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ABSTRACT 

This thesis addresses two problems that have applications in evolution and 

phylogenetics: (i) estimating and accounting for evolutionary rate heterogeneity 

in a phylogenetic context (Chapters 2 and 3); (ii) detecting synonymous selection 

upon a set of codons (Chapter 4). 

Chapter 2 presents a fast algorithm (DistR) to estimate genejprotein evo­

lutionary rates based on pairwise distances between pairs of taxa derived from 

genejprotein sequence data. Simulation studies indicate that this algorithm ac­

curately estimates rates and is robust to missing data. Moreover, by including 

evolutionary rates estimated by the DistR algorithm as addition al parameters into 

a phylogenetic model, a significantly improved fit over the concatenated model is 

obtained as measured by the Akaike Information Criterion (AIC). 

However, allowing every genejprotein to have its own evolutionary rate -

termed the n-parameter approach - is only one method of accounting for gene 

rate heterogeneity in phylogenetic inference. Under the a-parameter approach, a 

r distribution is fit to the gene rates in or der to account for rate heterogeneity, 

a method that is much slower than the n-parameter approach. Comparison of 

the n-parameter to the a-parameter approaches (Chapter 3) indicates that the 

n-parameter method provides a better fit over the concatenated model than the 

a-parameter approach. Interestingly, improved model fit over the concatenated 

model is highly correlated with the presence of a gene that has a slow relative rate. 
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Chapter 4 addresses the question of detecting synonymous selection on 

sets of codons using parametric codon models. Parametric codon models are 

used to simulate data under the null hypothesis that there is no synonymous 

selection on a particular codon; codons that have unexpected synonymous usage 

in empirical data, compared to the null distribution, are classified as Highly 

Selected Codons (HSCs). Two different data sets are analyzed to identify HSCs: 

nuclear genes of various Saccharomyces species that are well-known to undergo 

translational selection; mitochondrial genes of several Reclinomonas species that 

are highly A+T biased. Eleven Saccharomyces codons are determined to be under 

synonymous selection (HSCs). Nine of these codons were previously identified 

as undergoing translational selection. Similarly, 10 Reclinomonas codons are 

identified as undergoing synonymous selection. Comparison to traditional non­

parametric approaches shows that these methods do not identify any Reclinomonas 

codons as under synonymous selection due to the high A + T bias of the genes. 
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ABRÉGÉ 

Cette thèse pose deux problems qui ont des applications liées à l'évolution et 

la phylogénétique: (i) l'estimation et la prise en compte de l'hétérogénéité du taux 

d'évolution dans un contexe phylogénétique (Chapitres 2 et 3) ; (ii) la détection de 

la sélection synonyme parmi un ensemble de codons (Chapitre 4). 

Le Chapitre 2 présente un algorithme rapide (DistR) pour estimer le taux 

d'évolution d'un gène ou d'une protéine basé sur les distances entre les paires de 

taxa dérivé de données de séquence gène ou protéine. Des études de simulations 

indiquent que cet algorithme estime correctement les taux et qu'il est robuste 

vis-à-vis des données manquantes. De plus, en incluant les taux d'évolution estimés 

par l'algorithme DistR comme des paramètres additionnels dans un modèle 

phylogénétique, une amélioration significative de l'ajustement par rapport au 

modèle concaténé est obtenu selon le Critère de l'Information d'Akaike (Akaike 

Information Criterion (AIC)). 

Une méthode permettant de prendre en compte l'hétérogénéité du taux 

d'évolution des gènes lors de l'inférence phylogénétique consiste ci permettre 

à chaque gène d'avoir son propre taux d'évolution. Cette méthode est appelée 

approache ci n-paramètres. Une autre méthode qui est plus lente que l'approche 

ci n-paramètres est l'approche ci a-paramètres. Avec cette dernière approche, une 

distribution-f est ajustée aux taux d'évolution génétique pour prendre en compte 

l'hétérogénéité de ces taux. 
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La comparaison entre ces deux approches (Chapitre 3) indique que la méthode 

a n-paramètres donne un meilleur ajustement que le modèle concatené. Il est 

intéressant de noter qu'un meilleur ajustement de ces modèles comparé au modèle 

concatené est très corrélé a la présence d'un gène au taux relatif lent. 

Le Chapitre 4 aborde la question de la détection de sélection synonyme 

dans des groupes de codons utilisant les modèles paramétriques du codon. Les 

modèles paramétriques du codon sont utilisés pour simuler les informations selon 

l'hypothèse nulle stipulant qu'il n'y a pas de sélection synonyme sur un codon en 

particulier. Les codons qui ont une utilisation synonyme extreme selon des données 

empiriques sont classifiés parmi les codons hautement sélectionnés (HSCs). 

Deux groupes de données sont analysés pour identifier les codons HSCs : 

les gènes nucléaires de diverses espèces de Saccharomyces pour la sélection de la 

traduction et les gènes des mitochondries de diverses espèces de Reclinomonas, 

qui sont hautement biaisés A+T. Onze codons de Saccharomyces ont été identifies 

comme étant suject a la sélection synonyme (HSCs). Parmi ces codons, neuf ont 

été identifis comme 'etant suject a la sélection de la traduction. 

De la même façon, dix codons de Reclinomonas subissent la sélection sy­

nonyme. La comparaison de l'approche traditionnelle non-paramétrique montre 

que ces méthodes n'identifient pas de codon sous la sélection synonyme due à 

l'important biais A + T des gènes. 
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Chapter 1 

Introd uction 

1.1 CHARLES DARWIN ON NATURAL SELECTION 

'Let it borne in mind how infinitely complex and close-fitting are the mutual 

relations of aH organic beings to each other and to their physical conditions of 

life. Can it, then, be thought improbable, seeing that variations useful to man 

have undoubtedly occurred, that other variations useful in sorne way to each being 

in the great and complex battle of life, should sometimes occur in the course of 

thousands of generations?' 

Charles Darwin, The Origin of Species, 1859 

1.2 OUTLINE 

Evolution is a fundamental biological theory which posits that aH species are 

related through common descent (Darwin, 1859); molecular evolution assumes that 

these relationships can be elucidated through analysis of data at the molecular 

level. Such relationships are represented by a phylogeny (or tree) which can be 

inferred (among other techniques) using maximum likelihood phylogenetic models 

of evolution. This thesis investigates these models in two contexts. The first 
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context addresses improving current models to account for fundamental biological 

processes. The second context addresses using such models to determine if certain 

biological processes violate assumptions of neutral evolution. 

This chapter provides a detailed introduction to two key areas that are neces­

sary to understand this thesis: (i) a biological background including assumptions 

behind molecular evolution; (ii) approaches to phylogenetic inference including 

parsimony, neighbour joining, maximum likelihood and Bayesian statistics. Finally 

a short introduction of each future chapter is presented. 

1.3 GENETICS AND EVOLUTION 

1.3.1 DNA, Amino Acids and the Genetic Code 

DNA (deoxyribonucleic acid) stores all genetic information. There are four 

chemical building blocks in DNA: Adenine (A), Cytosine (C), Guanine (G) and 

Thymine (T). Cytosine and Thymine are pyrimidines (denoted Y); Guanine and 

Adenine are purines (denoted R). Each of these chemical structures bonds to 

a sugar (ribose) and a phosphate to form a nucleotide. Single-stranded DNA is 

formed by covalent bonding of the sugar in one nucleotide, to the phosphate in 

another, to form a sugar phosphate backbone. Double-stranded DNA forms through 

hydrogen bonding of two strands of single-stranded DNA. Hydrogen bonds are 

more likely to form, and are stronger between two sets of nucleotides: A-T and 

C-G (Voet et al., 1999). 
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Nucleotide triplets (or codons) code for amino acids forming the standard 

genetic code (Table 1-2) (Voet et al., 1999). Amino acids are the building blocks 

of proteins which perform important structuraljfunctional roles in the cell. There 

are twenty commonly used amino acids in most genetic systems. Both the three 

and one let ter abbreviations are given in Table 1-2. Because there are 64 possible 

codons, there is redundancy built into the genetic code. For example, the amino 

acid valine (V or Val, Table 1-2) has four codons GT(YJR). Here YJR indicates that 

either a purine or pyrimidine is allowed in the third codon position and the codon 

will still code for valine. Because most amino acids (except methionine (M) and 

tryptophan (W)) have more than one codon, the genetic code is degenerate. In 

general, the third position in the codon is either two-fold or four-fold degenerate. 

Thus, either two or four different nucleotides are allowed respectively, in the third 

codon position, without affecting the amino acid. Because ami no acids are coded 

for by three nucleotides, there are three possible reading frames for any genetic 

sequence. A reading frame that begins with a start codon, and stops with an end 

codon is an open reading frame. An open reading frame might code for an RN A or 

prote in (Voet et al., 1999). 

1.3.2 Mutation 

There are four types of mutation that affect genes: substitution, insertion, 

deletion and inversion (Nei and Kumar, 2000). Substitution is the replacement 

of one nUcleotide with another. There are two types of substitution, transitions 

(purine --t purine and pyrimidine --t pyrimidine) and transversions (purine --t 
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T C A G 
TTT Phe [F] TCT Ser [S] TAT Tyr [Y] TGT Cys [e] T 

T 
TTC Phe [F] TCC Ser [S] TAC Tyr [Y] TGC Cys [e] C 
TTA Leu [L] TCA Ser [S] TAA Ter [end] TGA Ter [end] A 
TTG Leu [L] TCG Ser [S] TAG Ter [end] TGG Thp [W] G 
CTT Leu [L] CCT Pro [Pl CAT His [H] CGT Arg [R] T 

C 
CTC Leu [L] CCC Pro [Pl CAC His [H] CGC Arg [R] C 
CTA Leu [L] CCA Pro [Pl CAA GIn [Q] CGA Arg [R] A 
CTG Leu [L] CCG Pro [Pl CAG GIn [Q] CGG Arg [R] G 
ATT Ile [1] ACT Thr [T] AAT Asn [N] AGT Ser [S] T 

A 
ATC Ile [1] ACC Thr [T] AAC Asn [N] AGC Ser [S] C 
ATA Ile [1] ACA Thr [T] AAA Lys [K] AGA Arg [R] A 
ATG Met [M] ACG Thr [T] AAG Lys [K] AGG Arg [R] G 
GTT Val [V] GCT Ala [A] GAT Asp [D] GGT Gly [G] T 

G 
GTC Val [V] GCC Ala [A] GAC Asp [D] GGC Gly [G] C 
GTA Val [V] GCA Ala [A] GAA Glu [E] GGA Gly [G] A 
GTG Val [V] GCG Ala [A] GAG Glu [E] GGG Gly [G] G 

Table 1-2: The standard genetic code. 
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pyrimidine and vice versa). The former type of substitution is more common (Voet 

et al., 1999). Substitution mutations affect a single codon. A change in the codon 

that leads to a change at the amino acid level is a non~synonymous mutation. One 

that do es not le ad to a change at the amino acid level is a synonymous mutation 

(Voet et al., 1999). 

Insertion and deletion consist respectively of the addition or removal of (a) nu­

cleotide(s) from the sequence. These mutations can lead to a change in the reading 

frame of the gene if the insertion/ deletion is not a multiple of three nucleotides. 

In this case the codons downstream (after) the insertion/ deletion are all shifted 

potentially leading to a protein that is non-functional. Indeed, insertions and 

deletions are more rarely fixed in the population (than substitutions) over time 

because they often affect more than one codon. Inversion usually affects the entire 

gene. When genes are inverted the double-stranded DNA is eut on both sides of 

the gene (or genes). The gene is then reinserted into the DNA so that it is reads 

in the opposite direction. Inversions are also mueh rarer than substitutions (Voet 

et al., 1999; Nei and Kumar, 2000). 

1.3.3 Selection 

Selection at the molecular level is defined in terms of the the rates of syn­

onymous and non-synonymous substitution at a partieular site (a codon that is 

common in many species). If the rate of non-synonymous substitution is signif­

icantly greater than the rate of synonymous substitution, then the site is under 

positive selection (Nei and Kumar, 2000). Thus, changes away from the current 
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amino acid are selected for in order to improve the fitness (functionj structure) of 

the protein (and henee the organism). If the rate of synonymous substitution is 

significantly greater than the rate of non-synonymous substitution, then the site 

is under purifying selection. This means that the current ami no acid is strongly 

selected for in order to retain the current fitness (i.e. structurejfunction) of the 

protein. Henee there is selection against mutation away from the current amino 

acid. If the non-synonymous and synonymous rates are equal then there is no 

apparent selection acting on the site. 

1.3.4 The theory of neutral evolution 

The theory of neutral evolution posits that the majority of changes within 

a genome are selectively neutral, in that they do not affect the fitness of the 

organism. The essential basis of the theory is that most mutations are selectively 

neutral and accumulate randomly over time, regardless of the fact that they 

present no improved fitness to the organism (Kimura, 1968; King and Jukes, 

1969; Kimura, 1983). Because these selectively neutral mutations are fixed in 

the population, it is possible to distinguish between different species based on 

these neutral mutations. Species which are more closely related will have fewer 

mutations than those that are distantly related. These similarities and differences 

at a molecular level allow for the inferenee of evolutionary relationships between 

species (Nei and Kumar, 2000; Felsenstein, 2004a). 
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1.4 PHYLOGENETIC INFERENCE 

The goal of phylogenetic inference is to determine a tree that best explains the 

evolutionary relationships between species. Such relationships can be conveniently 

represented by a tree or phylogeny, with internaI nodes denoting hypothetical 

ancestors of current species. 

Phylogenetic analysis begins with an alignment of sequence data from various 

species of interest. The data consists of orthologous gene or protein sequences. 

These are derived from the same ancestral genejprotein and have the same 

function in each species. It is important to avoid the use of pamlogs and xenologs. 

The use of either types of sequence can lead to error in the phylogenetic inference 

(Felsenstein, 2004a). Paralogs are gene sequences that result from a duplication 

event rather than a speciation event. The use of a paralog can occur as follows: 

assume there are two paralogous genes in all species, gene A and gene B. The goal 

is to analyze gene A in all species: in one species gene A is selected for analysis, 

in another species gene B is selected for analysis (because it is incorrectly inferred 

to be ortholagous to gene A). Thus, the evolutionary history of gene A is not 

properly represented. Xenologs are gene sequences that are acquired by horizontal 

gene transfer (the transfer of a gene from one species ta another), and thus do not 

represent the evolutionary history of the species under analysis (Voet et al., 1999). 

Orthologous sequences are aligned using standard dynamic programming 

techniques (Needleman and Wunsch, 1970; Smith and Waterman, 1981; Thompson 

et al., 1994). The result is a set of sites which are assurned to share a cornrnon 

evolutionary history (Figure 1-1). The sites in Figure 1-1 have no gap states. 
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Site , 
... 

Species S1 ACGGGCCGro\ACG 

Species S2 ACCCGCGGA::.rATC 

Species S3 TGCGCGCC:-T:TATG 

Species S4 TCGCCGC~1.ATAT 

Figure 1-1: Example of a DNA alignment. The alignment is made of many sites, one 
of which is depicted by an arrow. The site is made up of many states, one from each 
species. There are four states (known as nucleotides) in DNA: adenine, A; cytosine, C; 
guanine, G; thymine, T. 

Gaps are introduced to account for possible insertionjdeletion mutations. However, 

they often represent uncertainty in the alignment, or areas where the alignment is 

bad. Thus, it is common to curate the alignment by removing (eliminating) sites 

with many gap states before phylogenetic analysis. This can be done by hand or 

using a program such as Gblocks (Castresana, 2000). 

1.4.1 Parsimony 

The goal of the parsimony approach to phylogenetic inference is to obtain 

a tree that minimizes the number of substitutions over aH sites over aH possible 

groupings of species (Fitch, 1977; Felsenstein, 2004a). This concept of maximum 

parsimony was first introduced by Fitch (Fitch, 1971, 1977). For example, for the 

high-lighted site in Figure 1-1, a most parsimonious tree can be seen in Figure 

1-2a. When species 81 and species 82 are grouped into a clade there is no change 
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of state necessary between these two species and the common ancestor Al. The 

same is true for species 83 and species 84. The only state change necessary is 

between the two common ancestors Al and A2. Conversely, Figure 1-2b shows a 

less parsimonious grouping of the species. When species 81 and 83 are grouped 

together at least one mutation is necessary between the common ancestor Al and 

species 81 or 83. The same is true for species 82 and 84 and common ancestor A2. 

Here the most parsimonious explanation of this grouping of the species is that the 

two ancestors Al and A2 both had the same state derived from the ancestor at the 

root of the tree. 

Maximum parsimony has the advantage that it is relatively fast to compute, 

especially when compared to model-based approaches to phylogenetic inference. 

However, the problem of finding the maximum parsimony tree is NP-complete 

(Foulds and Graham, 1982). Furthermore, parsimony does not converge to the 

correct tree in all cases (i.e. it is inconsistent) (Felsenstein, 1978, 2004a). Long 

branch attraction (LBA) occurs when two long branches of a tree, which have 

the same state by chance or convergent mutation, rather than common descent, 

incorrectly resolve into a phylogenetic grouping (or clade, Figure 1-3). If LBA 

occurs between two or more species (or clades) for a number sites, the resultant 

most parsimonious tree topology will be incorrect (Felsenstein, 1978). 

Figure 1-3 demonstrates how LBA can occur under parsimony. The true 

relationships between the species are given in Figure 1-3a, and the inferred most 

parsimonious relationships in Figure 1-3b. In Figure 1-3a both ancestral nodes 

have the nucleotide A. Due to the long length of time during which change can 
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(a) 

A 

81 

(b) 

A 

81 

One Mutation 

A 

A T 

82 83 

Two Mutations 

A 

T A 

83 82 

T 

84 

T 

84 

Figure 1-2: An example of (a) a most parsimonious and (b) less parsimonious grouping 
of species S 1-S4 based upon the high-lighted site in Figure 1-1. 

occur, both species 81 and 82 have nucleotide C. When parsimony is applied, 

species 81 and 82 are grouped incorrectly into a single clade (Figure 1-3b). This 

problem of inferring the incorrect tree topology can occur even with large amounts 

of sequence data, which is why parsimony is inconsistent (Felsenstein, 1978, 

2004a). 
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(a) True Relationship - Two mutations 

S1 C C S2 

83 A A 84 

(b) Most Parsimonious Relationship - One Mutation 

S1 C 

A S4 

S2 C 

Figure 1~3: An example of how long branch attraction occurs between two species. (a) 
The species true relationships where species 81 and 82 with nucleotides C do not form a 
clade. (b) When parsimony is used to infer the relationships between species the mini­
mum number of mutations is one, where species 81 and 82 form a clade. 

1.4.2 Distance based methods - NJ and BIONJ 

Neighbour~joining (NJ) is a well~known approach to inferring phylogenetic 

trees. It is based upon inferring pairwise distances between species and using these 

distances to build a tree topology (Saitou and Nei, 1987). The algorithm proceeds 

by finding the minimum of a criterion C between all pairs of n taxa. Let dx,y 

represent the distance between species x and y in distance matrix D. The value of 

the criterion Cx,y is given as: 

Cx,y = (r - 2)dx,y - Sx - Sy 
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for Bk = I:~=1 dk,l and r the eurrent dimension of the distance matrix D. At the 

initial step of the algorithm r = n. Let the two taxa that minimize the value 

of Cx,y be i and j. These taxa are seleeted and joined together in the tree as 

'neighbours' by an ancestral node u (Figure 1-4). The taxa i and j are removed 

from the distance matrix D and the distances from u to aIl other taxa m in D are 

ealeulated as 
1 

du m = - (di m + dJ, m - di u - dJ, u) , 2' , , , 

where di,u = ~ (di,j + ~~=~5) and dj,u is ealeulated symmetrieally (Saitou and 

Nei, 1987; Gaseuel, 1997). Thus the number of pairwise distances in the matrix 

is redueed by one (r = r - 1). This procedure is repeated until aIl species are 

joined into a tree. In theory, the two species whieh minimize the distance eriterion 

will be most closely related to eaeh other. However, this is only true in practice 

if there are no parallel or baekward substitutions (mutations that oeeur but are 

unobserved) (Saitou and Nei, 1987). 

BIONJ is an extension of the NJ algorithm that attempts to minimize the 

sampling variance of the distance matrix D (Gaseuel, 1997). This is aehieved by 

ealculating the new distances du,m as (Gaseuel, 1997): 

The goal of the BIONJ algorithm is ta adjust the). parameter in arder to 

reduce the sampling variance (Gaseuel, 1997). The BIONJ algorithm finds an 
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r-.. 

'du m , ' 

1 , 

Figure 1-4: Example of how taxa are joined into clades using the NJ algorithm. Here 
taxa i and j minimize the criterion C. They are joined by an ancestral node u (solid 
Hnes). New distances from u to an other nodes mare calculated (dashed Hne) and an 
distances involving taxa i and j are removed from the distance matrix D. 

estimate of À that minimizes 

r r 

L Vu,k = Var[Àd· k + (1 - À)d· k - Àd· - (1 - À)d· 1 t, J, t,U J,U 

k=l,k=lj,i k=l,k=li,j 
r 

L Var[Àdi,k + (1 - À)dj,kl 

k=l,k=li,j 

since the distances di,u and dj,u are considered to be constant (Gascuel, 1997). The 

estimate of À which minimizes this variance can be solved for analytically. Fur-

thermore, the variance and covariance of the distance estimates can be calculated 

easily for sequence data (e.g. Bulmer, 1991; Gascuel, 1997). 
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1.4.3 Maximum likelihood inference 

One of the major techniques employed to infer phylogenetic relationships 

between species is that of Maximum Likelihood (ML). In ML relationships between 

species are inferred based on sequence data by assuming an underlying model 

of substitution between states (e.g. nucleotides) in a site. The probability of a 

substitution occurring in an infinitesimal amount of time is computed based on the 

underlying frequencies of states in the alignment or database of alignments. These 

probabilities are up and down-weighted as appropriate, depending on different 

biological processes (Felsenstein, 1981b,a). 

For example, in DNA the probability of a change C+--+ T or A+--+ G is greater 

than (qT) +--+ (AIG). This is because C and Tare both pyrimidines, whereas 

A and Tare both purines. Changing states within a che mi cal group (called a 

transition) is favoured biologically over changes between chemical groups (called 

a transversion). This is accounted for by including a transition:transversion ratio 

(~~) in the D N A model. This is an unknown parameter that is estimated from the 

data. 

The goal of ML phylogenetic inference is to estimate the branch lengths, 

tree topology and parameters which maximize the likelihood of the data. The 

probability of a site is calculated under a given set of parameter values of the 

model. In mostly widely used models each site is assumed to evolve independently, 

thus the probability of the data given the model is simply the product of the 

site-wise probabilities. The set of parameter values that maximize the likelihood of 
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the data are assumed to best model the history of the biological data (Felsenstein, 

1981b,a). 

1.4.3.1 Probability of change along a bran ch 

The process of change from one state to another along a branch is described 

by a discrete Markov chain. Here the states correspond to nucleotides, amino acids 

or codons, depending upon the data of interest. For each state of the chain there 

is a probability of change to another state, and a probability of remaining in the 

current state. Under a discrete Markov chain the probability of being in state i at 

time t depends solely upon the previous state the chain was in (Ross, 2003). Thus, 

Pi,j = P(St = ilSt - 1 = j) = P(St = ilSt - 1 = j, St-2 = k, ... , So = l) 

Let the transition matrix that describes these probabilities be X. Therefore, 

for an m-state Markov chain with states labelled from 1, ... , m: 

X= 

Pm,l Pm,m 

From X we can obtain an n-step transition matrix as: xn = XX· .. X. 

The Markov chains used have two important properties: they are ergodic 

- if the Markov chain is run for an infinite length of time every state i in the 

chain is visited with non-zero probability 7ri and the chain is aperiodic; they are 

irreducible - it is possible to reach each state from every other state in the chain 
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(not necessarily in one change). Furthermore, if the condition of detailed balance 

holds - 1fj X j ,i = 1fiXi,j - then the Markov chain is time reversible (Ross, 2003). 

The ergodic property is particularly important because it means that there 

is a stationary probability of being in state i denoted 1fi' Given these stationary 

probabilities it is possible to calculate the probability of starting in a particular 

state i and ending in state j after k time points (which correspond to k state 

transitions) as: 

P(Sk = j, k time points, So = i) = P(Sk = j, k time points ISo = i)P(So = i) 

=R~. 
~,J 

This discrete time Markov chain describes a process in which the time points 

are constant and known. However, in evolution, the changes from one state 

to another occur at different (non-constant) time intervals. To compute the 

probability of k time points under such a paradigm a Poisson distribution is used 

(Felsenstein, 1981b,a). Let K be the random variable describing the number of 

time points that have passed. Thus: 

K cv Po(p,t) 

(p,t) k 
and P(K = klp" t) = e-I.tt~ 

where p,t is the expected length of time between state changes. To calculate the 

probability of changing from state i at time 0 to state j at time t it is necessary 

to sum over the possible number of k state transitions (time points), multiplied by 
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the probability of having that number of transitions between state i and state j. 

Define P(t) as the probability of change from one state to the next in infinitesimal 

time interval t. Thus, 

= e(R-I)/Lt 

(1.1 ) 

(1.2) 

(1.3) 

(1.4) 

where 1 is the identity matrix. Setting Q = (R - I)J1 gives P(t) = eQt
, where Q 

is the instantaneous rate matrix of change (Felsenstein, 19S1b,a). The Q matrix 

describes the probability of change from one state to another in an infinitesimal 

amount of time (Felsenstein, 19S1b,a). 

1.4.3.2 DNA models 

The general time reversible (GTR) Q matrix for DNA sequences is given as: 

* aJ11re bJ11re CJ11rT 

aJ11rA * dJ11re eJ11rT 
Q= 

bJ11rA dJ11re * fJ11rT 

CJ11rA eJ11re fJ11re * 
where 1rA, 1re, 1re and 1rT are the equilibrium frequencies of the nucleotides, which 

are either set to ± or to the frequencies of the data un der analysis depending upon 
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r-
the model used. The diagonal elements (*) are set so that all the rows sum to 0 

(i.e. Qi,i = - Li~j Qi,j)' JL is a rate parameter that gives the expected number of 

changes per time unit t. In most cases JL = 1 (Felsenstein, 1981b,a, 2004a). The 

values a, ... , f are parameters estimated from the data that weight the probability 

of change from one nucleotide to another (away from the stationary frequencies) 

depending upon the nucleotides un der analysis. They are generally called rate 

parameters because they modify the instantaneous rate of change from one 

nucleotide to another (Felsenstein, 2004a). In the most complex model, the GTR 

model, there are 6 rate parameters a ~ f so that the process is still time reversible 

(i.e. 1fiQi,j = 1fjQj,i) (Tavaré, 1986). Also, it is required that ~1fiQi,i = -1 

reducing the number of rate parameters to five. 

Other DNA models are more restricted. For instance in the HKY model 

(Hasegawa et al., 1985) 

Q= 

Here K, is a rate parameter used to describe the difference in rates between 

transitions and transversions: 

Tn K,JL(1fe + 1fT + 1fA + 1fe) 

Tv 2JL( 1fA + 1fe + 1fe + 1fT) 
K, 

2 
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1.4.3.3 Protein models of evolution 

Protein substitution models have 20 different states (one for each amino acid) 

and the substitution rate multipliers Si,j are estimated empirically. Thus 

Q= 

for ami no acids 1, ... , 20 with equilibrium frequencies 7f1, ... , 7f20. Here Sl,k is set 

equal to Sk,l to make the Markov chain reversible (i.e. 7fiQi,j = 7fjQj.J The 

diagonal elements of Q are fixed so that the row values sum to O. The substitution 

rate parameters Sk,l are computed from a large number of substitutions in many 

proteins. 

Two popular amino acid substitution matrices include JTT and WAG (Jones 

et al., 1992; Whelan and Goldman, 2001). The substitution rates for the JTT 

model were calculated using parsimony based on the observed substitutions 

in a large globular protein database (Jones et al., 1992). However, this might 

underestimate the number of substitutions because parsimony assumes only one 

substitution along a particular branch (Jones et al., 1992; Whelan and Goldman, 

2001). Furthermore, the relative ratios of substitution as inferred by maximum 

parsimony are biased. The Q matrix may be biased as a result. 

The substitution rates for the WAG model were calculated using a maximum 

likelihood approach (Whelan and Goldman, 2001). The best fit of the model M 

(which here includes the WAG matrix) was obtained based on assuming that 
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the neighbour-joining tree with branch lengths estimated using the JTT + F 

model, will give a close to optimal solution for the tree. Thus, if the set of trees 

T for an protein families D are assumed to be known it is possible to calculate 

L(MIT, D) = ITprotein families i L(MITi, Di). Here Di is the data in protein family i 

and Ti is the tree for protein family i. Thus, the maximum likelihood estimate of 

Mis obtained over many protein families (Whelan and Goldman, 2001). 

1.4.3.4 Codon models 

Codon models of evolution are primarily used to estimate the non-synonymous 

to synonymous rate ratio (~~) of sites within a gene. One of the reasons they are 

not used to infer phylogenies is the large computational power needed to solve the 

standard equation P = eQt, where Q is a 6lx61 instantaneous rate matrix for the 

61 coding codons. In these models and their variants, the relative instantaneous 

substitution rate from codon i to codon j (i =1 j) is given by: 

o if i and j differ at two or three nucleotide positions 

7rj if i and j differ by one synonymous transversion 

if i and j differ by one synonymous transition 

WKj if i and j differ by one non-synonymous transversion 

W"'Kj if i and j differ by one non-synonymous transition 

where W is the rate of non-synonymous to synonymous substitution, '" is the rate 

of transitions to transversions and Kj is the equilibrium frequency of codon j (Yang 

and Nielsen, 2000). 
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Yang et al. proposed incorporation of site specifie values of w into this matrix 

(Yang et aL, 2000), allowing for the non-synonymous rate of substitution to differ 

across sites. Under the extension, the codon matrix is defined for a particular site 

h as q~) with w = w(h) (Yang et aL, 2000). If w(h) > 1 at site h then the site is 

undergoing positive selection. This means that for a particular site h, the rate 

of non-synonymous change is significantly greater than the rate of synonymous 

change according to the expectation under a neutral model of evolution. Neutral 

and purifying selection at site h are determined by w(h) = 1 and w(h) < 1 

respectively. The w(h) can be calculated based upon a distribution, (e.g Beta), thus 

reducing the number of parameters to be estimated (Yang and Nielsen, 2000). 

Only allowing non-synonymous rate change across sites makes the implicit 

assumption that any synonymous changes are selectively neutral. This assumption 

is removed by allowing for synonymous rates to vary across sites (Pond and Muse, 

2005). A distribution can be fit to synonymous rate across sites in the exact 

manner as for the distribution for non-synonymous rates across sites. However, the 

mean rate of synonymous substitution must be 1.0 in order to avoid identifiability 

problems (Pond and Muse, 2005) (where there is more than one set of parameter 

values that give the same probability for a particular model). 
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Setting W(h) = f3(h) below leads to the following instantaneous substitution 

matrix for site h: 

o if i and j differ at two or three nucleotide positions 

if i and j differ by one synonymous transversion 

(h) 
qij a(h) /'î/Trj if i and j differ by one synonymous transition 

f3(h)7rj if i and j differ by one non-synonymous transversion 

f3(h) /'î,7rj if i and j differ by one non-synonymous transition 

where (a(h), f3(h)) is a random vector calculated based upon a discretized bivariate 

distribution h parameterized by v. It is also possible to let a(h) and f3(h) to 

vary independently (Pond and Muse, 2005). This model is similar to a model 

that allows for unique non-synonymous and synonymous rates at each site 

(Massingham and Goldman, 2005), but does not over-parameterize the data. 

1.4.3.5 Obtaining maximum likelihood estimates of parameters 

The goal of maximum likelihood inference is to obtain estimates of the model 

parameters that maximize the probability of the data. For phylogenetic maximum 

likelihood inference the likelihood function is defined as: 

L(B, À, TIData) = P(DataIB, À, T) 
n 

= II P(DiI B, À, T) 
i=l 
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(' 
for tree T, braneh lengths À, and other model parameters (J. P(Dil(J, À, T) is 

ealculated by summing over all possible assignments of states to internaI nodes 

of the tree T, sinee the topology is assumed to be known. This summation can 

be ealculated in the time it takes to do a post-order traversaI of a tree, or O(n). 

U sing the notation of Felsenstein (Felsenstein, 2004a), denote Lii ) (s) as the 

likelihood of the data at site i given that node k has state s. This is ealculated as: 

where ta is the length of the braneh eonnecting node k with descendent node 

a and tb is the length of the braneh eonneeting node k with descendent node 

b. P(xls, t) = P(t)s,x is the probability that state s ehanged to state x in the 

first descendant lineage in time t. The likelihood at node k is the produet of the 

likelihood at subtrees a and b beeause eaeh braneh on the tree is assumed to be 

independent. 

Note that for speeies m at external no de e with state z it is necessary to 

define 

if state s at node e equals z 

otherwise 

Thus the likelihood of a site can be computed recursively, resulting in Ûi
) (s), 

the likelihood at the root r of the tree for state s. However, since the state 
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at the root is unknown, the overalllikelihood of the tree for site i is given as 

L(i) = L:statesx7fxL~i)(x). Note that this can be calculated for unrooted trees by 

assigning the root to one of the internaI nodes of the tree. 

1.4.3.6 Accounting for site rate heterogeneity in DNA and protein models 

Under DNA and protein evolutionary models it is neeessary to account 

for the fact that different sites undergo different rates of evolution in or der to 

prevent model violation problems (Yang, 1996; Waddell and Steel, 1997; Pupko 

et al., 2002b). Under a model of evolution that does not account for site rate 

heterogeneity, branch lengths of the tree are maximized over aH sites. However, 

sorne sites will evolve slowly with little to no change over long periods of time, 

whereas other sites will evolve more quickly with many changes. Thus, site rate 

parameters that allow sorne sites to have a fast rate of evolution and others a slow 

rate of evolution should be incorporated into the model. Sinee the site is evolving 

fasterjslower, aIl branch lengths are multiplied by the rate parameter causing 

the probability of change over the rate corrected branch lengths to increase or 

decrease depending on the actual rate of evolution of the site. Under such a model 

of evolution, the probability of change from state s to state x over time t at rate R 

lS: 

P(tR)s,x = eQRt 
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Gamma model jor site rate heterogeneity 

Calculating a rate parameter R for every site s leads to the problem of 

infinite parameterization; the model has more parameters than the amount of data 

available to infer the maximum parameter estimates, and thus will over-fit the 

data. One solution is to assume that the rates R are are drawn from sorne known 

distribution j, with parameters 1/, and integrate out over the possible values of 

R. In this case, the number of parameters added to the model is equal to the 

dimension of 1/. 

Yang proposed that j be a Gamma distribution, which normally has two 

parameters a and f3 (Yang, 1993, 1994). However, due to the constraint that the 

average rate of substitution must be 1.0 (in order to avoid non-identifiability 

problems) (3 is constrained so that the mean of the distribution is one. This is 

achieved with the Gamma distribution by setting f3 = ~. Thus 

P(DataIB, À, T, a) = 100 

P(DataIB, À, T, R)j(Rla)dR 

However, computing the likelihood for all possible rate values drawn from a 

continuous distribution is too time intensive. Thus Yang proposed approximating 

the continuous Gamma distribution with a discrete approximation that has C 

equiprobable rate categories, RI, ... , Re based upon the Gamma distribution 
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(Yang, 1994). Under this approximation the likelihood is calculated as: 

P(DataIO, À, T, a) = l°Op(DataIO, À, T, R)f(Rla)dR 

c 1 
~ L P(DataIO, À, T, a, Ri) C 

i=l 

Invariable Sites Mixture M odel 

Sites that are invariant (with no mutation) across a tree cause problems with 

phylogenetic inference by misleading genetic divergence estimates (Reeves, 1992; 

Churchill et al., 1992). However, sorne sites are invariant due to chance and other 

cannot change (termed 'invariable' sites). In a statistical framework that accounts 

for invariant sites the likelihood is calculated as: 

P(DataIO, a, À, T, 'ljJ) = 'ljJP(DataIO, a, À, T, invariant) 

+ (1 - 'ljJ)P(DataIO, a, À, T, variant) 

where 'ljJ is the proportion of invariable sites. Variant and invariant are in-

dicator variables as to whether or not the site has a mutation. When the 

site is variant P(DataIO, a, À, invariant) = O. When the site is invariant 

P(DataIO, a, À, T, invariant) = 1fs where s is the character state of the invari­

ant site. This is the probability that the site is invariant due to chance (Reeves, 

1992; Churchill et al., 1992; Swofford et al., 1996) 

P(DataIO, a, À, T, variant) = P(DataIO, a, À, T) regardless of whether or not 

the site is variant. (Reeves, 1992; Churchill et al., 1992; Swofford et al., 1996). 
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This is due to the fact that even if a site is invariant, it is possible that there were 

substitutions are unobserved. 

1.4.4 Bayesian phylogenetic inference 

In Bayesian statistics the goal is to obtain a posterior distribution over the 

parameters of interest, rather than maximizing the probability of the data given 

the model (as in frequentist statistics). Within Bayesian inference the likelihood 

of the data is calculated, however it is weighted by the prior probability of the 

parameters of interest, and normalized by the probability of the data. 

In Bayesian phylogenetic inference, the goal is to obtain the posterior dis-

tribution of trees. Let 0 = (T, À, 8) for tree T with branch lengths À and model 

parameters 8. The posterior distribution over an parameters is calculated as 

(Larget and Simon, 1999; Huelsenbeck and Ronquist, 2001; Huelsenbeck et al., 

2002): 

P(8 \ TID ) = P(DataI8, À, T)P(8, À, T) 
,A, ata P(Data) 

P(DataI8, À, T)P(8, À, T) 
Jo P(DataI8, À, T')P(8, À, T')dO 

(1.5) 

Furthermore, in order to obtain the posterior distribution of the tree T it is 

necessary ta integrate over branch lengths À and model parameters 8 (Larget and 
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r--.. 
Simon, 1999; Huelsenbeck and Ronquist, 2001; Huelsenbeck et al., 2002). Thus, 

JÀ Je P(O, À, TIData)P(O, À, T)dOdÀ 
P(TIData) = Jo P(DataIO, À, T')P(O, À, T')dO, 

JÀ Je P(O, À, TIData)P(O, À, T)dOdÀ 

LtreesT' JÀ Je P(DataIO, À, T')P(O, À, T')dOdÀ 

However, it is often quite difficult to calculate these integrals in closed form. 

One solution is to sample the posterior distribution of N, and sum over the 

sampled values of À, ° and T'. Such sampling is achieved using Markov Chain 

Monte Carlo (MCMC). The Metropolis algorithm is a well known technique to 

sample from the posterior distribution of the parameters. The algorithm starts at 

initial estimates for 0, of 0,0. At time t a candidate value of 0,* is proposed and 

is accepted with probability min(r, 1) where r = ~~~~~f;;!~:). The proposed value 

of 0,* is based upon a jumping distribution Jt(o'* 1O,t-l) which is symmetric. If a 

uniform random variable on [0,1] is less than r then the new state of the chain is 

accepted, otherwise it is rejected. Thus, if the probability of the parameters given 

the data is worse at 0,* than nt-l, the chain moves to the proposed state with 

probability r. Otherwise the chain moves to the new estimates with probability 

one. This is repeated until the sample size of 0, is sufficiently large. 

The Metropolis algorithm samples from the posterior distribution of 0,. For 

ex ample , as shown in (Gelman et al., 2000) con si der two samples 1 and 2 of 0,. 

Assume that P(o'lIData) > P(0'2IData). Now the probability of a transition from 
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which has acceptance probability of one, since r = ~ig~I~~!~\ > 1. Thus, with 

probability one Dl has a better probability under the posterior distribution. 

Furthermore, the probability of a transition from Dl to D2 is 

P(Dt 
= D2' Dt

-
l 

= Dl) = P(DI IData)Jt (D2IDI)r 

P(D2IData) 
= P(DI IData)Jt (D2IDI) P(DIIData) 

= Jt(D2IDdP(D2IData) 

This is true because the jumping distribution J is symmetric. Thus the 

probability of a transition from sample 1 to sample 2 is the same as the probability 

of transition of sample 2 to sample 1. Because J is symmetric Dl, D2 have the 

same marginal distribution of P(DIData). Thus sampling according to the 

Metropolis algorithm samples from the posterior distribution P(DIData). 

The Metropolis-Hastings algorithm is a generalization of the Metropolis 

algorithm that allows for non-symmetric jumping distributions. Because of this 

the ratio r must be modified in or der to retain the Markov property of the chain. 

P(D*IData)j Jt(D*lnt- l) r = --'---'-:------'-'----'----'-----,----'-
P(Dt-IIData)j Jt(Dt-IID*) 
P(D* IData)Jt(Dt-IID*) 

P(Dt-IIData)Jt(D*IDt-l) 

The probability of the next sample value of D* given the data, is weighted by 

the probability of moving from the proposed sample back to the current sample 
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under the jumping distribution J. The probability of the current sample value 

nt-1 is weighted by the probability of moving from the current sample to the 

proposed sample. This weighting allows for the Markov property of the chain to 

be retained when sampling (i.e. time reversible, ergodic, irreducible). The ratio of 

~:ig:~~lo:j is known as the Hastings ratio, and is set to one under the Metropolis 

algorithm (because J is symmetric). 

One of the nice properties of the Metropolis (Metropolis-Hastings) algorithm 

is that P(Data) does not need to be calculated. This is because P(Data) cancels 

out when r is calculated: 

P(D* IData)Jt(nt-1ID*) 
r = -,------'-,---,--------:---,-

P(Dt-lIData)Jt(D*IDt-l) 
P(DataIO*)P(O*) J (nt-1ID*) 

P(Data) t 

P(DataIOt- 1 )P(ot-l) J (D*IDt-l) 
P(Data) t 

P(DataID*)P(D*)Jt(nt-1ID*) 
P(DataIDt-l )P(W-l )Jt(D* IDt-l) 

Thus, it is only necessary to compute the likelihood of the data given the 

parameter estimates (P(DataID)), the prior over D, the Hastings ratio (if J is not 

symmetric) and a uniform random variable on [0,1], in order to sample from D. 

1.5 TREE SUPPORT 

Within a frequentist paradigm, the goal is to find the maximum likelihood 

parameter estimates for the data, under the distribution presumed to describe the 

data f. If f is an unknown distribution, or the maximum likelihood estimator is 

30 



intractable, it is not possible to mathematically obtain a variance on the parameter 

estimates. 

One approach to determining the uncertainty of the estimates is the bootstrap 

(Efron, 1979; Felsenstein, 2004a). Under the bootstrap the data are assumed to 

be identically and independently distributed according to the true underlying 

distribution of the data. Thus, when the data are sufficiently large, the empirical 

distribution j is an estimator of the true distribution f (Efron, 1979; Felsenstein, 

2004a). Under this assumption, a new data set can be drawn (with replacement) 

from the empirical distribution j in order to obtain new estimates of the param­

eters of interest. From these estimates it is possible to obtain a variance on the 

parameter estimates. 

Bootstrap is a commonly used method of inferring tree support. The sites 

in the alignment are assumed to be IID, and are sampled with replacement 

to obtain new data sets that are assumed to be drawn from the underlying 

distribution that describes sequence data. Tree inference (non-Bayesian, i.e. 

ML or parsimony) is applied to the resampled data sets in order to infer the 

variance on the tree topology supported by the data. The internaI support for each 

branching is obtained based on the proportion of times the branching is seen across 

an bootstrap data sets. In a Bayesian context it is not necessary to calculate 

bootstrap estimates of the variance sinee these estimates can be obtained from the 

posterior MCMC sample of parameter estimates. 
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1.6 TREE SEARCH HEURISTICS 

1.6.1 NNI and SPR 

Two common tree search heuristics include nearest-neighbour interchange 

(NNI) and subtree prune and regraft (SPR). The former approach exchanges 

subtrees that are ancestors of two internaI nodes that are attached directly by 

an edge (Felsenstein, 2004a); the latter removes a subtree from an internaI node 

and joins it to another internaI node of the tree (Felsenstein, 2004a). Both PAUP 

and PHYLIP use NNI and SPR to se arch tree space; SPR is used for large-sc ale 

rearrangements when inserting taxa into the initial tree; NNI is used once all the 

taxa are in the tree for local rearrangements (Felsenstein, 2004a). Once an SPR 

or NNI move has been performed, the branch lengths and other parameters are 

optimized. If this leads to a better likelihood, the new tree is kept, otherwise a 

new branch swap is proposed based upon the old tree topology, branch lengths and 

parameter estimates. This search is repeated until no moves lead to a better tree 

topology. 

1.6.2 PHYML 

PHYML is a phylogenetic tree se arch algorithm that employs a fast tree 

se arch heuristic. For a bifurcating tree, there are three possible rearrangements of 

subtrees around an internaI edge e for subtrees A, B, C, and D. Normal algorithms 

apply an NNI, then optimize the branch lengths and evaluate the likelihood 

32 



to determine if the swap leads to a tree of better likelihood. However, if the 

conditionallikelihood for each of the subtrees rooted at A, B, C and D is stored 

it is possible to quickly compute the approximate likelihood (aH branches are 

not optimized simultaneously) of the three possible arrangements around edge e. 

PHYML decides which swaps to make based upon a scoring system of these three 

likelihoods. 

Let Li, L 2 and L3 respectively denote the likelihood of possible topologies 1, 2 

and 3. Assume that Li is the likelihood of the original tree topology (tree topology 

1). Let S = Li - Li for i = 2 and i = 3. These scores are calculated for aH possible 

internaI nodes and ranked from greatest to least. All possible swaps are performed 

according to this ranking as foHows (Guindon and Gascuel, 2003): 

1. A proportion À initialized to 0.75 determines the number of swaps to be 

performed out of the total number of swaps; 

2. starting with the swap of highest score each swap is performed sequentially; 

3. once a swap is performed external branches and internaI branches not 

involved in the swap are given branch length l = l + À(li -l) for branch length 

l of the current branch and branch length li of the edge e under tree topology 

l' , 

4. if the swap leads to a worse likelihood decrease À by dividing by 2, thus 

reducing the number of potential swaps tested. 

A tree is left unmodified if À = O. This is because none of the swaps are 

selected, and none of the branch lengths modified. Conversely, if À = 1.0, aH swaps 

will be selected and performed, assuming of course that À is not decreased as 
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the swaps are tested. The algorithm is guaranteed to converge to a tree topology 

because the potential number of swaps is decreased when the likelihood for a 

given swap is worse than the current likelihood (Guindon and Gascuel, 2003). 

PHYML can start with any input tree, but will build an initial BIONJ tree if none 

is provided (Guindon and Gascuel, 2003). 

1.7 THESIS CONTRIBUTIONS 

This thesis addresses two questions that have applications in evolution and 

phylogenetics: (i) how best to account for gene or protein rate heterogeneity in a 

phylogenetic context; (ii) detecting synonymous selection on particular codon (or 

set of codons). To address the first question the DistR algorithm was developed. 

DistR quickly determines the relative evolutionary rates of a set of genes (Chapter 

2). Furthermore, different methods of incorporating gene rate heterogeneity into 

phylogenetic models are investigated (Chapter 3). Finally, Chapter 4 focuses on 

detecting synonymous selection upon codons. Parametric methods are used to 

simulate data under the null hypothesis that codons do not undergo synonymous 

selection. Particular codons that have synonymous usage that violate this null 

distribution are identified in Reclinomonas and Saccharomyces. 

1. 1.1 The DistR Algorithm - estimating rate heterogeneity 

Extensions to the basic maximum likelihood (ML) model have been made that 

account for site rate heterogeneity (Yang, 1993). However, gene rate heterogeneity 
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also plays an important role in evolution - some genes evolve more quickly than 

others. This problem becomes particularly important in the context of finding 

the correct model to fit the data. There is not enough information in one gene to 

correctly infer most phylogenies on more distantly related species. With greater 

amounts of sequence data available, genes are concatenated into large data sets 

and analyzed with the same models as those used for single genes. However this 

approach only accounts for site rate heterogeneity. It does does not adequately 

account for the gene rate heterogeneity of the evolutionary process. This may le ad 

to incorrect phylogenetic inferences. 

An ML approach to accounting for gene rate heterogeneity has been proposed 

for both DNA (Yang, 1996) and ami no acid (Pupko et al., 2002b) data. However, 

neither implementation allows for tree space to be searched. Furthermore, the 

time to calculate ML gene rates is slow - a fast and accurate approximate method 

will provide a useful starting point for any detailed ML analysis. Chapter 2 of 

this thesis focuses on estimating the relative evolutionary rates of genesjproteins 

quickly, and incorporating these estimates into the ML framework for estimating 

phylogenies (Bevan et al., 2005). 

1.7.2 Methods of accounting for gene rate heterogeneity 

There are two approaches to incorporate gene rate heterogeneity into a 

phylogenetic model. The first, termed the n-parameter method, allows for each 

gene to have one rate of evolution. Thus, the probability of the data is calculated 

at a single ML estimate of gene rate for each gene (Yang, 1996; Pupko et al., 
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2002b). The second, termed the a-parameter model, allows for a distribution of 

gene rates. Thus, the probability of the data is averaged over a set of gene rates 

defined by this distribution (Felsenstein, 2001, 2004b). 

The former method is computationallY faster, however it might suffer from 

the problem of infinite parameterization (i.e over-fit of the model to the data) 

when there are many genes in the data set. The later method is computationally 

much slower, sinee the probability of the data must be calculated for each gene 

rate defined by the distribution. However, because the gene rates are defined by 

a distribution, only the parameters of the distribution must be maximized over, 

eliminating the problem of infinite parameterization. 

Chapter 3 compares the a-parameter and n-parameter methods of accounting 

for gene rate heterogeneity using the Akaike Information Criterion (AIC). This 

information criterion is widely used to correct the log-likelihood of the data by the 

number of parameters in the model. The AIC of two models can be compared to 

determine if one model has an improved fit compared to another. Additionally, 

analysis is performed to determine what properties of the data under analysis 

correlate with improved model fit of a gene rates model over the concatenated 

model. 

1. 7.3 Using phylogenetic models to detect codons under synonymous 
selection 

Chapter 4 also focuses on rates of evolution. However, the goal is to detect 

synonymous selective pressures on a set of codons across a genome (or sets of 
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genes). Here synonymous selective pressure is selection for the use of a particular 

synonymous codon at a codon site. Normally, a site will have more than one 

synonymous codon because synonymous codons are hypothesized to be selectively 

neutral. Thus, it is assumed that there is no selective (evolutionary) advantage to 

using one synonymous codon versus another at a particular site. 

Both non-parametric and parametric methods have been developed to 

analyze codon usage. N on-parametric methods use summary statistics of the gene 

data to determine a set of codons that are purported to be un der synonymous 

selective pressure. However, they do not account for mutation, codon bias, gene 

rate evolution and other evolutionary pressures that will bias the results of the 

analyses. Parametric methods (phylogenetic codon models) do account for such 

pressures, however they are currently only used to detect sites that are under 

positive or purifying selection. 

This chapter applies phylogenetic codon models to the question of determining 

a set of sites under synonymous selective pressure. Codon models are used to 

simulate data using ML parameter estimates from the genes under analysis. 

Properties of codon usage in synonymous and non-synonymous can then be 

compared in the simulated and real data. If the codon models are not capturing 

particular properties of the data (such as the usage of a codon in invariant sites 

versus the usage of a codon in variant sites), then it is possible that the site is 

under synonymous selective pressure. 
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Chapter 2 

Calculating the Evolutionary Rates of Different 
Genes: A Fast, Accurate Estimator with 

Applications to Maximum Likelihood 
Phylogenetic Analysis 

2.1 BACKGROUND 

Gene rate heterogeneity is an important property of evolution that should 

be accounted for in phylogenetic models. Not only is the rate of evolution of 

a gene important in a phylogenetic context, but it is important to understand 

fundamental biological pro cesses since it is highly correlated with expression level 

(Drummond et al., 2005). 

This chapter presents an algorithm to quickly infer rates of evolution of genes. 

Weighted least squares is used to infer gene rates from distance data between pairs 

of species in different genes. These rate estimates can be compared to estimates 

obtained in a maximum likelihood framework, with no missing data. Finally, the 

rates are included in phylogenetic models, in order to compare the fit of a model 

that accounts for gene rate heterogeneity, to the concatenated model which does 

not. 
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2.2 ABSTRACT 

ln phylogenetic analyses with combined multi-gene or multi-protein data 

sets, accounting for differing evolutionary dynamics at different loci is essential 

for accurate tree prediction. Existing maximum likelihood (ML) and Bayesian 

approaches are computationally intensive. We present an alternative approach 

that is orders of magnitude faster. The method, Distance Rates (DistR), estimates 

rates based upon distances derived from genejprotein sequence data. Simulation 

studies indicate that this technique is accurate compared with other methods 

and robust to missing sequence data. The DistR method was applied to a fungal 

mitochondrial data set, and the rate estimates compared weIl to those obtained 

using existing ML and Bayesian approaches. Inclusion of the protein rates esti­

mated from the DistR method into the ML calculation of trees as a branch length 

multiplier resulted in a significantly improved fit as measured by the Akaike Infor­

mation Criterion (AIC). Furthermore, bootstrap support for the ML topology was 

significantly greater when protein rates were used, and sorne evident errors in the 

concatenated ML tree topology (i.e. without protein rates) were corrected. 

2.3 INTRODUCTION 

It is widely recognized that the analysis of multiple unlinked genes is superior 

to single gene analyses for phylogenetic reconstruction. These unlinked genes 

may, however, be evolving according to very different rules. Heterogeneity of the 

evolutionary process must be accounted for in phylogenetic analyses (Bull et al., 
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1993; Huelsenbeck et al., 1996; Yang, 1996; Bapteste et al., 2002; Pupko et al., 

2002b; Nylander et al., 2004). The concept of accounting for differing evolutionary 

pressures within phylogenetic analysis is not new (Yang, 1993). Site specific rates 

of evolution can be computed for amino acids (e.g. Rate4Site, Mayrose et al., 2004; 

Pupko et al., 2002a) and DNA (e.g. DNArates, Olsen et al., 1993) using both 

Bayesian and Maximum Likelihood approaches. 

Site rates within a gene are likely to be more correlated than rates for sites in 

different genes. To account for this, it can be assumed that each gene evolves at 

a different average rate and that these gene rates are drawn from sorne common 

distribution (Felsenstein, 2001, 2004a; Cranston and Rannala, 2005). Both 

Bayesian (Huelsenbeck and Ronquist, 2001) and Maximum Likelihood (Yang, 1996; 

Pupko et al., 2002b) methods exist to estimate gene rates (or more generally, locus 

rates) but these are computationally expensive. 

We present a fast, accurate method to estimate the relative evolutionary rates 

of genesjproteins. For ex ample , when run on a data set with 63 proteins over 123 

taxa the algorithm takes less than a second. The method can be applied to protein 

or nucleotide data, though here we focus on protein sequences. The basic idea is to 

use pairwise estimates of evolutionary divergence (distances) to deduce the relative 

rates of different proteins, even when the proteins are not all present in all of the 

taxa. Although this approach does not give the ML estimates for the rates (Yang, 

1996; Pupko et al., 2002b), it does provide an excellent approximation. 

After computing rates they are incorporated as extra parameters into the ML 

tree search, resulting in improved fit as measured by the AIC. The rates estimated 
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using the DistR procedure have been coded into PHYML version 2.2, available 

at http://atgc.lirmm.fr/phyml/ (Guindon and Gascuel, 2003). PHYML was used 

because incorporation of the rates was straightforward and because PHYML is an 

especially fast implementation of ML. 

2.4 METHODS 

2.4.1 The DistR method 

To begin with, the method will be explained through an example. Figure 2-1 

represents three different protein alignments. Not all taxa are present in all three 

alignments. Suppose that the three proteins have rates rI, r2, and r3' These rates 

will affect distances inferred from the alignments. Reversing the problem involves 

using the pairwise distances between species to estimate the different rates rI, r2, 

Figure 2-1 outlines two ways of obtaining distances from each protein. In the 

first method ML trees are constructed and the length of the path between two 

taxa in these trees is measured (referred to hereafter as patristic ML distances). 

In the second method distances are estimated directly from the alignments, as 

is customary in distance-based methods (referred to hereafter as pairwise ML 

distances). The end result from both methods is a distance matrix for each 

protein. 

If the rate in one protein is twice the rate in a second protein, then the 

expected distance estimates from the first protein should be twice the expected 
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Protein 1 

x RA5R .• Ne 
a RA5Q •. Ne 
y RA5Q .. Ne 

1 .. ~ .. 
1 x 2.3 
iic:::::> a 2.3 

f---t--t---II 
Y 3.01.7 

Protein 2 

x DEQ •.. 55 
b DEQ ••• 55 
Y DDQ ••. 55 

1'"''' 
x y 

x b Y 

Protein 3 

x KR5 ..• L5 
b KR5 ••• L5 
Y KR5 .•• I5 

y 

Figure 2-1: The general idea of the DistR estimation procedure. Beginning with indi­
vidual protein alignments over a set of taxa (with missing data), distances between the 
species are estimated for each protein alignment. There are two choices of how to es­
timate the distances: directly from the alignment data (method 2); as the sum of the 
pairwise distances between taxa on a tree built from the alignment data (method 1). 
The result is a matrix of pairwise distances between taxa. The ratio of the pairwise dis­
tances to the rate of evolution of the protein should be approximately the same for aIl 
proteins. 

distance estimates from the second protein. This should hold, approximately, for 

both pairwise ML distances and patristic ML distances. Equivalently, the distance 

42 



.~. 

estimate from the first protein, divided by two, should be approximately the 

distance estimate of the second protein. 

In the example (Figure 2-1), and later on, the distance between taxa x and 

y estimated from protein k is denoted d~~, irrespect ive of whether it is a pairwise 

or patristic ML distance. Suppose that, for each k, the rate in prote in k equals 
d(l) d(2) 

rk. It follows that ...3!.JL will be approximately equal to ...3!.JL which in turn will be 
rl r2 

d(3) 
approximately equal to ::::EJL.. This is denoted as 

r3 

d(l) d(2) d(3) xy xy xy 
-~-~-, 

rI r2 r3 
(2.1) 

where '~' means 'approximately equal'. In Figure 2-1, this gives ;5°5 ~ 0~852 ~ 1~603. 

In a sense, the distance estimates obtained from each gene are normalized so 

that the scale is the same. Define this normalized distance or consensus distance 

between any two taxa as Pxy, with the assumption that 

d(l) d(2) d(3) xy xy xy 
Pxy:=::::::-~-~-· 

rI r2 r3 

Assume that rates rI, r2, and r3 in Figure 2-1 are unknown, while the distances 

remain known. The above approximate equality leads to 

3.0 4.5 9.0 
(2.2) Pxy:=::::::-~ -~-. 

rI r2 r3 

The unknowns Pxy, rI, r2, and r3 can be solved for using a least squares 

approach. 

The relation in equation (2.2) provides a framework to solve for the relative 

rates rI, r2, and r3, given estimates for the distances dW. This is the basic ide a 
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behind the method. The main issues are how to: ( a) handle the fact that the 

relations are only approximate; (b) deal with missing distances; (c) compute the 

rate estimates quickly. These issues are addressed in the foIlowing text and in 

Appendix 2. 

To formalize the problem, suppose that there are n proteins (or genes, etc.) 

over m species. The distance between species x and y derived from protein k 

is denoted d~~. The basic assumption made is that the ratio of the estimated 

distance between a pair of taxa for a given protein (d~~ for protein k and taxa 

x,y), to the rate of the protein (rk for protein k), is approximately equal across aIl 

proteins. 

The rates rI ,r2, ... , rn are unknown quantities to be estimated based upon 

the distance data from a given protein alignment. To do this, assume that there 

exists an unknown consensus distance Pxy such that 

where n = 3 for the example in Figure 2-1. AlI the consensus distances and rates 

can now be estimated using a least squares approach. 

In the least squares method it is possible to incorporate measures of uncer­

tainty about the estimated distances d~~. Distance estimates with low variance 

should contribute more to the analysis, while distance estimates with high variance 

(or infinite variance in the case of missing entries) should contribute little. Let 

wW ~ 0 be a measure of the uncertainty in the distance estimate between taxa 

x and y derived from protein k. If d~~ is accurate then wW should be high. If 

44 



there is less certainty about the accuracy of d~~ then wW should be low. This is 

achieved using the inverse of the variance of d~~, that is, w~~ = ( (k))' If protein 
Var dxy 

k is not present in both x and y then wW = Q. To measure the variance of the 

distance estimates the approximate formula of Bulmer Bulmer (1991) is used in 

the implementation of DistR. Other variance estimators could also be used. 

Under a weighted least squares (WLS) framework the total discrepancy 
in) 

between the ratios 2JL and the consensus distances Pxy is measured by 
Tn 

_ (k) dxy n ( (k)) 2 

q(p, r) - ~ ~ W xy Pxy - --:;:;: 

where p denotes the vector [P12,P13' ... ,P(m~l)m]T and r denotes the vector 

[Tl, ... , l' nf. This is similar to the minimization function used by Lapointe and 

(2.3) 

Cucumel (1997) in the average consensus method. The main difference is that they 

assume one rate over an proteins, whereas this method includes different rates 

for each protein. Note that if taxa x and y are missing from a protein k then an 

estimate for d~~ cannot be obtained. Rowever, this is not a problem since the 

weight w~~ will be zero in this case. 

Estimating both rates and consensus distances using q(p, r) leads to the 

problem of non-identifiability. In the absence of any error each estimated protein 

distance d~~ is the product of the rate of the protein Tk and the consensus dis-

tance Pxy. Thus, a perfect fit to the equation is still achieved if an the rates are 

multiplied by sorne constant and an the consensus distances divided by the same 

constant. There is a problem of determining scale. Renee, equation (2.3) does not 
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have a well~defined minimum. To solve this problem a constraint 

n 
~~ (k) _ L..t L..t wxy Pxy - f1, (2.4) 
k=l x,y 

must be added to system, where f1, is an arbitrary positive constant. The particular 

value of f1, is irrelevant since changing f1, merely causes all estimated rates to be 

multiplied by the same constant value. For this reason, it is possible to infer 

relative rates only. In DistR f1, = 2.:~=1 2.:x,y wW dW, thus constraining the 

weighted estimated distances to be equal to the weighted consensus distances. This 

was empirically determined to minimize the variance of the DistR estimates by 

testing multiple constraints. 

Appendix 3 describes an extremely fast algorithm for minimizing the function 

q(p, r) subject to the constraint in equation (2.4). The algorithm takes O(nm2 + 

n3
) time and O(n2 + m2

) memory. For example, when run on a data set with 63 

proteins over 123 taxa, the algorithm takes less than a second. An implementation 

with source code is available at http://www .mcb .mcgill. carrache!. 

2.4.2 Experimental Studies 

An extremely rapid method for estimating the relative rates of different genes 

has been proposed. The method is orders of magnitude faster than existing ML 

and Bayesian approaches. The most important question remaining is to what 

extent this increase in speed affects the accuracy of the estimates. In order to 

address this question, the accuracy of the new method was assessed using both 

simulated and empirical data. 
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In aH the analyses PHYML (version 2.2) was used (Guindon and Gascuel, 

2003) to compute ML distances and trees, with a JTT protein model, eight 

Gamma categories plus invariant sites and the default (BIONJ) starting tree. The 

Gamma shape parameter and proportion of invariant sites were estimated using 

default optimization routines in the program. When constructing ML trees from 

real data several bootstrap values were computed. As detailed below these values 

depend upon: whether patristic or pairwise ML distances were used in the DistR 

procedure; whether the rates were re-estimated for each bootstrap replicate. 

For both the simulated and empirical data DistR estimates based upon 

patristic and ML distances were compared. This comparison was made in order 

to determine whether or not the additional computational effort required for 

estimating patristic ML distances is justified. 

2.4.3 Experimental Studies-Simulated Data 

The two key questions addressed through the simulation studies are: 

• Patristic versus pairwise ML distances.- How accurate are the rate esti­

mates using pairwise versus patristic ML distances? 

• Missing distances between taxa.- How are DistR rate estimates affected 

when proteins are not present in an taxa? 

To answer these questions protein alignments were simulated using Pseq-Gen 

(Grassly et al., 1997) with the JTT model of evolution. The initial tree and branch 

lengths were taken from an independent analysis of mitochondrial Atp8 proteins 

in 58 eukaryotes. Two types of simulations were carried out. The first, intended to 
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address the first question, involved construction of 20 prote in trees by randomly 

deleting taxa from the starting tree. In total there were four protein trees with 

53 taxa, four with 48 taxa, four with 43 taxa, four with 38 taxa, and four with 

33 taxa. For each tree a rate was sampled from a pre-computed distribution of 

rates based on real data (data not shown), and protein alignments of length 100, 

300, 500, and 1000 generated using Pseq-Gen (Grassly et al., 1997) (note that 

the average length of naturally occurring proteins is approximately 300-amino 

acids). The second analysis, intended to address the second question, increased the 

number of taxa deleted from the starting tree. In total there were seven trees with 

25% of the taxa, seven with 50% of the taxa, and seven with 75% of the taxa. This 

resulted in twenty-one trees, seven each with 16, 30, and 44 taxa respectively. For 

each tree a rate was sampled from a pre-computed distribution of rates based on 

real data (data not shown), and protein alignments of length 1000 generated using 

Pseq-Gen (Grassly et al., 1997). This experiment follows a protocol proposed by 

(Eulenstein et al., 2004). For both experiments, and for every set of parameters, 10 

replicates of the experiment were performed. See Figure 2-2 for an overview of the 

simulations. 

Statistics measured on the simulated data, including goodness-of-fit and mean 

squared error, are explained in detail in Appendix 1. These statistics were used to 

relate the accuracy of the DistR rate estimates to the known rates at which the 

proteins were simulated. 
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Repeat 10 Times 

Figure 2-2: The general flow of the simulation studies. Two studies were performed, 
one with n = 20 and the other with n = 21 (where n is the number or proteins). The 
first study compared different methods of estimating distances using different alignment 
lengths. In the first study 20 random subtrees from an original tree of 58 species were 
created, four each of size m = 33, m = 38, m = 43, m = 48 and m = 53 (where m is 
the size of the taxon set for a given protein). For each tree a rate was sampled from a 
pre-computed distribution of rates based on real data (data not shown). Protein align­
ments of length 100, 300, 500, and 1000 were simulated using Pseq-Gen (Grassly et al., 
1997). A second analysis compared rate estimates with increasing amounts of data. 
Twenty-one random subtrees from the original tree of 58 species were created, 7 each of 
size m = 16, m = 30 and m = 44 (corresponding to approximately 25%, 50%, and 75% 
of the species (as in Eulenstein et al., 2004)). For each tree a rate was sampled from a 
pre-computed distribution of rates based on real data (data not shown). Alignments of 
length 1000 were generated. For both studies, 10 replicates were performed for each set 
of parameters. 

Experimental Studies-Empirical Data 

The data analyzed in this study consist of a set of 15 aligned mitochondrial 

protein sequences from 29 taxa. The taxon names and accession numbers are given 

in Table 2-2. Protein names and alignment accession numbers appear in Table 2-

5. This multi-protein data set is of moderate size, and variants thereof have been 

used in numerous publications (e.g. Sumida et al., 2001; Tomita et al., 2002; Lang 
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et al., 2002; BuIlerwell et al., 2003). Furthermore, sorne of the species have high 

evolutionary rates and substitutional saturation of sites (i.e. Smittium), whereas 

others have very short branches in the resulting phylogenetic tree. Combined, 

these two properties can cause inaccurate grouping of the taxa due to long-branch 

attraction artifacts (Felsenstein, 1978). 

Alignments were performed using the default settings of ClustalW (Thompson 

et al., 1994). Highly variable sites or those with many gaps were eliminated using 

Gblocks (Castresana, 2000) with the following settings: number of sequences for a 

fiank position equal to half the number of species plus one; number of contiguous 

non-conserved positions equal to ten; minimum length of a block four; half the 

species allowed gaps. AIl other parameters were set to default. 

The key questions addressed using real protein data are: 

• Comparison of DistR estimates to ML estimates.- How do DistR rate 

estimates compare to those obtained using the ML based method COMBINE 

(Pupko et al., 2002b)? 

• Comparison of DistR estimates to Bayesian estimates.- How do DistR 

rate estimates compare to those obtained by MrBayes (Huelsenbeck and 

Ronquist, 2001) under a Bayesian approach? 

• Patristic versus pairwise ML distances.- How do rate estimates from 

pairwise ML distances and rate estimates from patristic ML distances 

compare when applied to real data? 

• Inclusion of DistR estimates into the phylogenetic tree search of P HYML.­

What is the effect of including DistR estimates in an ML tree se arch? Is 
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there a significantly improved fit? Are improved phylogenetic estimates 

obtained? 
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Species 
Ascomycota 
Aspergillus nidulans 

Candida albicans 
Candida glabrata 
Hypocrea jecorina 
Penicillium marneffei 
Pichia canadensis 
Podospora anserina 
Saccharomyces cerevisiae 
Schizosaccharomyces japonicus 
Schizosaccharomyces octosporus 
Schizosaccharomyces pombe 
Torrubiella confragosa 
Yarrowia lipolytica 
Basidiomycota 
Cryptococcus neoformans 
Schizophyllum commune 
Cantharellus cibarius a 

Choanoflagellida 
M onosiga brevicollis 
Chytridiomycota 
Allomyces macrogynus 
H arpochytrium94 
H arpochytriuml05 
Hyaloraphidium curvatum 
M onoblepharella 
Rhizophydium136 
Spizellomyces punctatus 
Metazoa 
Homo sapiens 
M etridium senile 
Zygomycota 
Smittium culisetae 
M ortierella verticillata 
Rhizopus oryzae 

GenBank Accession 

CAA33481, AAA99207, AAA31737, 
CAA25707, AAA31736, CAA23994, 
X15442, P15956, CAA23995, 
CAA33116, X00790, X15441, X06960, 
J01387, X01507 
AF285261 
CGL511533 
AF447590 
NC_005256 
NC_001762 
X55026 
AJ_011856 
NC_004332 
AF275271 
X54421 
AF487277 
AJ307410 

NC_004336 
AF402141 

AF538053 

U41288 
NC_004760 
NC_004623 
AF402142 
AY182007 
NC_003053 
AF402142 

NC_001807 
AF000023 

AY8632133 
AY863211 
AY863212 

a Downloaded from http:j jmegasun.bch.umontreal.cajPeoplejlangjFMGP jproteins.html 
Table 2-2: Please see caption on following page. 
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Table 2-2 (caption): Names and accession numbers for protein sequences studied from 
Fungal species and outgroup. Fifteen proteins were down-loaded for each species (if 
present in the species), the names of which are in Table 2-5. 
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2.4.4.1 Comparison of DistR estimates ta ML estimates 

Note that when comparing DistR rates to those computed using COMBINE 

(Pupko et al., 2002b) the number of taxa and proteins had to be restricted, since 

COMBINE can currently only handle data sets for which all taxa are present in 

all proteins. Two different starting trees were included in the analysis: the ML 

tree from PHYML based upon the concatenated data set and the ML tree from 

PHYML when protein rates were incorporated. Rates were estimated under three 

different models: global ami no acid frequencies with one Gamma distribution; local 

amino acid frequencies (for each protein partition) with one Gamma distribution; 

local amino acid frequencies with one Gamma distribution for each partition. 

2.4.4.2 Comparisan of DistR estimates to Bayesian estimates 

Bayesian estimation of the posterior distribution of the protein rates was 

performed using MrBayes version 3.0 (Huelsenbeck and Ronquist, 2001). Default 

priors were used with the JTT model of evolution plus one Gamma distribution 

(8 categories), one parameter for the proportion of invariant sites, and one set 

of branch lengths for the entire data set. This is the same model that is used 

for the PHYML + protein rates analysis of the data. Two runs of four chains 

with 300,000 iterations were performed; the bum-in used was 30,000. A further 

analysis of the data was performed without protein rates (using the same model) 

in or der to compare to the concatenated PHYML analysis. Four chains were run 

for 150,000 iterations, with a bum-in of 15,000. Convergence of the chains was 

determined empirically. 
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2.4.4.3 Inclusion of DistR estimates into the phylogenetic tree search of PHYML 

DistR rates were incorporated into the ML framework of PHYML following 

the proportional approach (Yang, 1996; Pupko et al., 2002b) however optimization 

over the rates was not performed. ML trees over the entire data set were calcu­

lated in four different ways using this modified version of PHYML. In the first 

analysis, the proteins were sim ply concatenated (equivalent to a rate of one for 

each protein). In the second analysis, the estimated protein rates from the real 

data set (based on patristic ML distances) were used for each bootstrap repli-

cate when computing the likelihood. In the third and fourth analyses, protein 

rates were estimated for each bootstrap replicate using patristic and pairwise ML 

distances respectively. These rates were incorporated into the likelihood com­

putation for each bootstrap replicate. Consensus trees were computed using the 

CONSENSE program available in the PHYLIP package (Felsenstein, 2004d) 

2.5 RESULTS AND DISCUSSION 

2.5.1 Simulated Data 

2.5.1.1 Patristic versus pairwise ML distances 

The first simulation study demonstrates two important results: pairwise ML 

distances provide equally good distance estimates as patristic ML distances to the 

DistR method (Figure 2-3); if the fit of the initial pairwisejpatristic ML distances 

to the data is accurate then the DistR estimates will be accurate (Figures 2-3 
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Figure 2-3: Mean squared error for different methods of distance estimation and dif­
ferent alignment lengths. The rates at which the data were simulated are labelled on 
the left hand side of the graph. The mean rate estimate for a given distance estima-
tion method, alignment length, and rate is given on the right of the MSE bar. AL = 
alignment length. The ten fastest proteins are in the left-hand column. The number of 
species in each protein (from fastest to slowest) are: Prote in 1: 53 species; Protein 2: 38 
species; Protein 3: 33 species; Protein 4: 53 species; Protein 5: 38 species; Protein 6: 48 
species; Protein 7: 53 species; Protein 8: 48 species; Protein 9: 43 species; Protein 10: 33 
species. The ten slowest proteins are in the right-hand column. The number of species 
in each protein (from fastest to slowest) are: Protein 1: 33 species; Protein 2: 48 species; 
Protein 3: 43 species; Protein 4: 43 species; Protein 5: 48 species; Protein 6: 33 species; 
Protein 7: 43 species; Protein 8: 53 species; Protein 9: 38 species; Protein 10: 38 species. 
AH rates are normalized so that the average rate is one over aU 20 proteins. The total 
number of taxa in the data set is 58. 
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and 2-4). The first result is important since pairwise ML distances are very fast 

to compute. The second result indicates that error in the rate estimates stems 

principally from error in the distance estimates, rather than the DistR method 

itself. 

The numerical results from the first experiment are summarized in Figure 2-3. 

The proteins are sorted in order of increasing rate, and the histogram indicates 

the mean squared error (MSE) over the 10 different replicates (see Appendix 1 for 

the exact formula used to compute MSE). Mean rate estimates are labelled to the 

right of each MSE bar, with the rate at which the data was simulated on the left. 

Results are presented only for alignments of length 100 and 1000. The results for 

alignments of length 300 and 500 fall in-between these two extremes. Note that 

the MSE increases in proportion to the rate, so results are presented on two scales. 

The me an estimates for the different methods were quite close to the real rates 

at which the data were simulated, regardless of the alignment length, procedure 

used to estimate the distances, or rate at which the data was simulated (Figure 

2-3). However, it is clear from the me an squared error that the DistR estimates 

based on shorter alignments have larger error (or greater variation), despite the 

fact that the me an rate estimate is often almost as accurate as that for longer 

alignments. Furthermore, the mean squared error tends to increase with higher 

rates. This is likely because the error is often in the third significant digit; for 

slower rates this will lead to a smaller MSE. Overall there is negligible difference 

between the mean and MSE statistics for a given alignment length (comparing 

DistR estimates based on patristic versus pairwise ML distances). 
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Figure 2-4: Average error of DistR rate estimates compared to goodness-of-fit of dis­
tances based upon patristic and pair wise ML distance estimates. (a) DistR rate esti­
mates were based upon simulated proteins of length 100. (b) DistR rate estimates were 
based upon simulated proteins of length 300. A higher value for goodness-of-fit me ans 
that the fit of the estimated distances to the original distances is better. 
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Results also indicate that errors in the rate estimates are due to errors in the 

original distances rather than approximations introduced in the DistR method. 

For each protein and alignment length the error between the me an rate estimates 

and the real rate at which the alignments were simulated was compared to the 

goodness-of-fit between the estimated and true distances (Figure 2-4). This fit 

can be measured since the data are simulated under a known model at a particular 

rate. Alignments of length 100 and 300 only were examined, since the errors 

become negligible for longer alignments. The fit was measured using the goodness­

of-fit statistic of Tanaka et al. (Tanaka and Huba, 1985), which is determined 

from the sum of squares error between true and estimated distances, normalized 

by the sum of the true distances squared. The exact formula for goodness-of-fit is 

presented in Appendix 1. The statistic has a maximum of one, which indicates a 

perfect fit. 

It is expected that with longer alignments the goodness-of-fit will increase, 

indicating that the fit of the model to the data is better. This is clearly the case as 

seen when comparing goodness-of-fit for alignments of length 100 (Figure 2-4a) 

to that for alignments of length 300 (Figure 2-4b). The fit is further improved, 

and relative error reduced, with alignments of length 500 and longer (data not 

shown). The decrease in the goodness-of-fit (indicating a worse fit) seen with 

short alignment lengths indicates that the error of the method is dependent 

upon the error of the distance estimates and is not a property of the estimation 

procedure itself. 
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Interestingly, the error in rate estimation is in sorne cases less when based 

upon pairwise ML distances, rather than patristic ML distances. Given that the 

multiple sequence alignments are short (100 and 300 amino-acid residues) and 

include many species (at least 33 in each protein alignment), there are many 

trees that will fit the data equally weIl. Thus, there is high variation in building 

a ML tree to fit the original tree on which the data were simulated. Rence, 

estimating a ML tree with few data willlikely le ad to an incorrect topology. This 

will result in a worse fit between the original tree and the tree estimated from the 

alignment data. This is not true for pairwise ML distances, which do not account 

for topology. 

2.5.1.2 Missing distances between taxa 

In the previous experiment, less than half of the taxa were missing in each 

protein, and twenty proteins were used to estimate rates. The effects of more 

extreme missing taxa were also tested, where no distance estimates were present 

between sorne pairs of taxa. To achieve this, up to 75% of the taxa were removed 

from the starting tree. Additionally, many fewer proteins used for DistR estima-

tion. Results indicate that the DistR method is robust to missing taxa, though 

having many missing taxa led to the expected increase in variance of the rate 

estimates. 

Figure 2-5 summarizes the error in rate estimates for two simulated data sets. 

In the first example (Figure 2-5a) there are four prote in trees, each with 16 taxa 

(~ 28% of the total taxon set). In the second ex ample (Figure 2-5b) there are 8 
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Figure 2-5: Mean squared error for different methods and different amounts of distance 
data. The rates at which the data were simu1ated are 1abelled on the 1eft hand side of 
the graph in both (a) and (b). Mean rate estimates for both distance estimation meth­
ods are 1abelled on the right of the MSE bars for each protein. All rates are normalized 
so that the average rate is one in both (a) and (b), and are sorted from fastest to slow­
est. Proteins that are the same in both (a) and (b) are 1abelled. (a) Rate estimates 
based upon a data set consisting of four proteins with 16 taxa each. (b) Rate estimates 
based upon a data set consisting of 8 proteins; 7 with 16 taxa and one with 30 taxa. 
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protein trees. Seven of these have 16 taxa and the other has 30 taxa. The proteins 

are ordered from fastest to slowest rate in both Figure 2-5a and Figure 2-5b. 

Mean rate estimates are shown on the right of the MSE, and the rate at which the 

protein simulated (averaged to equal one) is given on the left. Simulated proteins 

in Figure 2-5a are labelled from l to IV. The same simulated proteins in Figure 

2-5b are likewise labelled. 

Once again it is evident that pairwise ML distances and patristic ML dis­

tances give almost identical average relative rate estimates (to within two or three 

decimal places). Furthermore, the missing data have little effect on mean rate 

estimates, but does have a large effect on the variance. For instance, comparing 

the MSE for the first protein in Figure 2-5a to that of the second protein in Figure 

2-5b (it is the same simulated protein) it is clear that although the me an rate 

estimate is approximately as accurate with more taxa (Figure 2-5b) , the MSE is 

clearly smaller wh en more distances between a pair of taxa are included in the 

analysis. Thus it is evident that more data in terms of pairwise distances between 

taxa (over multiple proteins) will reduce the error of the DistR estimate. 

Calculation of the relative rates within groups of the same number of species 

was also performed (Le. proteins with 16 species, proteins with 30 species, and 

proteins with 44 species). For each subset of proteins mean rate estimates based on 

pair wise ML distances were slightly worse or identical to those based on patristic 

ML distances (data not shown). In addition the variances were greater in general 

for rates estimated based on pairwise ML distances. The major difference between 

the three analysis was that the variance of the rate estimates was lower when more 
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species were included in the analysis. Furthermore the mean rate estimates were 

slightly more accurate for the data sets over larger taxon groups (data not shown). 

Accuracy in spite of missing taxa demonstrates that the rate estimation 

proced ure is consistent (assuming that the initial distance estimates are accurate), 

regardless of the number of proteins under analysis. This is because rates are 

not computed relative to the distance estimates of one protein. Rather, they are 

constrained by aU the distance estimates. Thus, if one set of distance estimates is 

extremely biased with respect to the remainder of the distances they will not have 

a strong effect on the final rate estimates. 

2.5.2 Empirical Data 

2.5.2.1 Comparison of DistR estimates ta ML estimates 

Rates were calculated in a ML framework using only those proteins that are 

present over the entire species set (Atp6, Cob, Cox1, Cox2, and Cox3) due to a 

constraint of the program COMBINE (Pupko et al., 2002b). Table 2-3 shows the 

time for rate estimation and rate estimates based on different models under the 

ML framework in comparison to DistR estimates based on pairwise and patristic 

ML distances. Two sets of ML estimates are given for each model. The first 

based upon the concatenated tree, and the second on the DistR incorporated 

ML tree. DistR estimates are computed far more rapidly and are still accurate in 

comparison to ML estimates. In comparison to the 6 ML estimates the DistR rates 

based on patristic ML distances are slight overestimates for Cob and Cox1, and 
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slight underestimates for Cox2 and Cox3. The estimate for Atp6 is an average of 

the 6 ML estimates (Table 2-3). Notably the patristic DistR estimates for Cob 

and Coxl are closest to the ML estimates based on the rate-incorporated tree 

using global amino acid frequencies plus the one-Gamma-distribution model. 

Conversely, the DistR estimates for Cox2 and Cox3 are closest to the ML estimates 

based on the same tree, using local ami no acid frequencies and the five-Gamma­

distribution model. The DistR estimates based on pairwise ML distances are quite 

close to those based on patristic ML distances, except for Atp6 and Cox3. Atp6 

has a much higher rate-quite close to the ML estimate for the LF + 5-GAM 

model where the estimates were based on the rate-incorporated ML tree. However, 

the Cox3 estimate is quite low compared to all ML estimates; Cox3 had a higher 

variation in rate estimation over all proteins (Table 2-5), a case where perhaps 

the lack of topological information decreases the accuracy of the DistR estimate. 

Clearly this is not an issue for most proteins, but can be an issue for sorne. 

Overall it appears that the DistR estimates are model independent regardless of 

distance estimation procedure and provide excellent first approximations to the 

ML estimates. 

2.5.2.2 Comparison of DistR estimates ta Bayesian estimates 

The posterior distribution of rates from MrBayes is shown in Figure 2-6. For 

all but three of the proteins the DistR estimates fall within the 95% posterior 

credible interval for the protein rate. Each of N ad6, Coxl and Cox3 have DistR 

estimates that do not fall between the 95% posterior credible interval. Both Coxl 
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Comparison of ML rate estimates to DistR estimates 
Method Time Atp6 Cob Cox1 Cox2 Cox3 

GF + 1-GAM 776s 1.24 0.81 0.62 0.99 1.34 
1.25 0.81 0.63 0.99 1.33 

LF + 1-GAM 842s 1.35 0.80 0.61 0.94 1.31 
1.36 0.80 0.62 0.93 1.30 

LF + 5-GAM 648s 1.36 0.79 0.59 0.94 1.31 
1.39 0.78 0.61 0.92 1.30 

DistR Pat 0.116s 1.32 0.83 0.66 0.91 1.29 
DistR Pair 0.122s 1.40 0.83 0.64 0.96 1.18 

Table 2-3: Comparison of relative rate estimates and estimation time from COMBINE 
and DistR for five proteins (Atp6, Cob, Cox1, Cox2, and Cox3) from the fungal data 
set. For each model, rates based upon the maximum likelihood concatenated tree from 
PHYML are given on the first line, and rates based upon the maximum likelihood tree 
incorporating DistR rates (computed in PHYML) are given on the second. AH estimates 
were normalized so that the average rate is one. GF = global ami no acid frequencies, 
LF = local amino acid frequencies (calculated for each protein), 1-GAM = one Gamma 
distribution estimated for the entire data set, 5-GAM = one Gamma distribution for 
each protein, DistR Pat = DistR estimation using patristic ML distances, DistR Pair = 

DistR estimation using pair wise ML distances. 

and Cox3 have average sequence lengths, and 29 taxa each. N ad6 is shorter at 

less than 100 ami no acids, with only 24 species. In the case of Nad6 perhaps the 

short sequences length contributes to uncertainty in the DistR estimates. However 

it is unlikely that the Bayesian posterior distributions of the rates are accurate. 

This conclusion is based upon the fact that the four chains were mixing quite 

poorly in both runs even after 300 000 iterations (data not shown). Sampling 

from the posterior distribution is unlikely to be correct since the chain might 

be over-sampling from areas of low likelihood. Comparison of the tree of the 

highest likelihood from this analysis to the tree of highest likelihood based on the 

concatenated data indicates that Mr Bayes was in a suboptimal topological space 
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when sampling rate estimates (using the Bayesian information criterion, data not 

shown). Furthermore, the DistR ML tree is a significantly better fit of the model 

to the data based on the AIC (Felsenstein, 2004c) when compared to the likelihood 

of the MrBayes rate incorporated tree as computed in PHYML. Thus, although 

the posterior distribution of the rates appears reasonable, the chain seems to be 

having difficulty sampling through topology space. 

Thus, it appears that the proportional model under MrBayes, when used 

without different parameters for each partition (as in Nylander et al., 2004), 

does not search tree space as weIl as PHYML with the rate multipliers included. 

Perhaps this is due to an incorrect prior on the rate parameters used. If this is the 

problem the DistR method can certainly be used to find a distribution of the rates 

of proteins, which could be used as the prior on these parameters. The discrepancy 

could also be due to the different se arch heuristics used in MrBayes. Given the 

computational complexity of the search, it might be difficult for the program to 

se arch for the best rate parameters while also searching for the best topology. 

2.5.2.3 Patristic versus pairwise ML distances 

The relative protein rates of the real data are unknown. However the variance 

of the rate estimates using both patristic and pairwise ML distances can be 

compared, a smaller estimate being preferable. Contrary to expectations, but 

confirming the simulation studies, rate estimates from pairwise ML distances had 

smaller variance than rate estimates from patristic ML distances. 
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Figure 2-6: Distribution of rates from the MrBayes proportional model analysis com­
pared to DistR estimates. Bars at either end represent the 95% credible interval. The 
DistR estimate based upon patristic ML distances is marked by a solid triangle. The 
DistR estimate based upon pairwise ML distances is marked by a square. The posterior 
rate estimates of MrBayes are given by a solid square. DistR estimates are normalized 
so that the average rate is one (as in MrBayes). Proteins are ordered from short est to 
longest as follows: Atp8, Atp9, Rps3, Nad3, Nad4, Nad4L, Nad6, Atp6, Cox2, Cox3, 
Nad1, Nad2, Cob, Nad4, Cox1, and Nad5. 

Variances of the rate values computed were estimated by non-parametric 

bootstrap of the protein alignments, and re-estimation of the distances and 
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/"""'. 
DistR estimates for empirical data based on pairwise and patristic ML distance 

estimates 

Patristic Pairwise 
Protein Ace. # # AL Mean Var x Mean Var x 

Species 10-3 10-3 

Atp8 ALIGN_000885 28 32 1.08 8.68 1.15 11.8 
Atp9 ALIGN_000886 26 73 0.55 5.12 0.55 4.35 
Rps3 ALI G N _000900 11 77 2.02 41.1 2.33 31.5 
Nad3 ALIGN_000893 24 79 1.13 8.82 1.15 10.1 
Nad4 ALI G N _000894 24 424 1.14 3.52 1.10 2.76 
Nad4L ALIGN_000895 23 85 0.87 5.91 0.91 6.45 
Nad6 ALIGN_000897 24 96 1.05 7.214 1.10 7.80 
Atp6 ALI G N _000884 29 203 1.07 3.76 1.03 4.07 
Cox2 ALIGN_000889 29 220 0.75 3.81 0.71 2.98 
Cox3 ALI G N _000890 29 245 1.05 4.75 0.86 3.24 
Nad1 ALI G N _000891 24 294 0.89 2.61 0.84 2.30 
Nad2 ALIGN_000892 23 313 1.21 2.16 1.29 2.69 
Cob ALIGN_000887 29 375 0.67 1.17 0.61 1.04 
Cox1 ALI G N _000888 29 487 0.53 1.76 0.46 .749 
Nad5 ALI G N _000896 24 520 1.01 2.79 0.89 1.94 

Table 2-5: Mean rate estimates and variances (Var) for rate estimates based upon boot-
strap replicates over the fungal data set. Rates are normalized so that the average rate 
is one. Ace. # = Accession number for the alignment in EMBL. AL = alignment length. 
Patristic refers to rates estimated based on distances from maximum likelihood trees. 
Pairwise refers to rates estimated based on maximum likelihood distances. 

DistR rates for each bootstrap data set. The me an and variance of the DistR 

estimates for pairwise and patristic ML distances show sorne interesting trends 

(Table 2-5). In general, the average rate estimates were similar, with the notable 

exception of Atp8, Cox3, and Rps3 (and to a lesser extent N ad2, N ad5, and 

Nad6). Ten of the 15 protein rates derived from patristic ML distances had greater 

variance than their counterparts derived from pairwise ML distances. (Table 2-5). 
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These results support the conclusion that introducing topology into the distance 

estimation procedure is not likely to lead to better distances estimates for the 

DistR procedure when so many taxa are involved and the alignments are short. 

This is a consequence of the large number of distinct trees that can fit a short 

alignment equally well. 

2.5.2.4 Inclusion of DistR estimates into phylogenetic tree search of PHYML 

The experimental results when DistR estimates are incorporated into the ML 

tree search demonstrate the importance of accounting for different evolutionary 

pressures in phylogenetic inference. 

Bootstrap support values for the ML tree using concatenated data are 

presented in Figure 2-7a. The bootstrap support for sorne of the clades was quite 

weak. Incorporating DistR estimates based upon both patristic and pairwise 

ML distances into the tree search led to the same ML tree, presented in 2-7b. 

Overall, bootstrap support was improved in most clades when DistR estimates 

were incorporated into the tree search. 
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Figure 2-7: Please see caption on following page. 
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Figure 2-7 (caption): (a) Phylogenetic analysis based upon the mitochondrial data set. 
The topology shown was inferred using PHYML without DistR protein rates, using the 
JTT model of protein evolution, with 8 Gamma categories, and ML estimation of the 
alpha parameter of the Gamma distribution and the proportion of invariant sites. It 
was constructed using the concatenated 'unambiguously' aligned proteins. Bootstrap 
support for this topology was computed based upon 100 replicates. The percent age of 
support for each clade is given at the root of the clade. In cases where the consensus tree 
differed from the maximum likelihood topology a '-' is written. (b) Phylogenetic analysis 
based upon mitochondrial data set. The topology shown was inferred using PHYML 
with DistR protein rates, using the JTT model of protein evolution, with 8 Gamma 
categories, and ML estimation of the alpha parameter of the Gamma distribution 
and the proportion of invariant sites. It was constructed using the concatenated 
'unambiguously' aligned proteins and prote in rate estimates. The percent age of support 
for each clade is given. Bootstrap support for this topology was computed based upon 
100 replicates, using three different methods. The top numbers give the percent age 
of support based upon using the patristic ML distance DistR estimates from the real 
data as rate values in computing the ML tree for each bootstrap replicate. The middle 
numbers give the percentage of support based upon re-estimating DistR estimates for 
each bootstrap replicate using patristic ML distances. The bottom numbers give the 
percentage of support based upon re-estimating DistR estimates for each bootstrap 
replicate using pairwise ML distances. When bootstrap support was the same for each 
method of incorporating rates it is given only once. 

71 



The topology of the ML concatenation-based tree does not separate Zy­

gomycota and Ascomycota as distinct clades, which is not surprising because the 

Zygomycota are traditionally difficult to place. Furthermore, the out-group is 

incorrect since it should also contain Homo sapiens (which groups incorrectly 

with the zygomycete Smittium and the Ascomycota). This long-branch-attraction 

problem is due to the highly derived Smittium and Homo sequences. Using DistR 

estimates improves the bootstrap support in certain clades, and corrects the most 

evident topological problems, notably that Zygomycota more accurately group 

together (although as an unresolved paraphyletic group). Indeed, almost every 

branch that does not show 100% bootstrap support with the concatenated data 

has improved support when using protein rates. The only branching where support 

somewhat lessened from the concatenated to the protein-rate-based trees (and 

with using individu al bootstrap rates) was the branching of Allomyces (a species 

that is difficult to place whatever the method or data set) with the remainder of 

the Chytridiomycota (Figure 2-7a and 2-7b). Bootstrap support is strongest when 

using protein rates based upon pairwise ML distances, where the rate estimates 

were re-computed for each bootstrap replicate. This is perhaps because the varia­

tion in the pairwise ML distance rate estimates was smaller than, or on the same 

order of magnitude as, the rate estimates based on patristic ML distances. 

Both the Kishino-Hasegawa (KH) test and Akaike Information Criterion 

(AIC) support the ML topology with protein rates as a better fit for the model 

to the data than the concatenated topology. Under the Kishino-Hasegawa test 

(Kishino and Hasegawa, 1989; Shimodaira and Hasegawa, 2001) the concatenated 
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topology was significantly worse than the DistR topology (P < 0.0001) when the 

topology was computed with rate estimates calculated based on both patristic 

and pairwise ML distances. The AIC provides a statistical measurement of the 

significance of the change in log-likelihood when using two different models to fit 

the data. The measure compensates for the increase in the number of parameters 

in the rates model. When DistR estimates based on pairwise ML distances are 

used the AIC is 1043.65182 greater than the AIC for a single rate, concatenated 

analysis. When patristic ML distances are used for rate estimation the increase in 

AIC over the concatenated analysis is 1068.7542. Both increases in AIC are very 

substantial, indicating that important information in the data that is disregarded 

by traditional concatenated analysis, is captured by modelling protein rates. 

2.6 CONCLUSION 

A fast and accurate method to calculate the rates of partitioned data sets is 

presented. Although the analyses performed here are based upon protein sequence 

data, using nucleotide sequences should prove as effective. The error in the method 

is largely due to incorrect initial distance estimates for the proteins, which tend to 

be worse with smaller or poorly conserved sequences. U sing pairwise ML distances 

for DistR estimation is just as accurate as using patristic ML distances. The 

estimates are accurate when compared to ML estimates and Bayesian posterior 

credible intervals for the rates. Incorporating the DistR estimates into PHYML 

leads to statistically better likelihood and topology. 
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2.8 ApPENDIX 

2.8.1 Appendix 1-Formula for mean squared error and goodness­
of-fit 

Mean squared error is used to describe the accuracy of rate estimates. Since 

only relative rates can be computed rates are normalized so that the average 

rate over an proteins is one. Let r denote the true rate (that is, the rate used in 

simulations), and let i\, ... , rlO be the rates estimated in the 10 replicates of the 

experiment. The mean squared error (MSE) is defined as 
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Goodness-of-fit is used to measure the fit of the distance estimates to the 

distances in the tree used for simulation. There is a slight problem with scales 

since Pseq-Gen treats branch lengths as the expected number of substitutions 

per 100 sites while PHYML treats branch lengths as the expected number of 

substitutions per site. Let d~~ be the distance between x and y in the tree used to 

simulate protein k, let rk denote the rate used when simulating protein k, and let 

dW be the distance estimated by PHYML. 

Given the differences in scale the goodness-of-fit measure used was 

Note that the goodness-of-fit is at most one, and equals one if and only if 

there is a perfect fit. 

2.8.2 Appendix 2~Fast algorithm for least squares estimation 

This appendix shows how to quickly determine the vectors p and r that 

minimize the function q(p, r) in equation (2.3) 

_ (k) dxy n ( (k))2 
q(p, r) - ~ ~ wxy Pxy - -;:; 

subject to the constraint that h(p) = "", where 

n 

h(p) = L L W~~PXy 
k=l x,y 
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and K, is an arbitrary, positive constant. In the implementation of DistR 

n 

k=1 x,y 

which corresponds to the assumption that the unknown consensus distances are 

roughly centered on the average of the observed distances. This value can be 

computed in O(nm2
) time for n proteins and m taxa. Any other positive constant 

will work, as the only effect is to change the sc ale of the rate estimates. 

To simplify the mathematics substitute Sk = ..l. for each k = 1, ... , n. Let s 
Tk 

denote the vector [SI, ... , Sn]T. Minimizing q(p, r) is then equivalent to minimizing 

n 

j(p, s) = L L w~~ (Pxy - skd~~)2. (2.5) 
k=1 x,y 

Recall from calculus that the minimum of a one dimensional function can be 

found by determining where the first derivative is equal to zero. This condition 

extends to mul ti-dimensional functions wi th constraints. Refer to (Gillet al., 

1982) for an excellent introduction to the optimization tools used here. 

If (p, s) together minimize the function j, subject to the condition that 

h(p) = K" then there exists a real number À such that 

8f(p,s) + À 8h(p) 
8pxy 8pxy 

0 for aIl taxa x, y 

8f(p,s) 0 for aIl proteins k 
~ 

h(p) K,. 

(2.6) 

In general, (2.6) is only a necessary condition for reaching the minimum, and 

not a sufficient condition. However in this case the matrix formed from the second 
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derivatives of f(p, s) is positive definite, so that the function f is convex (Gill 

et al., 1982). It foUows that if (p, s) and À satisfy (2.6) then (p, s) gives the global 

minimum. 

It is possible to derive the partial derivatives of the functions f and h explic-

itly. To help with notation define the quantities: 

!3xy 

!3xy,k 

'" (k) ( (k))2 ûxy 2wxy d xy 

2",n (k) 
ûk=l w xy 

-2 (k)d(k) 
Wxy xy 

for aU proteins k; 

for aU taxa x, y; 

for aU proteins k and taxa x, y. 

The partial derivative of f with respect to Sk, for sorne protein k, is 

8f(p, s) 
OSk 

'" -2W(k) (p - d(k) Sk) d(k) L xy xy xy xy 
xy 

akSk + ~ !3xy,kPxy. 
xy 

The partial derivatives of f and h with respect to Pxy, for sorne taxa x, y, are 

8f(p, s) 
8pxy 

oh(p) 
OPxy 

n 

'" 2 (k) ( d(k)) L w xy Pxy - xy Sk 

k=l 
n 

L !3xy,k Sk + !3xypxy 

k=l 
n 

'" w(k) L xy 
k=l 

!3xy/2. 

Note from the partial derivatives that the conditions in equation (2.6) are 

linear equations involving the entries of p, s, and À. As such, the next step is to 

rewrite (2.6) in terms of matrix algebra. Given that there are n proteins and m 
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taxa define the following: let D be the n x n matrix with Œ1, Œ2, ... ,Œn down the 

diagonal and zeros off the diagonal; let C be the m(~-l) X m(~-l) matrix with 

{312, {313, ... ,(3(m-1)m down the diagonal and zeros off the diagonal; let B be the 

m(~-l) X n matrix with rows indexed by unique pairs of taxa, columns indexed by 

proteins, and the entry corresponding to row xy and column k equal to (3xy,k; let v 

b th m(m-1) d' . l - 1 [{3 {3 {3 ]T e e 2 1menslOna vector v - 2 12, 13,···, (m-l)m . 

The conditions in equation (2.6) can now be rewritten as 

o 

Bs+Cp+vÀ o 

K,. 

Define 

Solving for p in (2.8) gives: 

p = C- 1(-Bs - vÀ) 

Substituting this into (2.9) and solving for À gives: 

-w 
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(2.7) 

(2.8) 

(2.9) 

(2.10) 



r-' .. 

Replacing À with the above equation in (2.10) provides a solution for p in terms of 

the above defined matrices, vectors and s (i.e. there are no longer any unknowns 

except for p and s): 

p 

Finally, substitute (2.12) into (2.7) to get 

o Ds+BTp 

UU T 1 /'i, 

( 
T ) D + ----:;;- - B C- B s + ~u. 

Let 

M = (D + u:T 

- BTC-1 B) . 

Then, s is found by solving the equation: 

/'i, 

Ms = --u. 
w 

Consensus distances pare obtained by substituting s into equation (2.12). 

(2.11) 

(2.12) 

(2.13) 

The entire computation is summarized in Appendix 3. The running time of 

the algorithm is O(nm2+n3 ) which is time optimal. The algorithm uses O(n2+m2) 

memory in addition to the O(nm2
) required to store the distance estimates d~~. 

There are two complications that can arise in the above calculations. Firstly, 

it could be the case that for a particular pair of taxa x, y, there is no single protein 

that contains both x and y. This means that !3xy is undefined, so that C is no 
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.r-. 
longer invertible. This problem is easily solved. If there is no protein with both x 

and y then the line in (2.6) involving the partial derivative with respect to Pxy is 

satisfied trivially. Therefore, the row and column of C, the row of B, and entry of 

v indexed by the pair x, y can be removed. The reduced problem can be solved as 

before, although no estimate for Pxy is obtained. Row removal is handled in the 

pseudo-code for the algorithm given in Appendix 3 by using constraints in the 

summations. 

The second complication is that the optimization problem might have more 

than one solution, in which case the matrix M in (2.13) will not be invertible. 

This indicates that more information is required to estimate the relative rates, as 

would arise, for example, in a concatenation of two protein alignments over entirely 

different sets of taxa. 
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2.8.3 Appendix 3-The DistR Algorithm 
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Aigorithm DISTR(d, w) 

Input: Distance estimates d~~ for each pair of taxa and each protein k. 

Weights wW for each distance estimate. 

Missing distances have weight zero. 

Output: Rate estimates r. Consensus distances p. 

K, = 2:~=1 2:XY wi~ d~~ 
for k From 1 to n do 

Œk +- 2:XY 2wW(di~)2 
for ail taxa x, y do 

Œk,xy +- - 2wW di~ 
f3 (k)d(k) 

xy,k +- - 2wxy xy 

for ail taxa x, y do 

f3 2 ",n (k) 
xy +- L....k=l wxy 

W +- i 2:xy {3xy 

for k From 1 to n do 

Uk +- 2:XY {3xy,k 

for k From 1 to n do 

for l From 1 to n do 
M +- - '" f3xy,kf3xy,l + lu U 

kl L....xy:f3xy=Jo (3xy w k l 

if k = l then M kl +- M kl + Œk 

if M is non-singular then output 'Insufficient data to estimate rates' 

solve Ms = -~u to obtain s 

for ail taxa x, y such that {3xy i- 0 do 

P +- '" (Uk _ f3xY'k) S + ~ 
xy L....k 2w (3xy k 2w 

for k From 1 to n do 
1 

rk +- Bk 

output rand p 
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Chapter 3 

Accounting for gene rate heterogeneity 

phylogenetic inference 

3.1 BACKGROUND 

. 
ln 

Gene rate heterogeneity is traditionally accounted for in phylogenetic models 

by allowing for each gene to have a rate of evolution. However, it is possible to 

account for gene rate heterogeneity similarly to site rate heterogeneity. In this 

later approach a distribution over gene rates is assumed, which reduces the number 

of parameters in the model. However, this approach is computationally much 

slower. 

This chapter compares the two methods of accounting for gene rate het-

erogeneity, using the Akaike Information Criterion (AIC) and Cross Validation 

Information Criterion (CVIC). Analysis is performed to determine: (i) which 

method is best according to the AIC and CVIC; (ii) the amount of data required 

for the two methods to converge to the same ML topology in PHYML; (iii) what 

properties of the data lead to an improved model fit over the concatenated model 

according to the AIC. 
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3.2 ABSTRACT 

Traditionally, phylogenetic analyses over many genes combine data into 

a contiguous block. Under this concatenated model aIl genes are assumed to 

evolve at the same rate. However, it is clear that genes evolve at very different 

rates, and that accounting for this rate heterogeneity is important if we are to 

accurately infer phylogenies from heterogeneous multi-gene data sets. There 

remain open questions regarding how best to incorporate gene rate parameters into 

phylogenetic models and which properties of real data correlate with improved fit 

over the concatenated model. In this study, two methods of accounting for gene 

rate heterogeneity are compared: the n-parameter method and the a-parameter 

methods. The former approach allows for each of the n gene partitions to have 

a gene rate parameter and the later fits a distribution to the gene rates. Results 

demonstrate that the n-parameter method is both computationally faster and 

in general provides a better fit over both the concatenated model than the a-

parameter method. Furthermore, improved model fit over the concatenated model 

is highly correlated with the presence of a slow relative rate. 

3.3 INTRODUCTION 

The use of multi-gene data sets in phylogenetic analysis is imperative in order 

to resolve evolutionary relationships over large taxon sets and deep phylogenetic 

divergences. Multi-gene data sets have the advantage of greater resolution-with 

more information it is possible to find better trees (see for instance Gontcharov 
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et al., 2004). However the heterogeneous nature of the data does present problems. 

When there are many genes present in the analysis, it is necessary to account for 

the fact that different genes undergo different selective pressures, and that the 

degree of site rate heterogeneity within a gene may vary from gene to gene. The 

incorporation of data under different evolutionary pressures (as found in different 

codon positions, or different genes) should be taken into account when calculating 

likelihoods (Bull et al., 1993; Huelsenbeck et al., 1996; Yang, 1996; Bapteste et al., 

2002; Pupko et al., 2002b; Nylander et al., 2004; Cranston and Rannala, 2005). 

Determining how best to incorporate gene rates in a maximum likelihood 

(ML) context is a relatively unexplored area of phylogenetics research. When 

incorporating gene rates into maximum likelihood phylogeny estimation there 

are two approaches that can be taken. The first approach involves using a single 

rate for each gene (hereafter referred to as the n~parameter method) as initially 

proposed by Yang et al. for DNA sequences (Yang, 1996) and extended by Pupko 

et al. to protein data (Pupko et al., 2002b). This approach to accounting for 

gene rate heterogeneity has been shown to le ad to better model fit according to 

the Akaike Information Criterion (AIC) (Yang, 1996; Pupko et al., 2002b; Bevan 

et al., 2005) and in sorne cases better inference of the preferred tree topology 

(Bevan et al., 2005). The second approach involves integrating out over all possible 

rates for a given gene using a dis crete approximation to a continuous distribution 

(hereafter referred to as the a~parameter method) (Felsenstein, 2001, 2004b). 

Both approaches to accounting for gene rate heterogeneity assume that 

a gene evolves at a particular rate of evolution. However, the n~parameter 
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method does not allow for any uneertainty in the rate for a particular gene, but 

assumes that it is valid to use ML estimates of the rate to account for gene rate 

heterogeneity. Conversely, the a-parameter method does account for uneertainty 

in the rate estimate for a gene through integration over all possible values that a 

rate might take. Although assuming a single rate for each gene is computationally 

faster than integrating, it could potentially suffer from the difficulty of 'infinite 

parameterization' when many genes are used in the analysis (thus over-fitting the 

data sinee there are more degrees of freedom). While the n-parameter method has 

been tested, and found to le ad to significant improvement in maximum likelihood 

phylogeny estimation (Yang, 1996; Pupko et al., 2002b; Bevan et al., 2005), the 

a-parameter method has yet to be investigated. 

In addition to determining how best to incorporate gene rate parameters, 

the question remains of what correlat es with improved fit over the concatenated 

model. This paper has two goals: to determine whether the computational effort 

required by the a-parameter method is justified according to the Akaike Infor­

mation Criterion (AIC) (and Cross Validation Information Criterion (CVIC)); to 

determine the properties of the data that lead to an improved fit when accounting 

for gene rate heterogeneity in phylogenetic models. 
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3.4 MATERIALS AND METHODS 

3.4.1 The n~parameter method 

The n-parameter method is well studied and has been shown to le ad to better 

likelihoods (Yang, 1996; Pupko et al., 2002b; Bevan et al., 2005). Consider n genes 

GI, ... , Gn. Let rI, ... , rn denote the rates of evolution of GI, ... , Gn, let B denote 

the pair {T, À} where T is a tree topology, and À a set of branch lengths. Also let 

as be the parameter for the distribution accounting for rates across sites. Here as 

is used instead of a in or der to differentiate between rates across sites and rates 

across genes. The likelihood is computed as: 

= P(GIIB, as, rdP(G2IB, as, r2)'" P(GnIB, as, rn) 

(3.1) 

The rates rI, ... , r n have mean 1.0. The parameter B may also include other 

parameters (such as the proportion of invariant sites). The formula in equation 

(3.1) makes the assumption that the rates of evolution of all genes are indepen-

dent. 

Let Gg,i denote site i in gene g. For this site the likelihood under the n­

parameter method Ln . is: g,' 
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Ln9,i (B, as, rgIGg,i) = P( Gg,iIB, as, rg) 

= 100 

f(Rlas)P(Gg,iIB, R, rg)dR 

s 
Rj :Lp(Rjlas)P(Gg,iIB, Rj, rg) 

j=l 
s 

= :Lp(Rjlas)P(G9,iIB, Rj x rg) 
j=l 

(3.2) 

where S is the number of categories used to approximate the probability density 

function of the Gamma distribution (J = r(as , ;.)) for site rate heterogeneity, 

Rj is the site rate for category j, and p( Rj) is the probability of this site rate 

category. It is possible to have one as over aU sites in aU genes. It is also possible 

to have one as for each gene (or a Sll ... , asJ. In both cases the likelihood of a site 

is calculated in the same way. 

This model assumes that branch lengths for different genes are proportional. 

In effect, the bran ch lengths are multiplied by a value proportional to the evolu-

tionary rate of the gene and the evolutionary rate of a site. 

Sinee the sites are assumed to be independent, the likelihood for an entire 

gene Ln,g is calculated from the product of the site likelihoods (3.2) for aH sites i 

in gene 9 (i.e. sites i E g) as: 

sites iEg 

s 
= II LP(Rjlas)P(G9,iIB, Rj x rg) (3.3) 

sites iEg j=l 
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Combining (3.1) and (3.3) with the assumption of independence between 

genes, the log-likelihood over aU sites is ealculated as: 

log(Ln(e, as, rI, ... , rn\G I , ... , Gn)) = log ( II Lng(e, as, rg\Gg)) 
genes g 

= log (II . II Ln9,i (e, as, rg\Gg,i)) 
genes g sItes ~Eg 

genes g sites iEg 

Thus no time or eomputational eomplexity is added when ealculating the 

likelihood, versus eomputing the likelihood of the eoneatenated data set with no 

gene rates (or equivalently eomputing the likelihood with rg = 1.0 for aH genes 

g). The only addition al eomputational time required is optimizing over the gene 

rates rI, ... , r n . However, with good starting estimates, sueh as those found with 

the DistR method (Bevan et al., 2005), this time is not too signifieant. 

3.4.2 The a-parameter method 

Define e = {>\, T} for braneh lengths À, and a topology T, and as as the 

parameter for the rates aeross sites distribution. Also let w be the parameter for 
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distribution h which describes rates across genes. Then the likelihood of gene 9 

under the a-parameter method is calculated as: 

Lag (e, as, wlGg) = p(Ggle, as, w) 

= 100 

h(rlw)P(Ggle, as, r)dr (3.4) 

c 
~ LP(1\lw)p(Ggle, as, Tk) (3.5) 

k=l 

c 
= LP(Tklw) II P(Gg,il e, as, Tk) (3.6) 

k=l sites iEg 

C S 

~ LP(Tklw) II LP(1~jlas)P(G9,ile, Rj X Tk) (3.7) 
k=l sites iEg j=l 

where C is the number of categories used to approximate the probability density 

function h with parameter w. Probabilities p(Tk) are used to approximate h with 

rates rk, where h is a density function that describes the distribution of gene rates. 

The best choice of distribution h will be discussed later, however the mean of the 

distribution must be 1.0. 

In (3.4) we integrate over the parameter w, thus computing the likelihood 

of the data Gg for infinitely many gene rates, weighted by the probability of the 

gene rate. The approximation (3.5) of the integral by a summation is made in 

order to reduce the number of computations involved in integrating. This involves 

approximating h with a discrete version of the distribution with C categories and 

rates Tl, ... , rc. Without such an approximation the integration is impractical to 

compute. The equivalence between (3.5) and (3.6) is obtained because aU sites 
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i in gene gare assumed to be independently evolving. The equality of (3.6) and 

(3.7) exists because site rate heterogeneity is accounted for as in equation (3.2). 

As with the n-parameter method, it is possible to have one Gamma distribution 

describing site rate heterogeneity, or it is possible to have n Gamma distributions, 

one describing the site rate heterogeneity in each gene. 

Since the genes are independent the overall likelihood is 

LaU), as, w1G1 , ... , Gn ) = La1 (e, as, w1G1) .•. Lan (e, as, wlGn ) 

Computing the log-likelihood log(La(eIG1 , G2 , •.• , Gn )) for the a-parameter 

method is more complex, due to the summation over a product. See Appendix 

1 for details. Under the a-parameter method it is possible to approximately 

compute the probability of gene 9 evolving at a particular rate f k , using the 

Gamma distribution as a prior over the possible rates as P(fkIGg, e, as) ~ 

P( Gglrk' e, as)P(rk) (which doesn't account for the probability of the data 

P(Gg)). This can provide a sense of whether the ML rate estimate is a meaningful 

parameter to describe the data. Additionally, if the unnormalized probabilities are 

uniform accounting for rate heterogeneity for the gene of interest may not provide 

an improved fit over the concatenated model. 

3.4.2.1 The Gamma distribution 

The Gamma distribution is used to describe gene rate heterogeneity. Under 

the a-parameter method, reasonable starting values are chosen based upon the 

ML fit of the Gamma distribution to initial gene rate estimates. In phylogenetic 
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analyses, the expected rate over multiple genes is 1.0. Under the r(a,,6) distribu­

tion this is accompli shed by setting ,6 = ~, since the expectation of the distribution 

is then a~ or 1. A log-normal distribution could also be used here (Felsenstein, 

2001). 

3.4.3 The DistR approach 

Under both the n-parameter and a-parameter methods, using good initial 

estimates for the gene rates will help reduce the computation time to find maximal 

likelihood estimates of the gene rate parameter(s) in each method. In the case of 

the n-parameter method, initial estimates of the gene rates can be used directly. 

In the case of the a-parameter method, initial estimates of the gene rates can be 

used to find a maximum likelihood estimate of the a parameter of the Gamma 

distribution. These initial parameter estimates (either the gene rates or the 

initial ML estimate of a) are then further optimized to determine the maximum 

likelihood values. 

Here, initial estimates of the gene rates rI, ... , r n are computed beforehand 

using the DistR method (Bevan et al., 2005). Initial pairwise distances for the 

method were estimated using ML distances from PHYML (Guindon and Gascuel, 

2003), with the JTT model of evolution, a proportion of invariant sites and 

Gamma distribution for site rate heterogeneity with 8 categories. 
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3.4.4 Improved fit over the concatenated model 

To determine the improvement (if any) of the o:-parameter and n-parameter 

methods over the concatenated model the Akaike Information Criterion (AIC) 

(Akaike, 1974) and Cross-Validation Information Criterion (CVIC) (Smyth, 2000) 

were used. The AIC provides a measure of the expected Kullback Leibler distance 

between the model of interest and the actual 'true' model. The CVIC does not 

rely upon data independence like the AIC (Smyth, 2000). It applies the cross­

validation princip le to obtain a penalized likelihood. However, it is much more 

computationally slow, and thus was only used on two of the smaller data sets, to 

validate the results. 

The Likelihood Ration Test (LRT) was not used, because the concatenated 

model is not nested within either gene rate heterogeneity model (when gene rates 

are accounted for using the n-parameter or o:-parameter method) when each gene 

has a separate Gamma distribution for site rate heterogeneity. The concatenated 

model is nested within the gene rate heterogeneity model (both n-parameter and 

o:-parameter methods) with one-Gamma for site rate heterogeneity. However, the 

LRT does not follow a X2 distribution because the alternative and null models are 

equivalent when sorne parameters are fixed at the boundary of parameter space 

(i.e. when the value of 0: in the o:-parameter method tends towards a large value 

such as 100). 
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3.4.4.1 Calculating the AIC and CVIC 

The Ale is calculated based upon correcting the log~likelihood by sorne 

function of the number of parameters in the model of interest. Under the n~ 

parameter method, the parameters are the gene rates for each gene, the site rate 

heterogeneity parameter(s), the tree topology and the proportion of invariant sites. 

The a~parameter method has a similar set of parameters. However, rather than 

one rate parameter for each gene, it has a parameter for the distribution that 

describes gene rate heterogeneity. The concatenated model has the same set of 

parameters) but no gene rate parameters and it does not allow for each gene to 

have separate parameters for site rate heterogeneity. 

The Ale is the sum of the negative log~likelihood of the model, plus the 

difference in a function of the number of parameters used in each model, multiplied 

by two. Thus, the difference in Ale between the rates based model and concate­

nated model is calculated as: !.::J.AIC = 2Lr - 2Le + 2(!.::J.p) where Le and Lr are the 

log~likelihoods of the concatenated and gene rates heterogeneity models respec­

tively. Here !.::J.p is the difference in a function of the number of parameters in the 

concatenated model and the gene rates model (e.g. either the n~parameter method 

or a~parameter method) and thus will be a negative number. The first order Ale 

does not account for sequence length and thus a second order Ale was used where 

the number of parameters is defined as (n-~-l) (Burnham and Anderson, 2003) 

where n is the sequence length and K the number of parameters in the model of 

interest. 
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The Cross~ Validation Information Criterion is useful to confirm the results 

of the AIC sinee the AIC makes the assumption of data independence. Although 

the concatenated model conforms to this assumption, the gene rates models do 

not. Under the gene rates model, each site in a gene is assumed to be under 

the same rate of evolution, which violates the independence assumptions of the 

AIC. The CVIC was designed to determine the correct number of clusters to 

use in a probabilistic clustering framework (i.e. components in finite mixture 

models) (Smyth, 2000). Thus the CVIC does not rely upon the assumption of data 

independence. 

The CVIC for a data set is calculated by dividing the data into 2 subsets. 

The model of interest (concatenated or gene rates) is evaluated on one subset, 

obtaining ML estimates of aH parameters of interest. These ML estimates are used 

to evaluate the likelihood of the data on the second subset, under the same model. 

This process is repeated b times (in this case 50), and the CVIC for model m is 

calculated as CV JCm = 5
1
0 L~~l L 2,m. Here L 2 ,m is the likelihood of the second 

subset of data, evaluated under the ML estimates obtained from the first subset of 

data. Thus the Ô.CV JC is defined as Ô.CV JC = CV JCr - CV JCe where rand c 

denote the gene rates and concatenated models respectively. 

If the model accounting for rate heterogeneity is preferred as a better fit to 

the data (versus the concatenated model), the change in AIC or CVIC between the 

two models (or Ô.AJ C, ô.CV J C) will be positive, otherwise it will be negative. 
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3.4.5 Data Analyzed 

3.4.5.1 Empirical investigation of gene mtes 

Under the a-parameter method it is important to choose a distribution that 

accurately refiects the gene rates found in empirical data. To determine if the 

Gamma distribution accurately refiects empirical rate estimates gene rates were 

calculated over a number of data sets using the DistR method (Bevan et al., 2005). 

The data sets used for analysis consist of: 41 data sets of size 20-40 species per 

gene (Harlow et al., 2004); a multi-gene data set consisting of 133 genes over 44 

species (Brinkmann et al., 2005); another multi-gene data set over 37 species 

with 146 genes; and a 14 species data set with 106 genes (Rokas and Carroll, 

2005). The first data set was prepared using automatic homology testing over 144 

species, which is an extension of the analysis from Harlow et. al. (Harlow et al., 

2004). The other data sets were hand curated (i.e. proteins were hand selected for 

analysis). In both cases initial distance estimates provided to the DistR procedure 

were estimated using pairwise ML distances, with eight categories for the Gamma 

distribution, a proportion of invariant sites, and the JTT model of evolution. 

3.4.5.2 Data analyzed with n-pammeter and a-pammeter methods 

Six protein data sets were used for analysis: a fungal mitochondrial data set 

with 29 species and 15 genes (Bevan et al., 2005); a eukaryotic data set with 44 

species and 133 genes (Brinkmann et al., 2005); the modified Madsen alignment 

of placent al mammals with 4 genes and 28 species (Madsen et al., 2001; Pupko 
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et al., 2002b) ; the modified Murphy alignment of placent al mammals with 6 

nuclear genes and 46 species (Murphy et al., 2001; Pupko et al., 2002b); an animal 

mitochondrial data set with 12 genes over 56 species (Pupko et al., 2002b); a 

fungal nuclear data set with 8 species and 106 genes (Rokas et al., 2003). 

For each data set a modified version of PHYML was run with the default 

BIONJ starting tree. The JTT model of evolution was used with an estimated 

parameter for the proportion of invariant sites. Site rate heterogeneity was ac­

counted for using either one Gamma distribution for aH sites (hereafter denoted 

one-Gamma), or a separate Gamma distribution to describe site rate heterogeneity 

for each gene (hereafter denoted gene-Gamma). In both cases four categories were 

used in the discrete approximation to the distribution. Gene rate heterogeneity 

was accounted for using either the n-parameter or the a-parameter method as 

outlined above. Six equiprobable categories were used in the discrete approxima­

tion to the gene rates distribution in the a-parameter method. Gene resampling 

was performed on the data set over 8 fungal species and 106 genes by randomly 

selecting 50 gene sets of size 3, 50 gene sets of size 5, and 50 gene sets of size 10. 

3.5 RESULTS AND DISCUSSION 

3.5.1 n-parameter versus a-parameter method 

Five diverse data sets with differing numbers of genes and species were 

analyzed to determine which approach to gene rate heterogeneity results in the 

greatest improvement over the concatenated model based on the t1AIC. Table 3-2 
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and Figure 3-2 indicate that with more genes under analysis, there is a greater 

average fiAIC favouring a model that accounts for rate heterogeneity. However, 

based upon this data there is no clear correlation between the spread of the data 

(i.e. the lst and 3rd quartiles, or a value under the a-parameter model) and 

improved model fit over the concatenated model. 

It is evident that there is no advantage to using the a-parameter method 

over the n-parameter method to find a better fit to the data. According to the 

fiAIC (Table 3-2), the n-parameter method has the best fit compared to the 

concatenated method for all data sets analyzed. This is true for both one-Gamma 

and gene-Gamma analyses. Thus, there is no reason to prefer the n-parameter 

model or a-parameter model as a better fit to the data according to the AIC. 

When the CVIC was calculated on the two smallest data sets (Madsen and 

Murphy) the results obtained under the AIC were confirmed (Table 3-2). This 

provides independent corroboration that the a-parameter method does not find a 

better fit to the data when compared to the n-parameter method. Differences in 

CVIC for the gene rates model versus the concatenated model are not expected to 

be as large as the fiAIC because of the way the CVIC is calculated. 

This is especially interesting considering the time to find the tree un der each 

method (Table 3-3). The n-parameter method takes longer than the concatenated 

model primarily due to optimization of the ML gene rates. Notably, the a­

parameter method takes 2-3 times longer than the n-parameter method (Table 

3-3). 
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Data Set NG 

Fungal 15 

Eukaryotic 133 

Madsen 4 

~CVIC 

Madsen-PT 4 

~CVIC 

Madsen-nT 4 

Madsen-aT 4 

NS 

29 

44 

Q 
0.75, 
1.07 
0.83, 
1.14 

28 0.81, 
1.16 

28 0.82, 
1.16 

28 0.82, 
1.17 

28 0.81, 
1.17 

Animal 12 56 0.81, 
1.21 

Murphy 6 46 0.39, 
1.23 

~CVIC 

n-parameter 
one-f gene-f 

a-parameter 
a one-f gene-f 

1027.77 1152.25 6.284 893.06 1010.45 

1529.21 2474.07 8.707 1298.84 2199.74 

154.57 427.80 4.408 149.80 423.33 

49.86 
163.77 

49.79 
149.32 

153.33 

119.83 13.72 
436.82 4.473 152.64 

80.09 
426.62 

121.41 50.16 119.03 
422.10 4.465 140.73 414.45 

426.29 4.457 142.37 415.87 

248.87 378.14 3.587 221.21 321.0 

188.88 293.71 1.187 186.48 281.90 

28.58 55.72 21.60 42.83 
Table 3-2: !lAIe values for five data sets with differing numbers of genes and species 
(NG = Number of Genes, NS = Number of Species). For the Madsen and Murphy data 
sets the !leV le was calculated. It is given on the second line, after the !lAIC values. 
One-r and gene-r refer to the number of Gamma distributions used to account for site 
rate heterogeneity: either one for the entire data set (one-Gamma), or one for each gene 
respectively (gene-Gamma). Q refers to the first and third quartiles, and a to the value 
of the a parameter for gene rate heterogeneity under the a-parameter method with one­
Gamma. !lAIC and !leV le values are calculated with respect to the concatenated 
model. Madsen-PT refers to analysis of the Madsen data set on the 'preferred' topol­
ogy. In this case aIl the parameters were optimized over, except for the topology which 
was held constant. Madsen-nT refers to analysis of the Madsen data set on the 'best' 
topology found under the n-parameter method with gene-Gamma (the 'best' topologies 
differ when searching tree space when one-Gamma versus gene-Gamma are used with 
the n-parameter method). Madsen-aT refers to analysis of the Madsen data set on the 
'best' topology found under the a-parameter method (the topology for with one-Gamma 
and gene-Gamma is the same under the a-parameter method when searching topology 
space). 
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Wh en the inferred maximum likelihood (ML) topologies of the a-parameter 

and n-parameter methods (with gene-Gamma) were compared, four out of the five 

data sets had different topologies. The eukaryotic data set did not have different 

topologies, however it is known to be a problematic data set in terms of long 

branch artifacts and heterotachy (Brinkmann et al., 2005). Thus, even when the 

!lAIe indicates that there is litt le difference between the model fit (Table 3-2), 

it is possible that the a-parameter and n-parameter methods find different ML 

topologies (Figure 3-1). 

Further investigation of the Madsen data set with gene-Gamma (Table 3-

2) shows that for both methods much of the topology agrees with the topology 

of Murphy et al. (Murphy et al., 2001), a topology currently supported by 

molecular data (Figure 3-1) (Springer et al., 2004). However, the grouping within 

the Laurasiatheria does not correspond to the currently supported molecular 

hypothesis (Figure 3-1a and 3-1b) (Springer et al., 2004). The a-parameter 

method gives the topology for the Laurasiatheria that is closest to the M urphy 

topology (in terms of SPR moves), only grouping Pangolin incorrectly with 

Flying Fox/Round Eared Bat rather than Cat/Dog. The n-parameter method 

incorrectly groups Horse/Rhino and Dog/Cat into a monophyletic group, with 

Flying Fox/Round Eared Bat an in-group. Pangolin is also grouped incorrectly in 

this topology (Figure 3-1 a). 

Although the n-parameter method finds a slightly better fit according to 

the AIC, care must be taken when evaluating which method finds the best tree 

topology. Neither method finds the preferred Murphy topology, but this is likely 
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(a) 

(b) 

n-parameter model 
,.----------- Kangaroo 

,...----------- Opossum 
,.---- Pangolin 

Whale 
Hippo 
Cow 

'---- Pig 
Flylng Fox 
Round Eared Bat 
Rhino 
Horse 
Dog 
Cat 
Mole 
Hedgehog 
Rabbil 
Rat 
Capybara 

,...---- Tree Shrew 
Flying Lemur 
Galago 
Human 
Elephant 
Dugong 
Hyrax 

'---- Ardvark 
'----- Elephant Shrew 

'------ Sioth 

a-parameter model 
,------------- Kangaroo 
,...----------- Opossum 

...---- Tree Shrew 
Galago 
Human 
Flying Lemur 
Rabbit 
Capybara 
Rat 
Dog 
Cat 
Rhino 
Horse 

.----- Pig 
Cow 
Whale 
Hippo 
Flylng Fox 
Rouni! Eared Bat 
Pangolin 
Hedgehog 
Mole 
Elephant 
Dugong 
Hyrax 

'---- Ardvark 
'----- Elephant Shrew 

'------ Sioth 

Laurasiatheria 

Laurasiatheria 

Figure 3-1: Final topologies found for the Madsen data set (Table 3-2), where branch 
lengths are not depicted. (a) ML topology found using the n-parameter method with 
gene-Gamma. (b) ML topology found using the a-parameter method. The two methods 
find different groupings for the Laurasiatheria species. 

because only four genes were under analysis for 28 species. More data are needed 

to correctly resolve the phylogeny. Furthermore, when the topology found under 
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Data Set n-parameter a-parameter concatenated 
Fungal mtDNA 62m25s 220mlOs 12m4s 
Eukaryotic 29866m57s 6996m18s 337mOs 
Madsen 23m14s 112m44s 7m32s 
Animal mtDNA 120m59s 347m53s 50mOs 
Murphy 33m24s 88m10s 13m41s 

Table 3-3: Time for analysis using the gene rate heterogeneity and concatenated mod­
els, with the one-Gamma to account for site rate heterogeneity. For each data set, the 
analysis for the different models was performed on the same desktop machine. However, 
times across data sets are not comparable sinee the different data sets were all analyzed 
on different computers. 

the a-parameter method is used to evaluate the data under the n-parameter 

method (and vice versa), according to the Ale the a-parameter method finds 

a better tree (Figure 3-1, Table 3-2, Madsen - aT and Madsen analyses under 

n-parameter method; Madsen - nT and Madsen under a-parameter method). 

When the Madsen data was analyzed on the M urphy topology, optimizing 

for aU other parameters, the a-parameter method does not find a better fit to the 

data than the n-parameter method (Table 3-2, Madsen-PT) according to both the 

!lAIe and !leV le . Thus, although PHYML se arches the topology space of trees 

differently under the a-parameter and n-parameter methods, neither method is 

preferred as a better fit to the data given the Murphy topology. 

Figure 3-2 gives the !lAIe values for the resampled genes data sets. These 

results demonstrate that: (i) both methods of accounting for gene rate hetero-

geneity find approximately equivalent improvement over the concatenated model; 

(ii) there are sorne data sets for which accounting for gene rate heterogeneity does 

not lead to an improved fit (Figure 3-2). Figure 3-2a is particularly important 
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.~. 

because there is one data set for which accounting for gene rate heterogeneity 

using the a-parameter method gives a worse fit than the concatenated model 

(~AIC = -161.319, one-Gamma for site rate heterogeneity), whereas the 

n-parameter method gives an improved fit (~AIC = 63.132, one-Gamma for 

site rate heterogeneity). This is because under the a-parameter method C. al-

bicans is incorrectly grouped as an in-group with S. mikatae, whereas under the 

n-parameter method the 'preferred' tree topology (Figure 3-5a) is found. This 

indicates that in sorne cases the a-parameter method has difficulty converging to 

the 'preferred' topology in PHYML. 

(a) 

150 , 
1 ..... 

iOO ..... ..... , , , 
50 B • 0 -'-

-50 

-100 

-150 

(b) (c) 

500 

400 500 
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300 ..... ..... ..... ..... , 300 , , , , 
200 , , , , 200 

100 g • 100 , 
-'--- -'---0 0 

c=:::J n-parameter model one-gamma 

... n-parameter model gene-gamma 

_ a-parameter model one-gamma 

... a-parameter model gene-gamma 

..... ..... , , ..... , ..... , , 

'1 .~ B , , ' ' , 
-'--- -'---

Figure 3-2: Box plots of !lAIC values comparing the gene rates incorporated model to 
the concatenated model. !lAIC values were calculated for: (a) 3 genes ; (b) 5 genes; (c) 
10 genes. In each case the genes were sampled randomly from 106 genes, 50 times. 
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3.5.2 Empirical rate distribution~does the Gamma distribution 
describe the empirical distribution of gene rates? 

The a~parameter method does not find a better fit to the data than the 

n-parameter method. Thus, it is important to determine if it is valid to assume 

that the gene rates are distributed according to the unimodal Gamma distribution. 

To test this assumption, the distribution of gene rates across many multi-gene 

data sets was determined in order to avoid the problem of sampling erroI. Because 

DistR estimates have been shown to approximate ML gene rate estimates, a large 

number of DistR estimates taken from multiple data sets are likely to approximate 

the true distribution of gene rates. 

Figure 3~3a shows the distribution of all the gene rates estimated over a 

number of data sets. The rates were estimated using the DistR method (Bevan 

et al., 2005), with varied size data sets in terms of number of species, number of 

genes, and number of missing distances. The maximum number of missing pairwise 

distances was about 50%, which is fairly substantial. 

The Gamma distribution provides an excellent fit to the data over many data 

sets (Figure 3-3a). Thus it is accurate to assume that the rate of gene evolution 

is distributed according to a Gamma distribution. It should be noted however, 

that even in the case of large data sets with many genes it is possible that the 

Gamma approximation will not be accurate (Figure 3~3b). In such cases it might 

be better to use a mixture of Gamma distributions over gene rates (as has been 

do ne for site rates in Mayrose et al., 2005). It is possible that using a better 

distribution will cause the a-parameter method to find a better fit to the data 
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than the n-parameter method. However, this option was not explored in the 

current analysis. It is also possible that using a better method to approximate 

the Gamma distribution willlead to more improvement of the fit under the a­

parameter method. Thus, Laguerre integration was used to approximate the 

distribution. However, when this approach was used the PHYML algorithm had 

difficulty converging to a local optimum in sorne cases (data not shown). For 

the data sets that were successfully analyzed, this approach did not cause the 

a-parameter method to find a better fit to the data than the n-parameter method 

(data not shown). 

3.5.2.1 DistR estimates versus ML estimates 

DistR estimates are used as initial approximations to the gene rates in the 

n-parameter method, and to find an initial estimate of a in the a-parameter 

method. Thus, it is important to determine how accurate these initial estimates 

are. Figure 3-4 shows the initial DistR estimates versus the final ML estimates 

from the five data sets in Table 3-2, estimated using the n-parameter method with 

gene-Gamma. There is strong correlation between the two (Pearson's one-tailed 

correlation 0.904, P-value < 2.2e- 16
), and the final ML parameter estimates are 

quite close to the starting DistR estimates. Thus, the DistR estimates provide an 

excellent starting point for the n-parameter method. This is especially important 

for large data sets in order to reduce the time spent searching rate parameter 

space. 
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Figure 3-3: Density of estimated gene rates versus best fit of Gamma distribution. (a) 
Density of gene rates estimated using DistR (solid line) versus best fit of Gamma dis­
tribution (dashed line) for data described in Methods section. (b) Density of gene rates 
estimated using DistR (solid line) versus best fit of Gamma distribution (dashed line) , 
for 133 genes over 44 species. 

In general the initial a parameter estimates were also quite close to the final 

estimates under the a-parameter method with gene-Gamma. As expected, when 

more genes were present in the analysis the initial estimate was more accurate. 

For example, both the fungal and animal mtDNA data sets have more than 10 
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Figure 3-4: Correlation of the initial DistR gene rate estimate with the ML gene rate 
estimates. Maximum likelihood gene rates were estimated using the JTT model of evo­
lution with a site rate Gamma distribution for each gene and a proportion of invariant 
sites. Estimates are based on data sets in Table 3-2. 

genes, with relative errors of 0.0354 and 0.0263 respectively between the initial and 

ML estimates of the a parameter. Conversely, both the M urphy and Madsen data 

sets have fewer genes (Table 3-2). The respective relative errors of the initial a 

estima tes are 0.1871 and 0.1898. The relative error does not seem to be affected by 

the number of species since the animal mtDNA data set has the greatest number 

of species but the smallest relative error. 
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r-' 1 3.5.3 Topology resolution under n-parameter and a-parameter 
methods 

Given that the a-parameter and n-parameter methods give potentially 

different ML topologies, even when there is little difference in the improved fit 

over the concatenated model, it is important to determine at what point the two 

methods provide congruent answers. Figure 3-5 shows the 'best' (or favoured) 

topology, along with the branchings that prove difficult to resolve (in the data set 

of Rokas et al., 2003). 
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Figure 3-5: Bootstrap support for 8 fungal species under the n-parameter and (X­

parameter methods. (a) The correct tree topology. The branches which are difficult 
to resolve are labelled with *, **, and ***. (b) Bootstrap support for three branches for 
3 genes, 5 genes and 10 genes sampled 50 times each from 106 genes in total. 

The different methods of accounting for gene rates leads to different bootstrap 

support. Additionally, adding more genes leads to an increase in support as shown 

by Rokas et al. (Rokas et al., 2003). The paraphyletic branching of S. bayanus 

with S. castellii and the remainder of the in-group (Figure 3-5) was the most 

consistent in terms of improved bootstrap support with more genes, for both the 
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n-parameter and a-parameter methods. Conversely, the other two branches had 

inconsistent results across the two methods (Figure 3-5). For example, when using 

3 genes, the S. mikatae branching starts with low support under the n-parameter 

method, then quickly reaches 90% support at 5 genes, and 100% support at 10 

genes. For the a-parameter method the opposite is true: at 3 genes the S. mikatae 

branching has 90% bootstrap support, which drops to just above 80% support with 

5 genes and increases to 100% support with 10 genes. 

Evidently, in or der to obtain a consistent ML tree between the two methods, 

more data are necessary. Thus, one explanation for the inconsistency in topologies 

found by the two methods (e.g. for the data in Table 3-2) is lack of data. This 

problem is exacerbated when more species are under analysis (as opposed to the 

8 species used in this experiment). However, even with sufficient data, if model 

assumptions of the gene rates models are not valid (i.e. the model is misspecified 

with respect to true sequence evolution) than topology resolution artifacts can 

occur, even with sufficient data (see for instance, Philippe et al., 2005). 

3.5.4 Correlation of gene rates with improved fit under n-parameter 
and o;-parameter methods 

The gene resampling experiment on the 106 gene Rokas data set not only 

provides information on how much data are necessary for both methods to provide 

congruent ML topologies, but it also demonstrates that sorne data sets have litt le 

to no improvement over the concatenated model (Figure 3-2). 
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Statistic 3 Genes 5 Genes 10 Genes 
p P-value p P-value p P-value 

Max(GR)-Min(GR) 0.812 4.008e-13 0.662 8.407e-s 0.485 1.185e-4 

Max(GR) 0.464 3.398e-4 0.244 4.376e-2 0.144 0.1595 
Min(GR) -0.682 2.537e-s -0.723 1.055e-9 -0.774 2.111e-ll 

Table 3-4: Correlation of ~AI C of the n-parameter method of accounting for gene rate 
heterogeneity with: the minimum gene rate (Min(GR)); maximum gene rate (Max(GR)); 
the difference between the minimum and maximum gene rates (Max(GR) - Min(GR)). 
Gene rates were estimated globally over the 106 genes from which the data sets were 
sam pIed. As the number of genes under analysis increases, so do es the correlation of 
the ~AIC with the minimum gene rate. Conversely, both the maximum gene rate and 
the difference between the two become less correlated with the ~AIC. ~AIC values 
are based upon accounting for gene rate heterogeneity using the n-parameter with one 
Gamma distribution for site rate heterogeneity. 

To determine what leads to an improved model fit of the gene rates model 

over the concatenated model we calculated the correlation between the .6.AI C and 

three values: the rate of the slowest evolving gene in the data set; the rate of the 

fastest evolving gene in the data set; the difference between the rates of the fastest 

and slowest evolving genes in the data set. In order to compare gene rates properly 

across all resampled gene data sets, the gene rates were estimated over all 106 

genes. 

Correlation was tested only on the n-parameter and a-parameter methods 

with one-Gamma distribution for site rates. This allows for the influence of the 

gene rates on the .6.AIC to be tested without the influence of separate Gamma 

distributions for site rate heterogeneity for each gene. Results are given for the 

n-parameter method. Results based upon the a-parameter method were identical 

except in one data set where the concatenated model was preferred (Figure 3-2). 
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Results (Table 3-4) demonstrate that it is not only the number of genes 

in the analysis which affects the improvement of the rates incorporated model 

over the concatenated model. Both the minimum rate in the analysis and the 

difference between the maximum and minimum rates also have a strong effect. 

Correlation values show that with fewer genes both the difference between the 

maximum and minimum rates, and the maximum rate are positively correlated 

with 6.AIC. Conversely, the minimum rate is negatively correlated with 6.AIC 

(Table 3-4). However, as the number of genes increases, correlation of 6.AIC with 

the maximum gene rate decreases and becomes statistically insignificant (Table 

3-4). Correlation of the 6.AI C with the difference between the maximum and 

minimum rates also decreases, as does the statistical significance. Interestingly, 

the negative correlation of the 6.AIC with the minimum gene rate increases, as 

does the significance of the correlation (Table 3-4). Thus, although the difference 

between maximum and minimum rate (i.e. the degree of rate heterogeneity) is 

important for improved fit, it is not as important as the minimum rate of the gene 

under analysis. 

The results indicate that it is the minimum gene rate that is the primary 

variable that determines whether there is improved model fit when using a model 

that accounts for gene rate heterogeneity. Indeed, a slower global minimum rate 

indicates that a higher improvement in the fit of the model to the data are likely 

when accounting for gene rates. This is partially due to the fact that a slower 

global rate will likely lead to a slower relative rate in the data set under analysis, 

and thus greater gene rate heterogeneity. However, if gene rate heterogeneity 
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were the only factor infiuencing improved fit, we would expect to see that the 

correlation of improved fit with maximum rate would remain high (or at least 

significant) with more genes under analysis. This is because a faster global rate 

should also lead to greater gene rate heterogeneity. Rowever, the maximum rate 

does not correlate with improved fit when there are more genes under analysis. 

Conversely, the minimum rate has a higher correlation with improved model fit 

when more genes are under analysis. Thus, the minimum rate of the gene has an 

effect upon the improved model fit, independent of the fact that a slower gene will 

likely lead to greater gene rate heterogeneity. 

When the relative rates of the genes are used to test for correlation, the slow­

est evolving gene under analysis has an even more significant negative correlation 

with ~AIC (-0.857, P~value of 1.064e-15 for data sets with 10 resampled genes). 

This correlation indicates that the DistR method can be run to test initial gene 

rates, and if there are very slow rates a much higher improved fit under the gene 

rates model can be expected. 

Sorne analyses focus on eliminating fast sites/ genes from phylogenetic analysis 

sinee these sites typically violate model assumptions, or lead to long branch 

attraction (LBA) (Brinkmann and Philippe, 1999; Rirt et al., 1999; Dacks et al., 

2002; Brinkmann et al., 2005). It has also been noted that invariant sites can 

cause problems in phylogenetic reconstruction (Lockhart et al., 1996; Rirt et al., 

1999; Dacks et al., 2002), leading to the removal of these sites from the analysis. 

This analysis indicates that properly accounting for the slow genes is quite 

important. Perhaps accounting for the slow genes correctly causes the invariant 
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sites to no longer violate model assumptions by shortening the branch lengths, 

and thus increasing the probability of no change over the branches. Conversely, 

given the low correlation of fast genes with improved model fit, fast sites which 

violate model assumptions (i.e. are saturated) probably continue to violate model 

assum ptions. 

Although correlations were tested over only one resampled data set, with few 

species, these results provide a preliminary indication that the more heterogeneous 

the data, the more likely an improvement will occur when accounting for the 

heterogeneity. This is especially true with few genes under analysis. However, as 

the number of genes increases this becomes less important than the evolutionary 

rate of the slowest gene. 

3.5.5 Correlation of gene rate with site rate heterogeneity 

Given that accounting for site rate heterogeneity separately for each gene 

leads to a much better model fit, the question arises of whether or not there is 

any correlation between the rate of evolution of a gene and the ML estimate of 

the Cl: parameter accounting for site rate heterogeneity. Figure 3-6 shows the 

gene rate versus the ML estimate of the Cl: parameter estimated over the data sets 

in Table 3-2. The positive correlation (Pearson's one-tailed correlation 0.432, 

p = 1.887e-14 ) is significant. 

Thus, it is not evident that accounting for gene rates, and site rates within 

a gene, is the best way to model the rate heterogeneity of aH the sites. The rate 

of a site is here modelled based on both the site and gene rate heterogeneity. 
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Figure 3-6: Correlation of the gene-Gamma site rate heterogeneity parameter with the 
maximum likelihood rate of the gene. Maximum likelihood gene rates were estimated 
using the JTT model of evolution with a site rate Gamma distribution for each gene and 
a proportion of invariant sites. Estimates are based on data sets in Table 3-2. 

Yet there is only one absolute rate at which a given site evolves, ignoring rate 

heterogeneity through time. Clearly modelling this rate separately through site 

rate heterogeneity and gene rate heterogeneity is not completely correct. The 

correlation between the Cl: parameter for site rate heterogeneity with the rate of 

evolution of the gene supports this conclusion. The gene rate parameter and the Cl: 

parameter of the Gamma distribution are dependent. Thus, to a certain extent the 

different parameters are modelling the same information in the data, even though 

the parameters are estimated independently of one another. Thus, perhaps it is 

possible to use a model that will account for the correlation between the two, in 

or der to find even better improvements of the model fit to the data. 
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3.6 CONCLUSIONS 

In conclusion, given the current analysis, there is no reason to prefer the 

a-parameter method over the n-parameter method in phylogenetic inference. 

This is a promising result since it me ans that it is not necessary to use addition al 

computation time to find a good fit of a model with gene rates to the data. 

However, these analyses also suggest that there is further work to be done in 

improving rate heterogeneity modelling in maximum likelihood methods. Since 

there is no guarantee of an improved model fit, even with an increasing number of 

genes, and there is high correlation between a estimates of site rate heterogeneity 

and gene rate estimates, clearly there are problems with current approaches. 
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3.8 ApPENDIX 

3.8.1 Calculating the log-likelihood of a gene when integrating over 
gene rates 

Below all calculations are for gene g. Let LogLa,k be the log-likelihood of gene 

g, for category k of the probability density h over gene rates from (3.7). There 

are C categories which approximate distribution h. S F is a scale factor that is 

used to prevent over-flow and under-flow errors and it is the maximum of the log-

likelihoods (LogLa,k) over all categories k E C. SLogLa,k is the LogLa,k of gene 

9 for category k, scaled by both the sc ale factor SF and the log of the probability 

of rate category rk. SLg is the total scaled likelihood of gene 9 and LogSLg is the 

total scaled log-likelihood of gene g. Overall, the likelihood of gene 9 is computed 

as follows: 

Compute LogLa,k = Log(Lg) where rg = rk in (3.3) for each category C, 

using all sites i in gene g. This results in LogLa,l' ... , LogLa,c. Next calculate 

SF = maxk LogLa,k and SLogLa,k = LogLa,k - SF - 1 + logp('1\) for k = 1, ... , C. 

This scaling is performed in order prevent over- and under- flow errors. Thus, 

(3.8) 

from equation (3.7). 

From (3.8) compute éLogLcx,k in or der to calculate the scaled likelihood 
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for every category k = 1, .. , C. Thus the total scaled likelihood is 

(3.9) 

The scaled log-likelihood for gene g is computed from (3.9) as 

c 
LogSLg = log(L éLogLa,k) _log(eSF+1) (3.10) 

k=l 

Solve for the log-likelihood of gene g from equation (3.10) as 

log(Lg) = LogSLg + SF + 1 

Note that the smallest scaled log-likelihood LogSLa,k value possible that 

will not result in over- or under- flow is approximately -707 (where the smallest 

signed number than can be expressed with a double is 2.225074e-308
). Thus when 

the scaled log-likelihood is less than -707, it is set to -707, essentially setting the 

likelihood for this rate category to O. This means that for that particular gene 

rate category, the probability of the data, given the rate and other parameters, 

approached O. 
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Chapter 4 

Using evolutionary models to detect codon 

selection 

4.1 BACKGROUND 

This chapter is unrelated to the previous two chapters. It focuses on the issue 

of rate heterogeneity, however in the context of detecting synonymous selection on 

sets of codons. Codons that undergo synonymous selection will only use one out of 

a set of synonymous codons at a codon site with greater frequency than expected. 

This is due to the fact that there is a selective (evolutionary) advantage to using 

a particular codon. Thus such codons should have slower rates of evolution. 

However, synonymous selection on a set of codons is currently detected using 

non~parametric methods that do not account for evolutionary properties of the 

data, such as rate heterogeneity of synonymous and non~synonymous mutations, 

gene rate heterogeneity and codonjnucleotide bias. Parametric methods exist that 

account for such properties of evolution, however they are only used to determine 

sites (where a codon common to many species defines a site) that are under 

positive or purifying selection. 

In this chapter parametric codon models are used to test whether certain 

codons are under synonymous selection. It is possible to simulate data under 
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a model of neutral evolution, and compare the codon usage patterns found 

in the simulated data (under neutral evolution) to the patterns found in real 

(empirical) data. If the patterns differ significantly, then the codons might be 

under synonymous selective pressure. 

4.2 ABSTRACT 

The forces that drive codon evolution, in particular why codons at certain 

sites are invariant (with no mutation over time), remain only partially explained 

and modelled at the informatics level. There are currently two main approaches to 

identify codon selection for a given set of genes, parametric and non-parametric. 

N on-parametric approaches involve inference of codon usage patterns, and 

correlation to experimentally determined features such as protein expression levels 

- a methodology that does not account for evolutionary forces acting upon the 

codons. Parametric approaches rely upon an explicit model of codon evolution. 

Such models are used to infer site-specific synonymous and non-synonymous 

substitution rates, which can used to identify individual sites that are under 

purifying selection. Yet this approach, which accounts for evolutionary forces 

acting upon codons, does not identify a set of codons that are under strong 

selective pressure, as non-parametric methods do. We propose to use such models 

to address the problem of detecting sets of codons under synonymous selection. 

Two data sets are studied: nuclear genes of three Saccharomyces species that 

are known to undergo selection for translational efficiency; mitochondrial genes of 
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se veral Reclinomonas species that are highly A + T biased (as are mitochondrial 

genes of other eukaryotes and genes of many bacterial pathogens). Applying neu­

tral models of evolution to detect synonymous codon selection in these data sets 

will answer two questions: (i) whether it is possible to detect known codons in the 

Saccharomyces genomes that are posited to be under synonymous translational 

selection (major codons); (ii) whether codon selection can also be identified in Re­

clinomonas mitochondrial genomes despite their high A + T bias. Results indicate 

that applying phylogenetic models of neutral evolution detects 11 Saccharomyces 

codons as under synonymous selection. Nine of these codons were previously 

identified as un der selection for translational efficiency. Similarly, 10 Reclinomonas 

codons are identified as undergoing synonymous selection. This is especially inter­

esting because Reclinomonas mitochondrial genomes have a much smaller effective 

number of codons given the high A + T bias of the genes. 

4.3 INTRODUCTION 

The ability to predict the degree of synonymous selection upon a set of 

codons is of paramount importance to understand protein evolution. For instance, 

elimination of unfavourable codons and the adjustment of codon bias is key to 

accurate over-expression of proteins in heterologous systems (e.g. Gustafsson 

et al., 2004; Sorensen and Mortensen, 2005). As codon selection is subject to 

evolutionary change, it is further important to consider variation among groups of 
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related species, as evidenced by the publication of a multitude of species-specific 

codon tables (Nakamura, 2005; Nakamura et al., 2000). 

Current analyses of synonymous selection are performed using either a non­

parametric or parametric approach. N on-parametric statistics (such as the number 

of effective codons (Ne) (Wright, 1990), the codon adaptation index (CAl) (Sharp 

and Li, 1987), and the codon bias index (CBI) (Bennetzen and Hall, 1982)) are 

calculated from various biologie al data sets without employing an evolutionary 

model. Parametric inference of sites under positive or purifying selection is 

performed using evolutionary codon models (Goldman and Yang, 1994; Muse and 

Gaut, 1994; Yang et al., 2000; Pond and Muse, 2005). 

Although useful for summarizing properties of the data, non-parametric 

statistics are unable to directly pre di ct the selection acting on specifie codons over 

a set of genes. For example, the non-parametric codon adaptation index (CAl) 

is currently a popular non-parametric method to predict optimal codon usage. 

Using the CAl as a measure of gene expression level, it is possible to identify 

codons (called major codons) that have high usage in highly expressed genes 

(Sharp et al., 1988; Duret and Mouchiroud, 1999; Duret, 2000; Akashi, 2001). 

These major codons are inferred to be under synonymous selection. N otably, these 

major codons are used more frequently in genes with both high mRNA abundance 

(Duret and Mouchiroud, 1999; Akashi, 2001) and high gene expression levels 

(Sharp and Li, 1987; Coghlan and Wolfe, 2000; Kliman et al., 2003). Coupled with 

evidence that codon usage is biased towards the more abundant cognate tRN As 

(Moriyama and Powell, 1997; Beirne and Eyre-Walker, 2005) (Akashi, 2001), this is 
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posited as evidence of selection for translational efficiency, since tRN A abundance 

will have a greater effect upon highly expressed genes (Akashi, 2001). 

However, selection for translational efficiency is only one of the potential 

biological processes affecting codon evolution. Other factors that will influence 

codon selection include the precision of the decoding apparatus, and constraints on 

species evolution such as long-term survival under sub-optimal conditions. lndeed, 

yeast is a fast-growing model species, in which translation that is optimized 

for protein expression levels might predominate. However, the large fraction of 

little known species that grow only marginally or under extreme environmental 

conditions may have other constraints upon codon evolution. 

The CAl is currently the best statistical measure of gene expression in yeast 

compared to CBI, Ne, Fop and iterative methods that do not depend upon a set of 

highly expressed genes (Coghlan and Wolfe, 2000; Carbone et al., 2003). However, 

the CAl has only (a marginal) 0.65 correlation with yeast expression levels (Friber 

et al., 2004), and will not properly identify highly expressed genes wh en there 

is a high level of codon bias obscuring the signal (Peden, 1999). It can also not 

be applied meaningfully when reference gene expression levels are unknown for 

a given species (and cannot be inferred from known expression levels in a close 

relative). Furthermore, iterative methods (e.g. Merkl, 2003) are susceptible to 

codon bias, often selectively identifying the most highly biased codons, which 

may not correspond to codons under synonymous selective pressure. Finally, 

non-parametric approaches to codon bias do not account for the evolutionary rate 

of genes, although recent studies strongly suggest that the expression level of a 
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gene is highly correlated with evolutionary rate in S. cerevisiae (Drummond et al., 

2005). 

Phylogenetic parametric approaches have the advantage that they can account 

for an explicit model of codon evolution. Codon models offer the most realistic 

null hypothesis of codon evolution available, as they account for mutational bias, 

heterogeneity of non-synonymous and synonymous codon rates, and gene rate 

heterogeneity. AlI of these factors will influence the identification of highly biased 

codons with non-parametric methods. Unlike non-parametric approaches, codon 

models do not depend upon prior knowledge of any data from a given species to 

make inferences about codon selection, including biologie al data such as RNA 

or protein expression levels. However, using codon models does require access 

to sufficient comparative sequence information, and the building of multiple 

alignments of gene sequences. 

Codon models are currently used to identify specifie sites under purifying or 

positive selection. They are not used to identify whether a specifie codon is under 

synonymous selective pressure across the genome. However, due to the fact that 

evolutionary forces acting upon a set of genes can be accurately modelled, codon 

models provide an ide al framework to identify which codons are under synonymous 

selection. 

To identify codons that are under synonymous selection we first div ide our 

data into two subsets: sites (codons) that are invariant (with no mutation) over 

a set of species, and sites (codons) that vary. Codons that are invariant (with no 

mutation) over a set of species, are either invariant due to chance, or due to sorne 
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selective pressure. It is possible to measure the Relative Synonymous Codon Usage 

(RSCU) for the two subsets of data. Here the RSCU is a normalized percent age 

usage of each codon for a particular ami no acid. We are interested in sites where 

the RSCU is greater in invariant sites, than in sites that vary. In other words, if 

synonymous usage of a codon (as measured by RSCU) is higher in invariable sites, 

the candidate codon might be under synonymous selection. Codons that have this 

property in the real data are termed Increased RSCU in Invariant Sites (IRIS) 

(Figure 4-1). 

To determine if codons are under synonymous selection we use parametric 

codon models to simulate data under a null hypothesis of neutral evolution. This 

simulated data will refiect the synonymous usage that is expected under the null 

hypothesis of no synonymous selection. If the synonymous usage for an IRIS 

codon in the real data differs significantly from the simulated data, the codon is 

under synonymous selective pressure according to that model. We define a codons 

as a Highly Selected Codon (HSC) if it is under synonymous selective pressure 

according to all models studied. 

The goals of this paper are: (i) to identify IRIS codons and determine if they 

correspond to major codons in a well-known system (yeast); (ii) to identify HSCs 

and determine which parametric codon models best explain the difference in RSCU 

between invariant and variant sites observed in IRIS codons in real data; (iii) to 

determine if non-parametric methods can identify HSCs in highly biased data. 
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4.4 METHODS 

4.4.1 A parametric approach to detecting synonymous selection -
finding HSCs 

Parametric codon models (Goldman and Yang, 1994; Yang et al., 2000; Pond 

and Muse, 2005) are used to detect whether a particular codon is under synony-

mous selection across a set of genes. Sites in an alignment are first subdivided 

into two subsets: sites (codons) that are invariant over time (with no mutation) 

and sites that are variant over time (with at least one mutation). Sites that are 

invariant are invariant either due to chance or due to synonymous selective pres-

sure. Although variant sites may also be under synonymous selection, this eut-off 

is based upon the assumption that sites that do not mutate are more likely to 

be under synonymous selective pressure than sites with even one mutation. It is 

possible to use a less stringent eut-off, by dividing the data based upon the rate of 

evolution of the site (where the rate is estimated as the ratio of non-synonymous 

change to synonymous change). However, a conservative eut-off of invariant versus 

variant sites provides an ideal framework to determine whether codon models can 

identify codons that are under synonymous selection. 

4.4.1.1 Defining the relationship between codon usage in invariant and variant 
sites 

To quantify the relationship between codon usage in invariant and variant 

sites define RSCUc s to be the RSCU of codon c calculated over sites s. The RSCU , 

for a particular codon is calculated based upon the number of codons in a sequence 
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c and the number of amino acids a which the codon encodes. The ratio of the two 

is taken, and multiplied by the number of codons that code for the amino acid. 

For example, suppose there are 50 AAA codons in a set of sites under analysis. 

This codes for lysine which is encoded by 2 codons. Suppose also that there are 

75 lysine residues in sites s. Then the RSCU AAA,s for codon AAA is calculated as 

2~~ = ~. Likewise, the RSCUAAG,s of codon AAG, which also codes for lysine is 

calculated as 2 ~~ = ~. 

Define Rc,v as the Relative Synonymous Codon Usage for codon c computed 

over only variant codons, and define Rc,i as the Relative Synonymous Codon 

Usage for codon c computed over only invariant codons. There are certain codons 

for which the RSCU will increase in invariant sites (relative to variant sites), 

and other codons for which the RSCU will decrease in invariant sites (relative 

to variant sites), even under a neutral model of evolution. The codons for which 

Rc,i > Rc,v in the original data set of interest will hereafter be referred to as 

increased RSCU in invariant sites (IRIS) codons. Our test statistic measures 

Rc,i - Rc,v in IRIS codons. We ignore non-IRIS codons because the RSCU in 

invariant sites is not over-represented when compared to the RSCU in variant 

sites. Thus, it is unlikely that non-IRIS codons are under synonymous selective 

pressure. 

The method to determine if a codon is a (HSC) is as follows (Figure 4-1): 

1. For each gene build a tree and infer maximum likelihood (ML) parameter 

estimates for the codon model of interest (Step 1, Figure 4-1); 
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2. Simulate 150 data sets for each gene based on the ML estimates obtained in 

Step 1 (Step 2, Figure 4-1); 

3. For each of the 150 simulated data sets (one data set is a group of simulated 

genes), calculate Re,i - Re,v for aIl IRIS codons c for variant sites v and 

invariant sites i (Step 3, Figure 4-1); 

4. Compare Re,i - Re,v, the difference between invariant and variant sites RSCU 

for codon c as calculated on the real data set, to the distribution of 150 

values for codon c obtained in Step 3 (Step 4, Figure 4-1); if this value is 

greater than 95 % of the simulated values obtained in Step 3, label codon c 

as a potential HSC; 

5. If aIl codon models of interest label codon c as a potential HSC then codon c 

is a HSC; 

4.4.1.2 Evolutionary models of interest 

Two types of models were initially studied: codon models and DNA models 

where sites are divided into groups based upon codon position. However, only 

results on codon models are reported since they have much better explanatory 

power for the observed RSCU of variant and invariant sites. The codon models 

used consider both non-synonymous and synonymous rates of substitution across 

sites and a transitionjtransversion ratio (Yang et al., 2000; Yang and Nielsen, 

2000; Pond and Muse, 2005). Furthermore, gene rate heterogeneity was accounted 

for by analyzing each gene separately. 
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Step 1 

Step2 

Step3 

Gene 1 Gene 2 

ACG :GGë"'CGA TAC GAC'OOë":CGA CAA 
ACA:GGC:CAA TAT GGC' GGC 'CGT CAA 
ACG'GGC:GCT TAT GGC'GGC:CGT CAT 
ACG :.ac;c: :CGA TAC GGTLa<;.C.: CGA CAA 

l l 

lA parameters for each gene "'_.0 -""''IA 
1 1 

Simulate Data Simulate Data 
150 Repeats 150 Repeats 

~ / 
Rc,v = RSCU Variant Sites Codon C 

RC,I = RSCU Invariant Sites Codon C 

a.g. RGGc.l- RGGc,v Distribution 

.... RGGc,l- ~GGc.v is greater than 95% of 
RGGC,I, RGGc,v values fram 5imulated data 

Step4 
Estimate 

i!\c.,.I'\c.v 
From Real Data 

Figure 4-1: Diagram explaining how Highly Selected Codons (HSC) are detected using 
codon models. Gene trees and maximum likelihood (ML) parameters are inferred using 
phylogenetic codon models. Data are simulated (150 data sets) for each gene and set of 
parameters estimated. Therefore, there are collectively 150 simulated multi-gene data 
sets. Monte-Carlo P-values are calculated for the difference in RSCU for invariant ver­
sus variant sites (Rc,i Rc,v for codon c, where i denotes invariant sites and v denotes 
variant sites). This is done by estimating Re,i Re,v for each codon c over each simu­
lated multi-gene data set. This gives a distribution of the difference in RSCU between 
invariant and variant sites expected under a neutral model of evolution. The estimated 
difference in RSCU between invariant and variant sites (Re,i Re,v) is calculated for 
codon c based upon all genes in the real data set. If this value is greater than 95 percent 
of the values obtained under the simulated data for all models of interest then codon c is 
a Highly Selected Codon (HSC). 

Estimating the ML parameters. AU parameters were estimated sepa-

rately for each gene using a modified version of PAML (Yang, 1997). The starting 
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tree was estimated in PAML using the DNA tree from PHYML, where each codon 

position is treated as a separate gene. This results in a starting tree with branch 

lengths estimated in terms of the expected number of nucleotide substitutions per 

codon. Parameters estimates were computed over a superset of species for which 

HSCs are determined in order to find accurate ML parameter estimates. This 

assumes that global and local evolutionary pressures are the same. 

Accounting for site rate heterogeneity. Two different models were used 

for analysis: 

1. A synonymous rate of 1.0 for each site, with a discrete Beta distribution to 

account for the non-synonymous rate heterogeneity; 

2. Both non-synonymous and synonymous rates heterogeneity are accounted for 

using separate discrete Gamma distributions, with a mean synonymous rate 

of 1.0. 

Estimating codon frequencies. Codon frequencies were estimated 

using two methods: by gene or over all genes. When calculating codon frequency 

separately for each gene, the product of nucleotide frequencies at each positions are 

used, sinee codons counts are not statistically significant. Thus, the equilibrium 

frequency of codon c is equal to 1fJl)1fJ2)1fJ3) where 1fJl) is the equilibrium frequency 

of nucleotide j at codon position l. When calculating codon frequencies based on 

all genes it is possible to use the codon counts over aH genes and species to be 

analyzed. 
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4.4.1.3 Models of evolution: Simulating the data 

In order to determine if evolutionary models account for the observed pattern 

of codon usage in invariant and variant sites a Monte-Carlo simulation study 

(parametric bootstrap) was performed. For both of the models studied (non­

synonymous rates only and both non-synonymous and synonymous rates across 

sites), 150 sequences of length 4000 codons were simulated over the maximum 

likelihood tree from each gene in the data set using a modified version of PAML. 

Since two methods were used to estimate codon frequencies, both sets of codon 

frequencies were used when simulating data. Henee, there are four models that 

were fit to each data set, and four groups of 150 simulated genes as follows (Table 

4-1). 

1. Model NSG: Synonymous and non-synonymous rates across sites with codon 

frequencies estimated separately for each gene based upon codon counts; 

2. Model NG: Non-synonymous rates across sites with codon frequencies 

estimated separately for each gene based upon codon counts; 

3. Model NSD: Synonymous and non-synonymous rates across sites with codon 

frequencies estimated over the data set based upon codon counts; 

4. Model ND: Non-synonymous rates across sites with codon frequencies 

estimated over the data set based upon codon counts; 

Gene codon frequencies were computed using codon counts over the gene (models 

NG and NSG) as opposed to using nucleotide frequencies at each codon position, 

because results (not shown) demonstrated that this led to simulated data that 
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Model 

ND 
NSD 
NG 

rate heterogeneity 
non-synonymous synonymous 
yes no 
yes yes 
yes no 

codon counts 
global gene 
yes no 
yes no 
no yes 

NSG yes yes no yes 
Table 4-1: The models under which data are simulated. Both synonymous and non­
synonymous rates across sites are accounted for, as well as different methods of account­
ing for codon bias. ND - non-synonymous rates across sites, with codon bias calculated 
over all genes; NSD - non-synonymous and synonymous rates across sites, with codon 
bias calculated over all genes; NG - non-synonymous rates across sites, with codon bias 
calculated separately for each genes; NSG - non-synonymous and synonymous rates 
across sites, with codon bias calculated separately for each genes. 

better approximated the difference is RSCU between invariant and variant sites 

found in the real data. 

4.4.2 Codon usage bias statistics - non-parametric analyses of 
codon bias 

The majority of techniques used to study codon bias focus on statistical 

tests of the data, such as the effective number of codons (ENc , (Wright, 1990)), 

codon adaptation index (CAl, (Sharp and Li, 1987)), frequency of optimal codons 

(Fop , (Ikemura, 1981)), and codon bias index (CBI, (Bennetzen and Hall, 1982)). 

Assuming that these statistics are able to differentiate genes based upon expression 

level, sets of major codons can be identified which correspond to those codons with 

higher RSCU in highly expressed genes. 

A more extensive technique involves the use of correspondence analysis a 

multivariate statistical technique that finds the largest axis of variation (principal 
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axis) to explain the data. In the case of codon usage bias the data consist of gene 

codon frequencies. If, for example, the principal axis correlates highly with GC 

bias then it is likely that GC bias best explains the observed codon usage bias 

(Peden, 1999). Correspondenee analysis provides a method to determine what 

property of the data correlat es most highly with the different codon usage of 

different genes. Often the CAl and CBI are correlated with the principal axis 

of greatest variation. When this correlation is high, it is assumed that the CAl 

ICBI (which are non-parametric measures of the expression level of the data) can 

explain the variation in codon usage across genes. Henee, translational selection is 

assumed to occur. 

Because the CAl relies upon prior knowledge of expression levels of the genes, 

and both CBI and Pop rely upon a known set of optimal codons, it is not possible 

to calculate these statistics for the Reclinomonas data. However, it is possible to 

use correspondence analysis to determine which properties of the data best explain 

variation in gene codon usage. Correspondenee analysis was performed using 

Codon W to determine if non-parametric methods can detect HSCs (Peden, 1999). 

4.4.3 Data 

Two different data sets are studied. We want to analyze a data set in which 

there is known selection of synonymous codons, and determine if such selection 

can be detected with phylogenetic approaches. We also want to analyze a data 

set in which there are strong mutational biases that are likely to obscure the 

observation of selection at the synonymous codon level under non-parametric 
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methods. A data set that fits well into the first category is the Saccharomyces data 

set from seven fungi (Rokas et al., 2003; Rokas and Carroll, 2005): Saccharomyces 

cerevisiae, Candida glabrata, Saccharomyces bayanus, Saccharomyces kudriavzevii, 

Saccharomyces mikatae, Saccharomyces paradoxus, and Saccharomyces castellii. 

This data set is a modified version of the data analyzed in Rokas et al. (Rokas 

et al., 2003), where Candida glabrata is used as an out-group, as opposed to 

Candida albicans. There are 106 nuclear genes of moderate A+T bias. 

Reclinomonas mtDNA genes provide a data set that fits well into the second 

category. These genes have high A + T bias and there are a sufficient number 

of genes to obtain accurate inferences. Reclinomonas mtDNA contains the 

greatest number of genes out of all eukaryotes sequenced to date (Bevan and 

Lang, 2004, and references therein). Furthermore, this genome is representative 

of a data set in which the genes expression levels are unknown. Most non-

parametric approaches will thus choose the most A + T biased codons as the codons 

undergoing synonymous selection due to the high A+T bias of the genome (Peden, 

1999). Sixt y-one genes from the mitochondria of four Reclinomonas americana 

strains (83, 84 and 94 and sp) were aligned to orthologous genes (if present) 

from Rhodomonas salina, Seculamonas ecuadoriensis, Phytophorus infestans, 

and Ochromonas. Protein alignments were performed using default settings of 

ClustalW (Thompson et al., 1994). Codon alignments were obtained by aligning 

the DN A sequence to the protein alignment using a custom-made program. 

Although all species for a particular data set are used to infer parameter 

estimates in the codon models, detecting HSCs was performed only over subsets of 
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the species: in the Saccharomyces data set the species Saccharomyces cerevisiae, 

Saccharomyces paradoxus, and Saccharomyces mikatae; in the Reclinomonas data 

set the four Reclinomonas americana species. 

4.5 RESULTS AND DISCUSSION 

4.5.1 Identifying IRIS codons 

To identify HSCs, codons with the IRIS property must first be identified 

(codons with Increased RSCU in Invariant Sites versus variant sites). Once the 

IRIS codons are known, it is possible to simulate data under a neutral model 

of evolution, and for each IRIS codon determine whether or not the observed 

difference in RSCU between invariant and variant sites is expected. 

Figure 4-2 gives the invariant sites RSCU versus the variant sites RSCU 

for both the Saccharomyces (Figure 4-2a) and Reclinomonas (Figure 4-2b) 

data sets. It is clear for both data sets that the invariant and variant RSCU are 

correlated (Reclinomonas p = 0.943 P-value < 2.2-16 , Saccharomyces p = 0.762 

P-value = 1.345-13 ). Thus, codons that have high RSCU over variant sites are 

more likely to have high RSCU over invariant sites. This suggests that codon 

usage in invariant sites is not independent from codon usage in variant sites. 

Reclinomonas has a number of codons for which there is low RSCU in the variant 

sites and almost no synonymous usage in the invariant sites (Figure 4-2b). This 

indicates that there is no selective pressure to conserve codons with low RSCU 

in Reclinomonas (Figure 4-2a). Conversely, in Saccharomyces an codons have 
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moderate RSCU in invariant sites. This indicates that even codons with RSCU are 

conserved in yeast, whereas they are not in Reclinomonas. 

(a) 

ï:l 3 
Cf) 
El: 

S 
èii 
ë 
t1I .;: 

j 

(b) 

:::> 
0 
Cf) 
El: 
CIl 

~ 
ë 
.~ 
t1I 
> .s 

3 

r 
'1 + Increased RSCU Invariant Sites 

x Increased RSCU Variant Sites ; 

o 

: 
x * x x 

Variant Sites RSCU 

"" Increased RSCU Invariant Sites 
x Increased RSCU Variant Sites 

o 

, + 

x x 

2 

Variant Sites RSCU 

Figure 4-2: Invariant Sites RSCU versus Variant Sites RSCU for (a) Saccharomyces data 
set and (b) Reclinomonas data set. An 61 co ding codons are shown. Points above the 
x y axis are IRIS codons. Reclinomonas has a number of codons for which there is 
no usage in invariant sites, likely due to the high A+T bias of the mtDNA. In general 
codons ending in AIT are conserved. 

The difference in the number of IRIS codons in the two data sets occurs 

because the codon usage bias is less significant in Saccharomyces compared to 

Reclinomonas. The effective number of codons (Ne) as measured across an genes 

is approximately 32 for the Reclinomonas species and approximately 48 for the 
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Saccharomyces species. The Ne provides a measure of the extent of codon bias 

of the genome, with a lower value indicating a more highly biased genome. Sinee 

Reclinomonas has a low Ne and such extreme A + T and codon bias, there are 

fewer codons to which the IRIS statistic will apply. Conversely, Saccharomyces has 

much less A+T and a higher Ne. Renee, there are more codons to which the IRIS 

statistic will apply. 

The codons for which there is increased RSCU in invariant sites largely 

overlap for both data sets, with the major differenee in aliphatic amino acids 

(Figure 4-3). In both data sets, IRIS codons primarily end in A/T, except 

for Leu (TTG) in Saccharomyces. Table 4-3 gives a list of the IRIS codons 

for each species. Both species have a number of codons with only A/T (7 in 

Saccharomyces, 6 in Reclinomonas ). Rowever, in Saccharomyces none of these 

codons correspond to major codons (those codons with high RSCU in highly 

expressed genes where gene expression is measured using the CAl), which are 

given in bold (Table 4-3). There are only 11 major codons in Saccharomyces 

that correspond to IRIS codons. The remaining 10 major codons (Sharp et al., 

1988) all end in C/G and have lower RSCU in invariant sites. Sinee the codon 

usage (RSCU) in invariant sites is lower than in variable sites, this suggests these 

codons are not over-represented in invariable sites (sites that are potentially 

under synonymous selective pressure). Rowever, the genes under analysis from 

Saccharomyces are low to moderately expressed according to the CAl, and the 

major codons not identified as IRIS codons all have low usage in lowly expressed 
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Species aliphatic non- basic acidic aromatic sulfur imino 
aromatic 

R.am GGT, ACA, CAT, GAA, TTT, TGT CCA, 
GCA, AGT, AAA CAA 
GTT, TCT AGA, GAT, TAT CCT 
TTA CGT AAT 
ATT 

yeast GGT, ACA, CAT, GAA, TTT, TGT CCA 
GCA ACT AAA CAA 
CTT, AGT, AGA, GAT, TAT 
TTA, TCA CGT AAT 
GCT, TCT 
GTT 
TTG, 
ATA 
ATT 

Table 4-3: IRIS codons in Saccharomyces (yeast) and Reclinomonas (R.am). Bold 
codons in Saccharomyces denote those codons that have high RSCU in highly ex-
pressed genes and low RSCU in lowly expressed genes from (Sharp et al., 1988) (or 
major codons). 

genes (Sharp et al., 1988). Perhaps if more highly expressed genes were present in 

the data set, sorne of these codons would also be identified as IRIS codons. 

4·5.2 Identification of HSCs 

HSCs are identified as IRIS codons that have an unexpected difference in 

RSCU between invariant and variant codons. Here, unexpected is defined based 

upon comparing the observed or empirical difference to the expected difference 

found in the simulated data. If the observed difference in RSCU between invariant 

and variant codons is greater than the expected difference found under 95 percent 
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of the simulated data, then the observed difference is significant at a P-value of 

0.05 (Figure 4-1). Therefore, the probability of finding the observed difference 

by chance under a neutral model of evolution is less than 0.05 (or 5 percent). 

HSCs are IRIS codons for whieh none of the codon models studied (Table 4-1) 

can explain the observed difference in RSCU between invariant and variant sites 

(Figure 4-3a and b, P-value < 0.05). 

Even though Saccharomyces has more IRIS codons (with an invariant RSCU 

increase) than Reclinomonas, approximately the same number of HSCs are identi­

fied in both data sets (Figure 4-3). In both species there is sorne biological pres­

sure that is conserving these codons more than would be expected un der a neutral 

model of evolution. Both data sets have HSC that correspond to hydroxyl/non­

aromatic, sulfuric, basic and imino amino acid groups. However almost half of the 

HSC codons for Saccharomyces are aliphatic, whereas Reclinomonas has none. 

Rather, Reclinomonas prefers aromatic and acidic residues (plus two additional 

basie residues Lys AAA and His CAT). Selection on such codons might occur 

because many mitochondrial proteins are trans-membrane, and thus would have 

large regions that are hydrophobie, and surface domains that are hydrophilic. 

4.5.2.1 Which codon models best explain the empirical data? 

Four codon models are tested to determine which codons are HSCs. HSCs are 

defined based upon an four models detecting that a codon is un der synonymous 

selective pressure. However, it is also possible to look at which model best explains 

the data - i.e. which model can explain best explain the RSCU for IRIS codons. 
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Figure 4-3: P-values that that difference in RSCU between invariant sites and vari-
ant sites for a particular codon is distributed according to a neutral model of evolution 
for (a) Saccharomyces and (b) Reclinomonas. For each codon c the RSCU of invariant 
sites (Re,i) and variant sites (Re,v) is calculated from 150 data sets simulated under four 
models of neutral evolution. This gives a distribution of values expected for Re,i Re,v 
as expected under the models of neutral evolution. The same statistic (Re,i Rv,i) is 
then calculated based upon the real data and compared to the values obtained from the 
simulated data. If the statistic on the real data is greater than 95 percent of the values 
obtained on the simulated data then the codon is high-lighted light grey. If the statistic 
on the real data is greater than 99 percent of the values obtained on the simulated data 
then the codon is high-lighted dark grey. Codons that are high-lighted lightjdark grey 
under an four models of evolution are highly selected codons (HSC). If the statistic on 
real data is less than 95 or 99 percent of the values obtained under the simulated data 
then it is labelled * or ** respectively. The number of codons that dont have any syn­
onymous selection are given for both the 0.01 and 0.05 significance levels. Please see 
Table 4-1 for details on models analyzed (NG, NSG, ND and NSD). 
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In Reclinomonas there are two codons (ATT and GGT) for which the 

observed difference in RSCU between invariant and variant sites is captured 

by each codon model (Figure 4-3b). Conversely, in Saccharomyces there are 

10 codons (AAA, AAT, ACA, ATT, CGT, GAA, GAT, GCA, TAT, TTT) 

that are explained by aU models of neutral evolution (Figure 4-3a). Although 

Saccharomyces has many more IRIS codons than Reclinomonas, many of these 

codons are explained by aU neutral models of evolution studied. 

On average it appears that estimating codon frequencies over aU genes 

best models the IRIS codons (Figures 4-3a and b) in both Reclinomonas and 

Saccharomyces. For Reclinomonas, when a P-value of 0.01 is used to determine 

if an IRIS codon is under synonymous selection, three codon models can explain 

the difference in RSCU between variant and invariant sites found in seven IRIS 

codons (Figure 4-3b, models ND, NSD, NG). The remaining 14 codons are 

detected as under synonymous selection (although the codons that are under 

synonymous selection differ at times for the three models, Figure 4-3b). When 

a less stringent eut-off is used to classify a codon as under synonymous selection 

(P-value of 0.05), more codons are identified as under synonymous selection under 

each model except ND. Thus, each model was able to explain the observed RSCU 

difference between variant and invariant sites for fewer codons (Figure 4-3b) , 

except model ND (which calculates codon bias across aU genes and accounts only 

for non-synonymous site rates, Table 4-1). Furthermore, it appears that a model 

of non-synonymous rates over sites, with codon frequencies computed over an 
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genes in the data set, best accounts for the observed RSCU difference between 

variant and invariant sites found in Reclinomonas. 

For the Saccharomyces data set, simulating according to codon frequencies 

estimated over all genes in the data set also lead to the detection of fewer IRIS 

codons as under synonymous selection (models NSD and ND, Table 4-1, Figure 

4-3a). Therefore, accounting for codon bias over all genes, as opposed to a single 

gene at a time, better explains the observed difference in RSCU in invariant and 

variant sites for IRIS codons at a P-value of 0.05 (Figure 4-3a). 

Collectively, the evidence in Reclinomonas and Saccharomyces suggests that 

there are perhaps global evolutionary pressures on a set of codons, as opposed to 

individual gene pressures as assumed in most non-parametric analyses. 

Accounting for synonymous rates across sites did not change the degree ex­

planatory power of the phylogenetic model greatly. However, these synonymous 

rates were calculated based upon all the species in the data sets (globally), not 

just the Saccharomyces and Reclinomonas species which were tested for HSCs. 

Analysis (not shown) indicates that the global mean synonymous substitution rate 

of a codon is approximately the same for all codons. Thus, the synonymous selec­

tion that occurs, appears to be only among the Saccharomyces and Reclinomonas 

(local) species that were tested for HSCs. This indicates that the synonymous 

selection detected by parametric analysis of codon selection finds codons that are 

conserved more than expected under neutral evolution at a local level only. 
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4.5.3 Major codons in Saccharomyces 

When non-parametric analyses are performed on the Saccharomyces data, it 

is possible to identify major codons which agree with the results of (Sharp et al., 

1988) (data not shown). In this well-known data set, the differences in codon bias 

of a gene can be explained by the expression level of the gene as measured by the 

CAl, where highly expressed genes (those with a high CAl) contain more major 

codons. Hence, one question that arises is whether HSCs correspond to major 

codons previously identified in yeast (Sharp et al., 1988). 

When the HSCs in Saccharomyces are compared to codons with high RSCU in 

highly expressed genes of Saccharomyces cerevisiae, 9 of the 11 (from Table 4-3) 

have high RSCU in highly expressed genes (Sharp et al., 1988). lndeed, these ni ne 

codons have high RSCU in both highly and lowly expressed genes (Sharp et al., 

1988). Conversely, the 15 codons that were not identified as HSC have low RSCU 

in highly expressed genes, and high RSCU in lowly expressed genes. This indicates 

that HSCs in Saccharomyces correspond in part to previously identified major 

codons that are more commonly found in highly expressed genes. Furthermore, 

these codons also have the highest RSCU out of aIl codons for a particular amino 

acid in lowly expressed genes, implying that HSCs have high RSCU over a set 

of genes, regardless of expression level. Perhaps the reason that major codons 

and HSCs correspond in Saccharomyces is not only because of tRNA fidelity, 

but because highly expressed genes in Saccharomyces tend to evolve more slowly 

(Drummond et al., 2005) and thus have more invariant sites. 
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The only two HSCs that are not major codons as identified by Sharp (Sharp 

et al., 1988) are ATA and TTA. This identification could be due to codon bias 

toward A + T, however none of the five other IRIS codons in Saccharomyces 

with only AIT at each codon position were identified as a HSC. Furthermore, 

in Saccharomyces both ATA and TTA are translated by single tRNAs that only 

translate that particular codon. There could be sorne biological constraint causing 

these codons to be conserved over short evolutionary distances more than expected 

under neutral models of evolution. 

Two previously identified major codons from Table 4-3 that are not HSCs are 

CAA and GAA. Although CAA is highly selected according to two of the models 

(NSG and N G where codon frequencies are calculated by gene) the other models 

find no significant synonymous selection. Since neither CAA nor GAA is a HSC 

none of the major codons identified by Sharp et al. (Sharp et al., 1988) that have 

adenine in the second codon position are HSCs. This suggests that codons with 

adenine in the second position are not selected for by yeast, which is surprising in 

an A + T biased genome. 

4.5.4 Non-parametric approaches to detecting codons under synony­
mous selection in Reclinomonas 

N on-parametric methods are currently applied to data sets to detect codon 

bias, and infer which codons might be selected at a synonymous level by determin-

ing the most highly biased codons. It is important to apply such a non-parametric 
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approach to the Reclinomonas data to determine if these methods can also identify 

codons that are under synonymous selective pressure. 

Non-parametric approaches to codon usage analysis attempt to determine if 

synonymous selection occurs in a particular group of genes based upon summary 

statistics of the data of interest. These summary statistics are correlated to the 

axis of greatest variation in the data. If this axis of variation correlates highly 

with a given summary statistic or property of the data, it is concluded that 

these properties explain the variation in the data. Table 4-4 gives the correlation 

values and significance of correlation for various properties of the Reclinomonas 

species that can be calculated directly from the data, with no prior information. 

Al represents the principal axis in correspondence analysis (or axis of greatest 

variation). Pearson's correlation was calculated between the principal axis (Al) 

and the G+C content, gene rates (as calculated using the non-parametric DistR 

approach (Bevan et al., 2005)), fraction of codons conserved, and effective number 

of codons Ne (Table 4-4). In an Reclinomonas species there is strong correlation 

between the principal axis and both the G+C content and gene rate. Moderate 

correlation is found with the percentage of codons conserved between the three 

species. 

These results indicate that the codon bias of individual genes in Reclinomonas 

is primarily explained through the rate of mutation of the gene, and the G+C 

content of genes. Correlation with the percentage of codons conserved is a further 

refiection of the mutational bias. Based on this analysis, accounting for gene 

rate heterogeneity and mutational bias in parametric models, should explain 
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R.am. 83 R.am. 84 R.am 94 R.am.sp 
A1-G+C -0.779** -0.740** -0.763 *** -0.713 ** 
Al-rates 0.720 ** 0.716 ** 0.741 ** 0.698** 
Al-PC -0.489 ** -0.417 * -0.538 ** -0.438* 
Al-Ne -0.078 -0.058 -0.034 0.053 

Table 4-4: Pearson's correlation of Axis 1 (Al), which represents the greatest variation 
within the codon bias of the data with properties of the data for Reclinomonas. These 
properties include correlation of Axis 1 with G+C Content (A1-G+C), correlation of 
Axis 1 with gene rate (Al-rate), correlation of Axis 1 with percent conserved (Al-PC), 
and correlation of Axis 1 with Ne (Al-Ne, where Ne is the effective number of codons 
(Wright, 1990) as measured for each gene). A higher correlation value indicates that the 
property of interest explains a lot of the variation in codon usage observed over different 
genes. *P-value < 5.0e - 3, **P-value < l.Oe - 8, ***P-value < l.Oe - 30. 

the difference in RSCU between invariant and variant sites in all IRIS codons 

identified in Reclinomonas. However, parametric analysis identifies 10 IRIS codons 

as HSCs. Thus, in the case of the highly A+T biased Reclinomonas mtDNA 

genomes, non-parametric methods fail to identify that synonymous selection 

occurs in particular codons. 

4.6 CONCLUSIONS 

Both Reclinomonas and Saccharomyces have certain codons that undergo 

selection against synonymous mutation according to the codon models applied in 

this analysis. Using codon frequencies calculated over all genes versus gene codon 

frequencies does not significantly affect the results. This indicates that it is not 

clear that there are gene specifie synonymous codon selective pressures. 

In the Saccharomyces data set a number of the HSCs correspond to codons 

which have a greater RSCU in highly expressed genes (or major codons), and are 
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thought to be selected for at the translationallevel (Akashi, 2001). This indicates 

that codons with unusual usage patterns under non-parametric methods are also 

found to be selected for at the synonymous level under parametric codon models. 

However, there are also codons in the Reclinomonas data set which are detected 

to be under synonymous selective pressure. Because the results in Saccharomyces 

correlate well with well-known results regarding codons that are used in highly 

expressed genes, this indicates that HSCs in Reclinomonas have sorne other 

important biological function. 

HSCs are not detected in Reclinomonas using non-parametric methods which 

attribute the observed codon usage bias to gene rate and mutational bias. This 

suggests that the strong A + T bias of Reclinomonas misleads non-parametric 

methods, which focus solely on summary statistics of codon usage bias so that 

unusual patterns of codon selection cannot be detected. 
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Chapter 5 

Conclusions 

Two main problems were addressed in this thesis: (i) Quickly estimating rate 

heterogeneity on a set of sequences and how best to incorporate such heterogeneity 

into phylogenetic methods; (ii) Identification of sets of codons under synonymous 

selection using parametric phylogenetic models that provide a null hypothesis of 

evolution. 

5.1 GENE RATE HETEROGENEITY 

The DistR algorithm was developed to quickly infer gene rates from pairwise 

distances between taxa in Chapter 2, (Bevan et al., 2005). Simulation demon­

strates that the DistR approach is quite accurate when compared to ML gene rate 

estimates. Furthermore, when incorporated into PHYML in order to account for 

gene rate heterogeneity, better model fit was found, with a more accurate tree for a 

fungal mtDNA data set (Bevan et al., 2005). 

This work was extended to study the question of how best to account for 

rate heterogeneity in phylogenetic analyses in Chapter 3. Rate heterogeneity 

was accounted for by either allowing each gene to have a ML gene rate (the n­

parameter approach (Yang, 1996; Pupko et al., 2002b; Bevan et al., 2005)), or by 
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integrating over gene rates (the a-parameter approach (Felsenstein, 2004b)). The 

former approach requires less computation, and thus is faster. The later approach, 

although slower, has the advantage of requiring fewer parameters. Yet, results 

demonstrate that there is no reason to prefer the computationally more complex 

a-parameter method. 

Furthermore, improved model fit according to the AIC was correlated with 

three properties of the data: slowest gene rate, fastest gene rate, and the difference 

between the two. As more data was present in the analysis (in terms of number of 

genes) the correlation with the slowest gene rate increased. Correlation with the 

other two properties decreased. This indicates that accounting for the rate of the 

slow sites properly is what primarily leads to improved model fit of a gene rate 

heterogeneity model over the concatenated model. 

Chapters 2 and 3 demonstrate the importance of accounting for gene rate 

heterogeneity in phylogenetic analysis. However, the current analyses provide only 

a first step in how to account for heterogeneity in gene evolution when analyzing 

multi-gene data sets. 

Analysis in Chapter 3 indicates that gene rate heterogeneity and site rate 

heterogeneity are correlated. This raises the question of partitioning data: if data 

could be partitioned so that sites with similar rates of evolution are clustered, then 

it is possible that only one rate of evolution would be necessary at each site, where 

the site rate would be equal to the cluster rate similarly to the fixed rates models 

of Yang (Yang, 1994). 
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Furthermore, there is no method to account for heterotachy (change in the 

rate of evolution for specifie sites along a given lineage) in this work. Incorporating 

both heterotachy and rate heterogeneity into phylogenetic analysis would likely 

lead to even better model fit. Mixture models that allows for both gene rate 

heterogeneity and heterotachy in different clusters should prove ideal to address 

this problem, and have been widely used in phylogenetics to address related 

questions (Pagel and Meade, 2004; Lartillot and Philippe, 2004; Kolaczkowski and 

Thornton, 2004; Mayrose et al., 2005). 

5.2 CODON SELECTION 

In Chapter 4 the focus of the thesis changed to using phylogenetic models 

that account for rate heterogeneity, mutational bias etc. to study synonymous 

codon selection. Selection on a set of codons is currently determined using non­

parametric approaches which summarize properties of the data. Well-known 

codon models that provide a null hypothesis of codon evolution exist, however 

they are used only to determine if a site is under positive or purifying selection 

(Yang and Nielsen, 2000; Yang et al., 2000; Pond and Muse, 2005). In this chapter 

codon models were used to simulate data under neutral evolution. The difference 

in Relative Synonymous Codon Usage in invariant and variant sites from the 

empirical data was then compared to the simulated data. In Saccharomyces this 

lead to the identification of 11 Highly Selected Codons (HSCs) , nine of which were 

identified as codons un der synonymous selective pressure using non-parametric 

149 



approaches. However, in Reclinomonas mtDNA, non-parametric approaches were 

unable to identify any codons under synonymous selective pressure. Rather the 

codon usage bias across different genes was attributed to A+T bias and gene rate. 

However, the approach developed in this thesis identified 10 HSCs. 

The analysis in Chapter 4 provides an ide al start to studying codon evolution 

using codon models. However, the techniques used are quite conservative. For 

instance, only codon sites that have no mutation over the species of interest are 

assumed to be potentially under synonymous selection. It is possible that sites 

with few mutations are also under synonymous selection. Thus, sites could be 

categorized not according to the number of observed mutations, but according to 

the rate of synonymous evolution. It might also be possible to incorporate a more 

formaI definition of synonymous selection into codon model using mixture models 

(i.e. sites that are free to vary versus sites that are not free to vary) in or der to 

infer if particular codons are under synonymous selection. 
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with Applications to Maximum Likelihood Phylogenetic Analysis 
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Abstract.-In phylogenetic analyses with combined multigene or multiprotein data sets, accounting for differing evolu­
tionary dynamics at different loci is essential for accurate tree prediction. Existing maximum likelihood (ML) and Bayesian 
approaches are computationally intensive. We present an alternative approach that is orders of magnitude faster. The method, 
Distance Rates (DistR), estimates rates based upon distances derived from gene/protein sequence data. Simulation studies 
indicate that this technique is accurate compared with other methods and robust to missing sequence data. The DistR method 
was applied to a fungal mitochondrial data set, and the rate estimates compared well to those obtained using existing ML 
and Bayesian approaches. Inclusion of the protein rates estimated from the DistR method into the ML calculation of trees as 
a branch length multiplier resulted in a significantly improved fit as measured by the Akaike Information Criterion (AIC). 
Furthermore, bootstrap support for the ML topology was significantly greater when protein rates were used, and some 
evident errors in the concatenated ML tree topology (i.e., without protein rates) were corrected. [Bayesian credible intervals; 
DistR methodi multigene phylogenYi PHYMLi rate heterogeneity.] 

It is widely recognized that the analysis of multiple 
unlinked genes is superior to single gene analyses for 
phylogenetic reconstruction. These unlinked genes may, 
however, be evolving according to very different rules. 
Heterogeneity of the evolutionary process must be ac­
counted for in phylogenetic analyses (Bapteste et al., 
2002; Bull et al., 1993; Huelsenbeck et al., 1996; Nylander 
et al., 2004; Pupko et al., 2002b; Yang, 1996). The con­
cept of accounting for differing evolutionary pressures 
within phylogenetic analysis is not new (Yang, 1993). 
Site-specifie rates of evolution can be computed for 
amino acids (e.g., Rate4Site, Mayrose et al., 2004; Pupko 
et al., 2002a) and DNA (e.g., DNArates, Olsen et al., 
1993) using both Bayesian and maximum likelihood ap­
proaches. 

Site rates within a gene are likely to be more correlated 
than rates for sites in different genes. To account for this, 
it can be assumed that each gene evolves at a different 
average rate and that these gene rates are drawn from 
some common distribution (Cranston and Ranala, 2005; 
Felsenstein, 2001, 2004a). Both Bayesian (Huelsenbeck 
and Ronquist, 2001) and maximum likelihood (Pupko 
et al., 2002b; Yang, 1996) methods exist to estimate gene 
rates (or more generally, locus rates) but these are com­
putationallyexpensive. 

We present a fast, accurate method to estimate the rel­
ative evolutionary rates of genes/proteins. For example, 
when run on a data set with 63 proteins over 123 taxa 
the algorithm takes less than a second. The method can 
be applied to protein or nucleotide data, though here we 
focus on protein sequences. The basic idea is to use pair­
wise estimates of evolutionary divergence (distances) to 
deduce the relative rates of different proteins, even when 
the proteins are not aU present in all of the taxa. Although 
this approach does not give the ML estimates for the 
rates (Pupko et al., 2002b, Yang, 1996), it does provide an 
excellent approximation. 

After computing rates they are incorporated as extra 
parameters into the ML tree search, resulting in im­
proved fit as measured by the Ale. The rates estimated 
using the DistR procedure have been coded into PHYML 
version 2.2, available at http:/ / atgc.lirmm.fr / phyml! 
(Guindon and Gascuel, 2003). PHYML was used be­
cause incorporation of the rates was straightforward and 
because PHYML is an especially fast implementation of 
ML. 

METHODS 

The DistR Method 
To begin with, the method will be explained through 

an example. Figure 1 represents three different protein 
alignments. Not aH taxa are present in aH three align­
ments. Suppose that the three proteins have rates rl, r2, 
and r3. These rates will affect distances inferred from the 
alignments. Reversing the problem involves using the 
pairwise distances between species to estimate the dif­
ferent rates rl, r2, and r3. 

Figure 1 outlines two ways of obtaining distances from 
each protein. In the first method ML trees are constructed 
and the length of the path between two taxa in these 
trees is measured (referred to hereafter as patristic ML 
distances). In the second method distances are estimated 
directly from the alignments, as is customary in distance­
based methods (referred to hereafter as pairwise ML dis­
tances). The end result from both methods is a distance 
matrix for each protein. 

If the rate in one protein is twice the rate in a second 
protein, then the expected distance estimates from the 
first protein should be twice the expected distance esti­
mates from the second protein. This should hold, approx­
imately, for both pairwise ML distances and patristic ML 
distances. Equivalently, the distance estimate from the 
first protein, divided by two, should be approximately 
the distance estimate of the second protein. 

900 
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Protein 1 Protein 2 Protein 3 

x RA5R •• Ne x DEQ •.. 55 x KR5 •.. L5 
la RA5Q .• Ne b DEQ .•• 55 b KR5 ..• LS 
y RA5Q .. Ne y DDQ •.. 5S y KRS .•• IS 

~ ~ Method 1 ~ 
T"55:\ 

r2=O.82 r3=1.63 
= 

.. .. .. .. .. .. .. .. .. .. .. .. .. a .. .. .. 
x y 

x y 

= 
= 
= d(1) d(2) X d(3) 

xy xy xy y 

1 

• 1 ••• 1 ...... --
~ ~ ~ 

x x b x b 

b x x x 
a b b 

FIGURE 1. The general idea of the DistR estimation procedure. Beginning with individual protein alignments over a set of taxa (with missing 
data), distances between the species are estimated for each protein alignment. There are two choices of how to estimate the distances: directly 
from the alignment data (method 2); as the sum of the pairwise distances between taxa on a tree built from the alignment data (method 1). 
The result is a matrix of pairwise distances between taxa. The ratio of the pairwise distances to the rate of evolution of the protein should be 
approximately the same for ail proteins. 

In the example (Fig. 1), and later on, the distance be­
tween taxa x and y estimated from protein k is denoted 
di~, irrespective of whether it is a pairwise or patristic 
ML distance. Suppose that, for each k, the rate in protein 

d(l) 

k equals rk. It follows that 7;- will be approximately equal 
dm dW 

to ~ which in turn will be approximately equal to ~. 
This is denoted as 

(1) 

where "~" means "approximately equal." In Figure l, 
this gives ~ '" Q '" 2:Q. 

0.55 '" 0.~2 '" 1.63' 
In a sense, the distance estimates obtained from each 

gene are normalized so that the scale is the same. Define 
this normalized distance or consensus distance between 
any two taxa as pxy, with the assumption that 

d(1) d(2) d(3) 
'" xy '" xy '" xy pxy r-v - '" - '" -. 

rI r2 r3 

Assume that rates rI, r2, and r3 in Figure 1 are un­
known, whereas the distances remain known. The above 
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approximate equality leads ta 

3.0 4.5 9.0 
pxy ~ - R:3 - R:3 -. 

rI r2 r3 
(2) 

The unknowns pxy, rI, r2, and r3 can be solved for using 
a least squares approach. 

The relation in Equation (2) provides a framework to 
solve for the relative rates rI, r2, and r3, given estimates 
for the distances d~~. This is the basic ide a behind the 
method. The main issues are how to (a) handle the fact 
that the relations are only approximate; (b) deal with 
missin~ distances; (c) compu.te the rate estimates quickly. 
These Issues are addressed m the fonowing text and in 
Appendix2. 

.To formalize the problem, suppose that there are n pro­
tems (or genes, etc.) over m species. The distance between 
species x and y derived from protein k is denoted d~k). 
The basic assumption made is that the ratio of the esB­
mated distance between a pair of taxa for a given protein 
(dW for protein k and taxa x,y), to the rate of the pro­
tein (rk for protein k), is approximately equal across an 
proteins. 

The rates rI, r2, ... , rn are unknown quantities to 
be estimated based upon the distance data from a 
given protein alignment. To do this, assume that 
there exists an unknown consensus distance pxy 
such that 

d(l) d(2) d(n) 
P 

rv xy rv xy rv rv xy xy rv - rv - ,-...,.,; ••. """ -, 

rI r2 rn 

where n = 3 for the example in Figure 1. An the consen­
sus distances and rates can now be estimated using a 
least-squares approach. 

In the least squares method it is possible to incorpo­
rate measures of uncertainty about the estimated dis­
tances d~~. Distance estimates with low variance should 
contribute more to the analysis, whereas distance esti­
mates with high variance (or infinite variance in the case 
of missing entries) should contribute little. Let wW ::: 0 
be a measure of the uncertainty in the distance es ti­
mate between taxa x and y derived from protein k. 
If dfJ is accurate, then w~J should be high. If there 
is less certainty about the accuracy of d(k) then w(k) xy' xy 
should be low. This is achieved using the inverse of 
the variance of d~~, that is, w~k) = ~. If protein k is 

y Var(dxy ) 

not present in both x and y, then w~~ = O. To measure 
the variance of the distance estimates the approximate 
formula of Bulmer (1991) is used in the implementa­
tion of DistR. Other variance estimators could also be 
used. 

Under a weighted least-squares (WLS) framework the 
. d~ 

total d1screpancy between the ratios :2U.. and the consen-rn 

sus distances Pxy is measured by 

n (d(k))2 
q(p, r) = L L w~~ pxy - ;y 

k=l x,y k 
(3) 

where p denotes the vector [P12' p13, ... , p(m-l)m]y and r 
2 

denotes the vector [rI, ... , r nV. This is similarto the min­
~mization function used by Lapointe and Cucumel (1997) 
m the average consensus method. The main difference is 
that they assume one rate over aIl proteins, whereas this 
method includes different rates for each protein. Note 
that if taxa x and y are missing from a protein k then 
an estimate for d~~ cannot be obtained. However, this is 
not a problem since the weight w~) will be zero in this 
case. y 

Estimating both rates and consensus distances using 
q (p, r) leads to the problem of nonidentifiability. In the ab­
sence of any error each estimated protein distance d(k) 
·th d ~ lS e pro uct of the rate of the prote in rk and the con-
sensus distance pxy. Thus, a perfect fit to the equation is 
still achieved if an the rates are multiplied by sorne con­
stant and an the consensus distances divided by the same 
constant. There is a problem of determining scale. Hence, 
Equation (3) does not have a weIl-defined minimum. To 
solve this problem a constraint 

n 

'" '" (k) ~~Wxypxy =K (4) 
k=l x,y 

~ust be added to system, where K is an arbitrary pos­
ItIve constant. The particular value of K is irrelevant 
since changing K merely causes an estimated rates to 
be multiplied by the same constant value. For this rea­
son, it is possible to infer relative rates only. In DistR 
K = L:~=I L:x,y w~~dW, thus constraining the weighted 
estimated distances to be equal to the weighted consen­
su.s distances. This was empirically determined to mini­
m1ze the variance of the DistR estimates. 

Appendix 3 describes an extremely fast algorithm for 
minimizing the function q (p, r) subject to the constraint 
in Equation (4). The algorithm takes O(nm2 + n3) time 
and O(n2 + m2

) memory. For example, when run on a 
data set with 63 proteins over 123 taxa, the algorithm 
takes less than a second. An implementation with source 
code is available at http://www.mcb.mcgill.carrachel. 

Experimental Studies 

An extremely rapid method for estimating the rel­
ative rates of different genes has been proposed. The 
method is .orders of magnitude faster than existing ML 
and Bayeslan approaches. The most important question 
remaining is to what extent this increase in speed affects 
the accuracy of the estimates. In order to address this 
question, the accuracy of the new method was assessed 
using both simulated and empirical data. 
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In aH the analyses PHYML (version 2.2) was used 
(Guindon and Gascuel, 2003) to compute ML distances 
and trees, with a JTT protein mode l, eight gamma cate­
gories plus invariant sites and the default (BIONJ) start­
ing tree. The gamma shape parameter and proportion of 
invariant sites were estimated using default optimization 
routines in the program. When constructing ML trees 
from real data several bootstrap values were computed. 
As detailed below these values depend upon: whether 
patristic or pairwise ML distances were used in the DistR 
procedure; whether the rates were reestimated for each 
bootstrap replicate. 

For both the simulated and empirical data, DistR esti­
mates based upon patristic and ML distances were com­
pared. This comparison was made in order to determine 
whether or not the additional computational effort re­
quired for estimating patristic ML distances is justified. 

Experimental Studies-Simulated Data 
The two key questions addressed through the simula­

tion studies are: 

• Patristic versus pairwise ML distances.-How accurate 
are the rate estimates using pairwise versus patristic 
ML distances? 

• Missing distances between taxa.-How are DistR rate 
estimates affected when proteins are not present in 
all taxa? 

To answer these questions protein alignments were 
simulated using Pseq-Gen (Grassly et a1., 1997) with 
the JTT model of evolution. The initial tree and branch 

Starting /\ 
Tree 1\\ 

Number of 
Species to Keep r 

m 

lengths were taken from an independent analysis of mi­
tochondrial Atp8 proteins in 58 eukaryotes. Two types of 
simulations were carried out. The first, intended to ad­
dress the first question, involved construction of 20 pro­
tein trees by randomly deleting taxa from the starting 
tree. In total there were four protein trees with 53 taxa, 
four with 48 taxa, four with 43 taxa, four with 38 taxa, and 
four with 33 taxa. For each tree a rate was sampled from 
a precomputed distribution of rates based on real data 
(data not shown), and protein alignments of length 100, 
300,500, and 1000 generated using Pseq-Gen (Grassly et 
aL, 1997) (note that the average length of naturally oc­
curring proteins is approximately 300 amino acids). The 
second analysis, intended to address the second ques­
tion, increased the number of taxa deleted from the start­
ing tree. In total there were seven trees with 25% of the 
taxa, seven with 50% of the taxa, and seven with 75% 
of the taxa. This resulted in 21 trees, 7 each with 16, 30, 
and 44 taxa, respectively. For each tree a rate was sam­
pIed from a precomputed distribution of rates based on 
real data (data not shown), and protein alignments of 
length 1000 generated using Pseq-Gen (Grassly et aL, 
1997). This experiment follows a protocol proposed by 
(Eulenstein et aL, 2004). For both experiments, and for 
every set of parameters, 10 replicates of the experiment 
were performed. See Figure 2 for an overview of the 
simulations. 

Statistics measured on the simulated data, inc1uding 
goodness-of-fit and mean squared error, are explained in 
detail in Appendix 1. These statistics were used to relate 
the accuracy of the DistR rate estimates to the known 
rates at which the proteins were simulated. 

Sequence 
Length 

Sequence 
Length 

Sequence 
Length 

DistR 

FIGURE 2. The general flow of the simulation studies. Two studies were performed, one with n = 20 and the other with n = 21 (where n is 
the number or proteins). The first study compared different methods of estimating distances using different alignment lengths. In the first study, 
20 random subtrees from an original tree of 58 species were created, four each of size m = 33, m = 38, m = 43, m = 48, and m = 53 (where m is the 
size of the taxon set for a given protein). For each tree, a rate was sampled from a precomputed distribution of rates based on real data (data not 
shawn). Protein alignments of length 100, 300, 500, and 1000 were simulated using Pseq-Gen (Grassly et aL, 1997). A second analysis compared 
rate estimates with increasing amounts of data. Twenty-one random subtrees from the original tree of 58 species were created, 7 each of size 
m = 16, m = 30, and m = 44 (corresponding ta approximately 25%, 50%, and 75% of the species [as in Eulenstein et aL, 2004]). For each tree, a 
rate was sampled from a precomputed distribution of rates based on real data (data not shawn). Alignments of length 1000 were generated. For 
bath studies, 10 replicates were performed for each set of parameters. 
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Experimental Studies-Empirical Data 
The data analyzed in this study consist of a set of 15 

aligned mitochondrial protein sequences from 29 taxa. 
The taxon names and accession numbers are given in 
Table 1. Protein names and alignment accession num­
bers appear in Table 2. This multiprotein data set is of 
moderate size, and variants thereof have been used in 
numerous publications (e.g., Bullerwell et aL, 2003; Lang 
et al., 2002; Sumida et al., 2001; Tomita et al., 2002). Fur­
thermore, sorne of the species have high evolutionary 
rates and substitutional saturation of sites (i.e., Smittium), 
whereas others have very short branches in the resulting 
phylogenetic tree. Combined, these two properties can 
cause inaccurate grouping of the taxa due to long-branch 
attraction artifacts (Felsenstein, 1978). 

TABLE 1. Empirical data analyzed. Names and accession numbers 
for protein sequences studied from Fungal species and outgroup. Fif­
teen proteins were downloaded for each species (if present in the 
species), the names of which are in Table 2. 

Species 

Ascomycota 
Aspergillus nidulans 

Candida albicans 
Candida glabrata 
Hypocrea jecorina 
Penicillium marneffei 
Pichia canadensis 
Podospora anserina 
Saccharomyces cerevisiae 
Schizosaccharomyces 

japonicus 
Schizosaccharomyces 

octosporus 
Schizosaeeharomyces pombe 
Torrubiella eonfragosa 
Yarrowia lipolytiea 

Basidiomycota 
Cryptoeoeeus neoformans 
Schizophyllum commune 
Cantharellus cibarius a 

Choanoflagellida 
Monosiga brevieollis 

Chytridiomycota 
Allomyces maerogynus 
Harpochytrium94 
HarpoehytriumlOS 
Hyaloraphidium eurvatum 
Monoblepharella 
Rhizophydium136 
Spizellomyces punetatus 

Metazoa 
Homo sapiens 
Metridium senile 

Zygomycota 
Smittium culisetae 
Mortierella verticillata 
Rhizopus oryzae 

GenBank accession number 

CAA33481, AAA99207, 
AAA31737, CAA25707, 
AAA31736, CAA23994, X15442, 
P15956, CAA23995, CAA33116, 
X00790, X15441, X06960, 
J01387, X01507 

AF285261 
CGL511533 
AF447590 
NC005256 
NC001762 
X55026 
AJ_011856 
NC004332 

AF275271 

X54421 
AF487277 
AJ307410 

NC004336 
AF402141 

AF538053 

U41288 
NC004760 
NC004623 
AF402142 
AY182007 
NC003053 
AF402142 

NC001807 
AF000023 

AY8632133 
AY863211 
AY863212 

aDownloaded from http://megasun.bch.umontreal.ca/People/lang/ 
FMGP /proteins.html. 

Alignments were performed using the default settings 
of ClustalW (Thompson et aL, 1994). Highlyvariable sites 
or those with many gaps were eliminated using Gblocks 
(Castresana, 2000) with the following settings: number of 
sequences for a flank position equal to half the number 
of species plus one; number of contiguous nonconserved 
positions equal to 10; minimum length of a block four; 
half the species allowed gaps. AU other parameters were 
set to default. 

The key questions addressed using real protein data 
are: 

• Comparison of DistR estimates to ML estimates.-How 
do DistR rate estima tes compare to those obtained 
using the ML based method COMBINE (Pupko et 
al., 2002b)? 

• Comparison of DistR estimates to Bayesian estimates.­
How do DistR rate estimates compare to those 
obtained by MrBayes (Huelsenbeck and Ronquist, 
2001) under a Bayesian approach? 

• Patristic versus pairwise ML distances.-How do rate 
estimates from pairwise ML distances and rate es­
timates from patristic ML distances compare when 
applied to real data? 

• Inclusion of DistR estimates into the phylogenetic tree 
search of PHYML.-What is the affect of induding 
DistR estimates in an ML tree search? Is there a sig­
nificantly improved fit? Are improved phylogenetic 
estimates obtained? 

Comparison of DistR estimates to ML estimates.-Note 
that when comparing DistR rates to those computed us­
ing COMBINE (Pupko et al., 2002b), the number of taxa 
and proteins had to be restricted, because COMBINE can 
currently only handle data sets for which all taxa are 
present in aU proteins. Two different starting trees were 
included in the analysis: the ML tree from PHYML based 
upon the concatenated data set and the ML tree from 
PHYML when protein rates were incorporated. Rates 
we:e esti~ated under three different models: global 
ammo aCld frequencies with one gamma distribution; 
local amino acid frequencies (for each protein partition) 
with one gamma distribution; local amino acid frequen­
cies with one gamma distribution for each partition. 

Comparison of DistR estimates to Bayesian estimates.­
Bayesian estimation of the posterior distribution of the 
protein rates was performed using MrBayes version 3.0 
(Huelsenbeck and Ronquist, 2001). Default priors were 
used with the JTT model of evolution plus one gamma 
distribution (eight categories), one parameter for the pro­
portion of invariant sites, and one set of branch lengths 
for the entire data set. This is the same model that is 
used for the PHYML + protein rates analysis of the data. 
Two runs of four chains with 300,000 iterations were per­
formed; the bum-in used was 30,000. A further analysis 
of the data was performed without protein rates (using 
the same model) in order to compare to the concatenated 
PHYML analysis. Four chains were run for 150,000 itera­
tions, with a bum-in of 15,000. Convergence of the chains 
was determined empirically. 
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r-' TABLE 2. DistR estimates for empirical data based on pairwise and patristic ML distance estimates. Mean rate estima tes and variances for rate 
estimates are based upon bootstrap replicates over the fungal data set. Rates are normalized so that the average rate is one. Ace. no. = accession 
number for the alignment in EMBL. AL = alignment length. Patristic refers to rates estimated based on distances from maximum likelihood 
trees. Pairwise refers to rates estimated based on maximum likelihood distances. 

Protein Ace. no. No. of species AL 

Atp8 ALIGN_000885 28 32 
Atp9 ALIGN_000886 26 73 
Rps3 ALIGN_000900 11 77 
Nad3 ALIGN_000893 24 79 
Nad4 ALIGKOO0894 24 424 
Nad4L ALIGKOO0895 23 85 
Nad6 ALIGN_000897 24 96 
Atp6 ALIGN_000884 29 203 
Cox2 ALIGKOO0889 29 220 
Cox3 ALIGN_000890 29 245 
Nad1 ALIGN_000891 24 294 
Nad2 ALIGKOO0892 23 313 
Cob ALIGN_000887 29 375 
Cox1 ALIGN_000888 29 487 
Nad5 ALIGKOO0896 24 520 

Inclusion of DistR estimates into the phylogenetic tree 
search of PHYML.-DistR rates were incorporated into 
the ML framework of PHYML following the propor­
tional approach (Pupko et al., 2002b; Yang, 1996); how­
ever, optimization over the rates was not performed. ML 
trees over the entire data set were calculated in four dif­
ferent ways using this modified version of PHYML. In 
the first analysis, the proteins were simply concatenated 
(equivalent to a rate of one for each protein). In the sec­
ond analysis, the estimated protein rates from the real 
data set (based on patristic ML distances) were used for 
each bootstrap replicate when computing the likelihood. 
In the third and fourth analyses, protein rates were esti­
mated for each bootstrap replicate using patristic and 
pairwise ML distances respectively. These rates were 
incorporated into the likelihood computation for each 
bootstrap replicate. Consensus trees were computed us­
ing the CONSENSE program available in the PHYLIP 
package (Felsenstein, 2004b). 

RESULTS AND DISCUSSION 

Simulated Data 

Patristic versus pairwise ML distances.-The first simula­
tion study demonstrates two important results: pairwise 
ML distances provide equally good distance estimates 
as patristic ML distances to the DistR method (Fig. 3); 
if the fit of the initial pairwise/patristic ML distances to 
the data is accurate then the DistR estimates will be ac­
curate (Figs. 3 and 4). The first result is important since 
pairwise ML distances are very fast to compute. The sec­
ond result indicates that error in the rate estimates stems 
principally from error in the distance estimates, rather 
than the DistR method itseH. 

The numerical results from the first experiment are 
summarized in Figure 3. The proteins are sorted in order 
of increasing rate, and the histogram indicates the mean 
squared error (MSE) over the 10 different replicates (see 
Appendix 1 for the exact formula used to compute MSE). 

Patristic Pairwise 

Mean Variance x 10-3 Mean Variance x 10-3 

1.08 8.68 1.15 11.8 
0.55 5.12 0.55 4.35 
2.02 41.1 2.33 31.5 
1.13 8.82 1.15 10.1 
1.14 3.52 1.10 2.76 
0.87 5.91 0.91 6.45 
1.05 7.21 1.10 7.80 
1.07 3.76 1.03 4.07 
0.75 3.81 0.71 2.98 
1.05 4.75 0.86 3.24 
0.89 2.61 0.84 2.30 
1.21 2.16 1.29 2.69 
0.67 1.17 0.61 1.04 
0.53 1.76 0.46 .749 
1.01 2.79 0.89 1.94 

Mean rate estimates are labelled to the right of each MSE 
bar, with the rate at which the data was simulated on the 
left. Results are presented only for alignments of length 
100 and 1000. The results for alignments of length 300 
and 500 faH in-between these two extremes. Note that 
the MSE increases in proportion to the rate, so results are 
presented on two scales. 

The mean estimates for the different methods were 
quite close to the real rates at which the data were simu­
lated, regardless of the alignment length, procedure used 
to estimate the distances, or rate at which the data was 
simulated (Fig. 3). However, it is clear from the mean 
squared error that the DistR estimates based on shorter 
alignments have larger error (or greater variation), de­
spite the fact that the mean rate estimate is often almost as 
accurate as that for longer alignments. Furthermore, the 
mean squared error tends to increase with higher rates. 
This is likely because the error is often in the third signifi­
cant digit; for slower rates this willlead to a smaller MSE. 
Overall there is negligible difference between the mean 
and MSE statistics for a given alignment length (compar­
ing DistR estimates based on patristic versus pairwise 
ML distances). 

Results also indicate that errors in the rate estimates are 
due to errors in the original distances rather than approx­
imations introduced in the DistR method. For each pro­
tein and alignment length the absolute error between the 
mean rate estimates and the real rate at which the align­
ments were simulated was compared to the goodness­
of-fit between the estimated and true distances (Fig. 4). 
This fit can be measured since the data are simulated 
under a known model at a particular rate. Alignments 
of length 100 and 300 only were examined, since the er­
rors become negligible for longer alignments. The fit was 
measured using the goodness-of-fit statistic of Tanaka 
et al. (Tanaka and Huba, 1985), which is determined 
from the sum of squares error between true and esti­
mated distances, normalized by the sum of the true dis­
tances squared. The exact formula for goodness-of-fit is 
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FIGURE 3. Mean squared error for different methods of distance estimation and different alignment lengths. The rates at which the data were 
simulated are labeled on the left-hand side of the graph. The mean rate estimate for a given distance estimation method, alignment length, and 
rate is given on the right of the MSE bar. AL = alignment length. The 10 fastest proteins are in the left-hand column. The number of species 
in each protein (from fastest to slowest) are Protein 1: 53 species; Protein 2: 38 species; Protein 3: 33 species; Protein 4: 53 species; Protein 5: 38 
species; Protein 6: 48 species; Protein 7: 53 species; Protein 8: 48 species; Protein 9: 43 species; Protein 10: 33 species. The 10 slowest proteins are 
in the right-hand column. The number of species in each protein (from fastest to slowest) are Protein 1: 33 species; Protein 2: 48 species; Protein 
3: 43 species; Protein 4: 43 species; Protein 5: 48 species; Protein 6: 33 species; Protein 7: 43 species; Protein 8: 53 species; Protein 9: 38 species; 
Protein 10: 38 species. Ali rates are normalized so that the average rate is one over ail 20 proteins. The total number of taxa in the data set is 58. 
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FIGURE 4. Average error of DistR rate estimates compared to goodness-of-fit of distances based upon patristic and pairwise ML distance 
estima tes. (a) DistR rate estima tes were based upon simulated proteins of length 100. (b) DistR rate estima tes were based upon simulated proteins 
of length 300. A higher value for goodness-of-fit means that the fit of the estimated distances to the original distances is better. 

presented in Appendix 1. The statistic has a maximum 
of one, which indicates a perfect fit. 

It is expected that with longer alignments the 
goodness-of-fit will increase, indicating that the fit of 
the model to the data is better. This is clearly the case 
as seen when comparing goodness-of-fit for alignments 

of length 100 (Fig. 4a) to that for alignments of length 
300 (Fig. 4b). The fit is further improved, and relative 
error reduced, with alignments of length 500 and longer 
(data not shown). The decrease in the goodness-of-fit (in­
dicating a worse fit) seen with short alignment lengths 
indicates that the error of the method is dependent upon 
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the error of the distance estimates and is not a property 
of the estimation procedure itself. 

Interestingly, the error in rate estimation is in sorne 
cases less when based upon pairwise ML distances, 
rather than patristic ML distances. Given that the mul­
tiple sequence alignments are short (100 and 300 amino 
acid residues) and include many species (at least 33 in 
each protein alignment), there are many trees that will 
fit the data equally well. Thus, there is high variation in 
building a ML tree to fit the original tree on which the 
data were simulated. Hence, estimating a ML tree with 
few data will likely lead to an incorrect topology. This 
will result in a worse fit between the original tree and 
the tree estimated from the alignment data. This is not 
true for pairwise ML distances, which do not account for 
topology. 

Missing distances between taxa.-In the previous exper­
iment, less than half of the taxa were missing in each 
protein, and 20 proteins were used to estimate rates. The 
effects of more extreme missing taxa were also tested, 
where no distance estima tes were present between sorne 
pairs of taxa. To achieve this, up to 7S% of the taxa 
were removed from the starting tree. Additionally, many 
fewer proteins were used for DistR estimation. Results 
indicate that the DistR method is robust to missing taxa, 
though having many missing taxa led to the expected 
increase in variance of the rate estima tes. 

Figure S summarizes the error in rate estimates for 
two simulated data sets. In the first example (Fig. Sa) 
there are four protein trees, each with 16 taxa (~28% 
of the total taxon set). In the second example (Fig. Sb) 
there are eight protein trees. Seven of these have 16 taxa 
and the other has 30 taxa. The proteins are ordered from 
fastest to slowest rate in both Figure Sa and Figure Sb. 
Mean rate estimates are shown on the right of the MSE, 
and the rate at which the protein simulated (averaged 
to equal one) is given on the le ft. Simulated proteins in 
Figure Sa are labeled from 1 to IV. The same simulated 
proteins in Figure Sb are likewise labeled. 

Once again it is evident that pairwise ML distances 
and patristic ML distances give almost identical average 
relative rate estimates (to within two or three decimal 
places). Furthermore, the missing data has little effect on 
mean rate estimates, but does have a large effect on the 
variance. For instance, comparing the MSE for the first 
protein in Figure Sa to that of the second protein in Fig­
ure Sb (it is the same simulated prote in), it is clear that 
although the mean rate estimate is approximately as ac­
curate with more taxa (Fig. Sb), the MSE is clearly smaller 
when more distances between a pair of taxa are included 
in the analysis. Thus it is evident that more data in terms 
of pairwise distances between taxa (over multiple pro­
teins) will reduce the error of the DistR estimate. 

Ca1culation of the relative rates within groups of the 
same number of species was also performed (i.e., pro­
teins with 16 species, proteins with 30 species, and pro­
teins with 44 species). For each subset of proteins mean 
rate estimates based on pairwise ML distances were 
slightly worse or identical to those based on patristic 
ML distances (data not shown). In addition, the vari-

ances were greater in general for rates estimated based 
on pairwise ML distances. The major difference between 
the three analysis was that the variance of the rate es ti­
mates was lower when more species were included in 
the analysis. Furthermore, the mean rate estimates were 
slightly more accurate for the data sets over larger taxon 
groups (data not shown). 

Accuracy in spite of missing taxa demonstrates that the 
rate estimation procedure is consistent (assuming that 
the initial distance estimates are accurate), regardless of 
the number of proteins under analysis. This is because 
rates are not computed relative to the distance estimates 
of one protein. Rather, they are constrained by all the 
distance estimates. Thus, if one set of distance estimates 
is extremely biased with respect to the remainder of the 
distances they will not have a strong effect on the final 
rate estimates. 

Empirical Data 
Comparison of DistR estimates to ML estimates.-Rates 

were ca1culated in a ML framework using only those pro­
teins that are present over the entire species set (Atp6, 
Cob, Cox1, Cox2, and Cox3) due to a constraint of the 
program COMBINE (Pupko et al., 2002b). Table 3 shows 
the time for rate estimation and rate estimates based on 
different models under the ML framework in compar­
ison to DistR estimates based on pairwise and patris­
tic ML distances. Two sets of ML estimates are given 
for each model. The first based upon the concatenated 
tree, and the second on the DistR incorporated ML tree. 
DistR estimates are computed far more rapidly and are 
still accurate in comparison to ML estimates. In compar­
ison to the six ML estimates, the DistR rates based on 
patristic ML distances are slight overestimates for Cob 
and Cox1, and slight underestimates for Cox2 and Cox3. 
The estimate for Atp6 is an average of the 6 ML esti­
mates (Table 3). Notably, the patristic DistR estima tes for 
Cob and Cox1 are closest to the ML estimates based on 

TABLE 3. Comparison of ML rate e5timates to DistR estimates. 
Comparison of relative rate estimates and estimation time from COM­
BINE and DistR for five proteins (Atp6, Cob, Coxl, Cox2, and Cox3) 
from the fungal data set. For each model, rates based upon the maxi­
mum likelihood concatenated tree from PHYML are given on the first 
line, and rates based upon the maximum likelihood tree incorporating 
DistR rates (computed in PHYML) are given on the second. AlI esti­
mates were normalized so that the average rate is one. GF = global 
amino acid frequencies; LF = local amino acid frequencies (calculated 
for each protein); I-GAM = one gamma distribution estimated for the 
entire data set; 5-GAM = one gamma distribution for each protein; 
DistR Pat = DistR estimation using patristic ML distances; DistR Pair = 
DistR estimation using pairwise ML distances. 

Method Time Atp6 Cob Coxl Cox2 Cox3 

GF+ I-GAM 776s 1.24 0.81 0.62 0.99 1.34 
1.25 0.81 0.63 0.99 1.33 

LF + I-GAM 842s 1.35 0.80 0.61 0.94 1.31 
1.36 0.80 0.62 0.93 1.30 

LF +5-GAM 648s 1.36 0.79 0.59 0.94 1.31 
1.39 0.78 0.61 0.92 1.30 

DistRPat 0.1165 1.32 0.83 0.66 0.91 1.29 
DistRPair 0.122s 1.40 0.83 0.64 0.96 1.18 
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FIGURE 5. Mean squared error for different methods and different amounts of distance data. The rates at which the data were simulated are 
labelled on the left-hand side of the graph in both (a) and (b). Mean rate estima tes for both distance estimation methods are labelled on the right 
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(b) Rate estimates based upon a data set consisting of eight proteins; seven with 16 taxa and one with 30 taxa. 

the rate-incorporated tree using global amino acid fre­
quencies plus the one-gamma-distribution model. Con­
versely, the DistR estimates for Cox2 and Cox3 are closest 
to the ML estimates based on the same tree, using local 
amino acid frequencies and the five-gamma-distribution 
model. The DistR estimates based on pairwise ML dis­
tances are quite close to those based on patristic ML 

distances, except for Atp6 and Cox3. Atp6 has a much 
higher rate-quite close to the ML estimate for the LF 
+ 5-GAM model where the estimates were based on the 
rate-incorporated ML tree. However, the Cox3 estimate 
is quite low compared to an ML estimates; Cox3 had 
a higher variation in rate estimation over an proteins 
(Table 3), a case where perhaps the lack of topological 
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FIGURE 6. Distribution of rates from the MrBayes proportional model analysis compared to DistR estimates. Bars at either end represent 
the 95% credible interval. The DistR estimate based upon patristic ML distances is marked by a solid triangle. The DistR estimate based upon 
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information decreases the accuracy of the DistR estimate. 
Clearly this is not an issue for most proteins, but can be an 
issue for sorne. Overall it appears that the DistR estima tes 
are model independent regardless of distance estimation 
procedure and provide excellent first approximations to 
the ML estimates. 

Comparison of DistR estimates to Bayesian estimates.­
The posterior distribution of rates from MrBayes is 
shown in Figure 6. For all but three of the proteins the 
DistR estimates fall within the 95% posterior credible in­
terval for the protein rate. Each of Nad6, Cox1, and Cox3 
have DistR estima tes that do not fall between the 95% 
posterior credible interval. Both Cox1 and Cox3 have av­
erage sequence lengths, and 29 taxa each. Nad6 is shorter 
at less than 100 amino acids, with only 24 species. In the 
case of Nad6 perhaps the short sequences length con­
tributes to uncertainty in the DistR estimates. However, 
it is unlikely that the Bayesian posterior distributions 
of the rates are accurate. This conclusion is based upon 
the fact that the four chains were mixing quite poorly in 
both runs even after 300,000 iterations (data not shown). 
Sampling from the posterior distribution is unlikely to 
be correct since the chain might be oversampling from 

areas of low likelihood. Comparison of the tree of the 
highest likelihood from this analysis to the tree of highest 
likelihood based on the concatenated data indicates that 
MrBayes was in a suboptimal topological space when 
sampling rate estimates (using the Bayesian information 
criterion, data not shown). Furthermore, the DistR ML 
tree is a significantly better fit of the model to the data 
based on the AIC (Felsenstein, 2004a) when compared to 
the likelihood of the MrBayes rate incorporated tree as 
computed in PHYML. Thus, although the posterior dis­
tribution of the rates appears reasonable, the chain seems 
to be having difficulty sampling through topology space. 

Thus, it appears that the proportional model under 
MrBayes, when used without different parameters for 
each partition (as in Nylander et al., 2004), does not 
search tree space as well as PHYML with the rate multi­
pliers included. Perhaps this is due to an incorrect prior 
on the rate parameters used. If this is the problem the 
DistR method can certainly be used to find a distribution 
of the rates of proteins, which could be used as the prior 
on these parameters. The discrepancy could also be due 
to the different search heuristics used in MrBayes. Given 
the computational complexity of the search, it might be 
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FIGURE 7. (a) Phylogenetic analysis based upon the mitochondrial data set. The topology shown was inferred using PHYML without DistR 
protein rates, using the JTT model of protein evolution, with eight gamma categories, and ML estimation of the alpha parameter of the gamma 
distribution and the proportion of invariant sites. Ilwas constructed using the concatenated "unambiguously" aligned proteins. Bootstrap support 
for this topology was computed based upon 100 replicates. The percentage of support for each clade is given at the root of the clade. In cases 
where the consensus tree differed from the maximum likelihood topology a "-" is written. (b) Phylogenetic analysis based upon mitochondrial 
data set. The topology shown was inferred using PHYML with DistR protein rates, using the JTT model of protein evolution, with eight gamma 
categories, and ML estimation of the alpha parameter of the gamma distribution and the proportion of invariant sites. Il was construded using the 
concatenated unambiguously aligned proteins and protein rate estima tes. The percentage of support for each clade is given. Bootstrap support 
for this topology was computed based upon 100 replicates, using three different methods. The top numbers give the percentage of support based 
upon using the patristic ML distance DistR estimates from the real data as rate values in computing the ML tree for each bootstrap replicate. 
The middle numbers give the percentage of support based upon reestimating DistR estimates for each bootstrap replicate using patristic ML 
distances. The bottom numbers give the percentage of support based upon reestimating DistR estima tes for each bootstrap replicate using 
pairwise ML distances. When bootstrap support was the same for each method of incorporating rates it is given only once. 
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difficult for the program ta search for the best rate pa­
rameters while also searching for the best topology. 

Patristic versus pairwise ML distances.-The relative 
protein rates of the real data are unknown. However 
the variance of the rate estimates using both patristic 
and pairwise ML distances can be compared, a smaller 
estimate being preferable. Contrary to expectations, but 
confirming the simulation studies, rate estima tes from 
pairwise ML distances had smaller variance than rate 
estimates from patristic ML distances. 

Variances of the rate values computed were estimated 
by nonparametric bootstrap of the protein alignments, 
and reestimation of the distances and DistR rates for each 
bootstrap data set. The mean and variance of the DistR 
estimates for pairwise and patristic ML distances show 
sorne interesting trends (Table 2). In general, the average 
rate estimates were similar, with the notable exception 
of Atp8, Cox3, and Rps3 (and to a lesser extent Nad2, 
Nad5, and Nad6). Ten of the 15 protein rates derived 
from patristic ML distances had greater variance than 
their counterparts derived from pairwise ML distances. 
(Table 2). These results support the conclusion that in­
troducing topology into the distance estimation proce­
dure is not likely to lead to better distances estimates 
for the DistR procedure when so many taxa are involved 
and the alignments are short. This is a consequence of the 
large number of distinct trees that can fit a short align­
ment equally well. 

Inclusion of DistR estimates into phylogenetic tree 
search of PHYML.-The experimental results when 
DistR estimates are incorporated into the ML tree 
search demonstrate the importance of accounting 
for different evolutionary pressures in phylogenetic 
inference. 

Bootstrap support values for the ML tree using con­
catenated data are presented in Figure 7a. The bootstrap 
support for sorne of the clades was quite weak. Incor­
porating DistR estimates based upon both patristic and 
pairwise ML distances into the tree search led to the same 
ML tree, presented in 7b. Overall, bootstrap support was 
improved in most clades when DistR estimates were in­
corporated into the tree search. 

The topology of the ML concatenation-based tree does 
not separate Zygomycota and Ascomycota as distinct 
clades, which is not surprising because the Zygomy­
cota are traditionally difficult to place. Furthermore, 
the outgroup is incorrect since it should also contain 
Homo sapiens (which groups incorrectly with the zy­
gomycete Smittium and the Ascomycota). This long­
branch-attraction problem is due to the highly derived 
Smittium and Homo sequences. U sing DistR estimates im­
proves the bootstrap support in certain clades, and cor­
rects the most evident topological problems, notably that 
Zygomycota more accurately group together (although 
as an unresolved paraphyletic group). Indeed, almost 
every branch that does not show 100% bootstrap sup­
port with the concatenated data have improved support 
when using protein rates. The only branching where sup­
port somewhat lessened from the concatenated to the 
protein-rate-based trees (and with using individual boot-

strap rates) was the branching of Allomyces (a species that 
is difficult to place whatever the method or data set) with 
the remainder of the Chytridiomycota (Figs. 7a and b). 
Bootstrap support is strongest when using protein rates 
based upon pairwise ML distances, where the rate es­
timates were recomputed for each bootstrap replicate. 
This is perhaps because the variation in the pairwise ML 
distance rate estimates was smaller than, or on the same 
order of magnitude as, the rate estimates based on pa­
tristic ML distances. 

Both the Kishino-Hasegawa (KH) test and Akaike In­
formation Criterion (AIC) support the ML topology with 
protein rates as a better fit for the model to the data than 
the concatenated topology. Under the KH test (Kishino 
and Hasegawa, 1989, Shimodaira and Hasegawa, 2001); 
the concatenated topology was significantly worse than 
the DistR topology (P < 0.0001) when the topology was 
computed with rate estimates calculated based on both 
patristic and pairwise ML distances. The AIC provides a 
statistical measurement of the significance of the change 
in log-likelihood when using two different models to 
fit the data. The measure compensates for the increase 
in the number of parameters in the rates model. When 
DistR estimates based on pairwise ML distances are used, 
the AIC is 1043.65182 greater than the AIC for a single 
rate, concatenated analysis. When patristic ML distances 
are used for rate estimation, the increase in AIC over 
the concatenated analysis is 1068.7542. Both increases in 
AIC are very substantial, indicating that important in­
formation in the data that is disregarded by traditional 
concatenated analysis is captured by modeling protein 
rates. 

CONCLUSION 

A fast and accurate method to calculate the rates 
of partitioned data sets is presented. Although the 
analyses performed here are based upon protein se­
quence data, using nucleotide sequences should prove 
as effective. The error in the method is largely due 
to incorrect initial distance estimates for the proteins, 
which tend to be worse with smaller or poody con­
served sequences. U sing pairwise ML distances for DistR 
estimation is just as accurate as using patristic ML 
distances. The estimates are accurate when compared 
to ML estimates and Bayesian posterior credible in­
tervals for the rates. Incorporating the DistR estimates 
into PHYML leads to statistically better likelihood and 
topology. 

ACKNOWLEDEGEMENTS 

We thank Scott Bunnell, Alain Vandal, Tad Pupko, Tim Collins, and 
Olivier Gascuel for helpful comments on the manuscript. Thanks to 
Stéphane Guindon for kindly providing the source code of PHYML 
v2.2 for our use. Salary and support from the Canadian Institutes of 
Health Research (MOP 42475; BFL), the Canadian Institute for Ad­
vanced Research (ClAR; BFL), National Science and Engineering Re­
search Council (NSERC grant 238975-01; DB), Fonds de recherche sur la 
nature et les technologies (FQRNT grant 2003-NC-81840; DB), and sup­
ply of laboratory equipment and infonnatics infrastructure by Genome 
Canada are gratefully acknowledged. RBB is supported by an NSERC 
PGS-B scholarship. 



2005 BEVAN ET A1.-RAPID ESTIMATION OF RELATIVE GENE RATES 913 

REFERENCES 

Bapteste, E., H. Brinkmann, J. A. Lee, D. V. Moore, C. W. Sensen, P. 
Gordon, 1. Duruflé, T. Gaasterland, P. Lopez, M. Müller, and H. 
Philippe. 2002. The analysis of 100 genes supports the grouping 
of three highly divergent amoebae: Dictyostelium, Entamoeba, and 
Mastigamoeba. Proc. Nat. Acad. Sei. 99:1414-1419. 

Bull, J., J. P. Huelsenbeck, C. W. CUlU1ingham, D. 1. Swofford, and P. 
J. WaddelL 1993. Partitioning and combining data in phylogenetic 
analysis. Syst. Bio. 42:384-397. 

Bullerwell, C. E., 1. Forget, and B. F. Lang. 2003. Evolution of mono­
blepharidalean fungi based on complete mitochondrial genome se­
quences. Nucleic Acids Res. 31:1614-1623. 

Bulmer, M. 1991. Use of the method of generalized least squares in re­
constructing phylogenies from sequence data. MoL BioL EvoL 8:868-
883. 

Castresana, J. 2000. Selection of conserved blocks from multiple align­
ments for their use in phylogenetic analysis. MoL BioL EvoL 17:540-
552. 

Crans ton, K, and B. Rannala. 2005. Closing the gap between rocks and 
docks. Heredity 94:461-462. 

Eulenstein, O., D. Chen, J. G. Burleigh, D. Fernândez-Baca, and M. J. 
Sanderson. 2004. Performance of flip supertree construction with a 
heuristie algorithm. Syst. BioL 53:299-308. 

Felsenstein, J. 1978. Cases in which parsimony or compatibility meth­
ods will be positively misleading. Syst. ZooL 27:401-410. 

Felsenstein, J. 2001. Taking variation of evolutionary rates between sites 
into account in inferring phylgenies. J. Mol. Evol. 53:447-455. 

Felsenstein, J. 2004a. Inferring phylogenies, pages 148-149. Sinauer As­
sociates, SUllderland, Massachusetts. 

Felsenstein, J. 2004b. PHYLIP (Phylogeny Inference Package) ver­
sion 3.6. Distributed by the author, Department of Genome Sci­
ences, University of Washington, Seattle. URL: http://evolution. 
genetics.washington.edu/phylip.html 

Gill, P., W. Murray, and M. Wright. 1982. Practical optimization. Aca­
demic Press. 

Grassly, N. c., J. Adachi, and A. Rambaut. 1997. PSeq-Gen: An appli­
cation for the monte carlo simulation of protein sequence evolution 
along phylogenetic trees. Comput. Appl. Biosci. 13:559-560. 

Guindon, S., and O. GascueL 2003. A simple, fast and accurate algo­
rithm to estimate large phylogenies by maximum likelihood. Syst. 
Biol. 52:696-704. 

Huelsenbeck, J. P., J. Bull, and C. W. CUlU1ingham. 1996. Combining 
data in phylogenetic analysis. Tree 11:152-158. 

Huelsenbeck, J. P., and E Ronquist. 2001. MRBAYES: Bayesian inference 
of phylogenetic trees. Bioinformaties 17:754-755. 

Kishino, H., and M. Hasegawa. 1989. Evaluation of the maXimUlTI like­
lihood estimate of the evolutionary tree topologies from DNA se­
quence data, and the braching order in hominoidea. J. Mol. Evol. 
29:170-179. 

Lang, B. E, C. O'Kelly; T. Nerad, M. W. Gray, and G. Burger. 2002. The 
closest unicellular relatives of animais. Curr. Biol. 12:1773-1778. 

Lapointe, E, and G. Cucumel. 1997. The average consensus procedure: 
Combination of weighted trees containing identieal or overlapping 
sets of taxa. Syst. Biol. 46:306-312. 

Mayrose, L, D. Graur, N. Ben-Tai, and T. Pupko. 2004. Comparison of 
site-specifie rate-inference methods: Empirical Bayesianmethods are 
superior. Mo!. Bio!, Evo!' 21:1781-1791. 

Nylander, J. A. A., F. Ronquist, J. P. Huelsenbeck, and J. 1. Nieves­
Aldrey. 2004. Bayesian phylogenetic analysis ofcombined data. Syst. 
BioL 53:47-67. 

Œsen, G. J., S. Pracht, and R. Overbeek. 1993. DNArates. URL: 
http:// geta.life. uiuc.edul gary 1 programs IDNArates.html. 

Pupko, T., R. Bell, 1. Mayrose, F. Glaser, and N. Ben-TaI. 2002a. Rate4Site: 
An algorithmic tool for the identification of functional regions in 
proteins by surface mapping of evolutionary determinants within 
their homologues. Bioinformatics 18:S71-S77. 

Pupko, T., D. Huchon, Y. Cao, N. Okada, and M. Hasegawa. 2002b. 
Combining multiple data sets in a likelihood analysis: Whieh models 
are the best? Mol. Biol. Evo!' 19:2294-2307. 

Shimodaira, H., and M. Hasegawa. 2001. CONSEL: For assessing the 
confidence of phylogenetic tree selection. Bioinformatics 17:1246-
1247. 

Sumida, M., Y. Kanamori, H. Kaneda, Y. Kato, M. Nishioka, M. 
Hasegawa, and H. Yonekawa. 2001. Complete nucleotide sequence 
and gene rearrangement of the mitochondrial genome of the 
japanese pond frog Rana nigromaculata. Genes Genet. Systems 76:311-
325. 

Tanaka, J. S., and G. J. Huba. 1985. A fit index for covariance structure 
models under arbitrary GLS estimation. Br. J. Math. Statist. Psycho 
38:197-201. 

Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL 
W: Improving the sensitivity of progressive multiple sequence 
alignment through sequence weighting, position-specifie gap 
penalties and weight matrix choiee. Nucleie Acid Res. 22:4673-
4680. 

Tomita, K, S. Yokobori, T. Oshima, T. Ueda, and K Watanabe. 2002. 
The cephalopod Loligo bleekeri mitochondrial genome: Multiplied 
noncoding regions and transposition of tRNA genes. J. MoL EvoL 
54:486-500. 

Yang, Z. 1993. Maximum likelihood estimation of phylogeny from 
DNA sequences when substitution rates differ over sites. MoL BioL 
Evo!' 10:1396-1401. 

Yang, Z. 1996. Maximum-likelihood models for combined analyses of 
multiple sequence data. J. MoL EvoL 42:587-596. 

First submitted 24 November 2004; reviews returned 18 March 2005; 
final acceptance 24 May 2005 

Associate Editor: Tim Collins 

ApPENDIX 1 

FORMULA FOR MEAN SQUARED ERROR 
AND GOODNESS-OF-FIT 

Mean squared error is used to describe the accuracy 
of rate estimates. Because only relative rates can be com­
puted rates are normalized so that the average rate over 
aH proteins is one. Let f denote the true rate (that is, the 
rate used in simulations), and let rî, ... , rîo be the rates es­
timated in the 10 replicates of the experiment. The mean 
squared error (MSE) is defined as 

Goodness-of-fit is used to measure the fit of the dis­
tance estimates to the distances in the tree used for 
simulation. There is a slight problem with scales since 
Pseq-Gen treats branch lengths as the expected number 
of substitutions per 100 sites while PHYML treats branch 
lengths as the expected number of substitutions per site. 

Let a~~ be the distance between x and y in the tree used to 

simulate prote in k,let rk denote the rate used when sim­

ulating protein k, and let aà~ be the distance estimated 

byPHYML. 
Given the differences in scale the goodness-of-fit mea­

sure used was 

'" (rka<k) _100a<k»)2 1 0 _ ~xy xy xy 
. ( a<k»)2 

Lxy rk xy 

Note that the goodness-of-fit is at most one, and equals 
one if and only if there is a perfect fit. 
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ApPENDIX2 

FAST ALGORITHM FOR LEAST-SQUARES ESTIMATION 

This appendix shows how to quickly determine the 
vectors p and r that minimize the function q (p, r) in Equa­
tion (3) 

n ( d(k»)2 
q(p, r) = LL w1V pxy - :: 

k=l x,y 

subject to the constraint that h(p) = K, where 

n 

h(p) = LLW1Vpxy 
k=l x,y 

and K is an arbitrary, positive constant. In the implemen­
tation of DistR 

which corresponds ta the assumption that the unknown 
consensus distances are roughly centered on the average 
of the observed distances. This value can be computed in 
O(nm2) time for n proteins and m taxa. Any other positive 
constant will work, as the only effect is to change the scale 
of the rate estimates. 

To simplify the mathematics substitute Sk = * for each 
k = l, ... , n. Let s denote the vector [Sl, ... , snf. Mini­
mizing q(p, r) is then equivalent to minimizing 

n 

"" (k) ( d(k»)2 f(p,s) = ~~Wxy pxy-Sk xy . (5) 
k=l x,y 

Recall from calculus that the minimum of a one dimen­
sional function can be found by determining where the 
first derivative is equal to zero. This condition extends 
to multidimensional functions with constraints. Refer to 
Gill et al. (1982) for an excellent introduction to the opti­
mization tools used here. 

If (p, s) together minimize the function f, subject to the 
condition that h(p) = K, then there exists a real number 
À such that 

âf(p, s) _ À âh(p) = 0 for all taxa x, y 
âpxy âpxy 

âf(p, s) = 0 for all proteins k 
âSk 

h(p) = K. (6) 

In general, (6) is only a necessary condition for reach­
ing the minimum, and not a sufficient condition. How­
ever, in this case the matrix formed from the second 

derivatives of f(p, s) is positive definite, so that the func­
tion f is convex (Gill et al., 1982). It follows that if (p, s) 
and À satisfy (6) then (p, s) gives the global minimum. 

It is possible to derive the partial derivatives of the 
functions f and h explicitly. To help with notation define 
the quantities: 

œk = L 2wW (d~V)2 for all proteins k; 
xy 

n 

f3xy = 2 L w~J for all taxa x, y; 
k=l 

f3xy,k = -2w1Vd~V for all prateins k and taxa x, y. 

The partial derivative of f with respect to Sb for sorne 
protein k, is 

âf(p, s) _ "-2w(k)(p _ d(k)Sk)d(k) 
â - ~ xy xy xy xy 

Sk xy 

= œkSk + L f3xy,k Pxy· 
xy 

The partial derivatives of f and h with respect to pxy, for 
sorne taxa x, y, are 

âf(p, s) _ ~ 2w(k)(p _ d(k)Sk) 
â -~ xy xy xy 

pxy k=l 

n 

= L f3xy,k Sk + f3xy Pxy 
k=l 

ah(p) = tww 
âpxy k=l 

= f3xy/2. 

Note from the partial derivatives that the conditions 
in Equation (6) are linear equations involving the entries 
of p, s, and À. As such, the next step is to rewrite 6. in 
terms of matrix algebra. Given that there are n protems 
and m taxa define the following: let D be the n x n ma­
trix with œ1, œ2, ... , œn down the diagonal and zeros off 

h m(m-1) m(m-1) t . ·th the diagonal; let C be t e 2 x -2- ma nx Wl 

f312, f313, ... , f3(m-1)m down the diagonal and zeros off the 
diagonal; let B be the m(~-l) X n matrix with rows in­
dexed by unique pairs of taxa, columns indexed by pro­
teins, and the entry corresponding to row xy and column 
k equal to f3xy,k; let v be the m(~-l) dimensional vector 

v = Hf312' f313, ... , f3(m-1)mf. . 
The conditions in Equation (6) can now be rewntten as 

Ds+BTp=O 

Bs+ Cp+vÀ = 0 

vTp = K. 

(7) 

(8) 

(9) 
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Define 

u = BT C-1y 

cv = y TC-1y. 

Solving for p in (8) gives: 

p = C-1(-Bs - YÀ-) 

Substituting this into (9) and solving for À- gives: 

K +yT C-1Bs 
À- = ----,,:;-:--,:--

_yTC-1 y 

K+UTS 
-cv 

(10) 

Replacing À- with the above equation in (10) provides 
a solution for p in terms of the above defined matrices, 
vectors and s (i.e., there are no longer any unknowns 
except for p and s): 

C -1( B K+UTS) p= - s+y---
cv 

-1 VU K -1 
( 

T ) = C ---;- - B s +;;C Y. 

Finally, substitute (12) into (7) to get 

UU T -1 K 

( 
T ) = D + ---;- - B C B s + ;;u. 

Let 

Then, s is found by solving the equation: 

K 
Ms = --u. 

cv 

(11) 

(12) 

(13) 

Consensus distances p are obtained by substituting s 
into Equation (12). 

The entire computation is summarized in Appendix 3. 
The running time of the algorithm is O(nm2 + n3 ) which 
is time optimal. The algorithm uses O(n2 + m2 ) memory 
in addition to the O(nm2 ) required to store the distance 
estimates d~~ . 

There are two complications that can arise in the above 
calculations. Firstly, it could be the case that for a particu­
lar pair of taxa x, y there is no single protein that contains 

both X and y. This means that fJxy is undefined, 50 that C 
is no longer invertible. This problem is easily solved. If 
there is no protein with both x and y then the line in (6) 
involving the partial derivative with respect to pxy is sat­
isfied trivially. Therefore, the row and column of C, the 
row of B, and entry of Y indexed by the pair x, y can be 
removed. The reduced problem can be solved as before, 
although no estimate for Pxy is obtained. Row removal 
is handled in the pseudocode for the algorithm given in 
Appendix 3 by using constraints in the summations. 

The second complication is that the optimization prob­
lem might have more than one solution, in which case 
the matrix M in (13) will not be invertible. This indi­
cates that more information is required to estima te the 
relative rates, as would arise, for example, in a concate­
nation of two protein alignments over entirely different 
sets of taxa. 

ApPENDIX3 

THE DISTR ALGORITHM 

Algorithm DISTR(d, w) 
Input: Distance estimates dW for each pair of taxa 

and each protein k. 
Weights wW for each distance estimate. 
Missing distances have weight zero. 

Output: Rate estimates r. Consensus distances p. 

_ "n" (k)d(k) 
K - 6k=1 6xy w xy xy 
for k from 1 to n do 

œk +-" 2w(k)(d(k)2 
6xy xy xy 

for all taxa x, y do 
œk,xy +- -2w1d~~ 
fJxy,k +- -2w~Jd~J 

for all taxa x, y do 
fJxy +- 2 2:~=1 wW 

cv +- ~ 2:xy fJxy 
for k from 1 to n do 

Uk +- 2:xy fJxy,k 
for k from 1 to n do 

Zk +- -~Uk. 
for 1 from 1 to n do 

~Jf. +- _ " f3x1bkf3x1u 1 + lu u 
iV.1J(1 6xy:f3xy#O f3xy W k 1 

if k = 1 then Mel +- Mel + œk 
if Mis nonsingular then output "Insufficient data to 

estimate rates" 
solve Ms = -~u to obtain s 
for all taxa x, y such that fJxy i= 0 do 

pxy +- 2:k (uk 
- fJxY'k) Sk + .!...-

2cv fJxy 2w 
for k from 1 to n do 

rk +- 1. 
Sk 

output r and p. 



Mitochondrial genome evolution: the origin of 
mitochondria and of eukaryotes 

Rachel B. Bevan and B. Franz Lang 

Abstract 

Mitochondria, the energy-producing organelles of eukaryotic cells, evolved from 
an endosymbiotic a-Proteobacterium more than one billion years ago. These or­
ganelles contain their own genetic system, a remnant of the endosymbiont's ge­
nome that varies considerably in size, genome architecture, and coding capacity 
throughout eukaryotes. The five to ~ 100 genes contained in mitochondrial DNA 
(mtDNA) code for mitochondrial components involved in up to five mitochondrial 
processes: respirationJoxidative phosphorylation and translation (invariantly), as 
well as transcription, RNA maturation, and protein import. These mtDNA­
encoded proteins have provided an invaluable alternative to nuclear gene se­
quences as a source for molecular phylogenetics, by both elucidating and confirm­
ing relationships among eukaryotes. However, only a small traction of the mito­
chondrial proteome is encoded by the mitochondrion. lndeed, nuclear genes code 
for much of the proteome. lt is likely that most of these genes migrated from the 
mitochondrion to the nucleus over the course of eukaryotic evolution. In sorne 
cases, however, it is c1ear that genes were recruited to the mitochondrion from the 
nucleus or other undefined sources. New insights into early mitochondrial genome 
evolution come from both the investigation of primitive (minimally derived) eu­
karyotes and the comparison of mitochondria to intracellular bacterial symbionts. 
Defining more precisely both the a-proteobacterial ancestry of the mitochondrial 
genome and the contribution of the endosymbiotic event to the nuclear genome 
will be essential for a full understanding of the origin and evolution of the eu­
karyotic cell as a whole. 

1 Introduction 

lt has become widely accepted that the mitochondrion derives from an endosym­
biotic a-Proteobacterium. Furthennore, there is accumulating evidence that this 
powerhouse of the eukaryotic celI, which carries out ATP production through oxi­
dative phosphorylation, was acquired only once. However, the phylogenetic re­
construction of such a primordial event, both with respect to the precise timing 
and the nature of the endosymbiotic partners, is a non-trivial problem (Philippe 
and Forterre 1999). Not surprisingly, numerous mutually exclusive hypotheses on 

Topics in Current Genetics, Vol. 8 
C. Kiihler, M.f'. Bauer (Eds.): Mitochondrial Function and Biogenetics 
DOl 10.1 0071b96830 / Pub li shed online: 9 Mareil 2004 
© Springer-Verlag Berlin Heidelberg 2004 



2 Rachel B. Bevan and B. Franz Lang 

the origin of eukaryotes exist that are based on conjecture, rather than on evidence 
from molecular phylogenetics. These hypotheses differ as to the nature of the 
partners involved in this endosymbiosis and the driving forces and timing of their 
fusion (reviewed in Lang et al. 1999). One of the central issues in this on-going 
debate is wh ether or not amitochondriate eukaryotes ever existed. 

AIthough mitochondria are almost omnipresent throughout eukaryotic lineages, 
and are in most species essential for survival, a few eukaryotes lack both func­
tional mitochondria and a mitochondrial genome. However, among these 'amito­
chondriate' eukaryotes several contain derived mitochondria (e.g. hydrogeno­
somes) that generate ATP anaerobically (Embley et al. 2003). Still, others contain 
what appear to be remnant mitochondrial organelles; 'mitosome' or 'crypton' 
(Mai et al. 1999; Tovar et al. 1999, 2003; Williams et al. 2002) of currently 
unknown function. Significantly, these organelles express a few nucleus-encoded 
proteins typically targeted to and functioning in mitochondria (Roger and Silber­
man 2002). Together, these observations favor the view that the last common an­
cestor of extant eukaryotes was a mitochondrion-containing organism. This im­
plies that primitively amitochondriate eukaryotes (eukaryotes whose ancestors 
never had mitochondria) may not exist and by extension may never have existed. 
Altematively, strictly anaerobic eukaryotes might have existed only during the 
early evolutionary periods with anoxie conditions that would have favored their 
survival. 

Some of these issues have been discussed in a number of comprehensive re­
views on animal (Boore 1999), fungal (Paquin et al. 1997; Bullerwell et al. 2003c; 
Hauser 2003; Kennell and Cohen 2003; Leigh et al. 2003), plant (Wolstenhoime 
1992; Giege and Brennicke 2001), and protist (Gray et al. 1998, 1999; Lang et al. 
1999; Burger et al. 2003b) mitochondrial genomes. Yet, due to the numerous new 
publications and significant amounts ofrecently available data, an updated general 
review on mitochondria appears timely. Accordingly, this review comments upon: 
(i) various new aspects of mitochondrial genome structure and evolution; (ii) gene 
migration between mitochondrial and nuc1ear genomes; (iii) how weIl mitochon­
dria1 data support phylogenetic hypotheses; (iv) how recent hypotheses on the ori­
gins of eukaryotes have changed our perception about the importance of mito­
chondria in defining eukaryotic evolution. To conclude, we will provide a short 
update on the diversity of mitochondrial genomes across eukaryotes. 

2 Evolution of mitochondrial genomes and genes: 
anything is possible 

There is astounding diversity throughout extant eukaryotes with respect to mito­
chondrial genome size, genome architecture, gene content, and gene expression. In 
fact, many of these differences appear to evolve within relatively short evolution­
ary periods (for a recent review see Burger et al. 2003b) and go far beyond the 
spectrum of variation seen in chloroplast or nuclear genomes. The notable and of­
ten bewildering deviations in genome architecture and in gene expression, contrast 
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markedly with the conservatism of biological functions encoded by mtDNA. To 
provide a better understanding of the molecular and genetic basis for the rapid 
changes of mitochondrial genomes, the following provides an overview of what is 
known about mitochondrial genome architecture and evolution. 

2.1 The perplexing diversity of mitochondrial genome architecture 

The previously held view that mitochondrial genomes are circular molecules has 
been contradicted by molecular evidence that a number of circuJar-mapping 
mtDNAs (and possibly also eubacterial DNAs) consist of linear, multimeric head­
to-tail concatamers (Bendich 1993, 1996,2001; Lecrenier and Foury 2000). The 
end structures of the molecules include terminal repeats of varying lengths, termi­
nally attached proteins and single-stranded DNA termini c10sed covalently (re­
viewed in Nosek and Tomaska 2003a, 2003b). ln contrast, linear-mapping, 
monomeric DNA molecules have been found in numerous umelated organisms, 
inc1uding ciliates (Suyama et al. 1985; Pritchard et al. 1990; Burger et al. 2000), 
chlorophycean green algae (Chlamydomonas and relatives (Gray and Boer 1988; 
Vahrenholz et al. 1993; Fan and Lee 2002», oomycetes (Martin 1995), chlora­
rachniophytes (Gilson et al. 1995), several cnidarian animais (Bridge et al. 1992), 
and fungi (Kovac et al. 1984; Fukuhara et al. 1993; Nosek et al. 1995; Forget et al. 
2002). The mtDNA of one organism in particular illustrates the perplexing diver­
sity of mitochondrial genomes: the mtDNA of Amoebidium parasiticum (Lang et 
al. 2002; Burger et al. 2003a) is organized into several hundred distinct linear 
chromosomes (more details on genome structure and content can be found in sec­
tion 3.4). This is in sharp contrast to most other mitochondrial genomes that are 
made up of only one type of chromosome. 

The transition from a circular to a linearly-mapped mtDNA conformation has 
been observed at short phyJogenetic distances, as seen for instance in yeasts 
(Nosek and Tomaska 2003a), golden algae (Coleman et al. 1991; Chesnick et al. 
2000), and chytridiomycete fungi (Forget et al. 2002). One hypothesis for the ori­
gin of linear genome structures is that the insertion of linear plasmids into mtDNA 
triggers the conversion of genome conformation from circular to linear (for a re­
view of the well charactel'ized fungal plasmids see Kennell and Cohen 2003). ln 
fact, this phenomenon has been observed in maize cytoplasmic male sterility 
(Schardl et al. 1984). 

Another interesting facet of mtDNA is its wide size variation from approxi­
mately six to several hundred kbp, and in some notable exceptions even larger (see 
Table l, Fig. 1,2). This is mostly attributable to accumulation and loss ofintrons, 
mobile elements, A+ T -rich intergenic spacers, and repeat sequences. In particular, 
the length of non-coding mtDNA may vary extensively, even within a single ge­
nus. For example, the size variation of fission yeast mtDNAs (between ~ 17 and 
~80 kbp; see Table 1; (Bullerwell et al. 2003b» is for the most part due to large 
intergenic l'egions that contain multiple l'epeats. In addition, length variation due 
to introns (group 1 and group II) of various size (0.15 kbp to 4 kbp) and munber 
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Organismal Group Genome Size and Protein RNA Translation Introns 5 

Structure 1 Genes l Genes 3 Code 4 

Metazoa (animaIs) 
Caenorhabditis elegans 13.8 (circular) 12 24 UGA(W), -

AUA(M)6 
Homo sapiens (human) 16.6 (circular) 13 24 UGA(W), 

AllA (Ml 6 
-

M etridium senile (sea anemone) 17.4 (circular) 13 4 UGA(W) 2 

Fungi 
H:;.aloraphidium curvatum (chytrid) 30.0 (Iinear) 14 9 standard 1 
Pichia canadensis (Hansenula wingei) 13 27.7 15 28 UGA(W) 2 
Podospora anserina 94.2 14 27 UGA(W) 33 
Rhizoph:;.dium sp. 68.8 14 9 UAG(L) 37 
Saccharom:;.ces cerevisiae (baker's yeast) 85.8 (circular) 8 27 UGA(W), 13 

AUA(M), 
CUN(T) 

Schizosaccharomwes pombe (fission yeast) 19.4 (circular) 8 28 standard 7 3 
Schizosaccharomyces octosporus 44.2 (circular) 8 27 standard 6 
Schizosaccharomyces japonicus var. jap. ::: 80 (circular) 7 27 standard 2 

Spi"ellom:;.ces punctatus (chytrid) 58.8; 1.4; 1.1 14 JO UAG(L) 12 
(3 circular DNAs) 

Plants 

Marchantia polymorpha (liver wort) 186.6 (circular) 38 30 standard 32 
Arabidopsis thaliana (thale cress) 366.9 (circular) 31 21 standard 23 
Photosynthetic protists 
Chara vulgaris (charophyte green alga)' 67.7 (circular) standard 27 
Chlamydomonas reinhardtii (green alga) 15.8 (linear) 7 5 standard -
Chondrus crispus (red alga)10 25.9 (circular) 19 27 UGA(W) 1 
Prototheca wickerhamii (green alga) 8 55.3 (circular) 31 29 standard 5 
Ochromonas danica (golden alga) 41.0 (linear) 30 27 standard -
Porphyra purpurea (red alga) 63.7 (circular) 22 26 UGA(W) 2 
Pylaiella littoralis (hrown alga) 11 58.5 (circular) 32 27 standard 7 
Non-photosynthetic protists 
Acanthamoeba castel/anii (amoeba) 41.6 (circular) 34 18 UGA(W) 3 
Amoebidium parasiticum (Holozoa) ::: 200 (several :::17 :::27 UGA(W) :::23 

hundred linear) 
Diclyostelium discoideum (slime mold) 12 55.6 (circular) 33 20 standard 5 
Monosiga brevicollis (choanoflagellate) 76.6 (circular) 26 27 UGA(W) 4 
Phytophthora infestans (oomycete) 38.0 (circular) 35 27 standard -
Plasmodiumfalciparum 1. 6.0 (circular) 3 2 UGA(W) -
Rec/inomonas americana (jakobid flagellate) 69.0 (circular) 66 31 standard 1 

can be substantial. Indeed, 75% of the mitochondrial genome in Podospora an­
serina, an ascomycete fungus, is accounted for by introns (Table 1; Cummings et 
al. 1990). 

Somewhat counter-intuitively, there is little correlation between mtDNA size 
and gene content (Table 1, Fig. 1, 2). The average coding capacity of the mito­
chondrial genome across eukaryotes is approximately 40-50 genes, with extremes 
of only five in Plasmodium (Wilson and Williamson 1997) and nearly 100 in ja­
kobid flagellates (Lang et al. 1997). Despite this large difference in gene number, 
mitochondrial genes are only involved in at most five basic processes: protein im­
port, RNA maturation, transcription and invariantly, respiration/oxidative phos­
phorylation and translation. Even in the gene-rich jakobid mtDNAs, only a sm aIl 
fraction of genes are implicated in processes other than translation and respira­
tion/oxidative phosphorylation. 
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Table 1 (overleal): explanations 
1 Size in kbp, rounded values; 'circular' stands for 'circular mapping', i.e. the major portion 
ofthese mtDNAs occur as long linear concatamers, not as monomeric circles. 'linear' 
stands for 'monomeric linear'. Extreme genome sizes and unusual genome architecture 
marked in bold. 
2 The number ofidentified genes (not including ORFs) is indicated. The basic set of 
protein-coding genes typically found in animais and fungi are, cob (apocytochome b), 
coxl,2,3 (cytochrome oxidase subunits), atp6,8,9 (ATPase subunits), and nadl,2,3,4,4L,5,6 
(NADH dehydrogenase subunits). The mtDNA of the coral Sal'cophyton glaucum contains 
an additional gene with similarity to bacterial mutS, (Pont-Kingdon et al. 1998), the 
nematode C. elegans lacks atp8 (Okimoto et al. 1992), and protists, fùngi and plants usually 
contain additional hypothetical protein genes (ORFs). 
3 Genes for ms, ml (small and large subunit rRNAs) occur in all mtDNAs, whercas genes 
coding for 5S rRNA (l'm5), and RNase P RNA (mpB), might be absent. The number of 
mtDNA-encoded tRNAs varies. Duplicated genes are counted only once. 
4 Deviations from the standard bactcrial translation code are indicated in bold. 
5 Total numbcr of introns, thc two mitochondrial intron classes ']' and 'II' are not 
distinguished. 
6 Further codon reassignments include the use of AGA and AGG as stop codons, and 
additional translation initiation codons other than AUG and GUG. 
7 1n S. pombe, one UGA(Trp) is present in Ips3, and two in intronic ORFs. 
8 P/'ototheca (Wolff et al. 1994) belongs to green algae, but has secondarily lost its capacity 
for photosynthesis. 
9 (Tunnel et al. 2003). 
10 (Leblanc et al. 1995). 
Il (Oudot-Le Secq et al. 2001). 
12 (Ogawa et al. 2000) 
13 (Sekito et al. 1995) 
14 Refcrred to as 'Iinear' in the Iiterature (Feagin et al. 1992), but belongs to the class of 
'eireular-mapping' multimeric head-to-tai! concatemers. 

2.2 Unusual mitochondrial gene structure and gene expression 

In tenns of gene structure, mitochondria exhibit most unusual deviations, inc1ud­
ing gene fusions, genes-in-pieces, and gene reductions. Examples of the latter case 
inc1ude truncated tRNAs (Iacking one or more of the helical amls) that are found 
in mitochondria of several animallineages (e.g. Wolstenholme et al. 1987), and 
the severely reduced and structurally streamlined mitochondrial rRNAs of mûst 
animaIs (Bome 1999) and some protists (Feagin et al. 1997; Gray et al. 1998). 
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o Non..cooing Regions 
III IntrollS. ORFs, Plasnlid-derived Celles 
III Authelltie Mitoehondrial Cenes 

Fig. 1. Mitochondrial genome size and coding content across eukaryotes. Species are or­
dered by genome size, from left to right. Intergenic regions (yellow); introns, intronic, and 
other ORFs, phage-like reverse transcriptases and DNA polymerases (maroon); length of 
eoding regions of authentie mitochondrial genes (violet). Species are: Arabidopsis thaliana 
(tlowering plant, angiosperm); Marchantia polymorpha (liverwort, bryophyte); Jakoba lib­
era (jakobid tlagellate, (G. Burger and B. Franz Lang, unpublished»; Saccharomyces cere­
visiae, Schizosaccharomyces japonicus; (ascomycete fungi); Monosiga brevicollis (choano­
zoan tlagellate); Rec1inomonas americana (jakobid tlagellate); Rhodomonas salina 
(cryptophyte alga); Yarrowia lipolytica (ascomycete fungus); Cafeteria roenbergensis 
(stramenopile tlagellate); Pichia canadensis (ascomycete fungus); Pedinomonas minor 
(green alga, chlorophyte); Tethya sp. (demosponge, (D. Lavrov and B. Franz Lang, unpub­
lished»; Metridium senile (cnidarian animal); Homo sapiens (veliebrate animal); Ch lamy­
domonas reinhardtii (green alga, chlorophyte); Plasmodium falciparum (apicomplexan pro­
tist). If not further spccified, data have been retrieved from the Organelle Genome 
Database, GOBASE (http://megasun.bch.umontreal.ca/gobase/). 

The structural constraints of the unusual animal mitochondrial tRNAs have been 
modeled recently into a three-dimensional L form (Steinberg et al. 1997). As weB, 
protein-coding genes are occasionally shortened at their C-terminus compared to 
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genes in more primitive organisms (e.g. animal mitochondrial nad5 and atp8, and 
several genes of the fungus HOIpochytrium (Bullerwell et aL 2003a). 

One of the best known examples of gene fusion is that of the cox1 and cox2 
genes in Acanthamoeba castellanii (Burger et aL 1995) and Dictyostelïum dis­
coideum (Ogawa 2000 MGG). In both cases, a single open reading frame is 
formed because the genes are immediately adjacent, without an intervening trans­
lation tennination codon. In Acanthamoeba, a bi-cistronic mRNA is produced, 
which may or may not be translated into a fusion protein (Lonergan and Gray 
1996). In another exampIe, the cox2 gene of the brown aiga Pylaiella has a large 
(3018 nucleotides) N-termillal extension of its open reading frame (Oudot-Le Secq 
et al. 2001). 

Genes-in-pieces are often found on both slrands of a genome interspersed with 
other genes, and may be broken into as many as 20 modules (e.g. Gillespie et aL 
1999). Genes-in-pieces were first described for rRNA genes in the ciliate proto­
zoon Tetrahymena pyriformis (Schnare et al. 1986; Heinonen et aL 1987) and the 
green alga Chlamydomonas reinhardtii (Boer and Gray 1988). The discrete rRNA 
transcripts are held together via base pairing of complementary sequence stretches 
(Boer and Gray 1988). Similarly, mature transcripts may be assembled from dis­
crete, group II intron-containing protein-coding genes. ln these cases, base-pairing 
of the intron sequences brings together the exons that are subsequently joined by 
trans-splicing. The well-studied examples of nad1, 2, 3 and nad5 genes in plants 
and in the prasinophyte green aiga Mesostigma viride may involve two- as well as 
three-molecule interactions (e.g. Chapdelaine and Bonen 1991, 1993; Knoop et al. 
1997; Malek and Knoop 1998; Morawa1a-Patell et al. 1998; Giege and Brennicke 
2001; Turmel et al. 2002b). In contrast, the intron-less nad] genes in Tetrahymena 
pyriformis and Paramecium aurelia are probably translated from the two mRNA 
pieces into separate protein fragments (Edqvist et al. 2000). Finally, one of the 
most intriguing cases of genes-in-pieces is that of cox2 in the green aiga 
Scenedesmus ohliquus. ln this particular case (unlike in chlamydomonad algae in 
which the two pieces are encoded in the nucleus (Perez-Martinez et al. 2001), the 
N-terminus is encoded in the mitochondrion (Nedelcu et al. 2000) and the C­
terminus is thought to be encoded in the nucleus (Perez-Martinez et aL 2001). A 
similar situation has been documented in angiospenns. ln this group of land 
plants, cases have been identified where an intact rpl2 gene is present in either the 
mitochondrion or the nucleus, a split rpl2 gene exists with the N-terminus encoded 
in the mitochondrion and the C-terminus in the nucleus; and finally, a split gene 
exists with both parts encoded in the nucleus (Adams et aL 200 la). 

2.3 Past and current gene loss and gene emigration trom the 
mitochondrial to the nuclear genome 

A primary force that has shaped the evolution of mitochondrial genomes is the 
(usually irreversible) 10ss of genes from the mitochondrial genome, which may 
occur through three major processes. One is the removal of the selective pressure 



8 Rachel B. Bevan and B. Franz Lang 

A 

B 

c 

~ 
1 



Mitochondrial genome evolution: the origin of mitochondria and of eukaryotes 9 

Fig. 2. (overleat) MitochoncIrial gene classes and their representation across eukaryotes. 
Species are ordered by the total number of genes, from left to right. Genes incJuded in the 
fùnction classes are Respiration & Oxiclative Phosphorylation (violet): atpl,3,4,6,8,9, cob, 
coxl-3, nadl-4,4L,6-11, sdh2-4; Ribosomal and Transfer RNAs (maroon): ml, ms, l'rn5, 
tmA, tmC, etc.; Ribosomal Proteins and EF-Tu (yellow): lpsl-4,7,8,10-14,19, 
Ipll,5,6,lO,14,16,18-20,27-31,32,34,36, tuf A; RNA Maturation, Protein Import & Matura­
tion and Transcription (blue-green): mpB, sec Y, tatC, yejR (ccmF) , yejU (ccmé), yejV 
(ccmB), yejW (ccmA), coxll, rpoA-D. Part A, Fungi + AnimaIs: Allomyces macrogynus 
(chytridiomycete); Schizophyllum commune (basicliomycete); Mortierella verticillata (zy­
gomycete); Pichia canadensis (ascomycete); Tethya ~p., (demosponge); Rhizopus stolonijèr 
(zygomycete); Homo sapiens; Schizosaccharomyces pombe; Saccharomyces cerevisiae; 
Schizosaccharomyces japonicus (ascomycetes); Hmpochytrium94; Rhizophydium sp. (chy­
tridiomycetes); Metridium senile (cnidarian animal); Yarrowia lipolytica (ascomycetc). 
Part B, Plants + Algae: Marchantia polymO/pha (liverwOli, bryophyte); Nephroselmis 
olivcea (green alga); Prolotheca wickerhamii (green alga); Arabidopsis thaliana (flowering 
plant, angiosperm); Scenedesmus obliquuus (green alga); Chlamydomonas reinhardtii 
(green alga); Pedinomonas mlnor (green alga, chlorophyte); Cyanidioschyzon merolae; 
Porphyra purpurea; Chondrus crispus (red algae); Pylaiella littoraUs; Ochromonas danica; 
Chrysodidymus synuroideus (golden-brown algae); Rhodomonas saUna (cryptophyte alga). 
Part C, Protists: Seculamonas ecuadoriensis; Reclinomonas americana; lakoba Zibera Ga­
kobid flagellates); Malawimonas californiana (malawimonad flagellate); Thraustochytrium 
aureum (stramcnopile); Naegleria gruberi (heterolobosean amoeba); Phytophthora in­
fèstans (stramenopile); Acanthameoba castellanii (rhizopod amoeba); Cafeteria roenber­
gen.~is (stramenopile flagellate); Dictyostelium discoideus (slime molcl); Monosiga brevi­
collis (choanoflagellate); Amoebidium parasiticum (ichtyosporean protist); Tetrahymena; 
Paramecium aurelia (ciliates); Plasmodium falciparum (apicomplexan protist). 

on genes that are not needed by a specialized organelle (e.g. amino acid biosyn­
thesis genes). Another process involves the replacement of the function of a mito­
chondrial gene by a nuclear gene after 10ss from the mitochondrion. An example 
of this is the loss of rps8 in Arabidopsis thaliana and subsequent replacement by 
nuclear rps 15A (Adams et al. 2002a). The final method of mitochondria1 gene 
elimination is transfer to the nucleus. The most compelling evidence for this last 
process is seen in plants, in which su ch transfers are on-going. There is ample evi­
dence of the intennediate stages of gene transfer, including aIl variants of gene 
presence, either in the nucleus, or in the mitochondrion, or both, as a1ready dis­
cussed above for rpl2 in connection with genes-in-pieces. 

Numerous recent studies have been perfonned on angiospenns (weIl over 250 
species) to detect evidence of organellar gene transfer events. Examples of such 
studies include: sdh3 and sdh4 (Adams et al. 2001b), 5' and 3' rpl2 (Adams et al. 
2001a), cox2 (Adams et al. 1999), and a genera1 study of 40 common mitochon­
drial genes (Adams et al. 2002b). Other analyses of unusual transfer events have 
also been perforrned including infA 10ss from the chloroplast (Millen et al. 2001) 
and rbcL transfer from the chloroplast to the mitochondrion (Cummings et al. 
2003). 

ln each study, hybridization was used to detect presence or absence of the 
gene(s) of interest in both the organelle of interest and the nucleus. Sequencing 
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was used either to directly detect (i.e. infA (Millen et aL 2001» or confirm (i.e. 
cox2 (Adams et aL 1999» gene loss in various plants. In each ofthese studies, loss 
events were mapped to a phylogenetic tree and nuclear mitochondrial targeting 
sequences were compared, in order to infer the pattern and number of gene los ses 
to the nucleus. In one extraordinary case, an ancient gene loss for both mitochon­
drial rps2 and rpsl1 is predicted at the base of core eudicots, with hypothesized 
regains in a few cases (this will be discussed in further detail in section 2.4). Fig­
ure 3 depicts the angiospenn phylogenetic tree with loss and acquisition events 
from the various studies mapped to the tree. 

However, despite the numerous well-studied examples of gene transfer to the 
nucleus, a good estimate of the number and identity of transferred genes is cur­
rently lacking. This is due to the difficulty in demonstrating, with confidence, that 
given nuclear genes are phylogenetically derived from the genome of the mito­
chondrial endosymbiont. Confronled with the fact that only a smaU minority of 
yeast mitochondrion-targeted proteins can be phylogenetically traced with confi­
dence, either to an a-proteobacterial or to an alternative genomic source (Karlberg 
et aL 2000), BLAST analyses (or lack of sequence similarity to any known gene) 
have been used instead to assess the evolutionary origin of most of these genes. 
We share the concern of others (Koski and Golding 2001) that conclusions about 
the evolutionary history of genes, if based on such similarity measures, come with 
a serious degree of uncertainty, if not systematic error. In fact, yeast, with its 
highly accelerated rate of gene evolution and its highly reduced nuclear genome, 
is not an ideal organism for such estimates. 

Due to redundancy of metabolic genes that were present in the ancestral eu­
karyotic host, such genes were Jikely among the first to be eliminated from mito­
chondrial genomes. From the remaining genes that are essential to core mitochon­
drial functions - oxidative phosphoryJation, DNA replication, transcription and 
translation - a hierarchical pattern of gene loss or transfer to the nucleus (e.g. nad 
and rps genes) has been observed. This pattern has been seen in many phyloge­
neticaUy diverse lineages, including algae, fungi, plants, and animaIs (Lang et aL 
1999). For example, the genes encoding the ribosomal prote in, Rpsl, and the 
NADH dehydrogenase subunit, Nad8, are usually lost first, whereas rps3, nadl-6, 
plus nad4L are the last to go. In several taxa, including budding and fission yeasts, 
aU nad genes have been lost from mtDNA, due to the complete elimination of the 
proton-pumping, rotenone-sensitive mitochondrial NADH dehydrogenase com­
plex (Friedrich et aL 1995; Friedrich and Weiss 1997; Rasmusson et aL 1999). In 
these cases, electron transfer from NADH to ubiquinone is mediated by an alterna­
tive, single-polypeptide enzyme with FAD as sole prosthetic group (Yagi 1991). 

The strongest support for hierarchical gene Joss comes from the gene content of 
the most reduced mitochondrial genomes. Regardless of phylogenetic placement, 
their gene content is quite similar (see also chapter on mitochondrial genome 
comparisons) (Lang et al. 1999). Several, non-exclusive hypotheses can expJain 
the ability for certain genes to be physically transferred to the nucleus. Factors 
possibly limiting the ability of gene transfer inc1ude: hydrophobicity (von Heijne 
1986), preventing transfer through the mitochondrial membrane; mechanism of 
adoption of the functional structure of the protein depending on other mitochon-
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drial proteins; and gene expression based upon the redox potential of the mito­
chondrial membrane (Forsberg et al. 2001). 

2.4 Immigration of genes to mitochondria, and horizontal gene 
transfer among plant mitochondrial genomes 

There is little evidence to support gain of genes by mitochondria. The few known 
cases include: gain of genes for DNA and RNA polymerase from fungal, protist, 
or plant mitochondrial plasmids (e.g. Wahleithner and Wolstenholme 1988; Court 
and Bertrand 1993; Grace et al. 1994; Hennanns and Osiewacz 1994; Takano et 
al. 1994) of a mutS-related gene in coral mtDNAs (Pont-Kingdon et al. 1998) of 
chloroplast and nuclear sequences in various plants (e.g. Dietrich et al. 1996; 
Glover et al. 2001; Cummings et al. 2003) and regain of the mitochondrial rps2 
and rpsII in a few core eudicots (Fig. 3) aft:er an ancient loss (Bergthorsson et al. 
2003). Indeed, that latter case is one of the few known examples of the regain of a 
gene after it has been lost, and it is hypothesized to be due to horizontal transfer 
from tmrelated non-eudicot plant species (Bergthorsson et al. 2003). 

In the case of rps2 and rps] l, evidence for regain of the genes through horizon­
tal gene transfer cornes from a phylogenetic analysis including numerous plant 
species. Unexpectedly, the rps2 sequence gained in Actinidia (order Ericales, Fig. 
3) groups strongly with monocot rps2 sequences, and the rpsII gain in Lonicea 
and other Caprifoliaceae (order Dipsacles, Fig. 3) groups with the order Ranuncu­
laIes, also with strong support. In the case of rpslI gain in Betula (order Fagales, 
Fig. 3), the phylogenetic position of the acquired sequence was not resolved, but 
sequence divergence levels were low, suggesting horizontal gene transfer among 
mitochondria as the underlying mechanism for regain of the gene. Reverse gene 
transfer from the nucleus to the mitochondrion can be excluded because a substan­
tially higher nuclear nucleotide substitution rate would have led to much more 
highly divergent sequences than were observed. Sequencing of the genes supports 
the possibility that sorne of the horizontally transferred genes are active, whereas 
others are clearly pseudogenes (Bergthorsson et al. 2003). A most surprising ex­
ample for activity of genes without disabling mutations is a chimeric rpsi J gene 
in Sanguinaria canadensis (not included in Fig. 3), ofhalfmonocot and half eudi­
cot origin, which is expressed and RNA-edited (Bergthorsson et al. 2003). The au­
thors conclude that such horizontal transfer events are perhaps much more wide­
spread in plants than initially supposed. 

Another unique transfer event involves that of the chloroplast gene rbcL to mi­
tochondria. Twenty angiosperms were tested for chloroplast-to-mitochondrion 
transfer of rbcL sequences, with results indicating five to six separate intra­
organellar transfers events (Cummings et al. 2003). However, sequence com­
parisons show frame shift mutations, truncations and a great number of non-
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Fig. 3. Summary of gene transfer events according to studies on ~280 angiospelIDs. The 
major angiosperm orders for which gene 10ss from the mitochondria was dctected are dc­
pictcd based upon the phy10genetic trce of (Soltis et al. 1999). Additionally, unique genc 
regain cvents arc a1so shown. For detai1s of the data used see Adams et al. 1999,2000, 
2001 a, 2001 b and Millen et al. 200 l. Transfer events marked along branches represent 
thosc that encompassed a clade of species. Transfer events in 1eaves represent either single 
events in individua1 species, or multiple events in severaI species (e.g. '2g' indicates that 2 
separate transfers of gene g occulTed in 2 different species in the clade). The following is a 
1egend of gene transfers from the mitochondria to the nucleus: a······ rps2, b .- rps ii, c - rpsi, 
d -lps3, e -lps4, f -lps7, g - rpsJO, h -lpsi2, k - rps13, m - rps14, n - rpsi9, 03' - rpl2 
3',05' - rpl2 5', p - rpl5, q - rpl16, r - sdh3, s - sdh4, t - infA. The following is a legend 
of gene regain (horizontal transfer from other distantly related species): A - rps2 gain, B -
rspli gain. A1so ofnote arc the presencc of full rpl2 in thc mitochondria of a single species 
(labeled C on the tree) and the fact that gene ilifA was found missing in a species but the 
same spccies was not tested for any of the othcr genes as listcd above (labeled D on the 
tree). 

synonymous mutations in aIl mitochondrial rbeL sequences, which have no appar­
ent mitochondrial ftmction. The combined evidence indica1es tha1 1hey are most 
likely pseudogenes. 

The mitochondrial genes rpsi3 and rps8 provide two other interesting exam­
pIes in which loss of a mitochondrial gene is not accompanied by the usual trans-
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fer to the nucleus, but instead by substitution with duplicated nuclear genes. In the 
case of rps13 of cotton and two legumes (M trunculata and L. japonicus) that 
have no mtDNA-encoded rpsJ3, nuclear genes with mitochondrial targeting se­
quences have been identified (Adams et al. 2002a). According to phylogenetic 
analyses, these genes have been derived through a duplication of a chloroplast­
targeted nuclear rps13 that subsequently acquired a mitochondrial targeting se­
quence, an event that took place early in rosid evolution. A parallel study reveals 
that angiosperms do not contain a mtDNA-encoded rps8 gene. However, closely 
related copies of rps15A, the cytosolic counterpart of rps8, are present in Arabi­
dopsis, tomato, barley, and M trunculata, aU with specific mitochondrial targeting 
sequences (Adams et aL 2002a). Substitution of mitochondriallPs8 by cytosolic 
rps15A is hypothesized to have occurred in the common ancestor of angiosperms 
and gymnosperms. 

2.5 Possible mechanisms of gene migration 

One of the central questions is why, and to what extent, transfer of organellar 
genes to the nucleus might be advantageous for the celL In the aforementioned 
study of cox2 in legumes (Adams et aL 1999), five species were found with dual, 
intact and transcribed, nuclear and mitochondrial cox2 genes, indicating that either 
of the genes might potentially be silenced. In a phylogenetic context, the results of 
the study led to the inference of four and five separate inactivations of mitochon­
drial and nuclear cox2 genes, respectively. From these results, it is unclear if there 
is any selective advantage for a mitochondrial versus nuclear location of cox2 in 
these plants. In tàct, in mitochondria throughout eukaryotes, the cox2 gene is al­
most universally present. 

Henze and Martin (2001) discuss alternatives for transfer of genes from organ­
elles to the nucleus, whether as RNA, cDNA, or genomic DNA. Current views 
strongly favor cDNAs as the transport vehicle based upon a number of examples 
from plants, because RNA editing, non-standard translation codes, and (in a few 
genes) the presence of organelle-specific introns, render the genes difficult to ex­
press in the nucleus. However, direct transfer of genomic DNA might weIl occur 
in non-plant species. Support for the possibility of direct transfer of mtDNA to the 
nucleus is suggested by the presence of a complete, continuous piece of mtDNA 
(620 kbp, with repeated sections) in the nuclear genome of Arabidopsis (Lin et aL 
1999; Stupar et aL 2001), and by substantial numbers of mtDNA insertions in the 
nuclear genomes of primates (Woischnik and Moraes 2002). However, conclusive 
evidence for a functional gene transfer mechanism via genomic DNA is currently 
lacking. 

Successful gene translocation to the nucleus requires a number of conditions: 
(i) the coding material must be transferred to the nucleus, either by direct transfer 
of mtDNA, or via a cDNA intennediate; (ii) that export of the nucleic acid from 
the mitochondria takes place either through specifie transport, or through escape 
after membrane disruption (Brennicke et al. 1993); (iii) sites undergoing RNA ed­
iting have to carry corresponding changes in the transferred gene, and removal of 
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introns has to occur, so that the nuclear gene will be functional. These constraints 
makes gene transfer via an RNA intermediate that is reverse transcribed into 
cDNA most likely; (iv) codons, altered according to mitochondrion-specific ge­
netic codes, have to be changed when transferred to the nucleus. In fact, it is likely 
that species with a non-standard mitochondrial translation code no longer (or only 
in very rare instances) transfer genes from the mitochondrion to the nucleus 
(Brennicke et al. 1993). (v) Import of the gene material into the nucleus must oc­
cur to allow integration into the nuclear genome, which is possible in general be­
cause nucleic acids constitutively travel through nuclear pores (Brennicke et al. 
1993); (vi) the gene has to be activated for its mitochondrial function by recombi­
native attachment of an amino-tenninal mitochondrial targeting sequence. Ex­
periments in both yeast and E. coli demonstrate that a large number of such poten­
tial presequences are available in these genomes (Baker and Schatz 1987), 
indicating that the recruitment of target sequences would be only a minor barrier 
against gene transfer to the nucleus. Finally, (vii) transcription has to occur from a 
promoter of adequate strength and regulation. 

3 Mitochondrial genome diversity in major eukaryotic 
groups 

Mitochondria have a wide variety of structural features, including size variation, 
circular- and linearly-mapping genomes, different chromosome counts, and differ­
ences in gene and intron content and in gene expression mechanisms. In view of a 
number of publications that have appeared since these topics have been reviewed 
in detail, the following section discusses features of protist, animal, fungal, and 
plant mitochondrial genomes, selected to highlight these attributes. For the inves­
tigation of more detailed sequence-related features, we propose use of the mito­
chondrial genome database, GOBASE (Korab-Laskowska et al. 1998; O'Brien et 
al. 2003), which contains up-to-date, expert-curated mitochondrial sequences, and 
which in their original form are also available through GenBanklNCBI. 

3.1 Animais 

At the time of writing, completely sequenced mtDNAs were available from more 
than 300 animaIs. These mitochondrial genomes are typically small (14 to 17 kbp 
in size; Table 1), although there are instances of larger genomes in a few species 
(e.g. in bark weevils and scaIlops), due to either gene duplications or to accumula­
tion of sequence repeats in the control region (e.g. Boyce et al. 1989; Rigaa et al. 
1995). In most instances, genes are compactly arranged on a single, circu1ar 
(mono- or dimeric, supercoiled) mtDNA, with transcription on both strands (for 
more details and exceptions see Boore 1999). The majority of animal mitochon­
drial genomes contain the same set of37 genes (Fig. 2A), including cox1,2,3, cob, 
the NADH dehydrogenase units nad1-6 and nad4L, atp6 and atp8, as weIl as 
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genes for the small and large rRNA subunits (rnl and rns), and up to 22 tRNAs 
(two for both leucine and serine, but a single one for both methionine and isoleu­
cine). An additional 2-3 tRNA genes are encoded in demosponges, mitochondrial 
genomes that are the least derived among aU Metazoa (Lavrov and Lang, unpub­
lished). The structures of both animal rRNAs and tRNAs are very reduced and 
have litt le similarity with baeterial and other mitochondrial counterparts (e.g. see 
the extreme case of nematodes Okimoto et al. 1992). Furthermore, animal, Iike 
fungal, mtDNAs exhibit none of the operon-like baeterial gene c1ustering that is 
found in mtDNAs of protists, fungi and plants (see foUowing sections; for a re­
view see Lang et al. 1999). 

Animal mitochondrial gene order is remarkably stable within the major taxo­
nomie lineages, unlike in most other eukaryotes. However, there appear to be suf­
ficient differences in milochondrial gene order to provide the relevant information 
(i.e. synapomorphic changes) for resolving the phylogeny of deep metazoan 
branches (Boore and Brown 1998; Lavrov et al. 2002). 

3.2 Fungi 

Although fungi and animaIs share a common origin to the exclusion of other eu­
karyotes, and have a similar basic set of mitochondrial genes, fungi are much 
more variable in tenns of size, structure, and content of genes and introns. In the 
foUowing section, we will de scribe selected examples of mtDNAs representing 
both chytridiomycete ('lower') and ascomycete fungi (for more detailed recent re­
views on fungal mtDNAs see: Paquin et al. 1997; Bullerwell et al. 2003c; Hauser 
2003; Kennell and Cohen 2003; Leigh et al. 2003) 

Currently, mtDNAs are available from 23 fungal taxa, including representatives 
of the four major divisions of this kingdom, Ascomycota, Basidiomyeota, Zygo­
mycota, and Chytridiomyeota (Lang 2003). The chytridiomycete fungus Hya­
loraphidium curvatum has a mitochondrial genome of approximately 30 kbp (Ta­
ble 1). The genome is organized into linear monomers with inverted repeats at the 
termini (Forget et al. 2002). Inability to completely sequence the ends of the ge­
nome suggests that there are protein complexes or closed hairpin structures at the 
tennini; however, further examination gave no indication of single-stranded closed 
loops (Forget et al. 2002). Genes in the H. curvatum mtDNA total 26 including 
only seven thal code for tRNAs, and only the cob gene is interrupled by a group 1 
intron. Despite a strong codon bias, the seven mtDNA-encoded tRNAs are largely 
insufficient to translate aU codons occurring in protein coding genes. Conse­
quently, the majority of tRNAs must be nucleus-encoded and imported. Mito­
chondrial genome size and the intron count varies significantly in the monoble­
pharidalean relatives of FI. curvatum, from 19.5 kbp (Halpochytrium94; no 
introns) to 60.4 kbp (Monoblepharella15; eight group 1 introns, seven having in­
tron ORFs (Bullerwell et al. 2003a). 

Unlike H. curvatum and its monob1epharidalean relatives, the chytridiomycete 
Allomyces macrogynus (Blastoc1adiales) has a full set oftRNA genes (25) that are 
sufficient to recognize a11 codons oceurring in its mitochondrial protein-coding 
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genes (Fig. 2A). Its circular-mapping genome is almost twice the size of H. curva­
tum mtDNA (Table 1; Paquin and Lang 1996). The intron content of A. 
macroFtynus is even higher than in Monoblepharella (26 introns of group 1 and 
two of group II), accounting for 37% of the mtDNA sequence (Paquin and Lang 
1996). In distinction to aIl other chytridiomycetes, the A. macrogynus mtDNA en­
codes the ribosomal protein gene rps3, the first ribosomal protein gene identified 
by sequence similarity in a fungal mtDNA, testifying to the ancestral nature of A. 
macrogynus (for identification offurther rps3 genes see Bullerwell et al. 2000). 

Quite similar to the situation in chytridiomycetes, ascomycete mtDNAs are 
highly variable even at relatively close phylogenetic distance, as for instance in 
the three fission yeasts S. pombe, S. octosporus and S. japoniclls var. japonicus 
(Bullerwell et al. 2003b). S japonicus var. japonicus has the 1argest genome at 
over 80 kbp, S. octosporus is next at about 44.2 kbp and S pombe the smaUest at 
about 19.4 kbp. Despite the large size differences, S. pombe and S. octosporus 
have virtuaUy identical gene content, including the only recently described rnpB 
gene that codes for the RNA subunit ofmitochondrial RNase P (Seif et al. 2003). 
ln comparison, although S japonicus var. japonicus has the largest mtDNA, it 
lacks both rnpB and rps3 (Table l, Fig. 2A). The standard genetic code is used in 
aU protein-coding genes in aU three species, with the exception of rps3 in S. 
pombe and intronic ORFs in each species. In these rare exceptions, TGA is ex­
pected to code for tryptophan (Bullelwell et al. 2003b). 

One of the major differences between the three species is the amount of non­
coding sequence in the genome. These highly A+T rich regions (at 77.6%,80.7%, 
and 82.0% in S pombe, S octosporus and S. japonicus var. japonicus, respec­
tively) account for 11.1% of the genome of S. pombe, 49.4% of the genome in S 
octosporus and an exceptional 75.6% of the genome in Sjaponicus var.japonicus 
(Fig. 1). Each species has few introns: two group 1 and one group II intron in S. 
pambe; four group 1 and two group Il introns in S octosporus; and two group 1 in­
trons in S japonicus var. japonicus. 

3.3 Plants and green algae 

Regarding gene content, the mitochondrial genomes of plants, green algae, and 
other protists resemble each other more closely than do those of either animaIs or 
fungi (Lang et al. 1999). Yet plant and protist mtDNAs are very different in tenns 
of size (land plants have the large st known mtDNAs, with sizes ranging from 180 
to 2,400 kbp (Ward et al. 1981; Pahner et al. 1992)) due to the presence of large 
intergenic regiol1s, ORFs, pseudogenes, introns and foreign DNA. In angiospenns, 
mtDNA undergoes frequent genome rearrangements and fonnation of sub­
genomic circles through recombination at direct repeats (Backert et al. 1997). In 
spite of this high genome variability, plant genes have exceptionally low evolu­
tionary rates compared to their animal and fungal counterparts and, even more 
surprisingly, compared to the nuclear genomes ofplants. 

Several mtDNAs of the green algal relatives of plants have been characterized 
within the last few years, tàlling into the two sister lineages of green algae, the 
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Chlorophyta (comprising the Prasinophyceae, Ulvophyceae, Trebouxiophyceae, 
and Chlorophyceae), and the Streptophyta, (comprising the Charophyceae and 
land plants as a monophyletic group). While the prasinophytes Nephroselmis 
olivacea and Mesostigma viride have the most ancestral, gene-rich green algal 
mtDNAs ofthose sequenced, Pedinomonas minor has a sma11mtDNA with onlya 
few genes (similar to Chlamydomonas sp. mtDNAs), a non-standard translation 
code (UGA, tryptophan), a 'genes-in-pieces' LSU rRNA gene, and a dispropor­
tionally large A+T-rich repeat region (Tunnel et al. 1999, 2002b). Overall, Pedi­
nomonas and the chlamydomonads share virtua11y a11 characteristics of a reduced­
derived genome (note that the terms 'ancestral', 'primitive', and 'reduced-derived' 
do not have a phylogenetic meaning, but rather compare how much mtDNAs re­
semble bacterial genomes). Conversely, Nephroselmis and Mesostigma have re­
tained many prokaryotic features, which c1assify these mitochondrial genomes to­
gether with those of Prototheca wickerhamii (another chlorophyte (Wolff et al. 
1994)) and two recently sequenced charophyte mtDNAs as little derived (Turmel 
et al. 2002a, 2002b, 2003). 

As se en in this detailed analysis of plant and green algal mitochondrial ge­
nomes there is a pattern of progressive loss of genes and of ancestral features from 
primitive green algae, to primitive land plants (such as Marchantia polymorpha 
(Oda et al. 1992)), to f10wering plants (Fig. 2B). 

3.4 Protists 

Protist are a highly heterogeneous group of several dozen phyla of eukaryotes that 
are negatively detined as not belonging to animaIs, fungi, or plants. Because of 
this definition, the closest relatives of animaIs and plants are found within the pro­
tists, exemplified by choanof1agellates in the case of animaIs, and charophyte al­
gae in the case of plants. As protists comprise the majority ofbiological diversity, 
the evolutionary relationships among most protist phyla currently remain either 
unknown or contentious. 

Many protist mitochondrial genomes are more bacteria-like than those of ani­
maIs and fungi (Fig. 2C; for a more general overview see Lang et al. 1999 and 
Gray et al. 2001). In this respect, the most striking mtDNAs are those of jakobids, 
which resemble a bacterial genome in miniature (see section 5.1.2 for more de­
tails). At the other end of the spectrum, the malaria parasite Plasmodium falcipa­
rum has the smallest mtDNA with only three protein-coding and two high frag­
mented rRNA genes (Fig. 2e) (Feagin et al. 1997). 

A highly unusual mitochondrial genome architecture has recently been identi­
tied in Amoebidium parasiticum, an ichthysporean protist, which together with the 
choanof1age11ate Monosiga brevicollis has been recognized as a close specific 
relative of multicellular animaIs (Lang et al. 2002; Burger et al. 2003a). The mito­
chondrial genome of A. parasiticum consists of several hundred linear chromo­
somes ranging in size from 0.3 to 8.3 kbp, with virtually identical, short inverted 
terminal repeats. The orientation of the repeats correlates with the direction of 
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transcription, possibly indicating that they are involved in the transcription process 
(Burger et al. 2003a). 

4 Value of mitochondrial sequences for phylogenetic 
inference 

The resolution and predictive power ofphylogenies using molecular sequence data 
is often unprecedented, when compared to morphological, biochemical and ultra­
structural characters. Sequence-based phylogenies are not only less limited by the 
number of informative characters to consider, but are based on relatively well­
understood models of sequence evolution that are mathematically tractable. De­
spite the high number of sequence positions in single genes or proteins, statisti­
cally weIl supported inferences of deep (old) divergences usually require the use 
of sequences from multiple, well conserved genes. 

Sets of multiple protein sequences encoded by mtDNAs are now available for 
most eukaryotic groups, and have proven their value for phylogenetic analyses in 
many instances. An advantage to mitochondrial sequence use is the virtuallack of 
lateral gene transfer in mitochondria (but see the discussion on lateral exchange 
among flowering plant in section 2.4). It is now widely accepted that mitochondria 
originated only once, from within the a-Proteobacteria (no secondary endosymbi­
otic events have been discovered). Thus, the mitochondrial phylogeny reflects the 
phylogeny of (mitochondriate) eukaryotes, and the a-Proteobacteria can be used 
as a relatively close, unambiguous outgroup for these analyses. 

However, while mitochondrial protein-based phylogenies often predict eu­
karyotic phylogenies with high statistical support (Fig. 4) (e.g. Burger et al. 1999; 
Forget et al. 2002; Lang et al. 2002; Bullerwell et al. 2003a), this datas et does not 
have sufficient phylogenetic signal for the prediction ofnumerous deep protist and 
animal phylogenies. This lack of support results from the unusually high evolu­
tionary rate of animal mitochondrial genes, which obliterates most of the phyloge­
netic signal. ln contrast, rearrangements in animal mitochondrial genomes are ex­
ceptionally rare events. Therefore, mitochondrial gene order data may be used for 
inferring deep evolutionary relationships within the animaIs (e.g. Boore et al. 
1995; Boore and Brown 1998; Sankoff et al. 2000; Lavrov et al. 2002). A gene or­
der approach is obviously restricted to cases where sufficient shared-derived char­
acters (synapomorphies) are available. For this reason, this approach is not appli­
cable to many animal groups including mammals, where mitochondrial gene 
organization is nearly identical. 
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5 Origin and evolution of mitochondria and of the 
eukaryotes 

It has become increasingly clear that the nuclear genome of eukaryotes is an evo­
lutionary chimera that incorporates substantial fractions of genetic material from 
other sources. Indeed, there are many parts of the genome that are most similar in 
sequence to organisms as unrelated as Proteobacteria, Archaebacteria, and (in pho­
tosynthetic species) Cyanobacteria. However, it has moslly remained a question of 
belief, rather than of phylogenetic evidence, whether the entire proteobacterial 
fraction of genes in eukaryotic genomes stems from the a-proteobacterial ancestor 
of mitochondria, whether additional cellular fusions that pre-date the mitochon­
drial endosymbiosis must be invoked, or whether many more punctual, lateral 
gene transfers from closely associated or ingested (food) bacteria have occurred. 
To resolve these questions, additional genomic infonnation will be required that 
more precisely defines: (i) the nature of the a-proteobacterial endosymbiont that 
gave rise to the mitochondrion and its closest extant relatives; (ii) the nuclear ge­
nomes of a number of minimally-derived eukaryotes (protists); (iii) the mitochon­
drial genomes that have evolved in concert with these protist nuclear genomes. 

5.1 Eubacterial ancestry of mitochondria 

5.1.1 Rickettsia prowazekii, one of the c/osest living relatives of 
mitochondria 

The study of the genome sequences of the pathogenic a-Proteobacteria Rickettsia 
prowazekii and its relatives such as Ehrlichia, Anaplasma, and Wolbachia (aIl be­
longing to the Rickettsiales) is of particular importance, since they are among the 
closest (if not the closest) living relatives of the mitochondrion (e.g. Gray 1993; 
Andersson et al. 1998; Ogata et al. 2000, 2001; Burger and Lang 2003). The ap­
proximately 1.1 mbp genome of R. prowazekii was the first a-proteobacterial ge­
nome to be completely sequenced. It is circulaI' mapping, codes for only ~834 pro­
teins, and compared to free-living a-Proteobacteria has a very high overall A+T 
content of 70.9%. Approximately 24% of the genome is non-co ding, including 
0.9% that consists of pseudogenes and 0.2% that consists of repeats. lt is hypothe­
sized that much of this non-coding region was once coding, and is slowly being 
e1iminated from the genome (Andersson et al. 1998). Out of the identified genes 
24.8% have no similarity to any other predicted or known gene, 12.5% have simi­
larity to those predicted in other species, and 62.7% are known genes or pseu­
dogenes with identified function (Andersson et aL 1998). 
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Jllkobidl! 

Fig. 4. Schcmatic trec of phylogenctic rclationships among cukaryotes. Major organismal 
groups are color-coded; for taxonomic nomenclature see (Lang et al. 2002; Baldauf 2003). 
Solid lines indicate phylogenetic branching orders that are statistically weil suppolied in 
analyses with cOl1catenated mitochondrial protein sequences (and for most part, consistent 
with nuclear sequence - based phylogenies). Dotted lines indicate uncertain branching or­
der bas cd on conjecture, at the base of the tree, in excess of approximately 1 billion years. 

5.1.2 Jakobid flagel/ates have the most gene-rich and eubacteria-like 
mtDNAs 

Since minimally-derived eukaryotes are key to a better understanding of evolu­
tionary events that took place in early eukaryotic evolution, it is necessary to de­
velop criteria to identify those species that 'time forgot' (Palmer 1997). From the 
standpoint of mitochondria, jakobid flagellates are clearly in this group of organ­
isms, as they do contain the most gene-rich and the most eubacteria-like mtDNAs 
among eukaryotes. One such jakobid, R. americana, carries a total of 98 genes, 
now also including an only recently identified tmRNA-like gene (Keiler et al. 
2000; Jacob et al. 2004), and all the mitochondrial genes found in other sequenced 
mtDNAs (Lang et al. 1997) with the exception of mutS of corals (Pont-Kingdon et 
al. 1995). Eighteen protein-coding genes of known function and the tmRNA-like 
gene are unique among pub li shed mitochondrial sequences. Among the most sur­
prising of these novel genes are: four (rpoA-D) encoding a eubacteria-like RNA 
polymerase with a regulatory sigma factor (rpoD); a gene encoding the RNA sub­
lmit of RNase P with a11 the structural hallmarks of its bacterial homologs; two 
genes (tatA and tarC (Jacob et al. 2004)) involved in the twin-arginine protein 
translocation pathway (Wu et al. 2000); and one (secY) involved in the Sec­
dependant prote in transport pathway. Other members of the jakobids such as 
Histiona, .lakoba, and Seculamonas have similarly gene-rich mitochondrial ge­
nomes (B. Franz Lang, unpublished). Together with Reclinomonas, these species 
are currently the subjects of extensive cDNA sequencing in order to explore the 
coding capa city of their nuclear genomes and to define the phylogenetic position 
of jakobids in the global eukaryotic tree. 
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5.2 Seriai endosymbiosis, or metabolic syntrophy model of 
mitochondrial origin? 

Analyses of the genetic material contained within mitochondria and chloroplasts 
have clearly shown that their closest contemporary relatives are a-Proteobacteria 
and Cyanobacteria respectively (e.g. Gray and Spencer 1996a). These results lend 
support to the hypothesis that the two organelles originated as bacterial endosym­
bionts, as originally postulated in the SeriaI Endosymbiosis Theory (Taylor 1974). 
Although the endosymbiont theory can be traced back almost a century (Schimper 
1883; Altmann 1890) it was widely accepted only in its most recent forms 
(Gillham 1974; Margulis 1975, 1988; Cavalier-Smith 1987; Gray 1989, 1992, 
1998; Gray and Spencer 1996b). It is even proposed to account for different or­
ganelles including undulipodia (9+2 flagella) (Margulis 1988) and peroxisomes 
(de Ouve 1969, 1982, 1996). The SET has various fonnulations (de Ouve 1996; 
Akhmanova et al. 1998), in which the host was either an archaebacterium or a nu­
cleus-containing eukaryote. However, the central points to all fonnulations of SET 
are: (i) the step-wise association of a ho st with bacterial symbionts, in which 
chloroplast acquisition followed that of the mitochondrion (de Ouve 1996); (ii) 
that the host's metabolism was "characteristic of the eukaryotic nucleocytoplasm" 
(Margulis 1981), being both heterotrophic and anaerobic (Fig. 5). A further notion 
inherent in the hypotheses is that the ho st cell was the primary source of the nu­
clear genome of the primitive eukaryote. Thus, genes in the nucleus that are re­
lated to mitochondrial function would have resulted from mitochondrion-to­
nucleus transfer. 

However, recent data show that although the eukaryotic nuclear genome con­
tains genes of both archaebacterial and eubacterial ancestry, the eubacterial com­
ponent of the genome is much larger than would be expected ifit were due only to 
transfer from the mitochondria (Golding and Gupta 1995; Feng et al. 1997). Fur­
thermore, there are sorne genes of posited eubacterial ancestry that are not directly 
involved in mitochondria1 biogenesis and function (Markos et al. 1993; Keeling 
and Doolittle 1997; Hashimoto et al. 1998; Karlberg et al. 2000). It appears that, in 
general, genes of archaebacterial origins are infonnational, whereas those of 
eubacteria1 origin are operationa1 (Rivera et al. 1998). Together, this new evidence 
caUs for modifications of the hypothesis of mitochondrial origins that will account 
for the chimeric nature of eukaryotic nuclear genomes. 

Various models involving fusion of eubacterial and archaebacterial partners in 
the creation of the nuclear genome have been proposed (Zillig et al. 1989). These 
models invoke a major eubacterial contribution to the nuclear genome during its 
initial fonnation and assume a subsequent endosymbiotic acquisition of mito­
chondria. The more recently fOffi1Ulated hydrogen hypothesis provides a some­
what different explanation for the mosaic nature of the eukaryotic nucleus: the fu­
sion of a Proteobacterium that was able to respire, with a strictly hydrogen­
dependent Archaebacterium, based on metabolic syntrophy (Fig. 5). Indeed, asso­
ciations between these two types of prokaryotes arefrequently observed in nature, 
and according to the hydrogen hypothesis, environmental association of the two 
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Fig. 5. Alte111ative hypotheses describing the origin of eukaryotes and of mitochondria. Ac­
cording to the 'SeriaI Endosymbiosis Theory', an a-proteobacterial endosymbiont is cap­
tured by a nuc1eus-containing eukaryotic ho st rescmbling extant amitochondriate protists. 
This theOlY does not endeavor to explain the origin of the eukaryotes through cell fusions. 
[n contrast, the 'Hydrogcn Hypothesis' of cukaryotic origins proposes the fusion of either 
an a-Proteobactcrium with a methanogenic Archaebacterium to result either directly in a 
mitochondrion-containing ccll; or alte111ativcly (not shown in the figure), a fusion of an (a­
or y-) Proteobacterium with a methanogenic Archaebacterium, to create an amitochondriate 
eukaryote. According to accumulating evidence, however, most ifnot aIl cxtant amitochon­
driate eukaryotes might have secondarily lost their mitochondrion (converted to a hydro­
genosome, 'mitosome' or 'crypton'); it is open to discussion if an amitochondriate eu­
karyote ever existed. 

species led to a cellular integration of these two organisms (Martin and Müller 
1998). Not only does this hypothesis account for the chimeric nature of the nuclear 
genome, but it also allows for a simultaneous origin of the eukaryotic ceU and its 
mitochondrion, under the assumption that the proteobacterial partner was the ct­

Proteobacterium that gave rise to the mitochondrion. A similar hypothesis invokes 
the same principle of metabolic syntrophy, but involves a 8-proteobacterial sym­
biont instead (Moreira and Lopez-Garcia 1998). 

Phylogenetic support is currently lacking to favor one or the other of these vari­
ant hypotheses. However, recent data have become available that might lend sup­
port to the hydrogen hypothesis. These data question the existence of early diverg­
ing amitochondriate organisms (coUectively referred to as 'Archezoa' (Cavalier­
Smith 1983; Martin and Müller 1998)) according to various phylogenetic analyses 
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(Vossbrinck et al. 1987; Sogin et al. 1989; Sogin 1991; Cavalier-Smith 1993; 
Leipe et al. 1993). The existence of such amitochondriate organisms, deemed to 
have never contained mitochondria, has been used as support for the hypothesis 
that the host in the endosymbiotic event was a primitive eukaryote that both had a 
nucleus and the ability to phagocytose bacterial cells. Yet, genes typical of mito­
chondrial function have recently been found in the nuclear genomes of almost all 
Archezoa (Bui et al. 1996; Germot et al. 1996, 1997; Homer et al. 1996; Hitt et al. 
1997; Embley and Hirt 1998; Roger et al. 1998), some of which have can be 
traced phylogenetically to the rickettsial subdivision of the a-Proteobacteria. In 
several cases, such genes of (arguably) mitochondrial origin have been found to be 
targeted to hydrogenosomes (organelles that anaerobically pro duce A TP with hy­
drogen as a byproduct of the process), or to other organelles of currently unknown 
function ('mitosome' or 'crypton' (Mai et al. 1999; Tovar et al. 1999, 2003; 
Williams et al. 2002)). This suggests a COlmnon evolutionary origin for the hydro­
genosome, mitosome, crypton, and the miiochondrion, and that extant amitochon­
driate eukaryotes once had mitochondria, which they lost only secondarily. 

The lack of evidence for extant, primarily amitochondriate eukaryotes might be 
interpreted in favor of fusion theories such as the hydrogen hypothesis. However, 
such strictly anaerobic eukaryotes (the postulated ho st cells of the SeriaI Endo­
symbiosis Theory) might have existed during an early evolutionary period with 
still-anoxic conditions that would have favored their survival. 

6 Concluding remarks 

Questions about mitochondrial and eukaryotic evolution are most effectively ap­
proached by analyses of complete genomes from a phylogenetically comprehen­
sive set of eukaryotes, i.e. through comparative genomics, and phylogenetic infer­
ences using genomic data ('phylogenomics'). The comparative genomics 
approach to mitochondrial genome evolution has demonstrated many benefits, in­
c1uding the identification of previously unrecognized genes and genetic elements, 
inferences about unusual modes of gene expression, and a more precise portrayal 
of the evolutionary history of mitochondria, and by inference, of the eukaryotic 
cell. In fact, the data gathered has provided the strongest evidence so far for a mo­
nophyletic origin ofmitochondria. 

ln addition, the quest for the most primitive (least derived) mitochondrial ge­
nomes has led to the identification of the jakobid f1agellates, such as Reclinomo­
nas americana. AlI known members of this lineage (including Reclinomonas, 
Histiona, Seculamonas, and Jakoba) have the most gene-rich and bacteria-like 
mtDNAs of aIl eukaryotes, as initially identified in R. americana. Although we 
feel that the search for even more ancestral mitochondrial genomes might have 
reached the upper limit with the jakobid mtDNAs sequenced to date, the ongoing 
exploration of the nuclear genomes of the se species will likely provide surprises, 
including clues about the extent and nature of a-proteobacterial genes that were 
transferred into the eukaryotic nucleus. In order to fully understand the origin and 
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history of aIl other eukaryotic groups it is as necessary to study the genomes of the 
most early diverging and most primitive members of these groups. Species that 
might provide the most information include choanoflagellates and sponges for the 
animallineage, chytrids for fungi, and charophyte and other primitive green algae 
for plants. 

Furthermore, identification and study of minimally diverged, free-living, as 
weIl as intracellularlsymbiotic, a-proteobacterial relatives of mitochondria will be 
important to shed light on the reduction process underlying the transition from the 
eubacterial to the proto-mitochondrial genome. Rickettsia are one such group of 
bacteria since they share with mitochondria many 'stunning ex amples of highly 
derived genomes'. While examples of less-derived, more mitochondria-like 
obligatory intracellular symbionts are stilliacking, a number of genome sequences 
offree-living a-Proteobacteria are currently becoming available, including species 
that undergo facultative, close associations with eukaryotic host ceUs. Likewise, 
tracking the evolution of mitochondrial genes continues to be an effective means 
of tracking the evolution of the eukaryotic ceU as a whole. Fortunately, examples 
of established lateral gene transfer ofmtDNA-encoded genes are rare, with the no­
table exception of exchanges of gene material among flowering plants. Thus, al­
though many mtDNA genomes have been currently sequenced, determination of a 
wider variety of protist mtDNA sequences and refinement of outgroup data should 
allow for the rigorous reconstruction of a eukaryotic phylogeny. 

Analysis of mitochondrial genome sequences has revealed that these organelles 
represent a microcosm of nature 's most advanced evolutionary laboratories, con­
fronting scientists with many examples of novel genetic mechanisms to discover. 
In many instances, princip les first discovered in mitochondria have subsequently 
been recognized in bacterial or nuclear genomes (e.g. a variety of RNA editing 
mechanisms, autocatalytic intron RNAs, genes-in-pieces, trans-splicing, a number 
of deviations from the 'standard' translation code, quartet translation initiation, 
etc.). Thus, an understanding of mitochondrial systems has implications far be­
yond organelle biology. 

lt appears time1y to begin exploring mitochondrial transcriptomes in much the 
same way as comparisons have been perfonned at the mtDNA lev el. This ap­
proach will reveal: whether besides informational and structural, regulatory RNA 
species are also synthesized; whether genetic infom1ation is more widely altered 
by co- or post-transcriptional processes such as RNA editing; and the activity, or 
lack thereof, of identified genes (see e.g. the examples of gene transfer from plant 
mtDNAs to the nucleus, and the exchange of mtDNAs among plants, where nu­
merous silent genes have been identified). The last case is of more far-reaching 
importance, since even identification of a gene plus its transcription does not im­
ply that a functional product of the gene exists. As proteomics technologies be­
come more sensitive and accessible, the demonstration of gene activities and mo­
lecular interactions also at the protein level should become standard. 
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Glossary 

Archaebacteria (Archea): one of the three domains of life besides eukaryotes and 
eubacteria. 

Basally/early diverging group: lineage that emerged early in the evolution of a 
clade (i.e. a deep bran ch in a tree). 

Character: any heritable aitribute of organisms that varies among species, and that 
can be used for phylogenetic inference. 

Derived: taxa or characters that have evolved far away from the primitive (origi­
nal, ancient, ancestral) state. ln molecular phylogeny, short tree branches indi­
cate little derived taxa. 

Homology: similarity due to common evolutionary origin, i.e. derivation from the 
same ancestral character. 



Mitochondrial genome evolution: the origin of mitochondria and of eukaryotes 35 

Monophyletic group: a monophyletic group (clade, lineage) has a unique origin in 
a single ancestral species, and includes the ancestor and aU of its descendants. 

Outgroup: taxon (taxa) used to root a phylogenetic tree, and that is (are) cons id­
ered to lie outside of the group of interest. 

Phylogeny: evolutionary relationships among organisms. Molecular phylogeny is 
based on DNA and protein sequences (or other molecular characters). 

Proteobacteria: group of Gram-negative Eubacteria that are subdivided into a,p,y. 
RNA Editing: the programmed moclification of primary transcript sequence, in­

cluding substitutions, as well as insertions and deletions. 
Synapomorphy: a derived character or character state, shared among a group of 

species to the exclusion of others. 
Tree: line graph representing the evolutionary history of a set of taxa, connecting 

contemporary taxa via internaI branches to hypothetical ancestors. 
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