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Abstract 

In this thesis, we present a strongly coupled data fusion architecture within a Bayesian 

framework for modeling the bi-directional influences between the scene and object 

classification mechanisms. A number of psychophysical studies provide experimental 

evidence that the object and the scene perception mechanisms are not functionally 

separate in the human visual system. Object recognition facilitates the recognition of the 

scene background and also knowledge of the scene context facilitates the recognition of 

the individual objects in the scene. The evidence indicating a bi-directional ex change 

between the two processes has motivated us to build a computational model where 

object and scene classification proceed in an interdependent manner, while no 

hierarchical relationship is imposed between the two processes. We propose a strongly 

coupled data fusion model for implementing the feedback relationship between the scene 

and object classification processes. We present novel schemes for modifying the 

Bayesian solutions for the scene and object classification tasks which allow data fusion 

between the two modules based on the constraining of the priors or the likelihoods. We 

have implemented and tested the two proposed models using a database of natural 

images created for this purpose. The Receiver Operator Curves (ROC) depicting the 

scene classification performance of the likelihood coupling and the prior coupling 

models show that scene classification performance improves significantly in both 

models as a result of the strong coupling ofthe scene and object modules. 

ROC curves depicting the scene classification performance of the two models also show 

that the likelihood coupling model achieves a higher detection rate compared to the prior 

coupling mode!. We have also computed the average rise times of the models' outputs as 



a measure of comparing the speed of the· two models. The results show that the 

likelihood coupling model outputs have a shorter rise time. Based on these experimental 

findings one can conclu de that imposing constraints on the likelihood models provides 

better solutions to the scene classification problems compared to imposing constraints on 

the prior models. 

We have also proposed an attentiomil feature modulation scheme, which consists of 

tuning the input image responses to the bank of Gabor filters based on the scene class 

probabilities estimated by the model and the energyprofiles of the Gabor filters for 

different scene categories. Experimental results based on combining the attentional 

feature tuning scheme with the likelihood coupling and the prior coupling methods show 

a significant improvement in the scene classification performances ofboth models. 
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Résumé 

Dans cette thèse, nous présentons une architecture de fusion de données fortement 

couplée à l'intérieur d'un cadre bayésien pour la modélisation des influences 

bidirectionelles entre les mécanismes de classification de scène et d'objet. Un certain 

nombre d'études psychophysiques apportent des preuves expérimentales que les 

mécanismes de perception d'objet et de scène ne sont pas séparés fonctionnellement 

dans le système visuel humain. La reconnaissance d'objet facilite la reconnaissance de 

l'arrière-plan d'une scène et la connaissance du contexte d'une scène facilite aussi la 

reconnaissance des objets individuels de la scène. Les preuves indiquant un échange 

bidirectionnel entre les deux processus nous ont motivés à construire un modèle 

computationnel dans lequel la classification d'objet et de scène procèdent de façon 

interdépendante, alors qu'aucune relation hiérarchique n'est imposée entre les deux 

processus. Nous proposons un modèle de fusion de données fortement couplé pour 

implémenter la relation de feedback entre les processus de classification de scène et 

d'objet. Nous présentons de nouvelles techniques pour modifier les solutions 

bayésiennes pour les tâches de classification de scène et d'objet qui permettent la fusion 

de données entre les deux modules en se basant sur la contrainte des probabilités a priori 

ou des vraisemblances. Nous avons implémenté et testé les deux modèles proposés en 

utilisant une base de donnée d'images naturelles créés à cet escient. Les courbes de 

caractéristique d'opération du récepteur (Receiver Operator Curve - ROC) décrivant la 

performance en classification de scène des modèles par couplage de vraisemblance et 

par couplage de probabilité a priori montrent que le fort couplage des modules de scène 
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et d'objet resulte en une amélioration significative de la performance en classification de 

scène des deux modèles. 

Les courbes ROC décrivant la performance en classification de scène des deux modèles 

montrent aussi que le modèle par couplage de vraisemblance atteint un taux de détection 

plus élevé que le modèle par couplage de probabilité a priori. Nous avons aussi calculé 

les temps de montée moyens des sorties des modèles comme mesure de comparaison de 

la vitesse des deux modèles. Les résultats montrent que les sorties du modèle par 

couplage de vraisemblance ont un temps de montée plus court. En se basant sur ces 

résultats expérimentaux, on peut conclure qu'imposer des contraintes sur les modèles 

par vraisemblance fournir de meilleures solutions aux problèmes de classification de 

scène qu'imposer des contraintes sur les modèles par probabilité a priori. 

Nous avons aussi proposé une technique de modulation par trait attentionel qui consiste 

au réglage des réponses des images en entrée à la banque de filtres de Gabor en se basant 

sur les probabilitées de classes de scènes estimées par le modèle et les profils 

energétiques des filtres de Gabor pour différentes catégories de scènes. Des résultats 

expérimentaux basés sur la combinaison de la technique de réglage par trait attentionel 

avec les méthodes par couplage de vraisemblance et par couplage de probabilité a priori 

montrent une amélioration significative de la performance en classification de scène 

pour les deux modèles. 
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1. Introduction 

Chapter 1 

Introduction 

1.1 Motivation 

Natural scene categorization is one of the most relevant evolutionary tasks of the human 

visual system. The great efficiency of this task as perfonned by hum ans has stimulated 

much research in the fields of neural physiology, psychophysics, and computational 

neuroscience. Contrary to our daily experience of the effortlessness with which natural 

scene recognition is performed in humans, this is one of the hardest tasks for machine 

vision, and one that the modem state of the art computer vision algorithms have yet to 

accomplish. This difficulty is to a great extent due to the vast variability among the 

scenes belonging to similar categories of natural scenes. The question of choosing 

appropriate scene representations that are capable of capturing the main characteristics of 

scene categories without being too sensitive to intra-class variabilities, and are therefore 

useful for the scene recognition task, has been the subject of extended research in the 

domain of computer vision. 

In this work we have looked into the literature in neurophysiology and 

psychophysics in order to gain an understanding of how the human visual system 

performs scene recognition and categorization and to apply similar models and 

mechanisms to the computer vision systems for achieving more efficient scene 

recognition capabilities. In this endeavor we have found that the hierarchical view of the 
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1. Introduction 

human visual system, which has been supported by neuro-physiological findings, has led 

to the general conclusion that understanding the meaning of scenes is a high level visual 

task which takes place as the end result of a progressive reconstruction of the retinal 

image. The hierarchical architecture of the visual system implies that understanding the 

content of local regions of scenes, and recognition of objects in the scene, are the pre­

requisite of understanding the meaning of the whole scene. On the other hand we have 

found that experimental results in the domain of psychophysics have provided evidence 

that scene understanding can take place independently from object recognition. These 

results have been interpreted as evidence that sorne sort of high-level abstract 

representations of scenes, or "gists" of scenes, are rapidly extracted by the visual system, 

bypassing the object recognition stage [76][77]. The low-pass spatial frequency content 

of the scenes have been suggested as a candidate for the computational definition of 

"gists" since they provide an encoding of the scene that is useful for categorizing scene 

information across scene classes. Psychophysical experimental results have furthermore 

shown that scene context can be processed and accessed early enough to influence the 

recognition of objects. These experiments imply that the abstract conceptual 

representations of scenes may be formed before the identification of the objects which 

are semantically associated with them. 

In general, it is far from being settled what is actually the relationship between 

the scene recognition pro cess and object recognition process in the human visual 

process, and what actually happens in a brief viewing of a scene. It is still an open debate 

in psychophysics whether the objects in the scene are perceived before the scene identity 

is produced based on the list of objects and their relations, or the scene context is 
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1. Introduction 

grasped independently and perhaps priOf to recognizing objects. But by looking into' the 

psychophysical and the neuro-physiological findings one can conc1ude that there is 

adequate evidence to suggest that scene and object perception are not unrelated and 

disparate mechanisms, but they are correlated and facilitate each other, implying that 

they may share computation al resources. Scene-contextual constraint is available early 

enough and is robust enough to influence the recognition of objects, and also 

identification of the object in a scene promotes the understanding of the meaning of the 

scene, implying a bidirectional exchange between the two processes. Our goal in this 

thesis is to provide an account of how such a bidirectional influence is computationally 

possible. What would be a computational model for implementing the mutual influence 

between the two processes? 

1.2 Objectives 

We would like to build a computational model where the scene recognition and object 

recognition mechanisms do not relate to each other in a hierarchical relationship, but 

rather ron in parallel. Our objective is to build a computational model where the two 

recognition stages occur in paraIlel, but constantly feedback information to each other in 

order to enhance the performance of the two processes. The idea is that as soon as there 

is any information for any possible levels of recognition, our model takes advantage of 

it. In this model an early sensory information extraction stage precedes the semantic 

recognition stages. The scene recognition process is performed based on sensory 

information from aIl locations in the scene, or "global" scene information. The object 

recognition stage is performed based on local sensory information extracted from local 
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1. Introduction 

regions in the image. The computational scheme chosen for scene recognition stage must 

be capable of eliciting an estimation of the scene identity rapidly and independently of 

the object recognition stage, based on the gist type global scene features given to it. The 

object module must in parallel produce the most likely candidate interpretations of 

individual objects based on local image features. The information inferred by each of the 

two recognition processes is projected to the other process, where the set of associations 

that corresponds to the relevant content is activated. In implementing such a model the 

main questions to address are the following: How are the associations between scenes 

and objects represented? How can the results of the scene recognition process become 

available to the object recognition process and vise versa? 

In this work we propose using strongly coupled data fusion architecture within a 

Bayesian framework to model the associations between the scene and the object 

recognition mechanisms. The function of each recognition process is modeled using 

Bayesian inference methods. The strongly coupled data fusion architecture ensures that 

when the a priori constraints built into the scene recognition process and the object 

recognition process fail to provide a unique solution for one of the processes, the 

knowledge inferred from the other module can be combined as part of the module 

estimation process in order to further constrain the solution. Motivated by the strongly 

coupled data fusion architecture we present a scheme for modifying the Bayesian 

solutions for the scene and the object recognition processes in order to incorporate the 

possibility of information sharing between the two processes. The strongly coupled data 

fusion architecture allows two approaches to implementing the interactions between the 

two modules. In the first approach, the two modules interact through the prior terms of 
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1. Introduction 

the Bayesian fonnulation. In this approach the a priori mode1s of the scene and object 

modules are modified in order to allow constraints built into the solution process based 

on infonnation coming from the other module. This variation of the model is strongly 

coupled in tenns of priors. In the second approach, the likelihood models of each module 

are refonnulated in order to allow data fusion with the other module. This variation of 

the model is strongly coupled in tenns of likelihoods. Both variations of the mode1 we 

present are examples of recurrent strongly coupled architecture. 

A computational scheme for producing features that capture the context of the 

scenes was first proposed by Oliva and Torralba [70]. In their work a holistic 

representation of the scene based on oriented bandpass filters is used as the context 

features. This image representation encodes spatially localized structural infonnation. 

The potential of this representation for serving as features for the computational scene 

categorization task has been investigated and demonstrated. Furthennore Torralba and 

Oliva [94] have proposed a nove1 Bayesian approach to contextual object detection. 

Their approach is based on conditioning the statistics of the low leve1 contextual features 

of the scene according to the presence or absence of objects. They show that the scene 

contexts can provide an estimate of the likelihood for finding certain classes of objects in 

the scene. Murphy et al [65] have further extended this idea and combined the scene 

classification and object detection task by maximizing a conditional joint probability 

density model that represents the likelihood of different scene classes and the presence of 

different object classes in certain locations, as constrained by the global contextual 

features. 
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1. Introduction 

Our approach has the architectural advantage that the scene identification and 

object identification are capable of functioning independently. When one of the 

pro cesses does not have enough infonnation in order to create a plausible hypothesis, the 

strong coupling data fusion scheme between the two processes can be used in order to 

obtain further evidence for creating a hypothesis. Furthennore, our approach is different 

from [65) in the sense that we do not just use conditional likelihoods, but rather we use a 

full Bayesian fonnulation in which the a priori scene and object models play a crucial 

role. 

Vi suaI attention is considered to be one of the first and foremost means of 

controlling the flow of infonnation between the different levels of visual processing. It 

has been shown that the function of attention is tightly associated with object recognition 

process in human vision. Numerous studies have probed the function of attention, 

demonstrating attentional control over stimuli with complex and conjugate features. In 

this work we have investigated the usefulness and efficacy of an attention al process in 

the scene recognition process. We have implemented the attentional process for scene 

recognition by adding a feature tuning stage in which the high-Ievel infonnation inferred 

from the scene recognition pro cess is used to bias image responses to selected spatial 

frequency and orientation features that provide higher discrimination for scene 

classification task. 

1.3 Contributions 

The following is a list of the main contributions made in this thesis, most of which have 

been published in Ehtiati and Clark [18][19]: 
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1. Introduction 

1. We propose a' model in which the process of scene categorization and the 

pro cess ofcategorization of individual objects in the scene feedback information to each 

other in order to enhance the performance of both processes. The main characteristic of 

this model is that the feedback between the two processes is implemented in a way 

which allows the two processes to function in parallel, with no hierarchical relationship 

being imposed between the two processes. The proposed architecture allows the two 

processes to function independently, within their individual required timeframes and 

without receiving any feedback from the other process, but as soon as any information is 

available by one of the pro cesses it becomes available to the other process through the 

feedback connections between the two processes. 

2. We propose a strongly coupled data fusion model for implementing the 

feedback relationship between the scene categorization and the object categorization 

processes. We present a Bayesian interpretation of the strongly coupled data fusion 

architecture which allows imposing constraints on either the likelihood models or the 

priOf models of the scene and object categorization processes based on feedback from 

the other process. 

3. We present experimental results which show that the feedback implemented 

between the scene categorization and the object categorization processes increases the 

performance of scene categorization task. We also investigate the robustness of the 

model function to noise and variability in data such as scale and orientation variations. 

4. We present a variation of the model in which a top-down attentional 

modulation effect from the high-Ievel scene inference process to the lower level scene 

feature extraction process is incorporated with the objective of making the scene 
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categorization process more efficient. In this variation' of the model we use the 

hypothesis formed by the scene categorization process to bias global image responses to 

selected spatial frequencies and orientations. We show that the effect of combining 

feature tuning with the strongly coupled models is to increase the performance of scene 

categorization. 

1.4 Overview of the Thesis 

This thesis is organized as the following. In chapter 2 we examine the CUITent theories 

and findings in the domain of cognitive sciences about scene perception and the 

relationship between scene perception and object perception, with the goal of motivating 

the model presented in this thesis. In chapter 3 we first give a short background on 

different computational schemes for scene representation and classification and motivate 

and present our choice for the model's formulation of scene classification process. In the 

second part of this chapter we discuss briefly different computational schemes for object 

representation and classification and motivate and present our choice for the model' s 

formulation of object categorization module. In chapter 4 we discuss the implementation 

of the feedback between the scene and the object categorization processes. In this 

chapter we present the mathematical methodology we have developed through which the 

information produced by the two sensory information processing modules, the scene 

classification module and the object classification module can become available to each 

other and be considered as part of the information processing problem solved in each 

module. The methodology we present here is motivated by the field of data fusion. In 

this chapter we propose two approaches for implernenting the interactions between the 
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J. Introduction 

scene classification and the object classification modules based on a Bayesian strongly 

coupled data fusion architecture, the strongly coupled priors model and the strongly 

coupled likelihoods model. In chapter 5 we present the experimental results from the 

implementation of the strongly coupled scene and object classification models presented 

in chapter 4. We first demonstrate selective examples where the scene module or the 

object module cannot perform the scene or the object classification task reliably when 

they function independently, but the strong coupling of the two modules improves the 

initial classification results. In this chapter we also present the statistical evaluation of 

the models performances and address the issue of statistical meaningfulness of the 

presented results using receiver operating characteristic (ROC) curves. The statistical 

evaluation of the adaptive priors and the adaptive likelihood models provide a basis for 

comparing these two models. In this chapter we also give a description of the database 

we have created for the purpose of these experiments. In chapter 6 we attempt to 

establish the main characteristics of the models such as predictability, speed, and 

robustness to input image variations. In chapter 7 we present a variation of the model 

which incorporates a top-down attentional feedback from the high-Ievel scene inference 

pro cess to the lower level scene feature extraction process. In this chapter we show that 

the attentional modulation effect enhances the scene categorization performance. 

Chapter 8 provides conclusion for the CUITent work and suggestions for future work. 
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2. Cognitive Models of Scene and Contextual Object Perception 

Chapter 2 

Cognitive Models of Scene and Contextual Object Perception 

We often take our ability to quickly and accurately understand real-world scenes for 

granted. It is normal for us to be able to rapidly grasp the meaning of different scenes 

while scanning through different channels on the TV, the downtown of Montreal with 

high buildings and people and cars moving around, a courtroom full of people and 

fumiture, a boat sailing in the sea, etc. We are able to efficiently and accurately 

recognize and categorize the new scene types without our visual system requiring 

significant amounts of time to adjust and tune itself. 

The rapid apprehension of the world by the human visual system has been the 

subject of many psychophysical studies. Potter et al. utilized rapid seriaI vi suai 

presentations (RSVP) of images to find out that subjects could understand a visual scene 

with exposures of as brief as 100 ms, and might be able to extract semantic information 

about scene context from presentations as brief as 80 ms [76][77]. Furthermore, they 

demonstrated that while the semantic information of a scene is quickly extracted, it 

requires a few hundred milliseconds (about 300 ms) to be consolidated into memory. 

These results have been interpreted as evidence that a high-Ievel abstract representation 

of the visual scene, which can be accessed very rapidly, is continually generated by the 

visual system. This representation, which is called the "gist" of a scene, is defined as a 

conceptual summary of the principal semantic features of the scene as perceived in a 

brief viewing. In other words, the gist of the scene is the conceptual content of the scene 
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understood in a glance. In experiments performed by Standing et al [86] and Standing 

[87] it is shown that our visual memory performs very well in identifying scenes viewed 

previously among very large sets of old and new scenes. One possible explanation of this 

performance can be that in this task only the gist of the scenes are required for 

recognition of old scenes. 

Sorne evidence for abstract representations of scenes also cornes from the 

phenomenon of boundary extension [46] [3 5]. Boundary extension is a type of memory 

distortion in which observers report having seen not only information that was physically 

present in the scene, but also information that they have extrapolated outside the scene's 

boundaries. Similarly, in visual false memory experiments, participants report that they 

remember having seen, in a previously presented picture, objects that are contextually 

related to that scene but that were not in the picture. Such memory distortions might be 

the byproduct of an efficient mechanism for extracting and encoding the gist of a scene. 

It is interesting to compare the capacity of our brain for holding gist of scenes with its 

capacity to hold details of objects in scenes. The limits of our perception of objects 

during RSVP experiments has been studied by Rensink et al.[80] and O'Regan et al 

[73]. They used the "mud splash" technique ofmasking a change in the scene by making 

several simultaneous conspicuous changes at different locations in the scene (similar to 

the effect of a mud splash on a car windscreen). They show that when the attentional 

effect introduced by visual transients accompanying a change in the scene is masked, 

changes to retinotopically large portions of the scene sometimes can fail to be detected 

by viewers. This is more likely to occur when the regions are not linked to the scene's 

overall meaning. This striking phenomenon has been termed "change blindness". The 
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phenomenon of change blindness is especially interesting since it challenges the view of 

the "picture in the head", or an exact and detailed internaI representation of the visual 

world in our brain, which is usually assumed in the passive vision theories. Change 

blindness is better explained when the active vision perspective is adopted. O'Regan et 

al [72] show that for objects directly fixated change detection ability is high. 

2.1 The Content of the Gist of a Scene 

Other investigators have attempted to elucidate the nature of infonnation captured by the 

gist of a scene. What is the nature of infonnation that we perceive and understand when 

we rapidly glance at the world? 

Mandler and Parker have suggested that three types of information are 

remembered from a picture: i) an inventory of objects, ii) descriptive information of the 

physical appearance and other details of the objects, iii) spatial relationships between the 

objects [58]. Freidman and colleagues proposed that early scene recognition involves the 

identification of at least one obligatory object [30]. In their model, the obligatory object 

serves as a contextual pivotaI point for the recognition of other parts of the scene. They 

have also provided evidence that objects can be recognized independently, without 

facilitation by the global scene context. Bar and Ullman [3] show that an ambiguous 

object becomes recognizable when another object that is contextually associated with it, 

is placed in an appropriate spatial relation to it. 

On the other hand, other researchers have supported the idea that early scene 

processing is based on global scene information rather than local object information. 

Wolfe speculates that the spatiallayout ofthe scene and a general impression of the low-
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level features that fill the scene (e.g., texture, etc.) contribute to the understanding of the 

conceptual content of a scene [108]. Metzger and Antes [62] show that contextual 

information is extracted before observers can saccade towards the portions of the picture 

that were rated as contributing most to the context of the scene, and possibly even before 

the recognition of individual objects. Loftus et al [56] furthermore show that observers 

process the most informative portions of an image earliest. 

Biederman et al. [5] found that recognition of objects is impaired when the 

objects are embedded in a randomly jumbled scene rather than a coherent scene. 

Biederman' s finding implies that sorne kind of global context of the scene is registered 

in the early stages of scene perception, which can modulate the object recognition 

mechanism. His conclusions regarding scene perception parallel concepts in the auditory 

studies of sentence and word comprehension. He suggests using an analogy with analysis 

of language material, that scenes could be regarded as schemas, providing a frame in 

which objects are viewed. He identifies several physical (support, interposition) and 

semantic (probability, position, size) constraints, which objects must satisfy within a 

scene, similar to the syntactic and grammatical rules of language [6]. He shows that 

scenes with typical physical and structural regularities which follow contextual semantic 

rules facilitate object recognition as compared to scenes where these rules and 

regularities are violated. 

Boyce et al. [9] have demonstrated that objects are more difficult to identify 

when Iocated against a contextually inconsistent background, given a briefly flashed 

scene (150 ms) as compared with the effect of a meaningless background that was 

equated for visual appearance. 
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Figure 2.1 Example of a hybrid image used by Oliva and Shyns is shown. The hybrid images are 
produced by combining the low frequency components of the amplitude and phase spectra of 
one scene with the high frequency components of another scene. This example mixes the low 
frequency component of a city scene with a high frequency component of a highway.(Taken 
from the paper by Oliva and Schyns [66]) 

Recent computational work has suggested that global features such as spatial 

frequencies of the images are often sufficient for categorizing different environments 

without explicit recognition of objects [94]. Oliva and Schyns [66][67] show that a scene 

can be identified by global scene information independent of the identities of individual 

objects in the scene. They have demonstrated that scenes can be identified from low-pass 

spatial frequency filtered images that preserve the relationship between large scale 

structures in the scene but lacks the visual detail for identifying individual objects in the 

scene. They also show that when participants in the experiment have to identify scenes 

created by the superimposition of a low-pass filtered image and a high-pass filtered 

image from a very brief view (50 ms), they tend to base their interpretations on the low 
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frequency information rather than the high frequency information. This interpretation for 

gist of scenes is specifically interesting in the light of the experimental results of HubeI 

and Weisel [45] which provide evidence for the presence of oriented band-pass filters at 

the early stages of the visual pathway. An example of the superimposed images used by 

Oliva and Schyns is shown in figure (2.1). 

2.2 Scene Context and Object Perception 

Sorne discrepancies appear to exist between the different theories and experimental 

results described in section 2.1. Although intuitively much of the meaning of a scene is 

defined by the objects that comprise the scene (it is hard to imagine a scene that does not 

contain any objects), there is evidence that it is possible to produce a "gist" of a scene 

independent of constituent objects, and furthermore this "gist" modulates object 

recognition. On the other hand there is evidence from the experiments that at least sorne 

sort of object recognition is present even in the early stages of scene perception. At least 

sorne objects are recognized in the brief viewings of c1uttered scenes. So the question 

which arises is that are the objects in the scene perceived first, and then the scene 

identity is produced based on the list ofthese objects and their relations? Or is the scene 

context grasped independently, and perhaps prior to recognizing objects? How are the 

two perceptions related? 1s object recognition part of early scene perception? These 

questions have been the topic of an open debate by the psychophysical community for 

more than two decades [33][16][41]. 

The perceptual schema model proposes that expectations derived from 

knowledge about the composition of a scene type interact with the perceptual analysis of 
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objects in the scene [62][5][6][74]. This model is supported by studies of scene 

consistencyand object detection. This view suggests that scene context infonnation can 

be processed and accessed early enough to influence recognition of objects contained in 

the scene, even inhibiting recognition of inconsistent on es [7]. The priming model, on 

the other hand, proposes that the locus of the contextual effect is at the stage where a 

structural description of an object is matched against long-tenn memory representations 

[30][3]. This model suggests that the activation of a certain scene context primes the 

stored representations of context-consistent object types, and facilitates convergence to 

the most likely interpretations during the object recognition process. This model implies 

a definition of scene context independent of the identity of the objects semantically 

associated with the scene. 

Regardless of the mechanism, both the priming model and the perceptual schema 

model c1aim that scene context facilitates consistent objects more than inconsistent ones. 

These theories predict that we should observe a correlation of object identification 

perfonnance with scene context categorization perfonnance [22]. In contrast, a third 

theory called the functional isolation model, proposes that object identification is 

isolated from expectations derived from scene knowledge [40]. Henderson and 

colleagues, who propose this view, predict that experiments examining the perceptual 

analysis of objects should find no systematic relation between object and scene 

recognitionperfonnance. Hollingworth and Henderson [40] mention that whereas 

objects tend to have a highly constrained set of component parts and relations between 

parts, a scene places far less constraint on objects and spatial relationship among objects. 
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2.3 Hints from N europhysiology 

The ventral visual pathway, linking the primary visual cortex through inferior temporal 

cortex to the pre frontal cortex, is generally known as the "what" visual pathway, as it is 

responsible for object recognition through integrating features [101][50][64][98]. Given 

the hierarchical structure of the visual system many have proposed models in which the 

elementary features of the objects are first processed and then bound together for object 

recognition [96][107]. Although many studies have revealed the cortical mechanisms 

involved in the recognition of individual objects, in comparison little work has been 

done to reveal the neural underpinnings of scene perception and contextual object 

recognition. Neuro-imaging studies have shown that a region in the parahippocampal 

cortex (PHC) responds preferentially to topographical information and spatial 

landmarks, the Parahippocampal place area (PPA) [1][21][57]. This region has an 

important role in large scale integration [54] and is increasingly being speculated to be a 

module for scene analysis [20][88]. Experimental results have also shown that objects 

may be grouped by physical appearance in the occipital visual cortex [36][91], by basic 

level categories in the anterior temporal cortex [78][39][17], by contextual relations in 

the parahippocampal cortex (PHC) [4], and by semantic relations in the prefrontal cortex 

(PFC) [31]. Bar has performed experiments in order to investigate the cortical areas 

involved during a contextual processing [4]. He designed experiments in which he 

compares the fMRI signal elicited during the recognition ofvisual objects that are highly 

associated with a certain context with that elicited by objects that are not associated with 

any unique context. He reports that the largest focus of differential activity is in the 

posterior PRC, which is the site that encompasses pp A. The other foci of activation are 
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found in the superior orbital sulcus (SOS) and the retro-splenial 'cortex (RSC), which 

have also been implicated in the analysis of spatial information. Despite much 

speculation in the neuro-physiological literature there is still no consensus and no clear 

answer as to how the scene contextual information useful for analysis of objects is 

represented, retained and stored in the brain, and how exactly the cortical processing 

takes advantage ofthe associations between scenes and objects. 

One interesting observation is related to the PFC. It has been shown explicitly 

that PFC receives direct magnocellular connections from early visual cortex. Aiso PFC 

activity increases as a function of the number of alternative interpretations that can be 

produced about an object image based on its low spatial frequency [83]. It is proposed 

that 10w spatial frequencies in the image are extracted quickly and projected into PFC 

using fast anatomical connections, possibly the magnocellular pathway. This projection 

is faster than the thorough bottom-up pathway, and therefore can trigger a top-down 

processing which facilitates object recognition [46][11]. 

2.4 Summary 

The question of the relationship between the scene recognition process and object 

recognition process in human visual system, especially in brief viewings of scenes, is 

still unanswered. But there is adequate evidence to suggest that scene and object 

perception are not unrelated and disparate mechanisms, but are correlated and influence 

and facilitate each other. Psychophysical evidence shows that scene-contextual 

constraint is available early enough and is robust enough to influence the recognition of 

objects. Other experimental results show that the identification of the objects in a scene 
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promotes the understanding of the meaning of the scene. One can hypothesize that there 

is a bidirectional ex change of information between the two processes, without one 

pro cess being necessarily pre-requisite of the other. Our goal in this thesis is to provide 

an account of how such a bidirectional influence is computationally possible while 

retaining biological plausibility. What would be a computational model for 

implementing the mutual influence between the two processes? 

Global Image Features 

Scene 
Module 

Hypothesis generated: 
Scene identity 

Local Image Features 

Object 
Module 

Hypothesis generated: Objects 
present in the scene 

Figure 2.2 A model is presented where the two mechanisms of scene and object recognition 
occur in parallel, but constantly feedback information to each other so that as soon as there is 
any information for any possible stages of recognition (scene or object), the model takes 
advantage of it. 

In figure (2.2) we present the general architecture of the model we propose for 

implementing the bi-directional relationship between the scene recognition and the 

object recognition process. The model consists of two modules, the scene module and 

the object modules, which encapsulate the process of scene recognition and object 

recognition. The main characteristic of this model is that the scene recognition and 
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object recognition mechanisms do not relate to each other in a hierarchical relationship, 

but rather run in parallel. The model has to be implemented in a fashion that although the 

two pro cesses occur in parallel, they constantly feedback information to each other in 

order to enhance the performance of the two processes. In the next chapter we discuss 

the computational formulation for each of the two modules. 
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Chapter 3 

Computational Models for Natural Scene and Object 
Classification 

In the previous chapter we examined the current theories and findings in the domain of 

cognitive sciences about scene perception and the relationship between scene perception 

and object perception. We explained that, contrary to seminal approaches to vision 

which viewed scene perception as a result of a hierarchical visual organization, there is 

strong evidence that scenes can be understood very rapidly and independently of the 

recognition of the constituent objects. We found that there is strong psychophysical 

evidence that the two processes of scene perception and object perception are correlated, 

with the results of each process affecting and constraining the outcome of the other 

process. This motivates us to investigate the possibility of computational 

implementation of a model which incorporates this bi-directional relationship. 

Our goal is not to build a high performance scene classification or object 

classification model per se; but to build a model which allows the two processes to 

interact with each other, and see if such an interaction entails any significant increase in 

the scene and object classification performance compared to an implementation with no 

feedback. As mentioned previously our proposed model has two modules for scene 

classification and object identification, which are able to function either independently or 

with feedback, based on availability of information from the other module. In this 

chapter we discuss the formulation of each of the modules as they function separately. In 

section 3.1 we first give a short background on different computational schemes for 
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scene representation and classification and motivate our choice for the model's 

formulation for scene classification. In section 3.2 we discuss briefly different 

computational schemes for object representation and classification and motivate our 

choice of formulation of the mode!' s object module. In the following chapter we will 

continue the discussion with the implementation of the feedback between the two 

modules. 

3.1 Computational Model for Scene Classification 

The scene classification problem is one of the most challenging problems in computer 

vision. Given an arbitrary scene, we would like to describe it as belonging to a 

semantically meaningful category. A complete approach to scene classification should 

address the issues of feature selection (scene representation), feature organization, and 

classification. One computational approach to scene representation and classification is 

to view it as a process that combines low level image features (col or, orientation, texture, 

etc.) to form progressively higher level constructs su ch as regions, geons, objects, and 

finally complex scenes. This approach is motivated by the hierarchical view of the visual 

system where at the earliest stage from retina to V 1 simple features such as lines and 

edges are processed, in visu al cortex V 4 more complex features su ch as curve contours 

or 3D orientations are being processed. CeUs responding to complex object patches are 

found in the anterior regions of IT, and finally in PPA layout of scenes are processed. 

This approach to human vision has been challenged by recent findings in psychophysics 

which suggest that scene understanding can happen independently from object 

recognition (see the discussion found in chapter 2). In parallel, a new computational 
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approach to scene representation and classification has been developed which processes 

low level features directly without the creation of intermediate progressive levels of 

abstraction. In the following section we briefly review sorne of the more recent work in 

this area in order to motivate our choice of scene representation and scene classification 

method. 

3.1.1 Review of Computational Models for Scene Representation and 
Classification 

A number of recent studies have presented approaches to classify scene images using 

global eues (e.g. power spectrum, color histogram information). Gorkani and Picard [34] 

discriminate between photos of city scenes and photos of landscape scenes using a 

multiscale steerable pyramid to find dominant orientations in 4x4 sub-blocks of the 

image. The image is classified as a city scene if enough sub.,blocks have strong dominant 

vertical orientations, or alternatively medium-strong vertical orientation and also 

horizontal orientation. Yiu [110] uses the same dominant orientation features and also 

color information, to classify indoor and outdoor scenes using nearest neighbor and 

support vector machine classifiers. Szummer and Picard [90] combine color histogram 

features and DCT -based features capturing shift invariant intensity variations over a 

range of scales to discriminate between indoor and outdoor images. They report that k-

nearest neighborhood classifiers perforrned as weIl as more sophisticated classification 

methods such as neural networks. They deal with the problem of combining local and 

global properties through a multi-stage classification method. They divide the images 

into sub-block and classify the sub-blocks independently and then perforrn another stage 

of classification on these results for the image as a whole. The disadvantage of this 
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method is that spatial location information is not used for classification of sub-blocks; 

therefore the individual sub-block classifiers are less accurate than the whole image 

classifier. 

Carson et al [13] propose a representation of images based on blobs. Each blob is 

a coherent color-texture region. AIl the blobs in aIl image categories are clustered into a 

set of canonical blobs using Gaussian models. Each image is thenassigned a score 

vector which measures the nearest distance of each canonical blob to the image. These 

score vectors are used to train a classifier. 

The configurational recognition scheme proposed by Lipson [55] is a knowledge­

based scene classification method. Images from 4 classes of scenery (snowy mountains, 

snowy mountains with lakes, fields, and waterfalls) are described by mode! templates 

which encode the common global scene configuration structure (relations between the 

color, spatial location, and highpass frequency content of different regions of the image). 

The disadvantage of this model is that the templates have to be handcrafted for each 

scene category layout. These templates are fine for scene categories that are 

geometrically weIl defined such as "sky over mountain over lake or snowy mountain 

with blue sky", but the method cannot be generalized to broader categories or scenes 

where parts and objects are randomly localized (such as rooms and indoors). An image is 

classified to the category whose model template best matches the image by deformable 

template matching (which requires heavy computation, despite the fact that the images 

are sub-sampled to low resolutions) using a nearest neighbor classification method. To 

avoid the drawbacks of manu al templates, a learning scheme that automatically 

constructs scene templates from a few examples is proposed by [79]. 
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Yu [111] uses statisticalleaming methods to leam templates of the image from a 

training set. Vector quantized color histograms are computed for sub-blocks of images. 

Then a one-dimensional hidden Markov model is trained along vertical or horizontal 

segments of specific scene layouts, such as sky-mountain-river scenes. Rer results show 

that the one-dimensional model cannot describe the spatial relationships well, and a two­

dimensional generalization such as Markov random fields would be more desirable. 

One of the important applications of scene classification is in image retrieval 

systems. State of the art image retrieval systems such as QBIC [27], Virage [38], and 

VisualSEEK [85] represent images via a set of low level feature attributes such as color 

histograms and primitive texture measures. Retrieval is performed by matching the 

feature attributes of the query image with those of the database images. The user builds a 

query by selecting colors from a palette, a texture from a chart, and then weighting the 

color features versus the texture features. The image retrieval system FourEyes [63] 

leams the relevant feature weight combinations based on user' s feedbacks on several 

example images. A successful categorization of images in the database greatly enhances 

the performance of the content-based image retrieval system by filtering out images from 

irrelevant classes during matching, but presently these systems are not very efficient in 

leaming scene categories of higher levels of abstraction (for example a classification 

such as outdoor versus indoors) based on the low-level representations of the image 

content. One attempt at remedying this problem is the hierarchical clustering scheme 

proposed by Zhang and Zhong [112,113], which uses self-organizing maps to cluster 

images into groups ofvisually similar images based on color and texture features. 
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Vailaya et al [99, 100] also address the problem of high level scene classification 

ln image retrieval systems. They use a procedure which qualitatively measures the 

saliency of features (color histogram, DCT coefficients, and edge direction histograms) 

for a hierarchical classification of database images first into city images vs. landscapes. 

Then the subset of landscape images is classified into sunset, forest, and mountain 

classes. Plots of intra-class and inter-class distance distributions are used to qualitatively 

determine the discrimination ability of a feature towards a specific classification 

problem. A Bayesian approach is used for classification, where the probabilistic models 

(class-conditional distributions ofthe various low-Ievel features) are estimated using the 

Vector Quantization method during a training phase. A minimum description length type 

principle is used to determine the optimal codebook size representing a particular class 

of images from the training samples. 

Huang et al [42] also propose a scheme for automatic hierarchical image 

classification. They use banded color correlograms as image features. They reduce the 

dimensionality of the feature vectors by singular value decomposition. An iterative 

method is then used for constructing a hierarchical classification tree, based on 

normalized cuts. The singular value decomposition method not only reduces the 

dimensionality of the data but also re-arranges the feature space to reflect the major 

correlation patterns in the data and ignore the less important variations. 

Oliva and Torralba [68][69][95][94] have proposed a method for scene 

categorization based on the statistics of the natural images. Badley [2], Oliva et al [70], 

and Oliva and Torralba [68] have shown that the statistics of the natural images follow 

particular regularities and that the averaged power spectra of different categories of 
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scenes exhibit different orientation and spatial frequency distributions. They have used 

spatial frequency and orientation tuned filters to create a representation of scenes based 

on their characteristic power spectra. 

Our design goal to avoid a hierarchical relationship between the object and the 

scene modules constrains us to choose a model which adopts a direct scene 

representation approach as opposed to a hierarchical scene representation. The model 

proposed by Oliva and Torralba captures the main insights which the other models in 

line with the direct scene representation, such as Gorkani and Picard [34], Szummer and 

Picard [90], and Vailaya et al [99][100] offer. In terms of scene feature selection, 

sampling of the low frequency content of the scene power spectra using a bank of Gabor 

filters is founded on the psychophysical findings which provide evidence for scene 

recognition based on low frequency content of images. These features capture multi­

scale information from images, similar to multi-scale steerable pyramids and DCT based 

features, and can be computed in parallel over the whole image. In fact, Oliva has 

proposed that these features can serve as a computational account for "gist" features, 

since based on them the scenes can be rapidly and directly be identified [71]. In terms of 

feature organization, Oliva and Torralba use principal components analysis (PCA) for 

maximizing variability among features of different classes. The method proposed by 

Oliva and Torralba is successful in categorizing scenes at basic level classes, such as 

street, buildings, highways, and beach scenes, which is not achieved by the other 

methods. Motivated by this discussion we have based our formulation of the scene 

module based on the work of Oliva and Torralba; therefore, we present a detailed 

discussion of their model in the following section. 
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3.1.2 Oliv·a and Torralba Model for Natural Scene Representation and 
Classification 

Oliva et al [70], and Oliva and Torralba [68] have shown that the averaged power 

spectra of different categories of scenes exhibit different orientation and spatial 

frequency distributions. 

Figure 3.1. (a) Mean power spectrum averaged from 12000 images. (b) Mean power spectra 
computed for 6000 images of man-made scenes. (d) Mean power spectra of images from natural 
scenes. (c) and (e) are contour plots of respective power spectra, the contour is chosen so that 
the sum of the components inside the section represents 50% (and 80%) of the total energy of 
the spectra. Units are in cycles per pixel. (Image taken from reference [94]). 

Figure 3.1, which illustrates results from Torralba and Oliva [94], emphasizes the 

differences in the mean power spectra computed for images of man-made and natural 

environments. hl both sets of images the energy of the power spectra is concentrated 

mainly on the low spatial frequencies. What distinguishes the two sets of images is their 

distribution of energy in the lower frequencies. For the man-made scenes there is a very 

pronounced bias towards horizontal and vertical orientations in the power spectra, which 
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can be explained by the fact that in man-made environments the structural elements of 

the scene are organized mainly in horizontal or vertical layers. The power spectra of the 

natural scenes have a tendency to be more isotropic as compared to the man-man made 

scenes, but still there is a more energy concentrated on the vertical spatial frequencies, as 

a lot of natural scenes are organized along layers parallel to the horizon. 

® <ê> @ @ ~ ~ t 
Nalurul River and Forest Mountafn Field Beach Coast 
ooject walertall 

<$> ® +. +-+ ~ 
Man-made Portrait Jndoor Street tligb City-vlew Highway 

objeet sœrre building 

Figure 3.2. Spectral signatures of 14 different image categories is presented. Bach spectral 
signature is obtained by averaging the power spectra of a few hundred images per category. The 
contour plots represent 60%, 80%, and 90% of the energy of the spectra. (Taken from reference 
[95]) 

Figure 3.2, which illustrates results from Torralba and Oliva [95], shows the 

spectral signatures of 14 different categories of scenes. One striking result is that basic 

level classes of scenes such as streets, highways, buildings, and indoor scenes have 

typical spectral signatures. The difference among the spectra of various man-made 

categories lies in the relationship between the horizontal and vertical contours at 

different spatial scales. On the other hand, the spectra of the natural scenes exhibit a 

broader range of variations. Large scale scene categories dominated by the horizon, have 

a high percentage of the energy concentrated on the vertical orientation, but in scenes 
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that the background is closer the spectral signature becomes more isotropic, arid denser 

in the high spatial frequencies. 

In general the shape of the spectral signatures is correlated with the scales (sizes) 

of the main components of the image. How the image is broken down into smaller 

surfaces, for ex ample a lot of clutter in the image versus large areas of smooth surfaces, 

or finer texture versus coarser texture, influences the shape of the spectra. Each scene 

category follows certain coarse spatial arrangements of its constituent structural 

elements. These different organizational laws can provide signatures for certain scene 

categories. Attributes su ch as smoothness, roughness, texture, and orientation in certain 

directions of constituting elements of scenes (e.g. trees in forest scenes, buildings in 

street scenes) pro vide information which differs from one scene category to another. 

These attributes can be captured in second order statistics of images, as encoded in the 

Fourier spectra of the images. In [70J Oliva and Torralba show that it is possible to 

construct representations of scene context based on sampling the power spectra of 

images using oriented bandpass (Gabor) filters. The power spectrum of an image is 

computed by taking the squared magnitude of its discrete Fourier transform (DFT): 

(3.1) 

where 

1 N-IN-l j2Jr 
I(k x ,kY)=2 L L i(x,y)exp(--N (xkx+Yk y» (3.2) 

N x=Oy=O 

where f x = k xl N and f y = k y / N are the discrete spatial frequencies. The power 

spectrum r(k x ' k y) encodes the energy density of different spatial frequencies over the 
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whole image. The power spectrum is normalized with respect to its variance for each 

spatial frequency as: 

(3.3) 

where 

(3.4) 

This normalization compensates for the 1/ fa shape of the power spectrum. 

PCA applied directly to the power spectra thus computed gives the main components 

that take into account the structural variability between different images. But these 

spectral representations of images are feature vectors of very high dimensions. To reduce 

dimensionality Oliva and Torralba propose sampling the power spectrum by a set of 

narrow-band Gabor filters tuned to different spatial frequencies, from low spatial 

frequencies to high spatial frequencies (figure 3.3). 

Figure 3.3. Coverage of the spatial frequency domain by a bank of 24 Gabor filters. 

In spatial domain, the Gabor function is a complex exponential modulated by a 

Gaussian function: 
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G(x,y)= exp -- ~+~ exp[2J9'~] 1 [1 (/2 12 J] 1 
2Jr (j x (j y 2 (j x (j y À 

(3.5) 

where x' = x cos( 8) + Y sine 8) and y' = -x sine 8) + y cos( 8). The filter is tuned to the 

wavelength À (or radial frequency f r = 1/ À). Filters of arbitrary orientations are 

obtained by rotations of the x ,y coordinates, and the angle parameter 8 defines the 

orientation of the 2-dimensional sinusoid. The parameters a x} and a y define the 

Gaussian envelope along the x and y axes. The transfer function of a Gabor filter tuned 

to a radial frequency f rand with the orientation determined by the angle 8 is given as: 

1 
a constant, and a - --­

f x - 2Jra 
x 

(3.6) 

1 
and (j f - define the shape and the frequency 

y 2Jr (j y 

resolution of the Gabor filter. A self-similar set of the Gabor filters bank is obtained by 

the rotation and the scaling of the expression (3.6). Sampling the power spectrum with 

the bank of Gabor filters produces a higher resolution of frequency sampling in the low 

spatial frequencies and a lower resolution of frequency sampling in the higher 

frequencies. We choose the frequency bandwidth and orientation bandwidth of the 

Gabor filters in order to have a uniform covering of the spatial-frequency domain, with 

minimum amount of overlap between filters. The representation of scene context using 

Gabor filters are specifically interesting in the light of the experimental results of HubeI 
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and Wei sel [44] which provide evidence for the presence of oriented band-pass filters at 

the early stages of the visual pathway. 

Given an image, the feature vector obtained through sampling of its power 

spectrum with a bank of Gabor filters is given as: 

(3.7) 

Each r f r,f) is the output energy for a Gabor filter with the spatial frequency given by 

radial frequency f r and the direction e. This computation in the Fourier domain is 

equivalent to the convolution of the image with the corresponding bank of Gabor filters 

in the spatial domain: 

or for the discrete case: 

N 
V(x,y,fr,e)= IJ(;,17)Gf

r
,f) (x-;,y-TJ) 

;,1]=1 

(3.8) 

(3.9) 

where 1(;,17) is the input image and V(x, y, f r' e) is the output amplitude at the 

location x, y of a Gabor filter tuned to radial frequency f r and orientation e. 

In order to reduce the dimensionality of the representation and also to capture the 

variability of the features Oliva and Torralba decompose the image features 

V(x,y,fr,e )into their principal components (PC). Principal Components Analysis 

(PCA) gives orthogonal axes (principal components) that best represent the variance of 

the data distribution. This method reduces dimensionality by taking into account the 

components that are responsible for most variability among the images in a feature 
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space. To thls purpose covariance matrices are formed for each f rand e using feature 

vectors V(x,y,fr,e )obtained from aIl training images in the database. The 

decomposition of the covariance matrices produces the eigenvectors lf/ n (x, y, f r' e ). 

The coefficients al r,(},d are produced by the projection of the image features 

v (x, y, f r' e ) onto the principal components lf/ d (x, y, f r' e ). 

D 

V(x,y,fr,e)= Lafr,B ,dlf/d(x,y,fr,e) 
d=l 

(3.10) 

The coefficients {al r'(} ,n} for the radial frequencies f r and orientations e and the 

principal components d = L.D are used as an estimation of the context features of the 

images. The dimensionality of the context features depend on the choice of the number 

of filters in the Gabor set and the choice of D. We will discuss the effect of choice of D 

in our model further in chapter 5. The coefficients {al r'(} ,d} incorporate information 

about the spectral characteristics of the images and their spatial arrangements. The 

ability of this representation for scene categorization task and its ability to account for 

attributes meaningful to observers has been investigated and demonstrated in Oliva and 

Torralba [37]. 

3.1.3 Proposed Scene Module Formulation 

We choose the feature vector Vc={al
r
,(} ,dl as the scene representation for our model, 

and we caU V c the global image feature. Assuming m scene classes Sb S 2"'" Sm' and 

global context features V c of an input image given to the scene module, the probability 

34 



3. Computational Models for Natural Scene and Object Classification 

of the input image belonging to each scene ciass S j IS computed by the following 

Bayesian formulation: 

1 

PCV c Is )P(S j) 
P(S j V c) = --P--'-(-V-c)-- (3.11 ) 

P(S j) is the a priori probability of each scene category which can be determined by the 

statistics of the image database or be initially assumed equal for all scene categories. 

pcv c) is a normalization factor, computed as p(V c) = ~ p{v c Is Jp{s j). The 
} 

hypothesis formed by the scene module is based on the maximum a posteriori estimation 

of the P(S j Iv c) over different scene classes. 

The likelihood probability density PcV clS) can be estimated by a semi-

parametric method su ch as finite mixtures or by non-parametric methods such as 

histogram estimation or kemel density estimation. We choose the semi-parametric 

method of finite mixtures since the histogram estimation method and kemel density 

estimation method both run into problems with high dimensional data sets. The problem 

imposed by the kemel density estimators is that we have to retain aIl the data set values 

in order to estimate the probability density function for a given data point. The problem 

with the histogram estimation method is that the amount of information needed for 

density estimation depends on the number of bins, and this number increases 

considerably in high-dimensional data. But in finite mixture models mu ch of the 

computational burden is shifted to the training stage, and relatively less computation is 

required for estimating the density at a given point after training. The only values we 

need to retain after training are the estimated parameter values. The semi-parametric 
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model allows us to retain sorne flexibility in choosing the shape of the distribution 

during the estimation process compared to the parametric methods. But the choice of the 

number of the mixtures replaces the problems of choice of bin width or window width 

(smoothing parameters). 

The probability density function representing the likelihood PCV GIS) is 

modeled as a mixture of Gaussians as follows: 

(3.12) 

where G is a multivariable Gaussian function of V G' with a mean flk ., and covariance 
,j 

matrix Lk,j' The subscript j shows that the probability density function PCV GIS) is 

estimated over images from scene class S j' The mixing coefficients bk,j are the 

weights of each Gaussian. The choice of the number of the Gaussians used for modeling 

the likelihood model probability density function is discussed further in chapter 5. The 

number of Gaussians K in the mixture model is a parameter of the model which can be 

adjusted based on the performance results. The model parameters flk,j' Lk,j' and bk,j 

are estimated using the expectation-maximization (EM) algorithm and the hand-labeled 

training images belonging to each scene category S j' The EM algorithm [60] is an 

iterative optimization method which maximizes the posterior probability of the model 

parameters given the data set and consists of a procedure in two consecutive steps, the 

expectation step and the maximization step. If the training set contains images 1 h, for 

h = 1 ... H , where the feature vector V h is the global image feature corresponding to 1 h , 
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the E-step computes the probability of every data point V h in the training set belonging 

to each cluster rLj,h at the iteration t as the following: 

(3.13) 

The M-step uses the estimated r~,j,h from the E-step to update the model parameters 

Hl H' d t+l + Il 
f.1k,j , Lk,j' an bk,j as 10 ows: 

H 

bt+l _ ",.,.1 
k'-~"k'h ,J h=l ,J, 

H 

IVhrL,h 
f.1t+1 _ .:..;..h=--=l __ _ 

k,j- H 

IrL,h 
h=1 

(3.14) 

(3.15) 

(3.16) 

The M-step maximizes the joint likelihood of the training data in order to estimate the 

Il pdated model parameters. 

Since the whole data set is used at each iteration, a massive database imposes a 

high computational load on the training stage. Also the EM algorithm requires 

estimation of initial values for the parameter models, which does not impose a problem 

for the mixing parameters, but computation of initial values for the mean and the 

covariance matrix impose problems for sparse data sets. The algorithm iterates until the 

changes in estimates in each iteration are less than a chosen tolerance level, which can be 

adjusted based on model performance. 
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3.2 Computational Model for Object Classification 

Replicating the human ability to recognize different object categories is one of the most 

difficult challenges which face computational vision scientists in this decade. Humans 

are able to recognize more than 104 categories of objects by the time they are six years 

o]d, and keep learning more through life [8]. The literature on the topie of object 

presentation and object recognition is very rich, but one can generalize the various 

approaches to three general dichotomies. The early approach to object presentation was 

to con si der an object as made up of a distinctive collection of features, and to attempt to 

achieve recognition through detection of features and their combinations. MaIT [59] and 

Biederman [8] proposed a different view of the vision process, in whieh a 2-dimensional 

retinal image is first transformed to a 3-dimensional representation, whieh forms a basis 

for recognition. Based on this view, Biederman proposed an elaborate theory for object 

recognition, where objects are represented as collection of geometric ieons (geons), 

which are 3-dimensional shapes that produce viewpoint invariant 2-dimensional 

projections. An alternative "appearance-based" view of object representation was 

proposed by Poggio and Edelman [75] and TaIT and Bulthoff [92] that suggests objects 

are recognized on the basis of a small number of stored 2-dimensional views. The main 

challenge of aIl three approaches is that in order to capture the great diversity of forms 

and appearances of objects, the models must contain hundreds, and sometimes thousands 

of parameters. Estimation of these parameters in volves batch training with large sets of 

examples. Compounding this diffieulty are other factors su ch as occlusion, clutter, 

lighting and shading, view points, scales, all of whieh make recognition harder. Recent 

work has highlighted the ability of humans to learn object categories from small number 
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of examples and in an incremental manner (as opposed to the large training sets and 

batch learning common in computational vision methods) and have attempted to 

replicate these abilities into computational vision a1gorithms [24][22][25]. 

In view of the complications of an elaborate model for object· category 

representation, we searched for a relatively simple method which would be adequate for 

our experimental setup of discrimination among a few chosen set of object classes. Sorne 

recent work on object classification focuses on special interest categories: human faces 

[53] [82][89][84][103], pedestrians [104], hand written digits [52], and automobiles [84] 

[26]. Instead we need a method that would apply well to a variety of different object 

categories. Researchers who have addressed the prob1em of multi-category recognition 

[26][106][12] choose rich representation models with many parameters for object 

categories in order to be able to capture the diversity of different category appearances. 

They do not deal with variability in view-point and lighting and occlusion explicitly, but 

as additional factors for intra-class variability, therefore there is no requirement for 

alignment of objects, lighting normalization, or segmentation of the images as a 

preprocessing stage. 

We define our problem as recognizing one object category out of a number of 

possible object categories, from image patches which have been extracted from a natural 

scene image. Our goal is to extract sorne local information about the probabilities of 

having different object categories in that location of image. Image patches are extracted 

from a tessellation of the scene image in different scales, so a patch may be dominated 

by one object or part of an object, or be a cluttered part of the scene with no dominant 

object, or belong to the background. There is generally a lot of clutter and occlusion 
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present in the "images and few patches in a scene may contain a dominant un-occluded 

object. The objects appear in a variety of sc ales and from different view points which are 

only constrained by the scene context (certain view points of objects, or certain scales of 

objects, are very improbable in certain scene contexts). 

In choosing a model for representing different object categories we rely on 

experimental results presented by Oliva and Torralba [95]. In order to study the effect of 

scale in their proposed method for scene representation, they have also experimented 

with close-up images (or cropped sections of images) which contain mainly one object 

category. Their results show that the sorne object categories can be characterized by their 

me an power spectra. For example fig 3.2 shows characteristic spectra for man made 

objects versus natural objects. Motivated by this result we have investigated the 

possibility of categorizing image patches containing our chosen set of object classes 

(vehicles, buildings, furniture, people, and plants) using spectrum-based features. We 

created a set of image patches in different scales, by cropping the scene images in our 

data base by hand and selecting patches which bound one whole object. We did not 

impose a limitation on objects view points or orientations, but these factors are highly 

constrained by the scene context. Our experiments indicate that we can use the features 

extracted by sampling the mean power spectra, as explained in detail in section 3.1.2, for 

a reliable classification of object-patches, within this chosen set of object categories. We 

would like to emphasize that we do not daim that this method can serve as a successful 

object category model in general. The object categories we have chosen differ in texture, 

dominant orientation of structural components, and smoothness of surfaces, which may 

count for the success of this modeling for our purposes. The utility of this model may 
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break however, with a different choice of object categories. The PCA stage in feature 

extraction maximizes the variability of the selected features among the chosen classes. 

We choose a probabilistic framework for classification in these experiments, and the 

statistical modeling of the object category features allows us to de al with the problems of 

variations in view point, occlusion, background clutter, and lighting implicitly as intra­

category variability. We de al with the problem of scale more explicitly in the model 

which is discussed in detail in the following section. 

3.2.1 Proposed Object Module Formulation 

Given an input image to the model, the object module estimates the probability of 

presence of objects from different object categories in local regions of the image (image 

patches). The object module processes local information while the scene module 

processes global scene information. Local regions of an image may be extracted using 

different methods. We choose a sliding rectangular window for extracting patches from 

the image, where the center of the sliding window moves on an evenly sampled grid in 

order to provide a uniform covering of the image. Patches of different sizes are used for 

extracting regions of different scales in the image. Each sc ale is denoted by Tl, with 

1 = 30,50,70,90,110 pixels, corresponding to patches with height of 30, 50, etc. pixels. 

For each extracted patch the feature vector VL={af
r
,8 ,d} is computed using the Oliva 

and Torralba method described in section 3.1.2. 

The probability of a patch of scale Tl representing an object belonging to one of 

the n different object classes OI>02, ... ,On is given by: 
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(3.17) 

At the learning stage, for each scale Tl, the probability density function 

representing the likelihoodPT/V LlO) is estimated using EM algorithm and a mixture 

of Gaussians model, using the feature vector V L of all training image patches of scale 

Tl that represent an object of class Oi' PTz (Oi) is the a priori probability of the object 

class which can be determined by enumerating the object patches of particular scale in 

the image database or initially be assumed equal for all object classes. The data prior 

model is computed as PT z (V L) = I; PT /V L loJ PT z (oJ 
1 

Figure 3.4. Local patches are extracted from each image using sliding window of different 
scales. For each local patch of scale T z , the probability of the presence of different classes of 

objects are estimated using likelihood models which are built by patches of the same scale. 

Our goal in building this model is to make it possible for the scene module and 

the object module to interact with each other. The scene module creates a hypothesis 

about the whole scene, while the object module creates a hypothesis linked to local 

regions of the scene. Therefore we have two ways of having the scene module and the 
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object module interact. We can either let each local region propagate the results of its 

local processing to the scene module independently, and then average or aggregate the 

results of the independent interactions of each local region with the whole scene, at the 

scene level. Or we can combine the results of local processing of the regions produced 

by the object module before any interaction with the scene module and then adjust the 

scene module according to the combination of the object module results. This issue is 

actually the crux of the model and one of the most important problems to resolve. In 

order to address this issue we have to decide what kind of information we want to 

transfer between the two modules. There are three types of information produced by the 

object module, the identity of the objects, the scales, and the locations of the objects. The 

scene module can make use of aIl these three types of information to adjust its estimate 

of the scene type, although they may not be necessary. In the present implementation of 

the model, we focus on the identity of the objects. We would want to pass the 

information extracted by the object module about the possible object categories present 

III the image to the scene module but not specifie information about their locations or 

scales. In this case there is no need for local region processes interacting individually 

with the scene module. Therefore we integrate the local hypotheses represented by the 

posterior PT/odv L) from different patch locations and different scales into one 

hypothesis which we represent by P(Oi 1 { V L} ). One can think of averaging aIl the 

probability distributions PTI (0 Iv Ü over all the patches of different scales and 

different locations. But a simple averaging of the probability distributions would run into 
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several issues. We propose a weighted average of the distributions using the following 

technique: 

1. A weighted average is computed where the posterior probability distributions 

which present low certainty decisions (based on the preset decision thresholds) 

are assigned a lower weight compared to posterior probability distributions which 

present high certainty decisions. (We do not want a lot of regions with posteriors 

representing uncertain decisions cancel out the effect of regions with certain 

decisions ). 

2. The distributions are weighted according to their scale, with a higher weight for 

distributions belonging to larger scale reglOns and a smaller weight for 

distributions belonging to smaller scale reglOns. Certainty or uncertainty of 

decision for larger scale regions has more effect on the weighted average 

compared to certainty or uncertainty of decision for sm aller sc ale regions. The 

adverse effect of this weighting is that the effects of many small instances of an 

object have to aggregate to have the effect of one instance of object in a larger 

scale, which may not be always meaningful. 

In order to resolve the issue of over-counting evidence we take the following 

measures: 

1. We start computing the local estimation with the patches of highest scale, and at 

each scale level we discard aIl the smaller scale patches falling inside a higher 

scale patch with a high certainty decision. We also avoid over-counting evidence 

for objects which are self-similar in different scales (e.g. plants). 
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2. We discard regions with small likelihood values, reglons which the 

measurements do not give evidence that one of the known object categories is 

present, regions with unknown objects, or background dutter. In such a case the 

Bayesian formulation copies the prior model to the posterior. In the future design 

of the model this issue will cause a problem because we count evidence for 

wrong regions. 

3. In order to avoid over-counting evidence from overlapping regions we compare 

the change in the posterior estimation for regions in a neighborhood and if the 

changes in probability values are smaller than a threshold, we discard the 

overlapping patch. 

The global probability distribution P(O 1 { V L}) is thus created as a weighted 

average over the local posterior probability distributions, with the probability 

P(Oi 1 { V L}) containing information about the frequency of presence of object category 

Oi across all scales and across aIl locations in the scene. 

3.3. Summary 

We use the scene representation introduced by Oliva and Torralba, based on the 

sampling of the mean power spectrum of images with Gabor filters of different scales 

and orientations, for scene categorization. We also use a similar representation for 

extracting features from local image regions for object categorization. Figure (3.5) 

presents a general schema of the model discussed in this chapter. The function of the 

scene and the object modules are formulated using Bayesian inference processes. In the 
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next chapter we will propose a method for incorporating feedback between the two 

modules' processes. 
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Figure 3.5. The scene module creates hypotheses about the identity of the scene based on the 
global image features and the object module creates hypotheses about the identity of the objects 
present in the scene based on local image features. 
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Chapter 4 

Coupling of the Scene Classification Module and the Object 
Classification Module 

In this chapter we present the mathematical methodology we have developed through 

which the information produced by the two sensory information processing modules, the 

scene classification module and the object classification module, can become available 

to each other and be considered as part of the information processing problem solved in 

each module. The methodology we present here is motivated by the field of data fusion, 

which is concemed with the methods of combining various information sources. In 

section 4.1 we motivate our proposed methodology in the framework of Bayesian data 

fusion. In section 4.2 we distinguish between two classes of data fusion 

implementations, the weak coupling and the strong coupling architectures. In section 4.3 

we propose two approaches for implementing the interactions between the scene 

classification and the object classification modules based on a Bayesian strongly coupled 

data fusion architecture. 

4.1 Data Fusion 

Data fusion deals with the question of fusing separate sensory information processing 

components in order to achieve a globally "better" solution to the sensory information 

processing problem at hand, as compared to the solutions given by each of the individual 

components. The global system improves the performance of the task at hand by 

producing a solution which is more accurate than the components' solutions or by 
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producing a unique solution when the individual components are not able to produce any 

unique solutions individually. The latter aspect of data fusion algorithms have been 

described by Clark and Yuille [14] in terms ofregularization ofill-posed problems. 

Clark and Yuille view the problem of image understanding or "perception" as a 

process of inverting the world-to-sensed-data mapping. Since the sensing process 

pro duces a non-invertible projection of the world (i.e. the mapping from the world 

structures to the image space is many to one), in order to invert this mapping one must 

constrain the set of possible world interpretations of the sensed-data to a degree where 

the mapping from the reduced space to the image space becomes invertible. In other 

words sensing involves a non-invertible projection of the world which makes perception 

(sensory information processing task) an ill-posed problem; therefore in order to 

regularize such an ill-posed problem, and for a sensory processing module to operate 

adequate1y (being able to pro duce unique solutions to the task at hand), constraints of 

one form or another must be imposed on the solution process. These constraints can be 

"physical constraints", "natural constrains", or "artificial constraints". Physical 

constraints are based on rules of physics and mathematics and rule out solutions which 

are physically impossible. Natural constraints are derived from observations from the 

environment and represent conditions which are normally and naturally true in that 

domain (examples of natural constraints used in computer vision problems are surface 

smoothness, object rigidity, Lambertian surface reflectance). Artificial constraints embed 

expectations about the state of the world based on high leve1 knowledge of the domain, 

formed from previous estimates of the state of the world. Physical constraints are 

universally valid, but natural and artificial constraints are not. Furthermore, it is 
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sometimes not possible to find natural and artificial constraints which are always valid, 

even within the specifie domain of the problem. In cases where the constraints imposed 

on the information processing module are not valid, or are insufficient, the module may 

produce a wrong solution or be unable to find a unique solution to the problem. 

One way to address this problem is to use the information produced by another 

information processing unit to correct the answer of the module. In this way combining 

or fusing results obtained from several modules enhances the performance of the system 

as a whole. So fusion of information produced by different components of a sensory 

system can reduce the dependency of the solution of the system on invalid or insufficient 

constraints imposed on the solution process within each module. In this sense, data 

fusion can be seen as a method of regularizing the ill-posed problem of perception (or 

any other ill-posed problem for that matter) not only by means of a priori constraints 

(constraints not based on CUITent sensory data), but also by constraining it by information 

which cornes from a "partial" solution to the problem and is obtained from independent 

sensory information processing modules (based on the current sensory data). 

In the Bayesian approach to solving sensory information processing problems, 

different possible solutions are assigned a probability based on the models of the sensing 

process (likelihood model) and models representing general assumptions made about the 

world (a priori models). One of the advantages of the Bayesian formulation is that it 

provides a suitable form for embedding constraints into the solution process. Sorne of 

the constraints required for the solution process are incorporated and embedded into the 

likelihood models when these models are being estimated using sensory measurements. 

One can also choose the a priori models to enforce the necessary constraints on the 
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solution process. Usually the a priori models incorporate constraints which are based on 

general assumptions made about the domain (before any measurements are made), but 

the priors can also be influenced by the previous measurements (as in the case of active 

vision). The likelihood models typically involve physical, and to a lesser extent natural 

constraints, while the prior models typically involve natural and artificial constraints 

[14]. 

In the Bayesian approach that we have chosen for determining the semantic 

context of a scene and for determining the presence or absence of certain object classes 

in the scene, scene and object classification are formulated as estimating the following a 

posteriori conditional probabilities: 

1 

P(V GIS)p(S) 
P(S . V G) = ------'----

J P(V G) 
(4.1) 

(4.2) 

The conditional probabilities P(V Gis j) and PT, (V LI Qi) represent probabilities of 

occurrence for the input measurement data on the event that it is known that the 

measurements belong to scene class S j or object class Qi respectively. The likelihood 

P(V Gis j) represents the mapping from the class of scenes S j to the space of image 

features V Gand similarly PTt (V L 1 Qi) represents the mapping from the class of objects 

Oi to the image features V L' Universally valid physical constraints and certain domain 

specific natural constraints (e.g. certain structural rules normally valid for most 
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contextually meaningful scenes such as sky above earth, horizontal layers along 

dominant horizon) are embedded into these conditional probabilities during the learning 

stage through the training patterns. 

On the other hand the a priori models P(S j) and PT, (Oi) constrain the solution 

with general assumptions made about the scene classes Sj and object classes Oi' In the 

previous chapter we mentioned that the a priori models P(S j) and PT, (Oi) are 

computed using the statistics of the database to represent how likely a given scene or 

object is, before any measurements are made. But it is not al ways possible to estimate an 

informative a priori model for the problem this way (for example a training database 

where aIl the scene and object classes have equal probability of presence will produce a 

uniform a priori model for the problem). In cases where the a priori models are 

uninformative, the solutions to equations (4.1) and (4.2) are reduced to a maximum 

likelihood estimation of the two equations. 

In cases where the constraints embedded in the likelihood models or a priori 

models are not valid or are insufficient, the scene classification module or the object 

daqsification module may produce a wrong solution or be unable to find a unique 

solution to the problem. In such a case one can supplement the a priori constraints 

(constraints not based directly on the measurements from the sensory data) with extra 

constraining information obtained from the other information processing module. For 

example in the problem of scene classification of a given image, if the object module has 

independently determined with a high reliability that certain objects exist in the image, 

but the scene module is not able to classify the image reliably, then the knowledge about 
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the objects present in the scene can be used for further constraining the scene module 

solution process. For example knowledge of the relationships between scene categories 

S j and object categories ai, in the form of conditionals ail S j and S j lai can be used to 

develop a more informative a priori model for the scene module. It is this Bayesian view 

of data fusion which forms the theoretical basis for our proposed method of 

implementing informative interactions between the scene and the object modules. 

Based on the Bayesian interpretation of data fusion, information from 

independent information processing modules can be used to impose constraints on either 

the likelihood models or the prior models of a Bayesian estimation process. The 

alteration of either the likelihood models or the prior models, in order to accommodate 

information coming from an independent source, is the basis for distinguishing between 

two methods of coupling the object and the scene modules, as proposed later in this 

chapter. Before describing our proposed method for "constraint embedding" or "data 

fusion" between the scene classification and the object classification modules, it is 

necessary to distinguish between weakly versus strongly coupled data fusion 

architectures. 

4.2 Weakly and Strongly Coupled Architectures for Data Fusion 

The research performed on data fusion systems has been carried out largely within the 

engineering community [15][102][105] and overlaps substantially with the work on 

multiple classifier systems in the area of pattern recognition. In this body of work 

different architectures (for example seriaI, parallel, hierarchical) have been considered 

for implementing data fusion, but often the adopted architectures are developed in an ad 
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hoc manner dictated by the practical application at hand. Two major classes of fusional 

architectures have been distinguished by Clark and Yuille [14]; that of weakly coupled 

and strongly coupled data fusion. These two classes differ in the way the constraints 

(information from other sensory modules) are embedded into the solution processes. 

In the weakly coupled data fusion model the outputs of several sensory 

information processing modules are combined in a fusion module to produce a global 

system solution for the desired task. The general architecture for a weakly coupled data 

fusion system is presented in figure (4.1). As illustrated in figure (4.1) the modules Ml, 

M 2 , ... , ML process the feature space, and the information processing function 

performed by the modules are independent from each other. In the weakly coupled 

architectures the supplementary constraints required for the solution process are imposed 

through the fusion module. From a Bayesian point of view the likelihood models and the 

a priori models of different modules do not depend on the output of any other module, 

and the solution process of the component modules are not altered to accommodate extra 

constraints from other sources. 

The information fusion models studied in the area of pattern recognition under 

the title of "classifier fusion models" are weakly coupled architectures. Examples of 

these models are the classifier combiners based on Bayesian decision mIes proposed by 

Kittler et al [49], classifier combiners based on class predictions proposed by Lam and 

Suen [51] and Huang and Suen [43], combiners based on stack generalization, mixture 

of expert models proposed by Jacobs et al [47] and Jordan and Jacobs [48], bagging 

[10], boosting methods proposed by Freund and Schapire [28] [29], and dynamic 

classifier selection method proposed by Woods et al [109]. These models deal with the 
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problem of combining predictions from multiple classifiers to yield a single class 

prediction, and represent special cases of the weakly coupled architecture presented here. 

Data Fusion 
Constraints 

Figure 4.1 The general architecture of a weakly coupled data fusion model is represented with 
L sensory information processing modules. The modules are defined on the feature space x, 
each performing independent sensory information processing tasks represented by functions 
Il (x), 12 (x), .... The fusion module combines the results produced by the individual 

modules to produce a global function represented by f (f 1 (x), f 2 (x), ... ,f L (x» . 

The strongly coupled data fusion architecture differs from the weakly coupled 

architecture in the sense that the functions of the modules are affected by the outputs of 

other modules, so that the functions and the outputs of individual modules are not 

independent from each other [14]. In figure (4.2) the general forrn of a strongly coupled 

architecture is presented. Two variations of the strongly coupled architecture are shown 

in figure (4.2). The feed-forward architecture (4.2.a) is the case where the output of an 

otherwise independently functioning module affects the function of another component 

module. In a recurrent architecture (4.2.b) the functionality ofboth modules are altered 

based on the mutual outputs, so none of the modules function independently. As 

illustrated in figure (4.2.b) the function of module Ml is affected by the function of 
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module M2, which has in tum been affected by Ml (and vice versa). The terrn recurrent 

points to this feedback loop created between the two modules. In the Bayesian view 

point of strongly coupled architectures, either the likelihood or the a priori models of the 

component modules (or both) are altered based on the output from the other module in 

order to incorporate sufficient constraints for the solution process. 

Data Fusion 
Constraints 

Sensor 

M2 

Data Fusion 
Constraints 

fI (x, f 2 (x)) 
~ 

(a) 

(b) 

Figure 4.2 The general architecture of strongly coupled data fusion models are represented, (a) 
represents a feed forward architecture where the likelihood or the prior model of one sensory 
information processing module is constrained based on the output of another independent 
functioning module, (b) represents a recurrent architecture where the likelihood or the prior 
models of both sensory information processing modules are constrained based on output from 
the other module. 
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An example of strongly coupled data fusion architecture in literature is the 

Kalman filtering method [32]. The Kalman filter estimates a variable which represents a 

sequence of changing states of the world, and involves recursively updating the a priori 

model of the state variable based on previous and currentestimates of the state variables 

and updating the estimate of the state variable based on the current a priori model, the 

system model, and the measured data. The Kalman filter is a strongly coupled model in 

the sense that the a priori model is adapted in a data dependant way. 

A general characterization of the function of a module III the Bayesian 

implementation of a strongly coupled data fusion model is given by Clark and Yuille 

[14] as foUows: 

p(x Iv ; ZJ, Z2, ... , Zn)P(V ; ZJ, Z2, ... , Zn) 
pCv 1 x) = -----------

p(x ; Zb Z2, ... , Zn) 

(4.3) 

where the function of the module is to determine a parameter v by optimizing the 

conditional density pCv 1 x), where x is the measured data input to the Bayesian 

parameter estimation module, and Zl, Z2, ... , Zn are the data from the other sensory 

information producing modules. The likelihood model, the a priori model, and the data 

model aU can be seen as functions of Zl, Z2, ... , Zn . The output Zk of a given module which 

influences the estimation process of parameter v, can itself in tum be influenced by the 

function of this module. This formulation includes the adaptation of both the a priori 

model and the likelihood models. 
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4.3 Strongly Coupled Data Fusion between Scene and Object Modules 

In the previous section we mentioned that in cases where the a priori constraints built 

into the scene classification module and the object classification module fail to provide a 

unique solution for one of the modules, the knowledge inferred from the other module 

can be combined as part of the module estimation process in order to further constrain 

the solution. We are motivated by the strongly coupled data fusion architecture 

illustrated in figure (4.2) and the general formulation in equation (4.3) to modify our 

Bayesian solutions for the scene and the object classification modules in order to 

incorporate possibility of information sharing between the two modules. As discussed in 

the previous section the strongly coupled data fusion architecture allows two approaches 

to implementing the interactions between the two modules. In the first approach, the two 

modules interact through the prior terms of the Bayesian formulation. In this approach 

the a priori models of the scene and object modules are modified in order to allow 

constraints built into the solution process based on information coming from the other 

module. This variation of the model is strongly coupled in terms of priors. In the second 

approach, the likelihood models of each module are reformulated in order to allow data 

fusion with the other module. This variation of the model is strongly coupled in terms of 

likelihoods. For both variations of the model we present are examples of recurrent 

strongly coupled architecture. 

4.3.1 Adaptive Priors Model 

The key idea in this approach is that the any previously acquired knowledge about the 

scene identity affects the a priori models used for the object identification process, and 

likewise any previously acquired knowledge about the objects present in the scene 
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affects the a priori models used for the scene identification process. In our proposed 

model we revise the Bayesian estimation equations (4.1) and (4.2) in order to embed a 

feedback interaction between the two modules. In order to make feedback connections 

possible between the two modules, the a priori terms in equations (4.1) and (4.2) are 

expanded as following: 

P(S) = IP(Sj,Oi) = IP(SjloJP(oJ 
i i 

(4.4) 

PT/ (Di) = ~ PT/ (Di' S) = ~ PT/ (Oil S j)P(S j) (4.5) 
J J 

Expanding the a priori terms as In equations (4.4) and (4.5) exploits the 

dependency of the scene level priors and the object leve1 priors to provide a way to feed 

back the output of the one module to the other module. Equation (4.4) shows how the a 

priori term P(S) can be modified based on knowledge of the probability of the 

presence of different object classes in the scene. Ifthere is no previous knowledge of the 

different object classes present in the scene, the a priori term P(S j) of equation (4.1) 

can be determined based on the statistics of the database or be assumed equal for aIl 

scene classes (as done for the first iteration of the model), but once the object module 

has made inferences about the probability of the presence of different object classes in 

the scene, this knowledge can be used to provide a new estimation of the a priori term 

P(S) based on equation (4.4), where the term P(O,) in equation (4.4) is updated based 

on the new a posteriori distributionP(Oi 1 {V r}) produced by the object module. 

Similarly equation (4.5) shows how the knowledge acquired by the scene module about 

the probability of the image belonging to different scene classes can affect the a priori 

probability of the presence of different objects in the scene. The new estimation of the 
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prior term PTt (Oi) is estimated by updating the terms P(S) in equation (4.5) based on 

the new a posteriori P(S j Iv G) produced by the scene module. 

The data dependent alteration of the a priori terms distinguishes this model as a 

strongly coupled architecture. The mutual feedback between the two modules 

characterizes the model as a recurrent feedback system. At the first iteration of the model 

the scene and object modules perform their Bayesian estimation process independently 

and without any feedback from the other module; therefore, the result of first iteration 

shows how well the modules can function on their own and if there is any need for 

information sharing between the modules. If there is no reliable estimate made by either 

of the two modules then the feedback connections are activated, and new estimates of 

scene and object classes are made through the recurrent feedback between the two 

modules. 

The feedback is designed to use the new information inferred by the system at 

each iteration, to determine a more accurate a priori model for the specific scene class. 

The a priori models representing different scene classes in the Bayesian equation (4.1) 

are not the same if there is any previously acquired knowledge of the type of objects 

found in the scene. Aiso the a priori models representing different object classes in the 

Bayesian equation (4.2) are not the same if there is any previously acquired knowledge 

of the image scene type. Expanding the a priori models P(S) andPT/OJ as in 

equations (4.4) and (4.5) allows the readjustment of the weights of the conditional 

probabilities P(S jl Oi) and PTt (Oil S) in order to incorporate the effect of the 

knowledge acquired by the other module. 
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It is important to show that the modification of the priors given in equations (4.4) 

and (4.5) produces valid a priori probability distributions. In order to have valid a priori 

and a posteriori probability distributions in equations (4.1) and (4.2), we have to show 

that LP(S))=l and ~PT,(OJ=l, when P(S) and PT/Oi) are estimated using 
) 1 

equations (4.4) and (4.5). Since 

LP(S) = LLP(S) 1 Oi)P(OJ = LP(Oi)LP(S) 1 oJ (4.6) 
) ) i i) 

and also given that P(oJ are replaced by the a posteriori distributions P(Oi 1 {V L}) , 

which are computed so that L P(Oi 1 { V Ln = 1, in order to show that L P(S) = 1, we 
i ) 

must show that for 'yi Oi ' L P(S) lOi) = 1. And similarly, since 
) 

~PT,(Oi) = LLPTz(Oils))p(S) = LP(S)~PTz(OiIS) (4.7) 
Il} } 1 

and given that P(S) are replaced by the a posteriori distributionP(S )Iv G) which are 

computed so that LP(s)lvG)=l, in order to show that ~PT/Oi)=l, we must show 
} 1 

that for 'yi S j' L P(Oi 1 S)) = 1. Computing the conditional probabilities p(s)1 Oi) and 
i 

PT, (Oil S)) simply based on enumeration of database items ensures the conditions 

L P(S) lOi) = 1 and L P(S) Iv G) = 1. p(s)1 oJ is computed as the total number of 
) ) 

images containing object category Oi' which belong to the scene category S) divided by 

the total number of images in the database which contain object c1ass Oi (being any 

scene type). And similarly PT, (Oil S)) is computed as the total number of image patches 
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of given scale Tl belonging to images from scene category S j which contain an object 

from class Oi divided by the total number of image patches of scale Tl (containing any 

of the object categories) which belong to an image from scene category S j' One can 

view the approach explained in this section as having a set of different a priori models 

for solving a given Bayesian estimation problem, where each of these a priori models 

are appropriate to be used in a given domain. The information from the other sensory 

module is used to determine which domain is being operated and which one of the a 

priori models are to be selected and used. The updating of the a priori model based on 

the knowledge acquired from the other sensory information processing module may have 

the effect of changing a uniform or uninformative prior model to an informative prior 

model. 

4.3.2 Adaptive Likelihoods Model 

In the second approach to strong coupling of the scene and object classification modules, 

the likelihood models of the Bayesian equations (4.1) and (4.2) are modified in order to 

incorporate constraints based on the inferences made by the other module. For this 

purpose the likelihood term of the scene classification module is modified as 

P(VG,P(O\),P(02), ... ,Î\ON)ISj ), which represents a joint distribution of the global 

image features V G andP(oJ, which is an estimate of the probabilities of object classes 

Oi being present in the scene (i = 1. .. N where N is the number of object classes). 

P(Oi) = P(O = Oi 1 V L) and P(O = Oi 1 V L) are estimated using the posterior 

probabilities of the object classes as estimated by the object module., The likelihood term 

of the object classification module IS also modified as 
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PT/V L, peSt), P(S2),"" P(SM) 1 oJ which represents a joint distribution of the local 

image patch features V Land P(S j)' which is an estimate of the probability of different 

scene classes S j ( j = 1. .. M where M is the number of scene classes). 

P(S j) = P(S = S j 1 V c) and P(S = S j 1 V c) are estimated using the posterior 

probabilities of the scene classes as estimated by the scene module. The adaptive 

likelihood solution for scene and object classification is given as the following: 

(4.8) 

(4.9) 

The model thus defined is strongly coupled in terms of likelihoods. Similar to the 

adaptive priors mode1, the modules initially implement the independent solutions given 

by equations (4.1) and (4.2). In case information fusion is necessary for a reliable scene 

or object classification, the initial values of the parameters P(OJ and P(S) are 

determined using the most CUITent a posteriori estimates of P (0 1 { V L} ) and 

P(S 1 V G)( a posteriori distributions estimated by the original equations (4.1) and (4.2)) 

and are then used for implementing the coupled solutions given by equations (4.8) and 

(4.9). Thus at each iteration the likelihood terms of each module are re-evaluated based 

on the inferences made by the other module, while the prior terms remain unchanged. A 

leaming stage IS required III order to estimate distributions 
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training set of images for which F(OJ and F(S) have been determined usmg 

equations (4.1) and (4.2). The estimation of the probab ility distribution PCV GiS) 

involves leaming the characteristics of the feature clusters which represent scene classes 

S j. For the probability distribution PCV G, F(OI)' F(Oz),···, peON) 1 S j)' the clusters 

formed in the joint space of V Gand P(Oi), not only depict the variability of the 

features V G for different scene classes S j' but also depict the relationship between 

different object classes Di and the scene classes S j. The clusters representing features 

from images belonging to different scene class S j have peaks close to those values of 

parameters P(oJ which represent object classes Di that are often found in relationship 

with scene class Similarly for the probability distributions 

Pr/VL,P(SI),P(SZ), ... ,P(SM) 1 Di), the clusters formed in the joint space of VL and 

P(S j) not only depict the variability of the features V L of the image patches of scale 

Tl which contain an object from class Di' but also depict the relationship between the 

different scene classes S j and the object classes Di. The feature clusters representing 

patches containing Di have peaks (are most dense) close to those values of parameters 

P(S j) which represent scene classes S j that most often contain objects Di. 
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Chapter 5 

Experimental Results for the Strongly Coupled Scene and Object 
Classification Models 

In this chapter we present the experimental results from implementing the strongly 

coupled scene and object classification mode!s presented in sections 4.3 and 4.4. We 

demonstrate se!ected examples where the scene module or the object module cannot 

perform the scene or the object classification task reliably when they function 

independently, but where the strong coupling of the two modules improves the initial 

classification results. We demonstrate how the initial inferences made about the scene 

and the object classes change as the scene module interacts with the object module, and 

as the prior model estimations or the likelihood mode! estimations vary in time. We also 

measure the performance of the strongly coupled models as classification tools using 

receiver operating characteristic (ROC) curves. 

In section 5.1 we give a description ofthe database we created for the purpose of 

the experiments. In section 5.2 we discuss the choice of sorne important mode! 

parameters such as the orientations and scales of the Gabor filters and the number of 

Gaussian mixtures used for modeling the likelihood densities based on their effect on the 

classification performance. In section 5.3 we demonstrate the effect of the strong 

coupling of the two modules on the scene and object classification performance. In this 

section we also present the statistical evaluation of the mode! performance and address 

the issues of statistical meaningfulness of the presented results. The statistical evaluation 
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of the adaptive priors and the adaptive likelihood models provide a basis for comparing 

these two models. 

5.1 Experimental Image Database 

A database of 1000 natural images from different scene categories was created for the 

purpose of these experiments. Each image is 256x256 pixels in size. These images 

include pictures taken by a digital camera and images downloaded from the web. The 

images have been gathered according to the following scene categories: street scenes, 

park scenes, indoor scenes, downtown scenes, and residential (suburban) scenes. The 

object classes identified in the images are vehic1es, trees, people, buildings, and 

furniture. Sample images of different scene categories are presented in figure (5.1) and 

samples of the different object categories are given in figure (5.2). 

The images in this database have been gathered under varied times of the year 

and different times of the day, and therefore lighting conditions vary among different 

images in each scene category. Also there has not been any artificial control ofthe sc ales 

in which the objects appear in the scenes. Our goal has been to gather a set of images 

that captures the natural frequency of the appearance of different object types in their 

different scales, as experienced by the human eye in scenes encountered everyday. 

Natural images depicting scenes of the same basic-Ievel categories (such as 

forest, mountain, beach, street, buildings, indoors) share common features. According to 

the discussion in chapter 2 the study of the power spectrum of the natural images shows 

that images belonging to the same basic-Ievel scene categories share common spectral 

features, and these features can be used for c1assifying scenes. What gives rise to a 

particular spectral shape for a certain scene category is the similarity in the distribution 
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of structural patterns (textures) in scenes of the same category. But the distribution of the 

structural patterns and the spectral features of the scene vary based on both the 

viewpoint of the observer and also the scale of the images. By scene scale we mean the 

mean depth range, i.e. the mean distance between the observers and the elements in the 

scene. This issue is important for us, since it sets the constraints for the scene scales and 

point ofviews we gather for the database. It is important to consider, for the purpose of 

gathering images for the database, how the statistics of the spectral features of the scene 

images vary as a function of point of view and mean depth range. 

One can intuitively see that the ecological parameters (i.e. parameters that 

depend on the interactions between the world and the observer of the world) affecting 

the shape of the image power spectra are also strongly constrained by the way scene 

images are defined. Although we treat scenes and objects almost in a parallel fashion in 

our model, there is an inherent difference between scenes and objects. An object is a 

concept that exists independently of the observers' ecological factors, while a scene is a 

concept, based on deductions made by the observer, and strongly correlated with the 

observers' ecological factors. An object remains the same object, no matter from which 

point of view or depth of range it is viewed, while the semantic meaning of an image 

viewed by an observer changes when point of view or depth of range changes (the view 

of a street by a pedestrian walking in a street and by an airplane passenger flying over 

the street do not belong to the same scene category). 

With our chosen observer being a human standing up (straight), the viewpoints 

for our chosen scene categories (indoors, streets, parks, etc.) are strongly constrained, 

with the main components composing the scene also being strongly constrained in 

orientation (buildings, cars, trees, furniture, most people) with pronounced horizontal 
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and vertical alignments for most objects. Torralba and Oliva [94] made a study of the 

variations of the spectral features of scenes based on changes in the scene scale. Their 

results show that significant differences exist between spectral features of images when 

the mean depth range changes more than a factor of 10. For the images we have gathered 

by digital camera, we controlled the scene scale by maintaining a fixed range of mean 

depth for images of the same scene category. Specifically the mean distance of the 

observer with the main components of the scene do not vary by more than 10 met ers 

from one image to another (no control is used for indoor scenes). The mean depth of the 

images collected from the web was controlled by comparing the average scales of the 

main components of the scenes, and making them similar to values computed on the 

digital camera images. 

Ecological constraints, which define a scene category, also constrained the 

objects found in the scene. Our database of object patches does not contain an infini te 

number of point of views of objects. AIso, the scales of the main objects found in the 

scenes are correlated with the scene category. So our database of object patches is 

constrained both in point of view and scale. Therefore we do not require an object 

classification system (or set of object features) which is spatially invariant or scale 

invariant. 
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Figure 5.1 Sample images of the five scene categories are presented. The scene categories 
presented in each column, from left to right, are street, park, indoors, downtown, and residential 
scenes. 
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Figure 5.2 Sample images of the five object categories are presented. The object categories 
presented from top to bottom are people, buildings, cars, furniture, trees. 
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5.2 Choice of Model Parameters 

The global and local image feature vectors V G and V Lare computed by convolving the 

images with Gabor filters tuned to radial frequencies Ir =( ~,~, ~,~ ) and orientations 
4 8 16 32 

B= (Ir ,!!., Ir, 21r, Sir ,Ir). This image representation encodes spatially localized structural 
6 3 2 3 6 

information. In order to reduce the dimensionality of the representation, and also to 

capture the variability of the features, the responses of the images to different Gabor 

filters are decomposed to their principal components. The global/local features of each 

image/image-patch are produced by projecting the filtered images onto the 

corresponding principal components. In these experiments four eigenvectors have been 

chosen for feature extraction. This choice is based on a study of the classification 

performance of the uncoupled scene model (figure (5.3»). In these experiments the size 

of the training set extracted from 800 training images using 24 Gabor filters and four 

eigenvectors is 2.38 Gigabytes. 

One other important parameter of the model is the number of Gaussians used in 

the mixture model used for the likelihood probability distributions in the Bayesian 

formulation of the scene and object modules. We have chosen a mixture of2 Gaussians 

for modeling the likelihood distributions based on experimental results from the model. 

ROC curves for scene classification results, for model implementations with one 

Gaussian and mixtures of2 and 3 Gaussians, are shown in figure (5.4). AlI curves in this 

figure show the classification performance for the uncoupled scene model for 200 test 

images. Performance of the model with mixture of 3 Gaussians shows no significant 

improvement over the performance of model with mixture of 2 Gaussians. 
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Figure 5.3. The classification performance for the uncoupled scene model for 200 test images is 
prcscnted. Each curve shows performance for a different choice of the number of eigenvectors 
uscd for the feature extraction process. Performance of the model using 5 or 6 eigenvectors 
shows no significant improvement over the performance of model using 4 eigenvectors. 
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Figure 5.4. The classification performance for the uncoupled scene model for 200 test images is 
presented. Each curve shows performance for mixture models with different number of 
(';Iussians. Performance of the model with mixture of 3 Gaussians shows no significant 
i Ct ~ Ipmvement over the performance of model with mixture of 2 Gaussians. 
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5.3 Experimental Results for the Strongly Coupled Scene and Object 
Modules 

Having discussed the issues of the creation of the database and the choice of important 

parameters affecting the model performance, we now present the experimental results 

from the implementation of the adaptive priors and the adaptive likelihoods models as 

presented in chapter 4. In section 5.3.1 we present selected examples of the models' 

behaviors for chosen images of the test set. For each model we have chosen 7 examples 

which represent different types of the behavior of the model under a variety of input 

images. By studying the behavior of the model in these sample cases we intend to gaina 

deeper understanding of the model function and also to examine how the information 

flow between the two modules will affect the inferences made by each module. These 

cases represent selective behaviors of the model, so a statistical study which measures 

the general performance of model as a classification tool is presented in section 5.3.2. 

ROC curves which present the performance of the two models for varying decision 

thresholds are presented in section 5.3.2. 

AIl images in the database have been labeled by 3 human observers. The 

observers have been asked to label the images by one of the five scene category labels: 

street scene, downtown area, residential area, indoors, and park. The observers have also 

been asked to label the patches containing objects as representing one of the 5 object 

categories: vehic1es, plants, buildings, fumiture, and people. The scene images left 

uncategorized or categorized as ambiguous by at least one of the observers have been 

discarded from the database and replaced by non-arnbiguous images, so aIl the images in 

the database are uniquely assigned to one of the 5 scene categories by aIl 3 observers 

(exarnples of images which have arnbiguous class assignrnents by human observers are 
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kept for sorne experiments, but are not included in the training or the test sets unless 

mentioned in the experiments.) The same strategy has also been taken with object 

images. Image patches left uncategorized or categorized as ambiguous by at least one of 

the observers have been discarded and replaced, so that aIl image patches used for the 

training of the object module are uni quel y assigned to one of the 5 object categories by 

aIl 3 observers. 

For the purpose of these experiments we divided the database of images into 800 

images for training and 200 images for testing. Equal numbers of images are used for 

training the modules for different scene or object categories. In order to be able to 

estimate confidence levels for statistical analysis of the classification results, we have 

chosen the strategy of rotating the test set, i.e. at each trial, alternative subsets of the 

image database are chosen as test images, and the scene and object modules are trained 

using the remaining 800 images in the database. Five different subsets of the database 

have been used to compute the confidence levels in the classification results. The mean 

standard deviation error is computed for the classification results obtained from each 

rotating training image set. 

Once a test image is given to the model, the model classification result faIls into 

one of the following three categories: correctly classified, misclassified, and unclassified 

images. The results of classification are a function ofboth the iteration number and also 

the threshold levels we choose for accepting the probability levels as a correct decision. 

The image category label given by the human observers is used as the criteria for 

validating the model classification results. We specify our exact definition of an image 

being correctly classified, unclassified, and misclassified by the model at each section. 
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5.3.1 Case Studies for the Adaptive Priors and Adaptive Likelihood 
Models 

In this section we present 7 examples of the behavior of the adaptive priors and the 

adaptive likelihood model. In this section an image is defined as unclassified when the 

difference of the two highest module a posteriori probabilities is less than a fixed range 

(chosen as ±O.1 for the purpose ofthese experiments). An image is defined as correctly 

classified when the image is not unclassified and the module MAP solution for the 

image category agrees with the human classification. An image is defined as 

misclassified when the image is not unclassified and the module MAP solution for the 

image category does not agree with the human classification. 

Figure (5.5) shows the percentages of correct scene classifications for different 

scene classes of a test set of 200 images. Results are averaged for the two coupled 

models. The averaged percentages of correct classifications are shown for iterations 1, 

50, 100, 150,200, and 250 of the two coupled models, given a fixed decision threshold. 

: 1--------------------------------_a_,----

70 1-----~-
1 

60 -1-'----------------

i 
50+----~-------~-~ 

40 +----------. 

30 

20 +-1~,--

10 

o 
1st 50th 100th 150th 200th 250th 

Iteration 

œStreet 

• Park 

Olndoors 

o Residenlial 

• Downlown 

Figure 5.5. Percentages of correct scene classification results for different scene categories 
averaged for the two coupled models are shown. Results are shown for different iterations, given 
a fixed decision threshold. 
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Figure 5.6. The scene 'and object hypotheses created by the first 100 iterations of the two models 
for a sample image belonging to the residential category are presented, (a) shows the posterior 
scene probabilities computed by the adaptive priors model, (b) shows the posterior object 
probabilities computed by the adaptive priors model (c) shows the posterior scene probabilities 
computed by the adaptive likelihood model, (d) shows the posterior object probabilities 
computed by the adaptive likelihood mode\. 
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As the first example for the behavior of the adaptive priors and the adaptive 

likelihood model we have chosen a sample image belonging to the residential scene 

category as the input to the two models (figure (5.6)). Graphs (5.6.a) and (5.6.b) show 

the posterior probabiIities computed by the scene and the object module of the adaptive 

priors model. Graph (5.6.a) shows the posterior scene class probabiIities computed for 

this image during the first 100 iterations of the adaptive priors model. The image is 

correctly classified as a residential scene at the first iteration of the model. The object 

module is able to provide evidence for the presence of buildings, plants, and vehicles in 

the image as shown in graph (5.6.b). The local image information about the objects 

present in the scene reinforces the correct scene module hypothesis about the category of 

the scene. Graphs (5.6.c) and (5.6.d) present the posterior probabilities computed by the 

scene and object modules of the adaptive likelihood model. The scene module of the 

adaptive likelihood model computed higher probability for the scene belonging to the 

residential category as shown in graph (5.6.c), and the object module of the adaptive 

likelihood model computes higher probabilities for the presence of buildings as 

compared to plants and vehicles. The feedback between the two modules reinforces the 

original hypotheses made, and by the end of the 100 iterations of the two modules the 

scene module keeps the correct hypothesis about the identity of the image. 

As the second example we have chosen an image that is categorized by the 

human observer as a residential image. In Figure (5.7) we show the behavior of the two 

models for reaching a hypothesis about the identity of this image. Graphs (5.7.a) and 

(5.7.b) illustrate the posterior probabilities computed by the adaptive priors model and 

graphs (5.7.c) and (5.7.d) present the posterior probabilities computed by the adaptive 

likelihood model. 
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Figure 5.7. The scene and object hypotheses created by the first 100 iterations of the two models 
for a sample image belonging to the residential category are presented, (a) shows the posterior 
scene probabilities computed by the adaptive priors mode), (b) shows the posterior object 
probabilities computed by the adaptive priors model (c) shows the posterior scene probabilities 
computed by the adaptive likelihood model, (d) shows the posterior object probabilities 
computed by the adaptive likelihood mode\. 
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Graph (5.7.a) illustrates the a posteriori probabilities orthe test image belonging 

to the residential category or the park category, as produced by the scene module, for the 

first 100 iterations of the adaptive priors model. The image is unclassified by the scene 

module at the first iteration of the model since the difference of the probabilities of the 

scene belonging to the residential or the park category is less than 0.1 . The three curves 

in graph (5.7.b) illustrate the a posteriori probabilities of image containing buildings, 

plants, and vehicles, as produced by the object module, at the first 100 iterations of the 

adaptive priors model. The scene probabilities estimated by the first iteration of the scene 

module are in fact the results of scene categorization without any feedback from the 

object module. One can interpret the model behavior as the following: At the first 

iteration, the scene module is not able to discriminate between the image global features 

V G belonging to the residential category or the park category. The object module finds 

evidence for buildings, plants, and vehicles in the scene. This combination of objects, 

with their relative probability levels, provide an object profile which modifies the prior 

model of the scene module in a way which favors the probability of image being a 

residential scene versus a park scene. At the same time the scene a posteriori distribution 

propagates to the object module, and modifies the prior model of the object module. The 

modification of the object priors has the effect of changing the original hypothesis made 

about sorne of the object patches, and the aggregation of these changes pro duces new 

estimates for the probability of presence of buildings, plants, or vehicles in the image. 

After 100 iterations, the mutual feedback between the scene and the object module has 

the overall effect of increasing the probability of the scene belonging to the residential 

category as compared to the park scene. At the end of the 100th iteration more patches 
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have been labeled as buildings, and with higher probabilities, as the probability level of 

the presence of buildings has increased as compared to plants, or vehicles. 

Graphs (5.7.c) and (5.7.d) in this example show the posterior probabilities 

computed by the scene and the object module of the adaptive likelihood model. Graph 

(5.7.c) shows the probability of the scene belonging to the residential or the park 

category as computed by the adaptive likelihood model. The scene module with no 

feedback computes similar probabilities for the scene being a residential or a park scene. 

The likelihood term of the scene module with no feedback computes the likelihood of the 

scene belonging to different scene categories based only on the global context features of 

the image V G. The strong coupling of the likelihood terms of the two modules has the 

effect of increasing the probability of the scene belonging to the residential category. The 

likelihood term of the scene module with feedback computes the likelihood of the scene 

belonging to different scene categories based on the joint probability density of the 

global context features V G and the probability of the presence of different object 

categories such as buildings, plants, and vehicles. Similarly, the likelihood term of the 

object module with no feedback computes the likelihood of the presence of different 

object categories based only on the local features v L • The likelihood term of the object 

module with feedback computes the likelihood of the presence of different object 

categories based on the joint probability density of the local features V L and the 

probability of the image belonging to different scene categories. The joint scene 

likelihood function estimates higher probabilities for the image belonging to the 

residential scene category. The joint object likelihood function estimates higher 

probability for patches containing buildings. 
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Figure 5.8. The scene and object hypotheses created by the first 100 iterations of the two models 
for a sample image belonging to the street category are presented, (a) shows the posterior scene 
probabilities computed by the adaptive priors model, (b) shows the posterior object probabilities 
computed by the adaptive priors model (c) shows the posterior scene probabilities computed by 
the adaptive likelihood model, (d) shows the posterior object probabilities computed by the 
adaptive likelihood mode\. 
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Figure (5.8) presents an example for the behavior of the two adaptive models for 

an image that is categorized by the hum an observer as belonging to the street category. 

Graph (5.8.a) illustrates the a posteriori probabilities of the test image belonging to the 

street category or the park category, as produced by the scene module of the adaptive 

priors mode!. The three curves in graph (5.8.b )illustrate thea posteriori probabilities of 

image containing vehicles, plants, and buildings, as produced by the object module of 

the adaptive priors mode!. The global image features V G do not provide adequate 

evidence for the scene module to independently produce a reliable hypothesis about the 

identity of the image, and in the first iteration, the scene module estimates very close 

probability values for the image being a street scene or a park scene. The object module 

is able to independently find evidence for vehicles, plants, and buildings in the scene, as 

presented in the first object a posteriori estimates. The feedback between the two 

modules has the effect of the enforcement of the hypothesis of the image being a street 

scene and the weakening of the hypothesis of the image being a park scene. 

Each scene class is associated with a prototypical arrangement of objects. The 

strong coupling of the scene priors and the object priors in fact makes an association 

between each scene class and its prototypical arrangement of objects. When the object 

posterior probabilities are projected to the scene module the set of associations that 

correspond to the relevant scene context are activated and result in an enforcement of the 

posterior probability of the scene class which is most strongly associated with the 

present set of objects. In this example the profile of the objects in the scene, a high 

probability of vehicles and lower probabilities for plants and buildings enforces the 

hypothesis of the image being a street scene. When the higher probability of image being 
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a street scene is projected back to the object module, it can strengthen the evidence for 

the presence of vehicles in sorne regions of the image through the object priors. After 

100 iterations, the mutual feedback between the scene and the object module has the 

overall effect of increasing the probability of the scene belonging to the street category 

as compared to the park category. At the end of the 100th iteration more patches have 

been labeled as vehicles, and with higher probabilities, as the probability level of the 

presence of vehi cl es has increased as compared to plants, or buildings. 

Graphs (5.8.c) and (5.8.d) in this example show the posterior probabilities 

computed by the scene and the object module of the adaptive likelihood model. Graph 

(5.8.c) shows the probability of the scene belonging to the street, park, or residential and 

downtown category as computed by the adaptive likelihood model. Graph (5.8.d) shows 

the probability of the object categories vehicles, plants, and buildings being present in 

the scene. The scene module with no feedback computes close probabilities for the scene 

being a park or a street scene. The probability of the scene belonging to the street scene 

category increases when estimated using the coupled scene likelihood model. The 

probability of vehicles in the image increases when estimated by coupled object 

likelihood model. The strong coupling of the likelihood terms of the two modules has the 

effect of increasing the probability of the scene belonging to the street category. 

The curves produced by the object module in both models implemented, raise the 

question of why the probability of vehicles is estimated higher than the probability of 

plants in this image, eventhough a larger area of the image is covered by plant type 

texture. We use a weighting scheme in order to balance the effect of the scale of the 

patches. But in this example the aggregation of the local evidence for vehicles from 

smaller patches has exceeded the evidence provided by fewer patches of a larger scale. 
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Figure 5.9. The scene and object hypotheses created by the first 100 iterations of the two models 
for a sample image belonging to the park category are presented, (a) shows the posterior scene 
probabilities computed by the adaptive priors model, (b) shows the posterior object probabilities 
computed by the adaptive priors model (c) shows the posterior scene probabiIities computed by 
the adaptive likelihood model, (d) shows the posterior object probabilities computed by the 
adaptive likelihood mode!. 
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Figure 5.10. The scene and object hypotheses created by the first 100 iterations of the two 
models for a sample image belonging to the downtown category are presented, (a) shows the 
posterior scene probabilities computed by the adaptive priors model, (b) shows the posterior 
object probabilities computed by the adaptive priors model (c) shows the posterior scene 
probabilities computed by the adaptive likelihood model, (d) shows the posterior object 
probabilities computed by the adaptive likelihood model. 
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The fourth exarnple we have chosen for the behavior of the two adaptive models 

lS shown in figure (5.9). Graphs (5.9.a) and (5.9.b) present the scene posterior 

probabilities and the object posterior probabilities as computed by the scene and the 

object modules of the adaptive priors model. Graphs (5.9.c) and (5.9.d) compute the 

scene posterior probabilities and the object posterior probabilities as computed by the 

scene and object module of the adaptive likelihood model. The image belonging to the 

park scene category is unclassified by the scene module at the first iteration, with the 

probability of the scene being a street or a park scene being close. The object module is 

able to provide evidence for the presence of plants, vehicles, buildings and people in the 

image. The probability of plants being present in the scene is higher than vehicles. This 

is not a characteristic of street scenes and the hypothesis for the scene being a street 

becomes weaker by the 100th iteration. 

The fifth example which is a downtown scene is shown in figure (5.1 0). Graphs 

(5.1O.a) and (5.10.b) iIlustrate the results from the adaptive priors model. Graphs (5.10.c) 

and (5.1O.d) iIlustrate the results from the adaptive likelihood model. The scene module 

at the first iteration misclassifies the image of the downtown street. The probabiIity of 

the image being a residential scene is higher than the image being a downtown scene. 

The object module provides evidence for the presence of buildings, plants, people and 

vehicles in the image. As the model iterates the evidence for vehicles decreases, which 

can be the result of the feedback from the scene module providing higher probability for 

the image being a downtown or a residential scene as compared to a street scene. AIso, 

local evidence for people being present in the scene increases, which can be related to 

the scene module estimating a higher probability for the scene being a downtown scene 

by the end of the 100th iteration. 
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Figure 5.11. The scene and object hypotheses created by the flfst 100 iterations of the two 
models for a sample image belonging to the indoors category are presented, (a) shows the 
posterior scene probabilities computed by the adaptive priors model, (b) shows the posterior 
object probabilities computed by the adaptive priors model (c) shows the posterior scene 
probabilities computed by the adaptive likelihood model, (d) shows the posterior object 
probabilities computed by the adaptive likelihood model. 
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Figure 5.12. The scene and object hypotheses created by the first 100 iterations of the two 
models for a sample image belonging to the ambiguous category are presented, (a) shows the 
posterior scene probabilities computed by the adaptive priors model, (b) shows the posterior 
object probabilities computed by the adaptive priors model (c) shows the posterior scene 
probabilities computed by the adaptive likelihood model, (d) shows the posterior object 
probabilities computed by the adaptive Iikelihood mode!. 
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The sixth example is an image which belongs to the indoor scene category. The 

results related to this example are shown in figure (5.11). This image is initially 

unclassified by the scene module. The global context features are not adequate for 

uniquely classifying this image. This may be due to the large windows in the indoor 

image which show plants from outdoors. The object module finds evidence for the 

presence of both fumiture and plants in the image. The model is able to resolve the 

ambiguity in the scene identity by the 100th iteration, although the rate of increase in the 

indoor a posteriori probability levels is not uniform, and the model seems to oscillate 

between the indoor and the park identities. 

The last example is an ambiguous image in the sense that the human observers 

have not been able to uniquely label this image as a street scene, a downtown scene, or a 

residential scene (figure (5.12)). It is interesting to show that the model is also unable to 

resolve the ambiguity in the scene identity. Evidence is found as for the presence of 

buildings, vehicles and plants, but the relative probability levels of the presence of the 

object categories do not reinforce a specifie scene prior and the model oscillate between 

the three hypotheses. 

5.3.2 Statistical Study of the Classification Results 

The suggested architectures can be compared from different points of view. In this 

section we would limit the criteria of the comparison of the two models to their 

performance in classification tasks. Figure (5.13) presents the comparison of the two 

models based on their performance in terms of correct classifications of scene identities. 

Receiver Operator Curves (ROC) demonstrate the performance of the models in terms of 

their true positive and false positive results and can be used as a tool for quantitatively 
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measuring and comparing the perfonnance of the models. Plots (5.l3.a) and (5.13.b) 

illustrate ROC curves computed for the coupled priors and the coupled likelihood model 

respectively. Each of the curves represents results from a fixed iteration and varying 

decision thresholds of the two models. Each plot shows ROC curves computed from the 

scene classification results obtained from the first, 50th, 100th, and 150th iteration of the 

model. Results from the test images in an scene categories have been combined into 

each curve. A correct detection happens when the estimated probability of the image 

belonging to the correct scene type is higher than the decision threshold, and the 

probabilities of the image belonging to the other scene categories are an below the 

decision threshold. A False alann happens when the probability of the image belonging 

to an incorrect scene category is higher than the decision threshold, and the probabilities 

of the image belonging to an other scene categories are an lower than the decision 

threshold. The error bars have been computed using the classification results from 

rotating sets of test images from the data base, so that in each experiment 200 images are 

chosen as test images, and the remaining 800 images are used as the training set. 

Comparing the curves representing perfonnance at the first and the 150th 

iteration of the two models we can see that scene classification perfonnance is 

significantly higher at the 150th iteration of both models. The curve representing the 

results from the first iteration is the same in both models, and represents the scene 

classification result by the uncoupled scene module. Therefore, one can conclude that in 

general the feedback between the object and scene module has improved the scene 

classification perfonnance. 
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Figure 5.13. ROC curves for scene classification results of the test images. (a) ROC curves 
computed for the coupled priors model. (b) ROC curves computed for the coupled likelihood 
model. Each curve represents results from a fixed iteration. 
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Chapter 6 

Comparison of the Strongly Coupled Scene and Object 
Classification Models 

In the prevlOUS chapter we presented the experimental results obtained from 

implementing the strongly coupled scene and object classification models. The receiver 

operating characteristic (ROC) curves depicting the performance of each of the strongly 

coupled models (figure 5.13) shows that in general the feedback mechanism between the 

object classification module and the scene classification improves the scene 

classification performance in both models. In this chapter we further analyze the outputs 

obtained from the two models in order to establish sorne of the main characteristics of 

the models such as predictability, speed of response, and robustness of the models. 

Investigating these questions also provides a basis for comparing the behavior of the two 

models. In section 6.1 we compare the classification performance of the two models 

using the corresponding ROC curves. In section 6.2 we investigate the predictability of 

the two models using cross-correlation plots and in section 6.3 we compare the speed of 

the two models by estimating the rise times of the models' outputs. In section 6.4 we 

investigate the robustness of the models to variations of the input image such as changes 

in image orientations, and additional noise. 

6.1 Classification Performance of the Two Models 

Plotting the ROC curves representing the scene classification performance of the two 

models demonstrates a significant difference in their detection rates. In order to 
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demonstrate this result more Clearly, we plot the ROC curves obtained from the two 

models, for fixed iterations and varying decision thresholds, in the same graph (figure 

(6.l.a) and (6.l.b)). In figure (6.l.a) the two curves corresponding to the classification 

results obtained from the 50th iteration of the two models are shown. In figure (6.l.b) the 

two curves corresponding to the classification results obtained from the 150th iteration of 

the two models are shown. 

The results depicted III figure (6.l.a) and (6.l.b) show that the adaptive 

likelihood model has a higher detection rate as compared to the adaptive priors model. 

Based on these experimental results one can empirically conclude that constraining the 

likelihoods provides better solutions for the scene classification problem compared to 

constraining the priors, given our choice of image features and image data base. This 

result also implies that the MAP solutions of the Bayesian estimation problems 

presented by the functions of the scene and object modules are more sensitive to changes 

in the shape of the likelihood distributions, as compared to changes in the shape of the 

priOf distributions. 

6.2 Predictability of the Two Models 

We use autocorrelation plots as tools for checking the predictability of the model. 

Randomness in a data set is ascertained when the autocorrelation plots have near zero 

values for all time lag separations. If the data set is non-random one or more of the auto-

correlation values is significantly non-zero. We form the auto-correlation plots by 

computing the auto-correlation coefficient Rh as the following 

(6.1) 
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Figure 6.1. ROC curves for scene classification results of the coupled like1ihood and coupled 
priors mode1s, (a) ROC curves representing scene classification results from 50th iteration of the 
two models, (b) ROC curves representing scene classification results from the 150th iteration of 
the two models. 
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where Chis the auto-covariance function 
1 N-h 

Ch = N I~(XI - Ji )(Xt+h - Ji ) 

and Co is the variance function 

N 2 
I. (Xt - Ji ) 

Co = "-.-1=..:....1 ---

N 

(6.2) 

(6.3) 

We have plotted the autocorrelations of the outputs of the coupled likelihood and 

the coupled priors model obtained in the previous experiments. Figures (6.2) and (6.3) 

show the auto correlation plots for the outputs of the coupled likelihood and coupled 

priors model respectively. Figures (6.2.a) and (6.3.a) show the averaged autocorrelations 

that correspond to a correct classification decision given a fixed threshold level at 

iteration 100. Figures (6.2.b) and (6.3.b) show the averaged autocorrelations that 

correspond to cases where the scene images remain unclassified or ambiguous given the 

same fixed threshold level at iteration 100. Figures (6.2) and (6.3) demonstrate 

significant auto correlation in both processes; the data does not follow a random or a 

sinusoidal pattern and represents a predictable process. In aIl cases the autocorrelation 

starts with moderately higher values at smaller lags and gradually decreases. One can 

observe that the auto correlation plots from the coupled priors model show a faster decay 

compared to the auto correlation plots from the coupled likelihood mode!. Based on this 

observation one can empirically conclude that the coupled likelihood process provides a 

higher degree of predictability compared to the coupled priors mode!. Also comparing 

the plots from the correct classification cases to the plots from unclassified and 

ambiguous cases, one can observe that the auto correlation plots corresponding to the 

correct classification cases decay slower. 
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Figure 6.3. Autocorrelation plots for the outputs of the coupled priors model, (a) shows the 
averaged autocorrelations plot of the model outputs which correspond to a correct classification 
decision, (b) shows the averaged autocorrelations plot of the model outputs which correspond to 
cases where the scene images remain unclassified or ambiguous. 
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6.3 Speed of the Two Models 

In this section we compare the speed of the two approaches. In order to evaluate the 

speed of the two models we use the model outputs that represent a correct classification 

by the 100th iteration given a fixed threshold. We use two methods for evaluating the 

rise times of the model outputs. 

1) We fit the model outputs y with a first order step response given by the 

exponential function 1 - A exp (~). In order to do so we use a regression 
r 

method to fit a straight line to In(1 - y) . The slope of the fitted line is equal to 

-1 
-. The time constant r provides a way for comparing the rise times of the 
r 

model outputs. 

2) We determine the iteration number where the model response has risen %63 of 

the way from its original value at the first iteration to the value of the threshold. 

Tables (6.1) and (6.2) show the results computed from the two models' outputs 

corresponding to different scene types. Results from table (6.1) show that a higher time 

constant is estimated for the coupled priors model's outputs, consistently over an scene 

classes. This translates into slower rise times for the outputs obtained from the coupled 

priors mode!. 

Time Constant 
SceneType Coupled Likelihood Model Coupled Priors Model 
Street 666.7±70 1250.2± 300 
Park 555.5± 100 909.1 ±300 
Indoors 476.2± 50 1111.1 ± 400 
Downtown 625.3 ± 100 1740± 500 
Residential 769.2± 70 2500.0± 300 

Table 6.1. Comparison of the speed of the two models using time constants obtained from fitting 
the model outputs with a first order step response. 
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Iteration Number 
Scene Type Coupled Likelihood Model Coupled Priors Model 
Street 43± 10 78± 12 
Park 24± 14 53±9 
Indoors 27± 10 45± 15 
Downtown 51 ± 7 74± 11 
Residential 37± 12 62± 17 

Table 6.2. Comparison of the speed of the two models using the iteration number in which the 
model responses rise %63 of the way from their original value at the first iteration, to the value 
of the threshold. 

We choose a second method for comparing the speed of the two processes since 

the first order step response function does not always provide a good model for fitting 

the models' output data. The results obtained from the second method explained above 

are shown in table (6.2). These results support the findings from figure (6.1) that outputs 

from the coupled likelihood model have shorter rise times. One can observe that in most 

cases the coupled likelihood model outputs reach %63 of the difference between their 

original values and the threshold values in significantly fewer iterations compared to the 

coupled priors outputs. 

6.4 Robustness of the Two Models to Input Variations 

In this section we study how the models' classification results change with variations to 

the input images. At first we experiment with images with added Gaussian noise of zero 

mean and 0-=0.1, 0.01, and 0.001. Figure (6.4) shows examples of the noisy images 

generated from an example image of the test set. Table (6.3) shows the classification 

results obtained from a test set of 50 images chosen from different scene categories. 

These results are obtained using a fixed decision threshold at the iteration 150. 
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(a) (b) 

(c) (d) 

Figure 6.4. Examples ofnoisy images, (a) original image, (b) image with added Gaussian noise 
of zero mean and 0-=0.1, (c) image with added Gaussian noise of zero mean and 0-=0.01, (d) 
image with added Gaussian noise of zero mean and 0- =0.001. 

Coupled Likelihood Model Cou pIed Priors Model 

Noise Type Detection Rate FalseAlarm Detection Rate False Alann 

No added noise %80±0.5 %8 %77±0.3 %14 

Added Gaussian %80±0.5 %8 %77±0.3 %14 
fi =0, 0- =0.001 

Added Gaussian %76±0.8 %13 %68±0.5 %15 
fi =0, 0- =0.01 

Added Gaussian %56±0.7 %27 %43 ± 0.2 %19 
fi =0, 0- =0.1 

Table 6.3. Classification performance for noisy test images. 
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Based on the results shown in table (6.3) one can observe that an additional 

Gaussian noise of (J" =0.001 has no effect on the scene classification results of the 

chosen test data set. Detection rates computed for the images with an additional 

Gaussian noise of (J" =0.001 are lower than detection rates of the original images, but 

this difference is not statistically significant. Detection rates corresponding to images 

with added Gaussian noise of (J" =0.1 shows significant decrease compared to the other 

cases. In fact these detection rates are as low as the detection rates computed for 

uncoupled scene modules. This result may be explained by the fact that the Gaussian 

noise of (J" =0.1 strongly distorts the fine details in the image. Although the mode1s use 

low spatial frequency features for both the scene and object representations, the 

performance of object classification, especially for objects with smaller scales, declines 

and therefore the object related information passed from the object module to the scene 

module is no longer useful. 

In the last part of these experiments we investigate the effect of changing the 

input image orientations. In order to create images of different orientations we change 

the upright camera orientation we had used for capturing the images in the database and 

capture images with the camera rotated at 45, 90, and 180 degrees. It is interesting the 

images rotated 180 degrees show the least decrease in the detection rates, compared to 

detection rates obtained from images rotated by 45 or 90 degrees. This may seem 

counter-intuitive since we experience a significant effect on our ability of recognizing 

scenes and objects when presented with upside images. But based on the scene and 

object representations used in the mode1s, the dominant horizontal or vertical structures 
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present in the image and also the dominant horizon line in the images, remain in the 

same orientation within a 180 degree rotation. 

Cou pIed Likelihood Model Coupled Priors Model 

Degree of Rotation Detection Rate False Alann Detection Rate FalseAlann 

No Rotation %97±0.5 %14 %92±0.5 %15 

+45 0 Rotation %82±0.7 %15 %86±0.3 %13 

+90
0 

Rotation 
%63±0.5 %21 %61 ± 0.2 %22 

180
0 

Rotation %94±0.2 %11 %91±0.5 %14 

Table 6.4. Classification performance for test images with variations in orientation. 
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Chapter7 

Attentional Feature Tuning 

In the previous section we demonstrated the effect of the strong-coupling of the scene 

and object modules on scene categorization results. The object classification and the 

scene classification module make inferences about high-Ievel concrete (object) or 

semantic (scene) concepts based on local or globallow level sensory features extracted 

from the power spectrum of the images. The strongly-coupled feedback incorporated in 

the model uses the inference made related to one of the high-Ievel concepts to influence 

and adjust the inference made about the other high-Ievel concept. It is also possible to 

create a top-down feedback between the high-Ievel inference processes and the lower 

level feature extraction processes with the objective of creating an attention al 

modulation effect which would make the scene or object classification process more 

efficient. For example when the scene categorization module creates a hypothesis about 

the identity of a scene based on the global features V G of the image, in the cases that the 

identity of the image is ambiguous, meaning that the probability of the scene belonging 

to two or more classes are smaller than a certain threshold, the feedback between the 

object and the scene module may resolve this ambiguity based on evidence for presence 

of object classes which can more clearly identify the scene. One other way of resolving 

such ambiguity is to tune the features V G extracted from the scene image in order to 

create higher discriminability between the ambiguous scene classes. In this chapter we 

present the implementation and the experimental results of such a feature tuning scheme 
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where the hypothesis generated about the identity of the scenes is used to modify the 

feature extraction process. 

In the previous chapters we talked about the experiments by Oliva and Torralba 

which show that the distribution of energy across the different scales and orientations of 

the Gabor filter bank are stable enough among images belonging to the same scene 

category, and therefore these distributions can be used as signatures representing the 

scene classes [94]. In this chapter we propose using the energy distribution 

characterizing each scene category to tune the Gabor filter bank used for producing the 

low level features V G based on the scene hypothesis produced by the scene module. The 

Bayesian inference function of the scene module represents the bottom-up flow of 

infonnation in the model, where scene identities are inferred from the low level features 

image features. The feature tuning represents the top-down flow of infonnation, where 

the high-Ievel infonnation inferred from the scene identification module is used to tune 

the low-Ievel features. This approach has conceptual similarity to the winner-take-all 

model introduced by Tsotsos et al [97], but instead of the top-down winner-take-all 

selection process biasing the features in sorne region of the image, representing the focus 

of attention to that region, we use the hypothesis fonned by the scene module to bias 

global image responses to selected spatial frequencies and orientations, therefore 

attending to certain frequencies and orientations and not to a certain location in the 

Image. 

For this purpose we first study the energy levels of image responses to the Gabor 

filter bank for images of different scene classes. We compute the average energy level of 

the image responses from each scene c1ass to each Gabor filter (with specific orientation 
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and sc ale ), and thus we create a "Gabor index" for each scene class. At the first iteration 

of the model, the feature vector V G is extracted from the image without any a priori 

hypothesis about the scene category, therefore the image responses to filters of different 

scales and orientations are aIl used with equal weight for forming V G. But once the 

probability of the image belonging to a scene class is estimated, this value can be used to 

weight the image responses to different Gabor filters based on the corresponding "Gabor 

Index". In this way we intend to enhance the image responses to filters with higher 

energy levels and inhibit the image responses to filters with lower energy levels. The 

newly formed V G is used in estimating the likelihoods PCV Gis j) for the next iteration. 

We study the effect of combining the feature modulation and the feedback between the 

object and the scene module on the scene classification performance. 

7.1 Feature Tuning Scheme 

In order to compute dominant power spectrum information for images belonging to each 

scene class we use the total energy of the image responses to the bank of Gabor filters. 

For a given image I(q,17) the image response to a Gabor filter tuned to radial frequency 

f r and orientation B is given by 

N 
V(x,y,fr,B)= "fJ(q,rJ)Gfr,(} (x-q,y-rJ) 

;,1]=1 

The total energy of the image response V (x, y, f r ,B ) is gi ven by 
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The average energy of the image responses to each Gabor filter tuned to radial frequency 

f r and orientation 8 , for all images in the database belonging to scene class S j is 

given as follows: 

(7.3) 

where the subscript j = 1 ... M den otes the scene classes S j' and the subscript i = 1 ... N 

denotes the N images in each scene class S j of the database. We calI the average 

energy E f r,e,S j of images belonging to scene class S j' the index of Gabor filter G f r,B 

for scene class S j. The Gabor indices provide an energy profile for each scene category 

which can serve as a basis for tuning the image features which provide higher energy 

responses for each scene category. Figure (7.1) shows the Gabor index thus computed 

for the four scene classes, downtown, residential, park, indoors, and street scenes. 

Indoors Park Downtown Residential Street 

0.3 

o 

The bins from left to right, 9 == 0, 30, 60, 90, 120, 150, 180 degrees. 

Figure 7.1. The Gabor indices computed for tïve scene categories, indoors, park, downtown, 
residential, and street scenes are presented for Â = 8 and 8 = 0,30,60,90,120,150,180 degrees. 
Each Gabor index is obtained by averaging the total energy of the database images in each scene 
category. 
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.~ .. Given an input image to the model, we can use the hypothesis formed by the scene 

module to bias the image responses to selected Gabor filters which provide higher 

discrimination for scene classes with higher probabilities. We weigh the image response 

to a Gabor filter with radial frequency ! r and orientation fJ according to the probability 

value of each scene class S j and index of the Gabor filter G f r,e for each scene class 

S j as the following: 

(7.4) 

In each iteration of the model, in order to incorporate the top-down feature 

tuning scheme based on the hypotheses created by the scene module, the modulated 

image responses V (x, y,! r' fJ) are weighed based on the probability values estimated 

for each of the scene classes at the previous iteration. The modulated image responses 

V (x'Y'!r,fJ) replace V (x'Y'!r,fJ) for computing the global image features VG 

used at the CUITent iteration of the model. Updating of the global image features V G , 

based on the modulated image responses, means. that- the likeliho0d--m0del estimations.. 

vary at each iteration of the model. 

For the adaptive prior model the estimate of the likelihood P(V Gis j) vanes 

based on the updated values of V G' and for the adaptive likelihood model the estimate 

of the likelihood P(V G' P( 0 = 01)"", P( 0 = ON) 1 S j) varies not only based on the new 

estimates for the object class probabilities, but also based on the new global image 

features V G' As the model iterates, if one of the scene category probabilities computed 
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by the model dominates the other scene category probabilities, the corresponding Gabor 

index gains more weight for the modulation of the image responses. In the next section 

we show examples of how such a process affects the function of the scene classification 

module, and in general the scene classification performance of the mode1. 

7.2 Experimental ResuUs 

Figures (7.2) and (7.3) present results of the model function when combined with feature 

tuning effect as explained in the previous section. Figure (7.2) illustrates an ex ample of 

the behavior of the coupled likelihoods model when combined with the feature tuning 

effect and figure (7.3) illustrates an example of the behavior of the coupled priors model 

when combined with the feature tuning effect. 

The sample image in figure (7.2.a) IS a street scene. The probabilities of 

buildings, plants, and vehicles being present in the scene, as computed by the coupled 

likelihood model, without any feature tuning is shown in figure (7.2.b). The probabilities 

of the image belonging to the scene categories street, park, downtown, and residential, as 

computed by the coupled likelihood model, without feature tuning, is shown in figure 

(7.2.c). Initially the mode1 computes close probability values for the image belonging to 

the street category and the park category, but the object module finds more evidence for 

vehicles being present in the image as compared to plants. The object probabilities 

provide enough information for the scene module in order to gradually estimate higher 

probabilities for the scene being a street scene. Figure (7.2.d) shows the probabilities of 

this image belonging to the mentioned scene classes when the coupled likelihoods model 

is combined with the feature tuning effect. Comparing figure (7.2.c) and (7.2.d) one can 
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say that for the shown iterations of the sample image, the effect of the feature tuning is 

to increase the speed of the model achieving a correct scene classification result. 
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Figure 7.2. An example of the function of the coupled likelihoods model as combined with 
feature tuning effect is presented (a) sample input image (b) the probabilities of different objects 
being present in the scene, as computed by the coupled likelihoods model, without any feature 
tuning (c) the probabilities of the image belonging to different scene classes, as computed by the 
coupled likelihoods model, without any feature tuning and (d) the probabilities of the image 
belonging to different scene classes, as computed by the coupled likelihoods model, combined 
with feature tuning. 

Figure (7.3) illustrates a similar example for the coupled priors model. The 

sample image in (7.3.a) belongs to the downtown scene category. Figure (7.3.b) and 

(7.3.c) show the object class and scene class probability values as estimated by the 

coupled priors model without any feature tuning effect. Initially the model computes 

108 



.~. 

7. Attentional Feature Tuning 

close probability values for the image belonging to the downtown category and the street 

category, but the object module finds little evidence for vehicles being present in the 

image as compared to buildings. 
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Figure 7.3. An example of the function of the coupled priors model as combined with feature 
tuning effect is presented (a) sample input image (b) the probabilities of different objects being 
present in the scene, as computed by the coupled priors model, without any feature tuning (c) the 
probabilities of the image belonging to different scene classes, as computed by the coupled 
priors model, without any feature tuning and (d) the probabilities of the image belonging to 
different scene classes, as computed by the coupled priors model, with feature tuning. 

In this example the feedback from the object module to the scene module has the effect 

of decreasing the probability of the scene belonging to street scene category. Figure 
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(7.3.d) shows the behavior of the model when the coupling of the priors is combined 

with the feature tuning effect. Similar to the ex ample above the effect of feature tuning 

for this sample image is that the model achieves higher probabilities for the correct 

scene class identity in earlier iterations. 

Examples in the previous two figures have been selected among experimental 

results in order to illustrate the capability of the feature tuning to increase the scene 

classification performance. In order to make a statistically valid conclusion about the 

effect of feature tuning on the scene classification performance we plot ROC curves. 

Figure (7.4) and (7.5) contain the receiver operating characteristic (ROC) curves for 

scene classification task performed by the coupled priors and coupled likelihoods 

models when their functionality is combined with the feature tuning effect. In figures 

(7.4) and (7.5) each curve represents results from varying decision thresholds of a fixed 

iteration of the model. Comparing the curves representing performance at the first and 

the l00th iteration of the two models we can see that classification performance is higher 

at the 100th iteration in both models. It is also important to compare the performances of 

the two models with feature tuning with the performances of the two models without any 

feature tuning. Therefore, we have included relevant plots in figures (7.4) and (7.5) to 

make the comparisons easier. One can observe that the models with feature tuning 

achieve higher classification performance at the 100th iteration as compared to the 

models without feature tuning. In general one can conclude that the effect of combining 

feature tuning with the strongly coupled models is that on average a higher detection rate 

is achieved with fewer iterations, at least within the first 100 iterations of the model. 
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Likelihood Coupling with Feature Tuning 
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Figure 7.4. (a) ROC curves computed for the coupled likelihood model when combined with 
top-down feature tuning effect. (b) ROC curves computed for the coupled likelihood model 
without any feature tuning effect. Each curve represents results for varying decision thresholds 
for a fixed iteration of the model. 
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Prior Coupling with Feature Tuning 
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Figure 7.5 (a) ROC curves computed for the coup1ed priors mode1 when combined with top­
down feature tuning effect. (b) ROC curves computed for the coup1ed priors mode1 without any 
feature tuning effect. Each curve represents results for varying decision thresho1ds for a fixed 
iteration of the model. 
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Chapter 8 

Conclusions and Future W ork 

8.1 Conclusions 

In this thesis, we have presented a strongly coupled data fusion architecture within a 

Bayesian framework that mode1s the associations between the scene and object 

classification mechanisms. Based on findings from the domains of neurophysiology and 

psychophysics there is adequate experimental evidence to suggest that the scene 

perception mechanism and the object perception mechanism in hum an vision do not 

function in isolation. There is experimental evidence which shows that scene-contextual 

constraints are available early enough and are robust enough to influence the object 

recognition mechanism, also rapid recognition of familiar objects influences the scene 

recognition mechanism. These experimental results imply the presence of a bidirectional 

flow of information between the scene and the object recognition mechanisms, while 

contradicting a strictly hierarchical relationship between the two processes in any order. 

These findings have motivated us to develop an architecture that can give a 

computational account of how such a relationship is possible between the object 

classification and the scene classification processes. The most important characteristic of 

the architecture proposed in this thesis is that it avoids a hierarchical relationship 

between the two processes, so that each of the processes can function independently in 

case of lack of feedback from the other process. A feedback channel is provided between 

the two processes so that as soon as any of the two processes extracts any information 
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about the identity of the scene or the identity of the objects present in the scene, this 

information becomes available to the other process. 

Our proposed architecture is derived from Clark and Yuille's [14] work. In their 

work they present a general architecture for strongly-coupled data fusion of separate 

sensory information processing modules, with the purpose of regularizing the ill-posed 

problem involved with each sensory information processing task. We have used this 

general structure and have adapted it to the specific problem of the strong coupling of 

two modules which are specialized in the scene classification and the object 

classification tasks. The strong coupling of the two modules provide additional 

constraints for each module's solution process based on the information obtained from 

the independent process of the other module. The Bayesian approach taken for solving 

the tasks assigned to each module has the advantage of providing a suitable form for 

embedding constraints either in the likelihood models or the prior models of the 

modules' solution processes. In this thesis we have presented novel schemes for 

modifying the Bayesian solutions for the scene and object classification tasks which 

allow data fusion between the two modules based on the constraining of the priors or the 

likelihoods. 

We have implemented the two proposed models and tested the model functions 

usmg a data base of natural images created for this purpose. We have presented 

examples of the model outputs for images of different scene categories which illustrate 

how the feedback between the two modules can improve the initial scene classification 

results obtained from the uncoupled scene module. The ROC curves plotted for the 

likelihood coupling and the prior coupling mode1s show that the scene classification 
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perfonnance improves significantly in both models as a result of the strong coupling of 

the scene and object modules. The shapes of the autocorrelation plots obtained from both 

models' outputs demonstrate the predictability of the two models' processes. We have 

also tested the robustness of the two models to variations to the input test images such as 

added noise. ROC curves depicting the scene classification perfonnance of the two 

models also show that the likelihood coupling model achieves a higher detection rate 

compared to the prior coupling model. We have also computed the average rise times of 

the models' outputs as a measure of comparing the speed of the two models. The results 

show that the likelihood coupling model outputs have a shorter rise time. Based on these 

experimental findings one can conclude that imposing constrains on the likelihood 

models provide better solutions to the scene classification problems compared to 

imposing constraints on the prior models. This result is compatible with the general 

concept that the prior models represent smoother functions compared to the likelihood 

models. Imposing constraints on the likelihood models, which are more sensitive 

functions compared to the prior models, improves the Bayesian solution more than 

imposing constraints on prior models, which are smoother, slower varying functions. 

We have also proposed an attentional feature modulation scheme, which consists 

of tuning the input image responses to the bank of Gabor filters based on the scene class 

probabilities estimated by the model and the energy profiles of the Gabor filters for 

different scene categories. Experimental results based on combining the attentional 

feature tuning scheme with the likelihood coupling and the prior coupling methods show 

a significant improvement in the scene classification perfonnances ofboth models. 
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The question of coupling the object classification process and the scene 

classification process has been addressed by other researchers in the field of machine 

leaming such as Murphy et al [65]. The approach taken by these researchers is to 

combine the tasks of scene classification and object presence detection using a tree­

structural graphical model, where the message passing runs first bottom-up (objects to 

scenes) and then top-down (scenes to objects). The graphical model encodes a 

conditional joint probability density model of the scene class and the object classes 

present in the scene as constrained by the global contextual features. Our approach to 

combining the scene classification and the object classification tasks differ from this 

approach in a fundamental way. Our main goal in developing the proposed architecture 

was its biological relevance, and not necessarily building a model for efficient scene or 

object classification. Therefore, we imposed certain constraints to our model, such as 

avoiding a hierarchical relationship between the object and scene classification modules, 

in order to develop a computational scheme which would explain the relationship 

between the scene and object recognition process in human visual system based on 

psychophysical findings. 

8.2 Future Work 

Our main challenge in developing a model where the scene processing and the object 

processing modules would interact, was to find a way to combine results from local and 

global sources of information. There are three types of local information produced by the 

object processing module, the identity of the objects, the location of the objects, and the 

scale of the objects. In the present implementation of the model the local information 
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extracted about the identities of the objects are combined with each other and interact 

with the global source of information, but we make no use of the objects' locations and 

scales, while both the scales of the objects and their locations provide strong constraints 

for the scene classification problem. Therefore, the proposed model can be enhanced by 

modifying the present formulation in order to include scales and locations of the objects 

as part of the information passed between the modules. 

Our present method of identifying objects in a scene is based on sliding a 

detector over the whole scene and classifying the patches at each location and scale. We 

can improve the speed and the accuracy of our object classification module by reducing 

the search space for objects. This can be implemented either by using prior constraints 

from the scene classes inferred from the scene classification module. Scene classes 

provide strong constraints on the locations where certain object classes may be found. 

We can also reduce the search space for the objects by using an attentional scheme 

which would highlight the most conspicuous locations of the scene. This may provide a 

way to reduce the amount of irrelevant information processed and to focus on the most 

informative or the most interesting locations of the scene. Such a scheme would also be 

closer to how humans fixate on different locations in a scene, rather than covering the 

whole scene with a pre-assigned order. 

What we consider a very challenging and interesting issue to be addressed in 

future work is the issue of moving from a highly supervised model, such as the model 

presented in this thesis, to an unsupervised model, where new scene and object 

categories can be leamed from the data. Also the choice of levels of abstractions for 

scene and object classes in a supervised model is a challenging decision. While 
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designing the experiments for the implementation of our model we had to deal with the 

problem of choosing appropriate levels of abstraction for the scene and object categories, 

in order to allow useful information being produced for the use of the other model. 

Changing the levels of abstraction from basic level categories such as the ones we have 

used in our experiments to more general or finer discrimination categories may involve 

modifications to the proposed model which has to be investigated further. 
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