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ABSTRACT 

Unplanned ore dilution or stope overbreak, which has a direct and large influence 

on the cost of a stope, and ultimately on the profitability of a mining operation, 

can be attributed to both the mining process and to geologic setting. The research 

undertaken in this document,' applicable to a wide range of underground mines 

employing the blasthole mining method to extract tabular orebodies, focuses on 

exarnining factors attributable to the generation ofunstable stope hanging-walls. 

The primary objective of the research undertaken is to establish new models for 

stope and orezone design, with respect to anticipated stope overbreak, focusing on 

the position and type of stope within the orezone extraction sequence. Identified 

factors influencing unplanned dilution, such as: induced stress environment, stope 

geornetry, and the setting of individual stopes are considered. 

The research undertaken incorporates a variety of components, including (i) 

parametric 3-D numerical modelling to examine influences of individual factors 

on hanging-wall overbreak, (ii) case example analysis, and (iii) orezone extraction 

sequence simulation, using 3-D elastic numerical modelling. Design criteria, 

developed from the parametric modelling, was applied to the orezone sequence 

modelling to develop trends for stope dilution, as functions of stope design and 

construction. 

It was found that hanging-wall overbreak is not significantly influenced by depth 

alone, and that stopes with large vertical and short horizontal dimensions or 

stop es having long horizontal and short vertical dimensions are more stable than 

large square-like stopes. Also, through parametric and case studies, it was 

demonstrated that, in addition to stope dimension, the amount of unplanned 

dilution differed according to stope type. Five stope types were identified, based 

on their position within a tabular blasthole mining sequence. Measured overbreak 

varies with stope type, with secondary stopes generating a greater volume of 



hanging-wall dilution than do primary stopes. A pillarless mining sequence will 

generate less overall dilution than a primary stope : secondary pillar mining 

sequence. 
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RÉSUMÉ 

La planification de la dilution des minerais ou du bris hors-profile d'un chantier a 

une grande influence sur les coûts et la rentabilité du travail dans la mine et ses 

chantiers. Cette influence peut être attribuée au processus d'excavation et les 

structures géologiques. Cette recherche peut s'appliquer à plusieurs autres mines 

qui utilise le même processus d'excavation des minerais (l'abattage par trou de 

mine profound) pour extraire les gisements de minerai tabulaires. La recherce 

dans ce document étudie les facteurs qui peuvent étre la cause d'instabilité de 

l'éponte supérieure des chantiers. 

Le but ultime de cette recherche est d'établir de nouveaux et de meilleurs modèles 

pour la conception de chantier en respectant la possibilité du bris hors-profile et 

en misant sur le type de chantiers et l'ordre d'excavation de la zone minéralisée. 

Les facteurs qui peuvent influencer la dilution ou le bris hors-profile sont les 

suivants; les contraintes induites par l'environnement, la géométrie du chantier et 

l'emplacement des différents chantiers. 

La recherche entreprise incorpore une variété de composante, y compri, la 

modélisation paramétrique en 3-D, afin d'examiner les influences des différents 

facteurs du bris hors-profile de l'éponte supérieure, l'analyse d'étude de cas et la 

simulation dans J'ordre d'excavation des minerais en utilisant un modéle 

numérique en 3-D. Les critères développés à partir de la modélisation 

paramétrique en 3-D, ont été appliqué à l'ordre d'excavation de la zone 

mineralisée et les tendances de la dilution des chantiers comme fonction dans la 

conceptualisation et la construction d'un chantier. 

On a constaté que le bris hors-profile de l'éponte supérieure n'est pas 

sensiblement influencé par seulement la profondeur. Les chantiers ayant de 

grandes dimensions horizontale et une dimension verticale courte ou les chantiers 

ayant une grande dimension verticale et une dimension horizontale courte sont 
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plus stable que celui des chantiers en fonne de carres. En outre, par des études de 

cas et des etudes paramétriques on a démontré qu'en plus de la dimension de 

chantier, la quantité de la dilution des minerais diffère selon le type de chantier. 

Cinq types de chantiers ont été identifiés, basé sur leur position et de l'ordre 

d'excavation des minerais. Le volume du bris hors-profil dépend du type de 

chantier. En effect, les chantiers secondaires produisent un plus grand volume de 

dilution que les chantiers primaires. De plus, l'ordre ou la séquence d'excavation 

sans pilier produit moins de dilution globale que l'excavation de la séquence d'un 

chantier primaire et d'un chantier secondaire. 
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CHAPTER1 

INTRODUCTION 

1.1 Background 

In a global competitive market, there is pressure on mines to maximize 

production, increase revenue and reduce costs. Unplanned ore dilution, illustrated 

in Figures 1.1 and 1.2, has a direct and large influence on the cost of a st ope, and 

ultimately on the profitability of a mining operation. The economic impact of 

dilution is due to costs associated with the mucking, haulage, crushing, hoisting, 

milling, and treatment of waste or low grade rock having little or no value, 

displacing profitable ore and processing capacity. The additional time required 

for excavation and backfilling of the larger stope volumes produced by the 

extraction of waste rock can also lead to unscheduled delays, changes to the 

mining schedule, and potentially, development rehabilitation costs. 

As will be shown later in this report, stope overbreak can be attributed to both the 

mining process (engineering design, stope sequencing, drilling and blasting), and 

to geologic setting (rockmass quality and stress environment). Efforts to reduce 

unplanned dilution require an understanding of all the influences that directly or 

indirectly provoke wall rock caving into a stope. 
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Figure 1.1 Surveyed stope overbreak, Kidd Creek mine, after Tannant et al., 

1998. 
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Figure 1.2 Stope dilution surveyed, Golden Giant mine, after Anderson and 

Grebenc, 1995 
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1.2 Research objective 

Rock mechanics can play an important role in reducing or controlling the effects 

of dilution. The extent and source of stope wall shoughage can be measured and 

quantified. This observed overbreak can be linked to the prediction of the 

stability of an exposed rock surface by empirical or numerical modelling 

techniques. As a result, predicted overbreak departing from the initial stope 

design can be controlled through improved stope design. It is intended that, 

through the research described in this thesis, to establish relationships between the 

parameters identified as influencing stope overbreak, and to assess alternatives for 

orezone sequencing and stope dimensioning. 

Dilution can occur from any surface exposed by stope extraction, such as 

footwall, sidewalls, and roof. This thesis places emphasis on hanging-wall 

dilution, which is the dominant source of dilution in tabular orebodies. The focus 

of this research is on factors attributable to the generation of unstable stope 

hanging-walls, such as stope extraction and effectiveness of stope hanging-wall 

reinforcement. The primary objective of the tasks undertaken in this research is to 

establish new models for stope and orezone design, with respect to anticipated 

stope overbreak, focusing on the position and type of stope within the orezone 

extraction sequence. Identified factors influencing unplanned dilution, such as: 

induced stress environment, stope geometry, and the stope setting within the 

orezone extraction sequence are considered. 

Additional goals of this work are: 

• Enhance understanding of factors contributing to ore dilution on metal mines, 

• Review and compile currently available mathematical and empirical models, 

for the estimation of variation of ore dilution, 

• Increase the value of stope recovery information for (1) mine design, and (2) 

operational decision-making, 

• Develop a Canadian mine-based geomechanical data bank, and 
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• Construct fundamental models to characterize the stoping environment most 

frequently encountered in longhole mines. Such mode1 will serve as a tool for 

a quantitative evaluation of ore dilution, taking into account factors such as 

mining variability and various mining methods. 

This work described in this thesis will be applicable to a wide range of 

underground mines employing the blasthole mining method. Orezones at these 

mines are generally tabular, with ore widths of 4 to 15 meters. Numerous 

Canadian mines use the blasthole mining method. Examples from Ontario and 

Quebec inc1ude: Agnico-Eagle, Bouchard-Hébert, Bousquet, Creighton, Doyon, 

Garson, Golden Giant, Kidd Creek, Louvicourt, Musselwhite and Williams mines, 

(Canadian Mining Journal, 2002). 

1.3 Thesis structure 

This thesis is organized into seven chapters, which by themselves can stand alone. 

Thesis structure progresses from the general to the specific. This introductory 

chapter is followed by Chapter 2, which reviews dilution sources, the impact of 

dilution on the mine operation and empirical approaches for estimating of 

unplanned dilution. Chapter 3 reviews blasthole mining methods, and examines 

parameters influencing ore dilution in the blasthole stoping environment. 

In Chapter 4, numerical modelling tools are discussed, followed by an 

examination of model design parameters, such as stope geometry, stress setting, 

stope type and rockmass quality, appropriate to a typical Canadian blasthole mine 

environment. Numerical modelling input parameters are analysed in a series of 

parametric studies, presented in Chapter 5. Chapter 5 defines two new terms used 

in the research to quantify overbreak: Dilution Density (DD) and measured 

Dilution Density (DDcms). 

Chapter 6 introduces the mine and orezones where the case histories are compiled. 

Stope geometry, construction, and setting are described in detail. Stope 

excavation details, inc1uding measurements of stope dilution, stope sequencing 
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and stope type, obtained from a comprehensive database of 172 stope histories are 

analysed. 3-D numerical modelling of the extraction sequence of the two 

orezones, is then described. The chapter concludes with discussions of dilution 

severity associated with identified stope types and draws comparisons between 

modelled dilution estimates and measured values. 

Chapter 7 presents concluding remarks and provides suggestions for future 

research. 
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CHAPTER2 

METHODS OF ORE DILUTION ESTIMATION 

2.1 Definition of dilution 

The term 'dilution' refers to any waste material within the mining block, 

including barren and subgrade rock and backfill. Mine dilution, defined as "the 

contamination of ore with barren (or below-cutoff-grade) waste wall rock", 

Tatman (2001), is a common and devastating mine disease, (Miller et al., 1992). 

Tintor (1988) and Knoll (1989) reported that many operations have closed 

because of uncontrolled dilution, including sorne in their first year of production. 

According to Taylor (1994), dilution tends to be the most consistently 

underestimated factor in mine planning. 

Increasing ore dilution results in a decrease of hoisted grade in comparison with 

the mining reserves, (Planeta et al., 1'990). Dilution negatively influences the 

profitability of mining operations. Dilution lowers the quantity of mineraI or 

metal that can be produced from each tonne of ore processed in mining/milling 

operations. Metallosses reduce the recovery and the economic retum from a non

renewable resource, (Vallée et al., 1992). 

Dilution is a qualitative parameter that enables the mine operator to evaluate 

quality of design, (Pakalnis, 1986). Traditionally, the mining industry has used 

the dilution concept to define the negative differences between forecasts and 

production results (Vallée et al., 1992). Dilution and sacrifice of ore tend to be 

inseparable factors, with a trade-off between optimum recovery and impairment 
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of grade. Inadequate attention to stope design can quickly eliminate pro fi tabilit y 

from high productivity bulk mining methods, Bawden (1993) and Pelley (1994). 

2.1.1 Dilution Type: planned and unplanned dilution 

Dilution can refer to either a measure of external waste (unplanned dilution) that 

has sloughed from the stope wall, or to material that is of lower grade than cut

off, but which is inc1uded in the mineraI deposit, reserve or stope outline and 

extracted with the mining of ore (planned dilution). Only unplanned dilution is 

considered in this study. 

Scoble and Moss (1994) define "total dilution" as the sum of planned dilution 

plus unplanned dilution, illustrated in Figure 2.1. Planned (or internaI) dilution is 

defined as non-ore material (below eut-off grade) that lies within the designed 

stope boundaries as determined by: selectivityof mining method, orebody 

continuity (along strike and dip), or complexity of orebody shape. Planned 

dilution is a factor considered when estimating ore reserve blocks (Tatman, 2001). 

Planned 
Dilution 

Mineral Zone 

Figure 2.1 Illustration of planned and unplanned dilution, after Scoble and Moss 

(1994) 
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Unplanned dilution refers to additional non-ore material derived from rock or 

backfill outside the stope boundaries due to blast induced overbreak, sloughage of 

unstable wall rock, or sloughing of backfill, (Scoble and Moss, 1994). 

Components of dilution, inc1uding unplanned dilution from the stope hanging

wall and footwall, are illustrated in Figure 2.2. The term 'overbreak' is 

synonymous with unplanned wall dilution (Yao et al., 1999). 

Other terms used to describe dilution type are: intentional and unintentional 

dilution (Annel s, 1996), primary and secondary dilution (Olsson and Thorshag, 

1986), and planned and additional dilution (Planeta et al., 1990). Unplanned 

dilution has also been referred to as accidentai dilution (Corlett, 1970). 

AccidentaI dilution results from failure to appreciate the conditions that bring it 

about, or the effectiveness of the precautions taken to prevent it. Extemal dilution 

refers to rock or fill outside the ore envelope that is removed with the ore: either 

planned or unplanned. 

-----
Ore Sloughing 

H!WWaste 
Dilution 

Actual Stope ---~ 
Boundary 

Planned Stope 
Boundary 

------

Previously Mined 
and Filled 

-----

Typical Plan View 

Figure 2.2 Plan view of stope showing the components of dilution, (Anderson 

and Grebenc, 1995) 
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2.1.2 Dilution reporting 

Production control has traditionally been based on weight of rock hoisted, rather 

than the weight of metal. As a result of po or accessibility to data, many mines are 

unable to collect adequate data to calculate dilution with any precision (Scoble 

and Moss, 1994). 

A value of dilution is recorded by most mines, (Canadian Mining Journal, 2002), 

although not in an identical manner. A survey of mines throughout Canada by 

Pakalnis (1986) identified nine variations on a definition of dilution. These are 

presented in Table 2.1. 

Table 2.1 Definitions of Dilution (Pakalnis, 1986) 

Definitions of Dilution: 

Dilution = (Tons waste mined) / (Tons ore mined) (2-1) 

Dilution = (Tons waste mined) / (Tons ore mined + tons waste mined) (2-2) 

Dilution = (Undiluted in-situ grade as derived from drill holes) / (2-3) 

(Sample assay grade at drawpoint) 

Dilution = (Undiluted in-situ grade ofreserves) / (mill head grades (2-4) 

obtained from same tonnage) 

Dilution = (Tonnage mucked - tonnage blasted) / (Tonnage blasted) (2-5) 

Dilution = Difference between backfill tonnage actually placed and (2-6) 

theoretically required to fill void 

Dilution = Dilution visually observed and assessed (2-7) 

Dilution = ("x" amount of meters of footwall slough + "y" amount of (2-8) 

hanging-wall slough) / (ore width) 

Dilution = (Tons drawn from stopes) / (Calculated reserve tonnage) (2-9) 

over the last 10 years 
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Dilution is usually calculated as a percentage: 

Percent dilution = (units of dilution' 100)/units of ore (2-10) 

In their review of Canadian mining practices, Scoble and Moss (1994) reported 

that Equations 2-1 and 2-2 were the most widely used. Ofthese two, Equation 2-

1 was recommended as a standard measure of dilution (Pakalnis et al., 1995), as it 

was more sensitive to wall sloughage. For example, a 2:1 sloughage-to-ore ratio 

pro duces a 66% dilution factor according to Equation 2-2, whereas Equation 2-1 

produces a dilution factor of 200%. 

Common variations of Equation 2-1 include: 

• Dilution = (Tons waste milled) / (Tons ore milled), where waste is wall 

rock outside of the planned stope boundary, and ore refers to rock planned, 

drilled and blasted within the stope boundary, (Gauthier, 2001). 

• Dilution = (External Dilution + InternaI Dilution + Fill Dilution) / 

Recovered Ore, (INCO, 2002). 

• Dilution = (Waste tonnes + Backfill tonnes) / Planned tonnes, (Anderson 

and Grebenc, 1995). 

• Dilution = volume of wall slough beyond the planned mining outline / 

volume of ore mined within the planned mining outline, (Yao et al., 1999). 

• Dilution = (CMS area - ore reserves)/ore reserve, (Mah et al., 1995). Ore 

reserve refers to the designed stope outline; CMS is discussed in Section 

2.6. 
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2.2 Sources of dilution 

Most underground mines experience sorne form of dilution. Dilution values 

volunteered by industry in a survey of Canadian underground mines, revealed 

typical amounts in the range of 10% to 25%, with extremes in excess of 60%, 

(Canadian Mining Journal, 2002). A survey of open stope dilution severity, 

undertaken by Pakalnis (1986) found that, of the fifteen mines surveyed, 47% of 

the operations reported dilution exceeding 20%, 21 % of the mines had dilution 

amounts exceeding 35%. 

2.2.1 Planned dilution sources 

2.2.1.1 Design of the mining method 

Dilution takes place wherever the ore contours are irregular. Irregular walls may 

also be the cause of metal loss (Vallée et al., 1992). Production stopes are the 

main sources of dilution when mining irregular, small thickness or narrow vein 

deposits, (Elbrond, 1994), or when unsuitablely sized equipment has been 

selected (Trevor, 1991). In the case of narrow veins, it may be necessary to widen 

the working place and include sorne waste material in the stream of production if 

this material cannot be moved separately (Planeta et al., 1990). 

For unique situations when stope width exceeds the deposit thickness, mining 

methods specifically designed to minimize planned dilution (Xishan, 1998; 

Whiteway, 1988) have not been embraced by underground mine operations, 

which tend to prefer traditional stoping methods, such as blasthole stoping 

(Canadian Mining Journal, 2002). 

2.2.1.2 The mining operation 

The contact between ore and subgrade material cannot be followed in detail due 

to a lack of flexibility of the drilling machines and blasting utilized by the mining 

operation (Elbrond, 1994). Sorne ore (above the eut-off grade) will be lost and 

sorne material below eut-off grade will be drilled, blasted, loaded and transported 

to the concentrator with the valuable ore. 
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2.2.2 U nplanned dilution sources 

2.2.2.1 Stope wall instability 

Stope wall stability is adversely affected by blasting damage (Vallée et al., 1992). 

When overbreak causes the rupture of an individual bed or structural feature on 

the stope hanging-wall it is difficult to prevent failure of the remainder of that 

feature into the open stope (Pelley, 1994). 

Dilution takes place wherever the ore contours are irregular, or the low 

mechanical strength of the wall results in additional material being dropped into 

the stope. Incompetent walls can cause extreme dilution, (Elbrond, 1994). 

Graham (1968) describes 100% dilution in the presence of incompetent walls 

(chlorite walls). Mechanical wall dilution may be reduced by not emptying the 

stope complete1y before blasting new rounds, (Vallée et al., 1992). 

2.2.2.2 The mining operation 

Unplanned dilution can be created by wall de limitation errors due to drill set-up 

errors, such as blast-drillhole angle or drillhole deviation (Vallée et al., 1992). 

2.2.2.3 Handling of material 

Mucking errors in ore and waste handling, such as dispatching of waste rock into 

the ore passes (Vallée et al., 1992; Trevor, 1991) are identified as another source 

of unplanned dilution. Sources of waste rock include waste rock from lateral and 

vertical development, backfill failures into a stope during mining, and the caving 

of barren rock into the stope during mining (Planeta et al., 1990). 

2.2.2.4 Backfill dilution 

Backfill dilution can occur in two ways (Pelley 1994): (i) If overbreak reduces the 

size of the secondary stope the backfill now contained within the original volume 

is often designated into the system, and (ii) Failure of free standing fill faces. The 

type of material and the method of emplacement may be factors in how much 

backfill contributes to dilution, (Trevor, 1991). 

12 



2.2.2.5 Dilution as a function of mine age 

As an ore body is progressively mined, from initial development through to 

primary stope mining, pillar recovery and closure, the source and amount of 

dilution increases. The dilution 1 mine age relationship, as suggested by (Trevor, 

1991), is illustrated in Figure 2.3. 

During early mining, dilution is associated with a leaming curve associated with 

mining operations in a new environment and a lack of knowledge about the 

orebody, (Scoble and Moss, 1994). Dilution stabilizes with primary stoping. At 

the late stages of mining, associated with pillar recovery and deteriorating ground 

conditions, the amount of dilution increases. 

Proportion 
of dilution 

PRE-PRODUCTION PRIMARY STOPING SOME PILLAR PILLAR RECOVER 

RECOVERY & MINE CLOSURE 

Stage of mine 

- DEVELOPMENT - WALL ROCK -+- FILL --*-- INTERNAL 

Figure 2.3 Schematic illustration of dilution source as a function of mine age. 

Relative amount ofunplanned dilution is plotted on vertical axis, (Trevor, 1991) 
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2.3 Orezone width 

Narrow stopes, mined by longhole method, are generally victims of considerable 

dilution: the narrower the zone is, the more important the border effects, (Vallée 

et al., 1992). For example, if both the hanging-wall and footwall of a steeply 

dipping 1.5m wide tabular deposit contributes 0.3m of overbreak, then an 

unplanned mining dilution of 40% results. Ifthis orezone was 3.0m thick, mined 

in the same conditions, the resulting dilution factor becomes 20%. Dilution 

re1ationships between stope wall sloughage and stope width are described in 

(Pakalnis et al., 1995), and illustrated in Figure 2.4. 
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Figure 2.4 Dilution as a function of stope width, (Pakalnis et al., 1995) 

O'Hara (1980) compared stope width against stope wall sloughage as functions of 

stoping method, stope dip angle, and stope wall rock competence. Plotted results, 

shown in Figure 2.5, illustrate dilution increase due to stope width. Of the three 

mining methods compared (blasthole, shrinkage, and cut and fill), overbreak was 

more severe with the blasthole stopes. 
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~ .. The angle at which the stope dipped influenced dilution. Vertical stopes had 

lower dilution amounts. For blasthole stopes, O'Hara (1980) predicted dilution 

by the following relationship: 

% Dilution = 1 OO/Wo,ssinA ° (2-11) 

where W = stope width (ft), and AO= Orebody dip angle 

The curves of Figure 2.5 shifted up or down to reflect stope wall rock competence 

(O'Hara, 1980). When stope wall rock is regular and competent, dilution may be 

70% of that plotted. Dilution may increase to 150% of the plotted data when 

stope wall rock is unusually weak and incompetent. 
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r------------1 1 
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'- ------- -----' 
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Figure 2.5 Comparison of stope width against stope wall sloughage as functions 

of stoping method and stope dip angle, modified from O'Hara (1980) 
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2.4 Equivalent Linear Overbreak/Slough 

To express dilution independently of stope width, Dunne and Pakalnis (1996) 

suggested that dilution values be calculated average metres of wall slough per 

square metre of wall (m/m2), rather than percent dilution. 

Equivalent Linear Overbreak/Slough (ELOS) is a method of converting the 

volumetric CMS measurement into an average sloughage depth over the entire 

stope surface. A schematic diagram of ELOS is presented in Figure 2.6. For a 

given stope surface, ELOS is calculated as follows, (Connors et al., 1996): 

ELOS = Volume ofslough (overbreak) from stope surface 

stope height . wall strike length 

Stope 
Height 

1 

Cross-sections 
generated from 
CMS 'survey 

~ Stope wall Slough 

• Equivalent Linear OverbreakiSlough 

" ~"~,,, 

(2-12) 

, 
1 

1 
1 
1 
1 , 

1 
1 , 

1 
1 

1 , 

,.-
, , , 
/ 

1 
1 , 

1 
) 

./ 
/ 

Figure 2.6 Schematic illustration of ELOS parameter, modified from Clark and 

Pakalnis (1997) 

In a blasthole stoping example reported by Gauthier (2001), dilution associated 

with a 10 meter-wide stop es were compared against narrower 5 meter-wide 

stopes. The higher percent dilution of the narrower stopes reflects the influence 
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of stope width on dilution calculation. To calculate dilution independently of 

stope width, the ELOS approach was used. ELOS values, representing average 

metres of sloughage per square metre from both stope walls are provided in Table 

2.2. 

Table 2.2 Comparison of surveyed stope dilution with average sloughage depth 

over the entire stope surface, Gauthier (2001) 

Stope width 

10 meter-wide stop es 

5 meter-wide stop es 

Total Dilution 

22% to 25% 

32 % 

Total ELOS 

1.9 to 2.3 m/m 

1.9 m1m2 

An advantage of reporting stope sloughage in terms of ELOS is that its meaning 

in terms of dilution is readily apparent. For example, a predicted ELOS of 2 

meters for a 6 meter wide stope corresponds to an unplanned dilution of 33%, 

assuming that the slough rock has no economic grade. A second advantage is that 

the source of unplanned dilution can be associated with individual stope walls, 

such as hanging-wa11 and footwall. 

2.5 Dilution impact on the mine operation 

Length of mine life, net present value, cost of producing metal and loss of metal 

are a11 affected by dilution (Elbrond, 1994; Tatman, 2001). The realized grade 

from a mineraI deposit rarely measures up to the pre-production estimate, (Trevor, 

1991). Dilution constitutes a severe constraint on economical result of a mine by 

increasing production cost and by reducing the mineraI base and the net present 

value. Ore dilution larger than foreseen may jeopardize the feasibility of the 

mining investment decision (Elbrond, 1994; Clow, 1991; Germain et al., 1996). 

There is an inverse correlation between dilution severity and the final grade of 

ore, as i11ustrated in Figure 2.7. The level of acceptable dilution is highly 
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dependant upon grade since a higher grade stope can be economical, whereas a 

lower grade stope with the same dilution may no longer be mineable, (Pakalnis, 

1986). 
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Figure 2.7 Influence of dilution on ore reserve grade, (Planeta et al., 1990) 

Ore losses and dilution are significant and have considerable effects on the 

economical results of a mining operation. The most serious economic 

consequence of dilution is when this prevents the operator from milling ore. 

Anderson and Grebenc (1995), report 13.6% overall dilution at the Golden Giant 

Mine. As a result of this unplanned dilution, the mine was operating at 86.4% 

capacity despite producing at maximum possible milling rate. The direct cost of 

mining, milling and administration to handle the unplanned dilution was reported 

as $5.4 million annually. 

Dilution in open stopes reduces over-all grade and adds to haulage and milling 

costs. In sorne cases this can result in significant loss of reserves. Values 

presented in Bawden et al. (1989), revealed that stope wall dilution, hoisted and 
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milled, reduced stope profitability in a base metal mine by approximately $8 per 

tonne. 

Dilution also has an adverse effect on operating costs, as more tons must be 

mined to yield the same metal content as the undiluted ore. Metal grade of each 

ton of diluted ore is reduced and mill recovery will consequently be lower 

(O'Hara, 1980). A case study from a zinc orebody by Bawden et al. (1989) 

illustrated the importance of dilution on the Rate of Retum. The case study 

showed dilution in the order of 30% resulted in a negligible rate of retum for the 

orebody with grade of 20% zinc. An economically attractive property can result 

in economic failure due strictly to what many would consider "moderate" 

dilution. Trends from the case study are shown in Figure 2.8. 
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Figure 2.8 Influence of dilution on rate of retum, (Bawden, 1993) 

Every tonne of dilution costs in the neighbourhood of $20 to $30, (Trevor, 1991), 

and Miller et al. (1992). The presence of low grades of metals in the waste rock 

can reduce the net cost of unplanned dilution. Effective dilution control offers 

very real financial benefits as the only revenue a mine has is generated by ore. 
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Re1ationships between dilution reduction and increase in profit are shown in 

Figure 2.9. Bawden (1993) described that a 10% decrease in dilution wou1d mean 

an increase of approximate1y 6% on the Rate of Retum of the property. In an 

examp1e provided by Dunne and Paka1nis (1996), where the cost of dilution was 

reported as $30/tonne, a 1 % decrease in dilution from a mine design budgeted at 

500,000 tonnes wou1d yie1d a cost saving of $150,000. 

Another form of dilution occurs when backfill fai1s and falls into adjacent stopes 

as they are being mined. This form of dilution is very costly to a mine because 

the fai1ed backfill has no mineralization that can he1p to offset the cost, and the 

mine must essentially pay twice for the cost of placing the fill. Usually with fill 

fai1ure there are few prob1ems with oversize so that secondary b1asting costs are 

not included in the cost for fill failure. The co st for dilution from backfill is in the 

range of $55 per tonne, (Board et al., 1996). 
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Figure 2.9 Gross profit increase as a function of total dilution reduction, (Planeta 

et al., 1990) 
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2.5.1 Indirect dilution costs 

Dilution has both direct costs (dilution tons displace ore tons in the ore handling 

and process circuits) and indirect costs: each ton of sterile rock or backfill that 

circulates through the mill carries mineraI values with it to the tailings, De la 

Vergne, (2000). 

Dilution generally enters the stope as oversize sloughed or caved waste wall rock, 

requiring secondary drilling and blasting. If dilution results in the plugging of 

drawpoints, serious production delays may be incurred. In the worst case the 

stope may be lost, (Bawden et al., 1989). 

With unplanned dilution, stope mucking time may be extended due to: (i) the 

increased tonnage to be mucked from the stope due to the additional dilution 

tonnage, and (ii) stope brow hang-ups due to oversize muck. Increased length of 

time required to muck out a stope affects the mine schedule by postponing the 

development and mining of adjacent stope panels. Anderson and Grebenc (1995) 

documented a case example of the relationship between unplanned dilution and 

stope mucking cycle. Their results, illustrated in Figure 2.10, indicate that stope 

mucking time increased by 50% above the planned mucking time, in what many 

would consider "moderate" dilution conditions of 20% dilution. 
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Figure 2.10 Increased length in time required to muck a stope due to unplanned 

dilution, Anderson and Grebenc (1995) 
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2.6 Quantification of dilution 

The measurement of mined stope profiles has traditionally been difficult, due to 

the non-entry nature of the open stope mining method. The dimensions of mined 

stope walls have been estimated from visual observations, drilling test holes to 

break through into a stope, and with hand-held or tripod mounted rangefinders. 

Skeeles and Semier (1991) describe open stope surveys using a theodolite and 

laser range finder. Other methods inc1ude stope mucking calculations, back

calculation from mill recovery, and rules of thumb. 

2.6.1 Laser measurement of mined stope profiles (the Cavity Monitoring 

System) 

In recent years, accurate surveying of excavated stope surfaces has been made 

possible with the application of automated non-contact laser rangefinders. The 

Cavity Monitoring System, (CMS), was developed jointly by the Noranda 

Technology Center and Optech Systems. The CMS, described by Miller et aL, 

(1992), consists of reflectorless laser rangefinder, which is extended up to 5 

metres into the stope cavity at the end of a boom support, as shown in Figure 

2.11. 

The CMS offers a volume-based technique for directly measunng stope 

performance. First implemented by the Canadian mining industry, (Anderson and 

Grebenc, 1995; Mah et al., 1995; Germain et al., 1996; Yao et al., 1999), it is now 

adopted by mines world-wide (Calvert et al., 2000; Uggalla, S., 2001). 

The rangefinder is housed in a motorized assembly capable of rotating 360 

degrees about the boom axis and up to 135 degrees about the pivot axis, defining 

a sphere of 270 degrees. The CMS has the capacity to survey stope voids up to 

100 metres high when visibility within the stope is c1ear. In complex-shaped 

stopes, effective range of the CMS is in the range of 20 metres (Mah et al., 1995). 
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Figure 2.11 Cavity Monitoring System, (Hutchinson and Diederichs, 1996) 

The CMS is programmed and activated remotely with a hand-held controller and 

data logger. Output from the CMS can be converted to a three-dimensional (3-D) 

polyline mesh, containing up to 50,000 points in space, for input into AutoCAD 

software to produce 2-D or 3-D data visualization. 2-D sections generated can be 

compared against the mining plans to identify are as of unplanned dilution 

(overbreak) or unmined ore (underbreak). The major advantage of the system is 

that it gives the true volume of the void, allowing stope reconciliation and stope 

performance evaluation. Shortcomings of CMS inc1ude: muck left at the base of 

the stope, set-up errors, hidden or blind spots in the geometry of the stope, 

distance (range of scanner), and occurrences suspended dust, blasting smoke, and 

humidity (fog) inside the stope. 
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.,r-.. 2.7 Empirical analysis 

CMS data provides a record of how different stope geometries perform in a 

particular quality rockmass, or mining induced stress environment. Empirical 

back-analysis of CMS stope stability data can provide useful predictions of 

dilution or sloughage for particular stope design. 

An approach reported by Connors et al. (1996), employs rockmass classification 

and the Stability Graph method to predict the extent or severity of Equivalent 

Linear Overbreak/Slough (ELOS) is described below. Other approaches at 

quantifying hanging-wall behaviour using the Stability Graph method are reported 

by Milne et al. (1996) and by Germain et al. (1996). 

2.7.1 Stability Graph method 

The Stability Graph method for open stope design, developed by Mathews et al. 

(1981), and modified by others, including Potvin (1988), Nickson (1992), and 

Mawdesley et al. (2001), combines information about rockmass strength and 

structure, the stresses around the opening and the size, shape and orientation of 

the opening to predict stope stability. A widely employed version of the Stability 

Graph is provided in Figure 2.12. 
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Figure 2.12 Stability Graph for open stope design, after Nickson (1992) 
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Two parameters are needed to assess stope wall stability: the Stability Index 

number (N), which is a measure of the rockmass ability to stand up under a given 

stress condition, and the "hydraulic radius" (HR) , which represents the 

dimensions of the stope face. The Stability Index, N, is defined as: 

N = Q" A . B . C = RQD . Jr . A . B . C 

Jn Ja 

(2-13) 

Where Q', the modified Rock Tunneling Quality Index, corresponds to the first 

four terms from Q classification system (Barton et al., 1974). A is the rock stress 

factor, accounting for stresses acting at the free surfaces of open stopes at depth. 

B is the joint orientation adjustment factor, which represents the destabilizing 

influence of oblique structure. A, Band C are defined in Figure 2.13. The gravit y 

adjustment factor, C, depends on the inclination of the stope surface, is 

determined from the following relationship (Hoek et al., 1995): 

c= 8 - 6'cosa (2-14) 

where a = the st ope surface inclination 

The second parameter required for a stability analysis is the hydraulic radius, HR, 

is equiva1ent to the face area divided by the face perimeter, as indicated in 

Equation 2-15. 

HR = Area of surface analyzed 

Perimeter of surface analyzed 
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Figure 2.13 Stability parameters for the Modified Stability Graph, adopted from 

H utchinson and Di ederi chs (1996) 

2.7.2 Limitations of the Stability Graph method 

The main limitations of the Stability Graph method are: 

• Application of the Stability Graph method is limited to cases that are 

similar to those in the developmental database. 

• Stability Graph method does not consider stope face abutment relaxation 

(Diederichs et al., 2000). 

• Changes in stress magnitudes and orientation are not accounted for as 

mining progresses (Malek et al., 2001). 

26 



• The sensitivity of wall stability to undulations in the azimuth of the stope 

strike, with respect to field and induced stress, including "stress 

shadowing" is not accounted for. 

• Stability Graph method is inappropriate for severe rockbursting 

conditions, in highly deformable or creeping rockmasses, and for entry 

methods (Potvin and Hadjigorgiou, 2001). 

• Time of exposure of stope surfaces is not accounted for but should be 

considered since long exposure times lead to significant stress changes. 

• Hydraulic radius is inadequate for partly filled stopes, undercut stopes, or 

stope surfaces with complex geometry (Suorineni, 1998). Another 

limitation ofhydraulic radius is that a given value of HR can be associated 

with a variety of stope geometries. This is discussed further in Section 

5.3. 

• It do es not account for blasting effects. 

• Stress induced damage, as well as faults, shear zones and fissures are not 

specifically included in the factors. An approach for incorporating stress 

induced damage has been suggested by Sprott et al., 1999. A fault factor 

has been developed (Suorineni et al., 1999). Both factors have not yet 

been widely employed by practitioners. 

• Differing operating practices as well as subtle but important differences in 

the pre-mining conditions that are not adequately accounted for (Calvert et 

al., 2000). 

• Existing Stability Graph methods are not sufficient to assess differences 

between primary and secondary stope dilution. Mining sequence and type 

of stope, (such as primary and secondary) is not taken into account. 

• Variations in stope design, construction, production blasting and mucking 

rate are not taken into account. 

27 



2.7.3 Empirical relationships incorporating factors influencing unplanned 

dilution 

Pakalnis (1986) related the Bieniawski rockmass rating (RMR) to wall sloughage 

to develop a dilution-based open stope empirical design method. Details of the 

RMR classification system are described in Bieniawski (1989). Exposure rate and 

hydraulic radius are major factors in this design approach. They account for 

rockmass quality deterioration with time, and stope surface geometrical effects on 

stability. Figure 2.14 illustrates the method. 

ISOLATED STOPE(61 obs) 
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20 

Figure 2.14 Dilution based empirical design for an isolated stope, Pakalnis and 

Vongpaisal (1993) 

The instability and caving limits in the Stability Graph are based loosely on the 

apparent area of instability across the stope face. Based on local site experience, 

dilution severity versus HR relationship for any rock quality can be obtained and 

used in economic analyses to optimize stope dimensions (Elbrond, 1994; Planeta 

et al., 1990; Diederichs and Kaiser, 1996). Example plots of empirical estimates 

ofunplanned dilution are provided in Figure 2.15. 
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Figure 2.15 Empirical estimation of unplanned dilution 
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If the volume of failure is considered and divided by the volume of the ore in the 

stope, a measure ofthe unplanned dilution for a particular stope surface (ELOS) is 

obtained. Clark and Pakalnis (1997) and Pakalnis and Vongpaisal (1998) describe 

an ELOS design chart, presented in Figure 2.16. Four design zones were 

identified; definitions are presented in Table 2.3. 
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,r----
1 Table 2.3 ELOS design zones definitions (after Clark and Pakalnis, 1997) 

ELOS Range ELOS design zones 

ELOS < O.5m Blast Damage only: surface is self supporting 

ELOS = O.5m - 1.0m Minor Sloughing: sorne failure from unsupported stope 

wall should be anticipated before a stable configuration is 

reached. 

ELOS = 1.0m - 2.0m Moderate Sloughing: significant failure from 

unsupported stope wall is anticipated before reaching 

stable configuration. 

ELOS >2m Severe Sloughing: large failures from unsupported stope 

wall should be anticipated. Wall collapse is possible. 

An example of another ELOS design chart, developed uniquely from Campbell 

mine data, is shown in Figure 2.17. Although ELOS empirical plots are 

frequently used as a technique for evaluating unplanned dilution in long-hole 

stopes, this design approach has a major deficiency; they are site specifie. 
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Figure 2.17 Empirical estimation of unplanned dilution at Campbell mine using 

ELOS values, modified from Alcott (2002) 

An examination of factors influencing stope hanging-wall stability was 

undertaken at the Bousquet #2 mine, comparing neighbouring primary and 

secondary stope blocks (Henning and Mitri, 1999). Even though the stop es had 

similar hydraulic radius, significant differences in hanging-wall and footwall . 

ELOS values suggest that factors other than rockmass quality may affect stope 

wall stability and unplanned dilution. These factors are examined in Chapter 3. 
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CHAPTER3 

PARAMETERS CONTROLLING ORE DILUTION IN A BLASTHOLE 

STOPING ENVIRONMENT 

3.1 Introduction to the blasthole mining method 

Blasthole mining, also referred to as long-hole mining, is a general tenn applied 

to mining methods that employ long hole drilling for the production of ore. It is a 

system of large-scale drilling and blasting in which large amounts of ore are 

broken in single blasts. Blasted slices of rock fall into an open void within the 

stope. The rock is extracted and the empty stope is backfilled (delayed 

backfilling). The method is used to mine ore where both the ore and wall rocks 

are relatively strong. The method may be applied to a variety of vertical or 

steeply dipping orebody shapes and sizes (Hamrin, 1980). Nonnally the vertical 

dimension is the largest, as illustrated in Figure 3.1. 

The blasthole mining method provides limited selectivity. Since it is a bulk 

method, blasthole mining results in sorne overbreak. The orebody should 

preferably be regular, as changes in orebody geometry outlines are difficult to 

compensate for. Production holes, commonly in the range of 50mm to 110mm 

diameter, are drilled either in a fan-shaped pattern, or in a pattern parallel to the 

stope dip. Drilling can be done in advance of ore extraction. Stope dimensions 

are determined from local ground conditions. Mined stope width varies with 

orebody thickness. 

The blasthole mining method originates from the Noranda Horne mine in the late 

1930' s (Hall, 1937), when, as a replacement to bench mining, a method of 
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subleve1 mining with ring drilling of blastholes (sectional steel and diamond 

drilling) was developed. The adoption of the biasthole mining method was aiso 

accompanied by the introduction of cemented backfill utilizing granulated slag 

and pyrrhotite tailings, Patton (1952). This new and safer mining system enabled 

the mine to increase production while lowering costs and helped to extract almost 

100% of the ore from the Iower "H" orebody at the Home mine. By 1948, the 

blasthole mining method was in use at the INca Frood-Stobie mine (Boldt and 

Queneau, 1967). The blasthole method has since found worldwide acceptance. 
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Figure 3.1 Blasthole mining method, Hamrin (2001) 

3.2 Variations of blasthole mining method 

Stope blocks are accessed in transverse or longitudinal directions. Transverse 

stoping is cornrnon to tabular orezones of widths exceeding 5 rneters, where stope 

access is driven normal orezone strike. Narrower width orezones are rnined 

Iongitudinally, with stope access driven parallel to, and within, the orezone strike. 

The two stoping directions are illustrated schernatically in Figure 3.2. 
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Figure 3.2 Illustration of transverse and longitudinal mining directions. Arrow 

indicates direction of stope access 

3.2.1 Transverse blasthole stoping 

In transverse mining, a tabular orebodyis subdivided into stopes and pillars. 

Typically, an expansion slot is developed by enlarging slot rai se to the width of 

the stope, using parallel hole blasting (Henning et al., 2001 a). Ore is fragmented 

in the stope using long parallel (primary stopes) or ring-drilled (secondary stopes), 

and mucked from a drift, orientated perpendicular to the stope strike, at the base 

of the stope. Stop es are backfilled with cemented backfill if the secondary pillars 

are to be recovered. For secondary stope mining, it is important that the pillar is 

not too highly stressed for practical extraction. Therefore primary stopes do not 

necessarily have the same dimensions or excavation design as secondary pillar 

stopes, as illustrated in Figures 3.3 and 3.4. 
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Figure 3.3 Transverse stope and pillar stope design at the Lamefoot mine, 

longitudinal view, Fellows (2001) 
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Figure 3.4 Transverse stope and pillar stope design at Pyhasalmi mme, 

longitudinal view, Pera et al. (2001) 
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3.2.2 Longitudinal blasthole stoping 

Longitudinal blasthole stoping is generally a pillarless mining method, commonly 

developed in narrow, steeply dipping deposits, as described by Gauthier (2001) 

and Makuch (2001). The top sills are excavated to the full stope strike width to 

permit drilling of parallel blastholes, typically at a staggered pattern, as illustrated 

in Figure 3.5. 

Compared to transverse access stoping, longitudinal stoping has positive benefits. 

Improved wall stability and dilution control is possible, as the strike length can be 

reduced to compensate for low quality hanging-wall or footwall conditions. 

Secondly, selective blasthole mining is possible, as zones of subgrade material 

can be left in place by re-slotting. Disadvantages to longitudinal stoping include 

reduced stope productivity (due to long haulage distance and smaller stope 

volume), and reduced mining rate, since pillarless longitudinal stoping allows 

fewer active stope blocks than transverse open stoping. 
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Figure 3.5 Longitudinal blasthole stoping at Bousquet mine, Gauthier (2001) 
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3.2.3 Sublevel blasthole stoping 

The height of a blasthole stope is constrained by drill equipment limitations and 

accuracy of drilling: drill deviation increases with the length of the drill string. 

Sublevels designed at intervals in the range of 25m to 40m give access for 

longhole drilling in the stopes in order to permit the excavation of larger stopes, 

such as 91m-high stopes at Kidd Creek mine (Belford, 1981) and 300m-high 

stopes at Mount Isa Copper mine (Potvin, 1998). The method is more common to 

massive deposits, than to vein-type orebodies. An example of a typical sublevel 

stoping arrangements used at the Mount Isa mine is provided in Figure 3.6. 

DRILLING 
SUBLEVELS 

DRILLING PATTERN 

CUT OFF RAISE 

BROKEN ORE 

DRAWPOINT 

Figure 3.6 Idealized isometric drawing of a sub-Ievel blasthole stope at Mount Isa 

Copper Mine, Grant and DeKruijff (2000) 
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·~ .. 3.2.4 veR blasthole stoping 

Vertical crater retreat (VCR) is a comparatively new method of blasthole mining 

in which horizontal slices of ore are blasted down into an opening below the block 

of ore being mined. As described by Villaescusa (2000) and Bastien (200 l), large 

diameter holes are charged from the overcut and blasted by means of horizontal 

slices of ore progressing from the bottom level to the top level, see Figure 3.7. 

Following blasting, only a slight amount of broken ore is mucked, so that 

sufficient room is available for a subsequent blast to break into. This keeps the 

stope full of broken rock, thereby providing passive support to the exposed stope 

walls, until blasting to the stope overcut is complete, Lang (1998). 
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backfilled 
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Figure 3.7 VCR blasthole stoping method, Hamrin (2001) 
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3.2.5 Blasthole stoping with r()ck pillars 

With sorne orezones, backfill is not used. The broken rock is extracted and the 

resulting void is left unfilled. Between stopes, parts of the orezone are not mined 

to serve as supports as either vertical (rib or longitudinal) or horizontal (sill pillar) 

separations. 

On occasion, pillars are subsequently recovered either partially or fully. Recovery 

normally takes place at the final stage of the mining operation, or mining of a 

stope panel, to ensure that a possible collapse of surrounding rock no longer poses 

a hazard to mining personnel and/or equipment and no longer affects normal 

mining activities. 

3.2.6 Backfill for blasthole mining 

Methods such as blasthole mining require that rock pillars be left in place in order 

to provide rock mechanical support by bearing tributary loads. In order to 

maximize ore recovery, it is very common to retum and mine pillars following 

primary mining recovery. Primary stopes are filled with consolidated backfill to 

permit recovery of the secondary stopes, as illustrated in Figure 3.8. Common 

materials used with blasthole stop es are consolidated rockfill (Yu and Counter, 

1983; Grice, 1989; Ley et aL, 1998), and paste fill (Doucet and Harvey, 2001; 

Goulet and Blais; 2001; Melong and Naylor, 1997). 

As pillars are extracted, large vertical heights of backfill are exposed. It is 

necessary that the backfill exhibit sufficient strength to remain free standing 

during and after pillar extraction. Example approaches for selecting appropriate 

fill characteristics are described in Barrett et al. (1978) and by Yu (1992). 
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Figure 3.8 Blasthole mining at Williams mine, Bronkhorst et al. (1993) 

3.3 Stope design influences on overbreak: physical and geometrical factors 

To be realistic in assessing dilution, it is necessary to understand the way a stope 

operates (Clow, 1991). Empirical stope design techniques developed by Mathews 

et al. (1981) and refined by Potvin (1988) and others, have gained acceptance as a 

simple, 'first-pass' means of designing primary stopes. As discussed in Chapter 

2, empirical stability graph methods have numerous deficiencies, and as a result, 

can only provide broad design guidelines. 

In a general sense, a mine is a factory with standardized practices, equipment and 

materials for stope design and excavation. However, no two stopes are the same, 

as each has numerous potential variables that may impact recovery and unplanned 

dilution, as suggested in Figure 3.9. Clark and Pakalnis (1997) identified several 

development factors that ultimately may influence stope dilution, inc1uding: 

• stope dimensioning, 

• design of the production drill and slot patterns, and 
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• stope construction, such as accuracy of drilling and blasting. 

These and other factors are discussed in the following sections. 

METHODS 

Wrong mining method 
Inadequate ground support .. • 

DILUTION 

RELIABILITY 

Figure 3.9 Fishbone chart illustrating potential factors causing dilution, De la 

Vergne, (2000) 

3.3.1 Stope complexity 

There is a tendency for overbreak to increase as the regularity of the wall 

geometry decreases, Clark and Pakalnis, (1997). A quantitative index of stope 

complexity proposed by Germain et al. (1996), and updated in Germain and 

Hadjigeorgiou (1998) compared the volume of a stope and its total surface area. 

This index of stope complexity, termed RYS, was used to determine the 

suitability of hydrau1ic radius and by extension the empirica1 stability graph 

design methods. The relationship between span, hydraulic radius and RYS is 

plotted in Figure 3.10. For two stopes with equal volume but differing level of 

geometrical complexity, the more geometrically complex stope will have a greater 

total surface area and a lower RYS. 
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Figure 3.1 0 Relationship between RVS and observed overbreak, (Germain et al., 

1996) 

Under the classification system for stope complexity used by Germain et al. 

(1996), surfaces requiring careful blast pattern design, due to sharp edges of the 

stope profile, were considered as complex. Surfaces with sorne undulation were 

considered as irregular, while pl anar stope surfaces were considered as regular. 

Based on their comparisons between predicted and actual stope stability at the 

Louvicourt mine, it was shown that for stopes of complex geometry, the hydraulic 

radius was an inadequate too1. 

The severity of stope complexity varies from stope-to-stope. For orebodies of 

uniform geometry, stope complexity could typically range from regular to 

irregular. Examples of irregular stope surface complexity include fluctuation in 

hanging-wall and footwall contacts along strike of orezone, and undulations along 

the dip of the orebody, creating a 'dogleg-type' stope profile, as illustrated in 

Figure 3.11. 
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Figure 3.11 Overbreak in stope with irregular (dog-Ieg) geometry. Dashed line 

represents planned mining represented as dashed line, CMS profile shown as solid 

line. Modified from Yao et al. (1999) 

3.3.2 Stope height 

Published data suggests that unplanned dilution, particularly from the hanging

wall, is sensitive to the height and dip of the hanging-wall. Increased overbreak 

may be associated with equipment limitations, such as increased borehole 

deviation, or to rockmass stability. 

Perron (1999) describes instabilities associated with high stopes at the Langlois 

mine that ultimately required a re-design of both the stope height and mining 

sequence to reduce dilution. 60m high x 20m wide stop es were originally 

designed for transverse (primary and secondary) mining. Wall instahility was 

found to be greater than anticipated. To improve stability and to lower dilution, 

additional sub-Ievels were developed in ore, reducing stope dimensions to a more 

stable 30m high x 20m dimension. A consequence of this conversion was a 

change to pillarless (longitudinal) mining, with a lower rate of production. 
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At the Trout Lake mine (Yao et al., 1999), it was found that that the exposed 

hanging-wall height had a greater influence on overbreak than stope strike length. 

At a hanging-wall height (along dip) exceeding 40m, the risk of substantial 

hanging-wall overbreak was high, and was attributed to deviation of long 

production blastholes. 

A study examining dilution influences from stope shape and dimensions at the 

Doyon mine (Friedrich and Charette, 1997) found that total unplanned dilution 

increased dramatically for parallel stope heights exceeding 30m, as illustrated in 

Figure 3.l2. Below the 30m threshold, no direct relationship between overbreak 

and stope height was apparent. In both the Trout Lake and Doyon studies, it was 

suggested that the exposed hanging-wall height had a greater influence on 

hanging-wall overbreak than did stope strike length. 

3.3.3 Hanging-wall dip angle 

Hanging-wall dip is accounted for in the empirical stability graph as the factor B. 

However, its influence on overbreak can be significant. With steeply dipping 

orezones, vertical stresses are shed around the orebody. As the dip of the stope 

hanging-wall becomes shallower, vertical stresses are shed onto the orebody, 
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leading to larger displacements. An example of the influence ofhanging-wall dip 

on stope overbreak is described in Yao et al. (1999), where depth of overbreak 

was observed to increase as the hanging-wall dip bècame shallower, see Figure 

3.13. In many mines, such as the Agnico-Eagle mine (Bastien, 2001), it is 

common to display the orezone in a longitudinal section, showing the stop es in 

terms of parallel stope height. With this practice, the influence of actual hanging

wall dip fluctuations may be overlooked, resulting in a potential underestimation 

ofthe true exposed hanging-walllength, as illustrated in Figure 3.14. 
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Figure 3,13 Hanging-wall overbreak as a function of hanging-wall dip angle, 

Sohd hne represents best-fit trend, Yao et al. (1999) 
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3.3.4 Undercutting of stope walls 

Undercutting the stope hanging-wall is a well-recognized factor that contributes to 

hanging-wall instability and dilution. For many mines, undercutting the hanging

wall breaks the integrity of the rockmass that may form along continuous foliation 

or bedding planes parallel to the stope hanging-wall contact, reducing stability 

(Wang et al., 2002a). This is illustrated schematically in Figure 3.15. 

Case histories have confirmed that undercutting the hanging-wall during 

development is one of the biggest contributing factors resulting in hanging-wall 

overbreak. When the hanging-wall is undercut, it tends to slough to the depth of 

the undercut, (Yao et a1., 1999). In a study performed at the Detour Lake mine, 

(Dunne et a1., 1996), dilution levels, due solely to the existence of the undercuts, 

were in ex cess of 5%. 

The destabilizing effect of undercutting is dependent on the empirical stability 

graph stability number (N). According to Clark and Pakalnis (1997), stope walls 

with low N values appeared very sensitive to undercutting. 
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Figure 3.15 Schematic illustration of the influence of stope wall undermining on 

stope relaxation, Wang et al. (2002a) 

3.2.5 Time effects 

Stopes are normally designed to be open, from the initial blast to depletion, for a 

minimum of time. Delays in the stope blasting/mucking cycle or delays to the 

backfilling cycle may result in increased dilution from the exposed stope walls. 

An example from the Detour Lake mine, (Dunne et al., 1996) illustrates the effect 

that time has on excavation stability. Two surveys spaced a year apart were 

performed. The unplanned dilution in the area, immediately after mining, was 

calculated as 6%. When the void was resurveyed a year later, the severity of 

dilution had increased to 45%. A similar example of progressive stope 

unravelling encountered at the Ruttan mine is shown in Figure 3.16. 

Time effects on rockmass stability, and the consequences on unplanned dilution 

are presented in Suorineni and Kaiser, 2002. In their study, open stope 

performance data was incorporated as stand-up time on the Stability Graph 

method, shown in Figure 3.17, illustrating that both rockmass quality and stope 

sizes show time-dependence. 
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Figure 3.17 Stand-up time dependent stability graph for open stope design. 

Numbers on graph are stand-up times in months, Suorineni and Kaiser (2002) 
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3.4 Stress environ ment 

When a drift, stope or other underground opening is excavated into a stressed 

rockmass, stresses near the new opening are disrupted and re-distributed. 

As a blasthole stope is mined, a zone of low stress develops as stresses nonnal to 

the hanging-wall are shed to the abutments, see Figure 3.18. This envelope of 

elastic relaxation extends further into the hanging-wall as the distance to the 

supporting abutments increases. According to Kaiser et al., (1997) rockmass 

relaxation refers mostly to stress reduction parallel to the excavation wall and not 

to stress reductions in the radial direction or a reduction in confinement. Stresses 

in the tangential direction to the excavation wall (the major and/or intennediate 

principal stress) are reduced in the rockmass, often to values far below those 

predicted by linear elastic models, because the rockmass has been allowed to 

defonn at sorne distance from the excavation. 
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Figure 3.18 Envelope of induced hanging-wall relaxation, Diederichs (1999) 
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In the relaxation zone, the absence of significant damping stresses is often cited 

as one of the main reasons for the instability of large hanging-walls, (Milne and 

Pakalnis, 1997). The depth or volume of this relaxation zone in a stope hanging

wall is dependent upon the pre-existing stress state and the size or hydraulic 

radius of the hanging-wall (Clark, 1998). The shape of the stope hanging-wall 

. aIso influences the total volume, or average depth of the relaxation zone in the 

hanging-waIl, (Tannant et al., 1998; Wang et al., 2002a). Diederichs and Kaiser 

(1999) have also shown that relaxation, causmg near zero stress conditions 

tangential to excavation spans, reduces the self-supporting capacity of an 

excavation in fractured ground. This relaxation can also drastically reduce the 

performance of cablebolts, which are often used to support hanging-walls (Kaiser 

et al., 1992). Tannant et al. (1998) reported that tension can manifest itself as 

delamination of foliation planes and dilation of cross jointing, leading to 

unravelling failure in laminated rock. 

The notion that a simple confining stress (tensile strength) criterion can be used to 

assess hanging-wall stability and dilution potential has been reported by Mitri et 

al. (1998), Martin et al. (1999), and Alcott et al. (1999). In the region of 

confinement loss (cr3 = 0 MPa) a potential for sloughage exists. However, not aIl 

of this zone will fail if the rockmass has sorne self-supporting capacity. The 

occurrence and potential severity of this sloughage depends on the tensile strength 

of the rockmass. In turn, the tensile strength depends on the material properties of 

the rock and the structures present within it. 

A common practice is to reconcile stope overbreak, measured from CMS survey, 

using numerical modelling. In a case example described by Martin et al. (2000), 

the distribution of three principal stresses within a hanging-wall, obtained from 3-

D elastic modelling, were plotted against the surveyed stope profile. Results from 

this study, shown in Figure 3.19, suggested that the contours of minimum 

principal stress at cr3 = 0 best reflected the observed geometry. 

A case study from the Bousquet #2 mine (Henning et al., 2001b) found hanging

wall dilution, as represented by the CMS profile at the stope mid-strike, of a 
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secondary stope corresponded to the cr3 = 0 MPa contour, while hanging-wall 

overbreak in a primary stope followed cr3 = 5 MPa contour. Differences between 

the two stop es suggested that the extent of dilution was quantified by the loss of 

confinement within the hanging-wall. A possible explanation for the difference in 

confinement levels was that the secondary stope had been pre-conditioned due to 

adjacent mining activities. This is discussed further in Section 6.9. 

A field study performed at the Campbell mine by Alcott and Kaiser (1999) 

evaluated sloughage potential within a mining zone as a function of loss of 

confinement (0'3 ~ 0) and the exploitation of this confinement loss by structures or 

planes of preferential weakness within that zone. The sloughage potential criteria 

(tensile strengths relative to structures present) defined for the study are presented 

in Table 3.1. The volume of rock exceeding any one of these criteria was 

assumed to be a potential sloughage hazard and to be representative of the 

tonnage at risk. 

Table 3.1 Sloughage hazard assessment criteria for Campbell mine, Alcott and 

Kaiser (1999) 

Sloughage criteria 

0'3 = 0 MPa 

0'3 = -5 MPa 

0'3 = -10 MPa 

Description. 

Loss of confinement, potential for failure along major 

structure, such as faults, contacts, and shear zones. 

Exceeds tensile strength of rockmass, potential for 

failure along critically oriented minor structure, such as 

parallel jointing. 

Exceeds tensile strength of intact rock, potential for 

failure regardless of structure. 
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Figure 3.19 Vertical section through stope showing crI, cr2 and cr3 contours. 

Hanging-wall overbreak, measured from CMS survey results, is indicated by a 

dashed line, Martin et al. (2000) 
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3.5 Identification of missing parameters 

Two additional factors, referred to here as Stope Construction and Stope 

Category, are integral elements affecting stoping success. Stope construction 

refers to the techniques employed to prepare and extract a stope block. Stope 

category is the location a stope block within the actual mining sequence. 

3.5.1 Stope construction 

The various components involved with the design, drilling, and excavation of an 

individual stope play a critical role determining mining success. The role of stope 

construction is divided into two components: Drilling and Blasting. 

Drilling components focus on those aspects that, prior to the blasting of the stope, 

may pre-determine the severity of stope overbreak. The factors include: hole 

diameter, designed blasthole drill pattern, drill set-up, and slot placement. 

Blasting components assess how the process of stope excavation influences stope 

overbreak. Blasting factors include: stope blasting sequence, blast size, selection 

of explosives, and slot excavation technique. 

3.5.1.1 Drilling 

3.5.1.1.1 Hole diameter 

In most blasthole methods the ore is blasted into a vertical openmg. The 

blastholes may be small diameter long hole carbide drill holes or larger diameter 

holes drilled with in-the-hole (ITH) drills, or they may be a combination of both. 

Drilling of sm aIl diameter (50mm to 60mm) production holes requires the use of 

longhole rock drills, equipped with extension steel in l.2m to 1.8m sections. The 

hole length varies with the hole pattern but normally does not exceed 24m as 

longer holes may cause problems due to deflection from the intended direction. 

The burden (thickness) between drilling patterns is typically l.2m or more. 
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Since drilling can be isolated from the rest of the mining cycle (muck and blast), 

large mechanized equipment can be used efficiently, and a more controlled and 

accurate hole alignment is possible. A common technique for blasthole mining 

uses ITH hammers, drilling production holes with diameters of 100mm or more, 

over lengths up to 60m. The burden (thickness) between drilling patterns is in the 

range of2.4m to 3m or greater. 

3.5.1.1.2 Drill pattern design 

The distribution of the explosives within a stope influences stope recovery. The 

designed drill pattern and slot placement for an individual stope varies with the 

access available for drilling. In a typical primary 1 secondary transverse stope 

sequence, the drill pattern may vary with stope type. For example, at the 

Bousquet #2 mine, the top sill of primary transverse stop es is excavated to the full 

stope strike length to permit drilling of parallel blastholes, with an off-center 1.2 

meter diameter raisebore slot. Secondary transverse stopes are drilled in a fan

pattern from a narrow, five meter-wide, top sill access, with a central 1.2 m 

diameter raisebore slot, (Henning, 1998). At other mines, such as the Williams 

mine (Bronkhorst and Brouwer, 2001); both primary and secondary transverse 

stop es have similar drill patterns. Examples of parallel and fan drill patterns are 

shown in Figure 3.20. 
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Figure 3.20 Schematic illustration of parallel and fan drill patterns, modified 

from Henning et al. (2001a) 

3.5.1.1.3 Drilling inaccuracy 

A Noranda study indicated that about 50% ofunplanned dilution came from rock 

sloughing due to blast damage and weakened rock walls or exposed backfill, 

(Piché et al., 1998). Drillhole inaccuracy was identified as one of the major 

factors causing ore dilution, (Beauchamp and Cameron, 1999). Stope walls were 

significantly damaged when deviated perimeter holes were blasted. Within the 

stope block, drilling inaccuracy resulted in poor blasts with higher vibration levels 

and a wider spread of muck size distribution and induces, which translate into 

higher damage and dilution potential. 

Drilling accuracy can be jeopardized by many factors, including: 

• Inaccurate placement of drill reference marks, 

• Incorrect drill set-up, 

• Limitations of the drilling equipment, 
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• Condition of the drilling equipment, 

• Inconsistent drill operation, and 

• Geological structure. 

Drill error is discussed further in Chapter 5. 

Additional sources of dilution associated with stope drilling inc1ude: 

• Increased charge per delay and the blasting damage associated with larger 

diameter blast holes, Butcher (2000). 

• The setting ofunrealistic drilling and blasting targets, Butcher (2000). 

• Stope complexity, Germain and Hagjigeorgiou (1998). Stopes with 

complex geometry usually require a more complicated drilling pattern. 

The distribution of the explosives within the more complicated drilling 

pattern is a parameter affecting stope performance. 

3.5.1.2 Blasting 

3.5.1.2.1 Slot excavation technique 

Blasthole methods require a slot raIse to provide an opening into which 

subsequent slices of the ore can be thrown. As illustrated in Figure 3-20, slot 

location influences the stope drill pattern, and can range from the mid-span to the 

extremity of the stope panel. Yao et al. (1999) reported that slots located far away 

from hanging-wall contact produce less hanging-wall overbreak. 

There are a wide variety of slot excavation techniques available. Selection of 

which depends upon stope geometry and extraction sequence. Common slotting 

methods through rock inc1ude: alimak rai se, drop raise and raise bore. With other 

methods a void is created either against or through an adjacent backfilled stope, 

su ch as a Styrofoam slot (Trahan, 1995) illustrated in Figure 3.21, a slot reamed 
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through backfill (Perron, 1999; Bruce and Kord, 1992), or a drop raise blasted 

against backfill (Grenier and Gauthier, 2001). 

15 m 1 

î"-P-U-N---I 
CEMENTED ROCKFlll 3% 

- STAGGERED 
- BURDEN : 1.2 m 
- SPACING: 1.2 m 

PRODUCTION HOlES 
(DIA. 100 mm ) 30m 

UNCONSOLIDATED 
."""',--- WASTE 

CEMENTED 
ROCKFlll 

Figure 3.21 Styrofoam slot method, after Trahan (1995) 

3.5.1.2.2 Blast sequence 

ORE ZONE 
+-4.0 m-oi 

! 

1 SECTION' 

A study performed by Pierce (1998) examined the sensitivity of hanging-wall 

failure to the direction of excavation of a primary transverse stope. The numerical 

modelling indicated that, with the principal major stress orientated at 45° to the 

orebody, the degree of stress-driven hanging-wall failure was potentially 25% 

greater wh en the stope sequence retreated from west to east. The modelling also 

suggested that excavating the stope with a greater number of smaller blasts 

reduced the severity ofhanging-wall failure. 

The sequence with which a stope block is excavated is influenced by the pattern 

of drilled blastholes, as illustrated in Figure 3.22. The type and volume of 
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explosive agent used may vary between individual blastholes and between stages 

of the blast sequence, potentially leading to differences in stope overbreak. 

(a) (b) (c) 

Figure 3.22 Examples of blast sequences, associated with (a) Longitudinal 

parallel drilling, (b) Transverse parallel drilling, and (c) Transverse fan drill 

pattern. Modified from Henning et al. (2001a) 

3.5.1.2.3 Blast vibration 

Blast induced damage is a result of the interaction of the rockmass and the 

explosive product. The damage inflicted on the boundary of the excavation is 

directly related to the type and amount of energy required to adequately fragment 

a volume of rock. The reduction in rockmass quality thus results from weakening 

or dilation of existing discontinuities and the creation of new fractures. 

Mackenzie (1987) defined blast-induced damage as the change in the in situ block 

size distribution due to blasting. His observations of blasting indicated that high

pressure explosive gas products penetrate along fractures in all directions around 

59 



a blasthole. The influence of the gas is strongly dependent on the state of fracture 

of the rock. 

Scoble and Moss (1994) suggest that a one meter depth of overbreak is typical in 

blasthole stopes. They also state that blast damage at the slot tends to be greater 

due to effects of confinement and to higher powder factors required. Power factor 

is computed as the quantity of explosives used divided by the volume of rock to 

be blasted, (Atlas Powder Company, 1987). Higher power factors result in fine 

fragmentation. 

Yu (1980) described the generation of elevated blast vibration levels, associated 

with large diameter (200mm) blastholes, caused excessive stope wall sloughage. 

According to Scoble et al. (1997), other mining-induced damage factors that can 

control the extent of the blast induced damage zone inc1ude: 

• Explosive product 

• Blasting pattern 

• Powder factor (as a function of pattern and explosive) 

• Charge concentration 

• Delay timing 

Blast damage criteria in common practice correlate damage to vibration level, 

measured as peak particle velocity (PPV). PPV values represent the peak vector 

sum velocities of individual blast holes, measured at a known distance from the 

centre of the blast hole column by triaxial geophones. According to Oriard 

(1982), most rockmasses suffer sorne damage, in the form of new tensile fractures 

and radial cracking, as PPV values exceed a threshold of 635 mm/sec. A damage 

criterion, based on observed damage in relation to measured PPV at the Kidd 

Creek mine (Yu, 1980) is provided in Table 3.2. A similar blast damage curve 

from the Williams mine is provided in Figure 3.23. 
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Table 3.2 BIast damage criteria for Kidd Creek mine, Yu (1980) 

PPV (mm/sec) Type of damage 

250 No noticeable damage to underground workings. 

500 Minor slabbing failure observed. 

750 Development of cracks in weak ground. 

1000 Potential formation of cracks to 15mm wide along weak plane of 

geologic structure. 

1250 Major slabbing failure along drift, failure along strong geologic 

features. 

> 1500 Fonnation of cracks to 15mm wide in competent rock. 
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Figure 3.23 BIast damage curve from the Williams mine, Bronkhorst et al. (1993) 
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3.5.2 Stope category 

An important, sometimes overlooked, parameter affecting unplanned dilution is 

the local stope setting within the mining sequence. Depending on its placement 

within a planned mining sequence, a stope may be bound by rock on both walls 

and above (a primary stope), or it may have backfill on one or both walls (a 

secondary stope). Potential stope categories are compiled in Table 3.3, and 

illustrated in Figures 3.24 to 3.26. 

Bach stope category may differ in terms of state of hanging-wall and footwall 

relaxation (Bawden et al., 1998; Tannant et al., 1998; Henning et al., 2001 b; 

Wang et al., 2002b), and stope construction (Henning et al., 2001a). 

Table 3.3 Potential stope categories, based on setting within mine sequence 

Stope Code Description 

category 

Primary 1 Pl Rock on both si de walls. Stope located one lift above 

fill horizon. 

Primary 2 P2 Rock on both side walls. Stope located two lifts above 

fill horizon. 

Primary 3 P3 Rock on both side walls. Stope located three lifts above 

fill horizon. 

Secondary 1 SI Rock on one side. Other stope wall is against backfill. 

Also considered as Pillarless stope sequence extraction. 

Secondary 2 S2 Both side walls of stope are agaînst backfill. 
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3 lifts 

2 lifts 

1 lift 

Figure 3.24 Primary stope sequence category. Shaded areas indicate mined and 

backfilled region 

SI 

Figure 3.25 Secondary stope sequence category. Shaded areas indicate mined 

and backfilled region 
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SI 

Figure 3.26 Pillarless stope sequence category. Shaded areas indicate mined and 

backfilled region 
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CHAPTER4 

NUMERICAL MODELLING FOR ORE DILUTION 

Parameters influencing ore dilution in a blasthole stoping environment were 

introduced in Chapter 3. Examples of stope design and construction influences 

are presented in Figure 4.1. Numerical modelling is undertaken to examine the 

sensitivity of various factors influencing stope overbreak. Criteria applied for 

establishing a representative parametric study are outlined in this Chapter. 

4.1 Modelling methods 

Commercial computer programs are available for both two-dimensional (2-D) and 

three-dimensional (3-D) models. 2-D models are used for the analysis of stresses 

and displacements in the rock surrounding a tunnel, shaft or borehole, where the 

length of the opening is much larger than its cross-sectional dimensions. The 

stresses and displacements in a plane, normal to the axis of the opening, are not 

influenced by the ends of the opening, provided that these ends are far enough 

away. 

Most underground excavations are complex three-dimensional shapes with 

irregular form. Complexity increases on a larger, mine-si de, scale since these 

individual mine openings are frequently grouped close to other excavations. With 

advances in numerical modelling and computer technology, numerical modelling 

has become a powerful tool for underground opening design. Hoek et al. (1995) 

divide the numerical methods for the analysis of stress driven problems in rock 

mechanics into two classes: (1) Boundary methods and (2) Domain methods. 
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Other terminology, such as Integral and DifferentiaI is used to describe Boundary 

methods and Domain methods, respectively (Hoek et al., 1989). The approach 

taken by each of the methods involves breaking down the problem domain into 

smaller problem domains, or elements which are easier to understand and easier 

to describe mathematically. The way in which elements are used to solve the 

problems differentiate the two methods. 

Rock mass conditions 
Pre-mining !iress 
Rock !irengh 
Geologie factors 
Stope geometl)' 

• shape 
• dimensions 
• orientat ion 

Stope categOly 
• position within 

mining sequence 

Design Considerations 

Figure 4.1 Factors influencing ore dilution 

Stope construction 
• drilling 
• blasting 
• undercliting 

Con!iruct ion Considerations 

With the Boundary method, the boundary of an excavation IS divided into 

elements, with the surrounding rockmass represented mathematically as an 

infinite continuum. Far field conditions need only be specified as stresses acting 

on the entire rockmass and no outer boundaries are required. Stresses are solved 

in terms of surface values of traction and displacement variables (Brady and 

Brown, 1985). The Boundary method is well suited for large scale models with 

comp1ex geometries. The Boundary Element method (BEM) and Displacement 

Discontinuity method (DOM) are examples of techniques that employ the 

Boundary method. 
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In Domain methods, the interior of the rockmass is divided into geometrically 

simple elements each with assumed physical and mechanical properties. The 

complete problem domain is discretized. Finite element (FEM) and finite 

difference (FDM) methods are domain techniques which treat the rockmass as a 

continuum. The distinct element method (DEM) is also a domain method which 

models each individual block of rock as a unique element. The various types of 

modelling methods in use in the field of rock mechanics are described below. 

Boundary Element Method (BEM) 

With boundary element methods, rather than discretizing the entire problem 

domain (as in the case of finite difference and finite element methods) only the 

mining excavation is discretized. The boundary of an excavation is divided into 

elements, with the surrounding rockmass represented implicitly. Conditions on a 

surface are related to the state at aIl points throughout the remaining rock. 

Stresses acting inside the rockmass are extrapolated from the boundary solution. 

The advantage of the BEM is that it models the far field boundary condition 

correctly, restricts discretization errors to the problem boundary, and ensures a 

fully continuous variation of stress and displacement throughout the whole 

medium (Brady and Brown, 1985). 3-D BEM software developed for mining 

rock mechanics applications such as Map3D (Wiles, 2005) and Examine3D 

(Rocscience, 1998) are weIl suited for large scale models with complex 

geometries. Compared to Domain methods, much fewer elements are required, 

with a result that there is less demand on computer memory. 

Displacement Discontinuity (DDM) 

The displacement discontinuity method is commonly used in the modelling of 

tabular orebodies, where the entire ore seam is simulated as a 'discontinuity'. The 

orebody is discretized into a grid of square two-dimensional elements, with the 

orebody thickness representing the third dimension. Mining is simulated by 

67 



reducing ore stiffness to zero in areas where mining has occurred, producing 

stress re-distribution to surrounding pillars, (Hoek et al., 1995). Each element 

within the model has the same thickness as that part of the orebody to be mined. 

Output stress values obtained at specified hanging-wall or footwall sites, or within 

the plane ofthe orebody, provide a three-dimensional modelling output. 

NFOLD (Golder Associates, 1989) is similar to other tabular displacement 

discontinuity software, such as ExamineTAB (Rocscience, 2004), but possesses 

additional features, such as: (1) the option of non-linear material behaviour, (2) 

post-pro cess options to generate off-seam stress and displacement values, (3) 

backfill placement into mined stopes, and (4) variable orezone thickness. 

Finite Element Method (FEM) 

The finite element method involves discretizing the problem domain into 

elements. The finite elements are also related to the field variables by means of a 

governing equation which completely describes how the field variables (usually 

displacement) vary across the element with respect to a given boundary condition. 

The relationship between the boundary conditions and field variables for each 

element are expressed in the form of a stiffness matrix determined from the 

minimizing process described above. Such a matrix is then combined into a large 

global stiffness matrix and solved for nodal displacements. 

The advantage of FEM software, such as the commonly used 2-D Phase2 

(Rocscience, 2002) is that non-linear and heterogeneous material properties may 

be readily accommodated. Each element can have different material properties. 

FEM is well suited for small scale or very detailed modelling. 

The major disadvantage of the FEM is that the outer boundary of the problem 

domain is defined arbitrarily, and discretisation errors occur throughout the 

domain. Model solution time increases as mesh density increases. FEM is rarely 

used for large scale mine models, due to complexity of model/mesh construction, 

and to long computing time. 
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Finite Difference Method (FDM) 

With the finite difference method, the rockmass is treated as a continuum. 

Interior of rockmass is explicitly divided into zones. Zones are described by the 

location of nodes, with adjacent zones sharing common nodes. The finite 

difference method assumes that, for a small time step, disturbances at points 

(nodes) within the rockmass influence only its immediate neighbors. The 

rockmass is discretized and nodal displacements are solved individually, with no 

matrices being formed. Disturbances propagate through the rockmass over many 

time-steps until numerical convergence is attained. This process is known as 

explicit FDM; it involves successive, small time steps to ensure solution stability. 

Materials are represented by elements within a grid, which behave according to 

prescribed linear or non-linear constitutive models, in response to applied forces 

or boundary constraints. 

Features of FDM modelling software, such as Flac2D (Itasca, 2002) include: 

'time-dependant' analysis ("time-stepping") rather than only seeing the final 

solution, and the incorporation of rock structures and ground support elements 

into the model. FDM is appropriate for modelling of large scale deformations. 

The use of FDM modelling software in the mining industry is limited by user 

expertise. Solutions from FDM modelling can be sensitive to assumptions of 

joint properties, joint persistence and joint distribution. 

Discrete Element Method (DEM) 

For the discrete element method, the interior of the rockmass is explicitly divided 

into zones. Each individual block of rock is treated as a unique element that may 

interact at contact locations with surrounding blocks. The individual pieces of 

rock may be free to rotate and translate. Contacts may be represented by the 

overlaps of adjacent blocks, thereby avoiding the necessity of unique joint 

elements. 
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DEM is well suited for modelling structurally controlled blocky rockmasses or 

wedge intersections. With commercially available software, such as UDEC 

(Itasca, 2000), ground support elements can be incorporated in the model. 

DEM software is not commonly used in the mining industry, due to high capital 

cost and limited user expertise available. Other limitations include the significant 

computational time and effort required for large or complex models, and that 

model solution can be sensitive to assumptions of joint properties or distribution. 

A sub-class of the distinct element method is the Particle Flow Code (PFC). PFC 

is a program for modelling the movement and interaction of assemblies of 

arbitrarily-~ized circular (PFC-2D) or spherical (PFC-3D) partic1es, (Itasca, 1995) 

by allowing finite displacements and rotations of discrete bodies including 

complete detachment. The partic1es may represent individual grains in a granular 

material or they may be bonded together to represent a solid material, in which 

case, fracturing occurs via progressive bond breakage. The partic1es are rigid but 

deform locally at contact points using a soft contact approach, in which finite 

normal and shear stiffnesses are taken to represent measurable contact stiffnesses. 

PFC is not commonly used for mining simulations, however, it does have 

applications as a research tool for simulations of bulk flow (Hadjigeorgiou et al., 

2002) or studies of micro-cracking in solid bodies (Diederichs, 1999). 

4.2 Selection of modelling tools 

Numerical modelling is an attempt to mathematically simulate the way the 

rockmass responds to mining. The user specifies the loading conditions, specifies 

the geometry, assumes that elasticity and/or non-linearity applies, and then solves 

the model to predict stresses, strains and displacements throughout the rockmass. 

• Loading conditions - Prior to mining the rockmass is loaded by 

overburden and tectonic forces. These are commonly referred to as the far 

field or in situ pre-mining stresses. 
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• Geometry - When excavations are made, the pre-existing loads are 

redistributed around the excavations, concentrating in abutments and 

pillars. 

• Elasticity - At locations where the stresses do not exceed the strength, the 

rock deforms in a more or less elastic manner. This simply means that the 

deformations are relatively smaIl in magnitude and are mostly recoverable. 

Unless it is of low quality, a rockmass will respond more or less elastically 

(Kaiser et al., 2002). Yielding zones tend to be confined to locations in 

the immediate vicinity of mining excavations. At these locations, stresses 

are concentrated to the point where they exceed the strength of the 

rockmass, leading to yield and deformation. Such deformations can be 

relatively large in magnitude and are mostly non-recoverable. 

AIl numerical models provide predictions of stresses, strains and displacements. 

While modelling by itself is reasonably straight forward, it is the interpretation of 

the modelling results that is the real challenge. Model predictions of stress, strain 

or displacement must be related to the response onserved in situ. For example, by 

examining môdeIling results from the stress analysis, locations and magnitudes of 

over-stressed (or potential yielding) of stress-relief (or relaxation) can be 

determined for a given mine geometry. 

In Canadian hard rock mines, the boundary element method (BEM) and finite 

element method (FEM) approaches are commonly employed for underground 

excavation design, Two modelling packages, Map3D (Wiles, 2005) and Phase2 

(Rocscience, 2002) have been selected for the model parametric study. 

4.2.1 Map3D software 

Map3D (Wiles, 2005) is a comprehensive three-dimensional rock stability 

analysis package, based on BEM. The program is capable of constructing 3-D 

geometries, analysing induced stress and displaying displacements, strains and 
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stresses. For this study, the Standard Version (SV) pro gram was used for its 

ability to model up to 300,000 elements. The program can accommodate multi

step mining sequences and multiple material zones with different material 

properties and stress states. 

The standard linear elastic version of Map3D features a built-in CAD interface, 

the ability to analyze very large problem sizes, multiple elastic zones with 

different moduli. Shapes ranging from simple tabular shapes to detailed 3-D 

excavation shapes and large scale mine wide problems can be simulated. Users 

build models using a series of three-dimensional building blocks to define 

excavations, accesses and geologic features. A model comprises one or more 

connected or unconnected blocks and/or planes that can be mined and filled in a 

specified sequence. Surfaces of blocks and planes are subsequently discretized 

into a number ofboundary elements by the program. 

Analysis results can be contoured on element surfaces or on a series of used 

defined field point grid planes. These later planes can be positioned at any 

desired location and allow contouring of stresses, strains, displacements, strength 

factors or any desired combination of these components. 

4.2.2 Phase2 software 

While boundary elements are an efficient means to determine the elastic stress 

distribution, fini te element programs offer the added functionality ofbeing able to 

detetmine stress redistribution during pillar failure provided that the post-peak 

behaviour of the rock is known. Phase2 (Rocscience, 2002) is a windows-based 

two-dimensional rock stability analysis package, using a FEM solution, with 

automatic fini te element mesh generation capabilities. 

With Phase2, stresses and displacements around underground or surface 

excavations are calculated to assess elastic or non-linear progressive failure. The 

software is applicable to a wide range of engineering applications, inc1uding 
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~ ... complex tunneling problems in weak rock, underground powerhouse cavems, 

surface excavations such as open pit mines, and slopes in rock or soil. 

Excavation, material and stage boundaries can be defined using drawing tools, or 

by entering the coordinates. Materials and excavation sequences are assigned 

with the click of a mouse. The analysis interface allows contouring of stresses, 

strains, displacements, strength factors or any desired combination of these 

components. 

4.3 Characterization of input data for ore dilution models 

The sensitivity of controlling stope geometry and stope setting on potential 

overbreak is examined in this section. Trends identified from numerical 

modelling, along with discussions on construction considerations are presented in 

Chapter 5. 

4.3.1 Stope geometry 

Stope geometry common to Canadian long-hole mining operations were selected 

for the model. Examples of reported long-hole stope geometries from Canadian 

mines are listed in Table 4.1. Terminology used to describe stope geometry is 

shown schematically in Figure 4.2. 

For this parametric study, stope dimensions varying from 10m to 40m in both 

strike length and vertical stope height were assessed. Modelled stopes were 

assigned a width of lOm. Two values ofhanging-wall dip were assessed: 80° and 

60°. Footwall dip was kept parallel to the modelled hanging-wall dip angle to 

maintain the tabular nature of the orebody. 
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Figure 4.2 Modelled stope geometry terminology 
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Table 4.1 Example long-hole stope geometries, typical Canadian mme 

environment 

Company, Location Vertical Strike Stope Hanging Depth, Source 

Mine height, m Length, m width, m wall dip m 

Barrick Gold, Preissac, 30 lOto 15 3 to 15 80° - 85° 1240 (1), (2) 

Bousquet 2 Quebec 

mine 

Agnico Eagle, Preissac, 30 15 8 80° 970 (3) 

Laronde mine Quebec 

Cambior, Rouyn- 13 to 30 10 to 15 8 to 20 65° 1000 (1) 

Doyon mine Noranda, 

Quebec 

F a1conbridge, Timmins, 30 to 40 25 15 to 20 75° - 90° 1555 (1) 

Kidd Creek Ontario 

mine 

Inco, Sudbury, 30 10 12 70° 1293 (1) 

Garson mine Ontario 

F a1conbridge, Sudbury, 20 4 to 10 30 55° - 85° 1628 (1) 

Thayer Ontario 

Lindsley mine 

Newmont, Marathon, 30 15 20 60" - 70° 1145 (1) 

Golden Giant Ontario 

mine 

Barrick Go1d, Marathon, 25 20 20 60° - 70° 1205 (1), (4) 

Williams mine Ontario 

Inco, T-3 and Thompson, 30 15 15 60° - 90° 805 (1) 

1-D mine Manitoba 

Hudson Bay, Flin FIon, 30 25 8 55° - 60° 1100 (1) 

Trout Lake Manitoba 

mine 

Note: (1) Canadian Mining Journal (2003); (2) Henning et al. (2001a); (3) 

Gauthier, 1992; (4) Bronkhorst and Brouwer (2001) 

75 



4.3.2 Stope type 

A stoping sequence common to many Canadian mines employing longhole 

methods uses a pyramidal or chevron mining front. An example, adopted from 

Heal et al. (2005) is shown in Figure 4.3. Stopes are sequenced to maintain a 

triangular shape to the mined-out area by mining vertically with a lead stope, then 

outward along the rill of the triangle towards its base. 

The lead primary stope, subjected to elevated stresses as a result of the high level 

of confinement, creates a 'bow wave' effect that tends to di stress adjacent primary 

stopes and shed stresses to the abutments. This 'halo' of failed ground in the bow 

wave of the lead stope should allow improved ground conditions in subsequent 

panels (Board et al., 2001). With careful scheduling, adjacent primary stop es are 

mined and filled for two vertical lifts before mining of the secondary stope 

between them is started (Bronkhorst and Brouwer, 2001; Potvin and Hudyma, 

2000). 

Figure 4.3 Illustration of stope categories at Laronde mme. Dashed hne 

represents advancing chevron mining front (modified from Heal et al., 2005) 

As discussed in Section 3.5.2, an important, sometimes overlooked, parameter 

affecting unplanned dilution is the local stope setting within the mining sequence. 

Depending on its placement within a planned mining sequence, a stope may be 
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bound by rock on both walls and above (a primary stope), or it may have backfill 

on one or both walls (a secondary stope). The hanging-wall stress setting differs 

between primary and secondary stop es, (Wang, 2004; Henning et al., 2001b; 

Hyett et al., 1997). 

For this parametric study, a block of equally dimensioned stop es measuring three 

stopes high by three stop es wide were generated in Map3D. Potential stope 

categories are compiled in Table 4.2 and illustrated in Figure 4.4. Modelled stope 

geometries for primary and secondary stopes are illustrated in Figure 4.5 and 4.6. 

Table 4.2 Stope categories, based on setting within mine sequence; Figure 4.4 

Stope category 

Primary 1 

Primary 2 

Primary 3 

Secondary 1 

Secondary 2 

Code Description 

Pl Rock on both si de 

P2 

P3 

SI 

S2 

Rock on both side walls. Stope located above 

backfilled stope. 

Rock on both si de walls. Stope located above two 

backfilled stopes. 

Rock on one side. Other stope wall 1S against 

backfill. 

Both side walls of stope are against backfill 
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4.3.3 In situ stress 

When an excavation is made in a rockmass, the initial in situ stresses are 

disturbed and redistributed in the vicinity of the excavation. In situ stresses can 

therefore be categorized into pre-mining (natural, far field) stresses and induced 

(due to excavation) stresses. 

4.3.3.1 Pre-mining stress 

Pre-mining stresses are those found in rock at depth pnor to man-made 

excavations. These natural stresses result from the weight of the overlying strata 

(gravitational stress) and from locked in stresses of tectonic origin (tectonic 

stress). Gravitational stress is due to the effect of gravit y on the overburden rock. 

Tectonic processes have been responsible for faulting, shearing, folding and 

variations in surface èlevations over geologic time. In the Canadian Shield, these 

tectonic stresses tend to be lateraI. 

Pre-mining or in situ stresses are usually reported in terms of principal stresses cri, 

cr2 and cr3 and their associated orientations in terms of trend and plunge. In the 

Canadian Shield the major and intermediate principal stresses cri and cr2 tend to be 

near horizontal with plunges between zero and about 10°, and the minor principal 

stress cr3 is approximately vertical, (Arjang and Herget, 1997). Consequently, the 

maximum and minimum horizontal stresses crH and crh and the vertical stress cry 

are used synonymously with crI, cr2 and cr3 respectively. The ratio of the average 

horizontal stress to the vertical stress is denoted by the letter k such that: 

(4-1) 

Measurements of horizontal stresses show that the ratio k tends to be high at 

shallow depth and that it decreases at depth (Hoek and Brown, 1980; Herget, 

1988), as illustrated in Figure 4.7. 
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Figure 4.7 Variation of horizontal in situ stress-to-vertical stress ratio with depth, 

Herget (1988) 

The gravitational vertical stress crvat a depth His the product of the depth and the 

unit weight of the overlying rockmass, y, implying that the overburden stress 

should increase linearly with depth. While measurements of the vertical stress at 

various mining and civil engineering sites support this linear relationship, the 

vertical stress can vary significantly as a result of tectonic activities. Horizontal 

stresses at depth in the Canadian Shield have a non-linear trend with depth for 

horizontal stresses, as indicated in Figure 4.8. Re-evaluation of documented 

stress data by Diederichs (1999) recommended that only the vertical stress be 

estimated by a linear depth relationship (Equation 4-2). Maximum and minimum 

horizontal stresses are estimated from non-linear depth functions (Equations 4-3 

and 4-4). 
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Figure 4.8 Stress data (after Arjang and Herget, 1997) reinterpreted by non-linear 

depth functions (Diederichs, 1999) 

crv = 0.026 D (MPa), where D is the depth in 

metres below surface 

(MPa) , where 

25 
K max = 1 + --./ 0 

crhmin = Kmin· cry (MPa) , where 

_8_ 
K min = 1 + --./0 

(4-2) 

(4-3) 

(4-4) 

For the parametric study, stress reglmes at three depths were considered, 

separated in 750m intervals of depth. Shallow depth corresponds to a 750m 

depth. A depth of 1500m was considered moderate, while deep mining was 
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~ .. represented by stop es at a depth of 2250m; see Table 4.3. Horizontal-to-vertical 

stress ratio decreases from 1.9 to 1.5 with depth. 

Table 4.3 Pre-mining stress magnitudes associated with shallow, moderate and 

deep mining 

Depth Depth below 
k crH crh cry 

category surface 

Shallow 750m 37.3 MPa 25.2 MPa 19.5 MPa 1.9 

Moderate 1500m 64.2 MPa 47.1 MPa 39.0 MPa 1.6 

Deep 2250m 89.3 MPa 68.4 MPa 58.5 MPa 1.5 

4.3.3.2 Induced stress 

lnduced stresses are the result of excavation activity. Because of its natural, 

virgin stresses, aIl rock is subjected to compression. When an excavation is made, 

the rock left standing has to take more load since the original confinement 

provided by the rock within the excavation has been removed. The stresses and 

displacements induced in the rock surrounding an excavation depend on: 

• The initial, pre-mining state of stress (which may, itself, have been 

influenced by other nearby openings), 

• the geometry of the excavation, and 

• the constitutive (stress-strain) behaviour of the rockmass. 

These induced stresses and displacements influence the stability of the excavation 

and possible extent ofhanging-wall dilution. 
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4.3.4 Rockmass quality 

Numerous rockmass classification systems have been proposed and used in 

engineering practice, such as the RQD (Deere, 1968), Rock Mass Rating (RMR) 

(Bieniawski, 1976), Q (Barton et al., 1974), and RMi system (Pa1mstf0m, 1996). 

Sorne systems are based on the modification of the existing ones to suit specifie 

application. For example, the RMR system was modified by Laubscher (1990) 

for mine design. The Q-system was modified by Potvin (1988) for stope design. 

For the parametric study, three categories of rockmass quality were considered, 

ranging across the spectrum of rockmass qualities common to Canadian mines 

employing long-hole mining (Potvin and Hudyma, 2000; Choquet, 1988). They 

are: Very good quality rock, good quality, and fair quality rock. 

Rockmass conditions were classified using the Oeological Strength Index (OSI) 

system, developed for Canadian mining by Hoek et al. (1995). See Figure 4.9. 

The OSI system, like the RMR and Q classification systems, relies on the visible 

structure of the rockmass as represented by joint spacing and surface 

characteristics. However, unlike the RMR and Q-systems, the OSI approach 

considers the qualitative characteristics of the rockmass as a whole, rather than 

assessing the quantitative characteristics of discrete joint sets. With the OSI 

approach, the rockmass is assessed by the visual geological description its block 

size and joint surface condition or by its typical block size (Cai et al., 2004). 

Rockmass quality decreases as the structure of the exposed rock face becomes 

less interlocked. Rockmass quality is further diminished as quality of the joint 

surfaces is reduced. Terminology used by Hoek et al. (1995) to define the 

structural and surface conditions is summarized in Table 4.4. OSI classification 

of the three ranges of rockmass quality used in this study is described in Table 

4.5. 
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Figure 4.9 Geological Strength Index (GSI) classification, Hoek et al. (1995) 
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Table 4.4 GSI classification categories (Hoek at al., 1995) 

1.0 Structural conditions 

Category Description 

Intact or Intact rock specimens or massive in situ rock with 

Massive few widely spaced discontinuities. 

Decreasing Blocky Very well interlocked undisturbed rockmass 

condition consisting of cubical blocks formed by three 

orthogonal discontinuity sets. 

Very Blocky Interlocked, partially disturbed rockmass with 

multifaceted angular blocks formed by four or 

more discontinuity sets. 

Blocky / Folded and faulted with many intersecting 

Disturbed discontinuities forming angular blocks. 

Disintegrated Poorly interlocked, heavily broken rockmass with 

a mixture of angular and rounded blocks. 

2.0 Surface conditions 

Category Description 

Very Good Very rough, unweathered surfaces. 

Decreasing Good Rough, slightly weathered, iron stained surfaces. 

condition 
Fair Smooth, moderately weathered or altered surfaces. 

Poor Slickensided, highly weathered· surfaces with 

compact coatings or fillings containing angular 
v rock fragments. 

Very Poor Slickensided, highly weathered surfaces with soft 

clay coatings or fillings. 
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Table 4.5 Physical description of rockmass quality ranges 

Rockmass GSI Relative Typical Typical Equivalent 

quality value quality description block size rockmass 

category (Cai et al., classification 

2004) (Equations 4-5 

to 4-7) 

Very 80 Very Massive to 125cmJ 
RMR~80 

good good blocky rock, 
Q~50 

good surface 

conditions 

Good 65 Good Blocky rock, 50cmJ 
RMR~65 

good surface 
Q~lO 

conditions 

Fair 50 Fair Blocky to very 15cmJ RMR- 50 

blocky rock, Q-2 
good to fair 

surface 

conditions 

GSI can also be related to other classification methods, such as RMR and Q, for 

use with existing empirical design approaches, as shown in Equations (4-5) and 

(4-7), (Hoek et al., 1995; Kaiser et al., 1986; Milne et al., 1998). 

GSI = RMR76 

GSI = RMR89 - 5 

GSI = 9lnQ + 44 

(4-5) 

(4-6) 

(4-7) 

Hoek-Brown strength parameters mb and s; as weIl as elastic modulus E can be 

deterrnined from GSI values. for design purposes. Equations for obtaining 
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generalized Hoek-Brown criterion for jointed rockmasses, described in (Hoek et 

al., 2002) are provided in Table 4.6. The uniaxial compressive strength of the 

rock considers detailed failure propagation process. Global "rock mass strength" 

considers the overall behaviour of a rockmass. For example, when considering 

the strength of a pillar, it is useful to have an estimate of the overall strength of 

the pillar rather than a detailed knowledge of the extent of fracture propagation in 

the pillar. 

Table 4.6 Mechanical rockmass properties as determined from the GSI 

classification (Hoek et al., 1995) 

Hoek-Brown (H-B) 'm' ( OSI-IOO) nib =nlj exp 
28-14D 

Hoek-Brown (H-B) 'S' ( GSI-IOO) s"'cxp 
\ '}-JJ) 

Hoek-Brown (H-B) 'a' 1 1 (-<;Sl'I~ -10/3) a=-+-e -e 
26' 

Elastic Modulus ((Je> 1 00 MPa) E (GPa)=(I- D}IO''''SI'I()14IJi 
m 2 

uniaxial rockmass compreSSIVe a c = Œâ-<i 
(/ 

strength 

global "rock mass strength" (mô + 4s - atm!! ~ Rsn(mh/4 -. sY1-1 
(J' 

cm = U"I . :w 't 0)(2 + a) 

rockmass tensile strength saCi 
(J"r = ---

m· ., 

Note: D is a factor which depends on the degree of disturbance to which the 

rockmass has been subjected by blast damage and stress relaxation. For 

undisturbed in situ rockmasses: D=O, for very disturbed rockmasses: D=l. 

Factor Dis discussed in Chapter 5. 
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4.3.5 Rock strength property 

Canadian mineraI deposits are typically associated with the crystalline rock 

forming the Precambrian age Canadian Shield physiographic region. Lithic 

assemblages associated with mineraI deposits are igneous rock, such as basait, 

andesite, rhyolite and granite, or metamorphically altered rock, such as 

greywacke, conglomerate and breccia, (Lang et al., 1968). For the parametric 

study a uniaxial compressive strength value of (Je = 175 MPa was used, which 

corresponds to a mid-range strong rock, as shown in Table 4.7. The data in Table 
, 

4.7 is extracted from Adler and Thompson (1992), Mitri et al. (2005), Mitri and 

Bétoumay (2005), and Morrison (1976). 

Table 4.7 Rocks c1assified by strength 

Class Uniaxial Compressive Examples 

Strength (Je), intact rock 

Weak < 40 MPa coal, potash, weathered rock, alluvium 

Moderate 40 MPa -140 MPa shale, sand stone, limestone, schist 

Strong 140 MPa - 200 MPa 
granite, andesite, rhyolite breccia, tuff, 

porphyry, marble, slate 

Very Strong > 200 MPa 
quartzite, basaIt, diabase, gabbro, 

norite, tuff, porphyry 
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4.3.6 Other influences 

The study assumes homogenous rockmass conditions. In reality, local factors 

such as the occurrence of faulting near the stope boundary and laminar/foliated 

structure parallel to the exposed hanging-wall will influence severity of 

overbreak. 

4.3.6.1 Faulting influence on dilution 

Behaviour at the stope walls is largely controlled by the strength of the rockmass 

surrounding a stope, which in tum depends on the geometrica1 nature and strength 

of the geological discontinuities as weIl as the physical properties of the intact 

rock bridges (Diederichs and Kaiser,· 1999). Major discontinuities (usually 

continuous on the scale of a stoping block) such as faults, shears and dykes 

usually have very low shear strength and, if oriented unfavorably, provide a 

failure surface when exposed by, or are in close proximity (see Figure 4.10) to the 

stope walls. Such geological discontinuities largely control overbreak and 

stability around exposed stope walls. The location of these main geological 

discontinuities is weIl defined and most mines have a three-dimensional model of 

the local faultlshear network 

According to Suorineni et al. (1999b), the most important factors influencing the 

severity of fault-related sloughage are; (1) the angle between a fault and a stope, 

and (2) the position of the fault relative to the stope. Sloughage increases as the 

angle between the stope surface and the fault increases from 0° toward a critical 

range of 20° to 45°, then decreases, as the fault becomes perpendicular to the 

stope wall. Sloughage is worst wh en the intersection occurs near the bottom of 

the stope for faults dipping toward a stope and intersecting the stope wall. When 

faults are near a stope but do not intersect it, the distance to the fault controls the 

amount of fault-related sloughage. Fault-related sloughage is greatest when the 

fault is located doser than 0.2 times the stope height from the stope wall 

(Suorineni, 1998). When a fault is further than 0.3 times the stope height from the 

wall, it has little effect on sloughage. 
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blasthole 
layout 

cablebolts 

Figure 4.10 Stope section showing hanging-wall sloughage and geologic 

structure. Modified from Tannant et al., 1998 

4.3.6.2 Foliation influence on dilution 

Stope wall behaviour is also a function of the number, size, frequency and 

orientation of the minor scale geological discontinuities. The geometrical 

discontinuity set characteristics (size, frequency, orientation, etc) relative to the 

stope walls can influence the nature and amount of dilution experienced. A 

rockmass comprised of discontinuous joint sets has a greater self-support capacity 

than when joint sets are continuous, Diederichs and Kaiser (1999). 

Foliated rock consists of individual strata with little or no resistance against 

separation along the boundaries between the strata. When exposed in the stope 

hanging-wall, relaxation-induced hanging-wall delamination can occur (Kaiser et 

al., 2001). 

Foliation that is orientated paralle! to the stope wall causes less problems than 

foliation that is at a shallow « 20°) angle to the wall. See Figures 4.11(a) and 

4.11 (b). When the foliation cuts across the wall of a stope, as shown in Figure 

4.11(a), the rock is allowed to unravel and cave more easily. Foliation orientated 

perpendicular to the stope wall (Figure 4.11 c) represents the most stable condition 
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for a stope within a foliated rockmass. Undercutting of the hanging-wall further 

promotes overbreak (discussed in Section 5.8.3). 

(a) Foliation oblique to wall: (b) Foliation parallelto 0011: (c) Foliation perpendicular to 0011: 
Lea& &able condition Moderately !table Mo!t &able condition 

Figure 4.11 Effect of rockmass foliation on stope wall stability 

Buckling failure of large thin slabs of rock is possible in stop es that have their 

walls oriented parallel to the rockmass foliation (Figure 4.12). The severity of 

buckling failure is dependant on the tangential stress around the opening, wall 

height, and the thickness of the slabs created by the foliation (Quesnel and Ley, 

1991). Buckling failures can be controlled or prevented by using rockbolts or 

cablebolts installed across the foliation planes in order to tie a number of thin 

slabs into thicker, more stable, slabs. 

Buckling failure 
at hanging-wall 

Figure 4.12 Possible buckling failure mode when the rockmass structure contains 

thin slabs parallel to the hanging-wall 
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4.4 "Typical" stope description for the model parametric study 

A primary (type-Pl) stope with an 80 degree hanging-wall and footwall dip, and 

dimensions measuring 30m high x 10m thick, with a strike range of 10m to 40m 

was selected as a base case. See Figure 4.13. The setting of the base-case stope 

was at moderate depth (Z = 1500m), in moderately strong rock, with mid-range 

rockmass quality (GSI = 65) for both the orezone and hostrock. Stopes of these 

dimensions area not uncommon to Canadian blasthole mines, as indicated by 

Table 4.1. 

Figure 4.13 "Typical" stope geometry used for the model parametric study 

4.5 Model parameters 

Input parameters for the modelling, summarized in Table 4.8 were obtained from 

relationships described in Section 4.3. In the model, as in common practice, 

backfill provides a measure of surface confinement to the walls of the mined 

stope, hence reducing the magnitude of unfavelling over time. With longhole 

mining, in order to maximize ore recovery, it is common to retum and mine 

pillars following primary mining recovery. As this is done, large surface areas of 

backfill may be exposed as a free standing wall. Cemented fill is used as an 

artificial support. Results of practical studies show that cement content in a fill 

and its slurry density are essential factors affecting fill stability and the economy 
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of backfilling (Hassani and Archibald, 1998). Primary stop es are commonly 

backfilled with materials such as consolidated or cemented rockfill (CRF), 

cemented tailings and pastefill. Stopes not requiring consolidated backfill, such 

as secondary stopes, may be filled with waste rock. For the parametric study, 

mined stop es were backfilled with CRF material, using parameters listed in Table 

4.9. 

Table 4.8 Model parameters for host and orezone rock 

Very good Good Fair 

rockmass rockmass rockmass 

quality quality quality 

Material values 

GSI 80 65 50 

Uni axial compressive strength, 175 MPa 175 MPa 175 MPa 

((Je) 

Hoek-Brown constant for 25 25 25 

intact rock, (mi) 

Poisson Ratio 0.25 0.25 0.25 

Rockmass values calculated with GSI value 

Rockmass elastic modulus, 56234 MPa 23713 MPa 10000 MPa 

(El1n) 

Hoek-Brown 'm' 12.24 7.16 4.19 

Hoek-Brown 's' 0.108 0.021 0.004 

Hoek-Brown 'a' 0.501 0.502 0.506 

Rockmass tensile strength, ((Jt) 1.55 MPa 0.50 MPa 0.16 MPa 

Global rockmass compreSSIve 

strength, ((Jcm) 91.5 MPa 64.6 MPa 47.5 MPa 
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Table 4.9 Model parameters for consolidated rockfill, Hassani and Archibald 

(1998) 

Parameter Material Value 

Uniaxial compressive strength, cre 3 MPa 

Elastic modulus, E 2500 MPa 

Poisson Ratio, '\) 0.35 

Mohr-coulomb parameters 

Cohesive strength 0.1 MPa 

InternaI angle of friction 35 degrees 

4.6 Design criteria for stope overbreak evaluation 

When an excavation is made in a prestressed rock, the magnitude and orientation 

of stresses in the vicinity of the excavation will be changed. Following the 

creation of the excavation, the surface of the excavation may become de-stressed. 

Within the de-stressed area, a zone of tensile stress (zone of relaxation) may 

develop. Instability in an underground excavation is closely related to the zone of 

relaxation (Diederichs and Kaiser, 1999; Kaiser et al., 1997, Martin et al., 2000, 

Stewart and Trueman, 2004). Milne et al. (1996) divide the mechanisms that 

drive hanging-wall deformation into three general stages: 

(1) With initial exposure, elastic relaxation and stress redistribution around 

the hanging-wall contributes to rapid stress redistribution. Results of the 

response of an instrumented hanging-wall, reported by Hyett et al. (1997), 

show a near-instantaneous response. Event' A' in Figure 4.14 shows 

immediate response after blast. Event B illustrates time-dependant 

hanging-wall deterioration. 
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(2) With increased time of hanging-wall exposure, the rockmass modulus 

decreases as fractures in the rockmass dilate towards the stope. See event 

'B' in Figure 4.l4. This degradation of the rockmass was described in 

Kaiser et al. (1997) as a condition where the rockmass quality has been 

reduced relative to its virgin state. Rockmass degradation, described as a 

loss of strength to the rockmass, can be induced artificially by poor 

blasting practices. In moderately jointed, hard rocks, rockmass 

degradation is mostly caused by high stresses. 

(3) With longer exposure time the rockmass further deteriorates and an 

arching or discontinuum mechanism may control deformation. 
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Figure 4.14 Time dependant hanging-wall response to a blast. Modified from 

Hyett et al., 1997 

4.6.1 Criteria for sloughage potential 

With stope excavation, principal in situ stresses rotate such that the major (cr]) and 

intermediate (cr2) principal stress are aligned paralle! to the excavation hanging

wall. Minor principal stress (cr3) tends to align perpendicular to the excavation 

boundary, as shown in Figure 4.15 (Kaiser et al., 2001). The stress field on 

excavation wall always has no shear and no normal stress, hence, the excavation 
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wall is al ways a principal stress plane and two stress components must be parallel 

to the wall. Overbreak occurs due to the loss of confinement in the radial 

direction to the stope wall and a drop in a) and a2 The tangential stresses a) and 

a2 may decrease in addition to the decrease of a3 causing a larger area of caving 

or this may bring stable hanging-walls to failure. 

a) Initial condition b) After excavation 

Figure 4.15 Principal stress orientation before and after stope excavation 

The zone of relaxation defines an envelope within which gravit y driven block 

failures may occur. It can be assumed that the volume of hanging-wall relaxation 

represents a potential volume of unplanned dilution. The notion that a simple 

confining stress (tensile strength) criterion can be used to assess hanging-wall 

stability and dilution potential has been reported by Mitri et al. (1998), Martin et 

al. (1999), Martin et al. (2000), and Alcott et al. (1999). A potential for sloughage 

exists in this region with confinement loss (a} :S 0 MPa). However, not aIl of this 

zone will fail if the rockmass has sorne self-supporting capàcity. 

Sloughage potential is assumed to be a function of loss of confinement, which 

results in the creation of zones of relaxation, and the exploitation of this 

confinement loss by structures or planes of preferential weakness within that 

zone. The nature of the structures determines the tensile strength of the rockmass 

in question. In massive to moderately jointed rock, residual tensile load bearing 

strength arising from incomplete fracturing or from rock bridges separating non-
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persistent jointing is a key factor in the control of ultimate gravit y driven failure 

of jointed or stress damaged ground (Diederichs, 1999). 

The occurrence and potential severity of overbreak is influenced by the tensile 

strength of the rockmass. In tum, the tensile strength depends on the material 

properties of the rock and the structures present within it. For good rockmass 

conditions (OSI = 65), the corresponding rockmass tensile strength is cr! = 0.5 

MPa, as calculated from the equation provided in Table 4.6. 

4.6.2 Estimation of overbreak volume 

Relaxation depth was determined from iso-contours of minimum principal stress 

(cr3), located on a vertical plane located at the stope mid-spans. For the parametric 

study, hanging-wall relaxation depth was defined as the maximum depth of the cr3 

= 0 contour relative to the excavation boundary, measured from the center of the 

stope wall. 

With the Map3D models, hanging-wall stresses were plotted onto grids placed at 

the mid-span and mid-height of the stope, as illustrated in Figure 4.16. Orid 

planes were orientated normal to the hanging-wall dip, and extend a distance of 

15m away from the stope boundary. The extent of the potential relaxation zone 

associated with a given stope geometry of setting was determined from contours 

of minimum stress. 
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Figure 4.16 Grid plane position at stope mid-height and mid-span. Secondary 

(S2) stope model shown 

The volume of potential hanging-wall relaxation for a given 3-D stope geometry 

was estimated using an approach described in Pakalnis et al. (1998) in which the 

overbreak volume was represented as the volume of half a prolate ellipsoid, 

illustrated In Figure 4.17. The volume (V) of hanging-wall relaxation is 

calculated as: 

(4-8) 

where rI, r2 and r3 correspond to the perpendicular, vertical and horizontal 

radius distances from center (mid-span and mid-height) of stope hanging

wall contact. 

Wh en using a 2-D numerical model, such as Phase2, the third dimension is 

infinitely long. Overbreak is defined in terms of depth ofhanging-wall relaxation 
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(rj) and height of relaxation zone (2 . r2), as illustrated in Figure 4.18. For a 2-

dimensional case, the area (A) ofhanging-wall relaxation is calculated as: 

2 A = 'l'2 11: • rj . r2 (m ) (4-9) 

where f] and r2 correspond to the perpendicular and vertical radius 

distances from center (mid-span and mid-height) of stope hanging-wall 

contact. 

Figure 4.17 Schematic illustration of zone of hanging-wall overbreak represented 

as half of a prolate ellipsoid 

Figure 4.18 Schematic illustration of zone ofhanging-wall relaxation represented 

in 2-D model 
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CHAPTER5 

NUMERICAL MODEL PARAMETRIC STUDY 

In this chapter, the results of parametric modelling study are described. 

Numerical modelling was used as a tool to assess the influence that the following 

factors have on ore dilution: 

• Mine depth 

• Hanging-wall dimensions: stope height and strike length 

• Hanging-wall dip angle 

• Stress orientation 

• Stope type 

• Rockmass quality 

• Construction factors 

Numerical models were developed using the approach described in Chapter 4. 

The results, summarized in this chapter, are provided in Appendix A. 

5.1 Quantifying ore dilution 

As stated previously, a potential for overbreak exists within the envelope of 

confinement loss, defined by 0"3S 0 MPa. The height of such envelope was 

determined from iso-contours of minimum principal stress (0"3), located on a 

vertical and horizontal planes located at the stope mid-span and mid-height 

respectively, as illustrated in Figure 5.1. 
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Figure 5.1 Illustration of overbreak envelope, indicated by cr3 iso-contours 

To quantify modelled and observed ore dilution, the following terminologies are 

introduced: 

(1) For three-dimensional simulations, the ore Dilution Density (DD) is a 

term introduced in this study to denote potential hanging-wall 

overbreak. DD represents the volume of potential relaxation, bound 

by a specified stress contour, typically the zero stress contour (cr3 = 0 

MPa) or the rockmass tensile strength contour (cr3 = crI) 

DD = Volume ofhalf of a prolate ellipsoid (m3
) (5-1) 

Surface area exposed (m2
) 
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(2) For overbreak data measured by cavity survey (CMS) from mined 

stopes, measured Dilution Density (DDcms) is a term introduced in this 

study. It is the volume of overbreak on an exposed surface, and is 

expressed as: 

DDcms = Overbreak Volume (m3
) 

Surface area exposed (m2
) 

(5-2) 

The DD and DDcms terms suggest similar terminology, in that both express a 

measure of overbreak. However, they are calculated from differing sources: 

DDcms is derived from observed overbreak volume, measured via a cavity survey 

of the excavated stope (CMS). DD represents overbreak simulated by the 

distribution of cr3 stresses around stope blocks created in a 3-D elastic stress 

model. Computations for DD and DDcms are compared in Table 5.1. 
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Table 5.1 Comparison of DD and DDcms parameters 

DD DDcms 

Data 3-D numerical model CMS 

source 

Known Radial distances from centre of Measured overbreak volume 

parameters stope to 0"3 stress iso-contour, fromCMS, V 

(ri, r2, and r3); where ri = 

perpendicular radius distance, 

r2 = vertical radius distance, 

r3 = horizontal radius distance 

Modelled hanging-wall Measured hanging-wall 

dimensions: dimensions: 

• Modelled strike length, l' • Strike length, 1 

• Modelled stope height, h' • Stope height, h 

Computed Calculate volume ofhalf a Calculate equivalent depth of 

parameters prolate ellipsoid, V pe sloughage, DDcl11s 

Vpe = 2/3n . ri . r2' r3 DDcl11s = V / (l . h) 

Calculate depth of modelled 

overbreak, DD 

DD=Vpe/(l' 'h') 
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5.1.1 Phase2 versus Map3D 

To illustrate the differences between elastic 2-D and elastic 3-D numerical 

modelling approaches, distances between the hanging-wall depth from the stope 

boundary to 0"3 contour were determined. Maximum depth of hanging-wall 

relaxation will be defined as the furthest distance from the excavation boundary 

the 0"3 remains tensile (0"3 :S 0). 

For both 2-D and 3-D models, the 'typical' stope (described in Section 4.4) was 

used. Stope strike lengths ranging from 10m to 40m were simulated with Map3D; 

the Phase2 model represented a cross-section. Aspect ratio is used to describe the 

geometrical shape of the hanging-wall, and is calculated as follows: 

Aspect Ratio = Strike length of exposed wall (5-3) 

True height of exposed wall 

Numerical model results are compared in Figure 5.2 for a base case 30m high 

stope of type Pl, located at a depth of 1500m and in good quality (GSI = 65) 

rockmass. With Map3D, it can be seen that the depth of relaxation increases with 

stope strike until an aspect ratio of l: 1 is attained. For strike lengths exceeding 

stope height, the maximum depth of relaxation becomes constant, similar to that 

of the 2-D model. 

For the example used, the maximum relaxation depth ca1culated with Phase2 

intersects the Map3D results at a strike length of 27m. Map3D is more sensitive 

to varying strike lengths. Phase2 over estimates depth of relaxation for stopes of 

strike less than 27m, and under estimates depth of relaxation for strike lengths 

exceeding 27m. 
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Figure 5.2 Maximum depth of relaxation, Phase2 versus Map3D 

5.2 Effeet of mining depth 

The influence of mining depth (or stress setting) on the envelope of potential 

overbreak was assessed using Map3D. The base-case stope (30m vertical height, 

80° dip, OSI = 65, crlo perpendicular to hanging-wall, Pl type primary stope), with 

strike lengths ranging from 10m to 40m, was modellèd across the shallow, 

moderate and deep mining range of stope settings described in Section 4.3.3. 

Results were expressed as modelled Dilution Density (DD). Two DD values were 

calculated: (i) The cr3 = 0 MPa, represents the volume of relaxed ground available 

for overbreak, assuming the rockmass has no tensile strength; (ii) DD values were 

also determined for the cr3 = cr! contour, which accounts for rockmass tensile 

strength. For OSl = 65, rockmass tensile strength was calculated to be cr! = 0.5 

MPa (Table 4.8). 

Trends associated with Dilution Density for the cr3 = 0 MPa contour are presented 

in Figure 5.3. For a given stope dimension, the stress model suggests that the 

Dilution Density (DD) remains relatively uniform. Trend lines between the data 

points show only marginal increase, in the range of 0.02m DD per 500m increase 

in depth. Of greater impact on DD increase is the influence of strike length. This 

relationship is examined further in Section 5.3. 
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Figure 5.3 Modelled Dilution Density trend lines as a function of mining depth, 

(cr3 = 0 MPa contour) 

Trends associated with Dilution Density for the cr3 = -0.5 MPa contour, shown in 

Figure 5.4 show a re1ationship influenced by depth. The enve10pe defined by the 

cr3 = -0.5 MPa contour, representing the rockmass tensi1e strength of a good 

quality (aSI = 65) rockmass, increases with depth. At shallow depth, this contour 

generates minimal (near-zero) DD values. However, with depth the density of 

DD increases. The cr3 = -0.5 MPa contour varies with strike length. At stope 

strike 1engths :s 15m, minimal (near-zero) DD occurs. Increased strike length 

1eads to increased DD values 
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Figure 5.4 Modelled Dilution Density trend hnes as a function of mining depth 

(cr3 = -0.5 MPa contour) 
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Dilution Density trends associated with a stope located at moderate depth 

(1500m) are shown in Figure 5.5. DD values associated with the cr3 = 0 MPa and 

cr3 = -0.5 MPa show a linear trend, increasing with strike length between 20m and 

40m. A stepped increase (jump) occurs between strike lengths of 15m and 20m. 

As expected, DD is significantly higher for the case of cr3 = 0 MPa. 

cr3 =0 MPa 
0.8 

cr3 =-0.5 MPa 

0.6 

DD(m) 

0.4 

0.2 

0 

10 20 30 40 

Strike length (m) 

Figure 5.5 Dilution Density values associated with cr3 = 0 MPa and -0.5 MPa 

contours 

5.3 Dilution density relationship with varying stope height and strike length 

Unlike factors such as mine depth and hanging-wall dip angle, which are outside 

of the control of the mine operator, stope dimensions are a variable factor that 

influences overbreak, which can be established during the initial mine design. 

Selection of stope dimensions, and in particular stope height, represents a 

compromise between 'acceptable' overbreak and the cost and time required to 

establish additional lateral infrastructure in order to mine smaller, more stable 

blocks. For example, mining of a 120m high orezone in 30m vertical increments 

would require four lateral mine horizons. Mining of the same block in 20m 

vertical increments may generate less overbreak, but would require six mine 

levels, or approximately 50% more lateral development. 
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When unacceptable severity of overbreak occurs, the mine operator must consider 

available options for modifying stope dimensions, or changing mining sequence 

or mining method. The Gonzague Langlois mine, located in northem Quebec, 

provides an illustration of a mine that readjusted its stope dimensions. The 

Gonzague Langlois mine officially opened in June 1996. Initial stope dimensions 

of 60m high x 20m along strike, designed using the Stability Graph method led to 

excessive overbreak. Operations were shut down in December 1996, and work 

began on re-engineering the mining method to incorporate sub-Ievels in an effort 

to assure lower dilution and higher grades, (Cambior, 1997). When the mine re

opened in July, 1997 stope dimensions had been revised to 30m high x 20m along 

strike, with a reported dilution of 15.6%, Perron (1999). 

The influence of stope hanging-wall dimensions (height and strike length) on 

potential overbreak was assessed using Map3D. The base-case stope setting (800 

dip, GSI = 65, (Jl
o perpendicular to hanging-wall, Pl type primary stope) was 

applied across the range of dimensions described in Section 4.4. Results for the 

(J3 = 0 MPa contour were expressed in terms of Dilution Density (DD) values. 

The results from the study into the effect of mine depth on dilution density 

(Section 5.2) suggest that mining depth does not play a significant role in the 

extent of (J3 = 0 MPa contour within the hanging-wall. Wh en investigating trends 

associated with varying stope dimensions, data from stop es in a shallow, 

moderate and deep mine setting was collected. As there was little scatter in the 

data points, analysis is based on averaged values. 

Trends associated with Dilution Density for the (J3 = 0 MPa contour as a function 

of strike length and vertical stope height are presented in Figures 5.6 and 5.7. 

From Figure 5.6, it can be seen that the 10m high stop es are relatively stable, with 

low (less than 0.2m) levels of DD generated across the full range of strike lengths. 

The taller stop es also exhibit low DD values at strike lengths :S 15m. For 20m, 

30, and 40m high stopes, DD increases as strike lengths exceeds 15m. With aIl 

stope heights, the increase in dilution density is not linear. Typically, there was a 
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sharp increase between the 15m and 20m strike 1engths. Beyond the 20m strike 

Iength, there was a more graduaI increase in DD. 

1.2 -----------------------------------------------------------

- 10m vertical height _________________________________ _ 

-+- 20m vertical height 

--- 30m vertical height 

-+- 40m vertical height 
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Figure 5.6 Dilution Density associated with varying hanging-wall dimensions, cr3 

= 0 MPa contour 

Figure 5.7 represents a design tool, plotting contours of anticipated dilution 

density against stope dimension for the base case stope. Villaescusa (2000) 

qualitatively described a similar hyperbolic curve defining stable / unstable region 

(see Figure 5.8). He suggested that it was possible to achieve stope wall stability 

(with minimal dilution) by either excavating openings having long vertical and 

short horizontal dimensions, or openings having long horizontal and short vertical 

dimensions. 
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Figure 5.7 Dilution Density (DD) as a function of stope hanging-wall dimension 

for the base-case stope, cr3 = 0 MPa contour 
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Figure 5.8 Stable stope shapes, after Villaescusa (2000) 

As indicated by Figure 5.6, the shape of the exposed hanging-wall influences 

overbreak. Figure 5.9 plots dilution density values for the range of stop es 

modelled against stope geometry. Bere, stope geometry is described by its Aspect 

Ratio (see Equation 5-3) and vertical height. From this plot, it can be seen that 
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stop es with a small vertical height or tall stop es with a short strike length generate 

the lowest DD. Severity of dilution density increases as the strike length of the 

hanging-wall expands. 

Aspect ratio is used to describe the strike length to height relationship that defines 

hanging-wall geometry. Hydraulic Radius (HR), described in Section 2.7.1 is 

another commonly used approach for assessing stope dimensions. However, a 

limitation of expressing stopes in terms of HR is that unique stope geometry is not 

specified. An example of this limitation is provided in Table 5.2, where it is 

shown that a single HR value can be used to describe a variety of stope 

geometries. 

Table 5.2 Comparison of Hydraulic Radius and Aspect Ratio 

Stope Strike Stope Height Hydraulic Radius Aspect Ratio 

(Equation 2-15) (Equation 5-3) 

20m 20m 5m 1: 1 

15 m 30m 5m 1 :2 

30m 15 m 5m 2:1 
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Figure 5.9 Dilution Density associated with stope height and aspect ratio for the 

base case stope, (J3 = 0 MPa contour 

5.4 Effect of hanging-wall dip angle on dilution density 

The influence of the hanging-wall dip angle on overbreak has been discussed by 

others, including 0' Hara (1980) and Yao et al. (1999). With a shallower hanging

wall dip, the distribution of low (J3 stress contours becomes increasingly 

asymmetric, as illustrated in Figure 5.10, leading to a favourable orientation for 

release of unstable wedge intersections from the exposed hanging-wall. Another 

factor to consider is the true height of exposed hanging-wall, which, as presented 

in Section 3.3.3, increases as the hanging-wall dip angle decreases. True height 

can be calculated from dip angle and vertical height using Equation 5-4. 
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90" dip 80" dip 60" dip 

Figure 5.1 0 Distribution of relaxation zone (cr3 = 0 MPa contour) under varying 

hanging-wall dip angles 

True height = Vertical Height / Sin 0 (5-4) 

where: 0 = hanging-wall dip angle (measured from horizontal) 

The influence of hanging-wall dip angle on the envelope of potential overbreak 

was assessed using Map3D. Stopes with height of 20m, 30m and 40m were 

examined in the base-case model setting: z = 1500m, OSI = 65, crI ° perpendicular 

to hanging-wall, Pl primary stope. Hanging-wall dip angles of 80° and 60° were 

considered. DD results, defined by the cr3 = 0 MPa contour, were determined. 

Trends associated with Dilution Density for varying hanging-wall dip angles are 

presented in Figure 5.11. DD values cluster together for strike lengths S 20m. 

As shown in Section 5.2, smaller stopes have more stable geometry. Hanging

wall dip influences stope overbreak as strike length increases beyond 20m. At a 

30m strike length, the DD associated with three stope heights increased by a least 

38% with the shallower hanging-wall dip. At a 40m strike length, the DD 

increased by more than 52% with the shallower hanging-wall dip of 60°. 
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Figure 5.11 Influence of hanging-wall dip on overbreak. Base-case stope, (J3 = 0 

MPa contour 

5.5 Effect of stress orientation on dilution density 

The influence of major principal stress orientation with respect to the stope 

hanging-wall was assessed using Map3D. Base case stopes (30m vertical height, 

z =1500m, GSI = 65, Pl primary stope) were examined. Hanging-wall dip angles 

of 80° and 60° were considered. Two major principal stress orientations were 

considered: (i) (JI ° perpendicular to stope strike, and (ii) (JI ° parallel to stope 

strike. 

Dilution Density trends, defined by the (J3 = 0 MPa contour, associated with 

varying 01 orientations are found in Figure 5.12. DD values c1uster together for 

strike lengths :::; 20m. Major principal stress orientation influences stope 

overbreak as strike length increases beyond 20m. DD is reduced when (JI is 

parallel to the strike of the stope. The amount of DD reduction ranged from 14% 

for a stope with a 80° hanging-wall dip angle, to 17% for a stope with a 60° 

hanging-wall dip angle. 
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Figure 5.12 Influence of major principal stress orientation on overbreak. Base

case stope, cr3 = 0 MPa contour 

5.6 Effect of stope type on dilution density 

As discussed in Section 4.3.2, a parameter affecting unplanned ore dilution is the 

local stope setting within the mining sequence. Depending on its placement 

within a planned mining sequence, a stope may be bound by rock on both walls (a 

primary stope), or it may have backfill on one or both walls (a secondary stope). 

Modelled stope geometries for primary and secondary stopes are illustrated in 

Figures 4.5 and 4.6. The base-case stope setting (30m vertical height, z= 1500m, 

800 dip, GSI = 65, crlo perpendicular to the hanging-wall), with studied strike 

lengths ranging from 10m to 40m. API stope is an isolated mine block, and is 

the basis for other parametric modelling described in this chapter. With the P2, 

P3, SI and S2 stope types, previously mined stopes were backfilled; refer to Table 

4.2 for definition of stope types. 

Two DD values were calculated: (i) defined by the cr3 = 0 MPa, represents the 

volume of relaxed ground available for overbreak, assuming the rockmass has no 

tensile strength; (ii) DD values were also determined for the cr3 = cr! = -0.5 MPa 

contour, which accounts for rockmass tensile strength. 
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Trends associated with Dilution Density for the 0"3 = 0 MPa contour are presented 

in Figure 5.13. Compared against the Pl stope, extraction ofthe P2 and P3 stopes 

is associated with greater values of DD. DD increases of 32% to 65% occurred 

between Pl and P2 mining. Extraction of the P3 stope resulted in only minor DD 

increases (typically, in the range of 5%) over the P2 stope. Trends associated 

with Dilution Density for the 0"3 = 0"( = -0.5 MPa contour, shown in Figure 5.14 

show a similar pattern. The envelope defined by the 0"3 = -0.5 MPa contour, 

representing rockmass tensile strength for GSI 65, increases as stope sequence 

progresses beyond the Pl stope. 
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Figure 5.13 Influence of stope type on Dilution Density. Base-case stope at 0"3 = 

o MPa contour 
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Figure 5.14 Influence of stope type on Dilution Density. Base-case stope at (J3 = 

-0.5 MPa contour 

5.7 Effeet of roekmass quality on dilution density 

The influence of rockmass quality on the envelope of potential overbreak was 

assessed using Map3D. The base-case stope (30m vertical height, 800 dip, (Jl
o 

perpendicular to hanging-wall, Pl primary stope), with strike lengths ranging 

from 10m to 40m, was modelled across a range of host and orezone rockmass 

qualities. The high-, mid-, and low range rockmass qualities assigned and 

corresponding rockmass tensile strengths are summarized in Table 5.3. Rockmass 

ranges are detailed in Section 4.3.4. 

As before, the results were expressed as modelled Dilution Density (DD). Two 

DD values were calculated: (1) defined by the (J3 = 0 MPa, represents the volume 

of relaxed ground available for overbreak, assuming the rockmass has no tensile 

strength; (2) DD values were also determined for the (J3 = (JI contour, which 

accounts for rockmass tensile strength. The tensile strength contour used varies 

with the quality of host rock encasing the orezone and excavated stope, as 

illustrated in Figure 5.15. 
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Table 5.3 Ranges ofrockmass quality examined 

Rockmass quality GSI Rockmass tensile strength 

(Table 4.8) 

Higp range (Very good quality) 80 cr! = 1.55 MPa 

Mid range (Good quality) 65 cr! = 0.50 MPa 

Low range (Fair quality) 50 cr! = 0.16 MPa 

Ore zone 

cr3 = 0 MPa contour 1 

cr3 = crt contour 1 

Figure 5.15 Schematic illustration of terminologyused 

Contours of cr3 = 0 MPa were similar for the three rockmass quality ranges. This 

trend was anticipated since a rockmass with no tensile strength (cr3 = 0) is 

equivalent to low quality rock (GSI «50). The cr3 = cr! contours varied across 

the three quality ranges, as shown in Figure 5.16. A high quality rockmass 

(GSI=80) has a more competent structure and will have greater tensile capacity. 

As a result, the severity of anticipated overbreak diminishes as the rockmass 

quality of the ho st rock increases. 
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Figure 5.16 Influence of rockmass quality on Dilution Density at cr3 = 0 and cr3 = 

cr! contour. 

5.8 Effect of Construction factors on dilution density 

Stope construction refers to the techniques employed to prepare and extract a 

stope block. The various components involved with the design, drilling, and 

excavation of an individual stope play a critical role determining mining success. 

Construction factors include: 

• Factors that generate local damage to the hanging-wall rockmass, such as 

blast vibration damage 

• Factors that physically damage the designed hanging-wall span, such as 

deviation of production blastholes and undercutting 

5.8.1 B1asting influence on overbreak 

Blast damage refers to any strength deterioration of the remaining rock due to the 

presence of blast induced cracks and to the opening, shearing and extension of 

pre-existing or newly generated planes of weakness. Villaescusa et al. (2004) 

defines blast damage as the creation, extension and/or opening of pre-existing 
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geological discontinuities in the rockmass. Blast induced damage weakens a 

rockmass, potentially leading to stability problems. 

Mackenzie (1987) defines blast-induced damage as the change of in situ block 

size distribution due to blasting. Blast induced damage is a result of the 

interaction of the rockmass and the explosive product, resulting in a reduction in 

quality or integrity of rockmass. The damage inflicted on the boundary of the 

excavation is directly related to the type and amount of energy required to 

adequately fragment a volume of rock. The reduction in rockmass quality thus 

results from weakening or dilation of existing discontinuities and the creation of 

new fractures. 

5.8.1.1 BIast damage factors 

There are essentially two sets of factors that can control the extent of the blast 

induced damage zone in an underground mining operation (Scoble et al., 1997). 

Geological factors, such as rockmass quality, in situ stress and intact rock strength 

influence inherent damage. Mining factors, such as induced stress damage and 

blast induced damage, further impact wall stability. 

It is generally accepted that the damage is caused by expanding gases through the 

geological discontinuities (see Figure 5.17) and to the vibrations experienced 

from the blasting process. Potential damage mechanisms resulting from blast gas 

penetrating in to the rockmass, identified by Connors et al. (1996) inc1ude: (i) 

physical dislodgement of in situ blocks, (ii) a significant reduction in strength of 

block interfaces that increases the potential for immediate or long-term failure due 

to gravit y, stress or blast vibration. Repetitive blasting also imposes a dynamic 

loading to the exposed stope walls away from a blasted volume, and may trigger 

structurally controlled fall-off and ultimately overbreak (Villaescusa et al., 2004). 

In a drill and blast mining operation, the energy of the explosive, blast pattern, 

time delays, number of blast holes, their burden and spacing are key factors 

(Cameron et al., 1995). These factors in addition to other related factors have a 
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bearing on the amount of damage inflicted on the remaining rockmass, and the 

ground support used as part of the underground excavation infrastructure. 

Traditionally, blast design factors are considered globaIly, using such parameters 

as powder factor, only from the view point of their influence over fragmentation, 

rather than rockmass damage. The powder factor is the expression of average 

kilograms of explosive used to break one cubic metre of ore in a stope. 
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Figure 5.17 Physical phenomena in rock blasting (after Lizotte and Scoble, 1994) 

The type of explosive used forms an important part ofblast design. The selection 

of explosive type is usually based on the analysis of factors that include rockmass 

characteristics, volume of rock to be blasted, presence of water, safety conditions, 

supply problems as weIl as the cost of rock breakage. For underground open 

stope mining, a commonly used explosive is ANFO (Ammonium Nitrate and Fuel 

Oil) due to its low cost and safety. High en erg y explosives pro duce good 

fragmentation but may eause damage to the stope hanging-wall. To avoid this, a 

cornrnon practice is to utilize low density explosives, such as AMEX K40* or low 

energy eartridge explosives, sueh as Powersplir* in blastholes drilled in close 

* AMEX K40 and Powersplit are produets ofOriea Canada Ine. 
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proximity to the hanging-wall (Andrieux and Rodgers, 1997; Henning et al., 

1997). 

5.8.1.2 Assessment of blast damage 

Blast-induced damage results from the interaction of the rockmass, stress, and the 

explosive product. The extent of blast-induced damage is important from the 

point of view of safety, ground control, support, and dilution. 

For lateral development, a large amount of work has been performed on 

quantifying blast vibration damage associated with drift blasting. Studies such as 

those performed by Forsyth and Moss (1990), Paventi (1995), and Cotesta et al. 

(1999) assess the blast damage quality in terms of: 

• The integrity of the rock along the back, typically using a scaling bar 

• The percent ofhalfbarrels visible along the drift surface 

• The amount of blast overbreak or underbreak (blasted shape versus 

designed shape) 

• Drilling quality, such deviations of hole spacing and hole orientation from 

design. 

Blast induced damage to hanging-walls of pnmary stopes IS examined in 

Villaesusa et al. (2004), Connors et al. (1996) and Liu et al. (1995). These studies 

incorporate measured blast vibrations, with surveys of the mined stope geometry 

to assess hanging-wall stability. Instability may be an indicator of blast damage. 

Henning and Mitri (1999) used a similar approach in comparing primary and 

secondary stopes. 

For stope blasting, vibration damage is quantified in terms of physical damage to 

the integrity of adjacent rockmass exposures. Damage by the shock energy from 

an explosive charge close to a blast can be related to the level of vibrations 
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measured around the blasted volume. As described in Chapter 3, severity of 

damage to mine workings increases with the magnitude ofblast vibration. 

Blast vibration is measured as peak partic1e velocity (PPV). Langefors and 

Kihlstrom (1978) proposed the foIlowing criteria for tunnels: PPV's of 305 

mm/sec result in the faIl of rock in unlined tunnels, and PPVs of 610 mm/sec 

result in the formation of new cracks. Bauer and Calder (1978) observed that no 

fracturing of intact rock will occur with a PPV of less than 254 mm/sec. 

However, PP Vs of 254 to 635 mm/sec result in minor tensile slabbing, and PPVs 

of 635 to 2540 mm/sec would cause strong tensile and sorne radial cracking. The 

break up of a rockmass occurs at PPV exceeding 2540 mm/sec. Oriard (1982) 

proposed that most rockmasses suffer sorne damage at PPV above 635 mm/sec. 

A damage criteria incorporating blast vibration and rockmass quality was 

suggested by Yu (1993). The Blast Damage Index (BDI), a dimensionless 

indicator, is defined by dividing the induced stress with a quantitative value of 

damage resistance, as shown for common rock types in Equation 5-5. 

BDI = 0.64 V / Kr 

where: V = peak partic1e velocity (rn/second) 

Kr = site quality constant 

(5-5) 

The site quality constant (Kr) is determined by either (i) dividing the rockmass 

rating (RMR) at the site by 100, or (ii) by sounding the ground with a scaling bar 

to evaluate ground conditions. The relationship between BDI and severity of 

damage is provided in Table 5.4. 
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Table 5.4 Blast damage index (BDI) and severity ofblast damage to tunnel walls 

(after Yu and Vongpaisal, 1996) 

BDI Type of damage 

:S 0.125 No damage to underground excavations 

0.25 No noticeable damage 

0.5 Minor and dis crete slabbing 

0.75 Moderate and discontinuous slabbing 

1.0 Major and continuous slabbing failure, requiring rehabilitation 

1.5 Severe damage to an entire opening. Rehabilitation work is difficult or 

impossible 

~ 2.0 Major caving, normally resulting in abandoned accesses 

Blast vibration data is commonly obtained using a multi-channel blast vibration 

monitor and triaxial geophones. Reusable, surface mount triaxial geophones are 

installed onto a solid, competent wall surface using anchor bolts in combination 

with resin bonding. Ideally, the geophones are located in a hanging-wall access 

drift at a distance of 0.75 to 1.50 charge length away from the blastholes, within 

the geophone limit for near-field blast monitoring suggested by Andrieux and 

Heilig (1994). 

Hanging-wall vibration data is compiled using the peak vector sum velocities of 

individual blast holes. Non-distinct or overlapping waveforms were omitted from 

the database, as were blast vibration values likely influenced by air gaps between 

the blasthole and the geophone. Blast vibration data is statistically analyzed using 

scaled distance relationships (Atlas, 1987), to determine the Site Factors "K" and 

"a", used in the following equation: 

PPV = K (R/WY,)·a (5-6) 
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where PPV = peak particle velocity (mm / second); R = radial distance from blast 

center (meters); and W = explosive charge per delay (kg). Site Factors "K" and 

"a" are functions of the effect of local rock characteristics on ground motion. 

Factor "K" applies to amplitude whereas "a" indicates vibration attenuation. Site 

Factors are obtained from a plot of PPV against Scaled Distance blast data, see 

Figure 5.18. The slope of the linear regression best-fit through the data line 

represents Factor "a"; Factor "K" corresponds to the intercept of the regression 

line with the PPV axis. From the data shown in Figure 5.18, Site Factors "K" and 

"a" were found to be 498 mm/sec and 1.19, respectively (Henning et al., 1997) 
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Figure 5.18 Blast vibration versus scaled distance plots, Henning et al. (1997) 

The level of blast vibration attenuates with distance away from the blasthole. 

Yang et al. (1994) measured the near field « 1 Om from the explosive charges) 

peak particle velocity around a borehole. Figure 5.19 displays measured PPV 

values, along predictions using the conventional charge-weight scaling law 

(Holmberg and Persson, 1979). Figure 5.19 suggests that vibration attenuates in 

an exponential manner away from the blasthole. Using a common blast damage 

threshold of crack formation at PPV values in the range of 600mm/sec, blast 

damage would be anticipated within 8m of the blasthole. A blasthole loaded with 

high energy explosives, such as ANFO, located within 8m of the hanging-wall 

may induce blast vibration damage within the hanging-wall. 
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Figure 5.19 Peak partic1e velocity (PPV) as a function of distance from blasthole, 

after Yang et al. (1993). 

5.8.1.3 Influence of stope type on blast vibration 

Blast vibration monitoring was employed for back-analysis of hanging-wall 

behaviour of adjacent primary and secondary long-hole stopes within a highly 

stressed, foliated rockmass (Henning and Mitri, 1999). The severity of production 

blast vibrations within the stope hanging-wall region was monitored on both 

stop es using triaxial geophones installed onto a soli d, competent wall surface, 

Henning et al. (1997). Calculated Site Factors are listed in Table 5.5. The lower 

Site Factors for the secondary stope indicate that a lower amplitude vibration is 

reaching the geophones, due to increased hanging-wall vibration attenuation from 

the blast source. Lower vibration levels were associated with observed de

lamination of schistocity parallel to the stope wall. 

To predict the impact of individual blastholes on the hanging-wall, explosive

specific Site Factors were calculated from the vibrations generated by individual 

explosive types. ANFO loaded 100 mm diameter blastholes, representing 48% 

and 40% of the total blast populations for the 9-0-15 and 9-0-11 stopes 

respectively, were compared. Vibration attenuation plots for a typical blasthole, 
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located at 2.5 m from the stope / hanging-wall boundary, and loaded with 100 kg 

ANFO, provided in Figure 5.20, show estimated hanging-wall vibration levels 

within five meters of the stope boundary. 

The plots in Figure 5.20 indicate: 

• Using a common blast damage threshold of crack formation at PPV 

values exceeding 600 mm/second, blast damage may persist into the 

hanging-wall to a depth of 1.0 meter. The severity of blast vibration 

damage diminishes away from the stope boundary. 

• Mid-stope blastholes, located at a distance of 2.0 to 2.5 meters from the 

hanging-wall contact, generate significant peak vibrations into the 

hanging-wall. 

• A greater rate of blast vibration attenuation in the hanging-wall of the 

secondary stope. 

Table 5.5 Calculated blast vibration Site Factors 

Primary stope Secondary stope 

K a K a 

Total Blast Population 498 1.19 126 0.70 

ANFO Blast Population 283 0.58 141 1.20 
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Figure 5.20 Hanging-wall blast vibration attenuation, (Henning et al., 1997) 

5.8.1.2 Accounting for blast damage in the model parametric study 

In the proceeding section, it was shown that blast damage may persist to a depth 

of several metres into a stope hanging-wall. Procedures have been developed to 

adjust rockmass quality classification to arrive at a more realistic value that 

reflects the quality of rockmass. Kaiser et al. (2003) introduced a construction 

factor for lateral development that was used to adjust the NGI-Q classification, 

arriving at a value that reflects the quality of rockmass to be supported (Suorineni 

et al., 2005). 

Hoek et al. (2002) introduced a damage parameter D that accounts for the degree 

of disturbance to which the rockmass has been subjected by blast damage and 

stress relaxation. Damage parameter D varies from 0 for undisturbed in situ 

rockmasses to 1 for very disturbed rockmasses, see Table 5.6. For very po or 

quality blasting in a hard rock tunnel, resulting in severe local damage extending 

2 or 3m in the surrounding rockmass, a value of D = 0.8 is suggested. Factor Dis 

incorporated into the generalized Hoek-Brown criterion according to the 

equations provided in Table 5.7. 
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Table 5.6. Guide1ines for estimating disturbance factor D, (Hoek et al., 2002) 

Description of rockmass Suggested value of D 

Excellent quality controlled blasting or excavation by D=O 

Tunnel Boring Machine results in minimal disturbance 

to the confined rockmass surrounding a tunnel. 

Mechanical or hand excavation m poor quality D=O 

rockmasses (no blasting) results m minimal 

disturbance to surrounding rockmass. 

Very poor quality blasting in a hard rock tunnel results D=0.8 

in severe local damage, extending 2 or 3 m into the 

surrounding rockmass. 

Small scale blasting in civil engineering sI opes resuIts Good blasting; D = 0.7 

in mode st rockmass damage, particularly if controlled Poor blasting; D = 1.0 
blasting is used. 

Very large open pit mme slopes suffer significant Production blasting; 

disturbance due to heavy production blasting and also D= 1.0 
due to stress relief from overburden removal. In sorne 

softer rocks excavation can be carried out by ripping 
Mechanical excavation; 

and dozing; the degree of damage to the slopes is less. D=0.7 

Table 5.7 Incorporation of damage parameter D into generalized Hoek-Brown 

criterion 

Hoek-Brown (H-B) 'm' (USI 10{)\ 
111" = 111/ exp ) 

\ 2R~-14D 

Hoek-Brown (H-B) 's' ((iS/-l()()\ 
s '" exp; 1 

\. <)-~f) ) 

Elastic Modulus (cre> 100 MPa) 
f",(GPa) = (1 ~).\ O,U;SI .. li>J4'" 
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5.8.1.5 Parametric evaluation 

The potential influence of a blast damaged hanging-wall on overbreak was 

assessed parametrically. Rockmass quality within a 2m wide enve1ope, located 

immediately adjacent to the stope hanging-wall contact was downgraded, using 

the Hoek et al., (2002) damage parameter, to simulate an envelope of damaged 

rock. See Figure 5.21. Initially developed for tunneling and slope stability 

applications, the Hoek damage parameter D = 0.8 was applied to reflect severe 

local damage associated with very po or quality blasting in the stope wall. The 2m 

envelope of damaged ground is consistent with vibration attenuation trends shown 

in Figures 5.19 and 5.20. 

Input parameters for the modelling, summarized in Table 5.8 were obtained from 

relationships described in Section 4.3.3 and Table 5.7. Two rockmass conditions 

were considered: (i) no blast damage (D = 0), and (ii) very po or quality blasting, 

resulting in severe blast damage (D = 0.8). 

Ore: OSI 65(D~o) 

2m thick zone of 

blast damage 

OSI 65(D~08) 

Host rock: OSI 65(D~o) 

Figure 5.21 Schematic section through stope showing modelled blast damage 

envelope 

The influence of a 2m thick envelope of blast damaged rockmass on the envelope 

of potential overbreak was assessed using Map3D. The base-case stope (GSI = 

65, 30m vertical height, 80° dip, (JI ° perpendicular to hanging-wall, Pl primary 

stope), with strike lengths ranging from 10m to 40m, was modelled under two 
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conditions: (i) no blast damage (D = 0), and (ii) with a 2m thick envelope ofblast 

damaged rockmass (D = 0.8). Results were expressed as modelled Dilution 

Density (DD). Two DD values were calculated: (i) defined by the cr3 = 0 MPa, 

represents the volume of relaxed ground available for overbreak, assuming the 

rockmass has no tensile strength; (ii) DD values were also determined for the cr3 = 

crt contour, which accounts for rockmass tensile strength. The tensile strength 

contour used varies with the quality ofhost rock adjacent to the excavated stope. 

Modelling results are presented in Figure 5-22. Beyond a strike length of 15m, 

contours of cr3 = 0 MPa suggest a DD increase of 15% to 22% when a 2m thick 

blast damage envelope is modelled. Increased DD associated with the damaged 

envelope reflects the influence of the lower rockmass quality. Similar trends were 

noted in Section 5-7. The cr3 = crt contours vary for the two conditions. The 

rockmass within the blast damaged envelope is of lower quality, and hence, has 

less tensile strength than the remaining ho st rock. Beyond a strike length of 15m, 

contours of cr3 = crt suggest a DD increase of 40% to 100% when a 2m thick blast 

damage zone is modelled. 
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Figure 5.22 Influence of rockmass quality degradation due to blast damage on 

Dilution Density at cr3 = 0 MPa and cr3 = cr! contours, base-case stope 
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Table 5.8 Model parameters for undamaged and blast damaged rock 

Mid range rockmass Mid range rockmass 

quality with no blast quality with severe 

damage blast damage 

Material values 

GSI 65 

Uniaxial compressive strength, 175 MPa 

( cre) 

Hoek-Brown constant for intact 25 

rock, (mi) 

Disturbance factor, D 0 0.8 

Poisson Ratio 0.25 

Rockmass values calculated with OSI value 

Rockmass elastic modulus, 23700 MPa 14200 MPa 

(Enn) 

Hoek-Brown 'm' 7.16 3.11 

Hoek-Brown 's' 0.021 0.005 

Hoek-Brown 'a' 0.502 0.502 

Rockmass tensile strength, (crt) 0.50 MPa 0.25 MPa 

Global rockmass compreSSIve 

strength, (crem) 64.6 MPa 41.8 MPa 
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5.8.2 Drill hole deviation 

Drill hole deviation refers to the improper orientation of the holes closest to the 

hanging·wall / ore contact relative to the stope hanging·wall. Incorrect setting of 

drill angles (set·up error) , borehole wander and drilling to incorrect depths can 

significantly influence stoping success. Examples of common drill errors are 

shown in Figure 5.23. 

+ + 

Figure 5.23 Examples of drill error sources 

Blasthole location is an important feature of blast design. It largely controls the 

distribution of explosive energy in the rockmass. If holes are not drilled 

accurately there will be variable and often unmeasured burdens on the explosive 

charge. Excessively large burdens lead to over confinement, which increased the 

amount of gas penetration induced damage, Cameron et al. (1995). If holes are 

too close together there is a potential for sympathetic detonation or damage to 

adjacent charge. 

Deviation, or drill error, can be influenced by operator skill, diameter of the drill 

rods, and type of drill. For example, with a top hammer drill (such as Data·Solo), 

the hammering mechanism is located on the drill itself. The hammering action is 

sent to the bit via the drill string. With an in-the-hole (ITH) drill, the hammering 
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mechanism is located between the drill string and the bit. ITH drill rods do not 

have to withstand percussion pressure. 

Connors et al. (1996) describe sources of error in drilling accuracy in terms of 

external and internaI factors. The sum total of aIl errors is the final measure of 

drilling accuracy. External factors include: incorrect surveying of collar location 

and drill orientation, incorrect drill set up, incorrect boom alignment, poor 

collaring practice. An improperly aligned drill results in large toe location error. 

Vertical holes have less collaring error than inclined holes. Excessive feed 

pressure is used by the drill operator to increase footage (and bonus) at the 

expense of hole accuracy. Angle indicators used by the drill operators may be 

less accurate than the detail of design. InternaI factors are drill errors within the 

hole, such as physical limitations of drilling equiprnent, poor drill operation 

(thrust, rprn), equiprnent physical state (worn rods, dull bits) and geologic 

conditions. 

Consequences of drilled blasthole deviation include: 

• Dilution directly caused by blastholes inadvertently deviating into the 

footwall or hanging-wall of the stope. 

• Poor fragmentation, resulting in oversize and/or excessive fines. Oversize 

rnuck causes hang-ups within the stope, increased secondary blasting, low 

bucket fill factors of hauling equiprnent, and rnucking delays. Excessive 

fines can cause buildups that reduce ore flow within the stope, increased 

oxidation rates, and ore loss during transport. 

• Ground control problerns. Excessively deviated holes with large burden 

and spacing lead to increased ground vibrations wh en blasted. 

• Ore losses, caused by the drill pattern not adequately covering the stope. 

This results in sorne ore not being blasted and consequently left behind. 

• Re-drilling or drilling of additional holes to avoid ore losses. 
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Drill deviation can be measured by instrumentation such as Botetrak®, which uses 

inclinometers and rigid hinged rods to survey boreholes. A study of Boretrac 

borehole surveys by Tannant et al. (1998b), reported an average deviation of 0.5m 

for 15 to 20m long, 64mm diameter drill holes. Assuming that the drill hole 

deviation occurs on both sides of a 20m high, 3m wide section of a stope, the 

measured deviation could generate approximately 16% dilution; see Figure 5.24. 

For the stope dimensions used, 16% dilution corresponds to dilution density (DD) 

ofO.5m. 
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Figure 5.24 Effect of drill hole deviation on dilution, after Tannant et al. (1998b) 

5.8.3 Undercutting 

Undercutting of the hanging-wall occurs when the drift do es not accurately follow 

the ore 1 waste contact and moves into the waste hanging-wall rock. Cutting into 

the hanging-wall waste rock, breaks the integrity of the rock beam that often 

makes up the immediate hanging-wall rock. Data compiled by Wang (2004) of 

undercutting associated with 150 blasthole stopes at Hudson Bay Mining and 

Smelting Co. Ltd. operations found that 36% of the stopes were undercut in 

excess of one meter. See Figure 5.25. 

A stope will tend to slough to the width of the development unless ground 

conditions are extremely favourable or the undercut is supported. In less 
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favourable ground conditions, this may lead to unravelling and excessive dilution. 

Diederichs and Kaiser (1999) showed that even a few millimeters ofhanging-wall 

or abutment relaxation can lead to the failure of previously stable spans or may 

bring stable hanging-walls to failure. 

As discussed in Chapter 4, dilution occurs due to the loss of confinement in the 

radial direction to the stope wall and a drop in 0' •. and 0'2, Figure 5.26(a). 

Displacements occur paraUel to the hanging-wall due to the undercutting, Figure 

5.26(b). Undercutting the stope decreases 0' 3 evenfurther, and reduces both 0' • 

. and 0'2 and hence promotes the potential for dilution, Figure 5.26(c). 
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Figure 5.25 Extent ofundercutting in stopes at Hudson Bay Mining and Smelting 

Co. Ltd. operations, (after Wang, 2004) 

(a) (b) (c) 

Figure 5.26 Stress reductions caused by displacements into an undercut stope 
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To account for the influence of undercutting, Wang et al. (2002a) proposed the 

Undercutting Factor (UF). The Undercutting Factor considers (i) dimensions of 

the stope hanging-waIl, (ii) undercutting on both the overcut and undercut drifts, 

as weIl as (iii) the length of undercutting parallei to the stope hanging-wall on 

both overcut and undercut drifts. Stress setting of the stopeprior to mining is not 

considered. UF is analogous to Dilution Density in that both factors express 

overbreak as depth over the entire stope surface. UF (Figure 5.27) is expressed 

as: 

UF=--- (5-7) 
2 (L+H) 2 

where: 

UF = Undercutting Factor (m) 

10 = Drift length where undercutting occurson the overcut drift (top sill) 

lu = Drift length where undercutting occurs on the undercut drift (bottom sill) 

L = Stope strike length 

H = Stope height (up dip) 

do = average depth ofundercutting along the length of overcut drift (top sill) 

du = average depth of undercutting along the length of undercut drift (bottom 

sill) 
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Figure 5.27 Undercutting parameters, Wang (2004) 

Dilution Density associated with undercutting of the stope hanging-wall was 

evaluated across the base-case 30m height stope with 80° hanging-wall dip using 

Equation 5:'7. Potential overbreak generated by undercutting the top and bottom 

sills of the stope by depths of lm and 2m is provided in Figure 5.28. For 

example, undercutting to a depth of one meter may contribute up to O.33m 

overbreak to a 30m high stope with a 15m strike length. If 50% of the top and 

bottom sills of that same stope are undercut to a depth of one meter, overbreak to 

a depth of 0.17m is suggested. 
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Figure 5.28 Influence ofundercutting on Dilution Density, 30m height stope with 

80° hanging-wall dip 

5.9 Summary of parame tric results 

Parametric numerical modelling studies were undertaken to examine the impact of 

a variety of factors on hanging-wall ore dilution. The key observations of the 

sensitivity of individual factors on potential overbreak inc1ude: 

• Mine depth does not play a significant role in the extent of Ci3 = 0 MPa 

contour within the hanging-wall as overbreak associated with Ci3=0 

contour do es not increase significantly with depth. For example, as the 

mining depth increases from 750m to 2250m, the increase in DD is only 

0.05m or 8.6% for a 20m long stope. However, for stop es with strike 

lengths exceeding 15 meters, overbreak associated with rockmass tensile 

strength (Cil) contour increased with depth. With a 20m long stope, the 

severity of potential dilution associated with the Ci3 = Cil contour increased 

from 0.02m to 0.2m between shallow and moderate depth. As mining 

depth increased from l500m to 2250m depth, DD associated with the cr3 = 

crI contour increased from 0.2m to 0.28m. 
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• Stopes with large vertical and short horizontal dimensions or stop es 

having long horizontal and short vertical dimensions are more stable than 

large rectangular stopes. Rectangular stop es with vertical height and 

strike lengths of 15m or less are more stable than large rectangular stopes. 

DD is reduced for stop es with Aspect Ratios of 0.5 or less, or rectangular 

stopes with vertical height and strike lengths less than 15m. Increased 

overbreak is associated with Aspect Ratios of 1. 

• Modelled overbreak increased as the hanging-wall dip angle becomes 

increasingly shallow. The influence on hanging-wall dip angle on 

overbreak is more pronounced as strike length increases. For a 30m high 

x 30 long stope, overbreak increases by 0.22m or 29% when the dip angle 

changes from 80° to 60°. 

• Modelled overbreak is reduced when the orientation of pre-mmmg 

principal stress (0"1) is parallel to the strike of the stope. A decrease in DD 

by 0.08m or 16% occurs when premining stresses are parallel rather than 

perpendicular on a 20m long stope. Major principal stress orientation 

influences stope overbreak as strike length increases beyond 20m for a 

30m high stope. 

• The influence of rockmass quality did not impact Dilution Density values 

associated with the 0"3 = 0 contour. With the elastic numerical modelling, 

the shape of the 0"3 = 0 contour varied with stope shape and was not 

influenced by rockmass quality. However, Dilution Density values 

associated with the 0"3 = 0"1 contours varied across the three quality ranges. 

A high quality rockmass has a more competent structure and will have 

greater tensile capacity prior to failure. As a result, the severity of 

anticipated overbreak diminishes as the rockmass quality of the host rock 

mcreases. 
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Five stope types were identified, based on their position within a tabular blasthole 

mining sequence. Three stope types are c1assified as primary (Pl, P2 and P3) and 

two are secondary stopes (S land S2). The type of stope influences the severity 

of modelled overbreak. Overbreak potential increased slightly between the three 

primary stope types, and increased significantly when comparing the primary and 

secondary stope types. In a general sense, this can be expressed as: 

DDp < DDsl <DDs2 (5-8) 

where: DDp = DD generated by primary (Pl, P2 and P3) type stop es 

DDs 1 = DD generated by SI-type stop es 

DDs2 = DD generated by S2-type stop es 

Stope type influences severity of modelled overbreak. Compared against the Pl 

stope, extraction of the P2 and P3 stop es is associated with greater values of 

overbreak. Compared against the P2 stope, extraction of the P3 stop es resulted in 

a slight increase (in the range of 5%) in overbreak. Overbreak values for the 

secondary SI and S2 stopes are significantly greater than that associated with Pl 

stopes. The greatest potential overbreak, was associated with S2 stopes, which are 

bound on three si des by mined stopes. 

Three construction factors (DDcf) were identified: Blasting, drillhole deviation 

and undercutting. With blasting, the severity of overbreak was reduced by 

limiting blast vibrations to less than 600 mm/second within hanging-wall rock. A 

good quality host rockmass is less susceptible to blast vibration damage. 

Overbreak damages associated with drill hole deviation are reduced by good 

operator practices, such as avoiding set-up errors, and using good, weIl 

maintained, equipment. The extent of hanging-wall undercutting on both the top 

and bottom sill exposures directly influence overbreak. Factors involved in stope 

construction influence the severity of modelled overbreak. 

• Blast damage may generate a zone of decreased rockmass quality at the 

stope boundary, to a depth exceeding one meter within the hanging-wall. 
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The severity of blast vibration damage diminishes away from the stope 

boundary. 

• Overbreak increases as the depth and lateral extent of undercutting 

increases. A stope will tend to slough to the width of the development. 

• Dilution associated with drill hole deviation is largely govemed by hum an 

error and operator skill. 

The parametric study considered two criteria for overbreak: (i) the volume of 

relaxed ground available for overbreak, assuming the rockmass has no tensile 

strength, represented by the Ci3 = 0 MPa; and (ii) the Ci3 = Cit contour, which 

accounts for rockmass tensile strength. Modelling results found that these two 

criteria did not parallel each other. When comparing overbreak associated with 

the Ci3 = 0 MPa and Ci3 = Ci! contours against depth (Figure 5.29), it was found that 

the Ci3 = 0 MPa contour remained near-constant with depth for a given stope 

geometry or hanging-wall dip. Conversely, potential overbreak associated with 

the contour of rockmass tensile strength increased with depth for a given stope 

geometry or hanging-wall dip. 
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Figure 5.29 Modelled DD for stope of 30m vertical height. Values associated 

with Ci3 == 0 and Ci3 = Ci! = -0.5 MPa contours plotted 
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To quantify modelled overbreak, the following terminologies, illustrated in Figure 

5.30, are introduced: 

• No-tension overbreak (DDo) , corresponding to the 0'3 = 0 MPa contour 

represents 'overbreak that may happen, assuming that the rockmass has no 

inherent strength. The 0'3=0 indicates transition from tension to 

compression state. The No-tension overbreak contour varies with stope 

geometry and hanging-wall dip, and is roughly independent of depth. The 
1 

influence of stope shape on the zone of relaxation, defined as 0'3=0 

(Hutchinson and Diederichs, 1996), is illustrated in Figure 5.31. 

• Confinement overbreak (DDT), corresponding with the 0'3 = 0', contour 

represents slough that will happen. The extent of Confinement overbreak 

increases with depth for a given stope geometry or hanging-wall dip angle. 

The relationship between No-tension and Confinement overbreak as a 

function of depth is illustrated in Figure 5.32. DDT is a less conservative 

estimate of ore dilution density than DDo; DDT < DDo 

, , , 
1 

1 

0'3 = 0 contour 
"No-tension overbreak" DDo 

0'3 = 0', 

"Confinement overbreak" DDT 

Figure 5.30 Two overbreak regimes: (i) Geometrie overbreak (DDo) and (ii) 

Confinement overbreak (DDT) 
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Zone of relaxation ((j3 ::; 0 MPa) 

Figure 5.31 Influence of geometry on the zone of relaxation, after Hutchinson 

and Diederichs (1996) 
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Figure 5.32 Influence of mining depth on overbreak regimes: (a) shallow depth, 

(b) moderate depth, (c) deep 
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Two other factors influence the likelihood of dilution occurring within (and 

beyond) the envelope of No-tension overbreak. 

• External Factors (DDE) represent physical conditions of the stope setting 

that influence hanging-wall stability. These conditions include rockmass 

quality, orientation of principal stress, and stope type. 

• Construction Factors (DDcf) are hum an influences impacting overbreak. 

Construction Factors include blasting, drillhole deviation, and 

undercutting. 

No-tension overbreak (DDo) represents overbreak that may happen, depending 

largely on the severity of Construction Factors (DDcf) in damaging the tensile 

capacity of the rockmass. Confinement overbreak (DDT), which increases with 

depth, represents dilution that will occur as a result of tensile failure of the 

hanging-wall rock into the mined stope. The magnitude of overbreak may be 

further increased by External Factors (DD E). 
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CHAPTER6 

ORE DILUTION AT BOUSQUET #2 MINE - CASE STUDY 

6.1 Historical background 

The Bousquet property is situated in the Abitibi region of northwest Quebec, 50 

kilometers west of the city of Val d'Or, as shown in Figure 6.1. The property is 

composed of former mining c1aims held by Thompson-Bousquet Gold Mines and 

Bijou Gold Mines. The mining rights were acquired by Long Lac MineraIs, (later 

to become LAC MineraIs Limited), in 1974. In 1986, exploration conducted by 

LAC MineraIs at its Bousquet property resulted in the discovery of a gold bearing 

massive sulphide deposit located 1.2 km east of the existing Bousquet #1 shaft. 

See Figure 6.2. 

Construction of the surface facilities, inc1uding the hoist building, headframe and 

service buildings were completed in 1988. Excavation of a 5.8 meter diameter 

circular concrete-lined shaft was completed to a depth of 1245 meters by March 

1990. Commercial production began from the 6th Mine Level (805m depth) in 

October 1990. In 1991. construction work inc1uded the installation of the shaft 

bottom load-out station and a crusher on the 9th Mine Level, (1176 m depth). An 

additional expansion phase completed in 1994 provided ramp, sublevel, and 

infrastructure development to access mineralized zones existing below the 

crusher, to a depth of 1326 meters. 

By the end of 1994, 750,000 gold ounces had been produced at the Bousquet #2 
1 

mine from 2,550,000 tonnes. During the third quarter of 1994, Barrick Gold 

Corporation acquired LAC MineraIs Ltd., which inc1uded the Bousquet #2 mine. 
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With depletion of reserves, the mine ceased production in 2002, having produced 

2,129,600 ounces of gold from 8,143,000 tonnes of mined rock. In 2003, the 

Bousquet property was purchased by Agnico-Eagle Mines Limited. 

Figure 6.1 Bousquet property location 

6.2 Geologie setting 

The Bousquet #2 deposit IS a lens of massive sulphide and associated 

disseminated breccia and stringer sul phi des, occurring in a pyritic horizon within 

a series of volcanic rocks, primarily schists of varying quality, striking east-west 

and dipping steeply to the south. The horizon extends approximately 400 meters 

from the eastem boundary of the property at a depth of 180 meters, and is open at 

depth. Gold mineralization is associated with the pyritic horizon and shows a 

strong relationship to pyrite and copper content which varies from massive, to 

stringers, to disseminated, going from east to west. Massive sulphide 

mineralization is composed of 30% to almost 100% pyrite bands, up to several 

meters thick, with minor amounts of copper. 

147 



Figure 6.2 Surface plan showing mine properties and geologic setting 

6.2.1 Regional geologic setting 

The Bousquet #2 deposit, described by Tourigny et al. (1993), occurs in the 

southem part of the Abitibi Greenstone Belt in the Superior Province of the 

Canadian Shield. The supracrustal rocks of the district consists of a typical 

Archean volcano-sedimentary assemblage of mafic to felsic rocks (Blake River 

Group) tlanked by clastic sedimentary rock units to the north and the south. This 

volcano-sedimentary assemblage strikes east-west, dips steeply to the south, and 

exhibits a strong east-west regional tactonic fabric. 

The southem portion of the Blake River Group corresponds to a 500 m wide 

tectonic belt including anastomosing zones of volcanic derived schist such as 

chlorite-carbonate schist, quartz-muscovite schist and andalusite-kyanite schist. 

This structural domain is characterized by several smaller scale shear zones which 

can be observed throughout Bousquet #2 and which often act against the stability 

of mine openings. The foliation trend which dominates the structure in the 

hanging-wall is a characteristic of this zone. 
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6.2.1.1 Economic geology 

Mineralization at Bousquet #2 mine is hosted by faulted andalusite-kyanite schist. 

The principal gold-bearing lens of the mine contained 6,737,000 tonnes grading 

0.22 ounces per ton Au and 0.57% Cu. The zone strikes east-west, dips N800 

south and plunges westward at 70°. This orebody is lenticutar shaped, ranging in 

thickness from 4 to 19 meters, with lateral and vertical dimensions of 300 m and 

1500 m respectively. 

Recrystallized pyrite (35% to 95%) is the dominant sulphide mineraI in the 

orezone and is generally accompanied by minor amounts (less than 5%) of 

cha1copytite, boronite, chalcocite and gold. A feature of the principal lens is the 

presence of two distinct morphofacies: (1) massive pyrite lenses composed of up 

to 95% pyrite; and (2) sulphide matrix breccia containing 35 to 55% sulphides. 

6.2.2 Description of orezones 

The Bousquet #2 mine was subdivided into six mining blocks labeled Block 1 

through Block 5 and Zone 3-1 which is located between the Bousquet #1 shaft 

and the Bousquet #2 shaft. Figure 6.3 provides a longitudinal section of the 

Bousquet property. 

At the Bousquet #2 mine, sills were established on Level 8 at 1045m depth (Block 

4) and Level 6, 805m depth (Block 3). Block 5 located at 1045m to 1195m depth, 

underlying Block 4, was advanced upwards at the mined sill on Level 8. Block 6 

located at 1195m to 1315m depth, underlying Block 5, was advanced upwards to 

the mined sill at the base of Block 5 on Level 10-3. The eastem border of the 

Bousquet mine is bound by the Laronde mine of Agnico-Eagle Mines Ltd. 

Zone 3-1, located approximately 1000m west of the Bousquet #2 orebody was 

mined at depths of 1340 to 1580 meters below surface. Zone 3-1 was accessed by 

a haulage drift from the base of the Bousquet #2 development, as shown in Figure 

6.4. 
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Figure 6.3 Longitudinal section of Bousquet mine property 

Z=1045m) 

Bousquet #2 mine, Block 5 
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Figure 6.4 Detail showing locations of Block 5 and Zone 3-1, longitudinal view 
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6.3 Mine description 

The mineralized zone at the Bousquet #2 mine follows the regional structural 

trend, dipping steeply south in a tabular form. The orebody is accessed by a 

single 5.8 m diameter concrete lined circular shaft, driven to a depth of 1245 

meters on the footwall side of the orebody. Shaft stations located at 122 meter 

intervals access the main levels of the mine. An internaI ramp connects the main 

production levels with three sublevels which are developed at 30 meter intervals 

between the main levels. Footwall haulage drifts, running paraUel to the orebody, 

with 50 meter long drawpoint crosscuts provide direct access for removing the ore 

bearing rock from the stopes. Mined rock is hauled to ore and waste pass dumps, 

located in the footwall of each sublevel at a distance of approximately 60 to 80 

meters from the orezone, with 6-yard scooptrams. The backfill, ore and waste 

rock passes were driven with Alimak raise c1imbers to dimensions up to 3 m 

diameter. Ventilation raises, located in the footwall at a distance of 80 meters 

from the orebody, were driven to a diameter of 2.1 meters. 

The mineralized zone extends towards the east beyond the Bousquet #2 property 

limit, where it is mined by Agnico-Eagle Mines Limited, as the Laronde Mine. 

There is no barrier pillar between the two mines. Stope sequencing along the 

boundary of the two mines is integrated into the mine design of the two mines 

according to pre-determined guidelines. 

Bousquet #2 mine is a trackless bulk-mining operation. Production from below 

the 9-1 sublevel, (1135 m depth), is hauled by a 40-ton capacity truck up from the 

11-3 level (1315 m depth), to be dumped in ore and waste bins located above the 

9-0 level crusher, located at a depth of 1165m. Wh en active, production rates 

were approximately 1800 tonnes per day. 

Mining methods, equipment, manpower and design used for mining the main 

Bousquet #2 orebody (inc1uding Block 5) were also employed for mining of Zone 

3-1. Broken ore from Zone 3-1 was hauled by 40-ton capacity truck up to the 11-

3 level (1315 m depth), where it was transferred and transported to the ore bin 

located above the 9-0 level crusher. 
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The Block 5 and Zone 3-1 orezones were divided into transverse primary and 

secondary stopes with sublevels located at 30 meter vertical intervals. Typical 

design dimensions of Block 5 and Zone 3-1 stop es are provided in Table 6.1. The 

open stope mining with delayed backfill method is used to take advantage of 

steeply dipping tabular orebody geometry, and to optimize production rates and 

recovery. Block 5, shown longitudinally in Figure 6.5, consisted of ninety seven 

stopes, distributed over five stoping horizons. The strike length of the Block 5 

orezone was up to 330m. Figure 6.6 showing lateral development on Level 9-3 

infrastructure, including hanging-wall cablebolt drift and Main zone stopes. 

Zone 3-1, shown longitudinally in Figure 6.7 consisted of seventy five stopes, 

distributed over eight stoping horizons. The strike length of the 3-1 zone was up 

to 110m. Figure 6.8 showing lateral development on Level 3470 infrastructure, 

geologic units and Main zone stopes. 

Table 6.1 Typical transverse stope dimensions 

Block 5 Zone 3-1 

Primary Secondary Primary Secondary 

Vertical height 30m 30m 30m 30m 

Strike length l5m l5m 10m 10m 

Stope tonnage Il 000 to 14000 tonnes 4000 to 5000 tonnes 
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Figure 6.6 Bousquet Block 5, level 9 ... 3 
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6.3.1 Mining method description 

In the massive ore, with widths exceeding four meters, stop es are mined 

transversely. In the transverse open stope mining method, an expansion slot is 

developed by enlarging slot raise to the width of the stope, using parallel hole 

blasting. Ore is fragmented in the stope using ring-drilled or long parallel blast 

holes, and mucked from a drift, orientated perpendicular to the stope strike, at the 

base of the stope. Following the completion of stope mucking, cementrockfill 

backfill (CRF) is placed into the stope, either into the top of the stope, or via an 

overhead slot / backfill raise. Typical Block 5 and Zone 3-1 open stope mining 

pattern and sequence is illustrated in Figure 6.9. 

Primary stopes are mined one lift at a time and backfilled with cemented rockfill. 

Secondary stop es are mined between two primary stopes when the latter stopes 

have been mined over two lifts. Secondary stopes are backfilled with non

cemented rockfill. 

r =::;-;:::===::;-;:::==::::;--;= FfW DRIFT 

50m 

1 !()\"(;/TU)/SH - , 

T 
30m 

l 
0 0 0 ~ RA1SEBORE 

2 SUB-LEVEL 

:' " 

CV 0\ 0 MINING 

r-- SEQUENCE 

t 

CEMENTED FILL "'" NON CEMENTED FILL 

Figure 6.9 Transverse primary and secondary stoping sequence 

A variation of open stope mining used in the narrower regions of the orebody 

found at the lateral fringes of the orezone, is the Eureka mining method (Trahan, 

1995). This mining method is applied to longitudinal access stope blocks, in ore 
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widths of four meters or less. With the Eureka method, shown in Figure 6.10, 

normally only the first stope in the longitudinal zone requires a drilled slot. 

Subsequent stope slots are generated from slot blasting against a st yro fo am core 

suspended against the previous stope end wall prior to backfilling. With this 

technique, the st yro fo am provides the void for slot blasting. 

SLOTRAISE 
(RAISE BORE) STYROFOAM 

1<--_1_5_m~, __ 1_5_m ______ 1 ...--_...., 

1 PLAN 1 
CEMENTED ROCKFILL 3% 

ROCKFILL 

DRILLING PATTERN 
- STAGGERED 
- BURDEN : 1.2 m 
- SPACING: 1.2 m 

30m 

CEMENTED 
ROCKFILL 

Figure 6.10 Eureka Mining Method, after Trahan (1995) 

6.3.2 Stope drilling and blasting methods 

ORE ZONE 
-4.0m .... 

1 SECTION' 

Stope production drilling pattern varies between the primary and the secondary 

stope blocks. The top sill of primary transverse stopes is excavated to the full 

stope strike length to permit drilling of parallel 100 mm diameter blastholes, 

typically at a 2.5 meter burden and 2.0 meter spacing, with an off-center 1.07 

meter diameter raisebore slot. Secondary transverse stopes are 10cated between 

previously mined and backfilled primary stopes. In these secondary stopes, 100 

mm diameter blastholes are usually drilled in a fan-pattern from a narrow, (5 m 

wide), top sill access, with a central 1 .07m diameter raisebore slot. 
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In Block 5 and Zone 3-1, both types of drill pattern were employed. Figure 6.11 

provides a summary of the number of stop es drilled in paralle1, fan and 

longitudinal pattern for each orezone. Details are provided in Appendix B. Both 

sites were drilled by the same equipment and operators. Drilling trends for the 

two zones were similar, with the Fan drilling pattern being most commonly used, 

followed by parallel drilling. As stated above, the use of longitudinal drilling is 

site-specific, restricted only to narrow orezone widths. 

60 

50 

40 

# stopes 
30 

20 

10 

0 

paraliel fan longitudinal 

Drill Pattern 

Figure 6.11 Drill patterns usedin Block 5 and Zone 3-1 

6.3.2.1 Transverse stopes 

Production blasting of the transverse and longitudinal stopes is performed with 

ANFO explosives in mid-stope blastholes. Lower density ANFO explosives are 

used in the footwall blastholes. Low energy cartridge explosives are used in the 

blastholes loqted closest to the hanging-wall to minimize hanging-wall blast 

vibration damage, (Henning et al., 1997). See Figure 6.12. 
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Powersplit 

Figure 6.12 Stope drilling and loading practice, transverse stope 

Transverse stop es are normally mined in three blasts. In primary stop es, the first 

two blasts widen the slot area to the full stope thickness in lOto 14 meter lifts. 

For the stope final blast, the remaining blastholes are loaded full column, to a 

maximum charge per delay of 175 kg, and fired into the open slot. For a typical 

Block 5 stope, the first two 'slot' blasts represent approximately 15% and 20%, 

respectively, of the total stope volume. The remaining 65% is broken in the third 

and final blast. Typical schematic primary stope drilling pattern and blast 

sequence is shown in Figure 6.13. 

With transverse secondary stopes, the lower half in the stope excavated by the 

first two blasts. For the final blast, the remaining blasthole rings are fired 

inwards, towards the central slot. The combination of a fan-drilling pattern with a 

lower stress environment, permit the blasting of larger volumes at the initial 

stages of secondary stope extraction. Usually, the first two 'slot' blasts of a Block 

5 stope represent approximately 15% and 35%, respectively, of the total stope 

volume. The remaining 50% is broken in the third and final blast. Typical 

secondary stope drilling pattern and blast sequence is shown in Figure 6.14. Blast 

details from Block 5 are provided in Appendix B. 
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Figure 6.13 Primary stope schematic drilling pattern and blast sequence 
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Figure 6.14 Secondary stope schematic drilling pattern and blast sequence 

6.3.2.2 Longitudinal stop es 

In ore widths of 4 meters or less, stope blocks are accessed longitudinally. The 

top sills of the longitudinal stopes are excavated to the full stope strike width to 

permit drilling of parallel 100 mm diameter blastholes, typically at a staggered 1.8 
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meter burden and 2 meter spacing pattern, as illustrated in Figure 6.15. As with 

the transverse stopes, low energy explosives were used in blast holes located 

c10sest to the hanging-wall and footwall. See Figure 6.16. 
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Figure 6.15 Longitudinal stope sche.matic drilling pattern 
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Figure 6.16 Stope drilling and loading practice, longitudinal stope (Gauthier, 

2001) 
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Longitudinal stop es are mined in three or four blasts, depending on the type of 

slot used. A stope with a drilled slot is mined in three blasts, in a manner similar 

to the primary transverse stopes. See Figure 6.l7(a). The first two blasts widen 

the slot area to the full stope thickness in 14 meter lifts. For the stope final blast, 

the remaining blastholes are loaded full column, to ~ maximum charge per delay 

of 160 kg, and fired into the open slot. Typically, the first two 'slot' blasts 

represent approximately 15% and 20%, respectively, of the total stope volume. 

The remaining 65% is broken in the third and final blast. 

Longitudinal stopes utilizing the 'Eureka' mining method (St yro fo am slot) are 

mined in four blasts, as illustrated in Figure 6.17(b). A small initial blast, 

representing roughly 4% of the stope volume creates a narrow, 10 meter-high 

excavation along the cavity against consolidated backfill of the previous stope.· 

The second and third blasts, representing approximately 12% and 24%, 

respectively, of the stope volume, complete the 'slot' blasting. The remaining 

60% of the stope volume is broken in the fourth blast (Gauthier, 2001). 
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TI 30m 
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(a) Blast sequence with slot raise (b) Blast sequence with St yro fo am raise 

Figure 6.17 Longitudinal stope schematic blast sequence 
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6.4 Rockmass conditions 

Underground geotechnical mapping, first performed by Golder (1988), has been 

undertaken at Bousquet #2 on a regular basis. Four main joint sets, summarized 

in Table 6.2, are encountered. 

Table 6.2 Summary of rock discontinuity sets 

Discontinuity Dip Dip Description 

Set Direction 

JI 57° ta 162° ta Sub-vertical set parallels the orebody, 

88° 190° striking east-west and dipping steeply south. 

The joints are typically smooth, planar and 

tight. Joint spacing ranges from 5 mm ta 

800 mm, but is typically 200 mm in the 

hanging-wall. 

12 45° ta 85° ta 102° Joint Set #2 is orientated perpendicular to 

13 

J4 

the orebody. Spacing of this joint set ranges 

from 60 mm to 450 mm and averages 200 

mm. The joints are typically smooth ta 

slightly rough and pl anar. 

Joint Set #3 is a prominent joint set in the 

hanging-wall. Spacing ranges from 200 mm 

ta 1300 mm. The set is generally smooth ta 

slightly rough, planar and tight. 

Joint Set #4 is a sub-horizontal joint set with 

a spacing of 300 mm ta 1000 mm, average 

500mm. The joints are slightly rough, 

planar and tight with quartz infilling. 
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Bousquet rockmass conditions are controlled extensively by the geological 

setting, with the dominant schistose fabric controlling the behaviour of wall rocks 

in aIl underground excavations. The rockmass can be described as: fresh to 

slightly weathered, strongly schistose, quartz-mica schist. The schistocity 

contains sericite and acts as a dominant low friction angle weakness plane in the 

rockmass. Schistocity planes form plat y blocks between a few millimeters to 

approximately 50 mm in thickness. The rockmass is dry but of po or quality. 

The behaviour of the rockmass during mining is controlled to a large extent by the 

effects of load re-distribution on the dominant parallel schistocity planes, 

especially those which are closely-spaced and infilled with weak sericite. 

Loading is transferred to the sidewalls of openings and there is a strong tendency 

for "pack of cards" buckling, as illustrated in Figure 6.18, to take place, 

especially on the hanging-wall si de of drifts paralleJ to the orebody. 

I-r-?-"-~ 

__ -;:-~r-i--

Figure 6.18 Buckling-type failure, Bousquet #2 mine 

6.4.1 Block 5 

The main orezone of Bousquet #2 (Block 5) deposit is a Jens of massive suJphide 

and associated disseminated breccia and stringer sul phi des, hosted within 

schistose volcanic rock. Rockmass classification for the hanging-wall, main 
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orezone and footwall are summarized in Table 6.3. Hanging-wall and footwall 

have similar characteristics (Henning, 1998). For this study, the host rock 

encasing the orezone rock was assigned values equivalent to the hanging-wall 

rockmass. The elastic parameters of Block 5 ho st and orezone rock were 

evaluated from uniaxial compressive testing of core samples by Prasad (1996). 

Results from the rock tested are summarized in Table 6.4. 

Table 6.3 Summary of average rockmass classification values (Henning, 1998) 

Domain RQD RMR GSI* Q Q' 

Hanging-wall 35 50 50 0.47 1.17 

Orezone 85 75 75 7.0 7.0 

Stope Footwall 45 55 55 0.50 1.25 

* new values calculated based on Hoek et al. (2002) 

Table 6.4 Uniaxial compressive test results (Prasad, 1996) 

Domain Rock Type Uni axial Young's Poisson 

Compressive Modulus (E) Ratio (u) 

Strength (ae) 

Host rock Rhyolite Tuff 112 to 160 MPa 53 to 76 GPa 0.21 

Orezone Massive Sulphide 211 MPa 127 GPa 0.10 

6.4.2 Zone 3-1 

The Zone 3-1 deposit occurs as disseminated stringer sulphides within an equally 

schistose volcanic rock. Hanging-wall, orezone and footwall are located within 

the Alteration zone rock unit have similar characteristics (Henning, 1996). 
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Rockmass classification for the host rock and orezone are summarized in Table 

6.5. Uni axial compressive strength testing of 3-1 Zone core samples were 

performed at Queen's University (Hyett, 1996). Test results are summarized in 

Table 6.6. The ore-bearing alteration zone has properties similar to moderately 

foliated Bousquet #2 host rock. 

Table 6.5 Summary of average rockmass classification values (Henning, 1996) 

Domain Rock Type RQD RMR GSI * Q Q' 

Host rock Alteration Zone 50 48 48 1.4 2.8 

Orezone Alteration Zone 50 48 48 1.4 2.8 

* new values calculated based on Hoek et al. (2002) 

Table 6.6 Uni axial Core Test Results, Zone 3-1 (Hyett, 1996) 

Domain Rock Type Uniaxial Young's Poisson 

Compressive Modulus (E) Ratio (u) 

Strength «(Je) 

Host rock Alteration Zone 59MPa 37 GPa 0.14 

Orezone Alteration Zone 59MPa 37 GPa 0.14 
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6.4.3 Bousquet rockmass parameters 

Bousquet Block 5 and Zone 3-1 rock parameters are summarized in Table 6.7. 

Rockmass parameters were obtained using relatio.nships described in Section 4.3 

(Table 4.6). 

Table 6.7 Block 5 and Zone 3-1 rockmass conditions 

Parameter Block 5 Zone 3-1 

Host rock Ore Host rock and 
Orezone 

Rock type foliated rhyolite massive foliated rhyolite tuff 
tuff sulphide "alteration zone" 

Orezone dip 80° to 85° 80° to 85° 75° to 80° 

RQD 35% 85% 50% 

RMR79/ GSI 50 75 48 

Q 0.47 7 1.4 

Q' 1.17 7 2.8 

ues (ac) 112 MPa 211 MPa 59MPa 

Poisson ratio (u) 0.21 0.1 0.14 

mi 10 (schistose rock) 17 (fine grain 10 (schistose rock) 
igneous rock) 

Density 2.8 tonnes/m" 4.0 tonnes/m" 3.2 tonnes/m" 

Rockmass Parameters 

Hoek-Brown 'm' 1.677 6.961 1.561 

Hoek-Brown 's' 0.0039 0.0622 0.0031 

Rockmass elastic 10000 MPa 42170 MPa 6846 MPa 
modulus, (Enn) 

Rockmass tensile 0.258 MPa 1.885 MPa 0.177 MPa 
strength, (at) 

Global rockmass 19.5 MPa 83.5 MPa 9.844 MPa 
compressIve 
strength, (acm) 
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6.4.4 Stress environ ment 

Overcore stress monitoring was conducted at the Bousquet #2 mine in 1988 

(Arjang, 1988) at a depth 900 meters using a CSIR triaxial strain cell in a 150 mm 

diameter horizontal borehole, drilled perpendicular to the structural plane and 

schistocity. 

Results of pre-mining ground stresses indicated that the maXImum and the 

intermediate principal compressive stresses were horizontal. The minimum 

principal compressive stresses were orientated vertically. Test results and 

orientations were comparable with other regional stress data, (Arjang, 1996). 

The average horizontal compressive stress gradient was 0.0505 MPalm, with a 

ratio of maximum and minimum horizontal compressive stresses «(}Ho/(}h 0) in the 

range of 1.5. In relation to the orezones, (striking approximately NI OSE, dipping 

80° to 85° South), (}Ho acts perpendicular while (}ho is orientated on-strike to the 

orezones and main structural features. On the basis of the testing, the following 

pre-mining in-situ stress relationships were established: 

(}y = 0.027 Z 

(}Ho = 2.24' (}y = 0.061 Z 

(}ho = 1.50 . (}y = 0.041 Z 

where (}y = Vertical stress, MPa 

(}Ho = Maximum lateral stress, MPa (perpendicular to orebody) 

(}ho = Minimum lateral stress, MPa (parallel to orebody strike) 

Z = Depth below surface, m 
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6.4.5 Stability Graph analysis of stope geometry 

The Stability Graph method for open stope design, described previously in 

Section 2.7, combines information about rockmass strength and structure, the 

stresses around the opening and the size, shape and orientation of the opening to 

predict stope stability. Two parameters are needed: the Stability Index number 

(N'), which is a measure of the rockmass ability to stand up under a given stress 

condition, and the Hydraulic Radius (HR), which represents the dimensions of the 

stope face. Parameters used for assessing N' for the hanging-walls of Bousquet 

Block 5 and Zone 3-1 are summarized in Table 6.8. Details for determining 

Hydraulic Radius for the two zones are provided in Table 6.9. 

The stability of hanging-walls of Block 5 and Zone 3-1 stopes were assessed 

using the Stability Graph. Results, plotted on Figure 6.19 indicate the following 

trends: 

• Block 5: The hanging-wall oftypical stopes within Block 5 are potentially 

unstable. Hanging-wall stability decreases with rockmass quality. 

Hanging-walls within low-range rockmasses are strongly unstable 

• Zone 3-1: Compared to Block 5, Zone 3-1 stop es benefit from both a 

slightly more competent rockmass, and reduced hanging-wall dimensions. 

According to the Stability graph approach, the hanging-wall of typical 

stopes within Zone 3-1 is potentially stable. Hanging-wall stability 

decreases with rockmass quality. Hanging-walls within low-range 

rockmasses are potentially unstable. 
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Table 6.8 Hanging-wall stability index values (N') for Block 5 and Zone 3-1 

Q' A B C N' 

Block 5 Typical value: 1 0.3 Typical value: Typical value: 

(Henning, 1998) 1.2 6.8 204 

(range: 0.21 (range: 6.1 to (range: 004 to 
to 2.08) 7.7) 4.8) 

Zone 3-1 Typical value: 1 0.3 Typical value: Typical value: 

(Ruest 1998, 2.8 7.3 6.1 

Henning 1996) (range: 0.3 to (range: 6.1 to (range: 0.5 to 
3.6) 8) 8.6) 

Table 6.9 Comparison of mined hanging-wall dimensions, Block 5 and Zone 3-1 

Parameter Block 5 Zone 3-1 

Stope Depth 1045 -1195m 1340 -1580m 

Mathews Stability Parameter Typical value: 204 Typical value: 6.1 

(N') (range: 004 to 4.8) (range: 0.5 to 8.6) 

Common stope dimensions 

Vertical height 30m 30m 

Average hanging -wall dip 78° 83° 

angle 

Exposed hanging-wall height 30.7m 30.2m 

(see Eq. 5-4) 

Strike length l5m 10m 

Hydraulic Radius 5m 3.8m 
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Figure 6.19 Stability Graph plot ofBlock 5 and Zone 3-1 stopes 

6.5 Stope hanging-wall reinforcement 

25 

Cablebolting is a method of reinforcing loose rock or fractured in-situ rock to 

prevent caving or spalling, and to assist the rockmass to form its own load bearing 

structure, (Hutchinson and Diederichs, 1996). Cablebolts were used in Block 5 to 

provide hanging-wall support for dilution control. Stope hanging-walls are 

supported with modified geometry cablebolts installed on two meter centers, in a 

fanned pattern, from a hanging-wall cable drift. Hanging-wall cablebolt access 

drifts were driven at 60 meter vertical intervals, on every second sub-Ievel. 

Hanging-wall cablebolt rings, shown in Figure 6.20, provide cablebolt 

reinforcement to stope blocks positioned above and below the cable drift 

elevation. Cablebolt orientation with respect to the stope hanging-wall ranges 

fromapproximately 85 degrees (near-perpendicular to the hanging-wall), to 40 

degrees. 

Cablebolts, ranging in length from 18 to 28 meters long, are grouted into 63 mm 

diameter holes. Grout tubes are fixed to the cablebolts installed into upholes. In 

downholes, the gwut tube is slowly extracted from the bottom of the hole as 
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grouting progresses, while ensuring that the withdrawal rate does not exceed the 

rate at which the hole is fiUed. 

Stope access Leve! 8-0 

Leve! 9-3 

60m ~ 

"""1 
Leve! 9-2 

30m 

Stope access Level9-1 

IL,,-..-r-----J Stope access Level9-O 

Stope access Levell0-3 

Figure 6.20 Hanging-wall cablebolt installation pattern, Block 5 
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Figure 6.21 Longitudinal plot showing hanging-wall cablebolt coverage, Block 5 
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Figure 6.21 illustrates the regions of hanging-wall presupport with cablebolts 

installed from the hanging-wall cable drift. The hanging-wall cablebolt drifts 

were not developed at the lower-most levels of the Bousquet #2 mine (including 

Level 10-3 and Zone 3-1) for economic reasons due to the anticipated narrow 

orezone width. To minimize the initiation of unravelling from the base of the 

stope hanging-wall, cablebolts are installed from the sill of these narrow-span 

stop es in a fanningpattern upwards into the hanging-wall, as illustrated in Figure 

6.22. The cableboIt rings are installed on two meter spacing. Table 6.10 presents 

a summary of the variety of hanging-wall reinforcement patterns employed in 

Block 5 and Zone 3-1. 

---,....~_---' Stope access 

10 m 30m 

Stope access 

Figure 6.22 Stope sill cablebolt installation via stope sill, Zone 3-1 
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Table 6.10 Distribution of stope hanging-wall cablebolt installation pattern 

Hanging-wall cablebolt pattern 

Upward fanning Downward fanning Cablebolts installed 

cablebolts cablebolts via stope sill 

Block 5 34 34 29 

Zone 3-1 nil nil 76 

6.6 Comparison of Block 5 and Zone 3-1 stope geometry, setting and 

construction 

Differences and commonalities between Zone 3-1 and Block 5, in terms of stop es 

setting, construction and geometry are summarized in Tables 6.11, 6.12 and 6.13. 

Similarities occur in terms of stope construction and orezone orientation. 

Prominent differences inc1ude stope dimensions, depth of mining, hanging-wall 

reinforcement orezone rock strength and orezone rockmass quality. 
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Table 6.l1 Comparison of Block 5 and Zone 3-1 stope setting factors 

Factor Block 5 Zone 3-1 Comment 

Orezone depth 1045 -1195m 1340 - 1580m Zone 3-1 is at 
greater depth 

Rockmass Rhyolite Tuff, OSI Foliated rhyolite Zone 3-1 occurs 
characteristics, = 50, Q = 0.47, cre = tuff, OSI = 48, Q within a weaker 
hostrock 112 MPa = 1.4, cre = 59 rockmass 

MPa 

Rockmass Massive Sulphide , Foliated rhyolite Block 5 ore 
characteristics, OSI=75,Q=7,cre tuff, OSI = 48, Q occurs as a lens of 
orezone = 210 MPa = 1.4, cre = 59 competent rock, 

MPa distinctly different 
from the host 
rock. There is no 
rockmass 
distinction 
between Zone 3-1 
orezone and host 
rock. 

Hanging -wall 70% of Block 5 AIl Density and areal 
reinforcement stope hanging-walls reinforcement coverage of 

were reinforced by was instaIled hanging-wall 
cablebolts, installed from the stope reinforcement was 
in a fan pattern sills. greater for Block 
from an access drift No hanging-waIl 5 stopes. 
located in the access drift was 
hanging-waIl, developed. 
behind the stope. 
The remaining 
stope hanging-walls 
were with 
cablebolts instaIled 
from the stope siIls. 

Stoping stress Abutment stress: No sills in Zone 
environment Block 5 advances 3-1. Mining 

up towards advances out 
previously mined from center of 
and backfiIled zone 
stopes 

Stability graph Potentially unstable PotentiaIly stable 
,....--.-. (Figure 6.19) 
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Table 6.12 Comparison of Block 5 and Zone 3-1 stope construction factors 

Factor Block 5 Zone 3-1 Comment 

Workforce Construction Factors 
skill, were common to the 
equipment two zones. 

The same surveyors, 
drillers, design, blasting 
blast products, and 
equipment maintenance, 
were used 

Stoping Transverse Transverse Similar stoping methods 
method primaryand primaryand were used for the two 

secondary secondary stopes zones 
stop es 

Drill pattern 35% parallel 33% parallel Similar drilling patterns 

56% fan 45% fan were used for the two 
zones 

9% longitudinal 21 % longitudinal 

Table 6.13 Comparison of Block 5 and Zone 3-1 stope geometry factors 

Factor Block 5 Zone 3-1 Comment 

Typical 15m x 30m 10m x 30m Zone 3-1 stopes aresmaller 
dimensions 

Hydraulic 5m 3.8m Zone 3-1 stopes are smaller 
radius 

Dip ofstope 80° to 85° 75° to 80° The two zones had similar 
hanging-wall hanging-wall dips. Zone 3-1 

stop es were slightly shallower 
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.~ .. 6.7 Empirical database description 

A comprehensive database was established for this research, incorporating 

information related to the design, construction, excavation and CMS cavity 

surveys of 172 sequentially mined long-hole stope case histories from Block 5 

and Zone 3-1 of the Bousquet #2 mine. 

The following information was included in the database: 

• S tope setting 

• Stope geometry 

• Stope category 

• Stope construction 

• Stope recovery 

Rockmass properties, stope drilling patterns, and stope blasting methodology 

applied to stop es in Block 5 and Zone 3-1 were common to the individual stope 

blocks within each orezone. Descriptions are provided in Sections 6.3 to 6.5 of 

this Chapter. 

Figure 6.23 shows the overall database structure. The information shown in the 

database structure was collected for each stope case history from a variety of 

sources in the Production, Geology and Engineering departments of the mine. 

The compiled database for Block 5 and Zone 3-1 stopes is provided in Appendix 

B. 

Stope setting refers to the location and terminology used to describe a specific 

stope within the mining block. Details of stope setting within Block 5 and Zone 

3-1 were provided previously in Figure 6.5 and 6.7, respectively. Stope category 

defines the local stope setting within the mining sequence. Stope geometry 

provides specific descriptions of excavated dimensions of individual stopes. 

Stope construction refers to mostly man-made influences on stope mining and 

recovery, excluding designed stope dimensions. Stope construction factors 
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associated with the design ofhanging-wall reinforcement, drilling and blasting are 

discussed in Sections 6.3 and 6.5. Stope recovery refers to measured overbreak. 

Stop e setting 

• Stope and orezone name 

• Stope floor horizon 

1 Stope category b 
• Stope type 
~---------' 

Stop e geometry 

• Vertical height 

• Hanging-wall dip angle 

• True hanging-wall height 

• Stope width on strike 

• Stope volume 

• Strike orientation 

• Hanging-wall hydraulic 
radius 

Figure 6.23 Database structure 

Stope 
Database 

Stope construction 

• Pattern ofstope drilling 

• Hanging-wall 
reinforcement pattern 

• Number of stope blasts 

• Blast dates 

• Tonnes per blast 

• DateofCMS 

• Stope cycle time 

• Stope sequence 

Stope recoyery 

• Reported dilution 

• Overbreak volume 

• Hanging-wall dilution 
density 

Descriptions of the distribution of data from Block 5 and Zone 3-1 case histories 

are provided in the following sections. 

6.7.1 Stope geometry 

The stope geometry has a significant influence on the stability and the dilution 

that can be expected from a stope hanging-wall. As discussed in Section 5.3, 

stope dimensions are a variable factor, which can be established during initial 

mine design, that influences overbreak. 

Geometry parameters collected from each of Block 5 and Zone 3-1 include: (1) 

hanging-wall dip angle, which influences (2) true stope height, (3) strike length, 
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(4) hydraulic radius of the stope hanging-wall, (5) designed stope size (tonnes 

blasted), and (6) the azimuth of the hanging-wall strike. 

6.7.1.1 Block 5 stope geometry 

The histograms in Figure 6.24 show distributions defining the stope geometry for 

all stop es considered for the Block 5 case histories. A statistical summary is 

given in Table 6.14. 

In general, using calculated mean values, a typical hanging-wall of a Block 5 

stope had a dip angle of 78°, a 31m true height, a 14m strike length, resulting in a 

hydraulic radius of 4.9m. Typical designed stope size was in the range of 12300 

tonnes. The strike of the hanging-wall was orientated on azimuth 095°, or 

approximately normal to the orientation of major principal stress. 

6.7.1.2 Zone 3-1 stope geometry 

The histograms in Figure 6.25 show distributions defining the stope geometry for 

all stop es considered for the Zone 3-1 case histories. A statistical summary is 

given in Table 6.14. 

In general, using calculated mean values, a typical hanging-wall of a Zone 3-1 

stope had a dip angle of 83°, a 31m true height, a 10m strike length, resulting in a 

hydraulic radius of 3.9m. Typical designed stope size was in the range of 4800 

tonnes. The strike of the hanging-wall was orientated on azimuth 097°, or 

approximately normal to the orientation of major principal stress. 
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6.7.1.3 Summary of stope geometry comparison 

Stope geometry statistics from the Block 5 and Zone 3-1 databases are 

summarized in Table 6.14. When comparing the geometries of the two zones, the 

following patterns were observed: 

• Block 5 and Zone 3-1 have similar hanging-wall dip angles (78° versus 

83°, respectively), and true stope height (31.4m versus 31.1 m) 

• Block 5 has greater strike length (l5m) than Zone 3-1 (lOm), which 

affects hydraulic radius values (5m verses 3.9m) of the stope hanging-wall 

• Similar orientation of the hanging-wall strike of the two stopes (strike 

azimuth) suggests that the orientation of in situ principal stress (95° versus 

97°) is approximately perpendicular for both Block 5 and Zone 3-1. 

• Block 5 has greater stope volume, reflecting its greater thickness. An 

average stope of 12310 tonnes at Density 4.0 (tonnes/m3) corresponds to 

average thickness of 7m. For Zone 3-1, an average stope of 4837 tonnes 

at Density 3.2 (tonnes/m3) corresponds to average thickness of 4.7m 

• The Aspect Ratio (AR) of Zone 3-1 stop es (AR = 0.33) is slightly lower 

that that ofBlock 5 stopes (AR = 0.45). According to the trends identified 

in Section 5.5, Zone 3-1 stopes, with a lower AR value, are more stable 

than Block 5 stopes. Aspect Ratio is described in Equation 5-3. 
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Table 6.14 Summary of stope geometry statistics 

Block 5 Zone 3-1 

Mean Median Standard CoV Mean Median Standard 

value value deviation value value deviation 

Hanging- 77.8 77 3.9 5% 82.7 82.5 5.2 

wall dip 

angle (0) 

True stope 31.4 31.7 1.6 5% 31.1 31 1.8 

height (m) 

Stope 14 15 1.4 10% 10.3 10 1 

strike 

length (m) 

Hydraulic 4.9 5 0.3 7% 3.9 3.8 0.3 

radius (m) 

Stope size 12310 9693 6405 52% 4837 5500 2578 

(tonnes 

b1asted) 

Strike 94.8 96 5.7 6% 96.7 97 3 

azimuth C) 

Similarities in mean values and median values, and correspondingly low Co V 

values indicate that data associated with Block 5 and Zone 3-1 stope geometries is 

reasonab1y symmetric and beU shaped data. The exception to this observation is 

the values of stope size. Greater variability in stope size reflects a range of stope 

thickness. 
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The mean (x) is the center of gravit y of the probability density distribution. The 

mean or expected value of a sample is defined as shown in Equation 6-4. 

1 n 

x=-L Xj 
n i=l 

where n refers to the number of events or items, and Xi is 

the value of an individual item in the sample under 

consideration 

(6-4) 

The median refers to the middle value in a distribution. It is equal to the mean in 

a normal distribution but very different in skewed distributions. In skewed 

distributions the median is more representative of the central value than the mean. 

Standard deviation (s) is a measure of the spread or variability of values. 

Standard deviation is defined as shown in Equation 6-5. 

For a reasonably symmetric and bell shaped data set: 

• Mean value ± standard deviation contains roughly 68% 

of the data 

• Mean value ± 2 x standard deviation contains roughly 

95% of the data 

(6-5) 

(6-6) 

(6-7) 

A relative measure of the scatter of a random variable is its coefficient of 

variation (Co V). Co V is the ratio of the standard deviation to the mean value of 

the sample as shown in Equation 6-8. Co V is a measure of uncertainty in the 
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central tendency. A large Co V, implies high uncertainty in the data and results, 

and a low Co V designates less dispersion and high certainty. 

CoV(%) = Standard deviation· 100 

Mean value 

6.7.2 Stope type and extraction sequence 

(6-8) 

The Block 5 and Zone 3-1 orezones were subdivided into 97 and 75 stopes, 

respectively. Within each orezone, stopes were mined in a sequence that resulted 

in the creation ofa variety ofprimary (Pl, P2, and P3) and secondary (SI, S2) 

stope types. The five stope types were described previously in Section 4.3.2. 

The Block 5 mining sequence and positions of the five stope types within the zone 

are shown in Figure 6.26 and Figure 6.27. Zone 3-1 mining sequence and stope 

type positions within Zone 3-1 are shown in Figure 6.28 and Figure 6.29. Stope 

details are provided in Appendix B. 
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Figure 6.26 Block 5 mining sequence 
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Figure 6.27 Longitudinal plan ofBlock 5 showing stope types 
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Figure 6.29 Longitudinal plan of Zone 3-1 showing stope types 

The total number of stope types found in each of the two orezones is summarized 

in Table 6.15 and expressed as a percent&ge of total number of stopes in Figure 

6.30. Similarities occur in both orezones with respect to the percentage of total 

stopes of each stope type. In terms of total primary and secondary stopes, Zone 3-

1 consisted of 45% pnmary and 55% secondary stopes, inc1uding 35% true 

secondary (S2-type) stopes. With Block 5, 42% of the stopes mined were 

primary, while 58% were secondary stopes, inc1uding 37% true secondary (S2-

type) stopes. 

Table 6.15 Number of stope types 

Pl P2 P3 SI S2 

Zone 3-1 14 Il Il 14 25 

Block 5 13 15 13 20 36 
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SI S2 

Orezone sequencing, showing 25%, 50%, 75% and 100% extraction of Block 5 

and Zone 3-1 is illustrated in Figures 6.31 and 6.32. Block 5 was mined in a 

pyramidal sequence over five mining horizons, advancing up towards previously 

mined and backfilled Block 4 stopes. With later stage extraction, mining 

advanced westward towards the abutment. Zone 3-1 was mined in a pyramidal 

sequence over eight mining horizons, advancing from a centre core towards the 

abutments. A narrow sill pillar, measuring approximately 60m along strike was 

created by mid-stage (50% and 75%) extraction below previously mined and 

backfilled first stage (25%) stopes. 

Relationships between stope type and orezone sequencing, summarized in Figure 

6.33, shows that the majority of stop es mined in both Zone 3-1 and Block 5, up to 

50% orezone extraction, were primary-type stopes. Between 50% and 75% 

extraction (at approximately 57% extraction), the primary - secondary trend lines 

cross for both orezones. Beyond approximately 57% extraction, the percentage of 

secondary stopes mined is increasingly greater than that of the primary stopes. 
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Figure 6.33 Stope type mined as a function of orezone extraction 

6.7.3 Dilution 

As discussed in Chapter 2, dilution has a direct and large influence on the co st of 

a stope, and ultimately on the profitability of a mining operation. A review of 

techniques to quantify the cost of dilution by Pakalnis et al. (1995) has shown that 

there are several definitions of dilution. At Bousquet #2 mine, dilution was 

calculated according to the following definition: 

% Dilution = Tonnes waste rock mined 

Tonnes ore mined 

(6-9) 

where: Waste = Wall rock outside of the planned stope houndary; 

Ore = Rock planned, drilled and blasted within the stope 

boundary. 

The measurement of mined stope profile has traditionally been difficult due to the 

non-entry nature of the open stope mining method. A Cavity Monitoring System, 

(CMS), described in Section 2.6.1, has been employed at Bousquet on a 

systematic basis since 1995. Surveys conducted on each mined stope provide a 
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detailed picture of the stope boundary, from which dilution values are determined. 

CMS surveys were conducted on the majority (98%) of stop es mined in Block 5 

and Zone 3-1 (97%). Results from CMS scans were processed by mine geologists 

who compared CMS and planned stope sections to determine overbreak volumes 

and to identify the 'source of the dilution, an example of which is provided in 

Figure 6.34. 

For overbreak data measured by cavity survey (CMS) from mined stopes, 

measured Dilution Density (DDcms) is a term introduced in this study. It is the 

volume of overbreak on an exposed surface, and is expressed as: 

DDcms = Overbreak Volume (m3
) 

Surface area exposed (m2
) 

(6-10) 

Where: Overbreak Volume = the volume of unplanned dilution from the 

hanging-wall of individual stopes, às measured by the CMS scan. 

Surface area exposed = designed hanging-wall surface area, 

represented as true stope height multiplied by stope strike length. 
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Figure 6,34 Example of measured overbreak plotted against designed stope 
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Summaries of overbreak measured from CMS scans of stop es within Block 5 and 

Zone 3-1 are compiled in Table 6.16. Dilution statistics incorporate overbreak 

measured from both the hanging-waIl and footwaIl. Dilution percentages vary 

with stope type, but average at 29.6% and 37.7% for Block 5 and Zone 3-1, 

respectively. 

Table 6.16 Summary of dilution statistics from CMS scans 

Block 5 Zone 3-1 

Stope Total Dilution, mean Stope Total Dilution, mean 

Type value Type value 

Pl 40.7% Pl 45.2% 

P2 33.1% P2 31.2% 

P3 19.7% P3 32.7% 

SI 33.5% SI 45.8% 

S2 27.1% S2 32.4% 

As discussed previously in Chapter 2, a negative aspect of reporting dilution as a 

percent age is that the value is heavily influenced by the orezone width, and 

therefore, stOpe volume. The application of Dilution Density is used to quantify 

total overbreak as well as hanging-wall specifie unplanned dilution. This is 

illustrated for aIl Block 5 and Zone 3-1 stop es, regardless of mining method, in 

Table 6.17, and for only stopes mined by transverse methods in Table 6.18. 

Average DDcms values for (i) total stope overbreak from both the hanging-wall 

and footwall, and (ii) hanging-wall specifie overbreak are presented for each stope 

type. Data trends from Tables 6.17 and 6.18 include: 
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• For each stope type, combined hanging-wall and footwall overbreak is 

greater in Block 5 

• For each stope type, hanging-wall specific overbreak is greater in Block 5 

• Much of the Block 5 overbreak is associated with the hanging-wall. This 

trend is less pronounced in Zone 3-1 

Table 6.17 Summary of total surveyed stope dilution 

Stope Total Dilution, Total Hanging-wall Hanging -wall 

Type mean value and Footwall DDcms, DDcms. mean 

mean value value 

Block 5 Pl 40.7% 1.75 m 1.53 m 

P2 33.1% 2.92m 2.44m 

P3 19.7% 2.54m 1.83 m 

SI 33.5% 2.08m 1.82 m 

S2 27.1% 2.72m 2.05m 

Zone 3-1 Pl 45.2% 1.55 m 0.86m 

P2 31.2% 1.60m 0.86 m 

P3 32.7% 1.61 m 0.68m 

SI 45.8% 1.62 m 0.90m 

S2 32.4% 1.92 m 1.17 m 
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Table 6.18 Summary of surveyed stope dilution from transverse-mined stop es 

Stope Total Total measured Hanging-wall 

Type Dilution, Hanging-wall and DDcms 

mean value Footwall DDcms 

Block 5 Pl 34.0% 1.73 m 1.67m 

P2 33.1% 2.92m 2.44m 

P3 19.7% 2.54m 1.83 m 

SI 30.9% 2.20m 1.89m 

S2 29.0% 2.86m 2.18m 

, 

Zone 3-1 Pl 33.0% 1.27 m 0.66m 

P2 24.3% 1.33 m 0.57m 

P3 34.3% 1.63 m 0.81 m 

SI 46.7% 1.71 m 0.81 m 

S2 30.9% 1.89m 1.14 m 

The distribution of measured Block 5 and Zone 3-1 hanging-wall overbreak is 

examined further in the following section. 

6.7.3.1 Comparison of Zone 3-1 and Block 5 hanging-wall overbreak 

The severity of hanging-wall overbreak, associated with Zone 3-1 and Block 5 

stopes is summarized in Figure 6.35. Overbreak was calculated as equivalent 

Dilution Density (DDcms) for each stope. Zone 3-1 experienced significantly less 

hanging-wall overbreak than did Block. The majority of Zone 3-1 stopes (61%) 

had generated hanging-wall DDcms of 1 m or less. Relatively few (7%) Zone 3-1 

stopes experienced hanging-wall DDcms exceeding 2m. Conversely, only 29% of 
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the Block 5 stopes generated hanging-wall DDcms of lm or less, while a 

significant number of Block 5 stopes (46%) experienced hanging-wall DDcms 

exceeding 2m. 

Differences between the two zones can be attributed, in part, to differences in 

hanging-wall dimension. On the basis of empirical (Stability Graph) and 

parametric trends, the smaller Zone 3-1 stopes were anticipated to be more stable, 

and as a result, generate less overbreak. 
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Figure 6.35 Hanging-wall DDcms, Block 5 and Zone 3-1 stopes 

The distribution of overbreak severity, usmg Dilution Density calculations, 

associated with the five stope types within Zone 3-1 and Block 5 is presented in 

Figure 6.36 and 6.37, respectively. With Zone 3-1, the majority of stopes of all 

types were associated with overbreak values of one meter or less. Only one 

primary stope, representing 3% of the total primary stope population had a 

Dilution Density exceeding two meters. Four secondary stopes, or Il % of the 

total secondary stope population, had Dilution Density exceeding two meters. 
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With Block 5 stopes, a minority of primary and secondary stopes, 29% and 30% 

respectively, had hanging-wall Dilution Density of one meter or less. 55% of 

primary stopes experienced hanging-wall Dilution Densities exceeding two 

meters, of which Il % exceeded three meters. Similarly, 44% of secondary stopes 

generated hanging-wall Dilution Densities exceeding two meters, inc1uding 16% 

of stopes which exceeded three meters. 

195 



10,----------------------------------, 

8+-----~r_----~ 

6 +-----!!±~'I_------_l 

# stopes 

4 

2 

o 
< 1 1.01-2 

DDCTr6 (m) 

2.01-3 

• BL5 Pl 

ff.! BL5 P2 

Tl! BL5 P3 

>3 

100,-----------------------------------, 

80+-----~--------------~ 

• BL5 Pl 
ff.! BL5 P2 
~ BL5 P3 
~BL5 SI 
~ BL5 S2 

60+---------------------------------~ 

% ofstope '1 

type 
40+------------------

20 

o 
< 1 1.01-2 2.01-3 >3 

DDcm; (m) 

Figure 6.37 Hanging-wall DDcms, Block 5 stop es 

(a) Number of stop es 

per stope-type 

(b) Percentage of 

stop es per stope-type 

Average depth of Dilution Density for a specific stope type is presented in Figure 

6.38. With Zone 3-1, hanging-wall overbreak associated with each of the primary 

stope types (Pl, P2 and P3) is less than that of the secondary stopes. S2-type 

stopes, representing a 'true' secondary stope with mined and backfilled stopes at 

both si de walls, had the most severe overbreak. Hanging-wall Dilution Density of 

secondary stop es exceeded that of the average primary stope by 62%. 

With Block 5, the distinction between primary and secondary stopes is less 

apparent. The DDcms of the average primary stope was less than that of the S2-

types secomlary stopes (DDcms = 2.02m verses DDcms = 2.l8m). 
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Figure 6.38 Average hanging-wall DDcms versus stope type, transverse stopes 

Relationships between the individual Zone 3-1 stope types are analogous to those 

identified in Chapter 5 (Section 5.6) although the actual DDcIl1s values for the 10m 

wide stopes were greater than the parametric estimates. Parametric modelling 

suggested that primary stop es would experience less hanging-wall overbreak than 

secondary stopes, with S2-typ"e stopes experiencing the greatest dilution, as 

illustrated in Figure 6.39. Differences in the magnitude between actual and 

parametric values can be attributed to contributions from a variety of factors in 

addition to geometry, su ch as stope setting and construction. 

Block 5 stope hanging-wall dilution values did not generate a distinctly similar 

trend, as average values for primary and secondary stopes tended to be similar. 

As with Zone 3-1, differences between the magnitude of actual and parametric 

values can be attributed to contributions from a variety of factors in addition to 

geometry, such as stope setting and construction. 
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Figure 6.39 Parametric modelling - influence of stope type on Dilution Density 

Differences of overbreak associated between the differing stope types of Zone 3-1 

and Block 5 can be found in examining the presence and apparent effectiveness of 

hanging-wall cablebolt reinforcement. Unlike the hanging-wall of Zone 3-1, 

which was only reinforced by sill cablebolting (see Figure 6.22), the hanging-wall 

of the majority of Block 5 stopes were reinforced with cablebolts installed from a 

hanging-wall cable drift (see Figures 6.20 and 6.21). Block 5 hanging-wall 

cablebolts are discussed further in the following Section. 

6.7.3.2 Influence of hanging-wall cablebolting on overbreak 

To examine relationships between Dilution Density and Block 5 hanging-wall 

cablebolting, average DDcms values from aIl primary stopes were compared 

against that of S2-type secondary stopes. As mentioned previously, S2-type 

stopes represent 'true' secondary stopes, with mined and backfilled primary 

stopes on both si de walls. The data was further processed to isolate DDcms values 

according to the orientation of the hanging-wall cablebolting; cable fan-up and 

cable fan-down. See Figure 6.40. 

These values, plotted in Figure 6.41, show differences III Dilution Density 

severity associated with the orientation of the cablebolts. There was minimal 

difference (DDcms= O.lm) between primary stopes reinforced by either upward or 
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downward fanning cablebolts. For stop es reinforced by downward fanning 

cablebolts, overbreak was greater (by DDcms= 0.55m) for primary stopes. For 

stop es reinforced by upward fanning cablebolts, overbreak was reduced (by DD = 

O.4m) for primary stopes. However, overbreak in secondary stopes, reinforced by 

upward fanning cablebolts exceeded that of secondary stop es rèinforced by 

downward fanning cablebolts by (DDcms= 0.8m). 

The orientation of the cablebolts with respect to the anticipated direction of 

hanging-wall sloughage plays a role in the effectiveness of the reinforcement. 

Cablebolt capacity is mobilized under tensile load (Hyett et al., 1992; Kaiser et 

al., 1992; Maloney et al., 1992). As discussed in Section 6.5.1, the development 

of tensile load is possible for cablebolts orientated in a downward fan, as 

illustrated in Figure 6.42(a). Under shear loading conditions, the cablebolt 

functions passively, pro vi ding localized reinforcement between unravelling 

blocks. Cableholts orientated in an upward fan, illustrated in Figure 6.42(b), are 

subjected to more downward shear than tensile loading. 

Taking the relative effectiveness of cablebolt reinforcement into account, the 

DDcms values from stopes supported by upward fanning cablebolts are more 

representative of actual overhreak severity that would he generated with non

reinforced Block 5 stopes. 

Cable boit 
fun up 

fun down 

~~ __ .... Stope access 

Stope access 

Figure 6.40 Hanging-wall cableholt orientation 
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6.7.3.3 Relationship between hanging-wall overbreak and degree of orezone 

extraction 

Relationships between the average hanging-wall overbreak and orezone 

sequencing 25%, 50%, 75% and 100% extraction are presented in Figure 6.43. 

Commonly, with each mining stage, average DDcms associated with secondary 

stop es exceeds that of primary stopes. 

As reported in Section 6.7.2, Block 5 was mined in a pyramidal sequence over 

five mining horizons, advancing up towards previously mined and backfilled 

Block 4 stopes. Average DDcms values are similar for both primary and secondary 

stopes at early (25%) extraction of Block 5. ·Overbreak values increase with mid

stage (50%) extraction, as the sill pillar stopes directly underlying the previously 

mined Block 4 are mined. Late stage mining (75% and 100%) advances towards 

the abutments, effectively shedding stress away from the active mining front. 

Zone 3-1 was mined in a pyramidal sequence over eight mining horizons, 

advancing from a centre core towards the abutments. A narrow sill pillar, 

measuring approximately 60m along strike was created by mid-stage (50% to 

75%) extraction below previously mined and backfilled first stage (25%) stopes. 

Average DDcms values for aIl combined stopes during aIl stages of orezone 

extraction stay relatively consistent. 
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Figure 6.43 Average hanging-wall DDcms as a function of orezone extraction 

6.7.3.4 Relationship between hanging-wall overbreak and hydraulic radius 

The relationship between the hanging-wall hydraulic radius (HR) and the 

measured hanging-wall overbreak (DDcms) of stopes from both Zone 3-1 and 

Block 5 is plotted in Figure 6.44. Stopes are plotted according to the type of stope 

within the mining sequence. Clustering of data occurs, suggesting linear 

relationship between the two factors. Plotting the upper bound of the primary and 

secondary stopes, conservative design estimates of DDcms, based on the hydraulic 

radius of stop es from both Block 5 and Zone 3-1, can be obtained. These design 

estimates are represented by the following relationships: 

Primary stopes: DDcms = (2.1 . HR) - 5.2 (6-11) 

Secondary stopes: DDcms = (2.1 . HR) - 4.5 (6-12) 

where: HR = Hydraulic Radius (m), represented as true stope 

height multiplied by stope strike length. 
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Figure 6.44 Average hanging-wall DDcms as a function ofhydraulic radius 

6.7.3.5 Relationship between hanging-wall overbreak and stope cycle time 

The open stope cycle time exposure time is defined as the number of days 

between the first blast and the data at which the CMS scan was conducted. At 

Bousquet #2 mine, CMS scans were performed immediately upon the completion 

ofmucking, and prior to the start ofbackfilling. 

For Block 5 stopes, the stope exposure time ranged from as little as 17 days to as 

many as 127 days. Fifty percent of Block 5 stop es had a hanging-wall exposure 

time less than 37 days. As anticipated, the smaller Zone 3-1 stop es typically had 

a shorter stope exposure time ranged from as little as 12 days to as many as 127 

days. Fifty percent of Zone 3-1 stop es had a hanging-wall exposure time less than 

24 days. 

Comparison of stope cycle time against stope volume, shown in Figure 6.45, 

suggests a linear relationship for the rates at which the stopes were mucked, with 

a typical rate in the range of 370 tonnes per day. Upper and 10wer bounds 

correspond to 625 tonnes per day and 115 tonnes per day, respective1y. No 

distinct difference between the mucking rates for Block 5 and Zone 3-1 stop es are 

apparent. 
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Conversely, a comparison of stope cycle time against the measured hanging-wall 

Dilution Density, shown in Figure 6.46, does not show a direct relationship. In 

order to maintain the overall mine sequencing, stop es were promptly mucked and 

backfilled, thus hindering the potential for progressive, time-dependant 

degradation of the exposed stope walls (described previously in Chapter 3). 
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6.7.3.6 Summary of hanging-wall dilution database 

In Section 7.3.1, the severity of hanging-wall overbreak, as measured by CMS 

scans, was assessed for two discrete Bousquet orezone blocks: Zone 3-1 and 

Block 5. To aid in the comparisons, measured Dilution Density (DDcms) was a 

term introduced. 

Trends identified from the data, and summarized in Table 6.19, included: 

• Overbreak associated between the differing stope types of Zone 3-1 and 

Block 5 was examined. With Zone 3-1, average hanging-wall overbreak 

associated with secondary stopes was found to exceed that of primary 

stope types by 69%. 

• In Block 5, hanging-wall overbreak associated with secondary stop es was 

found to exceed that of primary stope types by 9%. However, it was 

shown that the magnitude of Block 5 hanging-wall dilution was influenced 

by the presence of cablebolt reinforcement. When considering only those 

stopes supported by cablebolts installed in an unfavourable orientation 

(cablebolts fanning upwards), average hanging-wall overbreak associated 

with secondary stopes was found to exceed that of primary stope types by 

16%. 

• Although at greater depth, Zone 3-1 stopes, with smaller hanging-wall 

dimensions, generated significantly less hanging-wall overbreak that did 

Block 5 stopes. Mean DDcms values for Zone 3-1 stopes were 0.94m, 

values for Block 5 were DDcms = 1.96m 

• The Zone 3-1 stopes generated less total overbreak (hanging-wall and 

footwall overbreak combined) that did Block 5 stopes. Mean total DDcms 

values for Zone 3-1 stop es were 1.69m, values for Block 5were DDcms = 

2.45m 

• The distribution of overbreak varied between the two orezones. In Block 

5, 80% of the total overbreak was associated with the hanging-wall, while 

60% of the total Zone 3-1 overbreak was associated with the hanging-wall. 

205 



• The stopes of Zone 3-1 and Block 5 had numerous comparable features, 

such as hanging-wall dip, mining method, stope construction, mucking 

rate and workforce. 

Table 6.19 Summary of stope hanging-wall dilution 

Block 5 Zone 3-1 

Mean Median Standard CoV Mean Median Standard 

value value deviation value value deviation 

Dilution 29.6% 24.2% 20.9% 71% 37.7% 32.2% 25% 

reported (%) 

Total DDcms 2.45 m 2.26m 1.57 m 64% 1.69m 1.54m 0.83 m 

from hanging-

wall and 

footwall 

combined 

Hanging-wall 1.96 m 1.95 m 1.39m 71% 0.94m 0.80m 0.63 m 

DDcms 

%DDcms from 80% 89% 22% 28% 57% 61% 26% 

hanging-wall 

source 

Stope Cycle 42 37 21 50% 27 24 16 

time (days) 
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6.8 Comparison of measured (DDcms ) and modelled (DD) overbreak 

The interaction of overbreak with empirical design charts commonly plots 

. measured hanging-wall dilution (in this case DDcms) with respect to stope 

dimension, such as that found in Alcott (2002) and Mah (1997). Using this 

approach, data from Bousquet Block 5 and Zone 3-1 stopes, when plotted exhibits 

tight clustering due to their common hanging-wall dimensions. See Figure 6.19. 

Other approaches, such as that of Martin et al., (2000) and Henning et al., 

(2001b), have taken the stress setting into account in visually comparing the 

measured CMS contour at the mid-strike of a stope against the modelled 

distribution of 0'3. 

ln this Section, the DDcms values obtained for the five stope-types are compared 

against DD values generated by 3-D elastic numerical modelling of individual 

stopes within the Block 5 and Zone 3-1 orebodies. The numerical modelling 

techniques used employed the same approach adopted for the parametric study, as 

described in Chapters 4 and 5. 

6.8.1 Numerical model description 

Detailed numerical models of the designed stopes of Block 5 and Zone 3-1 were 

constructed in Map3D. The Map3D model is based on the initial planned stope 

design and geometries. Individual stopes were constructed from the floor 

elevations at the base and top sill of each mining block from three-dimensional 

mine design CAD drawings. Stope setting, stope sequencing, hanging-wall dip 

angle, and orientation with respect to 0' 1 0 are incorporated into the model. 

Individual stopes were modelled according to the actual stope sequencing for the 

two zones. See Figures 6.47 and 6.48. Only one stope was mined per modelled 

step. That same stope was backfilled in the subsequent modelling stage. 
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Figure 6.47 Block 5 perspective view showing unmined, open, and backfilled 

stop es 
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Unmined 
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Figure 6.48 Zone 3-1 perspective view showing unmined, open, and backfilled 

stop es 

208 



Material properties for the host and orezone rock of Block 5 and Zone 3-1 were 

described previously in Section 6.4. As with the parametric modelling, rockmass 

input modelling parameters were obtained using Hoek-Brown relationships 

described in Section 4.3 (Table 4.6). Material and rockmass modelling input 

modelling parameters, assigned to the Block 5 and Zone 3-1 host and orezones are 

summarized in Table 6.20. Backfill modelling properties are provided in Table 

6.21. Stress setting was obtained from relationships provided in Section 6.4.4 

(Equations 6-1, 6-2, and 6-3). 

For each stope, modelled stresses within the hanging-wall were plotted on vertical 

and horizontal grids located at mid-span and mid-height, respectively. See Figure 

6.49. As with the parametric study, the grids extended to a depth of lOm from the 

stope. With the approach previously adopted for the parametric study, the volume 

of hanging-wall relaxation is calculated as the volume of one-half of a prolate 

ellipsoid. Measurement of DD is obtained using this volume and the surface area 

of each individual stope. 
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Table 6.20 Modelling input parameters, rockmass 

Parameter Bousquet #2 mine, Block 5 Bousquet #2 mine, 

Zone 3-1 

Host rock Orezone Host rock and Orezone 

Rock type foliated rhyolite maSSIve foliated rhyolite tuff 

tuff sulphide "alteration zone" 

RMR79 /GSI 50 75 48 

ues (cre) 112 MPa 211 MPa 59MPa 

Hoek-Brown 'mi' 10 17 10 

Disturbance 0 0 0 

Factor, D 

Rockmass Parameters 

Hoek-Brown 'm' 1.677 6.961 1.56 

Hoek-Brown 's' 0.004 0.062 0.003 

Rockmass elastic 10000 MPa 42200 MPa 6850 MPa 

modulus, (Enn) 

Rockmass tensile 0.26 MPa 1.88 MPa 0.18 MPa 

strength, (crt) 

Global rockmass 19.5 MPa 83.5 MPa 9.8 MPa 

compressIve 

strength, (crem) 
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Table 6.21 Modelling input parameters, backfill 

Parameter Material Value 

Uni axial compressive strength, cre 3MPa 

Elastic modulus, E 2500 MPa 

Poisson Ratio, u 0.35 

Mohr-coulomb parameters 

Cohesive strength 0.1 MPa 

InternaI angle of friction 35 degrees 

6.8.2 Model results 

At each successive mining step, the extent of a given iso-contour of cr3 was 

determined using the approach adopted for the parametric study, as described in 

Chapter 4 (section 4.6.2). See Figure 6.50. A database was constructed for the 

two orezones, in which values of modelled stope hanging-wall dimensions, stope 

type, radius distances of the three axes of the prolate ellipsoid, and calculated 

Dilution Densities are compiled for individual stopes. 

Figure 6.49 Grid positioning 
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Figure 6.50 cr3 iso-contours, secondary S2-type stope 

Visually, the 3D elastic modelling results showed that the depth at which a given 

contour of cr3 occurred in the hanging-wall varied with stope type. An example, 

provided in Figure 6.51, illustrates differences between a primary P-type and 

secondary S2-type stope. Two contours: cr3 = 0 and cr3 = 2MPa are shown. Note 

that for a given value, such as the cr3 = 0 MPa contour, the extent of the contour is 

greater in the secondary stope. 

(a) primary stope, cr3 :s 2MPa shown (b) secondary stope, cr3 :s 2MPa shown 

Figure 6.51 Comparison of cr3 contours associated with primary and secondary 

stope hanging-wall 
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To quantify observed di fferences , values of DD associated with (J3 contours, 

ranging from (J3 = (J! (tensile conditions) to cr3 = + 10 MPa (low range compression 

conditions), were calculated for each individual stope. For each orezone, data 

was grouped according to stope type. Average values for stope type, for a given 

(J3 contour, were compiled. These values are summarised and plotted in Figures 

6.52 and 6.53. Plotted values of (J3 greater than (J3 = 0 MPa correspond to 

compression conditions. Model details are summarized in Appendix C. 

The trends of Figures 6.52 and 6.53 show similarities between Block 5 and Zone 

3-1 stopes. For both orezones, primary stope types cluster closely together, 

typically within a range of DD = O.15m +/-. DD values increase slightly from Pl 

to P2 to P3-type stopes. For Block 5 stopes, S2-type stop es exhibit the greatest 

modelled overbreak, typically in the range of 1.06m DD greater than an averaged 

primary stope for a given (J3 contour. S 1-type stopes occur between the S2 and P

type stopes. Typically, potential modelled overbreak values in the range ofO.75m 

DD greater than an averaged primary stope were generated. 

With the smaller Zone 3-1 stopes, a similar trend was evident. Lower values of 

DD are due, in part, to the smaller stope dimensions. S2-type stopes exhibit the 

greatest modelled overbreak, typically in the range of O.62m DD greater than an 

averaged primary stope for a given (J3 contour. As with Block 5 observations, S 1-

type stop es occur between the S2 and P-type stopes, with potential modelled 

overbreak values in the range of O.31m DD greater than an averaged primary 

stope. 
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Figure 6.52 Average DD versus cr3 contours, aH Block 5 stopes 
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Figure 6.53 Average DD versus cr3 contours, aH Zone 3-1stopes 
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Linear trend lines for the DD versus cr3 re1ationships stope types within each of 

the two zones closely follow the plotted data, provided in Figure 6.54 and 6.55, 

illustrate the near-paralle1 slopes of the modelled data. For Block 5 stop es, this 

relationship can be expressed as: 

DD = 0.17 . cr3 + C (6-13) 

where: DD = modelled dilution density (m) 

cr3 = iso-contour value of minimum principal confining stress (MPa), and 

C = Stope type constant. 

For Block 5 P-type stopes, C = 0.36m 

For Block 5 SI-type stopes, C = l.13m 

For Block 5 S2-type stopes, C = 1.33m 

Similarly, for Zone 3-1 stopes, this relationship can be expressed as: 

DD = 0.1 0 . cr3 + C (6-14) 

where: DD = modelled dilution density (m) 

cr3 = iso-contour value of minimum principal confining stress (MPa), and 

C = Stope type constant. 

For Zone 3-1 P-type stopes, C = 0.08m 

For Zone 3-1 SI-type stopes, C = 0.43m 

For Zone 3-1 S2-type stopes, C = 0.73m 
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6.8.3 DD and DDcms overbreak comparison 

With this study, hanging-wall overbreak, expressed as dilution density has been 

determined using two approaches. Measured dilution density (DDcms) represents 

a true assessment ofhanging-wall overbreak, as determined using a physical CMS 

scan of the mined stope. The second approach uses 3-D numerical modelling 

techniques to estimate potential dilution density (DD) based on the extent of an 

envelope of low confinement stress, defined by the extents of cr3. 

To assess linkage between the DDcms and DD approaches, DD versus cr3 

relationships were compared against the average DDcms values obtained from the 

CMS database (see Table 6.22) for each stope type. As described in the 

parametric study (Chapter 5), differences in DD values between stopes of the two 

orezones can be attributed to smaller dimensions of Zone 3-1 stopes. Other 

factors, such as orezone depth and rockmass quality of the ore and host rock also 

play a role. Measured dilution density (DDcms) values of individual excavated 

stop es within the two Bousquet orezones are described in Section 6.7. 

Table 6.22 Average DDcms values, transverse stopes 

Orezone 

Stope type Block 5 Zone 3-1 

Primary (Pl, P2, P3) 2.02m O.7Im 

Secondary SI 1.87m O.SIm 

Secondary S2 2.18m 1.14m 

Relationships between DDcms and DD for Block 5 and Zone 3-1 stope types are 

plotted in Figures 6.56 and 6.57, respectively. The intercept of the measured 

DDcms value with the DD/cr3 distribution identifies what cr3 contour value 

corresponds to an appropriate DD in the numerical model. As can be seen in both 

plots, the values of DDcms for the primary and secondary stope types intercept the 
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corresponding DD curve at values of 0'3 exceeding zero, suggesting that the 

rockmass may fail under low values of compressive stress. For both orezones, the 

DDcms value for primary stopes intercepts the DD curve at a cr3 contour value 

exceeding that of either of the secondary stope types. Similarly, the DDcms value 

for SI-type secondary stopes intercepts the DD curve at a 0'3 contour value lower 

than both the P-type and S2-type stopes. The modelled cr3 contour values 

corresponding to the DDcms for each stope type in Block 5 and Zone 3-1, 

summarized in Table 6.23, can be obtained by using Equations 6-13 and 6-14, and 

the averaged CMS-based data provided Table 6.22. 
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Figure 6.56 Average DD versus cr3 contour, Block 5 transverse stopes 
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Figure 6.57 Average DD versus 0'3 contour, Zone 3-1 transverse stop es 

Table 6.23 Modelled 0'3 contour corresponding to measured overbreak values 

Block 5 Zone 3-1 

Stope type DDcms Corresponding DDcms Corresponding 

value 0'3 contour value 0'3 contour 

value value 

Primary CP 1, P2, P3) 2.02m 9.8 MPa 0.71m 6.3 MPa 

Secondary SI 1.87m 4.4 MPa 0.81m 3.8 MPa 

Secondary S2 2.18m 5.0 MPa 1.14m 4.1 MPa 
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6.8.4 Summary of model results 

Intercepts of measured DDcms with modelled DD curves for specific stope types, 

illustrated in Figure 6.56 and 6.57, and summarized in Table 6.23, are combined 

in Figure 6.58. As shown previously in Section 6.6, Block 5 and Zone 3-1 

orezones had many common elements, such as stope height, orezone dip, orezone 

orientation with respect to pre-mining stresses, quality of the host rockmass, and 

the design and excavation of the individual stopes. Parametric investigations 

(Section 5.2), suggest that the increased depth at which mining occurs, such as 

that between Zone 3-1 and Block 5, plays only a minor role in increasing the 

severity of overbreak, as simulated by an elastic 3-D numerical model. As a 

result, it can be inferred that the differences in strike length of the stopes of Zone 

3-1 and Block 5 are dominant factors influencing measured and modelled 

overbreak. As provided in Table 6.13, typical strike lengths for Zone 3-1 and 

Block 5 stop es are 10m and 15m, respectively. 

Taking the elastic nature of the 3-D model into account, relationships can be 

defined between DD and DDcms, based on ranges of modelled cr3 contours. Figure 

6.58 plots the contours of modelled cr3 that correspond to measured average 

overbreak for primary (P-type) and secondary (S 1 and S2-type) stopes. For 

example, when simulating overbreak associated with a Zone 3-1 primary stope 

(10m strike length), a modelled DD value calculated using the prolate ellipsoid 

axes defined by the cr3 = 6.3 MPa contour corresponds to the measured DDcms 

value for a typical Zone 3-1 primary stope. 

Two clusters occur in Figure 6.58: primary stope and secondary stope. Primary 

stope values are associated with cr3 contours exceeding 6MPa. Projecting a linear 

trend line between the 10m and 15m strike lengths, an inclined slope, increasing 

at a rise:run ratio of 0.4: 1 is generated. Secondary stopes are associated with cr3 

contours in the range of 4 to 5MPa. Linear trend lines between 10m and 15m 

strike lengths are steeper than that of primary stopes. For SI-type stopes, the 

trend line increases at a rise:run ratio of 1.7: 1. The trend line for S2-stopes 

increases at a rise:run ratio of 0.9: 1. Contours of low confining stress (cr3) vary 
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between primary and secondary stop es due to the influence of mined geometry on 

the 3-D elastic numerical model. As illustrated previously in Figure 6.51, the 

depth at which a low value 0"3 contour is generated in the hanging-wall is greater 

in a secondary stope than in a similarly sized primary stope hanging-wall. 
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Figure 6.58 Modelled 0"3 contours corresponding to measured DDcms overbreak 

values 

6.8.4.1 Limitation of numerical modelling and calculation methodology 

The approach adopted for this study can be used to predict reasonable estimates of 

overbreak severity for individual stope types with height of 30m and strike 

lengths ranging between 10m and 15m. The use of specifie contours of 0"3 

represents an adjustment factor between the measured overbreak and modelled 

simulation. By definition, numerical modelling represents an idealized 

simplification of physical characteristics. Simplifications and limitations of the 

numerical modelling approach used includes both the type of 3-D modelling tool 

utilized, and the methodology employed to calculate modelled overbreak. 

Simulation of rockmass reinforcement and non-linear rockmass behaviour were 

beyond the capability of the 3-D elastic modelling software used (Map3D). As a 

result, the hanging-wall cablebolts used in Block 5 were not modelled, nor was 

non-linear failure. 
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The stopes in Block 5 and Zone 3-1 were constructed according to the designed 

stope geometry. Overbreak or potentially damaged ground from prior mining was 

not incorporated into the mode!. For example, the geometry of mined stopes was 

not modified to reflect mined geometry (as measured by CMS) prior mining of 

subsequent stopes. 

The methodology employed to estimate modelled overbreak (DD) assumed that 

DD corresponds to the volume of one-half of a prolate ellipsoid. When modelled, 

the cr3 iso-contours generated in the stope hanging-wall were not always 

parabolic. This was observed both in section view (see Figure 6.59), and in plan 

(see Figure 6.60). As a result, DD obtained from the numerical mode! may in 

sorne cases, represent a low-range estimate of overbeak. 

In general, it was observed that the cr3 iso-contours associated with primary stop es 

tended to be symmetrical in both plan and section views. With S 1 and S2-type 

stopes, the vertical (section) 0"3 iso-contour profile was asymmetric, due to 

influence of adjacent mined stopes. In plan, the 0"3 iso-contour associated with the 

S 1 stope were asymmetric, whereas S2-type stopes, located between two mined 

stop es generated symmetrical 0"3 iso-contours 

prolate ellipg)id 
surface 

modelled profile of 0"3 

iso-contour 

Figure 6.59 Section view showing 0"3 iso-contour profile and equivalent prolate 

ellipsoid surface, S2 type stope 
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6.9 Primary and secondary stope failure modes 

Measured overbreak varies with stope type, with secondary stopes generating a 

greater volume of hanging-wall dilution than primary stopes. This was observed 

in: (i) Parametric studies; (ii) the stop es of Zone 3-1 stopes, (iii) in stopes of 

Block 5 that had not been reinforced by downward fanning cablebolts, and (iv) in 

numerical modelling of Block 5 and Zone 3-1 sequencing. Typically, the 

following relationships were observed: 

DDcms (secondary stopes) > DDcms (primary stopes) 

DD (secondary stopes) > DD (primary stopes) 

( 6-15) 

(6-16) 

These observed contrasts between primary and secondary stopes suggest differing 

mechanisms associated with the generation of potential hanging-wall dilution. 
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6.9.1 Pre-conditioning of secondary stope hanging-walls 

DD values for the secondary stop es are significantly greater than those associated 

with a primary stope. When viewing the results of 3-D numerical modelling, such 

as that shown in Figure 6.51, the depth that a given cr3 iso-contour extends into 

the hanging-wall varies with stope type, and is greater with secondary-type 

stopes. 

Physically, the SI and S2 type stop es lie in a different stress setting than the 

primary (P 1, P2 and P3 type) stopes. Primary stop es are, by definition, isolated 

from adjacent mined stopes by substantial rock pillars on both side walls. These 

pillars are mined at a later stage of the mining sequence as secondary stopes. 

Being isolated, much of the hanging-wall rockmass has not been significantly pre

conditioned by stress relaxation or stress-induced damage by prior mining. An 

exception is where undercutting of the top sill of the underlying stope results in 

localized rockmass relaxation at the base ofthe overlying primary stope. 

With the secondary stopes, the hanging-wall rockmass is in an elevated state of 

relaxation due to prior mining of stop es on one or both si des, as weIl as below. 

Rockmass relaxation refers to stress reduction parallel to the excavation wall. As 

described by Kaiser et al. (1997), rockmass relaxation describes conditions where 

the stresses in the tangential direction to the excavation wall (the major and/or 

intermediate principal stress) are reduced in the rockmass. In practice, such 

conditions are encountered, for example when a hanging-wall is undercut, 

intentionally or by caving of the hanging-wall in an underlying stope, .or by the 

prior extraction of the primary stop es (Bawden et al., 1998). This is most evident 

with the S2-type stopes, which are bound on three sides by mined stopes, as 

illustrated in Figure 6.61. Instability occurs wh en the rockmass has reached a 

critical relaxation threshold at which gravity-driven failure modes or slip along 

weakness planes is encountered. Hence, full relaxation causmg zero or even 

tensile stress conditions is not required to cause failure. 
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The rockmass of secondary stopes may be further pre-conditioned by stress

induced damages associated with prior mining of the primary stopes, by time

dependent weakening pro cesses or by poor blasting practices. Rockmass 

degradation describes conditions where the rockmass quality and thus the 

rockmass strength has been reduced relative to its virgin state. 

As discussed in Section 4.3.3, induced stresses are the result of excavation 

activity. When an excavation is made, stresses are shed onto adjacent material. . 

The rock left standing has to take more load since the original confinement 

provided by the rock within the excavation has been removed. The impact of 

induced stress depends on: (i) the initial, pre-mining state of stress, (ii) the 

geometry of the excavation, and (iii) the constitutive (stress-strain) behaviour of 

the rockmass. According to Kaiser et al. (1997), rockmass degradation occurs as 

a result of stress-induced fracturing or fracture propagation, resulting in a reduced 

tensile strength or load bearing capacity of the rockmass. 
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6.9.2 Primary and secondary stope hanging-wall stress setting 

Observations from the blast vibration monitoring (Section 5.8.1) suggested that 

mining of secondary stopes occur within a lower stress environment. 

Underground at Bousquet #2 mme, this stress relaxation was associated 

anecdotally by: (i) a reduced requirement for re-drilling of production blastholes, 

and (ii) fewer accounts ofworking ground. 

To assess hanging-wall stress conditions, primary (P-type) and secondary (SI and 

S2-type) stopes, located in Block 5 were examined using Map3D numerical 

modelling. The Block 5 Map3D model is described in Section 6.8.1. Modelled 

<J) and 03 stresses were obtained at points located at depths of 1.25m, 2.5m, and 

Sm from, and orthogonal to, the stope hanging-wall contact. The positions of the 

grid points, as well as the modelled stop es are shown in Figure 6.62. The stopes 

of Block S were mined according to the actual stope sequencing. Only one stope 

as mined per modelled step, that same stope was backfilled at the subsequent 

modeUing stage. 

For each stope, three stress setting were compiled: pre-mining stress, pre-stope 

stress and post-stope stress. Pre-mining stress refers to the natural stress setting, 

prior to the onset of orezone extraction. Pre-stope stress represents the local, 

induced stress state in the immediate vicinity of the planned stope at the time of 

the onset of mining a specific stope. Post-stope stress is the local stress state in 

the vicinity of the mined, unfilled stope. Modelled stresses are compiled in Table 

6.24. 
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Table 6.24 Hanging-wall stress setting 

Stope Distance from 
.. 

pre-stope stress post-stope pre-mmmg 

type stope hanging- stress (MPa) (MPa) stress (MPa) 

wall boundary 
0"1 0"3 0"1 0"3 0"1 0"3 

1.25 m 70.3, 31.1 80.1 39.3 15.9 0.8 

P 2.5m 70.3 31.1 80.4 39.4 28.1 1.6 

5m 70.3 31.1 80.7 39.2 45.8 7.0 

1.25 m 68.5 30.3 104.2 50.2 18.9 -3.6 

SI 2.5m 68.5 30.3 102.7 47.7 27.7 -0.8 

Sm 68.5 30.3 99.2 42.2 44.2 6.3 

1.25 m 70.3 31.1 115.9 50.1 4.9 -6.7 

S2 2.5m 70.3 31.1 116.6 47.9 13.8 -3.1 

Sm 70.3 31.1 115.9 44.1 25.5 0.1 
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Figure 6.62 Plot of grid points projecting from stope center into hanging-wall 

The calculated stresses are compared against Hoek-Brown failure criteria~ The 

Hoek-Brown failure criterion was originally developed for application to rock 

around underground openings under confined conditions (Hoek and Brown, 

1980). For most hard-rockmasses the failure criterion is usually expressed in the 

following form: 

a = a + (m' a . a + s'a 2)0.5 1 3 c 3 c (6-17) 

where: al, cr3 = principal effective stresses at failure 

ae = unconfined compressive strength of the intact rock 

m, S = parameters defined by Hoek and Brown (1998) 

Hoek-Brown parameters are discussed in Section 4.3.4. Hoek-Brown parameters 

for the Bouquet #2 mine analyses are provided in Table 6.7, and described in 

Section 6.4. 
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Plots of major and minor principal pre-stoping stresses at the stope mid-height, 

provided in Figure 6.63, illustrate anticipated stability of the up.exposed hanging

wall. Using conventional Hoek-Brown rockmass failure criterion, the hanging

walls of the unmined primary and secondary stop es are indicated as stable. The 

data points from the primary stope cluster closely together, indicating uniform 

stress setting. The data points have a greater distribution with the secondary 

stope, with the value of 0"3 increasing with closer proximity to the as-yet unmined 

stope. The primary stope hanging-wall values plot weIl below the Hoek-Brown 

threshold, suggesting stable pre-mining hanging-wall conditions. Secondary S 1 

and S2-type stope hanging-wall values, with increased 0"1 values, plot closer to the 

failure threshold, suggesting a potential for degradation of the rockmass by 

induced stresses. Values for the S2-type stope plot closest to the threshold. 
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Figure 6.63 Pre-stoping stress conditions in hanging-wall 

Following excavation, cri and cr3 stresses (post-stoping stress) have decreased for 

aIl stope types, indicating rockmass relaxation. See Figure 6.64. For the primary 

stope, values of 0"3 are near-zero, but marginally positive, at depths of 1.25 and 
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2.5m into the hanging-wall. At a depth of 5m into the hanging-wall, confined 

conditions are indicated by a positive value of (J3. Values of (J3 are negative to a 

depth of 5m into the hanging-wall of the secondary S2-type stope. The SI stope 

lies between the P and S2 stopes. Negative (J3 values were generated by the SI 

stop es to a depth of 2.5m into the hanging-wall, while confined conditions were 

indicated at a 5m depth. In the region with confinement loss «J3=0 MPa) a 

potential for sloughage exists, however not aU of this zone will fail if the 

rockmass has sorne self-supporting capacity. 
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Figure 6.64 Hanging-waU stress conditions after mining 

The potential stress paths that a rockmass around an underground opemng 

experiences are illustrated in Figure 6.65. Inspection of Figure 6.65 illustrates 

that for most stress paths the rockmass is fundamentally unloaded. Stress paths 

associated with the pre-mining, pre-stope, and post-stope stages of P, SI and S2-

type stopes are illustrated in Figure 6.66. For each stope type, stresses generated 

at 2.5m depth into the hanging-wall are plotted. Figure 6.66 illustrates stress 

increase from pre-mined (in situ) conditions prior to stoping, due to other, prior, 
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.~. stoping. Stresses are greater for the secondary stopes, reflecting the shed ding of 

stress onto adjacent pillars and abutments following mining of the primary stopes. 

Depending on the competency of the rockmass, sorne degradation may occur. 

With mining, the stresses within the hanging-wall of aIl stope types decreases, 

indicating that the rockmass has unloaded. Tensile conditions (0'3 < 0) are 

indicated at a depth of 2.5m into the hanging-wall for both the S2 and S 1-type 

stopes. Decreases are greatest for the S2-type stope, followed by the S 1 stope. 

Low confinement conditions are indicated for the P-type stope, where 0'3 stresses 

marginally above zero occur at a depth of2.5m into the hanging-wall. 
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Figure 6.65 Illustration of possible stress paths near underground openmgs 

(Martin et al., 1999) 
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Figure 6.66 Modelled hanging-wall stress paths at point located 2.5m into 

hanging-wall 

6.9.3 Summary 

Intrinsic differences between primary and secondary stope performance, indicated 

by observed differences in blast vibration attenuation, and in excavated stope 

profile, demonstrates that the radial confining stress on secondary stope is 

reduced. 

Stress path trends, shown schematically in Figure 6.67, identify differences 

between the performance of primary and secondary stope hanging-walls. In close 

proximity to the stope wall, it was noted that the secondary stopes experience a 

greater degree of pre-conditioning, in the form of both stress-induced damage by 

prior mining (pre-stoping) and by stress relaxation (post-stoping). Pre

conditioning was greatest with the S2-type stope. 

Following production blasting of adjacent primary stopes, stresses were 

redistributed around the stope. Pre-conditioning of the secondary stope hanging

wall, due to these induced stresses resulted in rockmass yielding and an envelope 
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.~ .. of de-stressed rock surrounding the stope. With mining of the secondary stope, 

additional stress relief occurs as induced stresses are redirected away from the 

adjacent backfilled stopes, onto the abutments. 

Primary stope Secondary stope 

Figure 6.67 Schematic stress paths - primary and secondary stopes 
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CHAPTER 7 

CONCLUDING REMARKS 

Unplanned ore dilution or stope overbreak, which has a direct and large influence 

on the cost of a stope, and ultimately on the profitability of a mining operation, 

can be attributed to both the mining process and to geologic setting. The primary 

objective of the research undertaken was to establish new models for stope and 

orezone design, with respect to anticipated stope overbreak, focusing on the 

position and type of stope within the orezone extraction sequence. Identified 

factors influencing unplanned dilution, such as induced stress environment, stope 

geometry, and the setting of individual stopes were considered. 

The research undertaken incorporates a variety of components, including (1) 

parametric 3-D numerical modelling to examine influences of individual factors 

on hanging-wall overbreak, (2) case example analysis, and (3) orezone extraction 

sequence simulation, using 3-D elastic numerical modelling. 

The major achievements for this research include the following: 

• Established a comprehensive geomechanics database 

• Developed a simple methodology to assess potential overbreak from 

numerically modelled orezone geometry 

• Evaluated the influence ofmine depth, hanging-wall dimensions, hanging

wall dip angle, stress orientation, stope type, rockmass quality and stope 

construction factors on hanging-wall ore dilution 

234 



r-... • A case study of two discrete orezones at the Bousquet #2 mine, identified 

as Block 5 and Zone 3-1 was described. Physical characteristics and 

measured stope dilutionsassociated with stop es from both zones were 

compared in detail. 

• Analysed relationships between modelled overbreak (DD) and measured 

overbreak (DDcms) 

• Defined relationships between identified dilution factors 

• Compared stress paths associated with primary and secondary-type stop es 

7.1 Establishment of a comprehensive database 

Extensive stope construction and recovery data was obtained from two discrete 

orezones at the Bousquet #2 mine. The data for this research was compiled 

during numerous site visits to the Bousquet #2 mine between 2000 and 2002. 

Based on stope mining information, rockmass mapping and classification, as well 

as CMS survey data, a comprehensive empirical database, consisting of 172 stope 

histories was established for the study. The following information was included 

in the database: 

• Stope construction details, including stope drilling and blast design, 

• Stope excavation details, including CMS results and the stope cycle time 

between blasting and the CMS survey, 

• Stope type category, 

• Stope sequencing within the mining block, 

• Geology and rockmass structures, 

• Stress environment, and 

• Rockmass classification 

The database is an important resource for the dilution study. The comprehensive 

database is presented in Appendix B. 
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7.2 Quantifying ore dilution 

A simple methodology was developed to assess potential overbreak from 

numerically modelled 3-D orezone geometry. Hanging-wall stresses of individual 

stopes were plotted onto grid planes placed at the mid-span and mid-height of the 

stope. The extent of the potential relaxation zone was determined from iso

contours of minimum principal stress (cr3) associated with a given stope. For the 

parametric study, hanging-wall relaxation depth was defined as the maximum 

depth of the cr3 = 0 MPa iso-contour 

The volume of potential hanging-wall relaxation for a given 3-D stope geometry 

was represented as the volume ofhalf a prolate ellipsoid, V pe, which is defined as: 

(7-1) 

where: rI, r2, and r3 are radial distances from centre of stope to cr3 stress 

iso-contour; r1 = perpendicular radius distance, r2 = vertical 

radius distance, r3 = horizontal radius distance 

For three-dimensional simulations, the ore Dilution Density (DD) is a term 

introduced in this study to denote potential hanging-wall overbreak. DD 

represents the volume of potential relaxation, bound by a specified minimum 

principal stress contour, such as the zero stress contour (cr3 = 0 MPa). 

DD=Vpe/(l' ·h') (7-2) 

where: V pe is the volume ofhalf of a prolate ellipsoid (m\ and 

l'and h' represent modelled hanging-wall surface area (m2); l' 

represents modelled strike length, and h' refers to the modelled 

stope height. 

For overbreak data measured by cavity survey (CMS) from mined stopes, 

measured Dilution Density (DDcms) is a term introduced in this study. It is the 

volume of overbreak on an exposed surface, and is expressed as: 
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DDcms = Surveyed Overbreak Volume Cm3
) 

Surface area exposed (m2
) 

(7-3) 

The DD and DDcms terms both express a measure of overbreak. However, they 

are calculated from differing sources: DDcms is derived from observed overbreak 

volume, measured via a cavity survey of the excavated stope. DD represents 

overbreak simulated by the distribution of a3 stresses around stope blocks created 

in a 3-D elastic stress mode!. 

7.3 Impact of individual factors on hanging-wall dilution 

Parametric numerical modelling studies were undertaken to examine the impact of 

a variety of factors on hanging-wall ore dilution. The influence of mine depth, 

hanging-wall dimensions, hanging-wall dip angle, stress orientation, stope type, 

rockmass quality and stope construction factors on hanging-wall ore dilution were 

evaluated. 

The parametric study considered two criteria for overbreak: (i) the volume of 

relaxed ground available for overbreak, assuming the rockmass has no tensile 

strength, represented by the a3 = 0 MPa; and (ii) the a3 = at contour, which 

considers the rockmass tensile strength. 

7.3.1 Effect of mining depth 

Stope mining depth was found not to play a significant role in the extent of a3 = 0 

MPa contour within the hanging-wall as overbreak associated with a3=O contour 

do es not increase significantly with depth. For example, as the mining depth 

increases from 750m to 2250m, the increase in DD is only O.05m or 8.6% for a 

20m long stope. 

However, for stop es with strike lengths exceeding 15 meters, overbreak 

associated with rockmass tensile strength (at) contour increased with depth. With 

a 20m long stope, the severity of potential dilution associated with the a3 = at 

contour increased from O.02m to O.2m between shallow and moderate depth. As 
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mining depth increased from 1500m to 2250m depth, DD associated with the 0"3 = 

O"t contour increased from O.2m to 0.28m. 

7.3.2 Dilution density relationship with varying stope height and strike 

length 

Stopes with large vertical and short horizontal dimensions or stop es having long 

horizontal and short vertical dimensions are more stable than large square-like 

stopes. Rectangular stop es with vertical height and strike lengths of 15m or less 

are more stable than large rectangular stopes. DD is reduced for stop es with 

Aspect Ratios of 0.5 or less, or rectangular stopes with vertical height and strike 

lengths less than 15m. Increased overbreak is associated with Aspect Ratios of 1. 

7.3.3 Effect of hanging-wall dip angle on dilution density 

Modelled overbreak increased as the hanging-wall dip angle becomes 

increasingly shallow. The influence on hanging-wall dip angle on overbreak is 

more pronounced as strike length increases. For a 30m high x 30 long stope, 

overbreak increases by 0.22m or 29% when the dip angle changes from 80° to 

60°. 

7.3.4 Effect of stress orientation on dilution density 

Modelled overbreak is reduced when the orientation of pre-mining principal stress 

(ad is parallel to the strike of the stope. A decrease in DD by 0.08rn or 16% 

occurs when pre-mining stresses are parallel rather than perpendicular on a 20rn 

long stope. Major principal stress orientation influences stope overbreak as strike 

length increases beyond 20rn for a 30rn high stope. 

238 



7.3.5 Effect of rockmass quality on dilution density 

The influence of rockmass quality did not impact Dilution Density values 

associated with the cr3 = 0 contour. With the elastic numerical modelling, the 

shape of the cr3 = 0 contour varied with stope shape and was not influenced by 

rockmass quality. However, Dilution Density values associated with the cr3 = cr! 

contours varied across the three quality ranges. A high quality rockmass has a 

more competent structure and will have greater tensile capacity prior to failure. 

As a result, the severity of anticipated overbreak diminishes as the rockmass 

quality of the host rock increases. 

7.3.6 Effect of stope type on dilution density 

Five stope types were identified, based on their position within a tabular blasthole 

mining sequence. Three stope types are c1assified as primary (Pl, P2 and P3) and 

two are secondary stopes (S land S2). The type of stope influences the severity 

of modelled overbreak. Overbreak potential increased slightly between the three 

primary stope types, and increased significantly wh en comparing the primary and 

secondary stope types. In a general sense, this can be expressed as: 

DDp < DDs1 <DDs2 (7-4) 

where: DDp = DD generated by primary (Pl, P2 and P3) type stopes 

DDs 1 = DD generated by SI-type stop es 

DDs2 = DD generated by S2-type stop es 

7.3.7 Effeet of Construction factors on dilution density 

Stope construction refers to the techniques employed to prepare and extract a 

stope block. The various components involved with the design, drilling, and 

excavation of an individual stope play a critical role determining mining success. 

Three construction factors (DDctJ were identified: Blasting, drillhole deviation 

and undercutting. BIast damage may generate a zone of decreased rockmass 
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quality at the stope boundary, to a depth exceeding one meter within the hanging

wall. The severity of blast vibration damage diminishes away from the stope 

boundary. With blasting, the severity of overbreak was reduced by limiting blast 

vibrations to less than 600 mm/second within hanging-wall rock. A good quality 

ho st rockmass is less susceptible to blast vibration damage. 

Dilution associated with drill hole deviation is largely govemed by human error 

and operator skill. Overbreak damages are reduced by good operator practices, 

such as avoiding set-up errors, and using good, well maintained equipment. 

The extent ofhanging-wall undercutting on both the top and bottom sill exposures 

directly influence overbreak. Overbreak increases as the depth and lateral extent 

of undercutting increases. 

7.4 Case study of Bousquet #2 Mine 

The Bousquet #2 mine operation was described in detail. Two individual 

orezones, identified as Block 5 and Zone 3-1 were described and compared. 

Physical differences between the two zones included depth below surface, method 

of hanging-wall reinforcement, hanging-wall dimensions and stope volume. 

Physical similarities included rockmass characteristics of the host rock, 

construction factors (such as workforce skill, equipment used, mining method and 

production drill patterns), orientation with respect to pre-mining stresses, and dip 

of the stope hanging-walls. 

The severity ofhanging-wall overbreak, as measured by CMS scans, was assessed 

for Zone 3-1 and Block 5. See Figure 7.1. 
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Figure 7.1 Average measured hanging-wall Dilution Density verses stope type 

With Zone 3-1, average hanging-wall overbreak associated with secondary stopes 

was found to exceed that of primary stope types by 69%. In Block 5, hanging

wall overbreak associated with secondary stop es was found to exceed that of 

primary stope types by 9%. However, it was shown that the magnitude of Block 

5 hanging-wall dilution was influenced by the presence of cablebolt 

reinforcement. When considering only those stop es supported by cablebolts 

installed in an unfavourable orientation (cablebolts fanning upwards), average 

hanging-wall overbreak associated with secondary stopes was found to exceed 

that of primary stope types by 16%. 

Although at greater depth, Zone 3-1 stopes, with smaller hanging-wall 

dimensions, generated significantly less hanging-wall overbreak that did Block 5 

stopes. Mean DDcms values for Zone 3-1 stopes were O.94m, values for Block 5 

were DDcms = 1.96m 

The relationship between the hanging-wall hydraulic radius (HR) and the 

measured hanging-wall overbreak (DDcms) of stop es from both Zone 3-1 and 
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Block 5 was examined. When the stope data was plotted according to the type of 

stope within the mining sequènce, clustering of data suggested a linear 

relationship between the two factors. By plotting the upper bound of the primary 

and secondary stopes, conservative design estimates of DDcms, based on hydraulic 

radius were developed. These design estimates are represented by the following 

relationships: 

Primary stopes: DDcms = (2.1 . HR) - 5.2 

Secondary stopes: DDcms = (2.1 . HR) - 4.5 

(7-5) 

(7-6) 

where: HR = Hydraulic Radius (m), represented as true stope 

height multiplied by stope strike length. 

7.5 Cornparison of rneasured and rnodelled overbreak 

With this research, hanging-wall overbreak, expressed as dilution density has 

been determined using two approaches. Measured dilution density (DDcms) 

represents a true assessment of hanging-wall overbreak, as determined using a 

physical CMS scan of the mined stope. The second approach uses 3-D numerical 

modelling techniques to estimate potential dilution density (DD) based on the 

extent of an envelope of low confinement stress, defined by the extents of cr3. 

Detailed numerical models of the designed stopes of Block 5 and Zone 3-1 were 

constructed in Map3D, based on the initial planned stope design and geometries. 

lndividual stop es were modelled according to the actua1 stope sequencing for the 

two zones. At each successive mining step, the extent of a given iso-contour of 

cr3 was determined. A database, summarized in Appendix C, was constructed in 

which values of modelled stope hanging-wall dimensions, stope type, radius 

distances of the three axes of the pro1ate ellipsoid, and ca1cu1ated Dilution 

Densities are compiled for individual stopes and averaged for each stope type. 

The data trends revealed similarities between Block 5 and the smaller Zone 3-1 

stopes. For both orezones, primary stope types cluster closely together, typically 

within a range of DD = O.15m +/-. S2-type stopes exhibit the greatest modelled 
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overbreak, typically in the range of 0.62 to 1.06m DD greater than an averaged 

primary stope for a given 03 contour (varying between Zone 3-1 and Block 5). 

SI-type stopes occur between the S2 and P-type stopes. Typically, potential 

modelled overbreak values in the range of 0.31m to 0.75m DD greater than an 

averaged primary stope were generated (again, varying from Zone 3-1 to Block 

5). 

To assess linkage between the DDcms and DD approaches, DD versus 0'3 

relationships were compared against the average DDcms values for each stope 

type. Figure 7.2 shows the example for Zone 3-1 stopes. Low range compresive 

stress conditions are represented 03 values exceeding 03 = 0 MPa. The intercept 

. of the measured DDcms value with the DD/0'3 distribution identifies what 0'3 

contour value corresponds to an appropriate DD in the numerical model. For both 

orezones, the DDcms value for primary stopes intercepted the DD curve at a 0'3 

contour value exceeding that of either of the secondary stope types. Similarly, the 

DDcms value for SI-type secondary stopes intercept the DD curve at a 0'3 contour 

value lower than both the P-type and S2-type stopes. 
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~ ... Relationships were established between DD and DDcms, based on ranges of 

modelled 0"3 contours. Intercepts of measured DDcms with modelled DD curves 

for specific stope types are combined in Figure 7.3, which plots the contours of 

modelled 0"3 that correspond to measured average overbreak for primary (P-type) 

and secondary (S 1 and S2 -type) stopes. 

Two clusters occur in Figure 7.3. Primary stope values are associated with 0"3 

contours exceeding 6MPa. Projecting a linear trend line between the lOm and 

15m strike lengths, an inclined slope is generated. Secondary stop es are 

associated with 0"3 contours in the range of 4 to 5MPa. Linear trend lines between 

lOm and 15m strike lengths are steeper than that of primary stopes. 
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Figure 7.3 Modelled 0"3 contours corresponding to measured DDcms overbreak 

values 

7.5.1 Relationship between modelled and measured dilution density 

A comparison of measured overbreak (DDcms) and overbreak simulated by the 

numerical model (DD) reveals that the numerical modelling predictions, based 

sol el y on the 03= 0 MPa iso-contour, underestimate actual values. By definition, 

numerical modelling represents an idealized simplification of physical 

characteristics. Simplifications and limitations of the numerical modelling 
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approach used includes both the type of modelling tool used, and the 

methodology employed to calculate modelled overbreak. 

The approach adopted for this study can be used to predict reasonable numerically 

modelled estimates of overbreak severity for individual stope types with height of 

30m and strike lengths ranging between 10m and 15m. The use of specific 

contours of cr3 represents an adjustment factor between the measured overbreak 

and modelled simulation. 

7.6 Relationships between dilution parameters factors 

Four categories of factors that influence overbreak are: (i) initial design, (ii) stope 

excavation, (iii) stope recovery, and (iv) data integration. Relationships between 

these factors are illustrated in Figure 7.4. Sorne factors, such as geology and 

rockmass quality, are inherent to a given mine setting. Others are due to large 

scale (mine-wide) and sm aIl scale (stope-wide) planning and design. 

The relationship shown in Figure 7.4 is iterative. Initial design, followed by stope 

excavation, influence the success of stope recovery. Data integration, in the forrn 

of analysis of CMS data and/or numerical modelling, provides insight that can 

influence subsequent stope design. 

1 Initial Design 1 . M ine Design 
• Stop e Design 
• Geology and rock mass 

1 Data Integration 

• Stress modelling 
1 Stope Excavation 

• CM S data analysis • Stope drilling 
• Blasting 
• Stope mucking 

1 Stope Recovery 

• Stope wall stability 
• Stopeprofile 
• Unplanned dilution 

Figure 7.4 Stope overbreak categories 
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Hanging-wall overbreak was expressed as dilution density for both simulated 

overbreak (DD) and observed overbreak volume, measured via a cavity survey of 

the excavated stope (DDcms). 

From parametric study, two dilution parameters were identified: (i) Confinement 

overbreak (DDT), corresponding with the cr3 = cr! contour, represents dilution that 

will occur as a result of tensile failure of the hanging-wall rock, and (ii) No

tension overbreak (DDo) , corresponding to the cr3 = 0 MPa contour, represents 

overbreak that may happen. The cr3 = 0 MPa contour indicates transition from 

tension to compression state. The No-tension overbreak contour varies with stope 

geometry and hanging-wall dip, and is roughly independent of depth. The extent 

of Confinement overbreak increases with depth for a given stope geometry or 

hanging-wall dip angle. DDT is a less conservative estimate of ore dilution 

density than DDo 

Two other factors influence the likelihood of dilution occurring within (and 

beyond) the envelope of No-tension overbreak. Extemal Factors (DD E) represent 

physical conditions of the stope setting that influence hanging-wall stability. 

These conditions inc1ude rockmass quality, orientation of principal stress, and 

stope type. Construction Factors (DDcr) are human influences impacting 

overbreak, such as blasting, drillhole deviation, and undercutting. 

No-tension overbreak (DDo) represents overbreak that may happen, depending 

largely on the severity of Construction Factors (DDcf) in damaging the tensile 

capacity of the rockmass. Confinement overbreak (DDT), which increases with 

depth, represents dilution that will occur as a result of tensile failure of the 

hanging-wall rock into the mined stope. The magnitude of overbreak may be 

further increased by Extemal Factors (DD E). 

Relationships between the factors DD, DDcms, DDo, DDT, DDcf, and DDE are 

illustrated in Figure 7.5. As previously mentioned, the relationship is iterative. 
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Figure 7.5 Stope overbreak factors 

7.7 Comparison ofprimary and secondary stope failure modes 

Measured overbreak varies with stope type, with secondary stopes generating a 

greater volume of hanging-wall dilution than do primary stopes. This was 

observed in: (i) Parametric studies; (ii) the stopes of Zone 3-1 stopes, (iii) in 

stopes of Block 5 that had not been reinforced by downward fanning cablebolts, 

and (iv) in numerical modelling stope types associated with the sequencing of 

Block 5 and Zone 3-1. Typically, the following relationships were observed: 

DDcms (secondary stopes) > DDcms (primary stopes) 

DD (secondary stopes) > DD (primary stop es) 

(7-7) 

(7-8) 

Blast vibration monitoring results indicated that mining of secondary stopes occur 

within a Iower stress environment. Underground at Bousquet #2 mine, this 

apparent stress reduction was associated anecdotally by a reduced requirement for 

re-drilling of production blasthoIes, and by fewer accounts ofworking ground. 

The contrasts between primary and secondary stopes suggest differing 

mechanisms for associated with the generation of potential hanging-wall dilution. 
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Differences may be attributed to pre-conditioning, in the form of relaxation or 

degregation of the secondary stope hanging-wall. Rockmass relaxation refers to 

stress reduction parallel to the excavation wall. Rockmass degradation describes 

conditions where the rockmass quality and thus the rockmass strength has been 

reduced relative to its virgin state by stress-induced damages. 

7.7.1 Hanging-wall stress setting 

To assess hanging-wall stress conditions, primary (P-type) and secondary (SI and 

S2-type) stop es were examined using Map3D numerical modelling. Modelled al 

and a3 stresses were measured at specific depths within the hanging-wall. For 

each stope, three stress setting were compiled: pre-mining stress, pre-stope stress 

and post-stope stress. Pre-mining stress refers to the natural stress setting, prior to 

the onset of orezone extraction. Pre-stope stress represents the local, induced 

stress state in the immediate vicinity of the planned stope at the time of the onset 

of stope mining. Post-stope stress is the local stress state in the vicinity of the 

mined, unfilled stope. 

Stress path trends, associated with the pre-mm mg, pre-stope, and post-stope 

stages illustrate differences between the performance of primary and secondary 

stope hanging-walls. In close proximity to the stope wall, it was noted that the 

secondary stopes experience a greater degree of pre-conditioning - in the form of 

both stress-induced damage by prior mining (pre-stoping) and stress relaxation 

(post-stoping). Pre-conditioning was greatest with the S2-type stope. 

Following production blasting of primary stopes, stresses are redistributed around 

the stope. Pre-conditioning of the secondary stope hanging-wall, due to these 

induced stresses resulted in rockmass yielding and an envelope of de-stressed 

rock surrounding the stope. With mining of the secondary stope, additional stress 

relief occurs as induced stresses are redirected away from the adjacent backfilled 

stopes, onto the abutments. 
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7.8 Summary 

As indicated in Chapter 2, the impact of mining-induced dilution on mine 

scheduling is not properly accounted for in underground mine design. Mine 

design assumptions of dilution as a fixed value or percentage are incorrect. 

Influences of orezone extraction sequencing, and the design and construction of 

individual stope blocks are overlooked in common empirical assessments for 

mine and stope design. For example, most mine designs fail to consider the 

influence that the type of stope has on ore dilution. 

Through parametric and case studies, it was demonstrated that, in addition to 

stope dimension, the amount of unplanned dilution differed according to stope 

type. 

• Overbreak associated with secondary stop es exceeds that of primary 

stop es 

• Overbreak associated with S2-type secondary stop es exceeds that of S 1-

type secondary stopes 

If one were to emphasise minimization of unplanned dilution within a steeply 

dipping, tabular orebody with orezone widths of 4 to 15 meters, a pillarless 

mining sequence, comprised of primary and SI-type stopes, will generate less 

overall dilution that a primary stope -: secondary pillar (primary and S2-type 

stopes) mining sequence. 

Hanging-wall overbreak can be further managed through a reduction in the 

dimension the exposed hanging-wall, and by the installation of downwards

dipping cablebolt reinforcement. Upwards-dipping cablebolt reinforcement was 

shown to be less effective. 
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7.9 Recommendations for future research 

This study has investigated and quantified relationships between modelled and 

measured hanging-wall overbreak. Extension of this present investigation in 

future work by others is recommended in such areas as: 

• Compile detailed records of orezone extraction from a variety of orezones, at 

other mine sites, representing a diverse range of stoping environments. 

• Using an elastic 3-D numerical model, expand on the numerical modelling 

methodology developed in this research for quantifying anticipated hanging

wall overbreak for stopes with dimensions outside the 30 x 1 Dm to 30 x 15m 

range. 

• Re-analyse the data documented in this study with 3-D non-linear numerical 

modelling software. Non-linear failure, being beyond the capability of the 

Map3D software, was identified as a limitation of the modelling. 
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Table ALI Modelled dilution density values; 80° hanging-wall dip, GSI=65, crI ° 

perpendicular to hanging-wall 

Dimensions (m) DD at cr3 = 0 contour DD at cr3 = -0.5MPa contour 

Strike Depth (m) Depth (m) 

Height Length Dip 750 1500 2250 750 1500 2250 

10 80° 0 0 0.02 0 0 0 

15 80° 0 0 0.02 0 0 0 

10 20 80° 0.15 0.09 0.11 0 0 0.03 

30 80° 0.14 0.09 0.09 0 0 0.02 

40 80° 0.2 0.18 0.15 0 0.02 0.04 

10 80° 0.1 0.1 0.1 0 0 0.01 

15 80° 0.2 0.18 0.18 0 0.01 0.04 

20 20 80° 0.52 0.44 0.43 0 0.1 0.16 

30 80° 0.65 0.52 0.51 0.03 0.24 0.29 

40 80° 0.65 0.53 0.52 0.03 0.17 0.24 

10 80° 0.12 0.12 0.18 0 0.01 0.02 

15 80° 0.26 0.2 0.3 0 0.02 0.04 

30 20 80° 0.62 0.5 0.69 0.02 0.2 0.28 

30 80° 0.92 0.71 0.96 0.06 0.29 0.44 

40 80° 1.12 0.92 1.16 0.08 0.39 0.47 

10 80° 0.12 0.12 0.12 0 0 0.01 

15 80° 0.22 0.22 0.19 0 0.01 0.03 

40 20 80° 0.47 0.47 0.44 0 0.06 0.18 

30 80° 0.87 0.83 0.74 0.01 0.3 0.45 

40 80° 1.24 1.06 0.03 0.27 0.39 

275 



Table A1.2 Modelled dilution density values; 60° hanging-wall dip, GSI=65, Cil ° 

perpendicular to hanging-wall 

Dimensions (m) DD at Ci3 = 0 contour DD at Ci3 = -0.5MPa contour 

Strike Depth (m) Depth (m) 

Height Length Dip 750 1500 2250 750 1500 2250 

10 60° 0.13 0.06 0.06 0 0 0 

15 60° 0.21 0.09 0.08 0 0 0 

10 20 60° 0.43 0.24 0.2 0 0 0.05 

30 60° 0.48 0.28 0.24 0 0.04 0.06 

40 60° 0.62 0.44 0.36 0 0.09 0.11 

10 60° 0.07 0.04 0.04 0 0 0 

15 60° 0.17 0.12 0.1 0 0 0.01 

20 20 60° 0.72 0.56 0.48 0 0.17 0.23 

30 60° 1.29 0.89 0.82 0 0.3 0.41 

~.-.'. 40 60° 1.58 1.25 1.16 0 0.66 0.79 

10 60° 0.1 0.04 0.07 0 0 0 

15 60° 0.25 0.15 0.17 0 0 0.03 

30 20 60° 0.63 0.54 0.49 0 0.01 0.12 

30 60° 1.43 1.09 1.09 0 0.46 0.76 

40 60° 2.19 1.58 1.48 0 0.4 0.96 

10 60° 0.03 0.01 0.03 0 0 0 

15 60° 0.17 0.1 0.12 0 0 0.01 

40 20 60° 0.53 0.48 0.45 0 0.05 0.13 

30 60() 1.22 0.99 0.95 0 0.18 0.34 

40 60° 2.02 1.4 1.27 0 0.33 0.63 
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Table Al.3 Modelled dilution density values; 80° hanging-wall dip, GSI=65, 0"1° 

parallel to hanging-wall 

Dimensions (m) DD at 0"3 = 0 contour) DD at 0"3 = -0.5MPa contour 

Strike 
Height Length Dip 1500m depth 1500m depth 

10 80° 0.12 0.01 

15 80° 0.18 0.02 

30 20 80° 0.42 0.13 

30 80° 0.68 0.16 

40 80° 0.78 0.22 

Table Al.4 Modelled dilution density values; 60° hanging-wall dip, GSI=65, 0"1 ° 

parallel to hanging-wall 

~ .. 

Dimensions (m) DD at 0"3= 0 contour DD at 0"3 = -0.5MPa contour 

Strike 
Height Length Dip 1500m depth 1500m depth 

10 60° 0.03 0 

15 60° 0.12 0 

30 20 60° 0.43 0.01 

30 60° 0.9 0.24 

40 60° 1.11 0.1 

r-.. 
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Table A 1.5 Modelled dilution density values per stope type; 80° hanging-wall 

dip, GSI=65, (JI ° perpendicular to hanging-wall 

Dimensions (m) DD at (J3 = 0 contour DD at (J3 = -0.5MPa contour 

Height 
Strike 

Dip 
Depth (m) Depth (m) 

Length 750 1500 2250 750 1500 2250 

Pl (primary) stope 

10 80° 0.12 0.12 0.18 0 0.01 0.02 

15 80° 0.26 0.2 0.3 0 0.02 0.04 

30 20 80° 0.62 0.5 0.69 0.02 0.2 0.28 

30 80° 0.92 0.71 0.96 0.06 . 0.29 0.44 

40 80° 1.12 0.92 1.16 0.08 0.39 0.47 

P2 (primary) stope 

10 80° 0.18 0.1 

15 80° 0.35 0.18 

30 20 80° 0.66 0.37 

30 80° 1.14 0.72 

40 80° 1.52 1 
r- P3 (primary) stope 

10 80° 0.19 0.1 

15 80° 0.36 0.16 

30 20 80° 0.68 0.37 

30 80° 1.23 0.94 

40 80° 1.55 1.03 

SI (secondary) stope 

10 80° 0.48 0.29 

15 80° 0.79 0.6 

30 20 80° 1.16 0.94 

30 80° 1.79 1.45 

40 80° 2.09 1.55 

S2 (secondary) stope 

10 80° 0.96 0.8 

15 80° 1.5 1.29 

30 20 80° 2.1 1.83 

30 80° 2.7 2.39 

40 80° 2.8 2.53 
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Table Al.6 Dilution Density as a function of strike length of base-case stope at 

varying mine depths*, see Figures 5,3 and 5.4 

750m mine depth 1500m mine depth 2250m mine depth 

~ ~ ~ 
0.. 0.. 0.. 

~ ~ ~ ~ ~ ~ 0.. 0.. 0.. 

Strike ~ If) ~ If) ~ If) 

ci ci ci 
length 0 1 0 1 0 1 

Il Il Il Il Il Il 
M M M M M M 
t:l 9 t:l 1-< t:l 1-< t:l 9 t:l 9 t:l 9 ..... ..... ;:::l ..... ;:::l ..... ..... 
~ 0 ~ .8 ~ 0 ~ 0 ~ .8 ~ .8 ..... ..... ..... 

Cl :::: Cl :::: Cl :::: Cl :::: Cl :::: Cl :::: 
Cl 0 Cl 8 Cl 8 Cl 8 Cl 8 Cl 8 (.) 

10m 0.12 m Om 0.12m 0.01 m 0.18 m 0.02m 
strike 

15m 0.26 0 0.2 0.02 0.3 0.04 
strike 

20m 0.62 0.02 0.5 0.2 0.69 0.28 
strike 

30m 0.92 0.06 0.77 0.3 0.96 0.44 
strike 

40m 1.12 0.08 0.92 0.38 1.16 0.47 
strike 

* Verttcal helght = 30m, 80° dIp, OSI = 65, (jl° perpendIcular to hanging-wall, 

Pl-type stope 
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Table Al.7 Dilution Density as a function ofstope dimension*, see Figure 5.6 

Vertical 
Mine Depth (m) 

height 
Strike length 

750m 1500m 2250m 
Average 

(m) DD(m) 
(m) 

DD (m) at 0'3 = 0 MPa contour 

10 0 0 0.02 0 

15 0 0 0.02 0 

10 20 0.15 0.09 0.11 0.11 

30 0.14 0.09 0.09 0.11 

40 0.20 0.18 0.15 0.18 

10 0.10 0.10 0.10 0.10 

15 0.20 0.18 0.18 0.19 

20 20 0.52 0.44 0.43 0.45 

30 0.65 0.52 0.51 0.51 

40 0.65 0.53 0.52 0.52 

10 0.12 0.12 0.18 0.14 

15 0.26 0.20 0.30 0.23 

30 20 0.62 0.50 0.69 0.60 

30 0.92 0.77 0.96 0.88 

40 1.12 0.92 1.16 1.07 

10 0.12 0.12 0.12 0.12 

15 0.22 0.22 0.19 0.18 

40 20 0.47 0.46 0.44 0.46 

30 0.87 0.83 0.74 0.81 

40 1.24 1.06 1.00 1.10 

* GSI = 65,0'\ 0 perpendicular to hanging-wall, Pl-type stope 
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Table A1.8 Dilution Density as a function ofhanging-wall dip angle ofbase case 

stope*, see Figure 5.11 

Vertical Hanging-wall dip Strike Length (m) 
height angle 10 15 20 30 40 

DD (m) at cr3 = 0 MPa contour 

20m 80° hanging-wall dip 0.10 0.18 0.44 0.52 0.53 

60° hanging-wall dip 0.04 0.12 0.56 0.89 1.25 

30m 80° hanging-wall dip 0.12 0.20 0.50 0.77 0.92 

60° hanging-wall dip 0.04 0.15 0.54 0.99 1.40 

40m 80° hanging-wall dip 0.12 0.22 0.45 0.76 1.02 

60° hanging-wall dip 0.01 0.10 0.48 1.09 1.58 

* Vertical height = 30m, depth = 1500m, OSI = 65, crlo perpendicular to hanging

wall, Pl-type stope 

Table A1.9 Dilution Density as a function of major principal stress orientation*, 

see Figure 5.12 

Strike Length (m) 

10 15 20 30 40 

DD at cr3 = 0 MPa contour 

Sig1 Perpendicular - 80deg 0.12 0.2 0.5 0.77 0.92 

Sig1 Parallel - 80deg 0.12 0.18 0.42 0.68 0.78 

Sig1 Perpendicular - 60deg 0.04 0.15 0.54 0.99 1.40 

Sig1 Parallel - 60deg 0.03 0.12 0.43 0.9 1.11 

* Vertical height = 30m, depth = 1500m, OSI = 65, Pl-type stope 
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Table ALlO Dilution Density as a function of stope type*, see Figures 5.13 and 

5.14 

Strike Length (m) 

10 15 20 30 40 

!3 !3 1-< !3 !3 ;:l 
1-< 0 !3 0 !3 0 1-< 0 1-< .s ;:l ..... ..... ..... ;:l ..... ;:l ::: ::: ::: ::: ::: 0 0 0 0 0 0 0 0 0 0 ..... ..... 'El ..... ..... ::: () ::: () () ::: () ::: () 

0 ('j 0 ('j 0 ('j 0 ('j 0 ('j 
() Cl... () Cl... () Cl... () Cl... () Cl... 
('j ~ ('j ~ ('j ~ ('j ~ ('j ~ Cl... Cl... Cl... Cl... Cl... 
~ 1.1') ~ 1.1') ~ 1.1') ~ 1.1') ~ 1.1') 

0 0 ci 0 ci 0 1 0 1 0 1 0 1 0 1 

Q) Il Il Il Il Il Il Il Il Il Il 
~ ..., ..., ..., ..., ..., ..., ..., ..., ..., ..., 
..... b b b b b b b b b b 
Q) ~ ~ 

..... ~ ~ 
..... 

~ ..... 
~ 

..... 
0.. 

('j ('j ('j ('j 

0 § 0 0 0 0 0 0 0 0 0 ..... 
C/) 0 0 0 0 0 0 Q Q Q 

Pl 0.12 0.01 0.2 0.02 0.5 0.2 0.77 0.29 0.92 0.39 

P2 0.18 0.1 0.35 0.18 0.66 0.37 1.14 0.72 1.52 1 

P3 0.19 0.1 0.36 0.16 0.68 0.37 1.23 0.94 1.55 1.03 

SI 0.48 0.29 0.79 0.6 1.16 0.94 1.79 1.45 2.09 1.55 

S2 0.96 0.8 1.5 1.29 2.1 1.83 2.7 2.39 2.8 2.53 

* VertIcal helght = 30m, depth = 1500m, OS! = 65, (Jlo perpendlcular to hanging

wall 
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Table B 1.1 Block 5 stope design details, 9-1 horizon stopes 
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Table B 1.1 Block 5 stope design details, 9-0 horizon stopes 
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Table B 1.1 Block 5 stope design details, 10-3 horizon stopes 
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Table B1.2 Block 5 stope recovery details, 9-3 horizon stopes 
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Table B 1.2 Block 5 stope recovery details, 9-2 horizon stop es 
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Table B 1.2 Block 5 stope recovery details, 9-1 horizon stop es 

~ 

~ 

~ 
~ c.. 

~ 
9-1 horizon 

9-1-2 
9-1-3 
9-1-4 
9-1-5 
9-1-6 
9-1-7 
9-1-8 
9-1-9 
9-1-10 
9-1-11 
9-1-12 
9-1-13 
9-1-14 
9-1-15 
9-1-16 
9-1-17 
9-1-18 
9-1-19 
9-1-20 
9-1-21 

Il) 

liî 

" ~' 
:> 

if) 

30-May-96 
31-Dec-96 
30-0ct-95 
08-Jun-98 
04-Jun-99 
21-Jan-OO 
18-May-98 
17-Mar-99 
04-Sep-96 
18-Mar-98 
20-Dec-95 
08-Apr-97 
04-0ct-99 
18-Sep-97 
07-Jul-OO 
02-Apr-98 
26-Mar-O 1 
12-May-OO 
3 I-Dec-O 1 
26-Jan-O 1 

~ 
g 
1 
] 
2 

.D 

~ 
'Ë 

4444 
5535 
6801 
6355 
7570 
8452 
17321 
18905 
14459 
18401 
19717 
11972 
12112 
1\968 
8823 
8562 
6126 
7856 
7400 
5617 

~ 
g 
-@; 
:> o 
~ 

~ ::c 
if) 

2: 
u 

~ g 
~) 
o 
~ 

~ 
w. 

~ 
U 

2976 
4308 702 

3165 
782 550 
838 450 
1996 0 
4088 27 
3509 447 

766 
2541 393 

3068 
948 822 
16 148 

4117 70 
113 428 

3942 
o 

1939 
500 
1302 

8 
255 
896 
o 

2520 

~ 
g 
-§il 
:> o 
~ 

~ 
~ .g 
'iii 
if) 

2: 
u 

79 
43 

132 
258 
o 

1302 
685 
293 
o 
o 

518 
o 

1279 
o 

484 
o 

637 

346 

i 
t 
~ 

] 
'iii 

~ 
Ë 
if) 

2: 
u 

o 
138 

46 
216 
174 
o 

2159 
o 

566 
o 

351 
312 
o 

209 
o 

95 
o 

o 

Stope Recovery Details 

~ 
t 
~ 

~ ::c 

~ 

;:;) 
§ 

~ o 
~ 

~ 
w. 

~ 
U 

g 
o 

~ 
§ 
'§ 

15 , 
~ ::c 

g 
o 

~ 
§ 
'§ 

15 , 
~ 
w. 

1062.9 2.3 0.0 
1538.6 250.71 2.5 0.4 

1130.4 2.3 0.0 
279.29 196.43 0.6 0.4 
299.29 160.71 0.6 0.3 
712.86 0 1.4 0.0 

1460 9.6429 3.1 0.0 
1253.2 159.64 2.9 0.4 

273.6 0.6 0.0 
907.5 140.36 2.0 0.3 

1095.7 2.4 0.0 
338.57 293.57 0.8 0.7 
5.7143 52.857 Ore left in HW 
1470.4 25 3.1 0.1 
40.357 152.86 0.1 0.3 
\407.9 2.857\ 2.9 0.0 

o 9\.071 Ore left in HW 
692.5 320 1.4 0.7 
\78.57 0 004 0.0 

465 900 \.0 \.9 

292 

~ 
w. 
+ 

~ 
§ 
~ 
2.3 
2.9 
2.3 
\.0 
\.0 
\.4 
3.1 
3.3 
0.6 
2.3 
204 
1.4 

3.\ 
0.4 
2.9 

2.1 
0.4 
2.9 

~ 
E 
~ 
8 
';t 

100.0 
86.1 
100.0 
59.1 
65.5 
100.0 
99.3 
89.0 
100.0 
87.1 
100.0 
53.9 

98.3 
20.8 
99.8 

68.3 
100.0 
34.1 

~ 
~ 
~ 
~ 

2269 
2412 
2612 
6911 
7070 

6158 

3084 
5088 
2323 
38\2 
1559 
2988 

1726 

';t 
§ 
'§ 

15 
~ 
~ 

64.5 
67.8 

23.2 
14.1 
30.0 
19.4 
30.7 
5.2 
14.5 
14.2 
17.2 
5.0 

31.2 
8.3 

32.4 
5.6 

33.4 

36.9 

1 
] 
'Ë 
~ 
~ 
J 
1 
ê" 
:> 
'0 
~ 
_c 

15 

65.8 
89.8 
46.5 
20.5 
16.5 
23.6 
22.1 
20.2 
5.2 
15.9 
15.6 
14.2 
lA 

3 \.6 
6.1 

43.7 
4.2 

33.4 
6.8 

64.1 

';t 

i 
~ 

77.2 
76.4 
95.8 
75.2 
88.5 
82.6 
88.2 
97.5 
91.4 
92.3 
97.2 
91.3 
88.5 
96.0 
90.5 
89.6 
7304 
91.8 

90.8 

1 
Il) 

~ 
l 
17 
48 
45 
18 
37 
30 
48 
36 
28 
45 
88 
33 
34 
41 
29 
27 
30 
75 
21 
28 

'î 



') 

Table B 1.2 Block 5 stope recovery details, 9-0 horizon stopes 
Stope Recovery Details 
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Table B 1.2 Block 5 stope recovery details, 10-3 horizon stop es 
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Table B 1.3 Block 5 stope blasting details, 9-3 horizon stopes 
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1.99 
1.32 
1.38 
1.73 
1.72 
2.03 
2.76 
2.37 

2.47 
1.16 
1.52 
2.03 
1.31 
1.21 

0.38 1.64 
.0.6 2.56 

'" 1t 

~ 
iD 
B 
Cl 

10-Feb-97 
03-Jul-98 
17-0ec-97 
18-Feb-99 
14-0ec-99 
21-Jul-00 
15-0ec-00 

06-May-99 
04-Feb-00 
22-Jao-98 

23-0cl-97 
~2-Mar-99 

24-No\'-00 
05-Nov-99 
03-Sep-01 
Ol-Sep-OO 
20-0ec-01 

16-Sep-02 
20-Jun-02 

Blasting Details 
Blast#3 

il 
~ 
iD 
~ 

" " ~ 

4800 
5700 
3100 
4400 
5550 
5150 
8500 
4700 
6500 
16400 

6950 
4600 
2700 
5800 
4100 
3500 
3700 

'" -0 g 
"" 
~ 

ê 
o 
f-

2153 
1598 
1063 
2148 
3035 
1522 
2847 
2346 
3042 
5270 

3222 
2374 
960 

2673 
1250 
1373 
1530 

::E 
t: 
'" ,;:. 
"-
0.. 

0.45 
0.28 
0..15 
0.49 
0.54 
0.3 

0.47 
0.5 

0.47 
0.32 

M6 
0.52 
0..16 
O~ 

0..1 
O~ 

0.41 

2700 
3000 

937 0.35 
1856 0.62 

295 

'" ~ 
~ 

tl 
~ 
~ 

-0 g 
0.. 

1.93 
1.2 

1.525 
2.1 

2..14 
1.27 

1.9 
2.01 
1.29 

1.98 
2.22 
1.53 
1.98 

1.69 
1.78 

1.49 
2.66 

:g 
~ 
iD 
'" Cl 

25-Feb-99 

17-May-99 

10-Apr-99 
06-0ec-00 
10-Nov-99 

25-Sep-00 

Blast#4 

il 
~ 
iD 
~ 

" " o 
f-

7000 

7250 

17300 
13350 
12450 

12300 

~ 
-0 

~ 
~ 

El 
o 
f-

4276 

3083 

5963 
3946 
3361 

5221 

~ 
~ ,;:. 
"-
0.. 

0.61 

0.43 

0.34 
0.3 
0.27 

0.42 

'" ~ 
~ 

.9 
g 

"-
~ 

-0 

6 
0.. 

2.63 

1.74 

1.38 
1.22 

1.6 

on 

"" Ri 
iD 
B 

Cl 

Blasl #5 

il 
~ 
iD 
~ 

" " o 
f-

" -0 

" o 
0.. 
~ 

" " ~ 

~ 
f-

~ 
u... 
0.. 

;;;-

~ ,;:. 

tl 
~ 

~ 

" o 
0.. 
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Table B 1.3 Block 5 stope blasting details, 9-2 horizon stopes 

'" :;: 
..: 
z: 

'" ... 
o ... 
'Jl 

9-2 horizon 
9·2-1 
9":~-2 

9-2-3 
9-~-4 

9':'!-5 
9-~-6 

9-~-7 

9-~-8 

9-2-9 
9-~-10 

9-~-11 

9-2-12 
9-~-1.1 

9-~-14 

9-~-15 

9-2-16 
9-~-17 

9-~-18 

9-~-19 

9-2-20 
9<~-21 

9':!-22 

;;: 

'" aï 
" 8 

28-Jun-96 
08-Apr-98 
09-Sep-97 
~7-No\'-98 

18-Aug-99 
05-May-OO 
08-0cI-00 
17-Nm'-98 
~7-0cl-99 

07-.Iul-97 
08-.Iun-98 
01-Ocl-96 
~3-Dec-98 

14-Aug-00 
18-May-99 
16-Apr-01 
O~-Mar-OO 

14-0cl-01 
13-Dec-00 
31-.Ian-0~ 

~O-Sep-Ol 

15-Mar-O:! 

llIast#1 

l 
aï 

" " " o ... 
~OOO 

850 
1000 
550 
1300 
1400 
1500 
1000 
I~OO 

900 
~800 

1300 
1100 
1750 
1000 
950 
1650 
1500 
1000 
I~OO 

1400 
1100 

~ 
~ 

-0 

g ... 
" " " o 
f-

748 
705 
690 
,", .,--
919 

683 
'l '" 0_ 

730 
939 
6~8 

763 
797 
455 
798 
808 
528 
979 
783 
661 
493 
752 
796 

:iÈ 
f-

~ 
"... 

0,37 
0.71 
0.69 
0.59 
0.7 

0.49 
0.6~ 

0.73 
0.78 
0.7 
OD 
0.61 
OAI 
0,46 

0.808 
0.56 
0.59 
0.52 
0.66 
0.41 
0.54 

0.72 

~, 

" ~ 
~ 
"-

" ~ 
o 
"-

~.81 

~.69 

2.28 
3.04 
2.05 
~.67 

3.14 
3.36 
2.65 
1.06 
2.45 
1.65 
1.96 
3.15 
~,39 

2.55 
2.24 
~.84 

1.77 
1.99 

2.53 

c, 

'"' 
'" aï 
'" 8 

30-lun-96 
16-Apr-98 
10-Sep-97 
0~-Dec-98 

~3-Aug-99 

15-May-00 
13-0ct-00 
19-No\'-98 
31-0cl-99 
08-.Iul-97 
15-.Iun-98 
03-0cl-96 
04-lan-99 
18-Aug-00 
~4-May·99 

23-Apr-01 
05-Mar-00 
24-0ct-02 
17-0ec-00 
05-Feb-02 
25-Sep-01 
19-Mar-02 

Blast #2 

l 
aï 
~ 
2 
o 

f-

6000 
~800 

1600 
1 ~50 

~700 

~IOO 

3000 
900 
3000 
1400 
3300 
1~50 

~OOO 

6500 
1800 
2250 
1250 
3300 
1900 
1850 
1700 
~300 

~ 
'0 

6 
"-

" c 

" o 
f-

3118 
1190 

780 
615 
1556 
653 
653 
551 
1488 
654 
8~0 

604 
840 
997 
946 
588 
8~0 

11.13 
1297 
750 
1197 
909 

::; 
f-

~ 
"-
0.. 

0.5~ 

0,43 

0.49 
0,49 

0.58 
0.31 
0.33 
0.61 
0.47 
OA7 
0.25 
0,48 

0.4~ 

0.25 
0.53 
0.31 
0.66 
0.34 
0.59 
0,41 

0.7 
0,4 

"2 
~ 
,=: 

f3 
.z 
'" ~ 
o 

0.. 

1.7 
1.9 
~.Ol 

1.31 
1.4 

2.51 
~.03 

1.77 
1.04 
2.08 

1.07 
2.26 
1.33 
2.82 
1.51 
2.53 
1.74 
2.44 
1.38 

~ 
It 

::l 
aï 
" 8 

~9-Apr-98 

03-0cl-97 
II-Oec-98 
28-Aug-99 
18-May-00 
~O-Ocl-OO 

29-Nov-98 
07-No\'-99 
09-lul-97 
23-.Iun-98 
07-0cl-96 
08-.I.n-99 
30-Aug-00 
03-.Iun-99 
02-M.y-01 
08-Mar-00 
02-Nov-01 
24-0ec-00 
08-Feb-02 
O~-OcI-OI 

25-Mar-02 

Blastillg Details 
Blast#3 

l 
aï 
~ 

" 2 
o 
f-

4250 
5700 
2000 
3800 
4900 
4100 
4400 
6~00 

4650 
5950 
7500 
4700 
6100 
6300 
3000 
6300 
3800 
7000 
2600 
3700 
3900 

il 
~ 
o 

0.. 

" c 

" o ... 

1689 
1112 
501 
1885 
1941 
1793 
1319 
1654 
2155 
2707 
2563 
~151 

2398 
1759 
13~5 

1870 
1294 
2345 
1257 
1529 
2125 

296 

~ 
~ 
,=: 
"-
0.. 

0.4 
0.24 
0.25 
0.49 
0.4 

0.44 
0.38 
0.27 
0.46 
0,45 

0.34 
0.46 
0.39 
0.28 
0.44 
0.3 
0.34 
0.34 

0.48 
0.41 
0.55 

'" ~ 
,=: 
.9 
~ 
" ~ 
ô 

0.. 

1.71 
1.0~ 

1.0~ 

~.13 

1.66 
1.8 

2.58 
1.12 
1.99 
1.9 

1.47 
1.87 
1.69 
1.12 
1.9 

1.28 
1.46 
1.44 
2.08 
1.53 
1.74 

1 
~ 
aï 
" 8 

17-Dec-98 

07-Dec-98 
16-No\'-99 
18-lul-97 
10-lul-98 

08-0cl-96 
17-lan-99 
19-5ep-00 
17-lun-99 

22-May-01 
18-Mar-00 

04-lan-01 

10-Ocl-01 
02-Apr-02 

Blast #4 

il 
~ 
ai 

§ 
~ 

2550 

10600 
9600 
5200 
8150 
6950 
6300 
6850 
7800 
13200 
11800 

8800 

7800 
9300 

-li 
" o 
0.. 

" 2 
~ 

842 

3443 
2507 
1789 
2289 
1807 
3598 
2295 
3855 
5206 
4009 

3732 

3568 
4788 

g 
"" ,=: 
"-
0.. 

0.33 

0.32 
0.26 
0.34 
0.28 
0.26 
0.57 
0.34 
0.49 
0.47 
0.34 

0.42 

0.46 
0.51 

'" E 

"" ,=: 

f3 
.z 
il 
] 
0.. 

1.42 

4.8 
1.17 
1.48 
1.21 
1.12 
2.46 
1.47 
1.83 
1.84 
1.3 

1.48 

1.6 
1.65 

~ 

"" ::l 
aï 
'" 8 

30-Dec-98 

23-.Iul-97 

27-Sep-00 
29-lun-99 

29-0cI-01 

Blast #5 

l 
ë5 
~ 
c 

" o 
f-

6800 

9350 

7400 
11700 

7800 

-li 
" o 
0.. 

§ 
~ 

3612 

3537 

2309 
6428 

3472 

~ 
~ c 
"-
0.. 

0.53 

0.38 

0.31 
0.55 

0.45 

;;;
E 

"" ,=: 

j 
-li 
" 0':: 

2.17 

1.63 

1.19 
1.92 

1.6 
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Table B 1.3 Block 5 stope blasting details, 9-1 horizon stopes 

'" :; 
..: z 
'" c.. 
o ... 
<n 

9-1 horizon 
9-1-2 
9-1-3 
9-1-4 
9-1-5 
9-1-6 
9-1-7 
9-1-8 
9-1-9 
9-1-10 
9-1-11 
9-1-12 
9-1-13 
9-1-14 
9-1-15 
9-1-16 
9-1-17 
9-1-18 
9-1-19 
9-1-20 
9-1-21 

'" ë'i 
" 8 

13-May-96 
13-NO\'-96 
15-Sep-95 

20-May-98 
27-Apr-99 
21-Dec-99 
30-Mar-98 
II-Feb-99 
06-Aug-96 
03-Feb-98 
22-Sep-95 
05-Mar-97 
31-Aug-99 
07-Aug-97 
08-Jun-00 
05-Mar3 )8 
26-Feh-01 
27-Feb-00 
10-Oec-01 
28-0ec-00 

fIIast#1 

l 
ë'i 

" ê 
~ 

800 
200 
1100 
2500 
200 
1350 
800 
2000 
1400 
1550 
1200 
700 
1700 
850 
1400 
1200 
1200 
1000 
750 
800 

-;;; 
~ 

" 'CI g 
"-

" ê 
~ 

657 
271 
936 
1199 
250 
743 
477 
1312 
961 
882 
824 
774 
905 
646 
622 
613 
561 
627 
289 
452 

~ 
~ 
~ 
"-
0.. 

0.82 
1.35 
0.85 
0.48 

0.55 
0.6 
0.66 
0.69 
0.57 
0.69 
1.1 

0.53 
0.76 
0.44 
0.51 
0.47 
0.63 
0.38 
0.57 

~ 

c 
~ 
~ 

~ 
"-

" 'CI g 
0.. 

4.74 

2.37 
2.08 
2.56 

1.99 

4.75 
2.08 
3.27 
1.91 
2.18 
2.01 
2.7 
1.46 
2.·f3 

c, 
'" 
Ri 
ë'i 

~ 
14-May-96 
14-NO\'-96 
19-5ep-95 

29-May-98 
05-Apr-99 
24-0ec-99 
03-Apr-98 
16-Feb-99 
09-Aug-96 
09-Feb-98 
23-Sep-95 
06-Mar-97 
09-Sep-99 
20-Aug-97 
09-Jun-00 
17-Mar-98 
02-Mar-01 
26-Mar-OO 
14-0ec-01 
29-0ec-00 

Blast #2 

l 
ë'i 

" " " ~ 

950 
700 
1200 
4250 
1500 
2150 
1150 
2600 
4400 
1400 
1100 
1700 
5650 
3100 
4200 
1800 
2600 
2150 
2700 
1150 

" 'CI g 
0.. 

" " " ~ 

641 
484 
786 
1486 
481 
1057 
436 
1139 
1544 
642 
686 
986 

2202 
1578 
1242 
741 
T29 
635 
834 
553 

::;: 
t: 
~ .... 
0.. 

0.67 
0.69 
0.66 
0.35 
0.32 
0.49 
0.48 
0.44 
0.35 
0.46 
0.62 
0.58 
0.39 
0.51 
0.3 

0.41 
0.28 
OJ 

0.31 
0.48 

M 
E 

'" ~ 
6 
ü 
ti:: 
il 

'CI 

~ 

2.42 

1.44 
1.12 
1.92 
1.69 
1.75 

1.6 

~~ 

I~ 

2.18 
I~ 

ln 
1.21 
1~7 

I~ 

2D7 

~ 
1t 

Ri 
ë'i 
" 8 

21-5-96 
12-Jun-96 
22-9-95 

13-5-99 
07-Jan-00 
06-Apr-98 

19-2-99 
15-8-96 

I3-Feb-98 
02-0ct-95 
14-Mar-97 
17-Sep-99 
26-Aug-97 
20-Jun-00 
23-Mar-98 
12-Mar-01 
07-Apr-00 
21-Dec-OI 
09-Jan-01 

Blasting Details 
Blast #3 

l 
ë'i 
~ 

" § 
1-

2900 
4800 
4900 

6300 
5150 
4150 
4000 
9200 
4050 
6850 
4000 
6150 
7800 
4200 
6050 
4400 
1850 
4000 
3400 

297 

il 
] 
0.. 

1) 

" " o 
1-

1582 
2320 
1594 

3221 
2564 
1129 
2669 
3547 
1796 
1940 
1946 
2699 
3121 
1742 
1745 
1274 
657 
1551 
1017 

~ 
t: 
en 
~ .... 
c.. 

0.55 
0.48 
0.33 

0.51 
0.49 
0.27 
0.67 
039 
0.44 
0.28 
0.49 
0.44 
0.4 

0.41 
0.29 
0.29 
0.36 
0.39 
0.3 

M 

~ 
~ 

~ 
"-
.g 
6 

0.. 

1.69 

1.99 
1.91 
1.18 
2.12 

1.55 

I~ 

I~ 

I~ 

IJ8 
1~7 

1.25 
I~ 

I~ 

I~ 

.". 

.", 

Ri 
ë'i 
II 
cS 

23-Apr-98 
01-Mar-99 

24-Feb-98 
04-0ct-95 
21-Mar-97 

10-Apr-00 

Blast #4 

'CI 

~ 
ë'i 
~ 

" " § 
1-

5274 
9400 

12400 
9350 
5250 

3200 

" 'CI 

" o 
0.. 

" 
~ 

1250 
5689 

5121 
3180 
2438 

1266 

~ 
~ 
~ 
"-
0.. 

0.42 
0.61 

0.4\ 
0.34 
0.46 

0.4 

M 

~ 
~ 
6 

~ 
il 

.." 

6 
c.. 

1.8\ 
2.12 

1.45 

1.7 

~ 

'Ile 

~ as 
II 
cS 

Blast#5 

l 
ë'i 

" " ~ 

.g ,. 
o 

0.. 

" ê 
~ 

~ 
t: 
!! 
"c.. 

M 

E 

'" ~ 
~ .... 
.g 
~ 

c.. 
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Table B 1.3 Block 5 stope blasting details, 9-0 horizon stop es 

'" ::0 
..: z 

'" 0.. 
o 
;
<Il 

9-0 horizon 
9-0-3 
9-0-4 
9-0-5 
9-0-6 
9-0-7 
9-0-8 
9-0-9 
9-0-10 
9-0-11 
9-0-12 
9-0-13 
9-0-1~ 

9-0-15 
9-0-16 
9-0-17 
9-0-18 
9-0-19 
9-0-20 
9-0-21 

rn 
ai 

" Cl 

15-Feb-96 
1~-.Iul-95 

1 ~-Jan-96 
23-May-96 
25-Sep-98 
19-.1,"-98 
17-.Iul1-98 
2~-Apr-96 

26-.Iul1-97 
2~-.Iul-95 

10-1ul-96 
14-Apr-98 
27-No\"-96 
08-0ec-98 
17-0ec-97 
16-.Iul1-00 
05-0cl-98 

05-Arr-01 
17-M.r-00 

Blast #1 

il 
~ 
ai 

" ê 
o 
;-

500 
1000 
1450 
170 
450 
550 
2300 
1000 
850 
1600 
1000 
1700 
700 
200 
1000 
1300 
1200 
1800 
900 

;;; 
~ 

~ 
" o 

0.. 

~ 

ê 
o 
;-

503 
632 
891 
218 
356 
318 
713 
849 
600 
702 
614 
995 

322 
317 
674 
699 
839 
848 
574 

::;: 
~ 
~ 
U. 
0.. 

1.01 
0.63 
0.61 
1.28 
0.79 
0.58 
0.31 
0.85 
0.7 
0.44 
0.61 
0.59 
0.46 
1.58 
0.67 
0.54 
0.7 
0.47 
0.64 

~ 

i 
6 
g 
u. 

" " g 
0.. 

2.77 
:!.02 
1.2 

3.03 

2.51 
1.98 
6.8 
2.9 

2.31 
3 

2.03 
1.74 

co .. 
~ 

ai 
" Cl 

19-Feb-96 
18-.Iul-95 
16-.Ial1-96 

25-May-96 
05-0cl-98 
21-.Ial1-98 
23-Jun-98 
26-Apr-96 
27-Sep-97 
25-Jul-95 
15-.Iul-96 
17-Apr-98 
28-NO\"-96 
14-0ec-98 
19-0ec-97 
21-Jun-OO 
08-0cl-98 
20-Apr-01 
22-Mar-OO 

Blast #2 

il 
~ 
ai 

~ 
" o 

f-

700 
950 
2350 
900 
1050 
1000 
3500 
3800 
2250 
600 
3000 
1600 
1500 
2800 
2400 
4500 
1750 
.1500 
1000 

~ 
g i 

0.. f-

~ ~ 
" -o u. 
f- 0.. 

375 0.54 
469 0.55 
1604 0.68 
539 0.6 
654 0.62 
432 0.43 
704 0.2 
1427 0.38 
1175 0.52 
392 0.65 
1135 0 .. 18 
512 0.32 
639 0.43 
910 0.33 
880 0.37 
1468 0.33 
836 0.48 
1211 0.35 
644 0.64 

~ 

" ~ 
~ 
u. 

" " 6 
0.. 

2.18 
1.51 
1.24 

2.24 

1.38 
1.83 
lA 

1.57 
1.4 

2.05 
1.49 
2.77 

M 

" ~ 
ai 

" Cl 

26-Feb-96 
21-.Iul-95 

24-.1,"-96 
06-.Iul1-96 
07-0cl-98 
23-.Ial1-98 
09-.Iul-98 

03-May-96 
09-.Iul-97 
28-.Iul-95 
22-Jul-96 
27-Apr-98 
09-0ec-96 
18-0ec-98 
05-.1,"-98 
04-1ul-00 
15-0cl-98 

28-Mar-00 

Blasting Details 
Blast#3 

il 
~ 
ëi5 

" § 
f-

3100 
3750 
1350 
500 

2600 
2800 
2900 
6350 
2900 
4400 
4200 
4650 
5550 
2500 
6400 
3600 
6500 
5250 
3700 

t; 

" tg 
0.. 

g 
g 
f-

1924 
1201 
704 
341 
1510 
1150 
1431 
2655 
2103 
1258 
2058 
1648 
2509 
1724 
2621 
2172 
1887 

1212 

298 

i 
~ 
~ 
U. 
0.. 

0.62 
0.32 
0.52 
0.68 
0.58 
0.41 
0.49 
0.42 
0.12 
0.29 
0.49 
0.35 
0.45 
0.69 
0.41 
0.6 

0.29 

0.33 

M 

" ~ 
~ 
6 g 
u. 

-Il 
:: 

0':: 

2.03 
1.44 
I.n 

2.76 

1.52 
1.94 
2.96 
1.76 
2.59 

lAI 

'it 
~ 
ëi5 
~ 
Cl 

04-0ct-95 

22-Jul-98 

23-1ul-97 

06-.Ial1-99 

Blast #4 

l 
ëi5 

" " " o 
f-

3580 

9900 

7300 

4500 

.g 
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Table B 1.3 Block 5 stope blasting details, 10-3 horizon stopes 
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Table B2.1 Zone 3-1 stope design details, 3440rn and 3470rn horizon stopes 
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Table B2.1 Zone 3-1 stope design details, 3380m and 3410m horizon stop es 
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Table B2.2 Zone 3-1 stope recovery details, 3560m and 3590m horizon stop es 
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Table B2.2 Zone 3-1 stope recovery details, 3500m and 3530m horizon stopes 
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Table B2.2 Zone 3-1 stope recovery details, 3440m and 3470m horizon stopes 
Stope Recovery Details 
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Table B2.2 Zone 3-1 stope recovery details, 3380m and 3410m horizon stop es 
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!2 
u 

'" .0 
<Il 
~ 
U 

M 

3 
"@, 
::l 
o 

';;; 

~ 
J: 
<Il 
~ 
U 

M 

E 

"@, 
:::l 
o 

';;; 

~ 
LI.. 
<Il 

~ 
U 

2-
o .;;; 

'" v o 
'" .3 
.3 
i5 

~ 
J: 

152 356.4 160.7 1.3 
o 67.14 175.7 0.2 

26 582.9 65 1.6 
75 539.6 0 1.7 
o 277.5 40 1.0 

468 285 324.3 0.9 
o 46.07 544.6 0.2 

63 402.5 39.29 1.3 
o 77.5 187.9 0.3 

:§: 
o .;;; 

'" 8 
<= 
.3 
.3 
i5 

~ 
LI.. 

0.6 
0.6 
0.2 
0.0 
0.1 
1.0 
1.9 
0.1 
0.7 

113 87.14 241.1 0.3 0.9 
1894 27.5 0 0.1 0.0 
249 656.4 143.6 2.1 0.5 
o 600 23.57 1.9 0.1 
50 89.29 142.9 0.3 0.4 
o 146.4 51.43 0.4 0.2 

272 409.3 161.8 1.1 0.4 
o 38.93 217.9 0.1 0.6 

293 0 381.4 Ore left in HW 
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~ 
LI.. 

+ 
~ 
J: 

El 
u o 
o 
g 
B 

1.9 
0.8 
1.8 
1.7 
1.1 
1.9 
2.1 
1.5 
1.1 

1.2 
0.1 
2.6 
2.0 
0.7 
0.6 
1.5 
0.7 

~ 
J: 
E o 
~ 
o 
o 
'<f. 

68.9 
27.7 
90.0 
100.0 
87.4 
46.0 
7.6 

91.0 
29.1 

26.6 
100.0 
82.2 
96.3 
38.3 
74.2 
71.8 
15.2 

M 

2-
iE 
..><: 
g 

CIl 

ë 
> 

1251 
839 
1470 
1233 
895 

2203 
1568 
1640 
852 

902 
813 
1768 
1465 

1665 
2221 
3395 
3495 

'<f. 
§ 
"§ 

â 
~ 
~ 

~ 
§ 
g 
-0 

" .s 
E 
e 
i 
~ 

-g 
ê 
ë.. 
§ 

i 
;t: 
i5 

::? 
" 
S 
:> 
o 

~ 

60.0 67.2 107.7 
35.6 35.6 79.6 
69.3 66.4 92.6 
76.1 65.5 75.0 
46.4 46.4 88.0 
47.5 38.0 90.6 
50.9 50.9 82.5 
34.8 33.1 82.9 
13.3 27.8 100.9 

47.4 46.2 81.4 
29.3 5.7 76.9 
77.8 73.0 99.2 
57.4 61.8 97.9 

8.6 
11.7 11.7 83.9 
35.5 31.9 91.9 
7.1 7.1 88.0 
14.3 1l.3 91.3 

'" >. 
'" -0 
~ 

" Ü 
>. 

U 

" "'-
B 
<Il 

17 
15 
27 
27 
18 
27 
21 
25 
33 

19 
18 
28 
25 
48 
28 
38 
65 
127 

') 
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Table B2.3 Zone 3-1 stope blastingdetails, 3560m and 3590m horizon stopes 

"-l 
:;; 
-< 
Z 
"-l .... 
~ 
if] 

3590 horizon 
3590-19 
3590-20 
3590-21 
3590-22 
3590-23 
3590-24 
3590-25 
3590-26 
3590-27 
3590-28 

3560 horizon 
3560-21 
3560-22 
3560-23 
3560-24 
3560-25 
3560-26 
3560-27 
3560-28 
3560-29 
3560-30 
3560-31 
3560-32 

"" 
"' ~ 

Ci 
E 
cS 

7-Feb-02 
24-May-02 
4-0ct-02 
12-Apr-02 
26-.Iul-02 
3-Dec-01 
9-Dec-02 
23-Apr-02 
9-Aug-02 
26-Feb-02 

II-Mar-02 
28-Dec-Ol 
7-.Iul1-02 

14-Sep-01 
12-Jul-02 
13-Jul-01 
27-Jul1-02 
20-Aug-Ol 
18-0ct-02 
PILLAR 
19-Jul-02 

10-May-02 

Blast #1 

"0 

~ 
ëô 
00 

i:! 
:3 

1-

-;0 
~ 
~ 

" "0 

" o 
"-
00 

i:! 

~ 

~ 
1-
~ 
~ 
u.. 
0.. 

.., 
E 
OIJ 

-'" 

5 
g 
u.. 
~ 

" -0 

" oc: 

400 421 1.04 3.34 
500 330 0.66 2.11 
900 486 0.54 1.73 
800 465 0.58 1.86 
850 549 0.65 2.07 
900 604 0.67 2.15 

3700 1015 0.31 0.98 
600 322 0.54 1.72 
750 563 0.75 2.4 
650 466 0.72 2.29 

150 137 0.91 2.92 
500 393 0.79 2.51 
1500 882 0.59 1.88 
800 446 0.56 3.2 
1600 795 0.5 1.59 
1600 980 0.61 1.96 
1250 830 0.66 2.12 
650 331 0.51 1.63 
1150 817 0.71 2.27 

400 366 0.92 2.93 
700 588 0.84 2.69 

Blasting Details 

N 

"" 00 

'" ëô 
.!! 
Cl 

8-Feb-02 
27-May-02 
II-Oct-02 
19-Apr-02 
I-Sep-02 
7-Dec-01 

Blast #2 

-0 

~ 
ëô 
00 

" c: 
c: 
~ 

~ 

" -0 

" o 
"-
00 

" c: 
c: 
o 

1-

750 583 
500 302 
900 540 
700 342 
1600 718 
850 512 

110 2nd blasl- due to cave 
25-Apr-02 600 421 
16-Aug-02 750 348 
S-Mar-02 

13-Mar-02 
4-Jal1-02 
II-Jul1-02 
21-Sep-01 
2-Aug-02 
27-Jul-OI 
28-Jul1-02 
24-Aug-01 
25-0cI-02 

850 522 

400 325 
1050 338 
1400 361 
1100 588 
1200 490 
1700 533 
1300 610 
700 311 
1300 917 

~ 
1-
êb 
~ 
u.. 
Q., 

0.78 
0.6 
0.6 

0.49 
0.45 
0.6 

0.7 
0.46 
0.61 

.., 
E 

1::0 
~ 
~ 

o 
Ü 
~ 
~ 

" -0 

" oc: 

2.49 
1.93 
1.92 
1.56 
1.44 
1.93 

2.25 
1.48 
1.97 

0.81 2.6 
0.55 1.76 
0.26 1.21 
0.53 l.71 
0.41 1.31 
0.31 
0.47 1.5 
0.44 1.43 
0.71 2.26 

22-Jul-02 
17-May-02 

650 321 0.49 1.58 
750 686 0.91 2.93 
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.., 
'"' 00 

'" ëô 
.!! 
Cl 

12-Feb-02 
30-May-02 
15-0ct-02 
23-Apr-02 
6-Aug-02 
10-Dec-01 

29-Apr-02 
19-Aug-02 
8-Mar-02 

18-Mar-02 
11-Jal1-02 
13-Jul1-02 
26-Sep-Ol 
8-Aug-02 
3-Aug-01 
11-.Iul-02 

27-Aug-OI 
31-0cl-02 

26-Jul-02 
23-May-02 

Blast #3 

-0 

* '" ëô 
00 

" § 
~ 

~ 

" -0 
:;; 

oc: 
00 

" c: 

~ 

~ 
~ 
~ 
u.. 
Q., 

1700 1102 0.65 
1650 907 0.55 
1850 818 0.44 
2500 893 0.36 
2250 738 0.33 
2500 933 0.37 

2100 748 0.35 
1250 485 0.39 
1850 885 0.48 

.., 
E 

-BD 
~ 
~ 
o 
Ü 
~ 
~ 

~ 
:;; 
o c.. 

2.07 
1.76 
1.42 
1.14 
1.05 
1.2 

1.14 
1.24 
1.53 

1050 454 0.43 1.38 
1400 771 0.55 1.76 
3100 1785 0.58 1.84 
2100 837 0.4 1.28 
3200 2022 0.62 2.02 
2950 1611 0.55 1.75 
3000 1083 0.36 1.16 
1000 288 0.29 0.92 
2550 1251 OA9 1.37 

1600 652 OA1 1.31 
1000 582 0.58 1.86 

:;% 
00 

'" ëô 
.!! 
Cl 

Blast #4 

-0 

* '" ëô 
00 

§ 
~ 

~ 

" "0 
:;; 
o 

c.. 

~ 
~ 

21-Mar-02 1600 893 

4-Sep-0 1 1900 775 

~ 
~ 
~ 
u.. 
c.. 

;;;; 
E 
~ 
~ 
~ 

B 
'" ~ 
~ 

~ 
:;; 

oc: 

0.56 1.79 

0.41 1.3 

') 
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Table B2.3 Zone 3-1 stope blasting details, 3500m and 3530m horizon stop es 

~ 
:;;: 
..: 
'Z. 
~ 
Q., 

o 
t;; 

3530 horizon 
3530·24 
3530-25 
3530-26 
3530-27 
3530-28 
3530-29 
3530-30 
3530-31 
3530-32 
3530-33 
3530-34 

3500 horizol1 
3500-26 
3500-27 
3500-28 
3500-29 
3500-30 
3500-31 
3500-32 
3500-33 
3500-34 
3500-35 
3500-36 

t; 
<0 

êiï 
1;j 
o 

05-.Iul-01 
25-.Ial1-02 
18-May-01 
09-Nov-OI 
23-Aug-OO 
17-May-02 
16-.IUI1-00 
22-Feb-02 
24-.Iul-00 
II-Apr-Ol 
27-0cl-00 

21-Mar-01 
PILLAR 

04-Mav-00 
07-Nov-00 
23-Mar-OO 
12-0ec-00 
03-0ec-99 
12-Feb-01 
08-0cl-99 
15-0ec-00 
21-.1311-00 

Blast #\ 

II 
~ 
êiï 
~ 

" <:: 
<:: 
o 
1-

-;n 
-'" 

" ~ 
ct 
~ 

" <:: 
<:: 

~ 

2 
~ 
-'" 

"-
0... 

M 

.~ 
-'" 

.9 
u 
<0 
"-

~ 
ct 

750 494 0.66 2. Il 
700 606 0.87 2.77 
1200 610 0.51 1.61 
850 616 0.72 2.32 
1650 1220 0.73 2.37 
600 428 0.71 2.28 
1400 1115 0.79 2.54 
1050 838 0.8 2.55 
1100 872 0.79 2.54 
1000 836 0.84 2.67 
1000 756 0.75 2AI 

450 469 1.04 3.33 

950 695 0.73 2.34 
1200 860 0.72 2.29 
900 789 0.87 2.8 
1900 1113 0.58 1.87 
1000 460 OA6 1.47 
1500 1102 0.73 2.35 
1000 785 0.79 2.51 
800 647 0.8 2.58 
750 606 0.8 2.59 

'" "" ~ 
'" êiï 
" "il o 

II-.Iul-OI 
29-.Ial1-02 
22-May-01 
14-NoY-01 
04-Sep-00 
23-May-02 
22-.IUI1-00 
28-Feb-02 
26-.Iul-00 
13-Arr-01 
06-NoY-00 

30-Mar-01 

05-May-OO 
OS-NoY-OO 
24-Mar-OO 
29-0ec-00 
07-0ec-99 
19-Feb-01 
12-0cl-99 
20-0ec-00 
28-.Ial1-00 

Blasting Details 
Blast #2 
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~ 
êiï 
~ 
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c 
~ 

~ 

i 
ct 
~ 
0) 
c 
c 
~ 

2 
~ 
~ 
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0... 

M 
E 
~ 
~ 
~ 

B 

~ 
i; 

~ 
ct 

1950 854 OA4 lA 
1650 430 0.26 
1300 510 0.39 1.26 
1000 406 OAI 1.3 
3800 1116 0.29 0.94 
5550 2577 OA6 IA9 
3300 1457 0.44 lAI 
3000 1763 0.59 1.89 
1900 644 0.34 1.08 
1000 313 0.31 
250 255 0.51 1.63 

900 499 0.55 1.77 

800 335 OA2 1.34 
1000 483 OA8 1.55 
1200 429 0.36 1.14 
2100 1365 0.65 2.08 
1000 301 0.3 0.96 
1500 520 0.34 1.11 
1200 315 0.26 0.84 
1900 874 0.46 1.47 
800 418 0.52 1.67 
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M 

"" ~ 
êiï 
0) 

l3 

23-.Iul-01 
01-Feb-02 
25-May-Ol 
16-NoY-01 
08-Sep-00 

26-.IUI1-00 

02-Aug-00 
16-Apr-Ol 
07-Nov-00 

03-Apr-Ol 

ll-May-OO 
13-Nov-00 
28-Mar-00 
05-.Ian-Ol 
13-0ec-99 
23-Feb-Ol 
20-0cl-99 
12-0ec-00 
03-Feb-OO 

Blast #3 
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~ 
êiï 
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0) 
c 
c 
~ 

~ 

1 
ct 
~ 
0) 
c 
s:: 
o 
1-

2 
~ 
~ 

1t 

;;;
E 
~ 
~ 
~ 

~ 
"-

~ 
ct 

1400 1145 0.82 2.62 
2050 1559 0.76 2A3 
2400 975 0.41 1.3 
2200 1187 0.54 1.73 
4650 2050 OA4 1.41 

3350 1510 OA5 1.58 

3200 1434 0.44 lA3 
2500 872 0.35 1.12 
1050 688 0.65 2.09 

1600 1107 0.69 2.21 

1.29 
IA8 

"" "" ~ 
êiï 

* o 

Blast#4 

1 
êiï 
~ 
0) 
c 
c 
~ 

0) 

~ 
ct 
~ g 
c 
~ 

2 
~ 
~ 
g: 

1450 586 OA 
2900 1338 0.46 
2000 1188 0.59 
9000 3535 0.39 
2000 790 0.39 
2900 1686 0.58 

1.9 04-Apr-00 6400 3013 0.47 
L26 
1.26 15-0ec-99 5800 1885 0.33 
1.86 02-Mar-0 1 4600 1758 0.38 

3000 1513 0.5 1.76 
2000 1202 0.6 1.92 
1800 784 0.43 1.39 

~ 
c. 
~ 

B 
g 
"-

f 
ct 

1.51 

1.04 
L22 

") 
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Table B2.3 Zone 3-1 stope blasting details, 3440m and 3470m horizon stopes 
Blasting Details 

Blast #1 Blast #2 

;;:; ;;:; 
ôiJ a a 

êb êb 
loJ 

~ ~ ~ .... t; ::E 
.", 

" .... "" .... 
f;l .", .9 N fl .", .9 '" <C "" ~ "" ~ "" ~ ~ 

u ~ () 

Z on ai a " en ai a :::E '" en 

" "- 1-- u-
~ "-

~ 
u-

'" loJ ai en en êb 
.... ai en en .... 

ai c.. " " " " " " 0 B " ê ~ .", 
B " " ~ .", 

B " ~ § " ~ 
1-- '" 0 a u- a '" 0 u- 0 " '" Ci 1-- 1-- "- "- Ci 1-- 1-- "- "- Ci 

3470 horizon 
3470-29 31-Jul-00 700 522 0.74 2.39 04-Aug-00 650 352 0.54 1.73 18-Aug-00 
3470-30 23-Dec-99 800 404 0.51 1.62 24-Dec-99 1300 360 0.28 0.89 05-1an-00 
3470-31 26-May-00 1000 768 0.77 2.46 28-May-00 2200 978 0.44 1.42 02-1un-00 
3470-32 05-Jul-99 1150 537 0.47 1.49 07-Jul-99 1200 644 0.54 1.72 09-1ul-99 
3470-33 14-Feb-00 1350 949 0.7 2.24 15-Feb-OO 1500 498 0.33 1.06 18-Feb-00 
3470-34 02-Jun-99 1000 598 0.6 1.91 07-1un-99 1600 462 0.29 0.92 10-lun-99 
3470-35 14-Apr-00 1100 103S 0.94 3.3 17-Apr-00 2150 823 0.38 1.34 21-Apr-00 
3470-36 10-Aug-99 950 433 0.46 1.46 12-Aug-99 1500 458 0.31 1.07 16-Aug-99 

3440 horizon 
3440-31 21-Feb-00 500 612 1.22 3.9 25-Feb-00 400 249 0.62 1.99 28-Feb-00 
3440-32 12-Jan-99 500 403 0.81 2.5 15-1an-99 1350 1100 0.81 2.53 
3440-33 10-Sep-99 500 423 0.85 2.71 17-Sep-99 1800 633 0.35 1.12 21-Sep-99 
3440-34 12-Mar-99 1050 739 0.7 2.06 16-Mar-99 1500 713 0.48 1.52 19-Mar-99 
3440-35 01-Nov-99 900 513 0.57 1.82 05-Nov-99 2000 835 0.41 1.32 IO-Nov-99 
3440-36 09-Apr-99 900 405 0.45 1.94 13-Apr-99 900 434 0.48 1.54 16-Apr-99 
3440-37 OI-Mar-02 600 355 0.59 1.9 15-Mar-02 1200 700 0.58 1.87 25-Mar-02 
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Blast #3 Blast #4 

;;:; ;;:; 
a a 
êb êb 
~ ~ 

.", .... .", .... 
" .... " .... 

B .", .9 t f;l .", .9 en ~ ~ '" ~ ü '" ~ ü 

ai a '" ~ ai a '" "- 1-- u-
'" "- 1-- u-

en en êb .... ai en en êb .... 
" " " " " " " " ~ .", 

B " El ~ .", 

" " ~ c ~ 
0 a u- 0 " 0 a u.. 0 

1-- 1-- "- "- Ci 1-- 1-- "- c.. 

2700 1798 0.66 2.13 
2150 843 0.39 1.25 
2600 1539 0.59 1.89 07-1un-OO 4000 1919 0.48 1.54 
6150 2086 0.34 1.08 
2850 1102 0.39 1.24 28-Feb-00 5300 2014 0.38 1.35 
4150 2171 0.52 1.67 
3800 2369 0.6 2.18 
1950 965 0.49 1.58 19-Aug-99 6000 3433 0.57 1.83 

1300 969 0.74 2.38 

3600 1657 0.46 1.61 
3800 1515 0.4 1.28 
4100 1610 0.39 1.26 
2350 837 0.36 1.14 
2600 1657 0.64 2.04 
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Table B2.3 Zone 3-1 stope blasting details, 3380m and 3410m horizon stopes 

~ 
:;; 
-<t: 
Z 
~ 
Q. 

o 
&
[/j 

3410 horizon 
3410-32 
3410-33 
3410-34 
3410-35 
3410-36 
3410-37 
3410-38 
3410-39 
3410-40 

3380 horizon 
3380-33 
3380-34 
3380-35 
3380-36 
3380-37 
3380-38 
3380-39 
3380-40 
3380-41 

Olt 

'il: 
'" ai 
E 
'" o 

OS-Oct-02 
08-Apr-02 
30-0ct-01 
Ol-Aug-Ol 
23-Mar-01 
10-Jan-02 
26-Jun-01 

03-May-02 
30-NoY-01 

21-Sep-01 
18-May-01 
31-Jan-01 
08-Dec-00 
25-0ct-01 
27-Apr-OI 
II-Feb-02 

30-Aug-01 
03-Jun-02 

Blast#1 

-0 

* '" ai 
Cf> 

" C 
C 
o 

1-

450 
400 
700 
900 
600 
700 
850 
1000 
250 

450 
150 
150 
550 
1500 
1700 
950 
1000 
1600 

êiJ 
~ 
t; 

"0 ::: 
c 
"
Ul 

'" C 
C 
o 

1-

350 
445 
516 
526 
417 
503 
510 
442 
174 

474 
185 
159 
340 
1153 
914 
582 
651 
945 

::2: 
1-
êb 
~ 
"
"-

0.8 
0.59 
0.74 
0.58 
0.7 

0.72 
0.6 

0.44 
0.7 

1.05 
1.23 
1.06 
0.61 
0.77 
0.54 
0.61 
0.65 
0.59 

M 
C 

~ 
~ 
~ 

.9 
g 
"
~ 

'" "0 
::: 
o 
"-

2.55 
1.9 

2.35 
1.86 
2.22 
2.3 
1.92 
1.41 
2.23 

3.37 
3.95 
3.2 
1.98 
2.46 
1.72 
1.96 
2.08 
1.89 

N 
Olt 

'il: 
'" ai 
E 
co 
o 

10-Oct-02 
10-Apr-02 
05-NoY-01 
07-Aug-01 
30-Mar-01 
25-Jan-02 
29-Jun-01 
06-May-02 
06-Dec-01 

28-Sep-01 
23-May-01 
o I-Feb-O 1 
15-Dec-00 
30-0ct-01 
04-May-01 
15-Feb-02 
04-Sep-01 
20-Jun-02 

Blast #2 

"0 

* '" ai 
~ 
c 
c 
o 

1-

500 
750 
850 
700 
800 

4150 
1400 
1300 
300 

500 
450 
500 
800 

2500 
800 
1750 
1000 
1400 

t; 
"0 ::: o 
"-
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o 

1-

250 
539 
398 
344 
479 
1779 
398 
525 
274 

318 
238 
349 
498 
571 
303 
819 
303 
528 

Blasting Details 

::2: 
1-
êb c-
"
"-

0.5 
0.71 
0.47 
0.49 
0.6 
0.46 
0.28 
0.4 
0.91 

0.64 
0.53 
0.69 
0.62 
0.23 
0.38 
0.47 
0.3 
0.38 
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:: 
êb c-
~ 

.9 
g 
"-
t; 

"0 
::: 
o 
"-

1.6 
2.3 
1.5 

1.57 
1.92 
1.47 
0.92 
1.29 
2.92 

2.04 
1.69 
2.23 
1.97 
0.73 
1.21 

1.5 
0.97 
1.21 

M 
Olt 

~ 
ai 
E 
co 
o 

II-Oct-02 
12-Apr-02 
13-NoY-OI 
IO-Aug-OI 

no record 

04-Jul-01 
09-May-02 
07-Dec-01 

Ol-Oct-Ol 
30-May-01 
05-Feb-01 
18-Dec-00 
05-NoY-01 
II-May-Ol 
19-Feb-02 
07-Sep-01 
27-Jun-02 

Blast #3 

"0 

* co 
ai 
~ 
c c 
o 

1-

1000 
1250 
1500 
1850 

1300 
2200 
600 

1150 
850 

2200 
1850 
3800 
3000 
2750 
2200 
2800 

~ 
::: o 
"
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'" C 
C 
o 

1-

1105 
1027 
1051 
916 

601 
925 
310 

~ 

~ 
"
"-

l.l 
0.82 
0.7 
0.5 

0.46 
0.42 
0.52 

782 0.68 
598 0.7 
966 0.43 
607 0.33 
1788 0.47 
1566 0.52 
1087 0.4 
1065 0.48 
1876 0.67 
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i 
.... 
.8 
" co 
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" -0 
::: 
o 
"-

3.54 
2.63 
2.24 
1.58 

1.48 
1.35 
1.65 

2.17 
2.25 
1.41 
1.05 
1.51 
1.67 
1.26 
1.55 
2.14 

l 
'il: 
" ai 

~ o 

17-Dec-01 

14-0ct-01 
01-lul-02 

Blast #4 

] 
~ 
aï 
'" § 
o 

1-

1400 

.... 
" ~ 
o 

Q. 

'" § 
o 

1-

640 

4800 3042 
2000 862 

~ 

~ 
"
Q. 

0.46 

0.63 
0.43 

') 

M 

i 
.... 
.8 
16 
'""' .g 
::: c 

Q. 

1.46 

2.02 
1.38 
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~, Table B3.1 Orientation of stope strike 
" 

Azimuth 3-1 Zone % of aIl cases Block 5 % of aIl cases 

80 1 1 

81 1 1 

82 0 0 

83 0 0 
84 0 0 

85 1 1 

86 2 2 

87 3 3 
88 0 5 5 
89 0 3 3 
90 3 4 10 10 
91 0 0 3 3 
92 5 5 
93 7 9 5 5 
94 9 12 3 3 
95 9 12 3 3 
96 3 4 16 16 
97 12 16 10 10 
98 8 11 6 6 
99 7 9 4 4 
100 10 13 3 3 
101 6 8 1 
102 0 0 6 6 
103 0 0 2 2 
104 0 0 1 1 
105 1 
106 0 
107 0 
108 0 
109 0 
110 0 
III 0 
112 1 
113 0 
114 0 
115 
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Table B3.2 Stope strike length 

Length (m) 3-1 Zone % of aU cases Block 5 % of aU cases 
8 1 1 

8.5 5 7 
9 5 7 

9.5 1 1 
10 38 51 0 

10.5 2 3 1 
Il Il 15 3 3 

11.5 7 9 2 2 
12 2 3 3 3 

12.5 2 3 2 2 
13 0 0 8 8 

13.5 1 1 3 3 
14 9 9 

14.5 10 10 
15 42 43 

15.5 2 2 
16 8 8 

16.5 
17 2 2 

17.5 0 0 
18 0 0 

18.5 0 0 
19 
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Table B3.3 Stope hanging-wall hydraulic radius 

Hydraulic 
Radius 3-1 Zone % of all cases Block 5 % of all cases 

3.2 1 1 
3.3 2 3 
3.4 3 4 

3.5 4 5 
3.6 1 1 
3.7 14 19 
3.8 20 27 

3.9 7 9 
4 2 3 1 1 

4.1 10 13 3 3 
4.2 3 4 2 2 
4.3 3 4 2 2 
4.4 2 3 2 2 
4.5 2 3 3 3 
4.6 0 0 3 3 
4.7 0 0 6 6 
4.8 1 1 2 2 
4.9 12 12 
5 18 19 

5.1 30 31 
5.2 4 4 
5.3 4 4 
5.4 3 3 
5.5 0 0 
5.6 
5.7 0 0 
5.8 0 0 
5.9 0 0 
6 1 
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Table B3.4 True height ofhanging-waB (m) 

Height 3-1 Zone % of aB cases Block 5 % of aB cases 
< 28.5 6 8 0 
< 29 6 8 6 6 
< 29.5 3 4 8 8 
< 30 Il 15 4 4 
< 30.5 2 3 10 10 
< 31 10 13 5 5 
< 31.5 Il 15 13 13 
< 32 5 7 15 15 
< 32.5 6 8 18 19 
< 33 4 5 13 13 
< 33.5 1 1 3 3 
< 34 4 5 1 1 
< 34.5 4 5 0 
< 35 1 0 
< 35.5 0 0 0 
< 36 1 1 0 
< - 36.5 0 0 0 
< 37 0 
< 37.5 0 
< 38 0 
< 38.5 0 
< - 39 0 
< 39.5 0 
< 40 0 0 -

< 40.5 
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Table B3.5 Hanging-waU dip angle (degrees from horizontal) 

Dip Angle 3-1 Zone % of aU cases Block 5 % of all cases 
72 2 3 8 8 
73 0 0 5 5 
74 1 1 7 7 
75 4 5 12 12 
76 3 4 Il Il 
77 2 3 10 10 

78 2 3 8 8 
79 4 5 3 3 
80 10 13 13 13 
81 4 5 0 0 
82 5 7 6 6 
83 7 9 3 3 
84 6 8 2 2 
85 3 4 7 7 
86 3 4 1 
87 3 4 

/,-- 88 7 9 
89 1 1 
90 1 1 
91 3 4 
92 0 0 
93 3 4 
94 
95 0 
96 
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Table B3.6 Stope size (tones blasted) 

from (tonnes) to (tonnes) 3-1 Zone % of all cases Block 5 % of all cases 

1000 1999 5 7 
2000 2999 16 22 
3000 3999 14 19 3 3 
4000 4999 11 15 8 8 
5000 5999 11 15 5 5 
6000 6999 2 3 9 9 
7000 7999 3 4 10 10 
8000 8999 2 3 13 13 
9000 9999 6 8 6 6 
10000 10999 2 3 0 0 
11000 11999 0 0 8 8 
12000 12999 0 0 2 2 
13000 13999 1 1 3 3 
14000 14999 5 5 
15000 15999 1 
16000 16999 2 2 
17000 17999 3 3 
18000 18999 2 2 
19000 19999 6 6 
20000 20999 5 5 
21000 21999 2 2 
22000 22999 1 1 
23000 23999 0 0 
24000 24999 0 0 
25000 25999 0 0 
26000 26999 1 
27000 27999 0 0 
28000 28999 0 0 
29000 29999 0 0 
30000 30999 1 
31000 31999 0 0 
32000 32999 1 1 

319 



Table B3.7 Stope type 

3-1 Zone Block 5 

Stope type # Cases % ofall # Cases % of all cases 
cases 

Pl 14 19 12 12 

P2 9 12 13 13 

P3 Il 15 16 16 

SI 15 20 20 21 

S2 26 35 36 37 

Table B3.8 Stope drill pattern 

3-1 Zone Block 5 

Drill pattern # Cases % of aIl cases # Cases % of all cases 
~-

Parallel holes 25 33 34 35 

Fanned or angled 34 45 54 56 
holes 

Longitudinal stope 16 21 9 9 
(narrow zone pattern) 
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Table B3.9 Hanging-waU dilution density (DDcms) per mining zone 

from (m) to (m) 3-1 Zone % of aU cases Block 5 % of aU cases 

0 0.5 20 29.0 10 10.9 
0.51 1 23 33.3 17 18.5 
1.01 1.5 Il 15.9 Il 12.0 
1.51 2 10 14.5 12 13.0 
2.01 2.5 5 7.2 16 17.4 
2.51 3 12 13.0 
3.01 3.5 7 7.6 
3.51 4 2 2.2 
4.01 4.5 2 2.2 
4.51 5 1 1.1 
5.01 5.5 1 1.1 
5.51 6 0 0.0 
6.01 6.5 0 0.0 
6.51 7 0 0.0 
7.01 7.5 0 0.0 
7.51 8 0 0.0 
8.01 8.5 0 0.0 
8.51 9 0 0.0 
9.01 9.5 0 0.0 
9.51 10 1 1.1 

.~. 
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Table B3.1 0 Hanging-wall dilution density (DDcms) per stope type 

from (m) to (m) 3-1 Zone 810ck 5 3-1 Zone 810ck 5 3-1 Zone Block 5 3-1 Zone 810ck 5 3-1 Zone 810ck 5 

PI PI P2 P2 P3 P3 SI SI S2 S2 

0 0.5 5 2 4 3 0 5 3 7 
0.51 1 7 2 3 5 3 3 6 7 3 
1.01 1.5 1 2 2 1 2 3 5 5 

1.51 2 2 3 3 3 2 4 3 
2.01 2.5 5 3 4 3 3 
2.51 3 1 4 6 
3.01 3.5 2 2 2 
3.51 4 0 0 
4.01 4.5 
4.51 5 

5.01 5.5 
5.51 6 
6.01 6.5 
6.51 7 
7.01 7.5 
7.51 8 
8.01 8.5 
8.51 9 
9.01 9.5 
9.51 10 

~---. # cases 15 12 8 13 10 15 14 20 22 32 
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Table B3.11 Hanging-wall dilution density (DDcms) per stope type 
Block 5 Zone 3-1 

Stopetype Stope type 

hanging-wall DD PI P2 P3 ail Primary SI S2 hanging-wall DD PI P2 P3 ail Primary SI S2 

1.5 2.7 1.5 2.2 3.4 0.8 0.4 0.5 0.8 1 1.9 

2.3 1.8 2.6 2.3 4.1 2.6 0.3 0.5 1.2 0.3 0.3 0.6 
0.6 1.7 1.6 0.6 3.3 0.4 1.1 1 0.4 0.6 0.6 

2.1 3.5 4.5 2.1 1.4 2.4 0.8 0.7 1.1 0.8 0.6 
2.5 3.2 2.6 2.5 2.0 2.6 1 0.8 1.3 0.3 

1.2 2.3 1.8 1.2 1.1 1.1 0.9 0.2 0.7 0.9 0.2 0.7 

2.2 2.4 2.2 4.7 9.8 0.8 0.3 0.5 0.8 1.6 1.1 
2 3.0 2.8 0.5 0.7 0.5 1.7 0.6 

0.3 2.2 0.6 0.3 0.8 3.4 0.2 2.5 

0.4 2.6 3.1 0.7 3.7 0.4 0.6 0.4 0.7 
0.8 1.9 0.6 1.8 0.6 5.2 0.1 2.2 
2.1 0.7 3.1 1.7 0.6 1.1 0.4 2.1 

0.8 2.9 3.5 0.8 0.9 0.5 1.8 
2.3 2.3 2.1 0.4 1.1 1.7 
1.4 3.2 2.3 2.5 0.7 0.2 

2.3 0.5 1.4 1.2 
AVERAGE 1.50 2.16 2.19 2.4 2.9 AVERAGE 0.64 0.53 0.73 0.2 1.1 

Std Deviation 0.8 1.0 1.1 1 2.0 Std Deviation 0.3 0.3 0.3 0.3 0.9 
# stopes 12 13 15 2.2 # stopes Il 10 0.5 0.9 

2.6 1.2 1.3 

1.9 0.3 
0.7 0.4 1.1 1.1 

0.8 1.0 0.8 
2.7 2.0 0.7 
2.6 1.1 0.5 

1.6 0.2 0.7 
4.5 0.2 
2.6 0.3 0.6 
1.8 0.4 

2 2.6 

1 

0.6 1.9 

31 1.0 

0.6 1.2 
3.1 

OA 
0.8 

2.1 

2.9 

1.4 

AVERAGE 1.97 1.89 2.15 AVERAGE 0.67 0.91 1.13 
Std De\"Îation 1.0 1.3 1.9 Std De\'iation 0.3 0.6 0.7 

Ji stopes 40 16 28 # stopes 26 21 

Longitudinul stopes onl~ 

Block 5 Zone 3-1 
Stope type Stope type 

hanging-\\"nll DD PI Pl P3 ail Primar)- SI S2 hanging-wall DO PI P2 P3 a1l Primai)" SI S2 
2.1 2.1 1.7 0.3 1.9 2.1 0.6 1.9 1.2 
0.4 OA 1.1 2.4 0.6 1.9 0.6 1.9 

0.9 1.8 1.8 0.3 
2.3 1.1 1.1 0.3 

2.1 
1.9 2.1 
0.6 

AVERAGE 1.3 1.5 1.4 AVERAGE 1.4 J.2 1.9 
Std De\"iatÎon 1.2 0.6 1.5 Std De\'iation 0.6 0.9 

p- stopes # stopes 5 
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Table B3.l2 Relationship with hanging-wall cablebolting and dilution density 

(DDcms) per stope type, Block 5 

HW CABLE DOWN 
Stope type 

HWDD Pl P2 P3 aIl Primary SI S2 
0.6 2.6 2.3 0.6 2.0 1.1 
1.5 2.2 1 1.5 1.1 2.8 
2.1 0.7 2.1 4.7 0.3 

1.8 2.6 3.0 5.2 
3.5 2.2 0.8 0.9 
3.2 0.7 2.1 0.4 
1.7 1.8 0.9 1.1 
1.9 3.5 0.2 

3.2 3.7 
1.7 2.0 
1.9 1.0 
2.3 3.4 
1.0 

AVERAGEDD 1.93 2.09 1.84 

HW CABLE UP 
Stope type 

HWDD Pl P2 P3 aU Primary SI S2 
2.4 0.6 2.4 2.2 2.0 
4 3.1 4.0 4.1 9.8 

2 0.6 3.3 3.4 
4.5 3.1 1.4 
2.7 2.0 0.6 1.1 
1.6 4.5 0.8 0.4 
2.9 2.7 2.6 
3.1 1.6 
1.4 2.9 2.4 
2.6 3.1 2.6 
2.6 1.4 
1.8 2.6 1.4 

2.6 
1.8 2.9 

AVERAGEDD 2.52 2.07 2.86 
~-
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Table C.l Block 5 modelled sequence, stop es #1 to #32 

Stope 

Name 

9-0-4 

9-0-12 
9-1-4 

10-3-10 
9-1-12 

9-0-5 
9-0-3 

10-3-13 
9-0-10 
9-1-2 
9-0-6 
9-2-1 

9-0-13 
10-3-15 
9-1-10 

9-2-12 
10-3-11 
9-1-3 
9-0-15 

10-3-9 
9-3-1 

10-3-17 
9-1-13 
10-3-14 
9-0-11 

9-2-10 
9-1-15 

10-3-8 
9-2-3 
9-3-12 
10-3-12 
9-3-3 

Sequence Stope Type 

# PI Pl P3 SI S2 

2 
3 
4 

5 
6 
7 

8 
9 

la 
Il 
12 

13 
14 

15 
16 

17 
18 
19 
20 
21 
22 
23 
24 
25 

26 
17 
28 
29 
30 
31 
32 

x 
x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

MODEL GEOMETRY 

Strike TRUE 

length height 

14.5 

16 
14.5 
13.2 

16 
15.3 
15.4 
14.1 

13.2 
14.8 
14.9 

10.5 
14.1 
14.5 
13.2 

16 
16.1 
15.4 
14.5 

15 
10.5 

15 
14.1 

15.6 
16.1 
13.2 
14.5 
14.8 

15.4 
16 
16 

15.4 

29 
29 
31 

30 
31 
29 
29 

30 
29 
31 
29 
31 
29 

30 
31 
31 
30 
31 
29 
30 
31 
30 
31 
30 
29 
31 
31 
30 
31 
31 
30 
31 

HW 

area 
(m2) 

420.5 
464 

449.5 

396 
496 

443.7 

446.6 
423 

382.8 
458.8 
432.1 

325.5 
408.9 

435 
409.2 
496 
483 

477.4 
420.5 
450 

325.5 
450 

437.1 
468 

466.9 
409.2 
449.5 
444 

477.4 
496 

4HO 

477.4 

Hydraulic Aspect ratio 

Radius strikelheight 

4.8 
5.2 
4.9 
4.6 

5.3 
5.0 

5.0 
4.8 
4.5 
5.0 
4.9 

3.9 
4.7 
4.9 
4.6 

5.3 
5.2 
5.1 
4.8 

5.0 
3.9 
5.0 
4.8 
5.1 

5.2 
4.6 
4.9 

5.0 
5.1 
5.3 
5.2 
5.1 

0.5 
0.6 

0.5 
0.4 
0.5 

0.5 
0.5 
0.5 
0.5 

0.5 
0.5 
0.3 

0.5 
0.5 
0.4 
0.5 
0.5 

0.5 
0.5 
0.5 
0.3 
0.5 
0.5 
0.5 
0.6 
0.4 
0.5 
0.5 
0.5 
0.5 

0.5 
0.5 
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O~=(j, 

DD 
(m) 

o 
o 

0.69 

o 
0.17 

o 
0.73 
o 

0.31 

o 
0.45 

o 
0.37 

o 
0.19 
0.23 
1.12 
0.44 

o 
0.34 
0.07 
o 

0.85 
0.54 
1.72 
0.55 
0.09 

0.46 
o 

1.18 
1.41 

0.71 

cr,=O 

DD 
(m) 

0.00 
0.00 
0.74 

0.00 
0.22 
0.00 

0.96 
0.00 

0.45 
0.00 
0.62 

0.00 
0.56 
0.00 
0.22 
0.41 

1.32 
0.52 
0.00 

0.32 
0.14 

0.00 
0.98 
0.75 

1.78 
0.58 
0.18 
0.58 
0.10 
1.29 

1.50 
0.81 

crJ=+2MPa 

DD 
(m) 

0.87 
0.63 
1.11 
0.79 

0.86 
1.22 
1.38 
0.92 
0.78 

0.75 

1.30 
0.43 
1.14 

0.40 
0.73 

1.06 
1.98 

1.38 
0.57 
1.24 
0.57 
0.65 
1.44 
1.37 
2.23 
0.90 
0.63 
1.07 
0.72 
1.58 
1.83 
1.17 

cr, contour 

cr,=+4MPa 

DD 
(m) 

1.31 
1.08 
1.54 
1.21 
1.40 
1.62 
1.71 
1.34 

1.10 
1.29 
1.75 

0.68 
1.55 

1.03 
0.97 
1.38 
2.43 

1.80 
0.87 
1.62 
0.84 

1.20 
1.75 
1.79 
2.46 

1.15 
0.92 
1.43 
1.04 
1.77 
2.21 

1.55 

cr,=+6MPa 

DD 
(m) 

1.67 
1.47 
1.73 
1.61 

1.72 
2.08 
2.11 
1. 75 

1.39 
1.62 
2.06 
0.90 

1.86 
1.31 
1.20 
1.68 
2.85 

2.17 
1.21 
2.27 
1.07 
1.58 
2.10 
2.18 
3.01 
1.42 

1.20 
1.91 
1.39 
2.00 
2.56 
1.85 

crJ=+8MPa 

DD 
(m) 

2.01 
1.75 

2.06 
1.92 
2.12 
2.51 
2.57 
2.09 
1.64 

1.90 
2.43 

1.08 
2.18 

1.65 
1.41 

1.94 
3.24 

2.53 
1.48 
2.65 
1.25 
1.94 

2.45 
2.53 
3.31 
1.67 
1.42 

2.24 
1.55 
2.24 
2.95 

2.10 

') 

crJ=+IOMPa 

DD 
(m) 

2.36 
1.89 

2.28 
2.29 
2.26 
2.91 

2.89 
2.44 
1.86 

2.21 
2.62 
1.27 
2.50 

1.98 
1.68 
2.20 

3.66 
2.89 
1.75 
3.07 
1.44 

2.26 
2.79 
2.91 
3.71 

1.83 
1.67 
2.50 
1.89 
2.49 

3.29 
2.34 



) 

Table C.l Block 5 modelled sequence, stop es #33 #64 ' 
MODEL GEOMETRY 

Store 

Name 

9-0-17 

9-3-10 
9-0-8 
9-1-11 
9-1-17 
9-1-8 
9-2-2 

9-0-14 
9-1-5 

9-3-2 
9-2-11 
9-0-9 

10-3-19 
9-3-11 
9-0-7 

9-0-19 
9-2-8 
9-2-4 

9-0-16 

9-2-13 
9-3-4 
9-1-9 

9-3-13 
9-3-8 

10-3-18 
9-1-6 

9-2-15 

9-2-5 
9-1-14 

10-3-16 
10-3-21 
9-3-15 

Sequence Stope Type 

# l' 1 1'2 1'3 SI S2 

33 
34 

35 
36 
37 

38 
39 
40 
41 
42 

43 
44 
45 
46 
47 
48 

49 
50 

51 
52 
53 
54 

55 
56 
57 
58 
59 

60 
61 
62 
63 
64 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 
x 

x 

x 

x 

x 

x 

x 

x 
x 

Strike TRUE HW Hydraulic Aspect ratio 

length height area Radius strikefheight 
(ml) 

15 

13.2 
14.8 
16.1 

15 
14.8 
14.8 
15.6 

15.3 
14.8 

16.1 
15 

12.5 
16.1 

15.7 
12.5 
14.8 
14.5 

15.2 
14.1 
14.5 
15 

14.1 
14.8 

15.9 
14.9 
14.5 

15.3 
15.6 
15.2 
15 

14.5 

29 

31 
29 
31 
31 
31 
31 
29 
31 
31 

31 

29 

30 
31 

29 
29 

31 

31 

29 

31 
31 

31 

31 
31 

30 
31 
31 
31 
31 

30 
30 
31 

435 
409.2 
429.2 
499.1 

465 
458.8 
458.8 
452.4 
474.3 

458.8 
499.1 

435 
375 

499.1 

455.3 
362.5 

458.8 
449.5 

440.8 
437.1 
449.5 

465 
437.1 
458.8 
477 

461.9 
449.5 
474.3 
483.6 

456 
450 

449.5 

4.9 
4.6 
4.9 

5.3 
5.1 
5.0 
5.0 

5.1 
5.1 

5.0 
5.3 
4.9 
4.4 
5.3 
5.1 
4.4 

5.0 
4.9 

5.0 
4.8 
4.9 

5.1 
4.8 

5.0 
5.2 

5.0 
4.9 
5.1 
5.2 
5.0 
5.0 
4.9 

0.5 
0.4 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

0.4 
0.5 
0.5 

0.4 
0.5 
0.5 
0.5 

0.5 
0.5 

0.5 
0.5 
0.5 
0.5 
0.5 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
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0')=0, 

DD 
(m) 

o 
0.76 

o 
1.3 
o 

0.23 
1.17 
1.92 

1.2 
0.98 

2.03 
2.03 
o 

1.98 
1.74 

o 
0.53 
0.59 

1.32 
1.20 
1.44 

1.25 
1.70 
0.96 

0.82 
0.69 
0.15 

0.65 
2.29 
0.94 
0.00 
0.71 

0')=0 

DD 
(m) 

0.00 
0.81 
0.00 
1.59 
0.00 
0.26 
1.22 
1.97 
1.24 

1.03 
2.07 
2.09 

0.00 
2.08 
1.90 

0.00 
0.79 

0.62 
1.41 

1.25 
1.48 
1.29 

1.75 
0.98 

0.85 
0.73 

0.25 
0.70 
2.37 
0.97 
0.00 
0.84 

a)=+2MPa 

DD 
(m) 

0.64 
1.13 
0.77 

1.36 
0.80 
0.90 
1.60 
2.29 
1.65 
1.45 
2.37 

2.21 
0.62 
2.19 
2.15 

0.29 
1.17 

1.23 
1.80 
1.52 
1.73 
1.60 
1.82 

1.20 
1.72 
0.97 
0.99 

1.41 
2.76 
1.47 
0.79 
0.93 

a) contour 

a)=+4MPa 

DD 
(m) 

1.05 
1.45 
1.22 
2.50 
1.16 
1.21 
2.09 
2.97 
2.02 
1.78 
2.79 
2.57 
1.01 
2.54 

2.47 
0.72 

1.48 
1.60 
2.19 

1.82 
1.97 
1.91 

2.05 
1.40 
2.24 
0.85 
1.42 
1.82 
3.16 
1.87 
1.38 
1.20 

a)=+6MPa 

DD 
(m) 

1.41 
1.72 

1.50 
2.85 
1.51 
1.45 
2.39 
3.06 
2.32 
2.18 

3.13 
2.89 
1.35 
2.64 
2.76 

0.98 
1.76 
1.91 

2.52 
2.08 
2.34 

2.14 
2.16 

1.57 
2.71 
1.49 

1.75 
2:20 
3.56 
2.28 
1.83 
1.40 

') 

a)=+8MPa a)=+IOMPa 

DD DD 
(m) 

1.74 

1.91 
1.86 
3.23 
1.79 

1.65 
2.75 
3.39 

2.75 
2.47 

3.47 
3.30 

1.62 
2.92 
3.00 
1.29 

2.06 
2.23 

2.87 
2.35 
2.52 

2.51 
2.36 
1.76 
3.12 

1.87 
2.07 
2.51 

3.99 
2.69 
2.21 

1.55 

(m) 

2.00 
2.21 
2.17 
3.61 
2.19 
1.91 

3.27 
3.95 

3.06 
2.83 
3.80 
3.57 
2.02 
3.13 

3.34 

1.52 

2.30 
2.57 
3.21 
2.67 
2.75 
2.79 
2.5 
1.94 

3.56 
2.16 

2.38 
2.83 
4.39 
3.01 
2.56 
1.7 



') 

Table C.l Block 5 modelled sequence, stop es #65 to #97 
MODEL GEOMETRY 

Stope 

Name 

9-2-9 
9-3-5 

9-1-7 
9-3-9 

9-1-19 
9-2-17 

9-0-21 
9-2-6 

9-1-16 
9-0-18 

9-3-17 
9-3-6 

10-3-20 
9-2-14 
9-2-7 

9-3-14 
9-3-7 

10-3-22 
9-2-19 

9-1-21 
9-1-18 
9-0-20 
9-3-19 

9-2-16 
9-3-16 

9-2-21 
9-2-18 
9-3-18 

9-1-20 
9-2-20 
9-2-22 

9-3-21 

9-3-20 

Sequence 

# PI 

65 

66 
67 
68 
69 

70 
71 
72 
73 
74 
75 
76 

77 
78 
79 
80 
81 
82 

83 
84 

85 
86 
87 
88 
89 
90 

91 
92 
93 
94 
95 
96 
97 

x 

Stope Type 

Pl P3 SI S2 

x 

x 

x 
x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 
x 

x 

x 

x 

x 

x 

x 

x 

x 
x 
x 
x 

x 

Strike 

length 

15 
15.3 
15.7 

15 
12.5 

15 
15 

14.9 
15.2 
15.9 

15 
14.9 

15 
15.6 
15.7 
15.6 
15.7 

15 
12.5 
15 

15.9 
15 

12.5 

15.2 
15.2 
15 

15.9 
15.9 

15 
15 
15 

15 
15 

TRUE 

height 

31 

31 
31 
31 

31 
31 
29 

31 
31 
29 

31 
31 

30 
31 
31 
31 
31 

30 
31 
31 
31 
29 

31 
31 
31 
31 
31 
31 
31 
31 
31 
31 
31 

HW 

area 
(m2) 

465 
474.3 
486.7 
465 

387.5 
465 

435 
461.9 
471.2 
461.1 
465 

461.9 

450 
483.6 
486.7 
483.6 
486.7 
450 

387.5 
465 

492.9 
435 

387.5 
471.2 
471.2 

465 

492.9 
492.9 
465 
465 
465 
465 
465 

Hydraulic Aspect ratio 

Radius strike/height 

5.1 
5.1 

5.2 
5.1 
4.5 

5.1 
4.9 

5.0 
5.1 
5.1 
5.1 
5.0 

5.0 
5.2 
5.2 
5.2 
5.2 
5.0 
4.5 

5.1 
5.3 
4.9 
4.5 
5.1 
5.1 
5.1 
5.3 
5.3 

5.1 
5.1 
5.1 
5.1 
5.1 

0.5 
0.5 
0.5 

0.5 
0.4 
0.5 

0.5 
0.5 
0.5 
0.5 
0.5 

0.5 
0.5 
0.5 
0.5 
0.5 

0.5 
0.5 
0.4 
0.5 
0.5 
0.5 
0.4 
0.5 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
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O'J=crt 

DO 
(m) 

1.15 

1.75 
1.50 

1.01 
0.00 

0.00 
0.00 
1.54 
2.19 
2.00 
0.41 
1.67 

1.68 
2.44 
2.07 
0.80 
1.24 

0.60 
0.02 
0.00 
0.00 
0.92 
0.50 
0.00 
0.00 
0.00 
1.41 

1.27 

0.00 
0.34 
0.00 
0.00 
0.74 

0,=0 

DO 
(m) 

1.20 

1.80 
1.55 
1.05 
0.00 

0.00 
0.00 
1.60 
2.24 
2.06 

0.48 
1.71 
1.74 
2.52 

2.12 
0.83 
1.28 
0.68 
0.12 

0.00 
0.00 
0.96 
0.54 

0.00 
0.38 

0.00 
1.47 
1.34 
0.09 
0.35 
0.26 

0.00 
0.78 

o,=+2MPa 

DO 
(m) 

1.51 
2.07 
1.87 
1.24 

0.44 
0.32 
0.14 

1.88 
2.66 
2.32 
0.82 
1.95 

2.18 
2.82 
2.31 
1.22 
1.45 
1.47 
0.57 

0.00 
0.76 
1.36 
0.74 
0.99 
1.45 
0.73 

1.88 
1.58 
0.66 
1.07 
0.93 
0.36 
1.07 

0, contour 

o,=+4MPa 

DD 
(m) 

1.74 
2.29 

2.19 
1.43 

0.72 
0.70 
0.85 
2.17 
3.07 
2.69 
0.99 

2.18 
2.56 
3.26 
2.59 
1.53 
1.58 
1.88 
0.74 
0.66 
1.31 
1.72 
0.83 
1.46 

l.l0 
l.l4 
2.24 

1.83 
1.02 
1.49 
1.30 
0.91 

1.37 

o,=+6MPa 

DO 
(m) 

2.02 
2.56 
2.48 

1.59 
0.97 
1.06 
1.18 

2.40 
3.48 
3.12 

1.15 
2.38 
2.94 
3.54 
2.72 
1.71 
1.72 
2.27 
0.91 

0.82 
1.69 
2.04 
1.00 
1.78 

1.31 
1.51 
2.55 
2.10 

1.39 
1.85 
1.62 
l.l5 
1.60 

o,=+8MPa 

DO 
(m) 

2.20 
2.78 
2.78 

1.75 
1.23 
1.31 
1.55 

2.64 
3.93 

3.60 
1.28 
2.59 
3.33 
3.82 

3.12 
1.90 
1.86 
2.62 
1.14 

1.30 
2.02 
2.28 
l.l2 
2.09 

1.53 
1.84 

2.81 

2.35 
1.69 
2.21 
2.00 
1.37 
1.88 

) 

o,=+10MPa 

DD 
(m) 

2.44 
3.03 
3.08 
1.87 
1.40 

1.48 
1.81 

3.00 
4.33 
4.23 
1.40 

2.78 
3.79 
4.16 
3.32 
2.07 
2.00 

2.96 
1.29 
1.66 
2.33 
2.60 
1.30 
2.35 
1.74 

2.18 
3.20 
2.63 
2.04 
2.56 
2.41 
1.55 
2.10 



) 
0,\ 

Table C.2 Zone 3-1 modelled sequence. stop es #1 to #37 
I\IOOEL GEOI\1ETRY 

Stope 

Name 

3440-32 
3440-34 
3440-36 
3470-34 
3470-32 
3470-36 
3440-33 
3500-34 
3440-35 
3500-32 
3470-30 
3500-36 
3470-33 
3440-31 
3500-30 
3470-35 
3500-28 
3470-31 
3530-30 
3530-32 
3470-29 
3530-2K 
3530-34 
3500-29 
3380-36 
3500-35 
3500-31 
3380-35 
3500-33 
3500-26 
3410-36 
3530-33 
3380-38 
3530-26 
3380-34 
3410-38 
3530-24 

Sequence 

# 

4 

5 

6 

7 

8 
9 

10 
Il 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
J' _0 

24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

Stope Tvpe 

PI P2 1'3 SI SJ 

x 

x 

x 

x 

x 
x 
x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 
x 

x 

x 

Strike TRUE 

length height 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
8.8 
10 

9.2 
10 
10 

9.6 
10 
10 
10 
10 
10 
10 
10 
10 

7.7 

30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
26 
30 
30 
26 
30 
30 
26 
30 
30 
30 
26 
30 
30 

HW 

area 
(m2) 

300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
264 
300 

239.2 
300 
300 

249.6 
300 
300 
260 
300 
300 
300 
260 
300 
231 

Hydraulic Aspect ratio 

Radius strike/height 

3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.4 
3.8 
3A 
3.8 
3.8 
3.5 
3.8 
3.8 
3.6 
3.8 
3.8 

3.8 
3.6 
3.8 
3.1 

0.3 
0.3 
0.3 
0.3 
0.3 
03 
03 
Q3 
Q3 
Q3 
0.3 
0.3 
03 
03 
Q3 
03 
03 
Q3 
0.3 
0.3 
0.3 
0.3 
Q3 
03 
Q4 
Q3 
Q3 
Q4 

0.3 
0.3 
Q4 

03 
0.3 

03 
OA 
0.3 
03 

329 

(J~=(Jt 

DD 
(m) 

0.00 
0.00 
000 
0.11 
0.05 
0.00 
0.86 
0.02 
0.57 
0.06 
0.00 
0.00 
1.20 
0.00 
0.00 
0.62 
0.00 
0.54 
0.00 
0.05 
0.00 
000 
0.14 
0.53 
0.00 
0.84 
0.55 
000 
0.59 
0.00 
0.00 
0.94 
0.00 
000 
0.02 
0.00 
000 

,,]~O 

DD 
(m) 

0.00 
0.00 
0.00 
0.16 
0.12 
0.00 
0.89 
0.05 
0.69 
0.10 
0.00 
0.00 
1.24 
0.05 
0.04 
0.66 
0.00 
0.59 
0.00 
0.09 
0.00 
0.00 
0.17 
0.57 
0.00 
0.95 
0.60 
0.04 
0.63 
0.00 
0.20 
1.00 
0.00 
0.00 
0.16 
0.00 
0.00 

,,]~+2MPa 

DD 
(m) 

0.16 
0.24 
0.25 
0.43 
036 
0.28 
1.10 
OA4 
0.94 
0.41 
037 
0.28 
1.44 
034 
0.37 
0.91 
0.22 
0.86 
0.27 
OA5 
0.53 
030 
OA5 
0.81 
0.24 
1.08 
0.87 
0.55 
0.90 
0.00 
0.51 
1.29 
032 
030 
OA8 
0.29 
0.00 

0":; contour 

,,)~+4MPa 

DD 
(m) 

0.50 
0.49 
0.54 
0.68 
0.52 
0.51 
1.30 
0.70 
1.18 
0.58 
0.61 
0.54 
1.67 
0.76 
0.58 
1.10 
0.47 
1.05 
0.47 
0.63 
0.83 
0.51 
0.73 
1.01 
0.53 
1.36 
1.06 
0.82 
1.10 
0.20 
0.79 
1.49 
0.55 
0.51 
0.67 
0.62 
0.00 

,,]~+6MPa 

DD 
(m) 

0.79 
0.74 
0.71 
0.85 
0.64 
0.73 
1.53 
0.95 
lAI 
0.70 
0.76 
0.77 
1.92 
0.90 
0.75 
1.29 
0.67 
125 
0.63 
0.83 
1.04 
0.70 
0.89 
1 19 
0.79 
1.54 
1.24 
1.07 
1.31 
0.57 
0.99 
1.72 
0.73 
0.68 
0.85 
0.85 
0.20 

,,)~+8MPa 

DD 
(m) 

0.95 
0.89 
0.86 
1.03 
0.80 
0.88 
1.71 
1.15 
1.63 
0.86 
0.96 
0.91 
2.06 
1.11 
0.88 
1.52 
0.83 
1.43 
078 
1.01 
1.20 
0.86 
1.08 
1.39 
0.93 
1.72 
1.43 
129 
1.49 
0.77 
1.18 
2.02 
0.9\ 
0.85 
1.01 
1.01 
0.38 

,,]~+lOMPa 

DD 
(m) 

1.09 
1.03 
1.02 
1.17 
0.93 
1.01 
1.91 
129 
1.82 
0.99 
1.09 
1.07 
2.28 
1.27 

1.02 
1.7 

0.99 
1.6 

0.92 
1.13 
1.38 
1.02 
1.21 

1.58 
1.15 
1.95 
1.61 
1.5 
1.7 

0.95 
1.36 

2.25 
1.05 
1.02 
1.17 
1.19 
0.47 

') 
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Table C.2 Zone 3-1 modelled sequence, stopes #38 to #75 
!\IODEL GEOI\ŒTRY 

Stope 

Nallle 

3560-26 
3410-35 
3560-28 
3380-40 
3560-24 
3380-33 
3380-37 
3410-34 
3530-27 
3410-40 
3590-24 
3560-22 
3410-37 
3530-25 
3590-19 
3380-39 
3530-31 
3590-28 
3440-37 
3560-21 
3410-33 
3590-22 
3590-26 
3410-39 
3560-32 
3530-29 
3590-20 
3380-41 
3560-23 
3560-27 
3560-25 
3560-31 

. 3590-23 
3590-27 
3590-21 
3410-32 
3560-29 
3590-25 

Sequence 

# 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

Stope Type 

PI 1'2 1'3 SI S2 

x 

x 

x 

x 
x 

x 
x 
x 

x 

x 

x 

x 

x 

x 

x 
x 

x 

x 
x 

x 

x 

x 
x 
x 

x 
x 

x 

Strike TRU!: 

length helght 

10 
10 
10 
10 
10 
8,4 
Il 
10 
10 

9.2 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

10 
ID 
10 
10 
10 
10 
10 
ID 
10 
10 
10 
7.8 
10 
10 

30 
26 
30 
30 
30 
26 
30 
26 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
26 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
26 
30 
30 

HW 

area 
(m2) 

300 
260 
300 
300 
300 

218.4 
330 
260 
300 
276 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
260 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 
300 

202.8 
300 
300 

Hydraulic Aspect ratio 

Radius strike/height 

3.8 
3.6 
3.8 
3.8 
3.8 
3.2 
4.0 
3.6 
3.8 
3.5 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.6 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.8 
3.0 
3.8 
3.8 

0.3 
OA 
0.3 
0.3 
0.3 
03 
0,4 
04 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
03 
03 
03 
0.3 
0.3 
0.3 
0.4 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
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0".1=0, 

DD 
(m) 

0.00 
0.16 
0.00 
0.00 
0.00 
0.14 
0.55 
0.67 
0.74 
000 
0.00 
000 
0.54 
0.42 
0.00 
0.54 
0.95 
000 
0.83 
000 
0.36 
0.00 
0.00 
0.35 
000 
0.81 
0.22 
0.00 
0.68 
0.73 
0.60 
0.65 
0.70 
0.75 
0.35 
0.22 
0.71 
0.48 

cr,=O 

DD 
(m) 

0.00 
0.39 
0.00 
0.00 
0.00 
0.29 
0.71 
0.75 
0.81 
0.00 
000 
0.00 
0.58 
0.47 
000 
0.59 
lOI 
0.00 
0.96 
0.00 
0.51 
0.00 
0.00 
0.57 
0.00 
0.86 
0.30 
0.00 
0.74 
0.78 
0.64 
0.70 
0.76 
0.79 
0.45 
0.24 
0.75 
0.58 

cr,=+2MPa 

DD 
(m) 

0.36 
0.71 
0.44 
0.28 
0.38 
0.55 
0.86 
0.88 
104 
000 
0.36 
0.10 
0.88 
0.71 
0.05 
0.94 
1.19 
0.15 
109 
0.57 
0.75 
0.30 
0.42 
0.80 
0.17 
104 
0.76 
0.51 
0.92 
0.96 
0.84 
0.85 
0.98 
100 
0.82 
0.30 
0.92 
0.82 

0'3 contour 

cr,=+4MPa 

DD 
(m) 

0.58 
0.95 
0.60 
0.55 
0.59 
0.74 
0.98 
104 
1.22 
0.29 
0.56 
0.47 
1.10 
0.94 
0.39 
1.10 
1.41 
0.55 
128 
0.79 
0.92 
0.51 
0.65 
103 
0.65 
1.21 
0.94 
0.91 
1.12 
114 
100 
100 
1.19 
119 
lOI 
0.35 
106 
lOI 

cr,=+6MPa 

DD 
(m) 

0.77 
112 
0.75 
0.74 
0.79 
0.94 
1.25 
1.20 
1.41 
0.47 
0.74 
0.66 
1.31 

107 
0.59 
1.27 

161 
0.75 
1.42 
0.99 

1.12 
0.66 
0.80 
1.22 

0.84 
1.40 
1.14 
102 
1.3 1 
1.32 
1.15 
l.l7 
1.36 
1.38 
1.20 
0.42 
1.22 

1.16 

cr,=+8MPa 

DD 
(m) 

0.92 
1.32 
0.91 
0.93 
0.95 
1.05 
1.33 
1.41 
1.59 
0.65 
0.93 
0.84 
1.52 
1.27 
0.74 
1.47 
1.83 
0.91 
1.64 
1.17 
1.31 
0.82 
095 
1.39 

100 
1.58 

1.33 
1.38 
1.52 
149 
134 
1.33 
157 
158 
1.38 
0.48 
1.36 
1.33 

cr,=+IOMPa 

DD 
(m) 

109 
1.46 
105 
1.08 
l.l 
1.2 
1.59 
1.56 
1.8 

0.79 
1.08 
1.01 
1.73 

144 
0.91 
172 
2.06 
1.08 
1.77 
1.35 

1.51 
0.96 
1.1 

1.61 
1.17 
1.8 

1.49 
1.42 
1.7 
1.67 
1.48 
1.46 
1.78 

1.79 

1.58 
0.53 
1.53 
1.51 

') 
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