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BlackweU: "Within that area [Bayesian Statisticsj it seems to me that one promising 

direction which hasn't been explored at aU is Bayesian experimental Design. " 

De Groot: "I think the reason there hasn't been so much do ne is because the problems 

are so hard." 

Taken from a 1984 interview of David Blackwell by Moris DeGroot (published in 

Statistical Science, 1986) 
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Abstract 

We consider optimal design for changepoint problems with particular attention paid 

to situations where the only possible change is in the mean. Optimal design for 

changepoint problems has only been addressed in an unpublished doctoral thesis, 

and in only one journal article, which was in a frequentist setting. The simplest 

situation we consider is that of a stochastic process that may undergo a change at an 

unknown instant in sorne interval. The experimenter can take n measurements and 

is faced with one or more of the foIlowing optimal design problems: Where should 

these n observations be taken in order to best test for a change somewhere in the 

interval? Where should the observations be taken in order to best test for a change 

in a specified subinterval? Assuming that a change will take place, where should the 

observations be taken so that that one may best estimate the before-change mean as 

weIl as the after-change mean? We take a Bayesian approach, with a risk based on 

squared error loss, as a design criterion function for estimation, and a risk based on 

generalized 0-1 loss, for testing. We also use the Spezzaferri design criterion function 

for model discrimination, as an alternative criterion function for testing. By insisting 

that aU observations are at least a minimum distance apart in order to ensure rough 

independence, we find the optimal design for aIl three problems. We ascertain the 

optimal designs by writing the design criterion functions as functions of the design 

measure, rather than of the designs themselves. We then use the geometric form 

of the design measure space and the concavity of the criterion function to find the 
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optimal design measure. There is a straightforward correspondence between the set 

of design measures and the set of designs. Our approach is similar in spirit, although 

rather different in detail, from that introduced by Kiefer. In addition, we consider 

design for estimation of the changepoint itself, and optimal designs for the multi

path changepoint problem. We demonstrate why the former problem most likely has 

a prior-dependent solution while the latter problems, in their most general settings, 

are complicated by the lack of concavity of the design criterion function. 
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Résumé 

Nous considérons, dans cette dissertation, les plans d'expérience bayésiens optimaux 

pour les problèmes de point de rupture avec changement d'espérance. Un cas de point 

de rupture avec changement d'espérance à une seule trajectoire se présente lorsqu'une 

séquence de données est prélevée le long d'un axe temporelle (ou son équivalent) et 

que leur espérance change de valeur. Ce changement, s'il survient, se produit à un 

endroit sur l'axe inconnu de l'expérimentateur. Cet endroit est appelé "point de 

rupture". Le fait que la position du point de rupture soit inconnue rend les tests et 

l'inférence difficiles dans les situations de point de rupture à une seule trajectoire. 

L'exploration d'un problème de point de rupture à une seule trajectoire s'accomplit 

souvent par le truchement des questions suivantes: y a-t-il eu changement? où le 

changement s'est-il produit? quelle était l'ampleur du changement? L'analyse de cas 

de point de rupture à une trajectoire s'effectue fréquemment de manière rétrospective, 

après une collecte de données faite uniformément sur l'intervalle temporel d'intérêt. 

Lors de ces analyses rétrospectives, le modèle est construit de telle manière que la loi 

a priori du point de rupture permet à la rupture de se produire uniquement là où 

une donnée a été relevée, et ce habituellement pour des raisons de commodité com

putationnelle. Puisque nous nous intéressons aux plans optimaux, nous choisissons 

plutôt, et de manière plus réaliste, une loi a priori qui permet à la rupture de se 

produire li tout endroit dans l'intervalle temporel d'intérêt. La première conséquence 

de cette modification est que nous ne pouvons plus obtenir la loi a posteriori du point 
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de rupture, et que nous ne pouvons donc plus estimer sa position. Une deuxième 

conséquence est que, pour obtenir des données conditionnellement indépendantes, 

nous devons exiger que les mesures soient prises à une distance minimale les unes des 

autres dans notre plan d'expérience. 

Dans cette dissertation, nous considérons des plans bayésiens optimaux pour les 

tests de changement d'espérance, les tests de changement d'espérance dans un inter

valle donné, et l'estimation des espérances avant et après le point de rupture. Nous 

ne sommes pas en mesure de considérer les plans bayé siens optimaux pour estimer 

la position du point de rupture car nos données ne peuvent actualiser la loi a priori 

du point de rupture. Malgré cela, nous construisons un plan d'expérience que nous 

croyons utile pour qui désire tirer une inférence concernant le point de rupture. 

Nos plans optimaux résultent de la minimisation de fonctions-critères spécifiques. 

Nous minimisons le risque bayésien 0-1 généralisé afin d'obtenir des plans optimaux 

pour les tests d'hypothèses, ainsi que le risque bayé sien quadratique pour obtenir des 

plans optimaux pour l'estimation. Nous utilisons de plus la fonction-critère de Spez

zaferri, initialement conçue pour la sélection de modèle, pour concevoir des modèles 

optimaux pour les tests. Nos modèles optimaux pour tests et estimation se retrouvent 

tous dans un petit sous-ensemble de modèles qui placent les observations aussi près 

que possible des extrémités de l'intervalle d'intérêt. 

Au centre de nos résultats se trouve une mesure de plan que nous avons con

struite et qui rappelle la mesure utilisée par Kiefer pour sa théorie d'approximation 

continue. L'optimisation convexe joue aussi un rôle important dans l'obtention de nos 

résultats. Bien que nous ne considérions que trois fonctions-critères (risque bayésien 

0-1 généralisé, risque bayésien quadratique, et fonction-critère de Spezzaferri), les 

plans optimaux résultants s'appliquent à toute fonction-critère qui soit une fonction 

concave de notre mesure de plan. 

Nous concluons en considérant brièvement le problème de point de rupture à 
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plusieurs trajectoires. Dans cette situation, plusieurs séquences de données sont 

relevées, chacune assortie d'espérances aléatoires avant et après le point de rupture. 

Lorsque les séquences partagent le même point de rupture, le problème à plusieurs tra

jectoires se réduit à un problème à une seule trajectoire. Lorsque chaque trajectoire 

possède son propre point de rupture, la détermination de plans bayésiens optimaux 

devient beaucoup plus complexe. 
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Chapter 1 

Introduction 

1.1 Motivation and Description of Thesis 

This thesis considers Bayesian optimal designs for change-in-mean changepoint prob

lems. In the single-path changepoint problem a sequence of data are collected along 

some time axis or equivalent. InitiallY the data are distributed about some mean and 

then immediately after some point, called the changepoint, the mean changes value. 

The unknown location of the changepoint and the fact that it is not directly observed 

are what makes testing and estimation for this problem difficult. In some cases it is 

not even clear if a change has occurred. 

Thaditionally, analyses of such changepoint problems have been do ne retrospec

tively on data collected at regular intervals throughout a period or distance of inter

est. It is usually assumed that the change can only occur at locations where data 

have been collected. Therefore, one has n observations y = (YI, ... , Yn) collected 

at n equally spaced locations. If r denotes the index location of the changepoint 

then the data (YI, ... , Yr) are distributed about the first value of the mean .and the 

data (Yr+1, ... , Yn) are distributed about the second value of the mean. Given the 

before-and-after-change me ans and the changepoint, the data are usually considered 
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to be conditionally independent. The event {r = n} is equivalent to no changepoint 

occurring. 

Inference for such problems has been carried out in frequentist, Bayesian, and 

nonparametric settings. Interest lies in one or more of the following: testing for a 

change, estimating the location of the changepoint, and estimating the before-and

after-change mean values. Here we consider Bayesian optimal design for each of the 

three types of problem described ab ove. 

Since we are considering optimal designs, our interest lies in situations where it 

is impossible, or too expensive, to collect data throughout the period of interest. 

Aiso since the time or distance axes along which the data are usually collected are 

in reality continuous, we consider the situation where n measurements are collected 

in the observation interval [0, Tl. Our goal is to determine where to place the n 

measurements in order to obtain the "best" inference possible. The only constraint 

we impose on our designs is that we insist all measurements are a minimum distance 

d apart. We do so to ensure, as is usually the case in changepoint analysis, that the 

observations are conditionally independent given the before-and-after-change means 

and the changepoint. 

Importantly too, since we are considering an infinite number of possible designs 

in a continuous period for which many designs do not correspond to observations 

taken at regular intervals, it is unreasonable to insist that the change only occurs at 

locations where data are collected. Hence, in our model we allow the changepoint, 

denoted by T, to occur at any point in the interval [0, Tl. Here, the event {T = T} is 

equivalent to no change. 

Change-in-mean changepoint models are useful when making inference about an 

underlying stochastic process where the realized paths are essentially "horizontal" 

initially, then increase or decrease quickly, and are then essentially "horizontal" again. 

We do not assume continuous observation of such a stochastic process; rather, we 
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model the joint distribution of n data points collected a minimum distance d apart. 

These changepoint models are often sufficient and convenient for making inference. 

Changepoint analyses are justified when, for example, an underlying process reaches a 

threshold .that causes the process under study to change from one state to another (see 

Beckage et al. (2006)). See also Joseph et al. (1997) [p. 691] for further discussion 

about using a change-in-mean changepoint model for data that in fact display a 

graduaI change. 

The illustrative example below, from medicine, makes the ideas presented above 

concrete! 

Example 1.1. Change in Mean Blood Pressure 

Consider a patient to be treated for high blood pressure at some time point in [0, T]. 

Once the data are collected three questions of interest might be: Did the treatment 

have an effect? Wh en did the treatment take effect? What was the magnitude of 

the effect of the treatment? In the same spirit as Joseph et al. (1996), we make 

two assumptions when modelling data from the stochastic process that describes the 

changing blood pressure over time both before and after the treatment. 

The first is that the blood pressures form a Gaussian process. Conditional on the 

changepoint T we assume that there is a covariance stationary process before T and 

a possibly different covariance stationary process after T. We emphasize that T, the 

time at which the treatment will take effect, might not coincide with the time at which 

the treatment will be administered, and that it is not known. 

The second assumption is that given the before-and-after-change blood pressure 

means and the changepoint, the random variables Yt! and Yt2' representing the blood 

pressure at times t l and t2 , where t l < t2 , are roughly conditionally independent 

provided that t l and t2 are separated by some sufficiently large distance d. 

If the treatment takes effect quickly, the first assumption that the mean changes 

abruptly is reasonable. The second assumption is needed since there does not exist a 
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continuous parameter stochastic process with aU observations independent and having 

a finite variance; we need independence to construct our likelihood. 

Our goal is to answer one or more of the three questions posed at the start of this 

example. To do this we shall collect n blood pressure readings in the interval [0, Tl. 
The optimal designs developed in this thesis will help us answer the three questions 

as efficiently as possible. 

Since only one sequence of measurements (on a single patient) was taken, the 

problem described ab ove is termed a single-path changepoint problem. One of our 

main results for the single-path problem is that, when testing for a changepoint or 

when estimating the before-and-after-change means, the optimal design is one of a 

relatively small set of designs placing observations as far as possible towards the ends 

of the observation interval; determining the optimal design thus becomes numerically 

feasible. Next, although we cannot directly estimate the changepoint since our data 

do not update the prior density for T, we suggest designs to help make inference about 

the location of the change. In particular, we find designs that are optimal for testing 

if the change occurs in a subinterval [tl, t2l of the observation interval [0, Tl. Our 

results apply to any distribution for the data y and there is no requirement that the 

prior distributions (in our Bayesian setting) for the before-and-after-change means, 

be conjugate. 

In this thesis we also consider Bayesian optimal designs for multi-path changepoint 

problems. In a multi-path problem, multiple sequences of measurements are collected. 

An example of a multi-path changepoint problem in the same setting as Example 1.1 

is a clinical trial where the same treatment will be administered on many patients 

and n observations are to be taken on each patient. In fact, the setting just described 

is the situation in the paper by Joseph et al. (1996) who were concerned with making 

inference from data already collected, rather than with optimal design for data about 

to be collected. In our setting each patient is assumed to have a random before-change 
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mean effect and a random after-change mean effect. The random before-and-after

change mean effects for aU subjects are assumed to be distributed about hierarchical 

before-and-after-change means. 

There are two types of multi-path problems, the common changepoint multi

path problem and the multiple changepoints multi-path problem. In the first type 

we insist that aU subjects change at the same time; that is, they have a common 

changepoint T. In this thesis, we show that the common changepoint multi-path 

problem simply reduces to a single-path problem. Therefore, an our optimal design 

results for the single-path problem apply to the common changepoint multi-path 

problem. More realistically, in the multiple changepoints multi-path problem, we 

allow each subject to have their own changepoint. For the multiple changepoints 

multi-path problem we consider design criterion functions for estimating the before

and-after-change hierarchical means, estimating the proportion of people who do not 

change, and estimating the proportion of people who change in a specifie interval 

[tl, t 2]. Finding the optimal design in the multiple changepoints multi-path problem 

is much more complicated than in the single-path problem. 

1.2 Literature Review 

Bischoff and Miller (2000) present an asymptotic frequentist optimal design for a 

biphasic regression when the location of the possible changepoint is known. Their de

signs are optimal for testing whether or not the change occurred. As in our Bayesian 

setting, their frequentist optimal design is to place observations at the ends of the 

interval. There are two important differences between their setting and ours: first, 

the location of the possible change is unknown in our model. Second, they allow 

design points to be coincident whereas we insist that the design points be a minimum 

distance d apart. This last requirement simplifies the likelihood by forcing conditional 
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independence, while considerably increasing the difficulty of finding the optimal de

sign. This thesis follows the Ph.D. thesis of Zhou (1997), which considered various 

Bayesian optimal design problems for single-path changepoint problems. 

Since, to our knowledge, there is no other work in the specific area of optimal 

design for changepoint problems, we continue our review by providing an overview 

of changepoint problems in Section 1.2.1 and then providing an overview of optimal 

design in Section 1.2.2. Each area has a vast literature and hence we emphasize only 

results most relevant to this thesis. 

1.2.1 Changepoint Problems 

In this thesis, we address single changepoint problems with fixed sample size. There 

is, however, an extensive literature on sequential changepoint analysis, for example 

the paper by Carter and Blight (1981). Other variants of the basic change-in-mean 

problem include work by Krolewski et al. (1995) on changepoints in regression, by 

Christensen and Rudemo (1998) on multiple changepoints in a sequence of measure

ments, by Picard (1985) on changepoints in time series, and by Müller and Wang 

(1994) on changepoints in hazard functions. Changepoint problems appear in many 

settings. For instance, the aforementioned references apply to detecting ovulation 

in women, the study of diabetes, the study of disease in pigs, quality control, and 

survival analysis. 

Our review concentrates specifically on non-sequential changepoint problems for 

which there is a possible change in the mean only. The optimal designs presented 

in this thesis are for parametric models of the type discussed by Henderson and 

Matthews (1993) to study the incidence of haemolytic uremic syndrome (HUS), and 

by Chu and Zhao (2004) to study cyclone activity. 

Although changepoint problems were first introduced by Shewhart (1931), the 

subject had its formaI start with the three seminal papers by Page: Page (1954) 

8 



addressed sequential and non-sequential inspection schemes; Page (1955) used cumu

lative sums for a one sided test to detect a change; and Page (1957) extended the work 

in the second paper to a two-sided test. These articles by Page were the start of what 

has become an extensive literature on testing and estimation. The literature covers 

parametric and nonparametric problems in both the frequentist and Bayesian set

tings. In the frequentist parametric setting, maximum likelihood estimators (MLE) 

for estimating the changepoint location were developed by Hinkely (1970) for nor

maUy distributed data and by Hinkley and Hinkley (1970) for data with a binomial 

distribution. Hawkins (1977) considered the problem of testing for a change and 

Worsley (1986) included confidence intervals for the changepoint. In the nonpara

metric frequentist setting, both Bhattacharya and Johnson (1968) and Pettitt (1979) 

developed tests for a change. Chernoff and Zacks (1964) were the first to address the 

Bayesian parametric setting by estimating the current mean of a sequence of random 

variables and Smith (1975) introduced the type of single-path hierarchical Bayesian 

model used in this thesis. Carlin et al. (1992) proposed the use of Gibbs sampling 

in Bayesian heirarchical changepoint models. The Bayesian nonparametric setting is 

addressed in Muliere and Scarsini (1985) and Mira and Petrone (1994). Zacks (1983) 

reviews much of the earlier work mentioned above. 

Common distributions occurring in changepoint problems are binomial for binary 

data, normal for continuous data, exponential for interval data, and Poisson for count 

data. As we will see in Section 3.3, aU these distributions are natural exponential 

families (NEFs). Hence it is not surprising that researchers have considered aU these 

distributions at once by studying changepoint problems for NEFs. Worsley (1986) 

considered the problem of testing for a change and estimating the changepoint location 

for an exponential family. He also discussed interval estimation for the changepoint. 

Ghorbanzadeh and Lounes (2001) carried out a Bayesian analysis to detect a change 

in an exponential family. More recently, Wu (2005) has written a book about CUSUM 
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tests for changepoint problems with emphasis on exponential families. 

The book by Chen and Gupta (2000) provides a good introduction to change

in-mean, change-in-variance, and change-in-regression-slope problems. They discuss 

parametric models in both the frequentist and Bayesian settings. A second book by 

Csorgo and Horvath (1998) addresses limit theorems for change-in-mean, change-in

variance, and change-in-regression-slope problems in both the parametric and non

parametric settings. 

The multi-path changepoint problem was first introduced in the Ph.D. thesis 

by Joseph (1990), and later presented by Joseph and Wolfson (1992) and Joseph 

and Wolfson (1993). The change-in-mean multi-path problem has been used in the 

Bayesian setting for the analysis of blood pressure data of Lyle et al. (1987) (see 

Joseph et al. (1996)). The multi-path problem has also been extended to change

in-regression-slope models (see Joseph et al. (1999)). This extension was applied on 

measurements of cognitive decline in patients with Alzheimer's disease. Chu et al. 

(2005), applied the change-in-regression-slope multi-path model to CD4 ceU counts 

in AIDS patients. 

1.2.2 Optimal Design 

The subject of optimal design lies in the area of experimental design. It involves 

determining a suit able design criterion function, and then minimizing or maximizing 

the criterion function over the set of aU possible designs. Whether we minimize 

or maximize depends on the particular criterion function being used. The design 

that optimizes the criterion function is termed the optimal design. Design criterion 

functions are tailored for different purposes such as testing, estimation or prediction. 

Here we consider Bayesian optimal designs for both estimation and testing when a 

fixed number of observations are to be coUected. 

Optimal design has been used for many types of models and experiments such as 
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computer experiments (Xu (1999)), blocked experiments (Goos et al. (2005)), cross 

over models (Matthews (1987)) and regression models (O'Brien and Funk (2003)). 

Optimal design originated in the regression setting and much has been written about 

it in this context. Therefore, in this review, most of our references are to regression 

modelling. 

We begin with a brief summary of classical frequentist optimal design, in which 

Kiefer played a major role. Elfving (1952) introduced optimal design for regression. 

Shortly after, the alphabetic nomenclature system, currently used in optimal design, 

was introduced by Kiefer (1958). Many of the criterion functions described by the 

alphabetic nomenclature are tailored for parameter estimation. The basic ide a is to 

minimize the variability of the estimators for the parameters in the model. Since the 

asymptotic covariance matrix for the MLEs of the parameters in a regression model is 

proportional to the inverse of the Fisher information matrix, many of the frequentist 

design criterion functions for estimation are based on the Fisher information matrix 

of the model parameters. The most studied design criterion function is D-optimality 

which maximizes the determinant of the Fisher information matrix. For linear re

gression, maximizing this determinant is equivalent to minimizing the determinant 

of the dispersion matrix of the coefficient estimates. Intuitively, D-optimality entails 

minimization of the volume of the confidence ellipsoid for the model parameters of a 

given level. 

Another design criterion function based on the Fisher information matrix is A

optimality. A-optimality minimizes the trace of the inverse of the Fisher information 

matrix. That is, the average variance of the parameter estimates is minimized. An 

example of a frequentist design criterion function for estimation in regression that is 

not based on the Fisher information matrix is h-optimality. Instead, h-optimality 

is based on predicted variance (see Dette and O'Brien (1999)). A design criterion 

function for model discrimination is T-optimality, see Atkinson and Fedorov (1975). 
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T -optimality is based on a non-centrality parameter. 

Kiefer and Wolfowitz (1959) concentrate on D-optimality in regression. They 

introduce a design measure, which simplifies the problem. Instead of optimizing 

the criterion function directly as a function of the design points, one optimizes the 

criterion function as a function of the design measure. In regression problems, this 

design measure has the following form: if a total of N measurements is taken and ni is 

the integral number of measurements at location Xi, then we assign the weight ni/ N to 

Xi. With the ni all integer-valued we have an exact design. For optimization purposes, 

when we do not insist that the ni be integer-valued, we may use the approximate 

continuous theory proposed by Kiefer (1974). Kiefer (1974) also presents the general 

equivalence theorem. The general equivalence theorem uses convexity results and 

directional derivatives to describe several equivalent ways in which one can identify 

the optimal design for concave criterion functions. Often it is much simpler to use 

the approximate continuous theory and equivalence theorem than to find the optimal 

design directly, since the latter involves discrete optimization. The first work on 

equivalence was presented by Kiefer and Wolfowitz (1960). Kiefer and Wolfowitz 

(1960) demonstrated the equivalence of D-optimality and G-optimality, also known 

as the mini max criterion. Whittle (1973), considered the equivalence theorem for the 

non-linear case. His results are included in Kiefer (1974). 

Many books have been written about frequentist optimal design in the context of 

regression. The monograph by Slivery (1980) provides a concise introduction when 

the underlying model is known. For more recent and in-depth coverage one may 

consult Pukelsheim (1993), which provides a theoretical view or Atkinson and Donev 

(1992), which gives a more applied view. Other books on optimal design include Paz

man (1986) and Fedorov (1972). A-optimality was extended to the linear optimality 

criterion by Fedorov (1972) and a corresponding equivalence theorem was found. 

The subject of Bayesian optimal design has its origins in designs that are optimal 
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for prediction. See the papers by Lindley (1956) and Lindley (1968), who initially sug

gested the use of Bayesian optimal design for prediction, and Brooks (1972), Brooks 

(1974) and Brooks (1976), who examined optimal design for prediction in a regression 

setting. 

The monograph by Pilz (1991) is concerned entirely with Bayesian optimal design 

for linear regression. Included in this monograph is the aforementioned author's work 

from the 1980's. Chaloner (1984), EI-Krunz and Studden (1991) and Dette (1993) aU 

revisit Elving's original 1952 regression paper in a Bayesian setting. An example of 

the use of equivalence theory in the Bayesian setting is given in Chaloner and Larntz 

(1989) who use the equivalence theorem of Whittle (1973) to find the Bayesian optimal 

design for logistic regression experiments. 

Lindley (1972) [pp. 19-20] suggested a Bayesian decision-theoretic framework for 

Bayesian optimal design. Bernardo and Smith (1994), Berger (1985) and Robert 

(2001) are all good references for decision theory in a Bayesian statistical context. 

The review article by Chaloner and Verdinelli (1995) expands on Lindley's idea and 

places aH the work on Bayesian optimal design up until1995 in the decision-theoretic 

setting. At the core of decision theory is the utility function or, equivalently, the loss 

function. These functions are described in Chapter 2 of this thesis and also in Rukhin 

(1988). As pointed out in Lindley (1972), the two most popular loss functions used for 

estimation are the Shannon information, introduced by Shannon (1948), and squared 

error loss. The most popular loss function for testing is the 0-1 loss. Another option 

for model discrimination is the discrete Spezzaferri criterion function introduced by 

Spezzaferri (1988). Chaloner and Verdinelli (1995) forge links between the Bayesian 

design criterion functions and the frequentist alphabetic design criterion functions, 

where possible. In the linear regression setting they link the Bayes criterion based 

on the Shannon information loss with D-optimality. They also link the continuous 

criterion function of Spezzaferri (1988) for estimation to D-optimality. In the same 
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way, A-optimality is linked to a Bayes criterion function based on squared error loss. 

Another review article on Bayesian optimal design is contained in the technical 

report by Clyde (2001). Pukelsheim (1993) and Atkinson and Donev (1992) also both 

devote a chapter to Bayesian optimal design. 

To conclude this section, we point out that in certain situations it is appropriate 

to combine design criterion functions. One such situation arises when there is model 

uncertainty; see, for example, Lauter (1974) where a linear combinat ion of design 

criterion functions is taken for a fixed number of different models. In this case the 

same type of design criterion function is used for each model. Lauter's work was 

extended to the Bayesian setting by Zhou et al. (2003). Design criterion functions 

might also be combined when we are certain about the model but have more than one 

objective in mind. In this situation it is often appropriate to take a linear combinat ion 

of two or more design criterion functions for the same model. As an example, if one 

is interested in both estimation and testing one can take a linear combinat ion of a 

design criterion function for estimation and a design criterion function for testing and 

weight them accordingly. Such situations are discussed in Cook and Wong (1994) in 

the frequentist setting and extended to the Bayesian setting by Clyde and Chaloner 

(1996). 

1.3 Optimal Design in this Thesis 

In this thesis we use design criterion functions developed in the Bayesian decision

theoretic framework described by Chaloner and Verdinelli (1995) and Clyde (2001). 

Specifically, we use the Bayes risk based on squared error loss for estimation and the 

Bayes risk based on generalized 0-1 loss and Spezzaferri criterion function for model 

discrimination. These criterion functions are developed in detail in Chapter 2. 

Our goal then is to minimize the design criterion functions over the set of allowable 
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designs to find the optimal designs. To do the minimization we introduce a design 

measure, similar in spirit to the measure introduced by Kiefer for his continuous 

approximation theory in regression. For any two adjacent design points, our design 

measure allows us to write a design cdterion function in terms of the probability that 

a change will occur between the points rather than in terms of the distance between 

those points. The key is that, expressed in terms of the design measure, our criterion 

functions are all concave functions. The concavity of the criterion functions as a 

function of the design measure enables us to reduce our original hard optimization 

problem to a convex optimization problem. 

1.3.1 Outline of Thesis 

We conclude this chapter by presenting a brief overview of the thesis. 

Chapter 2: We present an introduction to decision theory and describe the Bayes 

risk based on squared error loss, the Bayes risk based on generalized 0-1 loss and 

the Spezzaferri criterion function for model discrimination. We conclude the chapter 

by relating the Bayes risk based on the squared error loss to the Spezzaferri criterion. 

Chapter 3: We review results from convex optimization, differential geometry, and 

NEFs needed for this thesis. 

Chapter 4: We introduce the Bayesian single-path changepoint model. Next, we 

present the set of aU designs having design points a minimum distance d apart and 

prove this set forms a simplex. The design me as ure is introduced. 

Chapter 5: We examine the set of allowable design measures. In particular, we fo

cus on how the set of allowable design measures depends on the prior density for the 
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changepoint T. We conclude by presenting theorems regarding the optimal designs of 

any design criterion functions which are concave functions of the design measure. 

Chapter 6: The Bayesian single-path changepoint model and its posterior distri

butions are re-expressed in terms of the design measure. The optimal designs for 

testing for a change, testing for a change in a subinterval, and estimating the before

and-after-change me ans are aU examined. The design criterion functions for these 

problems are aU proved to be concave functions of the design measure. Optimal de

sign results foUow from the theorems presented in Chapter 5. 

Chapter 7: Examples of the single-path changepoint problem are presented. The 

first example models observations that are conditionally independent and from any 

NEF. The second example is the common changepoint multi-path problem which be-

cornes a single-path changepoint problem when the average of the measurements (over 

paths) at each design point, is taken. Numerical simulations of the Bayes risk based 

on squared error loss for estimating the before-and-after-change me ans in the NEF 

example and the before-and-after-change hierarchical means in the common change

point multi-path example are given. 

Chapter 8: The multiple changepoints multi-path problem is presented. We consider 

design criterion functions based on squared error loss Bayes risk for estimating the 

proportion of subjects who do not change and the proportion of subjects who change 

in a subinterval. We also investigate design criterion functions based on squared error 

10ss Bayes risk for estimating the before-and-after-change hierarchical means. We find 

that the design criterion functions for these problems are not necessarily concave in 

/~ the design measure. The non-concavity greatly complicates the problem of finding 

the optimal design. 
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Chapter 9: We give sorne concluding rernarks and directions for future work. 
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Chapter 2 

Design Criterion Functions 

In this chapter we introduce the three design criterion functions that are used through

out the thesis to find optimal designs. The three criterion functions are the Bayes risk 

based on generalized 0-lloss, the Spezzaferri model discrimination criterion function, 

and the Bayes risk based on squared error loss. In Chapter 6 we use the Bayes risk 

based on generalized 0-1 loss and the Spezzaferri criterion function for finding optimal 

designs to test for a change and to test for a change in a subinterval for the single-path 

model. Likewise, we use a Bayes risk based on squared error loss to find the optimal 

design when estimation of the before-and-after-change me ans is the goal. The Bayes 

risk based on squared error loss is the only design criterion function we consider in 

Chapter 8. In the multi-path setting of Chapter 8 we write out the design criterion 

functions for estimating: the proportion of subjects who do not change; the propor

tion of subjects who change in a subinterval; the before-and-after-change hierarchical 

means. Sinee aH three criterion functions are motivated from a decision-theoretic 

point of view, we begin our first section with an introduction to decision theory. 
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2.1 Decision Theory 

Decision theory has been developed to quant if y decision making processes when the 

outcome is uncertain. It plays a major role in the fields of economics, business, 

statistics, engineering, and game theory. There are both frequentist (classical) and 

Bayesian approaches to decision theory. As we are concerned with the Bayesian 

paradigm, we present the Bayesian approach. The books by Berger (1985), Robert 

(2001) and Bernardo and Smith (1994) cover Bayesian decision theory weIl. To sim

plify notation, we do not distinguish between a random variable and the realization 

of the random variable; lower case letters are used for both, with the interpretation 

clear from the context. 

To introduce the main components of a decision-theoretic problem, let us consider 

a simple hypothetical example where we wish to estimate a parameter () in the param-

eter space 8. Our model consists of a density f(yl()), which describes how our random 

observation y is distributed given the unknown parameter (), and a prior distribution 

p(()) , that incorporates our prior beliefs and uncertainties about (). In our example, 

the action space A consists of aIl possible values that we consider to estimate the 

parameter, and the particular action a E A is the valuewe use to estimate (); that is, 

the action space A equals the parameter space 8. Of course, A is not always equal 

to a parameter space. Consider, for instance, a hypothesis testing problem where we 

either accept or reject a given hypothesis. If we denote accepting by ao and rejecting 

by al then our action space A would be {ao, al}' 

Statisticians usually base their decision on a loss function L: e x A -T IR. In our 

example L((), a) would represent the loss when action a is taken to estimate (). Areas 

such as economics and game theory have an equivalent to the loss function called 

/" the utility function U: 8 x A -T IR. So, in the example, instead of quantifying the 

loss incurred when action a is taken to estimate (), the value of the utility function 
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U((J, a) describes the gain when action a is taken to estimate (J. The loss function is 

essentially a negative utility function. As we shall see, interest usually lies in either 

minimizing the expected loss or in maximizing the expected utility. 

Bernardo and Smith (1994) provide a rigorous justification of utility functions. 

Robert (2001) and Berger (1985) also justify the existence of utility functions. More

over, Berger (1985) has a fairly lengthy discussion concerning how a utility function 

can be made into a loss function. Transforming a utility function into a loss function 

is complicated by the fact that utility functions often have a different domain than 

e x A, the domain of their corresponding loss function. 

Exarnple 2.1. Squared Error Loss 

A loss function which is often used for estimation is the squared error loss 

L((J, a) = ((J - a? 

Exarnple 2.2. Generalized 0-1 Loss 

A loss function often used for hypothesis testing is the generalized 0-1 loss. Say we 

have a null hypothesis Ho and an alternative hypothesis Hl concerning the value of 

(J. We partition the n space of (J into the events Eo and El such that the event Eo 

corresponds to the truth of Ho and the event El corresponds to the truth of Hl' The 

value of a constant Ko is selected to quantify the loss incurred when Ho is chosen but 

the true state is El' Likewise, the value of KI is selected to quantify the loss incurred 

when Hl is chosen but the true state is Eo. Letting l denote the indicator function 

and taking ao to denote that we accept Ho and al to denote that we accept Hl, we 

have 

L(O, ao) = Ko IOEEll 

L((J, al) = KIloEEo' 

A decision rule is a mapping 8: y --+ A. In our example the decision rule is a 

function on the sample space y of f(yl(J) to the parameter space e. Once the data y 

have been collected, 8(y) takes the value a to estimate (J. 
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Definition 2.1. The risk function of a decision rule 8(y) is defined as 

R((),8) = E[L((), 8)] = L L((), 8(y))f(yl())dy. 

In general, both Bayesians and frequentists want de ci sion rules to provide small 

values for the risk R((), 8), which is the average loss, over aIl the anticipated data, for 

a given (). However, () is unknown and hence it is difficult to provide a decision rule 

8 such that the risk is small. In the Bayesian setting, we have an advantage because 

we can use the prior distribution p(()) to compute an average risk (this time over ()). 

This doubly-averaged risk is known as a Bayes risk. 

Definition 2.2. The Bayes risk of a decision rule 8, with respect to a prior distribu

tion p( ()), is defined as 

r(p,8) = E[R((), 8)] = le R((), 8)p(())d(). 

Obviously, we would like to obtain the decision rule that minimizes the Bayes risk. 

Such a decision rule is called the Bayes rule. 

Definition 2.3. The Bayes rule 8P is the decision rule that minimizes the Bayes risk 

r(p, 8). 

Example 2.3. Bayes Rule for Squared Error Loss 

The Bayes rule for the squared error loss Bayes risk in Example 2.1 is the posterior 

expectation E ( () 1 y) . 

Example 2.4. Bayes Rule for Generalized 0-1 loss 

For the hypothesis testing situation, letting A = {ao, al}, when 8 (y) = ao we accept 

the null hypothesis Ho and when 8(y) = al we reject. To form the decision rule, we 

partition y into Ro and RI su ch that y E Ro implies that 8(y) = ao and y E RI 
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impZies that 6 (y) = al' A quick caZcuZation shows that the Bayes T'uZe is 

y E Ro if Ko 1 f(yle)p(e)de < Kil f(yle)p(e)de 
OEEl OEEo 

y E RI if Kil f(yle)p(e)de < Ko 1 f(yle)p(e)de. 
OEEo OEEl 

2.2 Bayes Risks as Design Criterion Functions 

The Bayes risk design criterion functions used in this thesis are simply the Bayes 

risks based on the appropriate squared error and generalized 0-1 losses. In this form, 

the Bayes risk provides the decision rule that minimizes its value. For optimal design 

purposes, we consider each Bayes risk as a function of the design and find the design 

providing the lowest value of the risk. 

In a Bayesian optimal design problem for estimation, we must average over both 

the anticipated data and the values of the parameter. The resulting risk must then 

be minimized as a function of the various designs. Suppressing the dependence on 

the design, the Bayes risk based on the squared error loss is 

J J (e - E(ely))2 f(ely)f(y)dedy. (2.1) 

Expression (2.1) is a design criterion function usually used for estimation, though as 

we will see shortly, it is related to the Spezzaferri criterion for model discrimination. 

It is easily seen that expression (2.1) simplifies to 

J Var(ely)f(y)dy. (2.2) 

In Section 1.2.2 we mentioned that the Bayes risk based on the squared error 10ss 

is commonly referred to as the Bayesian A-optimality criterion. The reason is that 

in regression there is a strong similarity between the frequentist A-optimality design 

criterion function (the trace of the inverse of the Fisher information matrix) and the 

Bayes risk based on squared error loss. For our changepoint model, the expressions 
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for the trace of the inverse Fisher information matrix and for the Bayes risk based on 

squared error loss are not, in fact, similar. 

The Bayes risk based on generalized 0-1 loss is 

Ko r r j(yIB)p(B)dBdy + KI r r j(yIB)p(B)dBdy. (2.3) 
} Ro }OEEl } Rl }OEEo 

Expression (2.3) is a design criterion function for hypothesis testing discussed by 

Felsenstein (1992) and used by Blackmore and Williams (2005). 

2.3 Scoring Rule Utilities 

The Spezzaferri criterion (Spezzaferri (1988)) is based on a special type of utility 

function called a scoring rule. Scoring rules are discussed in detail by Bernardo 

and Smith (1994) and more recently by Gneiting and Raftery (2004). This short 

introduction to scoring rules is largely based on the aforementioned reference by 

Bernardo and Smith (1994). Taking a Bayesian viewpoint, suppose we represent our 

beliefs about the truth of a set of hypotheses {Hj , j E J} by a distribution {qj, j E J}. 

To do so, we partition the model space into the events {Ej, j E J}, where event Ej 

is equivalent to the hypothesis Hj being true. We represent aIl possible distributions 

over {Ej , j E J} as 

Q = {q = {qj, j E J}; qj ;::: 0, L % = 1}. 
jEJ 

Scoring rules quantify the gain when using a distribution q to represent the belief 

about the truth of statements {Ej , j E J}. 

Definition 2.4. A scoring rule U for probability distributions q = {qj,j E J} defined 

/--- over a partition {Ej, j E J} is a mapping which assigns a real number U (q, Ej) to 

each pair (q, Ej). 
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U sually, the goal is to find a distribution q E Q which maximizes the expected 

utility, 

L U(q, Ej)P(Ejly)· 
JEJ 

(2.4) 

The true current belief of a Bayesian is the posterior distribution {P( Ej Iy), j E J}; 

therefore we would like a scoring rule whose expectation (2.4) is maximized when 

q equals the posterior distribution for any given y. Such utilities are called proper 

scoring rules. 

Definition 2.5. A scoring rule U is proper if, for each probability distribution p = 

{Pj,j E J} defined over a partition {Ej,j E J}, 

and the supremum is attained if and only if q = p. 

The Spezzaferri criterion function is based on a particular proper scoring rule 

introduced by Brier (1950) in the context of weather forecasting, and again later by 

DeFinetti (1962). It is called the quadratic scoring rule. 

Definition 2.6. A quadratic scoring rule for probability distributions q = {qj, j E J} 

defined over a partition {Ej, j E j} is any function of the form 

U(q, Ej) = A(2qj - L q?) + Bj, A> O. 
iEJ 

It is easily shown that the quadratic scoring rule is proper. It is also easily shown 

that the quadratic score function can be rewritten as 

U(q, Ej) = A(l - L(qi - IEj)2) + Bj, A> O. (2.5) 
iEJ 
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2.4 The Spezzaferri Criterion 

The Spezzaferri criterion (Spezzaferri (1988)) was introduced for both estimation 

and model discrimination. To construct a criterion function for model estimation, 

Spezzaferri defined a continuous analogue to the discrete quadratic scoring rule. In 

this thesis we use the Spezzaferri criterion for model discrimination and therefore 

rederive it using the original discrete form of the quadratic scoring rule. The Spezza

ferri criterion function has been advocated as a Bayesian criterion function for model 

discrimination by both Chaloner and Verdinelli (1995) and Clyde (2001). 

This criterion posits that the usefulness of an experiment e is measured by the 

expected relative increase of utility after the experiment is performed. Letting U 

denote the quadratic scoring rule, in the hypothesis testing situation J = {O, 1} we 

have 

(2.6) 

the design. Consequently, we concern ourselves with the numerator. By substituting 

expression (2.5) into the numerator of (2.6), we obtain 

A[P(Eo)2 - P(Eoly? + P(El)2 - P(Elly)2 

+ 2(P(Eoly) - P(Eo))] P(EoIY) 

+ A [P(Eo? - P(Eoly)2 + P(El)2 - P(Elly)2 

+ 2(P(Elly) - P(E1))] P(E1IY). 

Vpon simplification, we find for the numerator of U(e) 

A[(P(Eo)2 + P(El)2 + P(Eoly)2 + P(Elly)2 

- 2(P(Eo)P(Eoly) + P(El)P(Elly))]. 

The Spezzaferri criterion function is formed by averaging J U(e)f(y)dy over the 

anticipated data, f(y). The term 2 J(P(Eo)P(Eoly) + P(EdP(Elly))f(y)dy is con-
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stant and equal to 2(P(Eo)2 + P(Ed 2). Consequently, maximizing the Spezzaferri 

criterion function J U ( e ) f (y) dy is equivalent to maximizing 

(2.7) 

Using the relation 

it is easily seen that maximizing (2.7) is equivalent to minimizing 

(2.8) 

which equals 

J P(Eoly? P(Elly)f(y)dy + J P(Elly)2 P(Eoly)f(y)dy. (2.9) 

AU the above observations were made by Spezzaferri (1988). 

2.5 Comments on the Spezzaferri Criterion 

Our final section in this chapter relates the Spezzaferi criterion function to the Bayes 

risk based on squared error loss and to the posterior expectation (2.4) of the quadratic 

score utility. To our knowledge, these observations have not been made before. We 

believe such comparisons, although simple, are important, as it is crucial to under

stand aU possible interpretations of a particular design criterion function. As we will 

see at the end of this section, our alternative interpretations of the Spezzaferri crite

rion function suggest how a hypothesis test should be conducted when the Spezzaferri 

criterion function is used. 

Theorem 2.7. The testing design criterion function formed by finding the design 

which maximizes the expected quadratic score utility L~=o U(p, Ej)pj, with Bo = BI 

in equation (2.5) and p = {P(Ejly),j E {a, 1}}, is equivalent to minimizing (2.9) or, 

equivalently, (2.8). 
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Proof. Letting U denote the quadratic scoring rule, we first calculate 

l 

U(e) = L U(P(Ejly), Ej)P(Ejly) 
j=O 

and then we average over the data. 

Using expression (2.5) we find that, 

U(e) =A + BoP(Eoly) + BIP(Elly) 

- 2AP(Elly)2 P(Eoly) - 2AP(Eoly)2 P(Elly). 

Taking Bo = BI = B we have 

Onee averaged over f(y), maximizing J U(e)f(y)dy is equivalent to minimizing 

J P(Eoly)2p(Elly)f(y)dy + J P(Elly)2p(Eoly)f(y)dy, that is expression (2.9). D 

Immediately following Theorem 2.7, we see that using the Spezzaferri criterion 

function to discriminate between two models is equivalent to maximizing the average 

posterior expectation of the quadratic scoring rule with Bo = BI. 

N ow consider the Bayes risk based on squared error loss. As we mentioned, this 

criterion function is usually used for estimation. However) we can think of the model 

discrimination problem as one of estimation, of 1Er Sinee the Bayes rule is the 

posterior expectation of the parameter of interest, the Bayes estimator for lEj is the 

posterior probability P(Ejly). 

Theorem 2.8. The Bayes risk based on squared error loss design criterion function 

for estimating lEo is equivalent ta the Bayes risk based on squared error loss design 

criterion function for estimating lE!. Furthermore, bath these criterion functions are 

equivalent ta finding the design which minimizes (2. g) or, equivalently, (2.8). 
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Proof. Obviously, proving the second statement of the theorem is enough to certify 

the truth of the first. We prove it for IEo. By symmetry, the proof for IEl follows. 

The Bayes risk based on squared error loss for I Eo is 

J (1 - P(Eoly))2 P(Eoly)f(y)dy + J (0 - P(Eoly))2 P(Elly)f(y)dy 

which immediately reduces to J P(Eoly)2P(Elly)f(y)dy+ J P(Elly)2P(Eoly)f(y)dy, 

that is, expression (2.9). o 

Now that we have shown the equivalence of the three criterion functions (Spez

zaferri, squared error loss Bayes risk, and expected quadratic score), we can discuss 

how a hypothesis test should be conducted when the Spezzaferri criterion function 

has been used. Theorem 2.8 makes this suggestion obvious. Since the Spezzaferri 

criterion function is one which allows us to find the design to "best" estimate I Eo and 

IEl by the posterior densities P(Eoly) and P(Elly), our decision should be based on 

one or both of the values P(Eoly) and P(Elly). For instance, as suggested by Casella 

and Berger (2002) [p. 397], the decision could be made to accept Ho if 

and reject Hl otherwise. Notice this is the Bayes rule for the Bayes risk based on 0-1 

loss. Casella and Berger (2002) [p. 397] propose that one can guard against falsely 

rejecting Ho by deciding to reject Ho only if P(Elly) is greater than a large number 

such as 0.99. 

29 



//---

30 



Chapter 3 

Preliminaries 

This third chapter provides the necessary results from convex optimization, differen

tial geometry, and natural exponential families (NEFs) to read this thesis. Section 

3.1 covers convex optimization, Section 3.2 covers differential geometry and Section 

3.3 covers NEFs and their Diaconis-Ylvisaker-conjugate or DY-conjugate prior dis

tributions. The results from convex optimization and differential geometry are used 

throughout the thesis. The properties of NEFs are used in Chapter 7, in an example 

of a single-path changepoint model. Where possible, we indicate how the results are 

used in the sequel. 

3.1 Convex Optimization 

We begin with sorne important results from convex optimization, which can be found 

in any book on convex optimization or convex analysis; see, for example, the books 

by Ben-TaI and Nemirovskii (2001) and Rockafellar (1970). The following is largely 

based on Chapters 1, 2, 4 and 5 of the book by Ben-TaI and Nemirovski. 

To simplify notation, we do not use special characters to differentiate vectors and 

scalars. The dimensionality of any particular quantity should be evident from the 
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context. We denote the usual standard basis of ~n by {el, ... ,en}. The zero vector 

is denoted by eo. 

An affine combination of the set of vectors {vo, ... ,Vk} C ~n is a linear combina-

tion 2:~=0 ÀiVi such that 2:~=0 Ài = 1. 

A set of vectors {vo, ... ,Vk} C ~n is affinely independent if there does not exist a 

non-triviallinear combination which equals zero and that has coefficients which sum 

to zero. 

Definition 3.1. A collection {vo, ... ,Vk} C ~n of vectors is affinely independent if 

k k 

L ÀiVi = 0, L Ài = 0 ~ Ào = ... = Àk = O. 
i=O i=O 

Example 3.1. Affine Independence 

/' The vectors eo, el and e2 in ~2 are affinely independent. More generally, the vectors 

eo, el, ... ,en are affinely independent in ~n. N otiee that affine independenee does not 

imply linear independenee. 

An important consequence of Definition 3.1 is the following lemma. 

Lemma 3.1. Let {vo, ... ,vn} C ~n be an affinely independent set of vectors. Then 

the coefficients Ài in an affine combination v = 2:~=0 ÀiVi , 2:7=0 Ài = 1, of {vo, ... ,Vk} 

are uniquely determined by v. 

The values of the coefficients Ài in an affine combination are termed the baryeentric 

coordinates and, as such, we refer to the vector (Ào, ... , Àn) as the barycentric vector. 

Example 3.2. Unique Barycentric Coordinates 

Consider the affine combination Àoeo + À1 el + À2e2 in ~2. Sinee eo, el and e2 are 

affinely independent there is no other affine combination of eo, el and e2 whose 

baryeentric coordinates are (Ào, À1' À2). Note that Ào = 1 - À1 - À2. More generally, 

the affine combination Àoeo + ... + Ànen has the baryeentric coordinates (Ào, ... ,Àn) 
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where Ào = 1 - Àl - ... - Àn, and there is no other affine combination of eo, ... ,en 

whose barycentric coordinates are (Ào, ... , Àn) . 

Another consequence of Definition 3.1 is Lemma 3.2. 

Lemma 3.2. The set of vectors {vo, ... ,Vk} are affinely independent if and only if 

the k vectors (VI - Vo), ... , (Vk - Vo) are linearly independent. 

Example 3.3. Affine Independence and Linear Independence 

As we saw in Example 3.1 the vectors eo, el and e2 in }R2 are affinely independent. 

By Lemma 3.2 we note that the vectors el - eo and e2 - eo are linearly independent. 

Similarly, the vectors eo, el, ... ,en in }Rn are affinely independent and the vectors 

el - eo, . .. ,en - eo are linearly independent. 

Throughout the thesis, to differentiate between a vector component Za of a vector 

Z and a vector Z with a subscript a, we denote a vector Z with a subscript a as z(a). 

Definition 3.2. A set B ç }Rn is convex if 

In other words, B contains any line segment joining two elements of B. 

Definition 3.3. A convex combination of vectors {vo, . .. , Vk} C }Rn is 

k k 

V = L ÀiVi S.t. Ài ~ 0 V i, L Ài = 1. 
i=O i=O 

Given B ç }Rn, not necessarily convex, then the convex hullof B, denoted Conv(B) 

is the smaUest convex set containing B. Equivalently, Conv(B) is the intersection of 

aU convex sets containing B. It also happens that for any non-empty set B in }Rn 

that 

Conv(B) = {the set of aU convex combinat ions of vectors from B} 
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The particular type of convex set that interests us is a simplex. An n-dimensional 

simplex is the convex hull of n+ 1 affinely independent points {vo, . .. , vn} C IRn. The 

points {vo, ... ,vn} are called the vertices of the simplex. In three dimensions or less, 

a simplex is easily visualized: a one-dimensional simplex is a line, a two-dimensional 

simplex is a triangle, and a three-dimensional simplex is a tetrahedron. 

Definition 3.4. A simplex with affinely independent vertices {vo, ... ,vn} C IRn is a 

convex set B such that 

n n 

B = Conv(vo, ... , vn) = {L ÀiVi 1 Ài 2:: 0 Vi, L Ài = 1}. 
i=O i=O 

Since the barycentric coordinates À of each point in an n-dimensional simplex are 

aIl positive and sum to one, they can represent a probability measure assigning mass 

to a discrete random variable with n + 1 support points. In Chapters 6, 7, and 8, we 

re-express our design criterion functions as functions of such a probability measure 

and find the probability measure which minimizes the design criterion functions. The 

design criterion functions will then be scalar functions of the barycentric coordinates 

of any n-dimensional simplex. In this thesis we use the simplex sn which has the 

vertices {eo, .. . , en}. Defined in terms of the Euclidean coordinates, Z = (Zl, ... ,zn), 

sn is the region Zl + ... + Zn ::; 1 and Zi ;::: 0 for aIl i = 1, ... ,n. 

Example 3.4. Convex Hull 

The convex hull of the affinely independent points eo, el and e2 in IR2 is the simplex 

S2 shown in Figure 3.1. In Euclidean coordinates S2 is defined by Z = (Zl' Z2) su ch 

that Zl + Z2 ::; 1, Zl ;::: 0 and Z2 ;::: O. The barycentric coordinates are Ào = 1- Zl - Z2, 

À1 = Zl, and À2 = Z2. 

The Euclidean vector Z E sn is equal to the affine combination E~=o Àiei where 

Ào = 1- Zl - ... - Zn and Ài = Zi for aIl i = 1, ... ,n. By Lemma 3.1, this relationship 

between Z and À = (Ào, . .. ,Àn) is unique. Due to this one-to-one relation, any scalar 
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Figure 3.1: The 8 2 simplex with vertices eo, el and e2. 

function over sn can either be expressed as a function of the Euclidean coordinates 

Z or the barycentric coordinat es À. Considering h and 9 which both take the same 

values over sn, but where h is a function of barycentric coordinat es À and 9 is a 

function of Euclidean coordinat es z, we see that 

In Chapter 6 we prove that our design criterion functions are concave when expressed 

as scalar functions of the barycentric coordinates of sn. The following definition of 

concavity is expressed in terms of the Euclidean coordinates. 

Definition 3.5. A function g: sn ---+ IR expressed in terms of the Euclidean coordi

nates, is concave over sn iffor any Z(a) , Z(b) E sn and V ta, tb ;:::: 0 such that ta + tb = 1, 

we have 

If a function 9 is concave then the function -gis convex. 
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Since our design criterion functions are expressed in terms of the barycentric 

coordinat es of sn, in Lemma 3.3 we re-write Definition 3.5. 

Lemma 3.3. Consider a function h: sn ---+ IR, expressed in terms of the barycentirc 

coordinates of sn. If for all À(a), À(b) E sn and ta, tb 2:: 0 with ta + tb = 1, we have 

then h is concave over sn. 

Praof. By equation (3.1) the function h(À) can be re-expressed as a function g(z). 

Furthermore, from the one-to-one relation in Lemma (3.1) we have that for any À(a) 

and À(b) there are corresponding z(a) and Z(b). It is easily seen that h(taÀ(a) +tbÀ(b)) = 

g(taZ(a) + tbZ(b)), that tah(À(a)) = tag(Z(a)), and that tbh(À(b)) = tbg(Z(b)). 

Therefore, Lemma 3.3 implies Definition 3.5 holds over the simplex sn c IRn and 

vice versa. o 

An immediate consequence of Lemma 3.3 is that if h is concave over sn, then h is 

also concave over any m-dimensional subspace of sn formed by setting the components 

Ào through to Àn-m equal to zero. 

In Chapter 6, our design criterion functions are in integral form over the data 

y = (YI, ... ,Yn)' Renee the following theorem is needed. 

Theorem 3.6. If h(À; y) is concave over sn (in the sense of Lemma 3.3) for all 

points y in 0, then In h(À; y)dy is also concave in sn (in the sense of Lemma 3.3). 

Praof. Since h(À; y) is concave we have 

where ta + tb = 1. It follows immediately that 

1 h( taÀ(a) + tbÀ(b); y)dy 2:: ta 1 h( À(a); y)dy + tb 1 h( À(b); y)dy 

where ta + tb = 1. Renee In h(À; y)dy is concave. 
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Jensen's Inequality, a well-known result in convex optimization, is used in the 

proof of Theorem 3.8. 

Theorem 3.7. Jensen's Inequality 

For any concave function g: IRn ---+ IR, the following is true. For Ài > 0 for i = 1, ... , k 

and 2:~=o Ài = 1 we have 

The proof of Jensen's Inequality uses strong induction and the definition of con

cavity. 

Theorem 3.8. Let en be any n-dimensional simplex with vertices {vo, ... , vn}. A 

concave function g: en ---+ IR takes its minimum value at one of the vertices of en. 

Proof. Consider any point z E en. Then, by the definition of the simplex en, this 

point can be expressed as a convex combinat ion of the set of vertiees {vo, ... , vn}. 

Henee by the concavity of g, and using Jensen's Inequality, 

g(z) = g(Àovo + ... + Ànvn) 

~ Àog( vo) + ... + Àng( vn) 

~ Àomin{g(vo), ... , g(vn)} + ... + Ànmin{g(vo) , ... , g(vn)} 

= min{g(vo), ... ,g(vn)}. 

D 

An obvious extension is stated as a corollary below and plays a crucial role when 

minimizing the design criterion functions. 

Corollary 3.1. A concave function minimized over a subset of a simplex which con

tains the vertices of the simplex is minimized at one of the vertices of the simplex. 
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Lastly we state and prove Theorem 3.9, which is needed in Section 5.6.2 when 

considering the optimal design for testing for a change in a subinterval. Let H be the 

subset of sn which is the product of two simplices Hl and H2. In particular we have 

the barycentric coordinates À E sn, where the coordinate Àq and the sums Ej:~ Àj, 

and E7=q+1 Àj are fixed. First of all, we restrict ourselves to the (n - 1 )-dimensional 

hyperplane where Àq is fixed. Secondly, the barycentric coordinates (Ào, ... , Àq- l ) 

described by the fixed sum Ej:~ Àj are associated with an (q-l)-dimensional simplex 

we denote Hl, while the barycentric coordinat es (Àq+1, ... ,Àn) described by the fixed 

sum E7=q+1 Àj are associated with an (n - (q + 1) )-dimensional simplex we denote 

H2. If 5.q indicates omission of Àq, the points (Ào, . .. , Àq-l' 5.q, Àq+l' ... ,Àn) lie in the 

product space Hl x H2. 

Theorem 3.9. Consider a concave function g(z) over the product space Hl x H2 

where Hl and H2 are (q - l)-dimensional and (n - (q + l))-dimensional simplices in 

sn. Let {ao, ... , aq-l} be the vertex set of Hl and {bo, ... , bn-(q+1)} be the vertex set 

of H2. The minimum of g(z) will occur at a point which is the Cartesian product of 

a vertex in {ao, ... ,aq-l} with a vertex in {bo, ... ,bn-(q+1)}' 

Proof. Let Zl be an arbitrary point in Hl and Z2 be an arbitrary point in H2. Then 

for any fixed point WI in Hl the function g(WI' Z2) is concave over H2 and for any 

fixed point W2 in H2 the function g(ZI' W2) is concave over Hl, By Theorem 3.8, for 

any fixed WI, g(WI' Z2) will be minimized at one of {bo, ... , bn-(q+1)}' Similarly, for 

any fixed W2, g(ZI' W2) will be minimized at one of {ao, ... ,aq-l}. It follows that the 

minimum of g(z), with domain Hl x H2' is at a point z* which is a Cartesian product 

of a point in {ao, .. . ,aq-d with a point in {bo, ... ,bn-(q+1)}' D 

A corollary to Theorem 3.9 is stated below. 

,/ Corollary 3.2. Consider a product space of a (q - l)-dimensional volume with a 

(n - (q + 1)) -dimensional volume. Suppose that the first volume is a subset of a 
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simplex H 1 and contains the vertices {ao, ... , aq-1 } of H 1. Suppose that the second 

volume is a subset of a different simplex H 2 and contains the vertices {bo, ... , bn -(q+1)} 

of H2 • A concave function over the product space of the two volumes is minimized 

at a point which is a Cartesian product of a vertex in {ao, ... ,aq-d and a vertex in 

{bo, ... , bn -(q+1)}' 

3.2 DifferentiaI Geometry 

DifferentiaI geometry is an area of mathematics in which techniques have been devel

oped to allow us to move along a surface and study its shape and other properties. 

In Chapter 6, for the single-path problem, we have concave criterion functions. By 

Corollary 3.1, if the volume over which we are minimizing is a subset of a simplex 

containing the vertices of this simplex, we can easily minimize the concave criterion 

functions. Hence in Chapter 5 we study the shape of the subset of sn over which we 

must minimize the design criterion functions. 

To examine the shape of an n-dimensional surface we consider its (n-1 )-dimensional 

boundary. Consequently, our interest is to consider (n - 1 )-dimensional surfaces in 

]Rn. Such surfaces are often called hypersurfaces. 

Figure 3.2 depicts such a situation when n = 2. Here we have a two-dimensional 

surface. By considering its one-dimensional boundary, we can ascertain the shape 

of the two-dimensional surface. It is easy to visualize such a situation for n = 3. 

Although impossible to visualize, the idea remains the same for higher dimensions. 

We present sorne of the results and techniques from differential geometry which 

allow us to examine the (n-1)-dimensional surfaces in ]Rn. Most elementary textbooks 

in differential geometry consider at most three-dimensional surfaces. The book by 

Thorpe (1979) presents a good introduction to differential geometry for n-dimensional 

surfaces. However, Thorpe (1979) considers only n-dimensional surfaces described as 
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Figure 3.2: A two-dimensional surface with a one-dimensional boundary. 

level curves of scalar functions over IRn. The text by O'Neil (1966) considers surfaces 

described by parametrizations, more in the spirit of this thesis. This section is largely 

based on Chapters 9, 10, and 12 of Thorpe (1979), appropriately modified to account 

for the fact that the (n - 1 )-dimensional surfaces we consider are not described as 

r level surfaces of scalar functions, but by their parametrizations. Again, we do not use 

special notation for vectors, whether or not a quantity is a vector is dictated by the 

context. 

The (n - l)-dimensional surfaces in IRn that we study in Chapter 5 are the image 

of a set U c IRn- l under an injective mapping Q: IRn- l _ IRn. Hence, we wish to 

study the shape of Q(U) = (Ql(U), ... , Qn(u)). We have labelled the components of 

Q(U) as superscripts to allow ourselves room to take partial derivatives as subscripts 

later on. Although Q(U) lies in IRn it only has dimension n - 1; this is analogous to 

Figure 3.2, where we observed a one-dimensional boundary lying in IR2 . 

Our (n - l)-dimensional surface Q(U) is parametrized by the coordinates of the 

points Z = (Zl" .. ,Zn-l) lying in U. That is, 

It follows that as the coordinat es in U change, we move around the surface Q (U) . 

~.. To study Q(U) we make use of 1-dimensional parametrized curves lying in Q(U). A 

curve lying in Q(U) parametrized by t will be a smooth function Œ: l _ IRn, where 
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l is an open interval in R That is, a(t) = (al(t), ... , an(t)). If a(to) = q, then 

the derivative a'(to) = (a~(to), ... , a~(to)) is a vector tangent to Q(U) at q. This 

derivative is also the velo city vector of the curve a(t) at to. Example 3.5 shows such 

a parametrized curve and its derivative. We denote the tangent space to Q(U) at q 

Example 3.5. Parametrized Curves 

Let pEU such that q = Q (p). Then the curve 

is obviously a curve in Q(U) parametrized by t. The derivative of a(t) evaluated at 

t = Pj is a vector in the tangent space TqQ(U). In fact, it is easy to see that a'(pj) 

equals the partial derivative Q Zj = (Q;j"'" Q~j) evaluated at p. H ence, the partial 

derivative QZj Ip is a vector in TqQ(U). 

Obviously there are n - 1 such tangent vectors in TqQ(U) corresponding to the 

n - 1 partial derivatives QZj Ip. If the Jacobian of Q is one-to-one, these vectors are 

linearly independent. The curve in Example 3.5 is the type of curve we use to obtain 

our results in Chapter 5. 

Parametrized curves can be used when computing directional derivatives. The 

definition of a directional derivative for both a scalar function and a mapping defined 

on Q(U) is given below. 

Definition 3.10. A directional derivative of a scalar function f: Q(U) ---+ IR, in the 

direction of the n-dimensional vector v at the point q E Q(U), is defined as 

The directional derivative of a mapping f: Q(U) ---+ IRn, in the direction of the n

dimensional vector v at the point q, is defined as 
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If a: 1 -7 Q(U) c}Rn is such that a(ta) = q and d(ta) = v, the chain rule can be 

used to show that 

(f 0 a)' (ta) = V f ( a ( ta)) . a' (ta) = V fi q • v. (3.2) 

Recall, our goal is to investigate the shape of an (n - 1 )-dimensional surface Q(U) 

in }Rn. The general idea is to observe how a normal vector to Q(U) changes as one 

moves around the surface Q(U). Hence, we first contemplate how to calculate normal 

vectors to Q(U). We denote a normal vector to Q(U) at a point q by Nq. The normal 

vector field is a mapping N: Q(U) -7 }Rn. 

To gain sorne intuition, consider the dimension n = 3, where Q(U) is a two

dimension al surface in }R3. The tangent space TqQ(U) is then a two-dimensional 

plane. If VI and V2 are two linearly independent vectors in TqQ(U) then obviously 

their cross product is a normal vector to Q(U) at the point q. This idea can be 

generalized to n-dimensions. Since the cross product can be seen as a determinant, 

in higher dimensions we can extend this determinental formula to compute a normal 

vector. 

If {VI, ... ,Vn-l} is a set of n - 1 linearly independent vectors lying in the tangent 

space TqQ(U) then, 

el e2 en-l en 

Nq= 
Vu Vl2 VI,n-1 VIn (3.3) 

Vn-l,l Vn-I,2 Vn-l,n-l Vn-l,n 

For those familiar with the language of differential geometry, this vector N q is exactly 

the Hodge star of the wedge product of the set of vectors {VI,' .. ,Vn-l} C TqQ(U), 

namely 

(3.4) 
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For an (n - 1) x n matrix A, it is easily se en that 

(3.5) 
A A 

From equation (3.5), it is obvious that Nq • Vi = 0 for aIl i = 1, ... ,n - 1, proving 

that Nq calculated by (3.4) is indeed a normal vector. 

Recall from Example 3.5 that the partial derivatives QZj Ip for p such that Q(p) = q, 

are vectors lying in the tangent space TqQ(U). We have also noted that, if the 

Jacobian of our mapping Q: IRn-l -+ IRn is one-to-one, the vectors QZj Ip are linearly 

independent in TqQ(U). Hence to calculate Nq we can simply take the Hodge star 

of the wedge product of the tangent vectors QZj Ip, j = 1, ... ,n - 1 where Q(p) = q. 

That is, 

(3.6) 

Denote by Mq the vector obtained by normalizing Nq to have unit magnitude. 

We investigate the shape of Q(U) by observing how the unit normal vector M to 

Q(U) changes as one moves about the (n - 1)-dimensional surface Q(U). The shape 

operator or Weingarien map does precisely this. The shape operator evaluated at a 

vector V E TqQ(U) is the directional derivative of the unit normal vector Mq in the 

direction of v. Therefore, the shape operator for a vector v in TqQ(U) observes how 

the unit normal vector changes as one moves along Q(U) in the direction of v. 

Definition 3.11. The shape operator Lq: TqQ(U) -+ TqQ(U) is defined as 

It is easy to see that the linear map Lq maps back to the tangent space TqQ(U). 

Indeed, using the product rule of differentiation and the observation that vectors in 
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TqQ(U) are perpendicular to Mq, at any point q, we have 

and hence V vM is perpendicular to Mq and lies in the tangent space TqQ(U). It can 

also be shown that the shape operator is self-adjoint: Lq(VI)' V2 = Lq(V2) . VI for any 

two vectors VI, V2 E TqQ(U). 

Using the chain rule, as in expression (3.2), we see that the shape operator can 

be expressed in terms of any parameterized curve a(t) in Q(U) such that a(to) = q 

and a'(to) = v. For an such a(t) we have 

(3.7) 

The quadratic form Lq(v) . V is caIled the second fundamental form. Theorem 3.12, 

below indicates that the second fundamental form determines the normal component 

of aceeleration for aIl curves a(t) embedded in Q(U). In other words, the normal 

aceeleration is imposed on curves by the shape of Q(U). 

Theorem 3.12. Consider U c IRn-1 and the injective mapping Q: IRn-1 --+ IRn with 

a one-ta-one Jacobian. Then Q(U) is an (n - l)-dimensional surface in IRn with a 

unit normal vector field M. Let q E Q(U) and V E TqQ(U). For every parametrized 

curve, a: J --+ Q(U), with a'(to) = V and a(to) = q, for some to E J, 

Proof. Obviously a'(t) E Ta(t)Q(U), and is perpendicular to Ma(t) for aIl t E J. Renee 

a'(t) . (M 0 a)(t) = O. 

0= [a' . (M 0 a)l'(to) 

= a"(to) . (M 0 a)(to) + d(to) . (M 0 a)'(to) 

= a"(to) . M(a(to)) + V· VvM 

= a"(to) . Mq - V· Lq(v) 
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The proof is now complete. D 

When Ilv Il = 1, we set ;;;( v) = Lq ( v) . v, and call ;;;( v) the normal curvature of 

Q(U) at q in direction v. If ;;;(v) > 0 then the surface Q(U) bends towards Mq in 

the direction v, and if ;;;(v) < 0 then the surface Q(U) bends away from Mq in the 

direction v. 

Next, recall a well-known result from linear algebra. 

Theorern 3.13. Let W be a finite-dimensional vector space with dot product and 

let L: W --+ W be a self-adjoint linear transformation on W. Then there exists an 

orthonormal basis for W consisting of eigenvectors of L. 

From Theorem 3.13, we know that, in the (n - 1 )-dimensional tangent space 

TqQ(U), there exists an orthonormal basis {WI, ... ,Wn-l} which are eigenvectors of 

the shape operator Lq. We label the corresponding eigenvalues as kl(q), ... , kn-l(q) 

and call them the principal curvatures of Q(U). The corresponding unit eigenvectors 

are the principal curvatures directions of Q(U) at q. If the principal curvatures are 

ordered such that kl(q) :S ... :S kn-l(q), then kn-l(q) is the maximum value of the 

normal curvature ;;;(v) for v E TqQ(U), Ilvll = 1; kn- 2 (q) is the maximum value of 

the normal curvature ;;;( v) for v E TqQ(U), Ilvll = 1, and V..lWn-1 where Wn-l is the 

principal curvature direction corresponding to kn-l(q); kn- 3 (q) = max{;;;(v) 1 v E 

TqQ(U), Ilvll = 1,v..l{Wn-I,Wn-2}}' etc. Finally, kl(q) will be the minimum value of 

;;;(v) for v E TqQ(U), Ilvll = l. 

In Example 3.6 we show, using Theorem 3.12, how the curves presented in Example 

3.5 can be used to calculate the second fundamental form. 

Exarnple 3.6. Second Derivative of Pararnetrized Curve 

Consider again the curve o:(t) = Q(PI, ... ,Pj-l, t,pj+l,'" ,Pn-l) parametrized by t 

and pEU su ch that q = Q(p). The second derivative of 0: at t = Pj is QZj,zjlp' 
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Therefore the second fundamental form Lq(v) . v where v = a'(to) and a(to) = q is 

calculated as Mq . ail (Pj) = Mq . Q ZjZj Ip. 

ln fact, more generally, for pEU, Q(p) = q, and i -1= j, 

(3.8) 

Indeed, at any point in Q (U), M and Q Zi are perpendicular, and hence 

Wehave -Mz·Qz· = M·Qzz. Toseethat -Mz = \7Q M, we use the chainrulerep-
J' , J J Zj 

resentation of the direction al derivative. Let a(t) = Q(PI, ... ,Pj-b t,Pj+I, ... ,Pn-I). 

Then -\7QzjlpM = (M 0 a)'(pj) = Mzjl p • In the ab ove , we commit a slight abuse of 

notation because we treat M as both a function over U and as a function of Q(U), 

as we have done throughout this section. 

3.3 Exponential Families 

ln Chapter 7, we provide two examples of single-path changepoint problems. One of 

these examples is based on data distributed as a NEF. Sorne of the more common 

NEFs are found in the Morris class of distributions (see Morris (1982) and Morris 

(1983)). Included in this class are the normal, Poisson, gamma, binomial, and neg

ative binomial distributions. We review NEFs in Section 3.3.1. In Section 3.3.2 we 

introduce general exponential family (GEF) distributions. The DY-conjugate prior 

distributions to the NEFs, introduced in Section 3.3.3, are GEFs. An excellent in

troduction to exponential families is given in a set of lecture notes by Letac (1992). 

,'- The book by Barndorff-Nielsen (1978) is older and more detailed. The book by 

Jorgensen (1997) on exponential dispersion models contains a good introduction to 
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NEFs. Gutiérrez-Pena and Smith (1997) provide an excellent review article coneern

ing conjugate priors for exponential families. In what follows we do not differentiate 

between a random variable and its realized value. Both random variables and realized 

values are denoted by lower case letters and whether a quantity is a random variable 

or a realized variable is evident from the context. 

3.3.1 N aturai Exponentiai Families 

Let f/ be a non-degenerate, a -finite measure on R Set e = {() 1 J eOx df/ (x) < oo}. 1 t is 

easily shown using Rülder's inequality that e is a convex set. In our one-dimensional 

setting this me ans that e is an interval. 

Define the cumulant transform K",(()) to be the log ofthe Laplaee transform, that 

is K17 (()) = log{J eOx df/( x)}. The family of probabilities indexed by () E e for a single 

random variable x, with members 

dPO(x) = exp{()x - K 17 (())}df/(x) (3.9) 

is called a natural exponential family (NEF), and e is called the canonical parame ter 

space. If e equals its interior set int(e), then the NEF is said to be regular. In the 

one-dimension al case, this means that a regular family has e as an open interval. 

Note that the support of an exponential family is, by definition, the same for an 

members of the family. 

Often the measure f/ is such that df/(x) = f/(x)df/o(x) , where f/(x) is sorne non

negative measurable function, and df/o(x) is either the Lebesgue or counting measure. 

The measure df/(x) is then called the carrier measure. 

Sinee f/ is non-degenerate, K17 (()) is a strictly convex function of (). It is easily shown 

that K~(()) = E(x) = jJ, and K~(()) = Var(x). We define the mean domain mapping 

as T(()) = K~(()). Obviously, T(()) is an increasing function sinee T'(()) = K~(()) and 

K 17 (()) is strictly convex. Renee, the inverse of T(()) = jJ, exists and we have a one-
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to-one mapping, T- 1(j1) = 0, between the mean j1 and the canonical parameter O. 

The NEF (3.9) can be re-parametrized in terms of the mean j1, and the variance can 

be expressed as a function of the mean. In fact, the functional relationship between 

the variance and the mean determines the particular distribution amongst natural 

exponential families. We call the image n = T(int(8)) the mean domain. If the 

convex hull of the support is equal to the mean domain n, we say the family is steep. 

Example 3.7. Normal Family with Unknown j1 and Fixed (}2 

Consider the normal density, 

which can be re-written as 

(3.10) 

Equation (3.10) expresses the normal density in its NEF form, from which we identify 

0= :2' Kr)(O) = ~(}202 and 1J(x) = (27W2)(-1/2)exp(-;;2)' 

3.3.2 General Exponential Families 

The one-dimensional NEF discussed in Section 3.3.1 can be extended by introducing 

a vector function of the scalar random variable x. We call this function t(x). The 

canonical parameter is a vector of the same dimension as the function t. This is a 

general exponential family (GEF) and has the following form. 

dPo(x) = exp{O· t(x) - Kr)(O)}&f7(x) (3.11) 

It is easily shown that E(ti(X)) = a~~~o) where ti(X) is the ith component of t(x) and 

Oi is the ith component of O. 
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Example 3.8. Normal Family with Unknown fJ, and (J2 

The normal density function of a random variable x can be expressed as 

N(xlfJ" (J2) = exp (~x _ _ 1_x2) exp (_ fJ,2 ) (27r(J2) (-1/2) . 
(J2 2(J2 2(J2 (3.12) 

With unknown mean and variance, the normal distribution is a GEF. The function 

t(x) is equal to (x, _X;). The canonical parameter is two-dimensional. We identify 

(B1,(12) = (:2'-;2)' K7](B1,B2) = ~~ - ~log(B2) and1](x) = vk· 

3.3.3 Conjugate Priors for NEFs 

An NEF has an infinite number of conjugate prior distributions, where conjugate is 

taken to mean closed under sampling. As Diaconis and Ylvisaker (1979) point out, if 

f(B) is a prior distribution conjugate to f(xIB), then, if h(x) is any positive bounded 

measurable function, f(B)h(x) is also a prior distribution conjugate to f(xIB). In this 

thesis we use the DY-conjugate prior distribution for the canonical parameter B of an 

NEF (3.9). These prior distributions have the form given in (3.13) below, and are 

characterized by a condition of linearity in x ofthe posterior expectation E (K' ( B) 1 x). 

dPv,>.(B) = M(v, À) exp{vB - ÀK7](B)}dB (3.13) 

The DY-conjugate prior distributions given in (3.13) were introduced by Diaconis 

and Ylvisaker (1979) and named after the aforementioned authors. Included in this 

set of conjugate prior distributions are the normal prior for the mean of the normal 

distribution, the gamma prior for the Poisson distribution, and the beta prior for 

the negative binomial distribution. Despite the standard examples just mentioned, 

the DY-conjugate prior distributions do not always correspond to prior distributions 

typically used in practice. (See Consonni and Veronese (1992) and Gutiérrez-Pena 

and Smith (1995) for details.) 

Comparing expression (3.13) to expression (3.11), we see that the DY-conjugate 

prior distribution is actually a GEF. In expression (3.13) the random variable is B, the 
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vector function t of e is (e, K'f}(e)), the canonical parameter is (À, v) and M(v, À) is a 

normalizing constant equal to Je eXP{vB~ÀK1)(O)}dB' The cumulant transform is equal to 

-log(M(v, À)) = log (Je exp{ve - ÀK'f}(e)}de). There is no carrier measure, as the 

prior distribution (3.13) is generated by Lebesgue measure. Denoting the cumulant 

transform as m(v, À), we can rewrite (3.13) as 

dPv,À(()) = exp{v() - ÀK'f}(()) - m(v, À)}d(). (3.14) 

Often À is referred to as the prior sample size. When (3.13), the DY-conjugate prior 

for (3.9), is re-expressed in the form of (3.14) we see that E(K'f}(())) = am~~,À) and 

Var(K'f}(e)) = a2;l~,À). 

Example 3.9. Standard Conjugate Prior Distribution for the Canonical 

Parameter of the Normal NEF 

In this case the DY-conjugate prior distribution is equivalent to the usual normal 

prior distribution for J.L. (See Consonni and Veronese (1992) and Cutiérrez-Pena 

and Smith (1995).) This is easily seen using a transformation of variables from () to 

J.L. Recall from Example 3.7 that () = ::2 for the normal NEF. 

The conjugate prior distribution for J.L is a normal distribution with mean p and 

variance (j2. From Example 3.8 we express this prior as 

N(J.Llp,(j2) = exp (:2J.L- 2~2J.L2) exp (-::2) (27f(j2)(-1/2). (3.15) 

The normal prior distribution (3.15) is presented as a CEF of the random vari-
2 

able J.L. The vector function t(J.L) is equal to (J.L, - ~ ) and the canonical parame ter is 

(/Z, ;2)' 
Re-parametrizing in terms of () and K'f}(()) we have 
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This is a GEF in (J, and we identify v and À in (3.13) ta be r:;; and ~~, respectively. 
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Chapter 4 

The Design Measure 

This chapter introduces the design measure and the mapping from the set of allowable 

designs to the design measure. This is a crucial chapter of the thesis, as the design 

criterion functions we consider in Chapters 6, 7 and 8 are re-expressed in terms of this 

design measure. It is important to understand the mapping so that, after optimizing 

the design criterion functions in terms of the design measure, we can then locate the 

corresponding optimal design. In Chapter 5, we use the mapping to help us determine 

the properties of the shape over which we are optimizing the design criterion functions. 

Here, we introduce the design me as ure and mapping through the single-path problem. 

4.1 The Single-Path Changepoint Model 

Our Bayesian model for the single-path changepoint problem consists of 

• a likelihood function for n observations y = (Yi, ... ,Yn); 

• design points x = (Xl,' .. ,xn)at which the observations are taken; and 

• prior distributions for the before-and-after-change means and the changepoint. 
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The vector y denotes our data and the vector x denotes the design. The before-and

after-change means are represented by J-ll and J-l2, respectively. We restrict ourselves 

to designs taking measurements a minimum distance d apart, and we assume in our 

likelihood function that dis large enough to ensure that, roughly, our n measurements 

y = (Yb"" Yn) are conditionally independent given J-ll, J-l2, and T. The likelihood 

just described is expressed as 

f(ylJ-ll' J-l2, T) = II f(YilJ-ld II f(YilJ-l2)' (4.1) 
Xi~T Xi>T 

In fact, we can allow certain observations to be correlated as long as the correlation 

does not depend on the design; see Chapter 6. However, this does not seem to be 

a very useful generalization, as in most modelling situations the correlation would 

usually decrease with distance; of course, if our observations are at least a distance d 

apart and roughly independent their correlation is constant (in fact, zero). We will see 

in Section 7.2 that design independent correlation arises and can be accommodated 

in the common changepoint multi-path problem. 

To complete the model, we incorporate the experimenter's uncertainty about J-ll, 

J-l2 and T, which is expressed through the prior distribution f(J-ll, J-l2, T). We shall 

assume that f(J-ll, J-l2, T) = f(J-ll,J-l2)f(T). 

4.2 The Design Space 

Before introducing the design measure, we de scribe the set of designs over which we 

shaU optimize. The set of designs consists of aU the design vectors x = (Xl," . ,Xn) 

such that X E [0, T]n and 0:::; Xl, Xi-l + d < Xi for i = 2, ... , n and Xn :::; T. For each 

experiment, d is selected so that observations a distance d or more apart can assumed 

to be conditionally independent given J-ll, J-l2, and T. We denote the set of aIl possible 

designs by Xn , where n reminds us that n observations are taken. We refer to the set 
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of all possible designs X n as the design space. 

In Theorem 4.1 we prove that Xn forms a simplex. Let V be the vertex set of 

Xn . The designs in V are (0, d, . .. , (n - 1)d) which places all observations towards 0; 

(0, d, ... , (n-2)d, T) which places n-1 observations towards 0 and the nth observation 

at T, through to the design (T - (n - 1)d, T - (n - 2)d, ... , T) which places all the 

observations towards T. There are n + 1 such designs in V and we label them Uo to 

Un, respectively. Thus, Ui indicates that i design points are placed towards T. So 

V = {Uo, ... ,un}. 

Note that for all our experiments we assume that (n - 1)d < T, so that the n 

observations fit into the observation interval [0, Tl with the constraint that they are 

all a minimum distance d apart. 

Theorem 4.1. The design space Xn, where x E xn implies that x E [0, T]n and 

o ::; Xl, Xi-l + d < Xi for i = 2, ... ,n and X n ::; T, forms an n-dimensional simplex 

whose vertices correspond to the designs in the set V placing points as far as possible 

towards the ends of the observation interval [0, T]. 

Proof. First we show that V is an affinely independent set. Using Corollary 3.2 from 

Section 3.1, we prove that the set {Uo, ... , un} is affinely independent by proving 

that the set {UI - UO, ... ,Un - uo} is linearly independent. A well-known result from 

linear algebra states that if the determinant of n vectors in n-dimensional space is 

non-zero then the vectors are linearly independent. Rence, we consider the following 

determinant of the set of vectors {UI - Uo, ... , Un - uo}. 

o 
o 

o 
o 

T - (n - 1)d T - (n - 1)d 
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Since this is the determinant of a matrix with an upper triangle of zeros, the de

terminant is proportional to the product of the diagonal entries. In this case the 

determinant is (-l)l~J (T - (n - l)d)n which is non-zero. 

It remains to show that every design lies in the convex hull of V. That is, we 

wish to show that x E xn can be written as x = 2:~=0 ).,iUi, where ).,i 2 ° for aIl 

i = 0, ... , n and 2:~=0).,i = 1. This is easily seen to be the case by substituting 

).,n = T_(~1_1)d' ).,n-1 = ;:-(~~î)~, ... , ).,1 = x;=(:.:::~~d, and ).,0 = T!(~:'!l1)d into the 

affine combination 2:~0 ).,iUi' The constraints satisfied by x E xn ensure that ).,i > ° 
for aIl i = 0, ... , n and that 2:~=0).,i = 1. Therefore we have proved that the design 

space xn is a simplex. D 

Next we introduce the design measure used throughout this thesis. 

4.3 The Design Measure 

A design measure appears quite naturally in the changepoint problem. It is the dis

crete probability me as ure of a random variable which is formed from the changepoint 

random variable T and the deterministic design vector x. Consequently, we define the 

new random variable Tx as follows: for i = 0,1, ... ,n and setting Xo and Xn+l to be 

° and T, respectively, let 

I.,(r) = { (4.2) 
0, otherwise. 

In the case of point mass at T, 

I •• (r) = { 
n, if X n :::; T :::; T 

(4.3) 
0, otherwise. 
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Let 
n 

i=O 

So 7 x is the number of design points Xi in the design X which satisfy Xi :S 7. 

The event {7x = k} is defined as the event that the change occurs at Xk or between 

the design points Xk and Xk+I' This event is equivalent to the event that the first 

k observations (YI, ... , Yk) come from the distribution f(yIJLI) and the last n - k 

observations (Yk+1"'" Yn) come from the distribution f(yIJL2)' Since there are n 

design points in the observation interval [0, Tl there are n + 1 intervals in which 

the changepoint can faIl. As we only consider prior distributions for 7 that are 

continuous on [0, T), the distribution of 7 x has the n + 1 support points 0,1, ... ,n 

with probabilities 

(4.4) 

where we ignore the dummy variable of integration. In the case of a probability mass 

at T in our changepoint prior density we have 

( 4.5) 

The vector 7r = (7ro, ... ,7rn ) is our design measure. Once the prior distribution for 

the changepoint has been selected, we consider it to be fixed and the design measure 

7r is then a function of only the design x. Figure 4.1 illustrates the situation when 

n = 2. Obviously the areas 7ro, 7rI, and 7r2 change as the design points Xl and X2 move 

location in the observation interval [0, Tl. 
As mentioned in Section 3.1, we represent the set of aIl design measures by the 

barycentric coordinates of the specific simplex sn. Since we restrict our design points 

to be at least a distance d apart, we minimize our design criterion functions over a 

subset of sn. The subset over which we minimize depends on the prior density f(7). 

To better understand this, we examine the mapping from the design X to the design 

measure 7r. 
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o T 

Figure 4.1: A unimodal prim distribution f(7) on the interval [0, Tl and a two-dimensional 

design x = (Xl, X2). The component areas, 1fo, 1fl, and 1f2 of the design measure are also 

shown. 

4.4 The Mapping from the Design x to the Design 

Measure 7r 

Define a mapping Cf: Xn -+ sn as Cf(Xl, ... ,Xn) = (7ro, ... ,Kn). The subscript, 

f, serves as a reminder that the mapping depends on the prior distribution of the 

changepoint T. 

Equation (4.4) gave the mapping for the kth element of K. The complete mapping 

is as follows, 

To express (4.6) in terms of the Euclidean coordinates z of sn, we sim ply drop the 

,r- first component KO, hence selecting the affinely independent set {eo, ... , en} as the 

vertices of sn. Therefore, as discussed in Section 3.1, we have the unique relationship 
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~ .. 

7ro = 1 - Zl - ... - Zn, 7rl = Zl, ... , 7rn = Zn' In terms of the Euclidean coordinates, 

we now define 

Gf(X) = (7rl(X), ... , 7rn (x)) = (l X2 

l, l x3 

l,···, l T 

1) . (4.7) 
Xl X2 Xn 

This mapping is injective if the prior density 1 equals zero only on sets of Lebesgue 

measure zero; if 1 equals zero on sets of measure greater than zero then there could 

be multiple designs mapping to the same design measure. 

Consideration of the design measure, rather than the design, allows us to focus 

on the essence of the structure. What is important is the probability of the change 

occurring between the design points rather than the explicit distances between the 

design points. Our interest lies in determining the subset GfCxn) over which we 

minimize the design criterion functions. We stress that the shape of this subset 

depends on the prior density 1 for the changepoint T. 
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Chapter 5 

In this chapter we investigate how the prior distribution for the changepoint affects 

the shape over which we minimize our various design criterion functions. Initially 

our design criterion functions are functions of the design x and the prior J on T. In 

Chapters 6, 7, and 8 we combine the design x and the prior density J and re-write 

the design criterion functions in terms of 7r. As functions of 7r, the design criterion 

functions are concave functions and are much easier to work with than the original 

design criterion functions over Xn . Although the criterion functions become more 

tractable, the shapes over which we minimize do not. When the criterion functions 

are functions of the design x, we minimize over the set of aH possible designs Xn , 

which is a simplex. Now, as functions of 7r, we minimize over Gf(Xn ). By Theorem 

3.8, if Gf(Xn
) is a simplex we could easily minimize the concave criterion functions. 

However, for most prior densities, J, the set Gf(Xn ) is not a simplex. Corollary 

3.1, though, asserts that if a concave function is minimized over a set which is a 

subset of a simplex and contains the vertices of that simplex then the minimum must 

occur at one of the vertices of the simplex. Here, we find a set of priors J such that 

Gf(Xn ) is either a simplex or is a subset of a simplex containing the vertices of the 

simplex. While proving that G f (Xn ) is the subset of a simplex, we also prove that the 
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n + 1 designs that place points as far as possible towards the end of the observation 

interval [0, Tl (that is, the vertex set V) are the designs which map to the vertices of 

the simplex associated with Gf . This is an important result because after we find the 

optimal design measure (the measure 7r which minimizes the design criterion function) 

we need to find the optimal design (the design x corresponding to the optimal design 

measure 7r). The optimal design is the design which minimizes the design criterion 

function, as a function of the design. 

5.1 Examples and Motivation 

Before considering the n-dimensional problem with n design points, for illustration, 

we first consider sorne simple examples with two design points. 

10 

ci 

10 o 
ci 

Truncated Normal 

o 2 4 6 8 10 

[O,T] 

Figure 5.1: A truncated normal prior density, 

truncated between 0 and T centered at t with 

standard deviation 2. Here T is equal to 10. 

,..--' Example 5.1. Truncated Normal 

Truncated Normal 

q .... 

~ 
10 
ci 

0 
ci 

0.0 0.5 1.0 

1t1 

Figure 5.2: The set G fCX.2 ) with d equal to 2 

for the truncated normal prior in Figure 5.1. 

Figure 5.1 shows a unimodal prior density for T and Figure 5.2 shows the correspond-
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ing image GfCX2) with d equal to 2. ft is easily seen that Gf (X2) contains the vertices 

of a simplex and is a subset of that simplex. 

L.O 
T"" 

o 
L.O o o 

Mixture of Normals 

o 2 4 6 8 10 

[O,T] 

Figure 5.3: A half-and-half mixture of two 

normal prior densities truncated between 0 

and T. The normal components are centered 

at t and 3I, respectively. Their standard de

viations are 1, and T is 10. 

Example 5.2. Mixture of Normals 

Mixture of Normals 

q 
T"" 

~ 
L.O 
ci 

q 
0 

0.0 0.5 1.0 

1t1 

Figure 5.4: The set G fCX2) with d equal to 2 

for the mixture of two truncated normal prior 

densities in Figure 5.3. 

Figure 5.3 shows a bimodal prior density for T and Figure 5.4 shows the corresponding 

image Gf (X2
) with d equal to 2. Here G f (X2

) contains the vertices of a simplex but 

is not a subset of that simplex. 

Exarnples 5.1 and 5.2 suggest that if f is unimodal then Gf(Xn
) is a subset of 

a simplex and contains the vertices of that simplex. However, as the next example 

illustrates, this is not always the case. 

Example 5.3. Mixture of a Uniform and a Gamma 

Figure 5.5 shows a skewed unimodal prior with heavy tails and Figure 5.6 shows the 
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o 
"! 
o 

o o 
ci 

Uniform and Gamma 

o 2 4 6 8 10 

[O,Tl 

Figure 5.5: A half-and-half mixture of a 

uniform distribution between 0 to T and a 

gamma distribution with shape parameter 5 

and scale parameter !. The gamma distribu

tion is truncated between 0 and T, with T 

equal to 10. 
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Uniform and Gamma 

0.0 0.5 1.0 

Figure 5.6: The set GfCX2) with d equal to 

2 for the mixture of the uniform and gamma 

prior densities in Figure 5.5. 



corresponding space GfCK2) with d equal to 2. Obviously, even though the prior is 

unimodal, G f CX2
) is not a subset oJ a simplex whose vertices are in G f CX.2 ). 

Consequently, Example 5.3 invites the question: Is GfCx.n ) not a subset of a 

simplex whose vertices are in Gf (1{n) because it is skewed or because it has a heavy 

tail? We show that for any log-concave prior density J, the image GfCx.n ) lies inside 

a simplex and contains the vertices of the simplex. In Example 5.3, it is the heavy 

tail and not the skewness of the prior that violates the log-concavity. In fact, there 

are many skewed log-concave distributions. As shown in Bagnoli and Bergstrom 

(1989) the normal, chi-squared, and extreme-value density functions are all strictly 

log-concave and the Weibull, power variance function, gamma, and beta densities are 

log-concave for certain parameter values. They also show that the truncated density 

of any log-concave density is also log-concave. Therefore, for our optimal design 

problem, we can use any truncated version of the densities just mentioned (with an 

appropriate choice of parameters when required) and, in fact, any other log-concave 

(not necessarily strictly log-concave) density for our prior density J(T) on [0, Tl. 
Our task is now to prove that, for every log-concave J, the set GfCxn) lies inside 

a simplex and includes the vertices of that simplex. For the pro of, we restrict our 

attention to differentiable prior densities J with support in [0, Tl. Initially, in Sec

tion 5.2, we consider prior densities J that are everywhere greater than zero, and then 

in Section 5.3, we extend the proof to three cases for which J is zero over an interval 

of Lesbgue measure greater than zero. In Section 5.4, we consider the case when the 

prior density is differentiable over [0, T) but has mass at Ti the mass at T allows for 

the possibility that there is no changepoint. We conclude in Sections 5.5 and 5.6 by 

addressing the implications of our log-concave prior density result for design criterion 

functions concave in 7r. 

For each of the different types of prior densities, our pro of consists of two parts. 

ln the first part, we show that the set G f (V) is affinely independent. It follows that 
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Conv(Gf(V)), which we denote as 6f' is a simplex. In the second part, we consider 

each (n - 1 )-dimensional boundary of G f (:Xn ) and find conditions on J such that 

GfCxn) C 6f· 

5.2 Proof for f Everywhere Greater than Zero 

5.2.1 Part 1: Affine Independence of G f(V) 

We use the results presented in Section 3.1 to prove that Gf(V) is affinely independent 

for a prior density J that is everywhere greater than zero in [0, Tl. Recall the vertex 

set V = {uo, ... , un} in (4.2), where Ui places i design points towards T. 

Lemma 5.1. For J everywhere greater than zero (not necessarily continuous or diJ

Jerentiable), the set Gf(V) is affinely independent. 

Proof. Let 
id 

Œi = r J, 
J(i-1)d 

_lT -(i-1)d 

/3i - J, 
(n-i-1)d 

_lT -(i-1)d 

li - J, 
T-id 

for i = 1, ... , n - 1, and let 

l
T -(n-1)d 

Œ= J, 
° l

T 

13= f. 
(n-1)d 

Dropping 'iro, and writing out the Euclidean coordinates of the set Gf(V), we have 

Gf(uo) = (Œ1"'" Œn -1d]), 

Gf (U1) = (Œ1,"" Œn-2, /31, 0), 
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By Corollary 3.2, to prove that Gf(V) is an affinely independent set, we can show 

that the set of vectors {Gf(uo) - Gf(un), G f (U1) - Gf(un), ... , G f (Un-1) - Gf(un)} 

is linearly independent. This set is linearly independent if the determinant 

al - '/"n-1 a2 - '/"n-2 an-1 - '/"1 /3 

al - '/"n-1 a2 - '/"n-2 /31 - '/"1 0 

(5.1) 

al - '/"n-1 /3n-2 - '/"n-2 0 0 

/3n-1 - '/"n-1 0 0 0 

is non-zero. Obviously, the determinant of a triangular matrix is non-zero if aIl 

elements on the diagonal are non-zero. This is indeed the case here. To see this, 
T- "d 

observe that /3j - '/"j = J(n-~-l)d J, and J is everywhere greater than zero. Similarly, 
- fT 
/3 = J(n-1)d J is greater than zero. D 

From Definition 3.4, the convex hull of the affinely independent set G f (V) is a 

simplex which we denote as 6.f. Next, we find a set of differentiable J everywhere 

greater than zero such that G f (:X:n ) c 6. f' 

5.2.2 Part II: Condition on f 80 that GfCxn) C ~f 

In this section we use the results from Section 3.2 to prove that, for a log-concave 

prior density that is everywhere greater than zero, GfCXn) C 6.f. Before showing 

this, we introduce sorne notation used in its proof. 

We label the facets of xn as Fo through to Fn, where 

Fo: Xl = 0, 

Fi: Xi+1 = Xi + d, (1::; i < n) (5.2) 

Fn: X n = T. 
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Each Fi is the convex hull of every vertex except the vertex Un-i (which has the largest 

distance possible between the points Xi and Xi+1)' The facet Fi is parametrized by 

the (n - 1 )-dimensional vector (Xl,"" Xi, :rH l, XH2, ... , Xn). Hence G f (Fi) is an 

(n - 1 )-dimensional surface lying in IRn. 

To simplify notation, let G = G f and let Gi denote the restriction G f IFi of G f to 

the su bset Fi of xn: 

We denote partial derivatives by subscripts. Recall from Section 3.2, if p E Fi is 

such that Gi (p) = q then the partial derivatives G; Ip, j =f i + 1, lie in the tangent 

space TqG i . The partial derivatives are 

Gi = (-f(XI),O, ... ,0), 

Gt = (f(X2), - f(X2), 0, ... ,0), 

GLI = (0, ... ,f(Xi-l), - f(Xi-l), 0, ... ,0), 

G~ = (0, ... ,f(Xi)' f(Xi + d) - f(Xi), - f(Xi + d), 0, ... ,0), (5.3) 

G~+2 = (0, ... ,0, f(XH2), - f(XH2), 0, ... ,0), 

G~-l = (0, ... ,0, f(Xn-l), - f(xn-d, 0), 

G~ = (0, ... ,0, f(xn), - f(xn)). 

It is easy to show that, since f is a density function always greater than zero, the 

partial derivatives (5.3) are linearly independent in any tangent space TqG i . 

Using expression (3.6), we calculate a normal vector Ni to Gf(Fi ), as the Hodge 

star of the wedge product of the partial derivatives (5.3): 

(5.4) 
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80 

Ni 

el e2 ei-l ei ei+l en+l en 

- f(Xl) 0 0 0 0 0 0 

f(X2) - f(X2) 0 0 0 0 0 

0 0 - f(Xi-l) 0 0 0 0 

0 0 f(Xi) f(Xi + d) - f(Xi) - f(Xi + d) 0 0 

0 0 0 0 f(Xi+2) 0 0 

0 0 0 0 0 f(xn-t} - f(Xn-l) 

0 0 0 0 0 - f(xn) 

- 2:~::i Oej + (-1 )n-i f(XI) ... f(Xi-l)f(Xi + d)f(xi+2) ... f(xn)ei + 

2:7=i+1 (_l)n-i f(XI) ... f(Xi-d[f(Xi + d) - f(Xi)]f(xi+2) ... f(xn)ej. 

Obviously, the determinential formula above is slightly different if i = 1 or i = 

n - 1, but the final formula obtained for Ni is true for i = 1, ... ,n - l. 

To determine if Ni is inward or outward pointing we take the dot product of Ni 

and a vector known to be inward pointing. The vector Ci+I, evaluated at any p E Fi, 

is inward pointing because Cf no longer maps to Fi as Xi+! moves away from Xi' 

With f(Xi+I) as the ith component and - f(Xi+I) as the (i + l)st component we have 

Ci+I = (0, ... ,0, f(Xi+I), - f(Xi+I), 0, ... ,0). 

Hence 

Obviously the factor (_1)n-i determines the sign of Ni . Ci+I and, hence, whether 

Ni points inward or outward alternates with i. If n - i is even then Ni is inward 
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pointing; if n - i is odd then Ni is outward pointing. To simplify our work we set 

(5.6) 

so that Ni always points inward. 

Quick inspection shows that an mixed partial derivatives are zero. The second 

partial derivatives G~j are 

G~l = (-1'(Xl), 0, ... ,0), 

Gt2 = (f'(X2), - 1'(X2), 0, ... ,0), 

i _ , ') Gi - 1 i-l - (0, ... ,f (Xi-l), - f (Xi-l, 0, ... ,0), , 

G~i = (0, ... , 1'(Xi), 1'(Xi + d) - 1'(Xi), - 1'(Xi + d), 0, ... ,0), (5.7) 

G~+2,i+2 = (0, ... ,0, 1'(Xi+2) , - 1'(Xi+2) , 0, ... ,0), 

G~_l n-l = (0, ... ,0, 1'(Xn-l), - 1'(Xn-l), 0), , 

G~n = (0, ... ,0, l' (Xn), - l' (Xn)). 

We are now ready to prove Theorem 5.1. 

Theorem 5.1. If the prior f is log-concave and everywhere greater than zero then 

Proof. Clearly, the set Gf(V) C GfCXn
) lies in Lf. To determine f such that 

G f (Xn
) C L f' we examine each of the n + 1 boundaries of 6. f and find a condi

tion on f to ensure that the corresponding boundaries of G f (Xn ) lie inside their 

counterpart boundaries of 6.f . A boundary of Gf(Xn
) is paired with a boundary of 

Lf if they both attach to the same subset of n vertex points of Gf(V). Essentially, 

the paired boundaries are formed from the same facet Fi of Xn . Recall from Section 
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4.4, since f is everywhere greater than zero, G, is an injective mapping and, thus, 

maps boundaries of xn to boundaries of G, (Xn ). 

Hence, our interest lies in the boundaries G, (Fi) parametrized by Gi. Since GO 

parametrizes 7f0 = 0 and Gn parametrizes 7fn = 0, the boundaries parametrized by 

GO and Gn are coincident with their corresponding boundaries in ~,. Consequently, 

we focus on the boundaries parametrized by Gi for i = 1, ... ,n - l. 

We note that if the principal curvatures calculated according to the inward normal 

pointing vector Ri, defined in (5.6), are aIl non-positive at every point p E Fi, then 

the shape of G,(Fi) is such that G,(Fi) is "puIled" inside ~,. 

Define the normal vector Mi as the normalized Ri. Our subsequent discussion 

applies at any point p E Fi, However, for simplicity, we do not make this dependence 

explicit. Denoting the shape opeator as L, we see from Theorem 3.12 and Example 

3.6 that 

and from expression (3.8) that 

Since aIl mixed partial derivatives are zero, L( G;) . Gl is zero for aIl j and k. Fur

thermore, quick calculation shows that Ri . G;j and hence L( G;) . G; equals zero for 

aIl j =1- i. Therefore we are le ft with 

Ri . G~i = (-1)n-if(Xl)'" f(Xi-df(xi+2)'" f(xn) 
(5.8) 

X ((f'(Xi + d) - f'(xi))f(Xi + d) - f'(Xi + d)(f(Xi + d) - f(Xi))) 

which determines the sign of L(GD . Gi. From (5.8), we see that the expression 

determines the sign of L (GD . Gi. 
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To summarize, for sorne constant A, we have 

L(Gjl' G( = { 
A, when i = j = k, 

(5.10) 
0, otherwise. 

Since the shape operator L is self adjoint, we know from Theorem 3.13 that there 

exists an orthonormal basis consisting of eigenvectors {Wl"'" Wn-l} for L. The 

eigenvalues are the principal curvatures, hence we need to find their signs. 

Denote the Kronecker delta function by Ojk and the principal curvature for Wj by 

kj . We then have 

(5.11) 
L(Wj) . Wk = Ojkkj . 

Our goal is to relate the sign of L( GD . G1 to the signs of the k/s. 

Since {GL ... , GL G1+2' ... ,G~} and {Wl,"" Wn-l} are two bases of the same 

space, we find a matrix [hzj ] such that Wz = Lk hZkG~. The principal curvatures or 

eigenvalues of the shape operator Lare 

kj = L(wj) . Wj 

= L hjkhjzL( G~) . G; (5.12) 
k,Z 

The signs of the principal curvatures are determined by A. As stated, we need our 

principal curvatures to have non-positive sign. Accordingly, we make the expression 

(5.9) non-positive. Simplifying, we find the condition 

or equivalently that 
f'(x + d) f'(x) -'----'- < --
f(x + d) - f(x)' 

(5.13) 
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Any prior 1 with '; monotone decreasing satisfies equation (5.13). Differentiating 

log 1 twice we immediately see that f being monotone decreasing is equivalent to 1 

being log-concave. The result follows. o 

The converse of Theorem 5.1 does not hold. It is not true that G,CXn ) C 6, 

implies that 1 is log-concave. Our constraint on the principle curvatures was st ronger 

than required; there could be non-log-concave l, such that G,Cxn) C 6,. Nonethe

less, the class of log-concave prior densities is sufficiently rich to contain most reason

able prior distributions that might be considered for the changepoint. 

5.3 When f Equals Zero Over Part of [0, T] 

In Section 5.2, we restricted ourselves to prior densities 1 that were differentiable and 

everywhere greater than zero. We showed that if 1 is log-concave, then G,CXn ) C 6,. 

As we prove our design criterion functions are concave functions of the design measure, 

we know that for any log-concave prior density, everywhere greater than zero, a 

concave criterion function is minimized at one of the design measures in G, (V). Ergo 

our optimal design is one of the n + 1 designs in V placing points as far as possible 

towards the ends of the interval [0, Tl, while maintaining a distance d between them. 

Although Theorem 5.1 is an elegant result, it is worth considering if we could 

extend the result to include prior densities which are not always greater than zero. For 

instance, the motivational Example 1.1 in the introduction concerned a changepoint 

caused by a blood pressure lowering treatment. We argued that, although the time 

the drug was administered would be known, the time the drug took effect would not 

be known; hence the unknown changepoint. A prior distribution for the changepoint 

de scribes the uncertainty regarding when the treatment would take effect. We are 

certain, however, that the treatment would not take effect before it was administered. 

Therefore, if the treatment is administered at sorne time t > 0, we would want a prior 
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density for T to be zero over the interval [0, tl and everywhere greater than zero in the 

interval (t, Tl; this is the Type 1 prior depicted in Figure 5.7. One could also imagine 

situations where the Type 2 and Type 3 priors in Figure 5.7 would be of interest. 

~I I~ 
o Type 1 T o Type 2 T 

(\ 
o Type 3 T 

Figure 5.7: Representations of three types of differentiable prior densities zero over an 

interval in [0, Tl. The Type 1 prior density is zero at the start of the interval [0, Tl; the 

Type 2 prior density is zero at the end of the interval [0, Tl; the Type 3 prior density is zero 

both at the start and at the end of the interval [0, Tl. 

We have two difficulties with these three types of prior densities because they 

equal zero over an interval which has Lebesgue measure greater than zero. The first 

problem is that the set Cf(V) might not be affinely independent. The second is that 

the mapping Cf is not injective and the Jacobian is not one-to-one for designs with 

design points which are not in the support of f. For such designs we are unable 

to calculate the normal vector used in our proof of log-concavity in Section 5.2. 

Fortunately, as we shaH see there are analogues to Lemma 5.1 and Theorem 5.1 

that account for Type 1, Type 2, and Type 3 prior densities, respectively. In these 

analogous results we find that the dimension of the problem is often reduced from 

/'- n. We use the notation that C f,(i,j) equals Cf but provides only the components 

(Ki, ... ,Kj). 
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5.3.1 Type 1 Prior 

Lemma 5.2. For a Type 1 prior density f: 

A) If the support [t, Tl is such that (T - t) > (n - l)d then the set G f (V) is affinely 

independent. 

B) If support [t, Tl is su ch that (n - k)d > [t, Tl > (n - k - l)d then the set 

G f,(k,n) ({ ua, ... , un-d) is affinely independent. 

Sketch of Proof. Statement A) is easily shown via a proof similar to that of Lemma 5.1. 

In situation B), where (n - k)d > (T - t) > (n - k - l)d, there exists no design in 

Xn where the first k design points Xl to Xk appear in the support of f. Conse

quently, ?Ta to ?Tk-l always equal zero and the set G f(V) is not affinely independent. 

However, again using a proof similar to that of Lemma 5.1, we can show the set 

Gj,(k,n) ({ua, '" ,Un-k}) is affinely independent. D 

Theorem 5.2. For a log-concave Type 1 prior density f: 

A) If the support [t, Tl is su ch that (T - t) > (n - l)d then Gf(Xn) C /::"f' where 

/::"f = Conv(Gf(V)). 

B) If the support is such that (n - k)d > (T - t) > (n - k - l)d then Gf,(k,n)(Xn) C 

/::"j,(k,n), where /::"f,(k,n) = Conv(Gf,(k,n) (V)). 

Sketch of Praof. To prove A) we first use the affine independence of Gf(V) from 

Lemma 5.2 A) to construct /::"f = Conv(Cf(V)). Next we consider two subsets of 

designs in Xn
. Those for which Xl < t and those for which Xl > t. When Xl < t, 

we note that Cf will always map to the hyperplane ?Ta = 0, which is coincident with 

a boundary of /::"f. When Xl > t, the mapping Cf is injective and an its partial 

derivatives form linearly independent vectors. Therefore a pro of similar to that for 

Theorem 5.1 can be used to show that, for log-concave f, we have Gf(Xn ) C /::"f. 

The proof of B) is almost the same. By Lemma 5.2 B) we know that the simplex 

/::"j,(k,n) exists. Sinee the design points Xl to Xk can never appear in the support of f, 
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we consider G f,(k,n)' We again have two subsets of designs. The first has Xk+1 < t and 

the second Xk+1 > t. When Xk+1 < t, we note that G f,(k,n) maps to 7rk = 0, which is 

a boundary of ~f,(k,n)' When Xk+1 > t, the mapping Gf,(k,n) is injective with linearly 

independent partial derivative vectors. It can then be shown that, for log-concave f, 

we have Gf,(k,n) (Xn) C ~f,(k,n)' 0 

5.3.2 Type 2 Prior 

The Type 2 prior density is the symmetric analogue to the Type 1 prior density. As 

a result, we simply state the equivalents to Lemma 5.2 and Theorem 5.2. 

Lemma 5.3. For a Type 2 prior density f: 

A) If the support [0, tl is such that t > (n - l)d then the set Gf(V) is affinely inde

pendent. 

B) If support [0, tl is su ch that (n-k)d > t > (n-k-l)d then the set Gf,(k,n) ( {Uk,"" Un}) 

is affinely independent. 

Theorem 5.3. For a log-concave Type 2 prior density f: 

A) If the support [0, tl is such that t > (n - l)d, then Gf(Xn) c ~f, where ~f = 

Conv(Gf(V)). 

B) If the support [0, t] is su ch that (n - k)d > t > (n - k -l)d, then GJ,(o,n-k) (Xn) c 

~f,(O,n-k), where ~J,(O,n-k) = Conv(Gf,(O,n-k) (V)). 

5.3.3 Type 3 Prior 

Lemma 5.4. For a Type 3 prior density f: 

A) If the support [to, tT] is su ch that tT > (n - l)d and (T - to) > (n - l)d then 

G f (V) is affinely independent. 

/'"'.. B) If the support [to, tT] is su ch that (n -l- l)d < tT < (n -l)d and (n - k - l)d < 

(T - to) < (n - k)d then Gf,(k,n-l) ({Un-k, ... ,Ul}) is affinely independent. 
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Sketch of proof. Using a pro of similar to that of Lemma 5.1 we can show that Gj(V), 

under the conditions in A), is affinely independent. In B), if either tT < (n - l)d 

or (T - to) < (n - l)d then the set Gj(V) is not affinely independent. We consider 

the case where there are k design points before to and there are l design points after 

tT. These two situations correspond to (n - k - l)d < (T - to) < (n - k)d and 

(n -l - l)d < tT < (n - l)d, respectively. Applying the method of Lemma 5.1 gives 

that G j,(k,n-l) ({ Un-k, ... ,uz}) is affinely independent. 0 

Theorem 5.4. For a Type 3 log-concave prior density f: 

A) If the support [to, tTl is su ch that tT > (n - l)d and (T - to) > (n - l)d, then 

GjCKn) C ,6.j, where ,6.j = Conv(Gj(V)). Also, if the support of f, [to, tT], is su ch 

that (tT - to) < (n - l)d, then GjCxn) C ,6.j regardless of whether or not f is log-

concave. 

B) If the support [to, tTl is such that (n-l-1)d < tT < (n-l)d and (n-k-1)d < (T

to) < (n-k)d, then Gj,(k,n-l)CKn) C ,6.j,(k,n-l) where ,6.j,(k,n-l) = Conv(Gj,(k,n-l) (V)). 

Furthermore, if (tT - to) < (n - k -l-l)d then Gj,(k,n-l)Cxn) C ,6.j,(k,n-I), regardless 

of the shape of f. 

Sketch of Proof. In A), for designs where either Xl < to and/or X n > tT we map to 

7ro = 0 and/or 7rn = 0 which are facets of ,6.j. If (tT - to) > (n - l)d then an the 

design points can fit in the support of f and, hence, G j can map to places other than 

7ro = 0 and 7rn = o. Since f is greater than zero on its support, the proof of Theorem 

5.1 can be used for designs with Xl > to and X n < tT to show that for, log-concave f, 

we have GjCx:n) C ,6.j. 

If (tT - to) < (n - l)d then either Xl < to or X n > tT and we always map to 

7ro = 0 or 7rn = O. Thus it is not necessary for f to be log-concave to ensure that 

GjCKn) C ,6.j. 

In B), for designs where Xk+1 < to and/or Xn-l > tT, we see that Gj,(k,n-l) maps 

to 7rk = 0 and/or 7rn -1 = o. When the support [to, tTl is such that (tT - to) > 
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(n - k -l-l)d there exist designs with Xk+1 > ta and Xn-l < tT. Then we can prove 

that if f is log-concave then G f,(k,n-l) Cxn ) C ~ f,(k,n-l)· 

If the prior density has support [tal tTl such that (tT - ta) < (n - k -l- l)d then 

Xk+1 < ta and/or Xn-l > t T . Therefore Gf,(k,n-l) always maps to either 7rk = a or 

7rn-l = 0, or both. Bince Gf,(k,n-l) maps to facets of ~f,(k,n-l), we have Gf,(k,n-l)Cxn) C 

~ f,(k,n-l). Here there is no restriction on the shape of f. o 

5.4 When f has Positive Probability of no Change

point 

In certain situations it is reasonable to assume that there might be no changepoint. 

Returning to our motivating example, it might happen that the blood pressure low

ering treatment simply did not work. Anticipating this, we would like to allow for 

the possibility of no changepoint in our prior distribution for T. 

Here, we examine the situation when the prior density is continuous and differen

tiable on [0, T) and has mass PT at T. Recall that the event {T = T} is equivalent to 

the event of no change. We consider Type 1, 2, and 3 prior densities as weIl as prior 

densities whose support coincides with [0, T), except for each one we include a point 

mass at T. 

Theorem 5.5. When f is log-concave with mass PT at T, Theorems 5.1, 5.2, 5.3 

and 5.4 hold (the only exception being that by support we exclude the discrete mass 

at T). 

Sketch of Proof. First we look at the prior density everywhere greater than zero. 

Upon refiection, we see that our earlier proofs for Lemma 5.1 and Theorems 5.1 hold 

/~ except that the facet 7rn = PT now appears instead of 7rn = O. Following the same 

steps as before, we can show, for log-concave f, that GfCX.n ) C ~f' 
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Likewise, for the Type 1, 2, and 3 prior densities, the proofs remain the same 

except we have 7rn = PT instead of 7rn = O. Note for Type 2 and 3 prior densities, 

when sorne design points always remain to the right of the support of the prior density, 

the dimension of the problem is reduced in exactly the same way. D 

5.5 Optimal Designs for Design Criterion Func

tians Concave in 7r 

In summary, for design criterion functions concave in 7r, combining Theorems 5.1, 5.2, 

5.3, 5.4, and 5.5 we obtain Theorem 5.6. 

Theorem 5.6. If f is positive everywhere on [0, Tl, or a Type 1, 2, or 3 log-concave 

prior density, with or without mass at T, then the optimal design for a design criterion 

function which is concave in 7r will be one of the designs in the set V. 

Remark 5.1. For Type l, 2, and 3 log-concave prior densities, under certain con

ditions on the support of f, we only need to consider a subset of V. Furthermore, 

in certain cases for a Type 3 prior density, the log-concavity is not necessary. These 

details are discussed further in Appendix A. 

Sketch of Proof. Theorems 5.1, 5.2, 5.3, 5.4, and 5.5 show us that the image of xn 

under Gf or under sorne reduced dimension al form G f ,(.,) is a subset of the simplex 

6 f = Conv(Gf(V)) or the simplex 6 f ,(.,) = Conv(Gf ,(.,) (V)), respectively. Obvi

ously, it is the designs in V that map to the vertices of the simplices 6f and 6f,(.,). 

From Corollary 3.1, we know one of the designs in V will be the design minimizing 

the concave design criterion function. D 
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5.6 Restriction to a Subset of Designs 

When we test for a change or for a change in a particular interval, it will be necesssary 

to fix one or more design points. That is, we must restrict ourselves to a subset of 

the designs xn . 

5.6.1 Fixing X n at Time T 

When we wish to test for a change it is necessary to fix X n at T. Obviously, for such 

a testing problem it is essential that our prior density has mass PT at T. With X n 

at T, 7rn will always equal PT. We are then only concerned with the positions of the 

design points Xl to Xn-l' AU our previous work holds, except instead of starting with 

V and Cf we start with the set {Ul"" ,un} and the mapping Cf,(O,n-l)' We state 

the theorem below for priors having mass at T. 

Theorem 5.7. Consider designs with X n at T, and suppose that f is a log-concave 

prior density with mass at T. If f is either of Type 1, 2, or 3 or is positive everywhere 

on [0, Tl then the optimal design for a design criterion function, which is concave in 

7r, will be one of the designs in the set {Ul' ... , un}. 

Remarks similar to the ones after Theorem 5.6 apply. 

5.6.2 Fixing xq and Xq+l at Times tl and t2 

As we will see, when we test for a change in the subinterval [tl' t 2 ], it will be necessary 

to fix two designs points. The interval [tl, t 2l is formed by fixing the positions of two 

adjacent design points, say, points x q and xq+1, such that xq is at t l and x q+1 is 

at t2 • Now we are left with a subset of Xn
, where the points (Xl,"" Xq-d occupy 

/---, positions a distance d apart in the interval [0, tl - dl and the points (Xq+2,"" xn ) 

occupy positions a distance d apart in the interval [t 2 + d, Tl. 
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Before presenting our next result, we introduee sorne more notation. Take a set C 

of q vectors in (q-1)-dimensional spaee: (0, d, ... , (q-2)d), (0, d, ... , (q-3)d, t l -d), 

through to (tl - (q-1)d, ... , t l -d). We call these vectors Co, Cl, ... , Cq-l, respectively. 

Thus, C isdefined as 

C = {co, Cl, ... ,Cq-l}. (5.14) 

Similarly, let D be a set (n-q) vectors in (n-q-1)-dimensional space: (t2+d, ... , t2+ 

(n-q-1)d), (t2+d, ... , t2+(n-q-2)d, T), through to (T- (n-q-2)d, ... , T-d, T). 

We call these vectors do, dl, ... ,dn- q- l , respectively. Thus, D is defined as 

(5.15) 

Theorem 5.8. Suppose that xq and xq+l are fixed at times t l and t2, respectively, 

and f is a log-concave prior density with mass at T. Let f be either of Type 1, 2, 

or 3 or positive everywhere on [0, Tl. Then a design criterion function, which is 

concave in 7f', has an optimal design which is a Cartesian product of an element of C 

and an element of D. The sets C and D are defined in equations (5.14) and (5.15) 

respectively. 

Sketch of Proof. Denote the subsets X(l,q_l) and X(q+2,n) as the designs in xn re

stricted to the coordinates (Xl, ... , Xq-l) and (Xq+2,"" xn), respectively. If the 

prior density is everywhere greater than zero on [0, Tl we can show that the sets 

Gf,(O,q-I)(C) and Gf,(q+l,n)(D) are affinely independent. Henee we have the simpliees 

6 f,(o,q-l) = Conv(Gf,(O,q-l)(C)) and 6 f,(q+l,n) = Conv(Gf,(q+l,n) (D)). As with Theo

rem 5.1, we can prove that if fis log-concave then G/,(O,q-l) (X(O,q-I)) C 6. f,(O,q-l) and 

Gf,(q+l,n) (X(q+l,n)) C 6 f,(q+l,n)' Therefore, for log-concave prior densities, the points 

7f' = (7f'o, ... , 7f'q-l, irq, 7f'q+l,"" 7f'n) lie in the Cartesian product of Gf,(O,q-l) (X(O,q-I)) 

and G f,(q+l,n) (X(q+l,n)) ' both of which are subsets of a simplex and containing the 

vertiees of the simplex. By Corollary 3.2, we have our result. 
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The ab ove also holds if the prior density has mass at T. Similar proofs follow for 

Type 1, 2, and 3 prior densities both with and without mass at T. In the case of a 

Type 1, 2, or 3 prior density one has to consider situations where the dimension of 

the problem is reduced. D 

Note that, according to Theorem 5.8, the optimal design for a concave design 

criterion function in 7r when testing for a change in the subinterval [tl, t2l will be one 

of the designs placing design points as far as possible towards t l and t 2 . Additional 

design points may be placed towards 0 and/or towards T. 
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Chapter 6 

Optimal Designs for the 

Single-Path Changepoint Problem 

Here we find optimal designs for the single-path changepoint problem introduced 

in Section 4.1. The designs we obtain are optimal for testing for a change, testing , 

for a change in a sub-interval, and estimating the before-and-after-change means. 

Furthermore, by taking a convex combination, we can combine criterion functions 

to find designs that are optimal for both testing for a change and estimating the 

before-and-after-change means. 

Much of the necessary ground work has been done in Chapter 5, where we con

sidered the shape of GfCxn). The results in this chapter follow immediately from the 

concluding theorems of Chapter 5. Theorem 5.7 leads to optimal design results to 

test for a change, Theorem 5.8 to test for a change in a subinterval, and Theorem 5.6 

to estimate the before-and-after-change means. 

To use these theorems we simply need to prove that the design criterion functions, 

discussed in Chapter 2 are concave functions of the design measure 7r. This is the 

goal of the present chapter. 

As presented in Chapter 2 our design criterion functions for the testing problems 
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are the commonly used Bayes risk based on generalized 0-1 loss and the Spezzaferri 

criterion function for model discrimination. Our design criterion function for estimat

ing the before-and-after-change means is the well-known Bayes risk based on squared 

error loss. These are the three criterion functions considered in this thesis. However, 

by Theorems 5.7,5.8, and 5.6, our optimal design results apply to any design criterion 

function which is concave in 7L 

We begin in Section 6.1 by presenting the single-path model in a more general 

format than was presented in Section 4.1. We then calculate the posterior distribu

tions of the model emphasizing their dependence on 7r. In Section 6.2 we consider 

designs that are optimal for testing if there has been a changepoint and for testing 

if the changepoint occurred in a specifie interval. Section 6.3 coneerns estimation. 

We discuss why it is difficult to find the designs that are optimal for estimating the 

changepoint. Next we consider designs that are optimal for estimating the before

and-after-change means. Finally, in Section 6.4, we combine criterion functions for 

testing and estimation. 

6.1 Model and Dependence on 7r 

Ultimately, we wish to consider our design criterion functions as functions of the 

design measure 'Tf. Henee, we begin here by investigating how the likelihood and pos

terior densities depend on 'Tf. Again, we do not distinguish between random variables 

and their realized values. Whether a quantity is a random variable or not will be 

evident from the context. 

The likelihood, which was first stated in equation (4.1) in its conditionally in

dependent form, is repeated here in a more general form, allowing for a correlation 

between observations. It is assumed (perhaps restrictively) that the correlation struc

ture does not depend on the design. Since we do not allow the densities to depend on 
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the design x, the likelihood will have no further dependence on x or T except through 

Tx . Recall that the event {Tx = k} represents the number of observations taken up to 

and including the changepoint. We will split the observation vector y into two vectors 

y1 and y2, where y1 represents the first k observations from the /11 distribution f (·I/1d 

and y2 represents the last n - k observations from the /12 distribution f('1/12)' The 

joint density thus factors as 

(6.1) 

Our model also includes arbitrary and marginal prior densities f(/11,/12) and f(T). 

The random variables /11 and /12 are assumed to be independent of T and hence the 

joint prior density is specified as f(/11, /12)f(T). 

We now consider the posterior densities of our single-path changepoint model. 

The condition al density of y given Tx = k is 

f(ylTx = k) = J J f(y, /11, /121Tx = k)d/11d/12 

= J J f(yl/11' /12, Tx = k)f(/11, /12)d/11d/12' 

(6.2) 

The density f(ylTx = k) is used to obtain the posterior densities f(f--l1Iy, Tx = k) and 

f(/12Iy, Tx = k) as follows: 

and similarly 

f( 1 

- k) - J f(y, /11, /12, Tx = k)d/12 
/11 y, Tx - - f( 1 - k) y Tx - 1Tk 

J f(y, /11, /121Tx = k)d/12 
f(ylTx = k) 

J f(yl/11' /12, Tx = k)f(/1l, /12)d/12 
f(ylTx = k) 

f( 1 
- k) - J f(yl/11, /12, Tx = k)f(/12, /1d d/11 

/12 y, Tx - - f(ylT
x 

= k) . 
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The marginal distribution of y is a mixture distribution with weights equal to the 

components of n: 
n 

f(y) = L f(Y\Tx = k)nk. (6.5) 
k=O 

Next, we consider the density f(Tx = k\y), which will obviously depend on n. 

(6.6) 

In the next sections we consider how our design criterion functions depend on n 

and prove that they are concave functions of n. 

6.2 Optimal Designs for Testing 

Here, we consider designs that are optimal for testing for a change both generally 

and in a specifie subinterval [tl, t2]. We use both the Bayes risk based on generalized 

0-1 loss and the Spezzaferri condition. As we saw in Chapter 5, for these testing 

problems it is necessary to fix one or two design points, thereby restricting ourselves 

to a subset of the design space Xn . 

6.2.1 Optimal Design for Testing for a Change 

In this section we find the optimal design for choosing between the models {T = T} 

(no change occurs) versus {T < T} (a change occurs). Our prior distribution for T is 

of the type discussed in Section 5.4, where we have a point mass PT at T to allow for 

the possibility of no change. Referring to our motivational Example 1.1 in Chapter 

1, we would conduct such a test if we were interested in knowing whether or not the 

blood pressure treatment has an effect. 

Since we can only take measurements at n locations in the continuous interval 

[0, T], we have to insist that our last measurement X n be taken at T in order to make 

86 



inference about possible events at that point. By fixing X n at the location T, we 

are fixing the value of 7rn at PT and thereby reducing the problem by one dimension. 

Consequently, we will se arch for the optimal design for a test of change from amongst 

the set of an possible positions of the design points Xl through to Xn-l in the interval 

[0, T - dl. In other words, we are considering the subset of Xn where X n = T for every 

design in the subset. 

Now, we prove that the Bayes risk based on generalized 0-lloss and the Spezzaferri 

criterion functions are concave over the set of vectors 

n-l 

{(7ro, ... ,7rn -d 1 L 7rk = 1 - PT}' 
k=l 

Let MT<T denote the model corresponding to the event {T < T} and MT=T denote 

the model corresponding to the event {T = T}. Obviously, with Xn fixed at T, the 

events {T < T} and {Tx < n} are equivalent and the events {T = T} and {Tx = n} 

are equivalent. Hence we have, 

f( lM ) - f( 1 < ) - L~:~ f(ylTx = k) 7rk 
Y T<T - Y Tx n - ",n-l 

DI=0 7r1 

(6.7) 

and 

(6.8) 

From expression (2.3) of Section 2.2, the Bayes risk based on generalized 0-1 loss 

for testing the model MT=T versus MT<T with a nun hypothesis of no change is 

Lemma 6.1. With X n fixed at T, the Bayes risk based on generalized 0-1 loss for 

testing for a changepoint in the single-path model is a linear function of the veetor 

(7ro, ... ,7rn -l)' 
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Proof. Substituting for P(MT=T), P(MT<T), f(yIMT=T) and f(yIMT<T), we re-write 

the Bayes risk (6.9) as 

n-l 

Ko J110 ~ ?rd (ylyx ~ k )dy + Kt L, PT f (ylyx ~ n )dy. (6.10) 

We see that the Bayes risk (6.10) is linear in (7fo, ... ,7fn -I). D 

From expression (2.8) of Section 2.4, the Spezzaferri criterion function reduces to 

minimizing 

J f(yIMT=T )f(yIMT<T) d 
f(y) y. (6.11) 

Lemma 6.2. With Xn fixed at T, the Spezzaferri criterion function for testing for a 

change in the single-path model is a concave function of the vector (7fo, ... , 7fn-l). 

Proof. Substituting expressions (6.7) and (6.8) into (6.11), the Spezzaferri criterion 

function becomes 

J f(ylTx = n)(L~:~ f(ylTx = k)7fk) d 

(L~:i7fl)(L~=of(yITx = r)7fr ) y. 
(6.12) 

Using Theorem 3.6, we show the concavity of integral (6.12) by showing that its 

integrand is concave for an y. We drop the factor f(ylTx = n) and the constant 

L~:Ol 7fl = 1 - PT sinee they do not affect concavity. 

Denote the integrand by g. According to Lemma 3.3, to prove concavity of (6.11), 

we need to show 

for any two vectors 7f(a) and 7f(b). Letting 7f(a),k and 7f(b),k be the kth components of 

7f(a) and 7f(b) respectively, we simplify notation by letting A = L~:~ f(ylTx = k)7f(a),k, 

and B = L~:~ f(ylTx = k)7f(b),k. We must then show that 

taA + tbB taA tbB 
----------~----~ > +----~~--~-
taA + tbB + f(ylTx = n)7fn - A + f(ylTx = n)7fn B + f(ylTx = n)7fn 

(6.14) 
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which is equivalent to showing 

ta (taA + tbB + ~(yITx = n)PT - A + f(yl~x = n)PT) + 

tb ( B _ B ) > O. 
taA + tb B + f(ylTx = n)PT B + f(ylTx = n)PT -

Further simplifying our notation we set C = f(ylTx = n)PT. We need to prove that, 

which, in turn, becomes 

The result follows as all the quantities on the left-hand side of the ab ove inequality 

are positive. o 

Recall the designs Ui, i = 1, ... ,n, defined in Section 4.2. These are used in the 

following theorem. 

Theorem 6.1. Consider a single-path changepoint problem with a log-concave prior 

distribution for the changepoint T and the design point X n fixed at T. With respect 

to the Bayes risk based on generalized 0-1 loss and the Spezzaferri criterion function 

for model discrimination, the optimal design for testing for a change is one of the 

designs in the set {Ul' ... , un}. 

Proof. By Lemmas 6.1 and 6.2, the generalized 0-1 Bayes risk and the Spezzaferri 

criterion functions are concave. The result follows directly from Theorem 5.7. 0 

6.2.2 Optimal Design for Testing for a Change in a Subin

terval 

Recollecting our motivational example in Chapter 1, we might be interested in testing 

if the treatment has an effect during an interval shortly after it is administered. For 
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instance, if the treatment was to be administered at time t l , we might want to assess 

if a change in mean blood pressure occured in the interval [tl, t2l where t 2 is greater 

than t l . Here we present optimal designs for such a test. 

The interval h, t 2l is constructed by fixing the positions of two adjacent design 

points xq and Xq+l' such that x q is at tl and Xq+l is at t2. Such intervals are discussed 

in Section 5.6.2. 

We consider optimal designs for testing MrE[t1.t21c versus MrE[tlhl' Again we use 

the Bayes risk based on generalized 0-1 loss and the Spezzaferri criterion function. 

With x q and X q+1 fixed at t l and t 2 , respectively, our interest lies in 

(6.15) 

and 

(6.16) 

Due to the fixed positions of x q and Xq+l' the value of 7rq is ft:2 f, which we will denote 

If the null hypothesis is that T occurs in the interval [tl, t2], the Bayes risk for this 

problem is 

Lemma 6.3. Consider a single-path ehangepoint problem with x q and x q+1 fixed at 

t l and t2 respeetively. The Bayes risk based on generalized 0-1 loss for testing for a 

change in [tl, t2l is a linear funetion of the veetor (7ro, ... , 7rq-l, 7fq , 7rq+1,"" 7rn ). 

Proof. Substituting Expressions (6.15) and (6.16) into the Bayes risk (6.17) we have, 

(6.18) 

which is obviously a linear function of the vector (7ro, ... ,7rq-l, 1rq , 7rq+1, ... ,7rn ). 0 
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Next, we consider the Spezzaferri criterion function (2.8) which reduces to mini

mizing 

(6.19) 

Lemma 6.4. Consider the single-path changepoint prablem with xq and Xq+l fixed at 

t l and t 2 respectively. The Spezzaferri criterion function for testing for a change in 

[t l ,t2l is a concavefunction of the vector(7ro, ... ,7rq_l,irq,7rq+1, ... ,7rn). 

Praof. Using (6.15) and (6.16) again, the Spezzaferri condition becomes 

J f(ylTx = q)(Lkr'q f(ylTx = k) 7rk) d 

(L1r'q 7r1)(L~=o f(ylTx = r)7rr ) y. 
(6.20) 

This criterion is formally equivalent to (6.12) with index n replaced by index q. 

The rest of the proof follows through as in the proof of Lemma 6.2. D 

Recall C and D, defined in (5.14) and (5.15), respectively. 

Theorem 6.2. Consider a single-path changpoint problem with a log-concave prior 

for T and xq and xq+1 fixed at t l and t 2 respectively. With respect to the generalized 

0-1 Bayes risk and the Spezzaferri criterion function, the optimal design is one of the 

designs which is a Cariesian product of an element of C and an element of D. 

Proof. This result follows directly from Theorem 5.8, which states that the optimal 

design for a design criterion function concave in 7r is a Cartesian product of an element 

from C and an element from D, and Lemmas 6.3 and 6.4, which show the generalized 

0-1 Bayes risk and the Spezzaferri criterion function are concave functions of 7r. D 

N ow in the above discussion we have required that a design point be placed at 

each of the points t l and t 2 • We have not however, given any guidance as to which 

points should be placed at t l and t 2 . To find the "optimal" q we suggest forming the 

interval [tl, t2l with xq and Xq+l for each q from 1 to n - 1 and finding the "optimal 

design" for the chosen criterion function. Then among the n - 1 optimal designs, 
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select the one that is associated to the lowest value of the design criterion function 

of interest. 

6.3 Designs and Optimal Designs for Estimation 

In this section, we find optimal designs for estimating the before-and-after-change 

means. We conclude by discussing the optimal design problem for estimating the 

changepoint location. 

6.3.1 Optimal Designs for Estimating the Before-and-After

Change Means 

Next we consider optimal designs for estimating the before-and-after-change means. 

The design criterion function we use is the Bayes risk based on squared error loss, 

introdueed in Section 2.2. When finding the optimal design for estimating the before

and-after-change means, we would usually assume a changepoint has occurred. Hence, 

we would have a prior on T with no mass at T. 

Recall from expression (2.2), that the Bayes risk based on squared error loss is the 

posterior variance of the parameter of interest, averaged over the anticipated data. 

Sinee we have two means to estimate, we use the sum 

(6.21) 

to define the risk. Following Zhou (1997) we use the well-known identity (6.22) to 

divide the Bayes risk (6.21) into four terms. 

Var(j.tly) = ETx=kly(Var(j.tly,Tx = k)) + VarTx=kly(E(j.tly,Tx = k)) 
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The Bayes risk which we denote as R, re-expressed as the sum of the four terms, is 

R = J ETx=kly(Var(lLlly, Tx = k))f(y)dy 

+ J VarTx=kly(E(lLlly, Tx = k))f(y)dy 

+ J ETx=kly(Var(1L2Iy, Tx = k))f(y)dy 

+ J VarTx =kly(E(1L2Iy, Tx = k))f(y)dy. 

(6.23) 

Denote these four integrals by RI, R2' R3, and R4, respectively. As the terms RI 

and R3 have the same structure, and the terms R2 and R4 have the same structure, we 

first consider RI and R3 together, and then consider R2 and R4 together. In particular, 

we ascertain how these terms depend on 7r. Note that the terms RI and R3 describe 

the within-model variability, while the terms R2 and R4 de scribe the between-model 

variability. The within-model variability refers to the variability around the me ans 

ILl and IL2 given a fixed changepoint, and the between-model variability refers to the 

extra variability induced by the uncertainty of the location of the changepoint. 

Starting with RI and R3, we prove the crucial result that the Bayes risk based on 

squared error loss is a concave function of 7r. By Fubini's theorem, RI and R3 can be 

re-expressed as 

and 

n 

RI = LEYITx=k(Var(ILlly,Tx = k))7rk 
k=O 

n 

R3 = LEyITX=k(Var(IL2Iy,Tx = k))7rk. 
k=O 

(6.24) 

(6.25) 

It follows that RI + R3 is equivalent to the generalized Lauter's criterion function 

introduced in Zhou et aL (2003), where a Bayes risk based on squared error loss is 

used for each value of Tx to estimate ILl and IL2. This observation has been made 

before in Zhou (1997). 
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Lemma 6.5. Suppose we have the Bayes risk based on squared error loss in the single

pa th changepoint problem for estimating the before-and-after-change means. Then the 

terms RI and R3 of the Bayes risk are linear functions of the coordinates of 7r. 

Proof. We consider only RI sinee R3 is dealt with in exactly the same way. First, recall 

that the density f(/LIly,Tx = k) has no dependenee on 7r (see (6.3)). Therefore, the 

expectation E(/LIly, Tx = k) = J /Ld(/LIly, Tx = k)d/LI has no dependence on 7r, and 

hence the variance Var(/LIly, Tx = k) = J(/LI - E(/LIly, Tx = k))2 f(/LIly, Tx = k)d/LI 

also has no dependenee on 7r. Observing that the density, f(ylTx = k), in (6.2), does 

not depend on 7r, we find that EyITx=k(Var(/LIly,Tx = k)) does not depend on 7r. 0 

Knowing that RI and R3 are sim ply linear combinat ions of the components of 7r, we 

find they are concave. Intuitively, we expect the minimum of EyITx=k(Var(/LIly, Tx = 

k)) to occur when Tx = n, that is, when aIl the measurements are taken before the 

change. Renee, if we minimize over the set of aIl possible designs, including designs 

which allow design points to crowd together, we expect the minimum of RI to occur 

at the vertex of sn with 7rn = 1. This is the vertex of sn, corresponding to aIl 

observations at the endpoint o. Using the same reasoning, we would expect the 

minimum of R3 to occur when aIl the points are at T, that is, at the vertex with 

7ro = 1. As we will see in our numerical simulations in Chapter 7, this is exactly what 

happens. 

Next we consider R2 and R4. We begin by rewriting R 2 and R4 as 

R, = 1 tu (E(I'I!Y' T. = k) - t E(l'lIY, T, = 1)/(T, = lIY))' 
(6.26) 

X f(Tx = kly)f(y)dy 

and 

n ( n )2 
&, = 120 E(I',ly,T. = k) - ~E(1'2Iy,T, = l)f(T. = lly) 

(6.27) 

X f(Tx = kly)f(y)dy. 
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From equations (6.5) and (6.6) we see that f(y) and f(Tx = kly) are functions of 

7r so that R2 and R4 are also functions of 7r. Recalling Theorem 3.6, if we prove that 

the integrands for R2 and R4 are concave in 7r for any value of y then the integrals 

R2 and R4 will also be concave in 7r. Therefore, we begin by proving the integrands 

of R2 and R4 are concave in 7r. Our first step is to introduee a simpler form for the 

integrands of R2 and R4 in Lemma 6.6. 

Lemma 6.6. The integrands of R2 and R4 also have the form 

~ ~ (E( 1 = k) _ E( 1 = l))2 f(ylTx = l)7rzf(yITx = k) 7rk 
~~ ILl y,Tx ILl y,Tx ",n f( 1 =) , 
k=O 1=0 L...tr=O y T x r 7r r 

(6.28) 

for R2' and 

~ ~ (E( 1 = k) - E( 1 = l))2 f(ylTx = l)7rzf(yITx = k)7rk 
~ ~ IL2 y, Tx IL2 y, Tx ",n f( 1 -) , 

k=O 1=0 L...tr=o y Tx - r 7rr 
(6.29) 

Proof. Sinee the proof for R4 follows exactly the same steps as the proof for R2 we 

present only the proof for R2. To simplify notation we denote g(k) = E(ILlly, Tx = k). 

The integrand for R2 is written as 

t (9(k) - t g(l) f(ylTx = l)7r1) 2 f(ylTx = k)7rk f(y). 
k=O 1=0 f(y) f(y) 

Factoring out (,ty)) 2 from the squared term leaves us with 

Substituting 2:;=0 f(ylTx = s)7rs for f(y) and rearranging, we obtain 
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Expanding the squared summation we obtain, 

t. (t,(9(k) -g(l))' f(ylTx ~ l)',,? 

+ 2 t, ~ (g( k) - g(l)) (g( k) - g( r)) f(ylTx ~ l)7r,J (ylTx ~ r )7r, ) (6.30) 

f(ylTx = k) 7rk 

Working with the cross terms we exp and 2(g(k)-g(l))(g(k)-g(r)), 2(g(l)-g(k))(g(l)

g(r)), and 2(g(r) - g(l))(g(r) - g(k)) and by factoring out f(ylTx = l)7rzf(yITx = 

r)7rr f(yITx = k )7rk we combine them into 2(g(k)2 + g(l)2 + g(r)2 - g(k )g(l) - g(k)g(r)

g(l)g(r)), hence reducing the number of non-zero terms in the second summation from 

(n+1)n(n-l) = (n -1) (n+l) to (n+l)n(n-l) = (n+l) Letting" indicate the sum over 
2 2 6 3 • D(k,l) 

aIl (n~l) pairs such that k i- land 2:(k,l,r) indicate the sum over aIl the (ni1) triplets 

such that k > l> r, expression (6.30) becomes 

2)g(k) - g(l))2 
(k,l) 

f(ylTx = l)27rf f(ylTx = k)7rk + f(ylTx = l)7rzf(yITx = k)27r~ 
x (2:;=0 f(ylTx = S)7rs )2 

+ L 2(g(k)2 + g(l)2 + g(r)2 - g(k)g(l) - g(k)g(r) - g(l)g(r)) 
(k,l,r) 

f(ylTx = l)7rzf(yITx = r)7rr f(yITx = k)7rk 
x (2:;=0 f(ylTx = S)7rs )2 . 

Next, from each 2(g(k? + g(l? + g(r)2 - g(k)g(l) - g(k)g(r) - g(l)g(r)) term we 

extract the terms (g(k) - g(l))2, (g(k) - g(r))2, and (g(r) - g(l))2. By doing so 

we increase the number of terms in our second summation from (ni1) back to the 

/____ original number ofterms, namely 3(ni1) = (n_1)(n~1). Collecting the (n-1) terms 

f(ylTx = l)7rzf(yITx = r)7rr f(yITx = k)7rk, and multiplying the terms (g(k) - g(l))2, 
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3(n+l ) 
we are left with (nt1

) = (n-=l) terms in the second summation: 

(
2:)9(k) - g(l))2(f(yITx = l)27rl f(ylTx = k)7rk + f(ylTx = l)7rd(yITx = k)27r~) 
(k,l) 

+ 2:)g(k) - g(l))2 ( L f(ylTx = l)7rzi(yITx = r)7rr f(yITx = k)7rk)) 
(k,l) r=O,r#i'1 

1 

The (nt 1
) terms in the first summation can now be combined with the (nt 1

) terms in 

the second summation. Cancellation of 2:;=0 f(ylTx = s)7rs from the numerator and 

denominator, leads to the desired form 

(6.31) 

Using exactly the same steps for R4 and letting h(k) = E(/L2Iy, Tx = k), we find 

(6.32) 

o 

Before proving that R 2 and R4 are concave we prove two further lemmas. 

Lemma 6.7. Let D be a (n + 1) x (n + 1) matrix with entries Dij = (di - dj?' Let 

W = (wo, ... ,wn ) be such that 2:~=0 Wi = O. Then W DW' :S O. 
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Proof. We compute 

W DW' = L WiDi,jWj 
i,j 

= L wi(di - dj )2Wj 
i,j 

i,j i,j 

= -2(2: diWi)2 
i 

:s; o. 

The proof is now complete. 

i,j 

I~- Lemma 6.8. For al! di E jR and al! Xi, Yi E jR+, i = 0, ... ,n, we have 

o 

(6.33) 

Proof. Expanding the terms in the numerator on the left-hand side of (6.33) and 

combing the two terms on the right-hand side, we find that the inequality (6.33) is 

equivalent to 

L:~=o L:~~~(di - dj )2XiXj + L:~=o L:~~~(di - dj )2YiXj 

L:~=o(XI + YI) 

L:~=o L:~~~(di - dj )2XiYj + L:~=o L:~~~(di - dj?YiYj 

+ L:~=o(XI + YI) 

> L:~=oL:~~~(di - dj)2XiXj(L:~=oYI) + L:~=oL:~~~(di - dj)2YiYj(L:~=oXl) 
- (L:~=o XI)(L:~=o YI) 

(6.34) 

After cross-multiplication and cancellation of terms on each side, the inequality (6.34) 
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becomes 

(tu XI) (tu YI) (tu ~(d, - d;)2y,X; + tu ~(~ -d;)2X'y;) 

2 (tu YI) 2 (tu~(d, - d;)2xix;) + (tu x) 2 (tu~(di - d;)2y,y;) . 
(6.35) 

Create the symmetric matrix D which has elements Dij = (di - dj )2, and the vectors 

X = (xo, . .. ,xn) and Y = (Yo, ... ,Yn)' Multiply the expression (6.35) on each side by 

two and divide each side by (2:~=o Xl?(2:~=O Yl)2. Expression (6.35) is then equivalent 

to the following: 

(6.36) 

Equation (6.36) has the form 

WDW'::S 0 

where 2:~=o Wl = O. The result follows from Lemma 6.7. D 

Theorem 6.3. The integrands R2 and R4 are concave functions of 7r for aU values 

of y, and, as a consequence, the terms R2 and R4 are concave functions of 7r. 

Proof. We apply Lemma 3.3 to the integrand of R 2 • The proof for the integrand of 

R4 follows exactly the same steps. 

Consider the integrand of R2 in the form of expression (6.28), where again we take 

g(k) = E(I-lIly, Tx = k). That is, 

Let 7r(a) and 7r(b) be the barycentric coordinat es of two points in sn, and let 7r(a),k and 
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7r(b),k the kth components of 7r(a) and 7r(b) respectively. We want to show that 

(6.37) 

Rearranging, we find the above inequality to be equivalent to 

n k-l 

L L(g(k) - g(l)? 
(-- k=O 1=0 

X (taf(yITx = l)7r(a),l + tb!(yITx = l)7r(b),I)(taf(yITx = k)7r(a),k + tb!(yITx = k)7r(b),k) 

L~=o taf(ylTx = r)7r(a),r + L;=o tb!(yITx = S)7r(b),s 

2: t f(9(k) - g(l))2t~f(yIT: = l)7r(a),Z!(yITx = k)7r(a),k 
k=O 1=0 Lr=o taf(ylTx = r)7r(a),r 

+ t f(9(k) - g(l))2 t~f(yITxn = l)7r(b),Z!(yITx = k)7r(b),k. 
k=O 1=0 Ls=o t2f(ylTx = S)7r(b),s 

Setting, 

dk =g(k) 

dl = g(l) 

X k = taf(ylTx = k)7r(a),k 

Xl = taf(ylTx = l)7r(a),l 

Yk = tbf(ylTx = k)7r(b),k 

Yi = tb!(yITx = l)7r(b),1 
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we have 

~ ~(d _ d)2 (Xl + Yi)(Xk + Yk ) 

~ ~ k 1 (E~=o X r + E~=o Ys) 
n k-I 

> "" ""(d - d)2 XkX
l 

- ~~ k Z ",n X 
k=O 1=0 L....r=O r 

(6.38) 

n k-I y; y; 

+ {; ~(dk - dZ)2 E~:oIYs . 

Note that g(k), and, hence dk , is in IR, and that the quantities X k and Yk are 

all positive. Thus, by Lemma 6.8, the inequality (6.38) is satisfied, and hence the 

integrand of R 2 is concave. The pro of for R4 follows in exactly the same way. D 

Combining our results for the terms RI, R3, R2' and R4, we have Theorem 6.4. 

Theorem 6.4. Suppose we have a single-path problem with a log-concave prior dis

tribution for the changepoint. Then the optimal design for estimating the before-and

after-change means f.11 and f.12, when using a Bayes risk based on squared error loss, 

is one of the designs in V. 

Proof. From Lemma 6.5 we have that RI and R3 are linear in 7L From Theorem 6.3 

we have that R 2 and R4 are concave in Tf. Hence their sum R, the Bayes risk based 

on squared error loss, is concave in Tf. From Theorem 5.6 we know that a concave 

design criterion is minimized at one of the vertices in V. D 

Next we observe that, if we allowed design points to crowd together, we would 

minimize over the set of design measures occupying all of sn. By inspection, we see 

that R2 and R4 are zero at the vertices of sn. This is because by placing an the points 

at ° and T we keep the posterior expectations E(f.1Ily, Tx = k) and E(f.12Iy, Tx = k) 

constant in the interval [0, Tl and hence they have zero variance in the observation 

interval [0, Tl. The implication is that if the designs points were allowed to crowd 

together, then the optimal design for the Bayes risk based on a squared error loss 
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would be given by RI + R3. The optimal design from the generalized Lauter's criterion 

and the Bayes risk based on squared error loss would then be the same. We will 

see in Chapter 7, that when the difference between the hyperparameter means is 

large compared to the hyperparametric and model variances, the generalized Lauter's 

criterion is a good approximation to the Bayes risk based on squared error loss. 

Before concluding this section, we note that, in changepoint analysis, researchers 

sometimes pre fer to make inference about the difference in means, rather than about 

/-lI and /-l2 separately. In this setting the obvious parameters would be /-l and /-l + 8. 

The inference is then about 8. Using techniques similar to the ones in this section, 

we can show a Bayes risk based on a squared error loss for 8, 

J Var(8Iy)f(y)dy, (6.39) 

is also concave in 7r. Theorem 5.6 can then be used to show that the optimal design 

for estimating 8 will be one of the designs in V. 

6.3.2 Design Criterion Function for Estimation the Change

point Location 

One can also use the Bayes risk based on squared error loss as a design criterion func

tion for estimating the changepoint location T. Unfortunately, we can not use our 

design measure 7r to provide general optimal design results for estimating the change

point location. Our design me as ure arose by combining the random variable T with 

the design x to form the discrete random variable T x . Any design criterion function for 

estimating the changepoint will have to be expressed in terms of T directly. Generally 

these design criterion functions willlead to a non-linear optimization problem. 

For the sake of illustration we provide the Bayes risk based on squared error loss 

for estimating the changepoint below. 
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J Var(Tly)f(y)dy (6.40) 

6.4 Combining Criterion Functions 

As we mentioned in Section 1.2.2, design criterion functions, with testing and esti

mation respectively as the ultimate goals, can be combined to obtain a single design 

criterion function. Here, in fact, we have three criterion functions (two for testing and 

one for estimating) which are all concave in 7L By taking a convex combinat ion of 

one of the testing criterion functions with the estimation criterion function, we obtain 

a criterion function that is again concave in 7r. In the convex combinat ion, one can 

weight the two criterion functions according to the relative importance attached to 

the two problems. For instance, if testing is more important, we can put more weight 

on the testing criterion function. 

Theorem 6.5. Consider the single-path problem with a log-concave prior distribution 

for the changepoint. Then 

A) Suppose that a criterion function is constructed by taking a convex combination 

of the generalized 0-1 Bayes risk (for testing for a change) and the squared error loss 

Bayes risk (for estimation of the means). Then fixing X n at T, the optimal design is 

one of the vectors {Ul'" . ,un}. 

B) Suppose that a criterion function is constructed by taking a convex combination of 

the Spezzaferri criterion function (for testing for a change) and the squared error loss 

Bayes risk (for estimation of the means). Then fixing X n at T, the optimal design is 

one of the vectors {Ul' ... ,un}. 

Proof. The proof of A) and B) follow directly from Theorem 5.7 since any convex 

combination of design criterion functions which are concave in 7r is concave in 7r. D 
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Theorem 6.6. Given C and D in (5.14) and (5.15), consider the single-path problem 

with a log-concave prior distribution for the changepoint. Then 

A) Suppose that a criterion function is constructed by taking a convex combination 

of the generalized 0-1 Bayes risk (for testing for a change in [t l , t 2 ]) and the squared 

error loss Bayes risk (for estimation of the means). Then fixing points x q and x q+1 

at t l and t2 respectivley, the optimal design is a Cartesian product of an element of 

C with an element of D. 

B) Suppose that a criterion function is constructed by taking a convex combination of 

the Spezzaferri criterion function (for testing for a change in [t l , t 2 ]) and the squared 

error loss Bayes risk (for estimation of the means). Then fixing points xq and Xq+l 

at t l and t2 respectivley, the optimal design is a Cartesian product of an element of 

C with an element of D. 

Proo! The proof of A) and B) follow directly from Theorem 5.8 sinee any convex 

combination of design criterion functions which are concave in 7r is concave in 7r. D 

In the next chapter we consider two particular single-path models. 
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Chapter 7 

Particular Single-Path 

Changepoint Models 

We now know that the optimal designs for the problems discussed in Chapter 6 lie 

amongst a manageable number of designs. N evertheless we must still compute the 

design criterion function for each design in the set, to determine which of the designs is 

optimal. To make concrete the rather abstract discussion of the previous chapter, we 

consider two particular single-path changepoint models and simulations of the Bayes 

risk based on squared error loss for estimating the before-and-after-change means. 

The first model considered in Section 7.1 arises from measurements taken a dis

tance d apart and assumed to be conditionally independent. The data are very general 

as we allow them to have any NEF distribution. We parametrize the model in terms 

of the canonical parameters ()l and ()2. The designs we consider are optimal for esti

mating the means K;(Ol) and K;(02)' We use DY-conjugate prior distributions for 

the before-and-after-change canonical parameters ()l and ()2' By using DY-conjugate 

prior distributions we are able to compute the terms Ri and R3 analytically. 

The second model we consider is the common changepoint multi-path problem. 

In this problem we have an arbitrary number of subjects m, and we assume that 
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aU subjects change at exactly the same time (that is, there is exactly one change

point). In Chapter 8, we consider the multiple changepoints multi-path problem, 

where each subject has his or her own changepoint. Although not as realistic as 

the multiple changepoints problem, the common changepoint problem seems to be 

a good approximation to the multiple changepoints problem when the variance of 

the subject changepoints is small. In the multi-path models, each subject has ran

dom effect before-change and after-change me ans normaUy distributed about distinct 

hierarchical means. 

Our simulations for the common changepoint multi-path problem consist of the 

Bayes risk based on squared error loss for estimation of the before-and-after-change hi

erarchical means. Due to the constraint that aU subjects change at the same time, the 

common changepoint multi-path problem can be treated as a single-path changepoint 

problem by taking the average of the measurements at each design point. Depending 

on the changepoint location and the design, each average of m measurements is then 

normally distributed about either the before-change or the after-change hierarchical 

mean. The random effects induce a correlation between the averages; however since 

this correlation does not depend on the design, our earlier optimal design results for 

the single-path problem follow. By using conjugate normal prior distributions for 

the before-and-after-change hierachical means, we can calculate the terms Rl and R3 

analytically. 

In the simulations of each model, we observe that the generalized Lauter's criterion 

function Rl + R3 is a good approximation of the Bayes risk based on squared error 

10ss when the difference in the hyperparametric means is large compared to the model 

variances and the hyperparametric variances. 
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7.1 The NEF Single-Path Changepoint Problem 

Let the NEF member p(yl(h) = exp(81y - K17(8d)TJ(Y) be the before-change distri

bution of our data and the NEF member p(yI82 ) = exp(82y - K17(82 ))TJ(Y) be the 

after-change distribution. Hence the before-change mean is K~(81) and the after

change mean is K~(82)' 

We use the DY-conjugate prior densities in (7.1) and (7.2) for the canonical pa

rameters 81 and 82: 

(7.1) 

(7.2) 

The unknown parameters 81 , 82 and Tare assumed to be independent. 

As in Section 4.1, let Yi be the measurement taken at the xith design point. Again, 

the vector Y = (Y1"'" Yn) comprises the measurements taken at the design points 

(Xl,'" ,xn ). Rewriting the likelihood (4.1) in (7.3), we have that the measurements 

Y are conditionally independent given the canonical parameters 81 and 82 , and the 

changepoint T. We then have 

p(yI81, 82, T) = II p(YiI81) II p(YiI82)' (7.3) 
Xi-::;T Xi>T 

Substituting the NEF densities into the likelihood (7.3), we see that the likelihood 

(7.3) is immediately expressible in terms of the random variable Tx : 

p(yI81, 82 , Tx = k) = exp (81 LYi - kK17(81)) 
i-::;k 

X exp (02 ~ Yi - (n - k)K,(02)) g ~(Yi) TI 1J(Yi). 
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Next, we present the posterior densities calculated from the likelihood (7.4), the 

DY-conjugate prior densities (7.1) and (7.2), and the prior density f(T). These poste

rior densities are necessary for calculating our estimators E(K~(Ol) Iy) and E(K~(02) Iy) 

and for evaluating the Bayes risk based on squared error loss. 

The calculation of y given Tx = k is quite simple and proceeds as follows: 

p(ylTx = k) = J J p(y, 01, 021Tx = k)dOld02 

= J J P(yIOl' O2, Tx = k)PVl,)q (OdpV2,À2 (02)dOld02 (7.5) 

M(Vl, ÀdM(V2' À2) I1i:::;k TJ(Yi) I1i>k TJ(Yi) 

The density p(ylTx = k) can then be used to obtain the posterior densities 

p(Olly, Tx = k) and p(02Iy, Tx = k): 

(0 1 - k) - f p(y, 01, O2, Tx = k)d02 
PlY, Tx - - p(ylT

x 
= k) 7rk 

fP(y,Ol' (hlTx = k)d(J2 
p(ylTx = k) 

= M (VI + LYi,Àl + k) 
i:::;k 

(7.6) 

X exp ( (v, + ~ Yi) 8, - (À, + k)K,(B')) . 

The calculation for p((J2Iy, Tx = k) is identical, with (JI and (J2 interchanged and yields 

p((J2Iy, Tx = k) = M (V2 + LYi' À2 + (n - k)) 
~>k 

X exp ( (v, + ~ Yi) 8, - (À, + (n - k))K,(8')) . 
(7.7) 

Naturally, the posterior densities for (JI and (J2, (7.6) and (7.7) have the same form 

as the standard conjugate prior distributions for 01 and (J2, but with the hyperparam

eters VI, V2, À1, and À2 updated by the data. 
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The marginal distribution of y is calculated below and is a mixture distribution 

of the posterior densities p(ylTx = k) with the weights 7rk: 

n 

p(y) = LP(yITx = k)7rk 

k=O 

= t M(V1' À1)M(V2, À2) TIi<k 17(Yi) TIi>k 17(Yi) 7rk. 

k=O M (VI + Ei~k Yi, À1 + k) M (V2 + Ei>k Yi, À2 + (n - k)) 

(7.8) 

Using the marginal distribution of Y given in (7.8) we find 

We finish by presenting, in Theorem 7.1, the posterior expectations of the means, 

K~(Ol) and K~(02), given Y and Tx = k. These posterior expectations play a key role 

when evaluating the Bayes risk. Note that the DY-conjugate prior distributions lead 

to posterior expectations E(K~(Ol)ly, Tx = k) and E(K~(02)ly, Tx = k) that are linear 

functions of y. 

Theorem 7.1. For the likelihood (7.4) and DY-conjugate prior densities (7.6) and 

(7.7) 

Proof. We present the pro of for E(K~(Ol)ly, T x = k). The pro of for E(K~(02)ly, T x = 

k) is exactly the same. 

Since p(Olly, Tx = k), in (7.6), is a density, we have J p(Olly, Tx = k)d01 = l. 

Differentiating with respect to 01 we obtain d~l J p(Olly, Tx = k)d01 = O. By carrying 

the derivative under the integral sign we obtain the desired result. D 
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7.1.1 The Bayes Risk Based on Squared Error Loss 

We perform the same operations as in Section 6.3.1 to re-express the Bayes risk in 

terms of Rl, R2' R3, and R4' The only differenee here is that the before-and-after

change means and the densities used in the calculations are expressed in terms of the 

canonical parameters ()l and ()2' 

Below is the loss as a function of the canonical parameters; our loss has two terms 

sinee we are estimating two means: 

To obtain the Bayes risk R, we integrate with respect to P(yl()l, ()2) and p(el )p(()2). 

R = J J J (K~(el) - E(K~(el)ly)?p(ylel, ()2)P(()I)P(()2)dyd()ld()2 

+ J J J (K~(()2) - E(K~(()2)ly))2p(yl()l, ()2)P(()I)P(()2)dyd()ld()2 

Again, we simplify to get 

R = J Var(K~(()I)ly)p(y)dy + J Var(K~(()2)ly)p(y)dy. (7.11) 

In the same way identity (6.22) was used in Chapter 6, we now use identity (7.12) 

to divide expression (7.11) into four terms. In terms of the canonical parameters, we 

have 

Var(K~(())ly) = ETx=kly(Var(K~(())ly,Tx = k)) + VarTx=kly(E(K~(())ly,Tx = k)). 

(7.12) 

The term R re-expressed as the sum of RI, R2' R3, and R4 is 

R = J ETx=kly(Var(K~(()I)ly, Tx = k))p(y)dy 

+ J VarTx=kly(E(K~(()I)ly, Tx = k))p(y)dy 

+ J ETx=kly(Var(K~(()2)ly,Tx = k))p(y)dy 

+ J VarTx=kly(E(K~(e2)ly, Tx = k))p(y)dy. 
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Again the terms RI and R3 can be integrated, while the terms R2 and R4 le ad to a 

non-linear integral in y. 

By Fubini's theorem RI and R3 can be re-expressed as: 
n 

RI = L Eyl'Tx=k(Var(K~(Bl)ly, Tx = k))7rk (7.14) 
k=O 

and 
n 

R3 = LEyl'Tx=k(Var(K~(B2)ly,Tx = k))7rk. (7.15) 
k=O 

Since the calculations for RI and R3 are very similar, we evaluate the expres-

sion for Eyl'Tx=k(Var(K~(Bl)ly,Tx = k)) in detail, and comment on the result for 

Eyl'Tx=k(Var(K~(B2)ly,Tx = k)). Before finding Eyl'Tx=k(Var(K~(Bl)ly,Tx = k)), we 

give two Lemmas. 

Lemma 7.1. Given the model described by the likelihood (7.4), and the prior densities 

(7.1) and (7.2), we have 

Var(K~(Bl)ITx = k) = :1 E(K~(Bl)) and Var(K~(B2)ITx = k) = :2E(K~(B2)). 

Proof. We present the pro of of Var(K~(Bl)ITx = k) = ;1 E(K~(Bl)). The proof for 

the equality Var(K~(B2)ITx = k) = ;2E(K~(B2)) is exactly the same. 

We have assumed in our model that BI and Tare independent. Sinee Tx is a 

function of T and the design x, which is not a random variable, we have that BI is 

also independent of Tx. Therefore Var(K~(Bl)ITx = k) = Var(K~(Bl)). Now to show 

Var(K~(Bl)ITx = k) = ;1 E(K~(Bl)) we differentiate the equation J PV 1,À1 (Bl)dBl = 1 

twiee with respect to BI. That is, we carry the second derivative under the integral 

o 

Lemma 7.2. Given the model described by the likelihood (7.4) and the prior densities 

(7.1) and (7.2), we have 

VaryIT"~k (~Yi) = k(k + À,)V ar(K~(BJ)) 
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and 

VarylTX=k (2: Yi ) = (n - k)((n - k) + À2)Var(K~((12)). 
i>k 

Proof. We prove the result for Var yITx=k(Li::;k Yi)' The calculation for Var y\Tx=k (Li>k Yi) 

is exactly the same. We have the well-known identity 

Recalling that sinee the Yi'S, for i ::; k, are inde pendent and identically distributed 

given el, e2 and Tx = k, the above identity simplifies to 

Var ylTx=k (2: Yi) = E(h (k V ar yITx=k'(h (Yj)) + V ar(h (kEYITx=k,(h (Yj)), 
i::;k 

where j is any j less than or equal to k. 

Henee, we have, 

VarylTX=k (2: Yi ) = kE(h(K~(e1)) + k2Var(h(K~(e1))' 
i::;k 

Using Lemma 7.1, we have 

VarylTX=k (2: Yi ) = kÀ1Varel(K~(e1)) + k2Varel(K~(e1)). 
i::;k 

Upon simplification of (7.16), we obtain the desired result. To show 

(7.16) 

VarylTx=k (?=Yi) = (n - k)À2Vare2(K~(e2)) + (n - k)2Vare2(K~(e2)), (7.17) 
t>k 

we follow exactly the same steps. Of course, e2, JL2 and À2 are interchanged with el, 

ILl and ÀI and (n - k) appears in the equation instead of k, because there are (n - k) 

identically distributed y~s with i > k. o 

Theorem 7.2. Given the model described by the likelihood (7.4) and the prior densi-

r-' ties (7.1) and (7.2), we have EyITx=k(Var(K'(e1)!Y, Tx = k)) = À;~k Var(K~(e1)) and 

EyITx=k(Var(K'(e2)!Y, Tx = k)) = À2:C~-k) Var(K~(e2))' 
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Praof. Again, sinee the derivation of EyITx =k(Var(K'(02)ly,Tx = k)) mimics that of 

EYITx=k(Var(K'(Ol)ly, Tx = k)), we present the derivation of EyITx=k(Var(K'(Ol)ly, Tx = 

k)). 

Using the identity, 

Var(K~(Ol)ITX = k) 

= EyITx=k(Var(K~(Ol)ly, Tx = k)) + VaryITx=k(E(K~(Ol)ly, Tx = k)), 

we have 

Eyh=k(Var(K~(Ol)ly,Tx = k)) 
(7.18) 

= Var(K~(Ol)ITx = k) - VaryITx=k(E(K~(Ol)ly,Tx = k)). 

Recalling that 01 and Tx are independent, and substituting E(K~(Odly, Tx = k) from 

Theorem 7.1, equation (7.18) becomes 

(7.19) 

Using Lemma 7.2 and simplifying, we obtain the desired result. Following the same 

steps, we get a similar expression for EyITx=k(Var(K~(02)ly,Tx = k)) with O2, .À2 , and 

V2 interchanged with 01 , .À l , and VI and (n - k) interchanged with k. o 

We now have an analytical expression for RI + R3. This expression is of the form 

~~=o H(k) 7rk where H(k) = '\;~k Var(K~(Ol)) + '\2+~~-k) Var(K~(02)). 

Example 7.1. H(k) for Normal Data 

If our data points Yi have a normal distribution, then, as seen in Example 3.9, the D Y

conjugate prior distributions for the before-and-after-change canonical parameters are 

equivalent to normal prior distributions for the before-and-after-change means, which 

we will denote by /11 and /12. Denoting the hyperparameters for /11 as Pl and 0"1 and 
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(T2 (T2 

the hyperparameters for JL2 as P2 and a2 we have ÀI = -~, and À2 = ~. Furthermore, 
(Tl (T2 

it is obvious that Var(K~((11)) = ai and Var(K~((12)) = a~. Therefore, 

1 1 
H(k) = I k + I n-k' 

0'2 + (T2 0'2 + ~ 
1 1 2 2 

(7.20) 

Analytical expressions for R2 and R4 are, of course, unavailable. However, from 

Section 6.3.1 we know these two terms are concave over sn. In the next section we 

present numerical examples of the Bayes risk based on squared error loss for normally 

distributed data. 

7.1.2 Simulations 

We present three numerical examples based on Normal data. The first two examples, 

have two design points. We use only two design points because the dimension of 

the problem is small enough to easily plot the risk. Examples 7.2 and 7.3, illustrate 

the situation where the Bayes risk can be approximated by RI + R3, the generalized 

Lauter criterion function, under estimation of the before-and-after-means. This sit

uation arises when the differences in hyperparametric means is large relative to the 

hyperparametric and model variances. Under these circumstances, it can be shown 

that the integrands of R2 and R4 remain small. This observation is not enough to 

prove that R2 and R4 will be small when the means are far apart compared to the 

variances but it is suggestive that this is the case. In Example 7.4, we con si der a 

more realistic situation with five design points. AlI three of our examples demon

strate that the optimal design is ultimately a function of the hyperparameters and 

the changepoint prior distribution. 

We begin in Example 7.2 with model variances and hyperparameters such that 

the difference in hyperparametric me ans is small compared to the hyperparametric 

,?-, variances and model variances. In Example 7.3 we consider the opposite situation, 

where the model and hyperparametric variances are small compared to the difference 
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in the hyperparametric means. For Example 7.4 we consider model and hyperpara

metric variances such that the before-change variances are equal to the after-change 

variances. 

Example 7.2. Small Difference in Hyperparametric Means Compared to 

Variances 

In Table 7.1 and Figures 7.1, 7.2 and 7.3, we present the results of numerical simu

lations of the Bayes risk for the single-pa th model with variances ai = 2.5 and a~ = 3 

and hyperparameters Pl = 4.5, P2 = 4, a-i = 3 and a-~ = 2. We need conjugate 

normal prior distributions for the before-and-after-change means and the truncated 

log-concave normal prior distribution of Figure 5.1 is used for the changepoint prior 

distribution. The length of the interval T is 10 and the minimum distance between 

design points, d, is 2. 

From Table 7.1 we see that the Bayes risk is minimized by the design Ul. This 

table also shows us that RI is minimized by the design Uo and that R3 is minimized by 

the design U2. In the sum RI + R3, RI and R3 compromise and the sum is minimized 

at the design Ul. 

Figures 7.1, 7.2 and 7.3 plot RI + R3, R2 + R4 and R respectively. We see the 

linear forms of RI and R3 in Figure 7.1 and the concave form of R2 + R4 in 7.2. 

Finally, in Figure 7.3 we see the full concave Bayes risk R for these values of the 

model variances and hyperparameters. 

Example 7.3. Large Difference in Hyperparametric Means Compared to 

Variances 

In Table 7.2 and Figures 7.4, 7.5 and 7.6 we present numerical simulations of the 

Bayes risk for the single-path model with variances ai = 1.5 and a~ = l, and hyper

parameters Pl = 19, P2 = l, a-i = 1 and a-~ = 2. We used conjugate normal prioT 

distributions for the before-and-after-change means and the truncated log-concave nor-
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Uo 0.955 1.923 2.883 

Ul 1.397 1.193 2.590 

2.766 0.906 3.672 

0.140 

0.038 

0.219 

R 

3.023 

2.628 

3.891 

Table 7.1: Values from the numerical simulation for the designs in the set V. Note that due 

to the numerical simulation of R2+R4, and the region GfCKn ), these values are approximate. 

For example, clearly R2 + R4 should be 0 for Ul. 

Rl+R3 

?rI 

'1.0 .0 

Figure 7.1: The terms Rl and R3 for the single-path model with hyperparameters jll = 4.5, 

.~ jl2 = 4, ifi = 3 and if~ = 2 and variances (Ji = 2.5 and (J~ = 3. 
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0.6 

0,2 ?rI 

1.0 

Figure 7.2: The terms R2 and R4 for the single-path model with hyperparameters P,I = 4.5, 

P,2 = 4, a-r = 3 and a-~ = 2 and variances (Tr = 2.5 and (T~ = 3. 
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R 

0,2 

OA 7fl 

1.0 1.0 

Figure 7.3: The Bayes risk based on squared error loss, R, for the single-path model with 

hyperparameters /LI = 4.5, /L2 = 4, ai = 3 and a~ = 2 and variances (TI = 2.5 and (T~ = 3. 
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mal prior density of Figure 5.1 is used for the changepoint prior distribution. The 

length of the interval T is 10 and the minimum distance between design points, d, zs 

2. 

From table 7.2 we see that the Bayes risk is minimized by the design UI. We 

also see from this table that R2 + R4 is essentially zero over G f Cxn). Again, RI is 

minimized by the design Ua and R3 is minimized by the design U2' The sum RI + R3 

is minimized at the design UI. 

Figures 7.4, 7.5 and 7.6 plot RI + R3, R2 + R4 and R, respectively. We see the 

linear structure of RI + R3 in Figure 7.4 and that R2 + R4 are essentially zero in 

7.5. Finally, in Figure 7.6 we see how RI +R3 dominates the Bayes risk R, for these 

values of the model variances and hyperparameters. 

Design RI R3 RI +R3 R2+R4 R 

ua 0.451 1.886 2.336 0.000 2.336 

UI 0.608 0.661 1.269 0.000 1.269 

U2 0.943 0.438 1.381 0.000 1.381 

Table 7.2: Values from the numerical simulation for the designs in the set V. 

Examples 7.2 and 7.3 demonstrate that when the difference in the hyperpara

metric means is large compared to the magnitudes of the variances, the Bayes risk is 

approximated by RI + R3' That is, the generalized Lauter's criterion function and the 

Bayes risk based on the squared error loss are approximately equal in this situation. 

Example 7.4. Five Design Points 

To conclude, we present a numerical simulation with five design points. Here, our 

Bayes risk based on squared error loss criterion function for estimating the before-and

after-change means is a scalar function over a subset of a five-dimensional simplex 

and contains the six vertices of the simplex. We calculate the value of the Bayes 
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Rl+R3 

2,2 

7fl 

.0 

Figure 7.4: The terms RI + R3 for the single-path model with hyperparameters !lI = 19, 

!l2 = 1, al = 1 and a§ = 2 and variances (JI = 1.5 and (J§ = 1. 
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0.0 

7r1 
0.6 

1.0 1.0 

Figure 7.5: The terms R2 + R4 for the single-path model with hyperparameters Pl = 19, 

P2 = 1, ifI = 1 and if§ = 2 and variances O'I = 1.5 and O'§ = 1. Note that R2 + R4 is 

essentially zero for these parameter values. 
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R 

2,2 

?Tl 

1.0 .0 

Figure 7.6: The Bayes risk based on squared error loss, R, for the single-path model with 

hyperparameters fJ,1 = 19, fJ,2 = 1, o-I = 1 and (j~ = 2 and variances (JI = 1.5 and (J~ = 1. 
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risk for the designs {uo, Ul, U2, U3, U4, U5} in the set V which maps ta the vertex set 

Gf(V). By Theorem 6.4 we know that the optimal design is one of the designs in V. 

For comparison, we also compute the Bayes risk for the design where the points are 

equally spaced; we denote this design Udist. The design with 'Tf having equal components 

is denoted by Uprob' 

Again we use normally distributed data and conjugate normal prior distributions 

for the before-and-after-change means. The truncated normal prior distribution of 

Figure 5.1 is used for the changepoint prior distribution. The hyperparameters are 

!li = 5, !l2 = 4, ai = 1.5 and a~ = 1.5. The variances of the model are o-î = 2 

and (J~ = 2. The interval [0, Tl has T equal to 10. The minimum distance d between 

design points equals 0.5. The results are shawn in Table 7. 3. 

Design RI R3 RI +R3 R2+R4 R 

Uo 0.326 1.449 1.775 0.065 1.840 

Ul 0.382 0.845 1.227 0.024 1.251 

U2 0.465 0.599 1.064 0.012 1.076 

U3 0.599 0.465 1.064 0.014 1.077 

U4 0.845 0.382 1.227 0.024 1.251 

U5 1.449 0.326 1.775 0.064 1.839 

Udist 0.589 0.589 1.178 0.263 1.442 

Uprob 0.685 0.685 1.370 0.453 1.823 

Table 7.3: Values from the numerical simulation for the designs in the set V and the designs 

Udist and Uprob· 

As expected, the RI term is minimized by the design Uo placing aU observations to

wards O. Likewise, the R3 term is minimized by the design U5 placing all observations 

towards T. Bince the before-and-after-change hyperparametric and model variances 

are equal we see a symmetry in our results. The Bayes risks at Uo and U5 are equal, 
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as are they at Ul and U4, and at U2 and U3. Any difference is due to numerical error. 

In particular, we see that with the odd number of measurements both U2 and U3 are 

optimal designs. For completeness we provide results for Udist, where all points are 

the same distance apart, and for Uprob, where all points are an equal probability apart. 

We see that Uprob has a fairly high value for the Bayes risk, a value almost equal to 

the highest value obtained by Uo and U5' The design Udist, although not having as high 

a value as Uprob, still has a fairly high value for the Bayes risk. 

7.2 The Common Changepoint Multi-Path Prob

lem 

We consider now the multi-path changepoint problem where all subjects have a com

mon changepoint. As mentioned before, this assumption, although difficult to justify, 

may, in sorne cases, provide an approximation to the case for which the changepoints 

differ across subjects. We introduce random effects to allow subjects to have their 

own before-and-after-change means. The subjects' before-and-after-change means are 

normally distributed about hierarchical before-and-after-change means, respectively. 

We use the same design for all subjects. Our goal is to consider designs which provide 

the "best" estimates for the before-and-after-change hierarchical means. Again, the 

optimal design is found by minimizing the Bayes Risk based on squared error loss. 

As we will see, when the multi-path data are collapsed by averaging across subjects 

at each design point, the problem becomes a single-path changepoint problem with 

fixed correlation that does not depend on the design. Hence, all our single-path results 

from Chapter 6 apply to this common changepoint multi-path problem. 
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7.2.1 The Model 

We consider m subjects and take n measurements on each subject. We assume the 

observations on each subject are conditionally independent given their before-and

after-change random effect means. The common design used on all subjects is again 

denoted by x = (Xl, ... , Xn ). Let i index the m subjects (i.e. i = 1, ... , m) and let j 

index the n measurements (i.e. i = 1, ... ,n). The jth observation on the ith subject 

is denoted by Yij. With Tx = k we combine all observations on all subjects into the 

column vector y as follows. 

y = (Yu, ... , Y1k,···, Ym1,···, Ymk, Y1,k+1,···, Y1n,···, Ym,k+1,···, Ymn)'. (7.21 ) 

Let Y = (ylI, y2')' where y1 is the column vector of observations taken before the 

change 

y1 = (Yu, ... ,Ylk, ... ,Ym1, ... , Ymk)' (7.22) 

and y2 is the vector of observations taken after the change 

(7.23) 

Let fL1i and fL2i denote the before-and-after-change means for subject i respectively. 

For simplicity of notation we combine the random effect before-and-after-change 

means for all subjects into vectors denoted by ml = (fLu, ... , fL1m) and m2 = (fL21 , ... , fL2m). 

The before-and-after hierarchical means are denoted by ih and P2. 

The hierarchical structure of our model is as follows. Consider the ith subject; if 

the observation j is taken before the changepoint we have: 

Yij 1 fL1i cv N (fLli' ai) 

fLlilp1 cv N(P1' aD 
Pl cv N(fLr, aî*). 
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Otherwise, if the observation j on the ith subject is taken after the changepoint we 

have: 

YijlfL2i rv N(fL2i,(Ji) 

fL2i 1 il2 f'.J N (il2, iJ~) 

il2 rv N (fL;, (J~*). 

(7.25) 

We denote the common changepoint for all subjects by T and we represent the 

prior distribution of T by !(T). Again, the design measure is the probability mass 

function of the discrete random variable Tx . 

We assume that, given the random effect subject means ml and m2, the data y 

are conditionally independent of the population means ill and il2. Therefore, we have 

(7.26) 

Also, given each subject's before-and-after change me ans and the changepoint, all 

observations are independent. Henee, the likelihood is 

f (ylm" m" Tx = k) = fi Cu f (Yi; II'H) TI f (Yi; 11'''») . (7.27) 

Recall from (7.24) and (7.25) in our model the distribution !(Yij\fLli) is N(fLli, (Ji) 

and the distribution !(Yij\fL2i) is N(fL2i, (J~). 

The parameters for the before-change random effect means are conditionally in

dependent given the hierarchical before-change mean. Henee, 

m 

!(ml\ill) = II !(fLli\fId· (7.28) 
i=l 

Similarly, 
m 

(7.29) 
i=l 

Sinee we ultimately wish to make inferenee about the hierarchical means ill and il2, we 

begin by integrating out the random effect means ml and m2 to find !(Y\ill, il2' Tx = 

k). 
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Notice that without conditioning on the subject means ml and m2, the observa

tions for each subject need not be independent. In fact, the covariance matrix ~l of 

observations taken before the changepoint yI has diagonal entries a-î + aî and off

diagonal entries a-î. Likewise, the covariance matrix ~2 for y2 has diagonal entries 

a-~ + a~ and off-diagonal entries a-~. As shown in Section B.l of the Appendix, using 

e to represent a column vector of 1 's, we have, with an abuse of notation, 

m 

J(yIPl, P2, Tx = k) = II Nk(Ple, ~l)N(n-k) (P2 e, ~2)' (7.30) 
i=l 

Using yI, y2 and the Kronecker product 0, we can also express the density as 

(7.31) 
= Nmk(em 0 PIe, lm 0 ~l)Nm(n-k)(em 0 P2e, lm 0 ~2). 

Next, we show that by taking the average of our data over the m subjects at each 

design point, we obtain a single-path changepoint problem. That is, the vector of 

sample means of the m observations at each design point is a sufficient statistic for 

Pl and P2' We denote the column vector of sample me ans as y = (rh, . .. ,Yn)', where 

rh = ~ 2.::1 Yij is the average data collected at design point Xj' As calculated in 

Section B.2 of the Appendix, 

(7.32) 

Theorem 7.3. The common changepoint multi-path model is a single-path change

point model with beJore-and-after-change means Pl and P2 when the sequence y is 

considered. 

Proof. The result follows immediately from the form of JCgIPl,P2,Tx = k) in expres

sion (7.32). The prior distributions for Pl and P2 are N(J1i, ai2
) and N(J1;, ( 22). D 

Define the column vectors 

(7.33) 
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and 

-2 (- - )' y = Yk+l,"" Yn . (7.34) 

From the form of expression (7.32), given the parameters Pl, P2, and Tx = k, the 

averages 'fl taken before the change are independent of the averages 'fi taken after 

the change. In addition, the observations 'f/ have a fixed correlation between them, 

not depending on the distances between the design points (Xl, ... ,Xk). Similarly, 'fi 
also have a fixed correlation between them not depending on the distances between 

the design points (Xk+1' ... ,xn ). Since the common changepoint multi-path problem 

is a single-path changepoint problem with a correlation not depending on the design, 

aU our optimal design results from Chapter 6 apply. N ext we consider the Bayes risk 

based on squared error loss for estimation of the before-and-after-change hierarchical 

means. 

7.2.2 The Bayes Risk Based on Squared Error Loss 

From Theorem 7.3 we have a single-path changepoint problem for the sequence of 

averages y. Following the same steps as in Chapter 6 we de compose the Bayes risk 

based on squared error loss into the four terms RI, R2' R3 and R4 : 

R = J ETx=kly(Var(Plly, Tx = k))f(y)dy 

+ J VarTx=kly(E(Plly, Tx = k))f(y)dy 

+ J ETx=kly(Var(p2Iy, Tx = k))f(y)dy 

+ J VarTx =kly(E(P2Iy, Tx = k))f(y)dY· 

(7.35) 

The terms RI and R3 can be integrated, while the terms R2 and R4lead to a non-linear 

integral in y. 

To calculate the terms of the Bayes risk (7.35), we need the posterior expectations 
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and variances of Pl and P2 given y and Tx = k and the densities f(Tx = kif}) and 

f(y). We calculate the posterior expectations and variances of Pl and P2 given y and 

Tx = k in Appendix B.3. The densities f( Tx = kly) and f(y) are easily obtained using 

equations (7.36) and (7.37) once the density f(ylTx = k) is known. We obtain the 

density f(YITx = k) in Appendix B.4. Rence we have 

n 

f(y) = L f(tJlTx = k) 7rk (7.36) 
k=O 

and 

f( = kl-) = f(ylTx = k)7rk 
Tx Y f(f}) (7.37) 

7.2.3 Simulations 

We present two examples of the common changepoint multi-path problem. We use 

two design points so that the Bayes risk can easily be plotted, and we focus on how 

the magnitude of the risk changes as m, the number of subjects, increases. 

Example 7.5. Two Subjects 

In Table 7.4 and Figures 7. 7, 7.8 and 7.9 we present numerical simulations of the 

Bayes risk for the common changepoint multi-path model with two subjects, hyper

parameters /1r = 4.5, /1; = 4, ar2 = 3, a~2 = 2, ai = 2.5 and a~ = 3 and model 

variances ai = 3 and a~ = 3. The truncated log-concave normal prior distribution of 

Figure 5.1 for the changepoint prior distribution. The minimum distance d is 2 and 

T is 10. 

From Table 7.4 we see that the Bayes risk is minimized at the design UI' This 

table also shows that RI is minimized by the design ua, while R3 is minimized by the 

design U2. The sum RI + R3 is minimized at the design UI. These are the same 

features that we saw in Examples 7.2 and 7.3. 

Figures 7.7, 7.8, and 7.9 plot RI + R3, R2 + R4, and R, respectively. We see 

the linear structure of RI + R3 in Figure 7.7 and the concave form of R2 + R4 in 

129 



7.8. Figure 7.9 displays the complete Bayes risk R for these model variances and 

hyperparameters. 

Design RI R3 RI +R3 R2+R4 R 

ua 1.251 1.932 3.183 0.140 3.323 

Ul 1.467 1.971 2.664 0.0411 2.704 

U2 2.776 1.079 3.855 0.221 4.076 

Table 7.4: Values from the numerical simulation for the designs in the set V when there 

are two subjects. Due to the numerical simulation of R2 + R4 and of region Gf(Xn ), these 

values are approximate. For instance, clearly the R2 + R4 term should be 0 for Ul. 

Example 7.6. Three Subjects 

We present a similar example to Example 7.5, except that we now have three subjects. 

In Table 7.5 and Figures 7.10, 7.11 and 7.9, we present numerical simulations of the 

Bayes risk for this problem. 

From Table 7.5 we make the same observations as before: the Bayes risk is min

imized by the design Ul' Once more, RI is minimized at the design Ua and R3 is 

minimized at the U2 design. The sum RI + R3 is minimized at the design Ul. These 

are same same features that we saw in Examples 7.2, 7.3 and 7.5. 

Figures 7.10, 7.11 and 7.12 plot RI + R3, R2 + R4 and R respectively. We see 

the linear forms of RI + R3 in Figure 7.10 and the concave form of R2 + R4 in 

7.11. In Figure 7.12 we see the complete Bayes risk R for these model variances and 

hyperparameters. 

Evident from Table 7.5 and Figures 7.10, 7.11 and 7.12 is that adding a third 

subject reduces the magnitude of the risk. 
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Rl+R3 

1fl 

7r2 

Figure 7.7: The term RI + R3 for the common changepoint multi-path model with two 

subjects and hyperparameters lLi = 4.5, 1L2 = 4, ai2 = 3, a22 = 2, 0-1 = 2.5 and o-~ = 3. 

The variances of the model are al = 3 and a~ = 3. 

Design RI R3 RI +R3 R2+R4 R 

ua 0.979 1.915 2.894 0.114 3.008 

UI 1.759 0.997 2.173 0.031 2.204 

U2 2.734 0.878 3.612 0.129 3.741 

Table 7.5: Values from the numerical simulation for the designs in the set V for the com

mon changepoint multi-path subject when there are three subjects. Due to the numerical 

simulation of R2 + R4, and the region G,Cxn), these values are approximate. For instance, 

clearly R2 + R4 should be 0 for UI. 
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0.6 

?Tl 

7r2 

1.0 1.0 

Figure 7.8: The term R 2 + R4 for the common changepoint multi-path model with two 

subjects and hyperparameters /Li = 4.5, /L? = 4, O"î2 = 3, 0"22 = 2, a-r = 2.5 and a-~ = 3. 

The variances of the model are O"I = 3 and O"~ = 3. 
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R 

4.0 

TrI 

1.0 1.0 

Figure 7.9: The Bayes risk based on squared error loss R for the common changepoint 

multi-path model with two subjects and hyperparameters tti = 4.5, tt2 = 4, O"i2 = 3, 

(T~2 = 2, aI = 2.5 and a~ = 3. The variances of the model are o-? = 3 and O"~ = 3. 
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3,5 

0,2 

0.4 7rl 
0.8 

Figure 7.10: The term Rl + R3 for the common changepoint multi-path model with three 

subjects and hyperparameters ftÎ = 4.5, ft'2 = 4, O"i2 = 3, 0"'22 = 2, a-i = 2.5 and a-~ = 3. 

The variances of the model are O"r = 3 and O"~ = 3. 
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0.6 

0.6 7T'1 

1.0 1,0 

Figure 7.11: The term R2 + R4 for the common changepoint multi-path model with three 

subjects and hyperparameters J-li = 4.5, J-l2 = 4, (Ji2 = 3, (J'2 2 = 2, aI = 2.5 and ai = 3. 

The variances of the model are (JI = 3 and (Ji = 3. 
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7f1 
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Figure 7.12: The Bayes risk based on squared error 10ss, R, for the common changepoint 

mu1ti-path mode1 with three subjects and hyperparameters ILi = 4.5, IL'2 = 4, O"i2 = 3, 

0";2 = 2, ar = 2.5 and a? = 3. The variances of the mode1 are O"r = 3 and O"? = 3. 
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Chapter 8 

Optimal Design for the Multiple 

Changepoints Multi-Path Problem 

We consider the multiple changepoints multi-path problem. This problem is exactly 

like the corn mon changepoint multi-path problem of Section 7.2, except that each 

subject has his or her own changepoint. For instance, in the motivational blood 

pressure example in Chapter 1 of this thesis, the treatment is not likely to take effect 

at exactly the same time in aIl subjects. 

As in the common changepoint multi-path problem, we have hierarchical before

and-after-change means. Subject random effect before-change me ans are normally 

distributed about the hierarchical before-change mean. Likewise, subject random 

effect after-change me ans are normally distributed about the hierarchical after-change 

mean. Conjugate normal prior distributions are assigned to the before-and-after

change hierarchical means. The random variables for the subject specifie ehangepoints 

are independent and identically distributed. 

The work in this chapter is preliminary and, unlike previous chapters, we do not 

have complete optimal design results. We include this chapter because it addresses 

optimal design for the multi-path situation of Joseph et al. (1996), which motivated 
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Example 1.1. We use the squared error loss Bayes risk for the three optimal design 

problems in this chapter. 

The first problem we consider is to find the optimal design when the goal is to 

estimate the proportion of subjects who do not undergo a change. For instance, in 

Joseph et al. (1996), a blood pressure treatment was administered to many people 

and the treatment had no effect on a proportion of the people. Interest may lie in 

estimating the proportion of the population unaffected by the treatment. 

Similarly, we also consider optimal designs for estimating the proportion of sub

jects who undergo a change in a specifie interval. Returning again to the blood 

pressure example, we might be interested in estimating the proportion of people af

fected by the treatment during a certain interval after it was administered. That is, 

if the treatment was administered at time tl we might wish to estimate the number 

of people affected in the interval [tl, t 2]. 

It is unclear whether or not the criterion functions for these two problems are 

concave functions of 7r. The complication is due to the facts that there are multiple 

changepoints and that measurements from different sequences can be correlated be

cause of the subject before-and-after-change random effect means. We consider the 

two optimal design problems of estimating the proportion of subjects who do not 

change and the proportion of subjects who change in a specifie subinterval in Section 

8.2 after we introduce the multiple changepoints multi-path model in Section 8.1. 

In Section 8.3 we consider the third optimal design problem of estimating the 

before-and-after-change hierarchical means. We show that the Bayes risk is not always 

concave and hence the optimal design is not necessarily one which places observations 

at the ends of the interval. 

As we will see, although it arises in a slightly more complicated fashion, the same 

design measure 7r is present in this multiple changepoints multi-path problem. We are 

taking repeated measurements on each subject and therefore must again keep design 
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points a minimum distance d apart. We are thus still minimizing over GfCxn) in this 

multiple changepoints setting. 

8.1 The Model 

We consider m independent subjects and take n measurements on each subject. 

We assume that a common design is used on an subjects, and denote it by x = 

(Xl, ... ,xn ). As before, design points are taken at least a distance d apart and hence 

the set of allowable designs is Xn
. Let i index the m subjects (Le. i = 1, ... , m) 

and let j index the n measurements (Le. j = 1, ... , n). Therefore we denote the jth 

observation on the ith subject by Yij' 

We denote the before-and-after-change means for subject i by /-Lli and /-L2i. For 

simplicity of notation, we combine the before-and-after-change means for an subjects 

into vectors denoted by ml = (/-Ln, ... , /-Llm) and m2 = (/-L21' ... , /-L2m)' We use the 

parameters Pl and P2 to denote the before-and-after population or hierarchical means. 

The changepoint for subject i is denoted by Ti and we use T, here, to represent the 

row vector of an changepoints. Letting 9 denote the multivariate changepoint density, 

we assume that the changepoints of the m subjects are identically and independently 

distributed with joint density 
m 

g(T) = II f(Ti)' (8.1) 
i=l 

To obtain the design measure for this problem, we combine the multivariate change-

point random vector T with the design X to create a new discrete multivariate random 

vector Tx . Taking Xo to be 0 and X n +1 to be T, the probability mass function for Txi, 

the ith component of T x , is given below: 

(8.2) 
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Henee density of Tx is 

As before we combine the design measure and the changepoint vector T, and 

re-express our design criterion functions in terms of the new multivariate discrete 

random vector Tx rather than T and x separately. Henee, we again recast the problem 

of minimizing the Bayes risk over the design spaee xn into one of minimizing the risk 

over the design measure spaee G f (Xn ). 

As in Section 7.2.1 we create the column vectors y, containing all observations, 

yI, containing observations taken before the change, and y2, containing observations 

taken after the change. Sinee each subject has his or her own changepoint, y, yI and 

y2 have the following forms: 

yI = (yu, ... ,Ylkl ... ,Yml, ... ,Ymk)', (8.4) 

and 

y2 = (YI,k+l, ... ,YIn, ... ,Ym,k+l, . .. ,Ymn)'. (8.5) 

The hierarchical structure of our model is as follows: consider the ith subject. If, 

jth observation on subject i is taken before the changepoint Ti we have: 

YijlJ1li rv N(J1li,aî) 

J1lil,u1 rv N(,ul' o-i) 

- N( * 2*) J11 rv J111 al . 

(8.6) 

Otherwise, if the jth observation on the ith subject is taken after the changepoint Ti, 

we have: 

Yij 1J12i rv N(J12i' a~) 

J12i 1,u2 rv N (,u2, o-~) 

,u2 rv N(J1;, a~*). 
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As with the common changepoint multi-path problem, we assume that given the 

subject mean vectors ml and m2, the data y are conditionally independent of the 

hierarchical means Pl and P2' That is, once we know the random effect means, the 

hierarchical means provide no extra information. Therefore, 

(8.8) 

Assuming that, given the before-and-after-change means, all observations are in

dependent, we have 

Further, assuming that the subject specifie means are conditionally independent, 

given Pl and P2, respectively, we have 

m 

!(mllpl) = il !(/-Llilpl) (8.10) 
i=l 

and 
m 

!(m2Ip2) = il !(/-L2ilp2). (8.11) 
i=l 

8.2 Estimation of Proportions 

Consider the design problems for estimating either the proportion of people who do 

not undergo a change or the proportion of people who change in the subinterval [tl, t2]. 

We wish to find optimal designs for estimating 

m 
(8.12) 

while fixing X n at T, and for estimating 

m 
(8.13) 
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while fixing x q at t l and Xq+l at t 2 . The design criterion functions based on the 

squared error loss Bayes risk are respectively, fixing X n at T, 

(8.14) 

and fixing x q at t l and xq+1 at t 2 , 

(8.15) 

Owing to the hierarchical before-and-after-change me ans and the random effects, 

although the Txi are independent, they are not conditionally independent, given the 

data y. (See Appendix C.3, where the density !(yITx = k) is presented). As a result, 

the expressions (8.14) and (8.15) are quite complicated functions of (7T'0, ... , 7rn -l) 

and (7ro, ... ,7rq-l, ir, 7rq+1,' .. ,7rn ) respectively. Furthermore, it seems likely that they 

are not concave functions of 7T'. If so, it could be that the optimal design is not one 

of the designs in the set V. 

8.3 Estimation of the Hierarchical Before-and-After

Change Means 

As in the common changepoint multi-path problem, we use the Bayes risk based on 

squared error 10ss to estimate the before-and-after-change hierarchical means. We 

decompose the Bayes risk into four parts (RI, R2' R3, R4) reproduced below for easy 

reference. Recall that the difference between the current setting and the common 
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changepoint multi-path problem is that T x is now multivariate. 

R = J Erx=kly(Var(j:hly, Tx = k))f(y)dy 

+ J Varrx=kly(E(j:hly,Tx = k))f(y)dy 

+ J Erx=kly(Var(ibly,Tx = k))f(y)dy 

+ J Varrx=kly(E(P2Iy, Tx = k))f(y)dy 

(8.16) 

It turns out that the optimal design is not always one of the designs placing the 

observations as far as possible at the ends of the observation interval. The Bayes risk 

for this problem is not always concave. 

In Appendix C.3 we calculate f(ylTx = k). From f(ylTx = k) we can easily find 

f(y) and f(Tx = kly), as shown below. 

f(y) = L f(ylTx = k)p(Tx = k) 
(kl, ... ,km) 

= L f(ylTx = k)7rkl ... 7rkm 
(kl, ... ,km ) 

f( = kl ) = f(ylTx = k)p(Tx = k) 
Tx Y f(y) 

f(ylTx = k)7rkl ... 7rkm 
f(y) 

In Section C.2 of Appendix C we calculate E(PIly, Tx = k), Var(pIly, Tx 

E(P2Iy, Tx = k) and Var(p2Iy, Tx = k). 

By Fubini's Theorem, we find 

RI = J Erx=kJy(Var(p,lly,Tx = k))f(y)dy 

L EyJrx=k Var(p,lly, Tx = k)7rkl .. · 7rkm· 
(kl, ... ,km) 

(8.17) 

(8.18) 

k), 

(8.19) 

The term R3 is found similarly. Furthermore, we find for this multiple changepoints 

multi-path problem that RI and R3 are no longer linear functions of 7r. In fact we 
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find that they are convex functions of 7r, and that the curvature increases with the 

number m of subjects. 

The terms R2 and R4 are very complicated functions of 7r and it is not clear 

whether they can be concave functions of 7r or not. Examples 8.1 and 8.2 provide 

situations where R2 + R4 are not concave. 

8.4 Simulations 

We consider two simple numerical examples with a single design point to investigate 

the Bayes risk based on squared error loss for estimating the before-and-after-change 

hierarchical means. In particular, we consider the concavity of the terms RI, R3, R2 

and R4 and we st rive to understand why the optimal design might not be one of the 

.~. designs in the set V. 

Example 8.1. One Design Point 

We took the model variances to be (Ji = 2 and d = 1 respectively, and the hyperpa

rameters to be (fi = 2, (fi = l, (Jt
2 = l, (J~2 = l, J.lÎ = 4, and J.l; = 1. The number 

of subjects was 3. As seen in Figures 8.1 (a) and (b) RI and R3 are slightly convex. 

From Figure 8.1 (c) we see that R2 + R4 is certainly not concave. In this example, 

the shape of the Bayes risk most closely resembles R 2 + R4. Note that even though 

the Bayes risk is not concave in this example, the optimal design will be one of the 

designs placing the design point at 0 or at T. 

In the next example, we take parameter and hyperparameter values which demon

strate that the optimal design may not be to position a measurement at 0 or T. That 

is, the optimal design places the measurement somewhere in the interior of the interval 

[O,T]. 

Example 8.2. One Design Point Here we took the same model and hyperparametric 

variances as in Example 8.1. However we took J.lÎ = 20 and J.l; = 1. The number 
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Figure 8.1: (a) RI, (b) R3, (c) R2+R4 and the (d) Bayes risk R based on squared error loss 

for the multiple changepoints multi-path model, with model variances o-I = 2 and o-~ = 1 

and hyperparameters a-I = 2, a-~ = 1, o-i2 = 1, 0-'22 = 1, /Li = 4, and /L'2 = 1 . 
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of subjects is three. From our observation in Chapter 7 (that RI + R3 dominates 

the Bayes risk when the hyperparametric before-and-after-change means are far apart 

compared to the variances), we expect the RI + R3 to dominate in this example. As 

seen in Figures 8.2 (a) and (b), RI and R3 are again slightly convex. From Figure 

8.2 (c) we see that R2 + R4 is essentially zero. Figure 8.2 (d) shows that the Bayes 

risk is approximately RI + R3' Here we have an example where the optimal design is 

to place the design point in the interior of [0, Tl. The exact placement of the design 

point would depend on the prior distribution for the changepoint. 

One might wonder if the optimal design that places a point in the interior of [0, Tl, 

is just an artifact of having a single design point. Hence we present a third ex ample 

below, with three design points. 

Example 8.3. Three Design Points Consider a multiple changepoints multi-path 

model with three design points and three subjects. We used the AMPL software to 

minimize RI + R3 taking all model variances and hyperparametric variances to be 

one. Since RI and R3 do not depend on the hyperparametric before-and-after means 

we assumed these means were far enough apart so that R2 + R4 was negligible. For this 

example the minimum was at (71"0, ?rI, ?r2, ?r3) = (0,0.5,0.5,0). The exact placement of 

the points depends on the prior distribution for the changepoint, although it is clear 

that the middle design point will be well into the interior of [0, Tl for most prior 

distributions on the changepoint. 

Next, using a single design point in Example 8.4, we illustrate why the optimal 

design would place a design point in the interior of [0, T]. 

Example 8.4. Consider the three designs in Figure 8.3. In the first design (a) 

all three measurements will be taken from the "/LI distribution", and in the third 

design (c) all three measurements will be taken fram the "/L2 distribution". The second 

design (b) is a compromise because, since the individual changepoints occur at different 
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Figure 8.2: (a) RI, (b) R3, (c) R2 + R4 (d) Bayes risk, R, based on squared error 10ss for 

the multiple changepoints multi-path model, with model variances ui = 2 and ui = 1, and 

hyperparameters (Ji = 2, (Ji = 1, ui2 = 1, U22 = 1, Mi = 20, and M2 = 1 . 
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(a) (b) (c) 

B 1 0 1 1 0 
CP T 0 CP T 0 CP T 

0 0 0 
0 CP T 0 CP T 0 CP T 
0 1 le 1 0 

0 CP T 0 CP T 0 CP T 

Figure 8.3: Three designs with one design point. (a) The design point is at O. (b) The 

design point is in the middle of the interval [0, Tl. (c) The design point is at T. 

times, it provides the opportunity to select measurements from both the ((/-li and /-l2 

distributions" . 

In general, we speculate that the optimal design will occasionally place a point 

in the interior of [0, Tl to even up the number of observations from the "/-li and 

/-l2 distributions". The strategy of placing an observation in the interior of [0, Tl 
obviously provides a greater benefit when there is a large number of subjects. This 

claim derives from our intuition and the fact that the curvature of the convex Ri + R3 

term increases with m. Note also that the common changepoint multi-path problem 

would not benefit from such a design because all subjects change at the same time. 

Hence, the number of observations coming from each of "the /-li and /-l2 distributions" 

is always a multiple of m in the common changepoint problem, regardless of the design 

used. 
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Chapter 9 

Summary and Future Work 

In this last chapter we provide concluding remarks concerning the thesis and consider 

avenues for future research. 

9.1 Thesis Summary 

The main results of this thesis coneern Bayesian optimal designs for the single-path 

changepoint problem. To summarize, we found, using decision-theoretic criterion 

functions, that the optimal designs for testing for a change and/or estimating the 

before-and-after-change means is one of the designs in V placing observations as far 

as possible at the ends of the interval [0, T], whenever the prior on the changepoint is 

log-concave. Likewise, the optimal design for testing for a change in the subinterval 

[tl, t2l is one of the designs placing observations as close as possible towards t l and 

t2 and possibly 0 and/or T. Sinee, in our model, we do not assume that the change 

occurs at a location where a measurement is taken, it is not possible to obtain the 

posterior distribution for the changepoint. Henee, we are unable to provide optimal 

designs for estimating the changepoint location. We stress that our optimal design 

results for the single-path problem apply for any distribution for the data and that 
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conjugate priors are not needed for the before-and-after-change means. 

As we saw in Section 1.2.2, design measures and convex optimization have played 

a large role in the subject of optimal design. Our single-path problem is no different 

sinee the design measure we introdueed provided us with concave criterion functions. 

Using techniques from differential geometry, we were able to prove, given a log-concave 

prior distribution for the changepoint that we minimize a concave criterion function 

over a subset of a simplex, that contains the vertices of the simplex. 

We concluded by considering the multiple changepoints multi-path problem. We 

found that even in terms of the design measure, the design criterion functions for 

estimating the before-and-after-change hierarchical means, are not always concave. At 

this point we are uneertain as to whether the design criterion functions for estimating 

the proportion of people who did not change and for estimating the proportion of 

people who changed in the subinterval [tl, t21 are concave. We presented specifie 

examples of the Bayes risk for estimating the hierarchical before-and-after-change 

means which are not concave. Renee the optimal design for the multiple changepoints 

multi-path problem are more complicated. Sinee we showed the common changepoint 

multi-path problem is really a single-path problem, the extra complication is due to 

multiple changepoints. 

9.2 Future Work 

We outline how our work could be extended, and suggest sorne other optimal design 

changepoint problems. 

9.2.1 Extensions to the Single-Path Optimal Design Problem 

Recall, that in this the sis we assume the observations to be conditionally independent. 

Sinee repeated measurements are taken on the same subject, we avoided between 
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observation dependence by assuming that observations are taken sufficiently far apart 

to ensure that they are roughly conditionally independent. A major advance would be 

to allow for dependence between the measurements based upon the distance between 

them. Unfortunately, the problem then becomes much more complicated. With the 

added dependence of the likelihood on the design, it is unlikely the design criterion 

function would be concave. Intuitively, there is a "tug of war". As we have seen, when 

estimating the before-and-after-change means, it is optimal to take the observations 

far from the changepoint and, hence, it is good to crowd the observations as close 

as possible towards the ends of the interval. However, when there is a dependence 

which is a function of the distance between the measurements, we would benefit from 

spreading the measurements out to obtain less inter-observation dependence. 

As mentioned in Section 1.1, often an instantaneous changepoint model is a good 

approximation to settings that display a graduaI change. A natural extension would 

be to consider the optimal designs for problems with a graduaI change. This could 

be done quite simply by introducing two changepoints with a change slope between 

them. We suspect that a multivariate design measure for the two changepoints similar 

to the one we proposed could be used in this problem. 

In the above problems the only solutions might be through numerical optimization, 

with hopefully, methods for confining the search for a optimal design to a manageable 

sub-region of the design space. 

Finally, we have observed when estimating the before-and-after-change me ans if 

the difference in the hyperparametric me ans is large compared to the hyperparametric 

and model variances, the Bayes risk can be approximated by RI + R3' Quantifying 

this observation appears to be difficult because R2 + R4 is rather complicated. 
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9.2.2 The Multiple Changepoints Multi-Path Problem 

The design criterion functions for the multiple changepoints multi-path problem do 

not seem to be concave in 7r. In fact, for estimating the before-and-after-change 

means, we have seen examples in which the design criterion function is definitely not 

concave. Therefore, we need to develop numerical techniques. One may ask whether 

the design measure presented in this thesis is useful for this. On the one hand, this 

design measure simplifies the Bayes risk. On the other hand, with this design measure, 

we minimize over the much more complicated region GfCXn ). 

9.2.3 The Biphasic Regression Problem 

Many changepoint problems arising in medicine have a change in regression slope. 

Such a problem was introduced in the Bayesian setting by Smith and Cook (1980) 

who investigated renal transplants. Other ex amples of a change-in-slope changepoint 

problem are discussed by Krolewski et al. (1995), Chu et al. (2005) and Belisle et al. 

(2002) who investigated diabetes, AIDS, and Alzheimers' disease, respectively. Since 

such regression problems arise frequently and since, in a medical setting, investigators 

often have control over where the measurements are taken, optimal designs for such 

biphasic regression problems are of great value. Upon reflection, we again see that 

there is a "tug of war". For regular regression without a changepoint, the optimal 

design for estimating the slope places observations towards the ends of the regression 

interval. Therefore when estimating the before-and-after-change slopes we would 

want to place observations near the begining of the interval, near the changepoint, 

and near the end of the interval. However, from the results in this thesis, we know 

that we usually want to avoid taking measurements near the unknown changepoint 

location. 
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9.2.4 The Cross-Sectional Data Changepoint Problem 

In sorne experiments such as IQ tests and sacrifice experiments, one cannot take 

repeated measurements on the same subject. Rence, each observation is taken on 

a different subject. Therefore, there is no need to keep measurements a distance d 

apart. Such problems are considered in Chapter 2 of Zhou (1997) where she modelled 

the observed data as coming from a mixture of two densities. Zhou (1997) proved 

that the optimal design will take measurements at 0 and T. This problem can be 

reformulated in terms of a design measure 7r as in the multiple changepoints multi

path problem. The Bayes risk for estimating the before-and-after-change means can 

again be divided into the terms RI, R2' R3 and R4. Since we do not need to keep 

points a minimum distance apart, we minimize over the simplex sn. As long as we 

have conjugate prior distributions, we can calculate RI + R3 analytically. We found 

RI + R3 is a linear function of 7r and, consequently, is minimized at one of the vertices 

of sn. If the term R2 + R4 is concave and zero at the vertices of sn, the optimal 

design could then be found exactly from the analytical expression of RI + R3. 
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Appendix A 

Remarks for Chapter 5 

A.l Remarks for Theorem 5.6 

Consider a single-path problem with either a Type 1, 2, or 3 log-concave prior distri

bution for the changepoint. We specify conditions for which we only need to consider a 

subset of V when using a concave design criterion function to find the optimal design. 

Type 1: If (n - k)d > (T - t) > (n - k - l)d, we only need consider the de

signs {Ua, ... , Un-k}. This is because Un-k+ l, ... ,Un an map to G f ( Un-k). 

Type 2: If (n - k)d < t < (n - k - l)d, we consider the subset {Uk, ... , un}. 

This is because Uo, ... , Uk-l an map to Gf(Uk). 

Type 3: If (n - k -l)d < (T - to) < (n - k)d and (n -l-l)d < tT < (n -l)d then 

the optimal design is one of {Un-k' . .. ,Ul}. 

Furthermore we may impose two conditions on the Type 3 prior distribution such 

that log-concavity is not required. 
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1) If tT > (n - l)d, (T - to) > (n - l)d and (tT - to) < (n - l)d, the optimal 

design is contained in V regardless of whether or not f is log-concave. 

2) If (n - k - l)d < (T - to) < (n - k)d, (n - l - l)d < tT < (n - l)d and 

(tT - to) < (n - k - l)d, the optimal design is one of {Un-k, ... ,uz} regardless of 

whether or not the prior distribution is log-concave. 

These remarks follow almost immediately from the derivations in Sections 5.3.1, 5.3.2, 

and 5.3.3 . 
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Appendix B 

Algebraic Details for Chapter 7 

We present details of the common changepoint multi-path problem of Section 7.2.1. 

B.l The Density f(ylp1' P2, Tx = k) 

f(Ylïll, ïl2' Tx = k) = J J f(ylml' m2, Tx = k)f(mllïll)f(m2Iïl2)dmldm2 

~ fi (1}l (J(YijIJLli, Tx ~ k)f(JLlili'l)dJLli) (B.1) 

x J II (f(YijlJ12i, T x = k)f(J12ilïl2)dJ12i )) 
j>k 

We begin by integrating J TIj::;k (f(YijlJ1li, Tx = k)f(J11ilïll)dJ1li) for a single subject 

i. The result is the same for all subjects. With T x = k, let Yt = (Yil' ... ' Yik)', the 

column vector of k measurements taken before the change on subject i. Recall e is a 

column vector of ones and 1 is the identity matrix. 
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(B.2) 

Once the random effect fLli is integrated out, the covariance matrix for the the vec

tor, yi, of observations, has equal diagonal entries and equal all off-diagonal entries. 

Consequently, its inverse also has equal diagonal entries and equal off-diagonal en

tries. From the evaluation of the integral ab ove , we identify the diagonal entries of 

the inverse of the covariance matrix as (~î(~~?t.?~) and the off-diagonal entries of 

the inverse of the covariance matrix as - (k~)1..!r). 
Using the inverse covariance matrix, we can find the covariance matrix itself. The 

covariance matrix has size k x k and has diagonal entries all equal to (Ji + (Ji and off

diagonal entries all equal to (JI. The form of the multivariate normal density arising 

from the integral is Nk(Ple, ~l), where ~l is the covariance matrix described above. 

Similarly, we find that the integral, J TIj>k (f(Yij\fL2i' Tx = k)!(fL2i\P2)dfL2i) integrates 
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to a N(n-k) (Ji2e, ~2) density, where ~2 has size (n - k) x (n - k) and diagonal entries 

iJ~ + (J~ with off-diagonal entries iJ~. 

Combining these results, 

m 

f(yIJiI, Ji2, Tx = k) = II Nk(Jile, ~1)N(n-k)(Ji2e, ~2) (B.3) 
i=l 

Equation (B.3) can also be expressed in terms of the Kronecker product as shown 

in expression (7.31) of Section 7.2.1. 

B.2 

To find the density f(f)IJiI, Ji2, Tx = k), we use the following well-know result: 

Lemma B.l. If Y rv Nq(f.-t,~) then Ay rv Np (Af.-t, A~A') where A i8 a px q matrix. 

Here, we need a m x mn matrix A such that Ay = fj. From (7.21) we see, upon 

inspection, that A is block diagonal, with two blocks on the diagonal: 

A= ~ [B 0] 
m ° C 

With Tk = k, the upper left block B is of size k x mk and the lower block C is of 

size (n - k) x (n - k). The matrix A is designed so that the rth row of A sums the 

rth observation of every patient. Specifically the 8th row of B will have ones in the 

columns lk + 8 for l = 0, ... , m - 1 and a zero in every other column. Likewise the 

8th row of C will have ones in the columns l( n - k) + 8 for l = 0, ... , m - 1 and zero es 

in every other column. 

Next we use equation (7.31) to identify the f.-t and ~ in y rv N(f.-t, ~), as in Lemma 

B.1, and calculate Af.-t and A~A'. From equation (7.31) with Tx = k, we see that the 

mean vector has mk entries of Jil followed by m(n-k) entries of Ji2. Therefore Af.-t has 

k entries of Jil followed by (n - k) entries of Jil. Also we can see from equation (7.31) 
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that L: is block diagonal with the first m blocks of size k x k having diagonal elements 

o-I + (JI and off-diagonal elements o-I. The next m blocks have size (n - k) x (n - k), 

diagonal elements equal to o-~ + (J~, and off-diagonal elements o-~. The operation 

reduces the mn x mn size of L: to the n x n size of AL;A'. This latter matrix sports 
0-2+0-2 0- 2 

two blocks. The first has size k x k and has _1_1 on the diagonals and -.l on the m m 

off-diagonals. CalI this first block 'El. The second block has size (n - k) x (n - k) 
0-2 +0-2 0-2 -and has ~ on the diagonals and ~ on the off-diagonals. CalI this matrix L;2. m m 

Therefore, the density f(Ylp1,P2,Tx = k) is expressible as, 

(BA) 

B.3 Posterior Means and Variances of Ji1 and Ji2 

For Tx = k, let f/ and fi be as defined in expressions (804) and (8.5). From equa

tion (BA) we see that f(ylp1, P2, Tx = k) = f(y1Ip1' Tx = k)f(y2Ip2' Tx = k) where 

f(y1Ip1,Tx = k) and f(y2Ip2,Tx = k) have Nk(P1e,'E1) and NCn-k)(P2e,'E2) densities 

respectively. Starting with f(P1IY, Tx = k) ex: J f(Ylp1, P2, Tx = k)f(JI1)f(P2)dP2, we 

find f(P1lyl, Tx = k) ex: f(y1Ip1' Tx = k)f(pd· Recall f(PI) has a N(!Li, (J;2) density. 

f(P1Iy\ Tx = k) 

( 
1 -2 2- * *2) -1 - '--1 -1 - !LI !LI !LI !LI ex: exp --(y - !LIe) L: (y - !LIe) + - - --+-2 1 (J*2 (J*2 (J*2 1 1 1 

_ ( 2 ('~-1 + _1 ) _ ('f;-1-1 + -1'~-1 + 2!L1) + (-l'~-l-I + !Li
2
)) - exp !LI e LJI e *2 !LI e I y Y LJI e ---;j;2 y LJI Y *2 

~ ~ ~ 

-2 m _ mYj!L1 -11--1-1 !LI 
( 

1 
( ( 

k 1 
) ( 

k - * ) ( *2) ) ) 
= exp -"2 !LI kO-I + (Ji + (Ji2 - 2/11 ~ Txo-I + (Ji + (J22 + Y L: y + (Ji2 

(B.5) 

From the above it is easily seen that 

~k ~yj 2 + J1Î 
E( - 1- - k) - j=l kit1 +0-1 ;;:P-!LI y, Tx - - mk 1 

kit2 +0-2 + ~ 1 1 1 

(B.6) 
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and 
1 

Var(j:hly,Tx = k) = mk 1 . 

ku2+0"2 + ? 1 1 1 

Similar calculations show that 

and 

~k mjh + /1>z 
E( - 1- T = k) = j=l (n-k)O"~+O"~ O"Z2 

fL2 y, x m(n-k) 1 

(n-k)O"~+O"~ + 0"2 2 

1 
Var(p2Iy,Tx = k) = -m-c(;-n--k:-:-)---l-. 

(n-k)O"hO"~ + o:p 

B.4 The Density f(ylTx = k) 

Taking notationalliberties, we have, using (B.4), that 

!(yITx = k) = J J !(yIPl, P2, Tx = k)!(Pl)f(P2)dPldp2 

= J Nk(Ple, f,l)!(Pl)dPl J N(n-k) (P2e, f,2)!(P2)dP2. 

(B.7) 

(B.8) 

(B.9) 

(B.1O) 

We begin by finding J Nk(Ple, f,l)!(Pr)dPl. First, we write out the kernel of 

Nk(Ple, f,l)f(Pl) and collect aIl the pi and Pl terms in expression (B.ll). 

exp (-~ (Pi Cr~2 + e/~lle) - P12 (e/~llyl + ~~) + yl/~llyl + :ir
2
)) (B.ll) 

Next, we integrate out Pl. We know our final distribution will be normal for yI. 

After integrating Pl out from the kernel we find that the distribution of yI given 

Tx = k is N k (l'ie, (EI' - ;I:~':!~) -1). Alter sorne calculation, we find that the 

(

- 1 f;-l ee'f;-l) -1 0"2+u2 
k X k covariance matrix, ~1 - ,~i \ , has diagonal elements _1_1 + cri2, 

e 1 e+;;y m 

and off-diagonal elements ~ + cri2. Similarly, we can carry out the same steps to 

show that f(y'ITx = k) is a N(n-k) (1'2C, ( E;;' - ;~:~':!~) -J) density, with the 

2+-2 
covariance matrix having diagonal elements, 0"2 m0"2 + cr~2, and off-diagonal elements, 
-2 
0"2 + cr*2 
m 2 . 
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Appendix C 

Algebraic Details for Chapter 8 

C.l The Density f(ylih, !l2, Tx = k) 

We first find f(ylpl' P2, Tx = k). The expression, f(ylpl' P2, Tx = k), is then used to 

calculate f(YITx = k). 

f(ylill, P2, Tx = k) = J J f(ylml' m2, Tx = k)f(mllpl)J(m2Ip2)dmldm2 

= fi (J ;TI (J (y,; 1 l'li , T xi = k,)! (l'Ji 11'1)dl'li) 

x J II (f(Yijlp2i' Txi = ki)f(P2iIP2)dP2i)) 
J>ki 

(C.1) 

We begin by integrating J TIj:Ski f(Yijlpli, Txi = ki)f(Plilpl)dpli. As in Appendix B.1 

we denote the ki observations taken before the change on subject i by yI. That is , 

yI = (Yil" .. , YikJ. Letting e represent a column vector of ones of length ki and l a 
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ki X ki identity matrix we have. 

(C.2) 

Knowing that once the random effect J1lj has been integrated out the covariance 

matrix for the Y;, has equal diagonal entries and equal off-diagonal entries implies 

that its inverse will also have equal diagonal entries and equal off-diagonal entries. 

From (C.2), we identify the diagonal entries for the inverse of the covariance matrix 

as (Ck;~I)~~+~~) and the off-diagonal entries for the inverse of the covariance matrix 

as _ (J(i k ;~hr2i) . 
,{Ji {Ji 

From the inverse of the covariance matrix we can find the covariance matrix itself. 

The covariance matrix has diagonal entries aU equal to (fi +o-I and off-diagonal entries 

aU equal to (fi. Rence the form of the multivariate normal density arising from the 

integral is N ki (p,le, ~I), where ~I is the covariance matrix described above. Similarly, 

we find that J I1 j>ki f(YijlJ12i' Txi = ki )f(J12ilJ12)dJ12i reduces to a N Cn- ki ) (P,2 e, ~2) den-
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sity, where ~2 has diagonal entries iJ~ + O"~ and off-diagonal entries, iJ~. In summary, 

for notational brevity, we write, 

m 

f(ylïlbïl2,Tx = k) = II Nki(ïlle,~1)N(n-ki)(ïl2e,~2). (C.3) 
i=l 

C.2 Posterior Means and Variances of Pl and P2 

Startingwithf(ïlllyl,Tx = k) ex: J f(yllïll,ïl2,Tx = k)f(JI1)f(ïl2)dïl2wefindf(ïlllyl,Tx = 

k) ex: f(yllïll, Tx = k)f(ïll) where f(yllïll' Tx = k) = rr;:l Nki (ïll e, ~d and f(ïll) = 

N(J1i,O"i2
). Therefore, we find 

From (C.4), we see that, 

(C.5) 

and 

(C.6) 

Similarly, for ïl2 we find, 

(C.7) 
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and 

(C.8) 

C.3 The Density f(ylTx = k) 

f(ylTx = k) = J J f(ylp1' P2, Tx = k)f(P1)f(P2)dP1dp2 
(c.g) 

= J fI Nki (P1 e, L,1)f(P1)dP1 J fI N(n-ki) (P2e, L,2)f(P2)dp2 
i=l i=l 

We start by finding J n:1 Nki(P1e, L,1)f(pddP1' First, we re-express the term 

n:1 Nki (P1 e, L,1)f(P1) in vector form to simply our calculations. Let M be the 

diagonal matrix with the first k1 entries k i+ 2, the next k2 entries k J+ 2, etc. Fi-
10"1 0"1 20"1 0"1 

nally, let E be a block diagonal matrix with m blocks. The ith block is of size k i x k i 

Integrating out Pl, this expression becomes 

( )
~ 

a2 ~ 2rr ~ 1 
m (1) ( ) L:~ ds+ 1 

il 
,-1 ki"l +<71 -;;r 

k· 1 

i=l (27r)~ laiIl(o-iki + aî)1/2(27rai2)'ï 

1 M I M 2M-1 * 1 1 2 -1 e e 1 1 1 O"i 2 J.-t1 ( ( ~ )) 
( I:i~l "'"1+"1 + "1" ) I:i~J "'"I+<>I + "1" 1 

x exp - '2 y ( a 11) - E - m kj _1_ Y + Y m kj _1_ e + a*2 

(C.10) 

Since the inverse of the covariance matrix is ((ai 1)-1 - E - m Me~eM 1)' 
L: i=l k .,,2'+<72 +;;:z. 

'1 1 1 

the covariance matrix has a form with equal diagonal entries, ai + o-I + ai2. There 
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is a block diagonal component to the matrix with blocks of size ki for i = 1, ... ,m. 

The off-diagonal components in these blocks are (Ji + ar2
. An other entries in the 

covariance matrix are ar2• Therefore with e as a column vector of ones and I:i 

the covariance matrix described ab ove , we have found that yi rv N(l.:Z';,l ki) (/Li e, I:i). 

Similarly, with I:; the same form as I:i but with blocks of size n - ki , and entries 

with subscripts 2 instead of 1 we find that y2 rv N(l.:Z';,l (n-ki)) (/L;e, ~;). The product 

of these densities describes the posterior density f(ylTx = k). 

(C.ll) 

Note that, even if taken on different subjects observations are correlated if either 

they are both taken before the change or both taken after the change. This correlation 

is induced by the common hierarchical means Pl and P2, respectively. 
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