field season. Mean comparisons of significant BCA effects were then made with a LSD test 

at the 95% confidence levaI. Correlations between disease indicators during the 2000 and 2001 

field seasons were calculated with CoStat software (Version 6.003, CoHort Software, Monterey, 

CA, USA). Data presented in tables and figures are untransformed means and standard errors of 

the me an (using 'sem' as abbreviation for 'standard error of the mean'). 

4.4 Results and Discussion 

The BCAs examined in this study have been previously tested for their ability to control plant 

diseases in controlled environments. However to the best of our knowledge, our study is the first of 

its kind to test the ability of T. virens and an AMF mixture containing G. mosseae and G. 

intraradices to control SSR disease under field conditions. We did not know a priori whether the 

application rates of T. virens and the AMF mixture recommended by the manufacturers would be 

sufficiently high to control SSR disease. The sites selected for this study had a history of high SSR 

disease incidence and provided a range of agricultural practices, soil characteristics and climatic 

conditions (Tables 1 and 2), representative of an important soybean producing area in 

southwestern Québec, Canada. However, we did not have any information about the spatial 

distribution of S. sclerotiorum within the field sites, nor could we predict whether the growing 
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seasons would be favorable for the development of SSR disease. Clearly, we could not apply S. 

sclerotiorum to producer's fields, so our approach was to replicate the experiment at 8 sites during 

a two-year period in the hopes of having some sites with SSR disease and possibly a response to 

the BCA treatments. 

We also tried to reproduce the experiment in the greenhouse, considering the entire disease cycle, 

from the germination of sclerotia to SSR disease outbreak, but our many attempts were 

unsuccessful (data not shown). The development of a reliable greenhouse-based test that would 

recreate the whole cycle of plant disease caused by S. sclerotiorum would be very helpful in future 

studies concemed with the biocontrol of SSR disease in soybean. 

4.4.1 Levels of infestation by Sclerotinia sclerotiorum 

We monitored the presence of S. sclerotiorum by counting the number of apothecia and assessing 

the SSR-DSI. Site A had the highest numbers of apothecia, with an average of 67.0 apothecia m-2 

in 2000 and 38.9 apothecia m-2 in 2001 (Figure 1). Sites B, C and D had fewer apothecia, with 

average numbers ranging from 2.8 to 15.0 apothecia m-2 in 2000 and 1.1 to 11.9 apothecia m-2 in 

2001 (Figure 1). These values are similar to apothecia numbers reported in other soybean and 

bean production systems. Schwartz and Steadman (1978) found 6.5 to 13.8 apothecia/m2 in bean 

(host plant of S. sclerotiorum) and sugar beet (non-host plant) fields. In three separate studies by 

Boland and Hall (1987, 1988a, 1988b), the number of apothecia in fields under soybean and bean 

cropping systems ranged from 0.4 to 30.5 per 1.4 m2 quadrat depending on the crop, the cultivar 

and the year. Although the levels of infestation were generally high in both study years, the 

accuracy of apothecial counts would have been improved by surveying more of the plot surface 

area (our survey covered less than 5% of the total plot area), more than once during the growing 

season. 

ln 2000, the SSR-DSI ranged from 16 to 25% at site A, but was negligible (5% or less) at site A in 

2001 and for ail of the other sites (Table 3). There was a significant (P<0.05) linear relationship 

between the number of apothecia and the SSR-DSI during 2000, probably due to the high numbers 

of apothecia and high SSR-DSI at site A (Figure 2). Boland and Hall (1988a, 1988b) also found 

linear relationships between the number of apothecia and SSR-DSI in some fields. There was no 

83 



relationship between the number of apothecia and the SSR-DSI in 2001 (Figure 2), probably due to 

the low level of disease encountered that year. 

The lower SSR-DSI in 2001 compared to that in 2000 could be attributed to many factors: fewer 

sclerotia in soils producing fewer apothecia, unfavourable climatic conditions (for disease) and crop 

rotation. Although sclerotia were not counted directly, it is weil known that a few apothecia can 

release impressive quantities of ascospores and increase the SSR-DSI when favourable 

environmental conditions (for disease) are encountered. Schwartz and Steadman (1978) estimated 

that one apothecium could release an average of 2.32 x 106 ascospores during 9 days of 

sporulation in the laboratory. The type of relationship that we currently established between the 

number of apothecia and the SSR-DSI maybe needs to be revisited to find more accurat~ 

mathematical function/model of prediction. Yet, the relationship between apothecia numbers and 

SSR-DSI is greatly influenced by field conditions. For instance, Boland and Hall (1987, 1988a, 

1988b) found that SSR disease incidence, measured as the number of plants with or without SSR 

symptoms, ranged from 0.6 to 92.0 % of the plants surveyed, depending on the crop, the cultivar 

and the year. The drought during July and August of 2001 (more than 30 days without significant 

rainfall at most sites, Table 2) likely aftected the viability of the apothecia and consequently 

hindered the spread and infectivity of S. sclerotiorum in 2001. Carpogenic germination of S. 

sc/erotiorum sclerotia as weil as the release and survival of ascospores from apothecia are aftected 

by extremes in temperature, relative humidity and soil moisture (Clarkson et al. 2003; Hao et al. 

2003). Rousseau et al. (2006b) showed that an increase in aggregate stability, microbial activity 

and soil solution concentration in exchangeable ions associated with a crop rotation and compost 

application correlated negatively with the carpogenic germination, and thus contributes to suppress 

disease. Finally, the experimental plots established in 2000 were in fields previously under soybean 

production whereas in 2001, the plots were established after a year of com production. Apothecia 

numbers are expected to be lower when soybeans are grown in rotation with corn, a non-host plant 

for S. sclerotiorum, than when they are grown after soybeans. Rousseau et al. (2006a) showed that 

rotation with corn reduced SSR disease incidence either directly and indirectly by the reduction of 

weed biomass. The weed biomass is known to favor carpogenic germination and thus disease 

incidence. Also, in our plots, the weeds were regularly treated or removed. 
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4.4.2 Effect of BGAs on SSR disease in Soybean 

Generally, the BGA treatments had no effect on the number of apothecia occurring at each site 

although significant (P<0.05, LSD test) differences were observed among BGA treatments at site A 

in 2001 (Figure 1b), which suggest that T. virens, alone or in combination with the AMF, may 

increase the number of apothecia present. There is no clear explanation for this finding, except that 

field conditions are more variable than controlled environments (Iaboratory, greenhouse) and may 

give rise to unexpected results. 

There are many challenges to testing BGA treatments against SSR disease in the field. One of the 

key assumptions in classical statistical design is that the site is uniform and differences are due to 

experimental treatments, not just field variability. Little is known about the natural spatial 

distributions of sclerotia in soil and we lack rapid test methods that would provide information on the 

distribution of viable sclerotia of S. sclerotiorum in the field before planting, but we suspect an 

uneven distribution of sclerotia that could produce apothecia and thus, SSR disease at the study 

sites. Bae and Knudsen (2007) showed sclerotia arranged in highly aggregated spatial distributions 

were more significantly colonized by T. harzianum compared to sclerotia randomly distributed. They 

speculated that the sclerotia colonized by T. harzianum may serve as a nutrient source for further 

hyphal growth of the Trichoderma and colonization of adjacent sclerotia. Methods to detect and 

map the spatial distribution of sclerotia, rather than relying on population densities (Jeger et al. 

2004), would be helpful to predict the ability of BGAs to control a soilbome disease such as SSR 

Instead of the randomized complete block design used in this study, a spatially-explicit analysis 

could reveal more about the relationships between sclerotia, SSR disease and BGAs. Also, it will 

be important to be able to predict the growth, in time and space, of fungi used as BGAs in soil 

systems. This would help researchers and managers to select the best time and rate for BGA 

application (Knudsen et aL, 2006). In the present study, further investigation of how T. virens, alone 

or in combination with the AMF, responds and interacts with S. sclerotiorum under field conditions 

is warranted. In any case, the SSR-DSI was not affected by the BGA treatments at any site during 

this two year study (Table 3). 
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4.4.3 Detection of G. intraradices and G. mosseae by specifie nested PCR 

For BCA treatments to be effective against SSR disease in soybeans, they must remain viable 

once they are field released. There is little evidence that T. virens or the AMF mixture, alone or in 

combination, acted against S. sclerotiorum, since the number of apothecia present and the SSR­

DSI were not generally affected by the BCA treatments (Figure 1, Table 3). The percentage AMF 

colonization of soybean roots was used as an indirect measurement of AMF viability, and was 

consistent during both years of this study. Sites A, Band D had from 18 to 24% colonization with 

AMF, while site Chad about 10% AMF root colonization (Figure 3). Inoculation with AMF did not 

increase mycorrhizal root colonization over the control. Although the TRI treatment did enhance 

AMF colonization at site B in 2000 relative to the AMF treatment alone or the control, generally 

AMF root colonization was unaffected by the BCA treatments (Figure 3). Interactions between 

different Trichoderrna spp. and mycorrhizal fungi, documented in the literature, may be negative, 

neutral or positive (Godeas et al. 1999; Vazquez et al. 2000; Martinez et al. 2004; Masadeh et al. 

2004). Paulitz and Linderman (1991) found no antagonistic or synergistic interaction between T. 

virens and AMF, which is consistent with most of our results. 

Soils fram sites A and D were analyzed using a nested Polymerase Chain Reaction (PCR) (van 

Tuinen et al. 1998) for the specifie detection of G. intraradices and G. mosseae, in June and August 

of 2000 and 2001. The amplified products specifie to each inoculated AMF species were detected 

in soil DNA extracts from plots of ail treatments. The cumulative detection frequency of each AMF 

species in the soil from sites A and Dis presented in Table 4. Both G. intraradices and G. mosseae 

were already present, at least at sites A and D, as shown by their detection in ail treatments, 

including non-inoculated controls. G. intraradices was detected more frequently in soils (2000 and 

2001) and roots (2001) than G. mosseae. This leads us to propose that the lack of response to 

AMF inoculation was due to the tact that the AMF species inoculated were part of the native soil 

microbial community, at least at sites A and D. 
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4.4.4 Detection of T. virens by a nested PCR-SSCP analysis 

The nested PCR used with the primers set Tvh-ITS.F1 / Tvh-ITS.R1, showed that T. harzianum and 

T. virens were detected at higher frequency in 2000 field season (Table 4, Appendix F). The 

average frequency of detection among ail treatments during June and August was 29.1% and 12.5 

% in field A, while it was 58.3% and 37.5% in field D. The frequency of detection of both 

Trichoderma spp. decreased in 2001, especially in field D. We analyzed the amplified products 

detected in each plot of both fields by SSCP gel electrophoresis to distinguish the bands pattern of 

T. virens from the one of T. harzianum. This SSCP analysis showed that the bands profile of T. 

harzianum was dominant and T. virens was detected in very few inoculated plots (Table 4, , 

Appendix F). The inoculated T. virens showed no persistence in these fields. Inoculation with 

SoilGard™ (T. virens) could be less effective as S. sclerotiorum antagonists than the Trichoderma 

spp. naturally present in the soil and may have reduced the antagonism of the Trichoderma 

population against the pathogen, resulting in significantly more apothecia in field A in 2000 (Figure 

1 a). It is not known whether inoculated fungi Iike T. virens and G. intraradicesiG. mosseae are 

more antagonistic against S. sclerotiorum than naturally occurring populations of Trichoderma and 

Glomus spp., and the interactions between naturally-occurring and introduced fungus under field 

conditions remains to be evaluated. 

4.4.5 Effects of BCAs on Soybean Yield 

Soybean yields at the study sites were from 2203 to 3667 kg grain ha-1 in 2000 and from 2039 to 

2492 kg grain ha-1 in 2001 (Figure 4). These yields are comparable to the provincial averages in 

Quebec (Canada), which normally range fram 2500 to 3063 kg grain ha-1 (Institut de la statistique 

du Québec, 2005). It should be noted, however, that 2000-01 average yields were low due to 

unfavourable weather conditions, i.e. greater than normal rainfall from April to June 2000 and 

drought in August 2001 (Institut de la statistique du Québec, 2005). We also found that soybean 

yields were not affected by the BCA treatments (Figure 4). 

Apart form the environmental factors that will evidently impact disease incidence, plant 

development and yield, a variety of agricultural practices must be considered to understand the 
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impact of SSR on seed yield. Factors that affect plant infection and the spreading of disease in the 

field include: row spacing and plant populations, as weil as the cultivars used and their 

characteristics of disease resistance, maturity, plant architecture (Chun et al. 1987; Buzzell et al. 

1993; Park 1993; Saindon et al. 1993; Hoffman et al. 1998; Kim et al. 1999; Arahana et al. 2001; 

Co ber et al. 2003). The experimental design used a wide row spacing (30 cm) that probably 

inhibited the spread of the disease, however, the soybean cultivar "Bayfield" is known to be 

susceptible to SSR disease (Sylvie Rioux, personal communication; Auclair et al. 2004; Rousseau 

et al. 2004). 

The relationship between soybean yield and SSR is also influenced by the method used to evaluate 

disease incidence and severity (Kerr et al. 1978). In our study, yield decreases due to SSR were 

related more to the number of severely infected plants (plants rated class 3) than to the global 

index of SSR disease (SSR-DSI). In 2000, we found 122 (of 960) plants with a c1ass 3 disease 

rating in site A, but only from 1 to 17 (of 960) plants with a class 3 disease rating at the other sites. 

ln 2001, between 0 and 17 (of 960) plants were severely infected in our study sites. When we 

examined the data from site A in 2000, we found that soybean yields in plots with at least 2.5% of 

severely infected plants (n=6 plots) were significantly (P<0.05, t-test) lower than plots with no 

severely infected plants (n=18 plots) (data not shown). Although we cannot conclude that the levels 

of SSR disease observed at site A reduced soybean yield, these findings suggest a criticallevel of 

SSR infection that may be linked with a reduction in soybean yield. 

4.5 Conclusions 

Biocontrol agents may be used as an alternative to, or complement fungicides applied to control 

plant diseases such as those caused by S. sclerotiorum. This study examined T. virens and AMF (a 

mixture of G. intraradices and G. mosseae), alone or in combination, for their ability to control 

Sclerotinia stem rot disease caused by S. sclerotiorum in soybean fields during two growing 

seasons. Generally, SSR disease indicators were not affected significantly by the BeA treatments. 

The distribution of viable S. sclerotiorum inoculum was probably non-uniform at the study sites, 

making it difficult to observe significant treatment effects, and weather conditions were not 

favourable for the development of SSR disease during one of the two study years. Soybean yields 
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were consistent with provincial averages during this study, and were not affected by the levels of 

SSR disease (up to 25% SSR-DSI) found at the field sites. It is not known whether the inoculum 

dose of T. virens and the AMF mixture of G. intaradices:G. mosseae applied were sufficient to 

provide protection against SSR disease under field conditions. Further study is needed to verity the 

efficiacy and optimize the application method, dose and timing of BCAs active against SSR disease 

in soybean fields. 
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Table 1. Location, agricultural practices and soil characteristics (0-15 cm depth) at the experimental sites under soybean 

production used in this study. Ali soils were mixed, frigid Typic Endoaquents. 

Field" Location SSR·DSI1999t Year Residuest pH§ CMII SandU Clay! SiltU Texturai class 

% % -------------------- 9 kg-1 -------------------

A Saint-Césaire 31.9±7.1 2000 2.5 6.7 42 118 321 561 Silty Clay Loam 

45°25' N 73°00'VV 2001 0.0 6.8 36 159 257 584 Silty Loam 

8 Saint-Césaire 23.1 ± 9.1 2000 0.0 6.3 36 130 353 517 Silty Clay Loam 

45°25' N 73°00'VV 2001 8.7 6.8 42 144 327 529 Silty Clay Loam 

C 
Sainte-Brigide-

2000 76.3 6.2 51 140 367 493 Silty Clay Loam 
d'Iberville 28.1 ± 7.6 

45°19'N 73°04'VV 2001 82.1 6.6 52 151 442 407 Silty Clay 

D La Présentation 22.9 ± 7.1 2000 64.2 6.3 40 384 246 370 Loam 

45°40' N 73°03' VV 2001 57.3 6.1 36 450 194 356 Loam 

* Fields A and B were under conventional tillage (CT). Fields C and D were under no-tillage (NT). 

t SSR-DSI (mean ± sem) in the soybean sites A, B, C and D in 1999. SSR-DSI was estimated in 8 plots (plots of 2 m X 2 m) 

each on sites A, B, C and in 16 plots on site D. 

tThe percentage of surface residues was determined by the method of Sioneker and Moldenhaner (1977). 

§ Soil:water extracts (1:2 soil:solution ratio) (Hendershot et al., 1993). 

Il Organic matter (OM) was determined by loss on ignition (360°C for 4 h) (Schulte et al., 1991). 

'Particle-size analysis (Sheldrick and VVang, 1993). 
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Table 2. Monthly averages for precipitation and air temperature at weather stations near the study sites 

during the 2000 and 2001 field seasons (Environment Canada Meteorological Service, unpublished data). 

Month Monthly Precipitation (mm) Daily average air temperature (OC) 

2000 2001 2000 2001 

1" Il III Il III 1 Il III Il III 

May 147 152 108 67 77 49 13 14 13 15 14 16 

June 98 71 89 116 100 81 18 18 18 20 20 20 

July 42 85 72 95 154 58 20 21 20 19 19 20 

August 103 113 97 82 72 79 19 20 20 21 21 22 

September 54 98 94 34 42 33 14 15 14 16 16 17 

Total 444 519 460 394 445 300 

*1, Marieville Station (Fields A and B); Il, Farnham Station (Field C); III, St-Hyacinthe Station (Field 0) 
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Table 3. Incidence of Sclerotinia stem rot disease in soybean fields inoculated with the biocontrol agents T. virens (TRI) and a mixture of G. 

intraradices and G. mosseae (AMF), alone or in combination. Values are the mean (± sem) Sclerotinia stem rot disease severity index (SSR-DSI), 

expressed in percentage (%). 

Site 2000 2001 

TRI+AMF TRI AMF CONTROL TRI+AMF TRI AMF CONTROL 

A 21.3±3.616.3±4.1 25.0 ± 4.3 24.2 ± 2.3 3.1±2.0 1.7±0.8 1.7±1.2 0.0 ± 0.0 

B 0.6 ± 0.6 O.O± 0.0 0.0 ± 0.0 0.3 ± 0.2 0.0 ± 0.0 2.9 ± 1.6 1.3 ± 0.9 5.0 ± 3.6 

C 1.5 ± 0.9 2.3 ± 0.9 1.7±1.0 3.3 ± 2.9 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

0 1.8 ± 0.8 2.2± 0.9 1.7 ± 0.8 3.2 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 004 ± 004 

Note: The application of biocontrol agents had no significant impact (P<0.05) on the SSR-DSI at any sites during the study. 
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Table 4. Detection of G. intraradices, G. mosseae and T. virens in soybean plots by PCR analysis during 2000 and 2001 field seasons. 

Field Treatmenf 2000 soilt 2001 Soil 2001 root 

June August June August August 

G.ï. t G.m. T.v.§ G.ï. G.m. T.v. G.i. G.m. T.v. G.i. G.m. T.v. G.i. G.m. 

A TRI + AMF 2 0 2 (1) 2 0 0 4 1 2 0 2 (1) 6 0 

TRI 2 0 2 3 2 4 0 0 0 0 6 0 

AMF 4 0 3 2 0 0 2 4 3 2 0 0 6 0 

CONTROL 2 0 0 4 0 2 2 6 0 0 0 6 0 

D TRI +AMF 4 0 0 6 0 2 (1) 4 2 0 4 2 0 6 1 

TRI 2 0 6 (3) 6 0 6 6 2 (1) 4 2 0 5 2 

AMF 2 3 2 6 0 0 3 6 0 4 3 0 5 

CONTROL 2 0 6 6 0 6 6 6 0 6 6 0 6 

• 6 plots per treatment. 

t The number of plots among 6 plots per treatment sampled at each field in which of G. intraradices, G. mosseae and T. virens have been detected 

by specifie nested PCR analysis of total sail DNA extracts or total soybean's roots DNA extracts. 

t G.i.: Glomus intraradices; G.m.: Glomus mosseae; 

§ T.v.: Trichoderma virensITrichoderma harzianum. The number in brackets refer ta the number of plots among 6 per treatment where T. virens was 

distinguished from T. harzianum by SSCP analysis. 
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Figure 1. Number of apothecia (per m2) (mean ± sem) in fields inoculated with the biocontrol 

agents T. virens (TRI) and a mixture of G. intraradices and G. mosseae (AMF), alone or in 

combination, in 2000 (A) and 2001 (8). Means followed by the sa me letier within the same site are 

not significantly different at P< 0.05 (LSD test). The absence of letiers on bars within a site 

indicates no difference between biocontrol treatments (P<0.05). 
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Figure 2. Relationship between the number of apothecia and the incidence of SSR disease, 

expressed as the Sclerotinia stem rot disease severity index (SSR-DSI), in soybean fields during 

the 2000 and 2001 seasons. 
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Figure 3. AMF root colonization (%) of soybean plants grown in fields inoculated with the biocontrol 

agents T. virens (TRI) and a mixture of G. intraradices and G. mosseae (AMF), alone or in 

combination, in 2000 (A) and 2001 (8). Means followed by the same letler within the same site are 

not significantly different at P< 0.05 (LSD test). The absence of letlers on bars within a site 

indicates no difference between biocontrol treatments (P<0.05, LSD test). 
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Figure 4. Soybean grain yield (kg ha·1, adjusted to 13% humidity) in fields inoculated with the 

biocontrol agents T. virens (TRI) and a mixture of G. intraradices and G. mosseae (AMF), alone or 

in combination, in 2000 and 2001. The absence of letiers on bars within a site indicates no 

difference between biocontrol treatments (P<0.05). 
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4.6 Connecting Paragraph 

Chapter 4 gives the experimental design and details of a two-year field study that was conducted in 

soybean fields under conventional or no tillage to determine whether Trichoderrna virens 

(SoiiGard™) and arbuscular mycorrhizal fungi could reduce Sclerotinia stem rot disease incidence 

in soybeans. We found that the biocontrol agents had little effect on the incidence of disease. Most 

fields had very low disease incidence, except for field A during 2000. Chapter 5 investigates the 

effect of the inoculation of the biological control agents in a soybean field on the soil microbial 

communities, and explored the relationships between the SSR disease and general sail microbial 

groups (Le., Gram+ bacteria, Gram- bacteria, saprophytic fungi, mycorrhizal fungi). These 

relationships were evaluated by profiling sail fatty acid biomarkers, generated from the direct 

esterification of soils and analyzed by GC-FID, which 1 identified as the most reliable method for 

assessing sail microbial communities. 
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5. PROFILING OF SOll MICROBIAl COMMUNITIES USING FATTY ACID ANAL YSIS IN A 

SOYBEAN AGROECOSYSTEM INFESTED WITH SClEROTINIA STEM ROT DISEASE 
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5.1 Abstract 

Sclerotinia stem rot (SSR) disease caused by Sclerotinia sclerotiorum (Lib.) de Bary is considered 

one of the most important fungal diseases of soybean, causing significant yield los ses wherever 

soybean is cultivated. Biological control is a promising way of controlling SSR disease in the field. A 

better understanding of the complex interactions between biocontrol agents, the pathogen 

Sclerotinia sclerotiorum and indigenous sail microorganisms as weil as the plant; will permit us to 

optimize control strategies for plant diseases based on an ecological approach. The objectives of 

this research were (1) to investigate the effect of the inoculation of biological control agents (BeAs) 

against SSR disease in soybean fields on soil microbial communities, and (2) to explore the 

relationships between the SSR disease and the soil microbial communities. Following the 

application of BeA treatments in 2000 and 2001, the concentrations of different bacterial and fungal 

fatty acid biomarkers were significantly modulated. The concentrations of fatty acid biomarkers 

specific to bacteria, bacteria Gram+ and actinomycota were selectively and significantly higher in 

plots with higher number of plants heavily infested with SSR disease. Generally, there was ne 

ove rail difference in the relative proportions of chemical classes as weil as biological groups 

observed in the field investigated for trial years 2000 and 2001. However, except for the 

saprophytic and mycorrhizal fungal biomarkers, the concentrations of chemical classes and 

biological groups of fatty acids were generally higher in 2000. Further study is needed to investigate 

the nature of the changes induced in the microbial populations by the inoculation of BeAs as weil 

as how they could be related to disease suppression. The selective increase in the concentrations 

of specific groups of bacteria needs to be investigated in more details in order to understand how 

these bacteria interact with plants infected by S. sclerotiorum. 

5.2 Introduction 

SSR disease caused by S. sclerotiorum (Lib.) de Bary is considered one of the most important 

fungal diseases of soybean, causing significant yield losses wherever soybean is cultivated 

(Wrather et al. 2001). Sclerotia of S. sclerotiorum germinate carpogenically to produce the 

teleomorphic stage, the apothecia, which then release ascospores. Germinating ascospores 

colonize senescing or dead flower petais in the phyllosphere, and the pathogen th en invades 
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adjoining living tissue and initiates disease (Willetts and Wong 1980). Up to now, the main ways to 

control SSR disease were by chemical control (e.g. fungicides), disease resistance by cultivar 

breeding, cultural control (e.g. increasing the width between rows, reducing plant populations) and 

biological control (Tu, 1997; Zhou and Boland, 1998; Bardin and Huang, 2001). In our previous 

chapter, arbuscular mycorrhizal fungi and Trichoderma virens were assessed in a two-year field 

trial in their capacity to control SSR disease in soybean as weil as the effect of these BCA 

treatments on soybean growth and yield. Mycorrhizal fungi that established in a soil environ ment 

will interact with other soil microorganisms (Olsson et aL, 1996, 1998; Green et aL, 1999; Hodge, 

2000; Sôderberg et aL, 2002; Johansson et aL, 2004; Albertsen et aL, 2006). The interactions of 

Trichoderma virens with indigenous microbial populations in field conditions is less known. Also, the 

plant type and its growth stage as weil as any modification of its physiology caused by disease, for 

example, could be an important determinant of the microbial community structure in its 

surroundings soil (rhizosphere) (Garbeva et aL, 2004; Johnson et aL, 2005; Romeiro et aL, 2005; 

Mougel et aL, 2006; Roesti et aL, 2006). However, the effect of plant diseases attacking the aerial 

parts of plants, like Sclerotinia stem rot, on soil microbial community is unclear. 

Fatty acids biomarkers analysis is a suitable method for studying the changes in the soil microbial 

communities caused by many factors such as plant diversity (Sôderberg et aL, 2002; Carney and 

Matson, 2005), tillage (Spedding et aL, 2004), fertilization (Sullivan et aL, 2006), pollution (Kelly et 

aL, 2003), soil properties (Schutter and Dick, 2000), etc. Fatty acid profiling has been also used in 

plant pathology in order to better understand the impact of disease on soil microbial communities 

and also how inoculated biological control agents interact with these soil communities (e.g., Kozdr6j 

et aL, 2004; Hamel et aL, 2005; Larkin and Honeycutt, 2006). Many studies used the phospholipid 

fatty acid (PLFA) approach to study the interactions of arbuscular mycorrhizal fungi with other soil 

microbiota and plant (e.g., Olsson et aL, 1996, 1998; Green et aL, 1999; Sôderberg et aL, 2002: 

Johansson et aL, 2004; Albertsen et aL, 2006). Mazzola (2004) proposed to use PLFA or fatty acid 

methyl ester (FAME) analysis in order to assess the biological nature of soil suppressiveness. 

Although, fatty acid profiling (and phospholipid fatty acid profiling) are sensitive enough for 

monitoring the global changes in the soil microbial community following inoculation of 

microorganisms and effect of plant disease, this approach was not report frequently used for such 

studies in field conditions. As far as we are aware, there have been no published studies that report 
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how soil microbial communities are affected by BeA treatments in a field trial, or whether soil 

microbial communities are affected when they in habit the root-associated soil of plants with SSR 

disease. 

The purpose of this work was (1) to investigate the effect of the inoculation of BCAs against SSR 

disease in soybean fields on soil microbial communities, and (2) to explore the relationships 

between the SSR disease and the soil microbial communities in order to better understand how the 

"health" status of the plant, monitored by the SSR disease incidence, will influence the microbial 

communities in the vicinity of the plants. The soil microbial communities will be assessed by 

profiling the fatty acids biomarkers and evaluated the effects of BCA treatments and SSR disease 

on the quantity of total FAMEs present in the soil, the proportions of different chemical groups of 

fatty acids in the soil, the abundance of fatty acids representing certain soil microorganisms 

(bacteria vs fungi, gram+ vs gram-, etc) as weil as the microbial diversity assessed by multivariate 

analysis. 

5.3 Materials and Methods 

A two-year field study was conducted in soybean fields under conventional or no tillage located in 

southwestern Quebec. At each site (2 under each tillage regime), the experimental design was the 

same: a randomized complete block design with 6 blocks and four BeA treatments within each 

block, for a total of 24 plots per site. The BCA treatments were Trichoderma virens (TRI), 

arbuscular mycorrhizal fungi (AMF), Trichoderma virens plus arbuscular mycorrhizal fungi 

(TRI+AMF), and a control (CONTROL) that received no biocontrol agents. The effect of the BeAs 

on the Sclerotinia stem rot (SSR) disease were monitored, in each plot, by counting the number of 

apothecia from Sclerotinia sclerotiorum, the causal agent of the disease, and by assessing the 

incidence of SSR disease in the crop. The effects of the BeAs on the plants were evaluated by 

measuring the biomass of the plants, colonization of the roots by AMF as weil as the soybean grain 

yield. The establishement of the BCAs was studied using PCR approaches. Detailed description of 

the sites selected, the experimental design, methodology used for assessing the SSR disease and 

soybean yield were presented in chapter 4. 
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5.3.1 Soil collection and handling 

Soil samples were collected from each plot, in each field, at the end of August, when the soybean 

plants were at the R4 to R6 stages of development (2000) or the pod forming stage (2001) (Fehr et 

al., 1971). In each plot, seven subsamples were taken, using a soil auger of 3 cm diameter, from 

the top 10 cm of planted rows and pooled to generate one composite sam pie per plot (total weight 

of the composite per plot: ca 200-250 9 of field moist soil). The samples were frozen immediately 

and stored at -20°C until analysis. Fatty acid analysis was conducted on 23 (one sample lost) soil 

samples collected from field A in 2000 (6 blocks x 4 treatments), as weil as 12 soil samples 

collected from field A in 2001 (three blocks x four treatments). General physical and chemical 

characteristics of these soils are described in Table 1 of chapter 4. 

5.3.2 Preparation of the ester-linked fatty acid methyl esters (EL-FAMEs) 

Ali organic solvents used in this study were HPlC grade. Glassware and laboratory equipment 

were prepared as recommended in White and Ringelberg (1998). The in situ transesterification 

procedure used in this study is detailed in Schutter and Dick (2000), but with sorne modifications. 

Prior to lipid analysis, the soils were freeze-dried and finely ground. Then, 3 to 5 9 of soil was 

incubated with 15 ml of 0.2 M KOH in methanol for 1-hour at 37°C. The reaction mixture was 

vortexed every 10-15 minutes. At the end of the reaction, the mixture was cooled to room 

temperature and neutralized with 3 ml of 1 N glacial acetic acid. The EL-FAMEs were extracted 

from the mixture with phase partitioning using 3 x 5 ml hexane-chloroform (4:1). The organic 

phases were pooled and dried under a gentle steam of N2, then dissolved in iso-octane prior to 

analysis by GC-FID. 

5.3.3 Analysis of EL-FAMEs by GC-FID 

The EL-FAMEs were analyzed in split mode (50:1) with agas chromatograph (Hewlett Packard 

6890) equipped with a 25-m Ultra-2 capillary column and a flame ionization detector (FID), following 

the settings of the MIS protocol (MIDI, Inc., Newark, Delaware, USA, www.midi-inc.com) (Sasser, 

1990; Schutter and Dick, 2000; Buyer, 2002) as also detailed in section 3.3.5. The retention times 
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of the peaks were converted to equivalent chain length (ECL) values (Sasser, 1990). Identification 

of peaks was based on comparison of retention times (and ECLs) to commercial FAME standards. 

Also, the identification of the peaks in our samples was cross-validated by sending a subset of our 

samples in a certificated external laboratory (Laboratoire de Santé Publique du Québec, Sainte­

Anne-de-Bellevue, QC) using the Sherlock Microbial Identification System® (MIDI, Inc., Newark, 

Delaware, USA). The fatty acids analyzed in our samples by this method are listed in Appendix B. 

The concentration of each identified FAME (nmoles per gram dry soil (OS)) was calculated as using 

C19:0 as internai standard at a concentration of 24.5 ng ~L-1 (0.0784 nmole C19:0 ~L-1) in each 

sample. The contribution of each identified FAME to the total FAME concentration (ail FAMEs 

identified) in a sample was expressed as mole fraction (relative richness, % mole). We used the 

standard w-nomenclature (A:BwC) for designating the fatty acids (IUPAC-IUB, 1977). The FAMEs 

identified in our samples were grouped according to their chemical class: Straight saturated chain 

FAs or StraightSAFAs (12:0, 14:0, 15:0, 16:0, 17:0, 18:0,20:0), BranchedSAFAs (i-14:0, i-15:0, a-

15:0, i-16:0, i-17:0, a-17:0, 10Me-16:0, 10Me-17:0, 10Me-18:0, 10Me-19:0), fatty alcohol (16:0 N 

alcohol), CycloFAs (17:0 cyclo, 19:0 cyclo ro8c), HYFAs (14:0-20H, 15:0-30H, 18:0-20H, 18:0-

30H), MonoUnsaturatedFAs or MonoUFAs (16:1ro11c, 16:1ro5c, 17:1ro8c, 18:1ro9c, 18:1ro7c, 

18:1ro5c, 19:1ro11c/19:1ro9c (co-eluting fatty acids), 20:1ro9c, 20:1 ro7c) , PolyUFAs 

(18:3ro6,9,12c). EL-FAMEs identified in our samples were also grouped according to their 

biological origin and computed using the following EL-FAMEs: actinomycetes (10Me-16:0, 10Me-

17:0, 10Me-18:0, 10Me-19:0), mycorrhizal fungi (16:1ro5c), saprophytic fungi (18:1ro9c, 18:2ro6,9c, 

18:3ro6,9,12c), bacteria (i-14:0, i-15:1, i-15:0, a-15:0, 15:0, i-16:0, 16:1ro7c, i-17:0, a-17:0, 17:0 

cyclo, 17:0, 18:1ro7c, 18:1ro5c, 19:1ro6c/unknow 18.846/cycI019:0ro10c/19ro6, 19:0 cyclo ro8c), 

Gram+ bacteria (i-14:0, i-15:1, i-15:0, a-15:0, i-16:0, i-17:0, a-17:0) and Gram- bacteria (16:1ro7c, 

17:0 cyclo, 18:1ro7c, 18:1ro5c, 19:1ro6c/unknow 18.846/cycI019:0ro10c/19ro6, 19:0 cyclo ro8c) 

(Lechevalier, 1977; Kroppenstedt, 1985, 1992; Federle, 1986; Lechevalier and Lechevalier, 1989; 

O'Leary and Wilkinson, 1989; Ratledge and Wilkinson, 1989; Wilkinson, 1989; Vestal and White, 

1989; Frostegard et aL, 1993; Graham et aL, 1995; Olsson et aL, 1995; Frostegard and Bààth, 

1996; Zelles, 1997, 1999; Olsson, 1999; Hill et aL, 2001). 
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5.3.4 Statistical analysis 

Statistical analyses were performed using SYSTAT software (Version 10, Systat Software Inc., 

Richmond, CA, USA) and CoStat software (Version 6.003, CoHort Software, Monterey, CA, USA). 

Analysis of variance (using LSD, at a=0.05, as a post-hoc test for mean comparison) was 

performed to determine the etfect of BCA treatments, for each study year (2000 and 2001), on 

individual FAMEs, total quantities of identified FAMEs in soil samples, chemical classes as weil as 

biological groups of FAMEs. Principal components analysis (PCA) was performed for each study 

year, on the dataset of soil EL-FAMEs identified in field A to explain sources of variation and to test 

the discrimination of the samples according to the treatments. The data, expressed in % mole, were 

transformed with a IOg1OX+1 transformation, where x is the % mole of each EL-FAME in a sample 

and analyzed using SYSTAT software, version 10 (Systat Software Inc., Richmond, CA, USA). 

One-way ANOVA was also used to compare the concentrations of individual FAMEs, total 

quantities of identified FAMEs in soil samples, chemical classes as weil as biological groups of 

FAMEs in the 'healthy' plots compared to the 'diseased' plots. A 'healthy' plot was one where less 

than 12.5% of plants had a disease severity index of 3 or greater (les ions on the main stem that 

cause poor pod-fill or plant death) on the symptomatic scale described in Grau et al. (1982) (see 

Chapter 4). A 'diseased' plot contained more than 12.5% of plants with a disease severity index of 

3 or greater. Data presented in tables and figures are untransformed means and standard errors of 

the mean (using 'sem' as abbreviation for 'standard error of the mean'). 

5.4 Results and discussion 

5.4.1 Selection of the site 

The levels of Sclerotinia stem rot disease incidence (SSR-DSI) in the three of the four fields 

investigated were very low in both years (Figure 1): SSR-DSI in fields B, C and D ranged from 0.0 

to 22.5 with an average of 1.1 ± 0.2 (n = 135) during the study. However, in field A du ring the first 

year of the trial (2000), a greater SSR-DSI was detected, ranging from 5.8 to 35.8 with an average 

of 21.7 ± 1.8 (n = 24) (Figure 1). In 2001, the SSR-DSI in field A was from 0.0 to 12.5 with an 
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average of 1.6 ± 0.6 (n = 24). Fatty acid analysis was conducted on 23 (one sam pie lost) soil 

samples collected from field A in 2000 (6 blocks x 4 treatments), as weil as 12 soil samples 

collected from field A in 2001 (three blocks x four treatments). 

The fatty acids were prepared using a direct in situ transesterification method that was documented 

to be complementary to phospholipid fatty acid methodology, easy to perform and adequate for 

discriminating the dynamics of microbial communities (Drijber et aL, 2000; Hinojosa et aL, 2005). In 

our thirty-five samples, we identified forty-six fatty acids. These fatty acids were considered 

individually or grouped according to their chemical nature and biological origin (see references cited 

in Materials and Methods section of this chapter). 

5.4.2 Effect of the inoculation of Trichoderma virens and mycorrhizal fungi as potential 

biocontrol agents against Sclerotinia stem rot on microbial communities in soils under 

soybean crop 

We performed an analysis of variance to detect any significant change in concentrations of the soil 

fatty acids after BCA treatments in fields A (Table 1) for both years. Table 1 presented the fatty 

acids and their concentrations that were significantly affected (at p<0.05, LSD) by the BCA 

treatments in field A either in years 2000 or 2001. The concentrations of i-16:1, 11Me-18:1ro7c, 

19:1ro11c/19:1ro9c were significantly higher (at p<0.05, LSD) in plots inoculated by AMF than in 

the others in 2000. The concentrations of 18:3ro6,9,12c, a fungal biomarker, was similar in TRI, 

AMF and control plots compared to plots inoculated by TRI+AMF in 2000. The concentration of 

20:1ro7c was significantly higher (at p<0.05, LSD) in CONTROL plots compared to the others. 

Thus, the fatty acids (i-16:1, 11Me-18:1ro7c, 19:1ro11c/19:1ro9c) increased in plots inoculated by 

AMF constitute less than 1% of the average TotalFAs (Total fatty acids) (Table 1, 2000). The 

literature is scarce about the biological origin of these fatty acid biomarkers. They are more likely to 

be of bacterial origin (Ratledge and Wilkinson, 1989; Zelles, 1999). Right now, it is too early to link 

these increases to the direct inoculation of AMF. The interactions of AMF with soil bacteria were 

demonstrated in several papers (Olsson et aL, 1996, 1998; Sôderberg et aL, 2002; Johansson et 

aL, 2004; Albertsen et aL, 2006). Future studies will be required to verity if the fatty acids observed 
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here come from Rhizobium bacteria that are omnipresent in the rhizosphere of soybean. According 

to our knowledge, this is one of the first assessments by fatty acid profiling of the effect of AMF 

inoculated in field on soil bacteria. 

No inoculation, or inoculation of AMF or TRI alone probably did have any significant effect on the 

concentrations of 18:3ro6,9,12c (Table 1, 2000). However, co-inoculation of TRI and AMF 

significantly (at p<0.05, LSD) 'repress' or lower the expression of this fungal fatty acid suggesting 

an antagonistic effect such as observed, in controlled experiments, by Green et al. (1999), Martinez 

et al. (2004), Tiunov and Scheu (2005). 

ln field A (in 2001), the inoculation of AMF and TRI+AMF seems to have an adverse effect on 

concentrations of the fatty acids (Table 1). Most of them were significantly higher (at p<0.05, LSD) 

in CONTROL and-or in TRI plots. The results are not consistent from one year to the other. These 

results suggest that effect of BCA treatments on soil microbial communities could be modulate by 

other factors such as climatic conditions. This factor, also with the different previous crop as weil a~ 

the presence of SSR disease, constitute the major differences between 2000 and 2001 that we 

could observed in our experimental plots. 

ANOVA testing the effects of the BCAs treatments on the fatty acids classified by their chemical 

groups reveals that for the two soils at both years, only the PUFAs group is significantly different (at 

p<0.05) among the treatments in 2000, essentially because this group is comP9sed only of 

18:3ro6,9, 12c (see above). A fungal group composed of the summation of the fatty acid biomarkers 

of mycorrhizal fungi (16:1ro5c) and saprophytic fungi (18:1ro9c, 18:2ro6,9c, 18:3ro6,9,12c) was 

significantly different among the treatments in 2000 precisely because of the significant changes of 

the fatty acid 18:3ro6,9, 12c as stated above. 

Finally, a principal components analysis (PCA) was performed on the individual fatty acid 

biomarkers from the 2000 and 2001 datasets separately. PCA with data from 2000 extracted seven 

principal components explaining more than 86% of ail the variance in the dataset (more than 58% 

for PC1 and PC2). Figure 2a presents the PCA scores plot for 2000. The treatments overlap in 

Figure 2a and an analysis of variance using the PCA scores for each sample as variables didn't 
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show any statistical significant difference between the treatments in 2000. With the 2001 data, PCA 

extracted five principal components explaining more that 93% of the variance (more than 73% for 

PC1 and PC2). Analysis of variance using the PCA scores reveals that PC2 significantly 

discriminated the four treatments (at p<0.05, LSD). The fatty acids 11Me-18:1ro7c, 12:0, i-15:1, 

15:0-30H, 16:1ro11c, 14:0-20H have high positive loading values (>0.7) (data not shown) on PC2 

axis. The concentrations ofthese fatty acids (see Table 1) contributed to the difference between thE"; 

control plots and the treatments' plots observed in Figure 2b. 

These results raised the question on the origin of these changes. It was not possible to 

demonstrate clear establishment of the BCAs using PCR techniques (Chapter 4). Also, we 

observed no significant difference in root colonisation by AMF as weil as in the concentration of 

16:1ro5c, the fatty acid biomarker specifie to AMF, following the inoculation by AMF in fields (data 

not showed). Thus, our results suggest that the inoculation at the beginning of the season initiated 

changes that continued until the end of the season. Also, up to now, the significance of these 

changes in microbial communities in the context of biological control of SSR disease is not known. 

These aspects remain to be assessed in further studies. 

5.4.3 Relationships between SSR-DSI and fatty acids 

One of the goals of this research was to characterize the microbial communities in soil in the vicinity 

of plants infested to different extents with SSR. Since we observed a good range of SSR-DSI in 

field A (see Figure 1, and section 5.4.1), in 2000, only the fatty acids from this field were considered 

in the analysis. 

ln this research, the SSR-DSI was estimated according to the method described in Grau et al. 

(1982) in which forty soybean plants per plot were individLially rated according to a symptomatic 

scale from 0 to 3, 0 meaning that the plant presents no symptoms and 3, lesions on the main stem 

resulting in plant death and poor-pod fill are observed. Different ways of expressing the disease 

incidence were tested in order to find better relationships between the SSR disease expression and 

potential effects on the fatty acid biomarkers. Based on our field observations, soybean plants 

rating from 0 to 2 were not necessarily affected by the disease in term of plant death or yield 
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reduction. However, plants rating with a 3 on the symptomatic scale were most likely to die from the 

infection by the pathogen. Thus, we computed a parameter expressing the number of plants, 

among the fort Y recorded by plot, rating 3. In order to detect of possible effects of these plants on 

the soil microbial communities, we separated the plots in two categories according to the following 

criterium: a plot with 5 plants and more with a rate of 3 on the symptomatic scale, over the 40 

plants monitored, is designated to be "diseased" and a plot with less than 5 plants with a rate of 3 

on the symptomatic scale, over the 40 plants monitored, is designated to be healthy. The criterium 

was arbitrary stated. However, the average percentage of plants rated 3 is 12.7%. So, the threshold 

was set at 12.5%, 5 plants over 40. Then, analysis of variance comparing categories A ("diseased") 

vs B ('healthy") was performed on the concentrations (expressed in nmol g-l OS) of individual fatty 

acids, their chemical classes as weil as biological groups. Table 2 shows clearly that the 

concentrations of bacterial fatty acid biomarkers, especially from Gram+ as weil as actinomycota, 

are higher in the soil samples from 'diseased' plots compared to the concentrations from more 

'healthy' plots. Surprisingly, the fatty acid biomarkers specifie to saprophytic fungi as weil as 

mycorrhizal fungi were not altered (data not shown). It is important to state that the parameters 

significantly different between the two conditions were also tested for possible underlying treatment 

and block effects. For the data presented in Table 2, there were no significant treatment and block 

effects. 

Bacterial populations respond clearly to the presence of heavily infested plants in a plot. Higher 

concentrations of specifie bacterial fatty acid biomarkers were observed and more specifically 

Gram+ as weil as the actinomycota fatty acids biomarkers. These results could suggest that the 

health status of a plant heavily infested in its phyllosphere by a disease such as SSR could even 

modulate the soil microbial communities in its vicinity in a very specifie way. At this moment, it is not 

possible to say if these shifts are beneficial or detrimental to the plant. However, the absence of 

significant effect of the plant health status on the fungal biomarkers could promote the hypothesis 

of the induction of supporting bacterial communities. 

Plant-microbial interactions in the rhizosphere are very complex. Heavy infestion of a plant by a 

necrotrophic fungus such as S. sclerotiorum most likely ends in the death of the plant. However, we 

speculate that the plants could also mobilize specifie set of microorganisms to assist in its defense 
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against pathogens and recovery from pathogenic attack. A satisfactory plant-soil model needs to be 

developed for in-depth study of the changes in soil microbial communities, observed by fatty acid 

profiling, as weil as their functions, following the infection of the soybean plant by S. selerotiorum. 

5.4.4 Concentrations of fatty acid chemical classes and biomarker groups from field A in 

2000 and 2001 

Table 3 displays the averages (in nmol g-1 OS as weil as in % mole) found in soils collected from 

field A in 2000 and 2001. An analysis of variance was used to test the difference between the 

concentrations and relative proportions of the chemical classes and biological groups between both 

years. The % mole of the chemical class PolyUFAs was significantly higher in 2000 (at p<0.01, 

LSO). For ail the other chemical classes and biological groups, the relative proportions did not 

change from year to year in this field (Table 3). However, the quantities, in nmol g-1 OS, of 

TotalFAs, BranchedSAFAs, HYFAs, PolyUFAs and StraightSAFAs were significantly higher in 2000 

(at least at p<0.05, LSO). Also, the quantities of unspecificFAs (fatty acids not specifc to any 

biological group) as weil as the fatty acid biomarkers of bacteria, Gram+, actinomycota were 

significantly higher (at least at p<0.05) in 2000. No significant difference was observed in the 

quantities of the saprophytic as weil as the mycorrhizal fungi specifie fatty acid biomarkers (Table 

1). 

The factors that could account for differences or similarities in the concentrations and proportions of 

fatty acid biomarkers found in 2000 compared to 2001 are mainly the soil properties, the climatic 

conditions, previous crop, disease incidence and plant stage at the sampling time. The locations in 

field A at which the experimental plots in 2000 and 2001 were established present only slight 

different soil properties such as organic matter levels, sand and clays levels as weil as higher 

percentage of surface residues in 2000 (Table 1, chapter 4). Moreover, the climatic conditions in 

2001 were more different than 2000 with a period of drought in July and August 2001 (more than 30 

days without significant rainfall at most sites, Table 2, chapter 4). As weil, the previous crop for the 

location of 2000 was soybean and corn for the one in 2001. We already mentioned that SSR-OSI 

were higher in 2000 compared to 2001. Also, we collected soil samples in August of both years, but 
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the soybean plants were at different stages in their development: R4 to R6 stages (2000) or the pod 

forming stage (2001) (Fehr et aL, 1971). 

Even if the above factors were slightly different between the two years, the proportions (% mole) of 

fatty acids from chemical classes as weil as biological groups were generally similar from one year 

to the other (Table 3). Our results could suggest that the relative proportions of the fatty acid 

biomarkers specific to microbial communities in these soils were not affected, to a measurable 

extent, by the factors mentioned above. Or the soil factor, and-or the plant factor, being the more 

'stable' factors in the agroecosystem compared to climatic conditions, disease or previous crop, 

could have supported a microbial community structure able to face these changes in their 

environment, for example a drought in 2001, without major disturbances in the community 

members as revealed by the fatty acid profiling. There is a growing body of evidences showing that 

the soil type, plant type as weil as agricultural management regime are the major determinant of the 

structure of microbial community (Garbeva et aL, 2004; Johnson et aL, 2005; Singh et aL, 2006). 

These determinants could then be able to re-induce equilibrium in the microbial community after 

severe events like a drought, for example. 

However, the above factors could together explained why the concentrations of fatty acid from the 

chemical classes TotalFAs, BranchedSAFAs, HYFAs, PolyUFAs and StraightSAFAs and those 

from the biomarker groups unspecificFAs, bacteria, Gram+, actinomycota were significantly higher 

in 2000. The concentrations of saprophytic as weil as the mycorrhizal fungi fatty acid biomarkers 

were not different between 2000 and 2001. Our results cou Id suggest that these fungal 

communities were more 'stable' compared to bacterial communities. The factors listed above that 

contribute to the difference and similarity of locations in 2000 and 2001 are maybe not sufficient 

enough to induce measurable changes in the specific fungal and mycorrhizal fatty acid biomarkers 

contents, but bacterial populations could be sensitive enough to the changes and respond with 

variations in their specific fatty acid biomarkers concentrations. The profiling of fatty acids could be 

helpful in identifying the changes associated with soil disease suppression (Janvier et aL, 2007), 

but this remains to be confirmed. 

Further study needs to be performed in order to address more specifically the question of the major 

determinants of microbial community structure in field conditions. 
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5.4.5 Conclusions 

According to our knowledge, this study is the first (1) to report significant effects of the introduction 

of biological control agents, such as arbuscular mycorrhizal fungi and Trichoderma virens, on the 

soil microbial community, profiled by their fatty acid biomarkers, and in soybean field infested with 

Sclerotinia stem rot disease; and (2) to show that the soybean plants with severe infection by 

Sclerotinia stem rot will alter the microbial communities, profiled using their fatty acid biomarkers, in 

the soil environment surrounding them. The concentrations of different of bacterial and fungal fatty 

acid biomarkers were significantly modulated following the application of the BCA treatments in 

2000 and 2001. The concentrations of fatty acid biomarkers specific to bacteria, bacteria Gram+ 

and actinomycota were selectively and significantly higher in plots with higher number of plants 

heavily infested with SSR disease. Generally, there was not overall difference in the relative 

proportions of chemical classes as weil as biological groups observed in the field investigated for 

trial years 2000 and 2001. However, the concentrations of chemical classes and biological groups 

of fatty acids were generally higher in 2000, excepted for the saprophytic and mycorrhizal fungal 

biomarkers. Further study will be needed in order to investigate the nature of the changes induced 

in the microbial populations by the inoculation of BCAs as weil as how they could be related to 

disease suppression. Moreover, the selective increase in the concentrations of specifie groups of 

bacteria will need to be investigated in more details in order to understand how these bacteria 

interact with plants presenting heavy infection by SSR disease. 
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Table 1. Fatty acids significantly altered by BeA treatments in field A in 2000 and 2001. For each fatty acid, means in the same row, from the same 

year of trial, followed by the same or no letters are not significantly different (p<0.05, LSO). 

Fjeld A (2000) A (2001) 
Treatment TRI+AMF+ TRI AMF CONTROL TRI+AMF+ TRI AMF CONTROL 

nmole g"1 OS nmole g"1 OS 
12:0 0.35 0.30 0.31 0.33 O.OOb O.OOb O.OOb 0.18a 
j·15:1 0.19 0.20 0.25 0.22 O.OOb 0.16a O.OOb 0.15a 

14:0·20H 0.20 0.21 0.22 0.22 O.OOb O.OOb O.OOb 0.13a 
j·16:1 O.OOc 0.21b 0.27a O.OOc 0.00 0.00 0.00 0.00 

16:1oo11c 0.36 0.38 0.40 0.35 O.OOb 0.19ab O.OOb 0.29a 
j·15:0·30H 0.00 0.00 0.00 0.00 O.OOb 0.18a O.OOb 0.15a 
15:0·30H 0.22 0.24 0.24 0.27 O.OOb O.OOb O.OOb 0.20a 
17:1oo8c 0.36 0.46 0.67 0.46 O.OOb 0.35a O.OOb O.OOb 

18:3oo6,9,12c O.OOb O.17a 0.18a 0.18a 0.00 0.00 0.00 0.00 
11 Me·18:1oo 7c O.OOb O.OOb 0.19a O.OOb O.OOb O.OOb O.OOb 0.28a 

19:100 11c/19:1oo9c O.OOb O.OOb 0.24a O.OOb 0.00 0.00 0.00 0.00 
20:1oo7c O.77ab 0.58b 0.48b 0.92a 0.88 0.77 0.90 0.61 

. , 



Table 2. Fatty acid biomarkers, chemical classes of fatty acids and biological groups significantly different in "healthy" vs "diseased" plots. For each 

individual fatty acid, chemical class or biological group, means in the sa me row followed by the sa me or no letters are not significantly different 

(p<0.05, LSO). 

i·15:0 
a·15:0 

10Me·16:0 
10Me·1B:0 

19:0 cyclo roBc 
BranchedSAFAs 

PolyUFAs 
Bacteria 
Gram+ 

Actinomxcota 

A B 
("Diseased" plots) ("Healthy" plots) 

(n=13) (n=10) 
mean ± sem (nmoles g-1 OS) 

2.82 ± 0.06a 2.58 ± 0.08b 
2.00 ± 0.05a 1.80 ± 0.07b 
2.03 ± 0.06a 1.74 ± 0.10b 
0.98 ± 0.04a 0.85 ± 0.04b 
1.32±0.04a 1.17±0.05b 

11.71 ± 0.29a 10.53 ± 0.40b 
0.13 ± 0.03a 0.05 ± 0.02b 
19.85 ± 0.55a 17.65 ± 0.92b 
10.59 ± 0.25a 9.54 ± 0.36b 
3.36 ± 0.10a 2.89 ± 0.15b 
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Table 3. Concentrations (mean ± sem) of fatty acid chemical classes and biomarker groups in field A, trial years 2000 and 2001. For each chemical 

class or biological group, means in the same row, comparing data from both years expressed in the same unit, followed by the same or no letters are 

not significantly different (p<0.05, LSD). 

A (2000) A(2001) 
n=23 n=12 

nmole S'1 OS % mole nmole S'1 OS % mole 

Total FAs 43.80 ± 1.55a 34.26±3.11b 
BranchedSAFAs 11.19±0.26a 25.83 ± 0.41 8.17 ± 0.29b 25.01 ± 1.21 

II) 
CI) CycloFAs 2.90 ± 0.16 6.74 ± 0.41 2.27 ± 0.18 6.75 ± 0.25 II) 
II) 
ca HYFAs 2.39 ± O.13a 5.44 ± 0.17 1.67 ± 0.11b 5.11 ± 0.37 u 
'ii 

Co) 
MixedFAs' 4.19 ± 0.25 9.44 ± 0.39 3.12±0.48 8.68 ± 0.66 

lê MonoUFAs 7.43 ± 0.50 16.56 ± 0.70 7.77 ± 1.82 20.22 ± 2.56 
CI) 

oC PolyUFAs 0.09 ± 0.02a 0.19 ± 0.04a 0.00 ± O.OOb 0.00 ± O.OOb 0 
StraishtSAFAs 15.61 + 0.50a 35.8 + 0.46 11.26 + 0.47b 34.22 + 1.44 

UnspecificFAs 19.99 ± 0.75a 45.68 ± 0.72 14.69 ± 0.6b 44.91 ± 2.25 
II) 
Q. Bacteria 18.89 ± 0.54a 43.38 ± 0.41 15.56 ± 1.99b 44.38 ± 1.55 :;, 
0 

Gram+ 10.13 ± 0.23a 23.38 ± 0.36 7.14 ± 0.29b 21.76 ± 0.99 "-en 
'ii Gram· 6.72 ± 0.28 15.29 ± 0.27 6.78 ± 1.76 17.53 ± 2.54 Co) 

'61 Actinomycota 3.16 ± 0.10a 7.26 ± 0.13 2.42 ± 0.09b 7.4 ± 0.36 0 
'0 Saprophytic fungi 3.53 ± 0.27 7.84 ± 0.48 2.98 ± 0.66 7.97 ± 1.29 iii 

AMF 1.39 ± 0.13 3.1 ± 0.25 1.03 ± 0.23 2.74 ± 0.44 
• MixedFAs: fatty acids containing more than one chemical feature. 
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Figure 1. Box-plot SSR-DSI in fields used ta study BeAs in 2000 and 2001. 
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Figure 2. Principal components analysis of the individual EL-FAMEs detected in soil samples fràm field A in 2000 (Figure 2a) and in 2001 (Figure 

2b). The data presented in these figures are means of the replicates' scores, by treatment (TRI+AMF, AMF, TRI, CONTROL) and their standard 

errors of the mean. 
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GENERAL CONCLUSIONS 

1. Total lipid fatty acid methyl ester (TL-FAME) was greater when soil was extracted with 

chloroform:methanol:buffer and chloroform:methanol than with the hexane:2-propanol and acetone 

solvents. The concentration of TL-FAMEs in various chemical (saturated chain, branched saturated 

chain, monounsaturated chain, polyunsaturated chain, hydroxy substituted fatty acids) and 

biological groups (bacteria, mycorrhizal fungi, saprophytic fungi, higher plants/faunal biota) was 

affected by the type of solvent used. The extraction efficiency for these chemical and biological 

groups followed the general trend of: chloroform:methanol:buffer ;?! chloroform:methanol > 

hexane:2-propanol = acetone. When selecting a solvent for soillipid extraction, researchers should 

consider the soil properties and the lipid groups under study. 

2. Discriminant analysis of the pyrolysis metastable atom bombardment time-of-f1ight mass 

spectrometry (Py-MAB-TOF-MS) fingerprints and the ester-linked fatty acid profiles demonstrated 

significant differences among soils trom three crop production systems (soybean, com, asparagus). 

Lipid fingerprints generated trom analysis of Py-MAB-TOF-MS spectra reflect the ove rail soil lipid 

composition (including lipids from microbes, animais, plants and non-living matter). In contrast, the 

ester-linked fatty acid profiles provide quantitative information on specific groups of soil bacteria 

and fungi. Further work is needed to identify diagnostic fragments from Py-MAB-TOF-MS that could 

be used as biomarkers for more detailed characterization of these microbial communities. With 

further developments in this area, pyrolysis mass spectrometry could be used to rapidly 

characterize soil microbial communities, i.e., to determine changes in the microbial diversity and to 

identify specific compounds such as fatty acids or sterols that are functionally important in the 

metabolism of certain groups of soil microorganisms. 

3. Sclerotinia stem rot (SSR) disease indicators were not affected by the biological control 

treatments applied during a 2-year field study. The distribution of viable Sclerotinia sclerotiorum 

inoculum was probably non-uniform at the study sites, making it difficult to observe significant 

treatment effects, and weather conditions were not favourable for the development of SSR disease 

during one of the two study years. Soybean yields were consistent with provincial averages during 

this study, and were not affected by the levels of SSR disease (up to 25% SSR) found at the field 
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sites. Trichoderma virens, G/omus intraradices and G/omus mosseae were detected by nested 

polymerase chain reaction analysis in both control and inoculated plots, revealing indigenous 

presence of these fungi in the soils. Based on our results, it is not known whether the inoculum 

dose of T. virens and the AMF mixture of G. intaradices:G. mosseae applied were sufficient to 

provide protection against SSR disease under field conditions. Further studies are needed to verity 

the efficiency and optimize the application method, dose and timing of biological control agents 

active against SSR disease in soybean fields. 

4. Generally, there was not overall difference in the relative proportions of chemical classes as weil 

as biological groups observed in the field investigated for trial year 2000 and 2001. Excepted for the 

saprophytic and mycorrhizal fungal biomarkers, the levels of chemical classes and biological 

groups of fatty acids were generally higher in 2000. The application of BCA treatments in 2000 and 

2001 modulated the levels of different of bacterial and fungal fatty acid biomarkers. The levels of 

fatty acid biomarkers specifie to bacteria, bacteria Gram+ and actinomycota were selectively and 

significantly higher in plots with higher number of plants heavily infested with SSR disease. 

However, biomarkers specific to saprophytic and mycorrhizal fungi were not affected by the 

presence of SSR disease. Further studies will be needed in order to investigate the nature of the 

changes induced in the microbial populations by the inoculation of BCAs as weil as how they could 

be related to disease suppression. Moreover, the selective increase in the levels of specific groups 

of bacteria will need to be investigated in more details in order to understand how these bacteria 

interact with plants presenting heavy infection by SSR disease. 

5. Improvement in methodologies of extraction and characterization of soil lipid biomarkers, as an 

approach for characterizing soil biota, may permit researchers to conduct more extensive field 

studies investigating soil and plant health issues. 
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CONTRIBUTIONS TO SCIENCE 

The work presented in this thesis contributed to the expansion of scientific knowledge in several 

ways: 

1. In Chapter 2, for the first time, we showed that the chloroform-methanol mixtures are the best 

extractants for recovering fatty acid biomarkers in conjunction with the use of a PSE system. To the 

best of our knowledge, the efficiency of chloroform-methanol mixtures in extracting soil lipids was 

not formally demonstrated, at least using a PSE system. Also, 1 examined how lipids originating 

from certain microbial groups (bacteria, fungi) and chemical classes (saturated and unsaturated 

fatty acids) were affected by the solvent mixture. 1 also found that lipid recovery was probably 

affected by soil properties such as organic matter content and clay content. This work contributes to 

the promotion of new technologies, namely the PSE system, which permits researchers to extract 

lipids in a safe and efficient way. 

2. In Chapter 3, we presented the first report on the use of a Py-MAB-TOF-MS system to obtain 

characteristic and specifie fingerprints of the who le lipid composition of six soils from various 

agroecosystems. This experiment is a proof-of-concept in which the capacity to fingerprint of the 

Py-MAB-TOF-MS was demonstrated to complement the more specifie analysis of the fatty acid 

biomarkers by GC-FID in the same soils. 1 was able to distinguish soil samples based on the 

molecular composition of soil lipids from soybean, corn and asparagus fields. Coupled with 

multivariate statistical analysis, the Py-MAB-TOF-MS system could be easily used in large-scale 

ecological studies to rapidly acquire information on lipid biomarkers from a large set of samples. 

The initial results were promising, but further work is necessary to confirm the capacity and 

precision of this system for lipid biomarker identification. 

3. In Chapter 4, we presented the first study of BCAs (Trichoderma virens and G. intaradices:G. 

mosseae) inoculated in fields under soybean crop for controlling SSR disease. Although the work 

was not entirely successful, since the inoculation of BCAs in fields under the conditions tested was 

not efficient in significantly reducing SSR-DSI, number of apothecia and soybean yield, it provides 

sorne impetus for moving such research beyond controlled laboratory and greenhouse studies. 
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4. In Chapter 4, we reported for the first time a PCR-SSCP method, developed by the team of our 

collaborator Richard Hogue, for the detection of Trichoderma spp. in our field studies. Also, using 

this method, we reported the first results on the natural populations of Trichoderma spp. in soybean 

fields under different tillage systems in Ouebec. There is evidence that Trichoderma spp. has a role 

in disease suppression; being able to detect this organism may help us to understand the 

underlying factors goveming disease outbreaks and suppression in Ouebec agroecosystems, and 

elsewhere. 

5. In Chapter 5, we presented the first study showing evidence, by fatty acid biomarker analysis, of 

the effect of the introduction of BCAs on the soil microbial communities of a soybean 

agroecosystem. This study points out the importance of using sensitive methods (DNA-based 

profiling and signature lipid biomarker analysis, for example) in order to reveal the impacts, thôt 

could be subtle, of the introduction of BCAs on the sail microbial communities. 

6. In Chapter 5, we reported for the first time changes in specific groups of microorganisms, profiled 

by fatty acid biomarker analysis, in plots with higher number of plants heavily infested with SSR 

disease. These results are important because they imply the need to develop a plant-soil model 

that could study the relationships between the levels of infection of a plant by a disease, such as 

SSR, and its impacts on microbial communities. The nature of these relationships are intriguing and 

1 can not rule out the possibility that they could be either beneficial or detrimental for the infested 

plant. If there are beneficial relationships between sail microbes and a diseased plant that helps the 

plant ta resist or recover from diseases, this would be an excellent discovery. Further work is 

needed ta unravel such plant root-soil microbial interactions, which can be revealed through sail 

lipid analysis. 
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APPENDIXA 

Fatty acids detected by GC·FIC using a Simplicity Wax capillary column1 

FAIDACID FORMULA MW'! FATTY ACID FORMULA MW 

10:0 C10H2002 172 16:1005 C16H3002 254 

10:0-20H C10H2003 188 16:0 C16H3202 256 

11 :0 C11H2202 186 i-16:0 C16H3202 256 

12:0 C12H2402 200 16:0-20H C16H3203 272 

12:0-20H C12H2403 216 17:0 cyclo C17H3202 268 

12:0-30H C12H2403 216 17:1007 C17H3202 268 

13:0 C13H2602 214 17:0 C17H3402 270 

14:1005 C14H2602 226 i-17:0 C17H3402 270 

14:0 C14H2802 228 18:3006 C18H3002 278 

14:0-20H C14H2803 244 18:3003 C18H3002 278 

14:0-30H C14H2803 244 18:2006c/t C18H3202 280 

15:1005 C15H2802 240 18:1009c/t C18H3402 282 

15:0 C15H3002 242 18:1007 C18H3402 282 

i-15:0 C15H3002 242 18:0 C18H3602 284 

a-15:0 C15H3002 242 19:0 cyclo C19H3602 296 

16:1007 C16H3002 254 19:0 C19H3802 298 

lThe details of the method used for the dectection of the fatty acids and the sources of the 

standards of fatty acids are given in Chapter 2, section 2.3.4. 

2MW: Molecular Weight. 
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APPENDIXA 

(continued) 

FATTY ACID FORMULA MW 

10Me-18:0 C19H3802 298 

20:5003 C20H3002 302 

20:4006 C20H3202 304 

20:3006 C20H3402 306 

20:3003 C20H3402 306 

20:2006 C20H3602 308 

20:1009 C20H3802 310 

20:0 C20H4002 312 

21:0 C21H4202 326 

22:6003 C22H3202 328 

22:5003 C22H3402 330 

22:4006 C22H3602 332 

22:2006 C22H4002 336 

22:1009 C22H4202 338 

22:0 C22H4402 340 

23:0 C23H4602 354 

24:1009 C24H4602 366 

24:0 C24H4802 368 
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APPENDIX B 

Fatty acids detected by GC·FID using an Ultra·2 column1 

FAnYACID FORMULA MW! ECL3 FATTY ACID FORMULA MW ECL 

9:0 C9H1802 158 9.000 12:0-20H C12H2403 216 13.177 

8:0-30H C8H1603 160 9.392 12:1-30H C12H2203 214 13.288 

i-10:0 C10H2002 172 9.599 i-14:1 C14H2602 226 13.381 

10:0 C10H2002 172 10.000 12:0-30H C12H2403 216 13.453 

9:0-30H C9H1803 174 10.408 i-14:0 C14H2802 228 13.618 

i-11:0 C11H2202 186 10.608 a-14:0 C14H2802 228 13.708 

a-11:0 C11H2202 186 10.701 14:1 co5c C14H2602 226 13.901 

12:0 ALDE C12H240 184 10.912 14:0 C14H2802 228 14.000 

11:0 C11H2202 186 11.000 i-13:0-30H C13H2603 230 14.109 

10:0-20H C10H2003 188 11.153 13:0-20H C13H2603 230 14.192 

10:0-30H C10H2003 188 11.422 i-15: 1 isomer 1 C15H2802 240 14.391 

12:1 C12H2202 198 11.918 i-15:1 isomer 2 C15H2802 240 14.440 

12:0 C12H2402 200 12.000 a-15:1 C15H2802 240 14.530 

i-11 :0-30H C11H2203 202 12.099 i-15:0 C15H3002 242 14.623 

11:0-20H C11H2203 202 12.16 a-15:0 C15H3002 242 14.713 

11:0-30H C11H2203 202 12.438 15:1co6c C15H2802 240 14.850 

i-13:0 C13H2602 214 12.613 15:1co5c C15H2802 240 14.903 

a-13:0 C13H2602 214 12.701 15:0 C15H3002 242 15.001 

13:1 C13H2402 212 12.934 i-14:0-30H C14H2803 244 15.119 

13:0 C13H2602 214 13.000 14:0-20H C14H2803 244 15.203 

1The details of the method used for the dectection of the fatty acids are given in Chapter 3, section 

3.3.5. 

2MW: Molecular Weight. 

3Fatty acids with same ECL value co-eluted. 
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APPENDIX B 

(continued) 

FATTY ACID FORMULA MW ECL FATTY ACID FORMULA MW ECL 

i-16:1 isomer 1 C16H3002 254 15.443 i-17:0 C17H3402 270 16.63 

i-16:1 isomer 2 C16H3002 254 15.457 a-17:0 C17H3402 270 16.723 

i-16:1 isomer 3 C16H3002 254 15.487 17:1ro9c C17H3202 268 16.763 

14:0-30H C14H2803 244 15.487 17:1ro8c C17H3202 268 16.794 

16:0 N alcohol C16H340 242 15.55 17:1ro7c C17H3202 268 16.818 

i-16:0 C16H3202 256 15.627 17:0 cyclo C17H3202 268 16.889 

a-16:0 C16H3202 256 15.719 17:0 C17H3402 270 17 

16:1ro11c C16H3002 254 15.763 16:1-20H C16H3003 270 17.041 

16:1ro9c C16H3002 254 15.772 i-16:0-30H C16H3203 272 17.156 

16:1ro7c C16H3002 254 15.817 16:0-20H C16H3203 272 17.233 

i-15:0-20H C15H3003 258 15.817 10Me-17:0 C18H3602 284 17.409 

16:1ro5c C16H3002 254 15.909 i-18:1 C18H3402 282 17.459 

16:0 C16H3202 256 16 16:0-30H C16H3203 272 17.517 

i-15:0-30H C15H3003 258 16.134 18:3ro6c(6,9,12) C18H3002 278 17.576 

15:0-20H C15H3003 258 16.223 i-18:0 C18H3602 284 17.633 

i-17:1ro9c C17H3202 268 16.419 18:2ro6,9c C18H3202 280 17.721 

10Me-16:0 C17H3402 270 16.43 a-18:0 C18H3602 284 17.721 

ila-17:1 C17H3202 268 16.486 18:1ro9c C18H3402 282 17.77 

15:0-30H C15H3003 258 16.507 18:1ro7c C18H3402 282 17.824 

a-17:1ro9c C17H3202 268 16.521 18:1ro5c C18H3402 282 17.917 
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APPENDIXB 

(continued) 

FATTY ACID FORMULA MW ECL 

18:0 C18H3602 284 18 

11 Me-18:1 ro7c C19H3602 296 18.08 

i-17:0-30H C17H3403 286 18.162 

17:0-20H C17H3403 286 18.261 

10Me-18:0 C19H3802 298 18.39 

i-19:1 C19H3602 296 18.473 

i-19:0 C19H3802 298 18.632 

19:1ro11c C19H3602 296 18.752 

19:1ro9c C19H3602 296 18.752 

19:1ro6c C19H3602 296 18.856 

19:0 cyclo ro10c C19H3602 296 18.856 

19:0 cyclo ro8c C19H3602 296 18.903 

19:0 C19H3802 298 19.001 

18:1-20H C18H3403 298 19.089 

18:0-20H C18H3603 300 19.269 

10Me-19:0 C20H4002 312 19.366 

20:4ro6,9, 12, 15c C20H3202 304 19.398 

18:0-30H C18H3603 300 19.551 

i-20:0 C20H4002 312 19.641 

20:2ro6,9c C20H3602 308 19.731 

20:1ro9c C20H3802 310 19.77 

20:1ro7c C20H3802 310 19.825 

20:0 C20H4002 312 19.999 
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APPENDIXC 

Experimental design in the soybean fields 
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Legend: 

APPENDIXC 

(continued) 

Randomized complete black design with 6 blacks (A ta F) and four BCA treatments 

within each black, for a total of 24 plots per site. The BCA treatments were 

Trichoderma virens plus arbuscular mycorrhizal fungi (1), Trichoderma virens (2), 

arbuscular mycorrhizal fungi (3), , and a control (4) that received no biocontrol 

agents. 
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Primers 

LR1 

NDL22 

8.22 

5.21 

APPENDIXD 

List of primers and PCR programs used in the detection of arbuscular mycorrhizal fungi (Glomus spp.) 

Sequence 5' - 3' 

GCA TAT CAA TAA GCG GAG GA 

TGG TCC GTG TTT CAA GAC G 

AAC TCC TCA CGC TCC ACA GA 

CCT TTT GAG CTC GGT CTC GTG 

PCR program and reference 

15 min at 950C, followed by 35 cycles: 30s at 950C, 30s at 580C, 30s at 720C, 

a final polymerization of 10 min at 720C and a cooling step at 4°C until the 

analysis by electrophoresis on 1.2 % (w/v) agarose gel was performed (van 

Tuinen et al., 1998). 

15 min at 950C, followed by 30 cycles: 30s at 950C, 30s at 600C, 30s at 72°C, 

a final polymerization of 10 min at 720C and a cooling step at 4 oC until the 

analysis by electrophoresis on 1.2 % (w/v) agarose gel was performed (van 

Tuinen et al., 1998). 
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Primers 

ITS1-F 

ITS4 

A11-ITS-F1 

A 11-ITS-R1 

Virens-ITS-F1 

Virens-ITS-R1 

APPENDIXE 

List of primers and PCR programs used in the detection of Trichoderma spp. 

Sequence 5' - 3' PCR program and reference 

CTT GGT CAT TTA GAG GAA GTA A 15 min at 950C, followed by 35 cycles: 30s at 950C, 30s at 550C, 30s at 72°C; 

a final polymerization of 10 min at 720C and a cooling step at 4°C until the 

TCC TCC GCT TAT TGA TA T GC 

GTT GCC TCG GCG GGG TCA CG 

analysis by electrophoresis on 1.2 % (w/v) agarose gel was performed 

(Wirsel et al. 2001). 

15 min at 950C, followed by 35 cycles: 30s at 950C, 30s at 680C, 30s at 720C, 

a final polymerization of 10 min at 720C and a cooling step at 4 oC until the 

GCC GCG CTC CCG GTG CGA GTT analysis by electrophoresis on 1.2 % (w/v) agarose gel was performed (White 

et aL, 1990). 

GTT GCC TCG GCG GGA TCT CT 15 min at 950C, followed by 35 cycles: 30s at 950C, 30s at 680C, 30s at 72°C, 

a final polymerization of 10 min at 720C and a cooling step at 4°C until the 

GCC GCG CTC CCG ATG CGA GTG analysis by electrophoresis on 1.2 % (w/v) agarose gel was perfarmed 

(Hague and Daigle, 2005). 
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APPENDIX F 

Detection of Trichoderma virens in soil total DNA extracts by nested PCR 

B c D M 

1 ,-.~ 
. t1 

E F G H 



LL 

X 
Ci z 
W 
0.. 

~ 

:s 
cu 
::::s 
.5 -c 
8 -



') 

Virens-TTS-Fl / Virens-ITS-R 1 

APPENDIX F 

(continued) 
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Legends: 

APPENDIX F 

(continued) 

1. PCR amplication of Trichoderrna spp. DNA with specifie primers (see Appendix 

5). Genomic DNAs of Trichoderrna virens (A, C), T. harzianum (B, D), T. koningii 

(E, G) and T. hamatum (F, H) were amplified by PCR with the pair of primers 

Virens-ITS-F1/ Virens-ITS-R1 (A, B, E, F) or the pair of primers A11-ITS-F1 / A 11-

ITS-R1 (C, D, G, H). DNA ladder markers of 100 bp increment were used to 

identify the specifie amplication product of 450 pb. 

Il. Single-Strand Conformational Polymorphism (SSCP) analysis of the PCR 

amplification products using specifie primers. The amplicons of the Virens-ITS-F1/ 

Virens-ITS-R1 PCR (A and B) and those of the A 11-ITS-F1 / A 11-ITS-R1 PCR (G 

et H) primers (Appendix 5) were analyzed by electrophoresis using a O.7X MDE 

acrylamide gel under 240 volts at 12°C during 4.5 hours in a TBE 1.5X buffer. Gels 

were stained with SYBR Gold 1X (Molecular Probes, Eugene, USA) for 10 min as 

described by supplier. 

III. Detection of Trichoderrna spp. by PCR-SSCP analysis of soil total DNA extracts 

trom soybean fields. The DNA extracts were amplified by PCR using the primers 

(Appendix 5) Virens-ITS-F1 / Virens-ITS-R1 or A11-ITS-F1 / A11-ITS-R1 for the 

specific detection of T. virens (vir), T. harzianum (har), T. koningii (kon) and T. 

hamatum (ham). Analysis of the SSCP profiles of the amplification products leads 

to species identification and the detection of two species of Trichoderrna in some 

samples. T. hamatum and T. atroviride (ham1) as weil as T. hamatum and T. 

koningii (ham2) were detected in the sa me soil samples. SSCP analysis were 

performed electrophoresis using a O.7X MDE acrylamide gel under 240 volts at 

12°C during 4.5 hours in a TBE 1.5X buffer. Gels were stained with SYBR Gold 1X 

(Molecular Probes, Eugene, USA) for 10 min as described by supplier. 
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