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Abstract 
Mechanical milling (alloying) is one of the non-equilibrium techniques used to 

prepare alloys with exceptional properties. This technique was employed in this 

research to develop a new class of AI- and Mg-based nanocomposite alloys using 

SPEX high energy milling. These nanocomposites are characterized by the dispersion 

of nanocrystals in an amorphous matrix. Zirconium was added to the Al-Mg alloys for 

the purpose of promoting glass formability. As-milled samples were annealed at 

400°C for 1 hour to investigate the thermal stability of the nanostructure. The phase 

evolution of the resulting alloys was studied using XRD and TEMlEDS, which 

showed a strong dependence of the resulting metastable phases on the starting alloys 

compositions. 

The nanocomposite structure was developed at Zr concentrations of 20 and 35 

at.% regardless of the Al/Mg ratio and with sorne traces of oxidation. However, the 

amount of amorphous phase was varied in each case depending on the Al 

concentration into the alloy, since in low Al-containing alloys the amount of 

amorphous phase was less pronounced. It was found that higher Zr concentrations will 

lead to greater refinement of the nanostructure. These nanocomposites showed 

improved mechanical properties, in terms of higher hardness values, in addition to 

improved thermal stability. The improvement in thermal stability was attributed to the 

presence of Al3Zr which proved to contribute significantly to retarding grain growth 

via grain boundary pinning. 

Additionally, the employment of mechanical alloying was beneficial in producing 

AhZr in the cubic Lh ordered structure which improves the ductility of the alloy. 

Moreover, the homogeneity ranges of y-AI12Mg17 and AhZr were extended 

significantly due to the nature of the non-equilibrium processing. In this research, the 

alloy with the maximum hardness was Al4oMg25Zr35, which has an average hardness 

value close to 780 HV and average crystallite size of about 10 nm. A common 

observation in the alloys that showed a higher hardness values combined with 

improved thermal stability, is that they contain higher Al and Zr concentrations. 
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Résumé 

Le broyage mécanique est une technique hors équilibre qui permet la fabrication 

de nouveaux alliages avec des propriétés exceptionnelles. Lors de cette recherche, un 

broyeur SPEX 8000 a été utilisé pour développer une nouvelle classe de 

nanocomposites à base d'aluminium et de magnésium. Ces nanocomposites tirent leur 

spécificité de leur dispersion de nanocrystaux dans une matrice amorphe. Du 

zirconium a été ajouté aux alliages d'aluminium et de magnésium pour promouvoir 

l'amorphisation. Les échantillons de poudres broyées ont été recuits à 400°C pour 1 

heure pour évaluer la stabilité thermique des différentes phases. Leur évolution a été 

caractérisée par diffraction par rayon-X et par MEBIEDS. TI fut démontré que les 

phases métastables obtenues dépendent fortement de la composition des alliages de 

départ. 

La structure nanocomposite a été formée avec des concentrations en zirconium de 

20 et 35at. %, peu importe le ratio Al/Mg. Par contre, la quantité de phase amorphe 

formée varie selon la quantité d'Al dans l'alliage, la phase amorphe étant plus 

importante avec une plus grande concentration d'Al. Dans tous les cas, une certaine 

contamination d'oxygène était présente. TI a aussi été démontré qu'une concentration 

plus élevée de Zr mène à un plus grand raffinement de la nanostructure et à des 

valeurs de dureté plus élevées. Ces composites contenant plus de Zr ont de meilleures 

propriétés mécaniques, en terme de dureté, en plus d'une stabilité thermique accrue. 

Cette dernière est attribuée à la formation de AhZr, qui contribue significativement à 

retarder le grossissement de grain par l'ancrage des joints de grain. 

En plus, l'utilisation de l'alliage mécanique a permis la formation de AhZr 

cubique Lb ce qui améliore la ductilité de l'alliage. Aussi, les plages d'homogénéité 

des phases y-Al12Mg17 et AhZr ont été fortement étendues par la nature hors équilibre 

du procédé. Dans cette étude, l'alliage avec la dureté la plus élevée est le 

A14oMg25Zr35, avec une dureté moyenne proche de 780 HV et une taille de cristallites 

d'environ 10 nm. TI fut observé que tous les alliages démontrant une dureté élevée 

ainsi qu'une stabilité thermique accrue contenaient des concentrations d'Al et de Zr 

élevées. 
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Chapter 1 

Introduction and Objectives 

1.1 INTRODUCTION 

Aluminium-magnesium-based alloys represent the alloys of choice in many 

automotive, aerospace and structural applications. They offer combined benefits of 

high strength and light weight (high specifie strength) in addition to maintaining good 

corrosion resistance by adding a suitable amount of Al that promotes protective 

oxidation. The development of new AI-Mg-based alloys with improved properties is 

essential to meet the challenges and demands for higher performance alloys. This can 

be achieved by choosing the right constituents combined with a suitable processing 

techniques. The mechanical and physical properties can be improved significantly by 

employing non-equilibrium processing techniques which promote the formation of 

non-equilibrium phases, such as intermetallics and solid solutions. One of the simplest 

and most versatile techniques is Mechanical Alloying (MA). 



,-

Introduction and Objectives 2 

Mechanical alloying is a novel and simple powder metallurgy processing 

technique that facilitates the development of non-equilibrium materials with 

remarkable properties. In general, alloying is achieved by repeated cold welding and 

fracturing of powders, when placed in a mill. It can be used to produce metastable 

phases and to extend solid solubility limits yielding materials with nanometer-grain 

sizes and, hence, improved properties. This technique has been employed successfully 

in the fabrication of Al-Mg alloys and has led to the production of new alloys with 

exceptional properties. It can also be used to develop new classes of nanocomposite 

materials which were introduced in the 1990' s. 

These nanocomposites were initially synthesized by Rapid Solidification (RS), 

another non-equilibrium processing technique. The term nanocomposite refers to their 

structural characteristics, which are similar to the well-known composite materials but 

with dispersed particles at the nanometer sc ale embedded into an amorphous matrix. 

They offer remarkable properties over conventional materials, in particular, at elevated 

temperatures. Nevertheless, no AI-Mg-based nanocomposite has been developed using 

MA starting from metallic powders. 

To yield Al-Mg nanocomposites of similar characteristics, the addition of a temary 

transition metal seems to be necessary to promote the formation of an amorphous 

phase. In this research, Zr represents the element of choice since it enhances glass 

formability, improves fatigue corrosion cracking resistance and retards natural aging. 
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The addition of a glass former, like Zr, can be of great benefit in developing AI-Mg­

based nanocomposites and providing sorne additional properties. In fact, only very 

little work has been reported on the effect of Zr addition to mechanically alloyed AI­

Mg alloys and no work was pub li shed on the possible formation of AI-Mg-based 

nanocomposite materials. Most of the work published on Zr addition was directed to 

liquid processing routes and little or no information is available on the processing of 

Zr-containing alloys via solid-state synthesis. 

1.2 AIM OF THIS WORK 

The mam objective of this project is to develop AI-Mg-Zr nanocomposite 

materials via solid-state synthesis (mechanical alloying). These nanocomposite 

materials have structural characteristics similar to the well-known composite materials 

but with nanocrystalline grains embedded in an amorphous matrix. The study of phase 

evolution of these nanocomposites and the effect of variable Zr concentrations on the 

final microstructure will be carried out using a variety of characterization techniques; 

namely, XRD and EDS/TEM. The thermal stability of the developed nanocomposites 

will be evaluated via isothermal annealing. 

Additionally, the effect of alloys' compositions and the formation of a 

nanocomposite structure on mechanical properties will be evaluated via hardness 

measurements. Alloys powders will be compacted in order to facilitate mechanical 

testing. Moreover, the extension of homogeneity ranges of sorne metastable phases 
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will be studied as the application of non-equilibrium processing yields alloys and 

intermetallics beyond their equilibrium homogeneity ranges. Finally, the composition 

of the alloy combining the highest hardness value in addition to improved thermal 

stability will be presented at the end of this research. 



-
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Chapter 2 

Literature Review 

2.1 MECHANICAL ALLOYING (MA) 

2.1.1 Non-equilibrium Processing Techniques 

Mechanical Alloying (MA) or milling is one of the non-equilibrium processing 

techniques that can facilitate the formation of metastable phases, i.e. phases that are 

stable under certain conditions. To explain the process from an energy perspective the 

following schematic (Figure 2.1) is provided. As observed, the free energy of the 

system "G" varies at each stage of the process. The energy is brought initially from the 

stable level Go to a higher (and unstable) level G2 and then quenched rapidly to a 

lower level GI to maintain the metastable phases that lead to the advantageous and 

novel properties. [1] 
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Figure 2.1: The variation of free energy "G" in non-equilibrium techniques [1]. 
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Non-equilibrium is referred to as a systematic departure of the material from the 

equilibrium state, which can be attained in many processing techniques, and has been 

reviewed elsewhere [2] with particular emphasis on MA, plasma processing, and 

physical vapour deposition (PVD). In general, processing materials under non-

equilibrium facilitates: 

1. Producing fine dispersed second phases 

2. Extending solid solubility 

3. Refining the microstructure to nanometer scale 

4. Synthesizing novel crystalline phases 

5. Developing amorphous phases 
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6. Alloying elements that have large differences in melting points or involve 

complex solidification paths. 

7. Allowing chemical reactions at low temperatures 

8. Producing large quantities 
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It should be kept in mind, however, that in non-equilibrium techniques involving 

higher temperatures, partial retum to equilibrium condition can occur if cooling rates 

are relatively slow. Moreover, if a material under non-equilibrium conditions is 

exposed to high temperatures, the metastable phases might transform into stable 

phases that can degrade the properties of the material while in service. As compared to 

Rapid Solidification (RS), mechanical alloying leads to higher solid solubility values 

than RS. For instance, sorne solid solubility was achieved by MA for Ti-Mg system, 

where there was no detectable solubility by RS [2]. However, this mainly depends on 

the system under study since it is not possible to generalize such an observation to all 

systems. 

2.1.2 Development and History of MA 

Mechanical Alloying (MA) is defined in literature as a dry powder metallurgy 

processing technique that involves cold welding, fracturing and rewelding of powder 

partic1es in a high-energy baIl mill. However, this definition is not accurate since low­

energy milling may produce good-quality alloying. The technique is used to 

synthesize a variety of alloy phases, inc1uding: 1) equilibrium 2) supersaturated solid 
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solutions (SSSS) 3) crystalline or quasicrystalline intermediate phases 4) amorphous 

or glassy alloys and 5) nanocrystalline materials. [3] 

From a historical point of view, this technique was used earlier to reduce the 

particle size of powders and in sorne mining applications. However, it was introduced 

at INCO's Paul D. Merica's Research laboratory in 1966 for new applications of 

developing alloys combining Oxide Dispersions (ODS) with y' precipitation hardening 

in a nickel-based superalloy intended for gas turbine applications. The idea was to 

combine the high temperature strength of the dispersed oxides with the intermediate 

temperature strength of the y' precipitates, while taking into account the required 

corrosion and oxidation resistance [4]. 

The process was called mechanical alloying at first by the patent attorney of INCO 

to describe the process although it was not considered as a "real" alloying process 

rather millinglmixing [5]. It is essential to distinguish at this stage between milling and 

alloying, as in milling there is no formation of intermetallics or compounds (pre­

alloyed intermetallics are used with the powder) rather there is only a change in 

structure and/or microstructure [6]. 

In mechanical alloying, the alloying action occurs by the repeated weI ding and 

fracturing of the powders in a highly activated ball charge. The alloying proceeds via 

solid-state reactions which are triggered by the impact forces between milling balls 

and powder particles. It was widely accepted when the technique was introduced that 
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for the alloying process to take place it is necessary to have at least one ductile metal 

to promote bonding. However, sorne reports showed the possibility of alloying brittle­

brittle materials, in which the less brittle materials will act as binder in the alloying 

process [7]. 

From an industrial perspective, the tirst alloy prepared for commercial purposes 

was Ni-20Cr ODS (oxide dispersion strengthening) for the B-l bomber engine in the 

tirst stage vanes and bands. As a tirst commercial product, INCONEL MA6000 alloy 

was used as a turbine blade material. The story that led to the use of MA process in the 

production of precipitation hardening alloys and the tirst applications are discussed in 

details in the review provided by Benjamin. [5] 

Since the development of MA, there has been little research aiming to exploit the 

possible capabilities of this processing technique. However, the research and interest 

in MA grew signiticantly after the development of the tirst amorphous material in 

1983 using this technique [8]. Only then, researchers realized that MA holds a 

potential for the development of advanced and non-equilibrium alloys. Moreover, only 

at that time it was accepted to refer to this process as a "true" alloying. A summary of 

the important events and dates in the use of MA was provided by Suryanarayana in his 

comprehensive review on this process [1]. Table 2.1 summarizes those tuming points: 
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Table 2.1: Important events in the development of MA processing [1] 

Year 

1966 

1981 

1982 

1983 

1987/88 

1989 

1989 

Event 

Development of ODS nickel-base alloys 

Amorphization of intermetallics 

Disordering of ordered components 

Amorphization ofblended elemental powder mixtures 

Synthesis of nanocrystalline phases 

Occurrence of displacement reactions 

Synthesis of quasicrystalline phases 
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As mentioned earlier that there has been a growing interest in MA process and 

many research papers are published every year covering a wide range of applications 

and topics. Publications in the past 20 years could be in the order of 1000-2000 in 

joumals and conference proceedings in English language [9]. Quantitatively, Figure 

2.2 shows the number of publications in the field of MA in English language only up 

to the year 1994. Nevertheless, most of the published papers in the field of MA seem 

to be somewhat repetitions of each other, only in changing the types of alloys in the 

milling process, hence represent only little scientific contribution. Moreover, the 

scientific impact is very little since only few papers dealt with the science underlying 

MA. 
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Figure 2.2: Number of publications in MA until1994 [3]. 
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Figure 2.2 shows the dramatic increase in the number of publications after the 

introduction of the first amorphous phase using MA in 1981 and the emergence of 

mechanochemistry in 1989. Mechanochemistry is the given name to the alloying 

process which involves chemical reactions (displacement reactions). 

Mechanochemistry and the accompanying displacement reactions will be discussed in 

greater details later in this chapter. 

Mechanical alloying has many advantages as a processmg technique which 

inc1udes being simple, versatile, economically viable and enables the synthesis of 

novel alloys, i.e. alloying of otherwise immiscible elements. In addition to that, it 
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produces materials with improved properties compared with conventional methods. It 

should be kept in mind that mechanical alloying is a solid-state processing technique 

and therefore the limitations imposed by phase diagrams do not apply here. It also 

enables large scale production of up to 3000 lb (1250 kg). [1] 

The steps involved into the MA process can be summarized as: 

1. Loading powders into a sealed stainless steel vial under a protective argon 

atmosphere in a glove box. Loading the powder into an inert environment is 

essential since oxygen and nitrogen impurities might lead to the formation of 

undesirable oxides and nitrides. 

2. Adding a controlled amount of process control agent (PCA) about 1-2 % to 

prevent excessive cold welding, especially if powders of ductile materials are 

used. More information will be provided later on the importance and the use of 

PCA. 

3. Adding the powder material in measured percentages along with the grinding 

medium "milling balls". 

4. Adjusting the ball:powder ratio (BPR), which is one of the main parameters in 

reaching high intensity milling. 

As a result of milling/collisions, the powder interfaces which are impacted during 

the milling process become integral part of the particle (perfection of welding). Figure 

2.3 shows the layered structure resulting from milling two elemental powders [10]. 
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This structure is typical In most milling conditions and is analogous to layered 

composite materials. 

Figure 2.3: Resulting layered structure from milling [10]. 

With respect to the types of mills used in laboratory and indus trial practice, there 

exist many types of mills differing in their intensity, design, and powder discharge. 

The tirst type is a SPEX shaker mill, which is employed in this research, where a 

charge of 10-20 grams of powder can be processed at a time and it is commonly used 

in laboratories. Then cornes the planetary baIl mill (like the Pulverisette mill 

manufactured by Fritsch) where powders can be processed in more than one container. 

The planetary mill owes its names from the vial movement, analogous to planet-like 

motion. The recent mills from Fritsch are equipped with gas pressure and temperature 

measuring system (GTM) for in-situ data acquisition during milling. Another type is 

the Attritor mill in which powder up to 100 lb can be processed and is less energetic 

than the tirst two. It is also known as stirred baIl mill and manufactured by Union 
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Process. However, the time periods required for milling are shorter for the SPEX and 

Planetary mills and longer for the attritors. [3, Il] 

AlI the aforementioned mills are considered as dry milling equipments. In practice, 

milling can also be carried out at cryogenic (very low) temperatures in the presence of 

liquid medium "wet milling". The cryogenic medium is usually liquid nitrogen and the 

whole process is commonly referred to as cryomilling. However, the subject of 

cryomilling is not of our concem in this research and for more information, sorne very 

recent reviews [12] can be referred to. 

2.1.3 Role of Diffusion in MA 

Since mechanical alloying is performed at room temperature, it is essential to 

study the role of diffusion on the alloying process. In general, it is easier to nucleate 

metastable phases compared to equilibrium phases due to the relative simplicity of 

their crystal structures. In mechanical alloying, compounds can be formed by the 

enhanced diffusion due to the milling action and can grow at the low temperatures 

experienced by the powder. Structural defects such as grain boundaries and interfaces 

are believed to be responsible for the enhanced diffusivity of the powder. It is not 

confirmed yet if the mechanical stress plays any significant role in enhancing the 

diffusivity [9]. 
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In MA the continuous refinement of composite structures can be related to the 

decrease in reaction temperature. In other words, with further milling the interface 

layer decreases in thickness leading to faster reactions. When a compound has formed 

the addition al milling action will contribute in refining the structure further. As an 

example, SiC has been produced by MA by simply milling Si and C, since new 

interfaces are introduced continuously, as the milling progresses, which enhances the 

rate of diffusion. On the contrary, this is not possible by heating Si and C, since no 

new interfaces are created upon heating and only limited amount of SiC is produced. 

More specifically, the bulk diffusivity is low for Si and C and MA greatly enhances 

diffusion by introducing new interfaces. [9] 

Many studies have suggested that the progress of alloying in MA is attributed to 

the accelerated diffusion between metal powders. Factors affecting diffusion in such 

cases can be summarized as: the super-equilibrium vacancies as a result of the severe 

plastic deformation, flow of matter over grain boundaries because of high shear levels, 

and the adiabatic heating in slip bands. [13] 

2.1.4 Advantages of MA 

2.1.4.1 Extending Solid Solubility and Formation of Intermetallics 

In general, alloys that form metastable structures are desirable since they can be 

tailored to fulfill certain application requirements. For instance, supersaturated alloys 



Literature Review 16 

can exhibit good corrOSIOn resistance and high ductility [14]. The ease of the 

development of metastable materials through the simple solid-state reaction 

encouraged many materials' scientists to explore the MA technique [9]. As for MA 

technique, solid solubility extension is one of the main advantages. As stated earlier, 

in non-equilibrium processing techniques the rules of phase diagrams do not apply and 

phases could be formed at values that are not achievable under equilibrium conditions. 

Moreover, even in systems where no detectable solubility is observed, MA proves to 

be capable of forming sorne metastable phases. 

For instance, it was observed experimentally [14] that the solid solubility of Mg 

into Al can be extended to 18 at% for AhoMg3o and to 45 at% in Al50Mg5o alloys by 

employing MA, which are well beyond the equilibrium values. The obtained 

supersaturated alloys exhibit high ductility, good corrosion resistance and broad 

single-phase homogeneity range. Even if the thermodynamic conditions are satisfied 

for the formation of a solid solution, as indicated by the negative heat of mixing, only 

based on the kinetic conditions the formation of the SS can be assured [9]. 

In some reports, the extension in solid solubility was attributed to the temperature 

increase inside the vial that is thought to be as high as 400°C. However, researchers 

have reported different values for vial temperature rise and all values were determined 

based on di fferenti al scanning calorimetry (DSC) observations. No direct 

measurement of the internaI vial temperature has been reported and this is due to the 

difficulties encountered in inserting and maintaining a thermocouple during the high 
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intensity milling process. Moreover, it is difficult to detennine the collision 

temperature of the trapped powder due to the random nature of powder-ball and 

powder-wall collisions. 

Suryanarayana et al. [3] stated that the increase in solid solubility during MA may 

be explained by incorporating Hume-Ruthery rules. In fact, there exist many 

explanations (hypotheses) to the increase in solid solubility limits, but the widely 

accepted hypothesis is the one that relates to the fonnation of nanostructures during 

milling, since there is a large volume fraction of atoms residing in grain boundaries 

which enhances the diffusion and increases the solid solubility [15]. However, aB of 

the existing theories can not explain the observations in all systems. 

As for the fonnation of intennetallic phases, MA can promote as well the 

nuc1eation and growth of intennetallic compounds at low temperatures due to the 

enhanced diffusivity, which is reached by the introduction of structural defects [9]. 

The interest in intennetallics is due to the fact that they are promising materials for the 

use in high-temperature structural applications. However, the only draw back in 

fonning intennetaBics is their noticeable brittleness [16]. In general, the fonnation of 

either an intennetallic or a solid solution phase during MA depends mainly on the free 

energy of the competing phases [3]. 
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2.1.4.2 Grain Refinement 

Milling can facilitate the formation of materials with very fine grains (of 

nanometric size) up to certain limit. With further milling of a single phase elemental 

powder or an intermetallic compound the partic1e size will reach a minimum of 3-25 

nm or will undergo amorphization beyond this point, thus sets the limitations to the 

possible refinement in grains. The refinement of grain size can not continue and it is 

absolutely limited by the consequence cold welding. The reduction of grain size is also 

limited by the minimum grain size where no nuc1eation or propagation of cracks is 

allowed within grains. 

To explain the nanocrystalline formation, a mechanism similar to dynarnic 

recrystallization occurs during grain reduction. This is due to the fact that during hot 

working, grains are formed by the annihilation of dislocations and the transformation 

of subgrains into grain by grain rotation and subgrain boundary sliding. These grains 

maintain their nanometric size since the milling temperature is relatively low for grain 

growth to take place. The final grain size can be reached once equilibrium between 

dislocation accumulation and dynamic recovery is established. In other approaches, 

sorne experiments suggested that the minimum grain size is inversely proportional to 

melting temperature. However, this appears valid for sorne FCC crystals with Tm > 

1800 K but cannot be generalized. Sorne studies suggested that the nanograins 

nuc1eate and grow in a relatively slow rate due to the low temperature encountered 

during milling. [9] 
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The development of nanostructures by MA was explained by Koch [17] via several 

steps that can be summarized as: 

1. Localized deformation and increase in dislocation density. 

2. Movement of dislocations, annihilationlrearrangement to form a cell with 

nanometer scales. 

3. Random orientation of grains. 

2.1.4.3 Nanostructures Formation 

To start from the basics, it should be stated that materials are considered as 

nanostructured if the crystal size is in the order of few nanometers (typically 1-100 

nm) in at least one dimension. They can be classified into: 

1. equiaxed: called crystallites (3D) 

2. filamentary (2D), or 

3. lameIlar: and referred to as layered nanostructure (ID) 

The reduction in gram size to the nanometric sc ale off ers many advantages, 

including: high strength, improved soft magnetic properties and greater processing 

versatility [18]. Nanostructured materials feature enhanced properties like: increased 

strengthlhardness, enhanced diffusivity, improved ductility/toughness, reduced 

density, reduced elastic modulus, higher electrical resistivity, increased specific heat, 

higher thermal expansion coefficient and lower thermal conductivity [19]. 
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Along with MA, nanostructured materials can be synthesized using a variety of 

techniques such as: 1) inert gas condensation, 2) electrodeposition, 3) sputtering, 4) 

crystallization of amorphous phases, 5) rapid solidification, and 6) chemical 

processing. However, it is important to mention that it has been reported [9] that the 

formation of nanograins in MA is a result of the numerous nuc1eation events of the 

limited growing phase and not a result of the fracturing and cold welding actions. 

Among the many aforementioned processing techniques, mechanical alloying is 

preferred for the formation of nanograin materials for many reasons which inc1ude: its 

simplicity, relatively low cost, applicability to any c1ass of materials, and the ability to 

scale up to tonnage quantities [3]. Sorne problems may arise while using MA which 

inc1ude possible contamination from the milling media or atmosphere, and the need of 

compacting powders without grain coarsening. 

Based on sorne TEM observations, Koch [17] confirmed that the crystallite size 

decreases continuously with milling time. As of milling energy, previous results have 

indicated that the final crystallite size does not depend on energy, since comparable 

grain sizes have been obtained from both a shaker mill and conventional low energy 

baIl mill. However, milling energy affects the kinetics of the process with processing 

time being several orders of magnitude higher in low energy milling. Crystallite size 

can be assessed using either direct TEM observation or X-ray broadening 

measurements. The latter can be performed using the Williamson-Hall method [20] or 



Literature Review 21 

root-mean-square (rms) strain from X-ray broadening using the Scherrer formula. 

However, direct observation using TEM gives more precise and reliable values. 

It was stated that nanograins could be stable which might be due to the uniformity 

of grain size (narrow grain size distribution), inclusions and pinning by solutes. In the 

previous paper by Koch [17], the formation of nanocrystalline materials from the 

amorphous state was discussed. It is useful to keep in mind that in nanocrystalline 

materials a substantial fraction of atoms resides in the interfaces (it could reach 50% 

for 5 nm grains), hence, properties are greatly affected by the interfacial structure. In 

general, nanostructured materials are considered as in metastable state since the grain 

boundaries are relatively unrelaxed. 

2.1.4.4 Amorphization by MA 

One of the main discoveries that resulted in an increased interest in MA was the 

development of amorphous phases from crystalline elemental powders. As stated 

earlier, the first amorphous material obtained by MA from blended powders was the 

Ni60Nb40 compound by Koch et al. in 1983 [8]. It has been reported elsewhere that 

amorphization represents one of the mostly reported events in MA research [3], since 

it seems to be possible to fabricate amorphous alloys by MA when appropriate milling 

conditions are met. Amorphous alloys can also be produced by rapid solidification and 

rapid condensation of mixed metal gases. However, for MA, it is interesting how easy 

it is to pro duce metastable phases by just milling powders in the solid state. 
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To start from basics, three possible products can fonn when milling two elemental 

powders A & B: 

1. Amorphous phase 

2. A(B) or B(A) SS, and/or 

3. AxBy intermetallic compounds 
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The amorphous phase can nucleate if its kinetic conditions are more favourable 

over the formation of other metastable phases. There are no bases that would 

guarantee the formation of an amorphous phase but if the milled alloy is an easy glass 

former through RS then the formation of an amorphous phase by MA can be 

predicted. In the process of producing an amorphous phase, it is necessary to satisfy 

the kinetic as weIl as the thennodynamic conditions. In tenns of thennodynamics, the 

Gibbs free energy of the starting powder should be greater than that of the amorphous 

phase. For the kinetic conditions, they mainly depend on the difficulty of fonning 

intermetallic compounds and how restrictive the environment is. [9] 

At the onset of the milling process, the powder will tum into a layered structure 

and extending the milling operation will lead to amorphization by solid-state 

(interdiffusion) reaction under thermodynamic equilibrium. As MA progresses, there 

is a continuous reduction in grain size along with subsequent increase in grain 

boundary area and possible expansion in lattice parameter; the accumulation of 

structural defects tend to destabilize the crystalline structure which then raises the free 

energy ofthe system [3]. 
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In general, the three main features of amorphous metals are: 

1. The amorphous atomic structure. 

2. The absence of crystal defects (grain boundaries and dislocations). 

3. The possible existence of wide compositional range for a single phase 

amorphous metal, like in the Ni-Zr system. This implies that the physical 

properties of a material can be modified by altering the composition over a 

wide range which is not possible for crystalline alloys, since most single-phase 

metals can only be formed within the narrow stability ranges of intermetallic 

phase. This feature of the amorphous phase can be very beneficial in magneto­

optic thin films. 

As mentioned earlier, in addition to MA two methods have been mainly adopted 

for the production of amorphous materials; melt spinning in the form of ribbons (50 

!-lm in thickness) or vapour condensation to produce thin amorphous films. In the 

vapour quenching technique, the amorphous phase is obtained over a wider 

composition range because of the higher quenching rate, whereas for melt spinning, it 

can be obtained primarily in a composition close to deep eutectics. For MA, 

experiments have shown that it is possible to obtain the amorphous phase around the 

equiatomic composition (like 50Al-50at%Mg), i.e. at the composition of the high­

melting intermetallic phase [3]. Moreover, amorphous phases that can be formed by 

MA might not be obtained by melt-spinning [21]. 
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On the other hand, the fraction of amorphous phase formed can be determined 

only qualitatively by XRD. Quantitative measurements can be obtained from DSC 

through crystallization enthalpy measurements. Measuring sorne of the intrinsic 

properties can give a good indication of the terminal composition (such as 

crystallization or transition temperatures) of the amorphous phase. The measured 

properties would be constant at the boundary regions of the amorphous phase. If the 

value of the free enthalpy of mixing is more negative for a system it then shows easy 

amorphization. 

Crystallization of amorphous materials into nanoscale sizes is possible and it is 

attributed to either impurity pick-up which alters Tx (crystallization temperature) of 

the mixture or the higher levels of tempe ratures reached in the milling vial. It is known 

that the amorphous phase contains a large excess energy over its equilibrium 

crystalline counterpart, which is released during heating [18]. Recrystallization of 

amorphous powders could also be a result of compaction through conventional routes 

like hot isostatic pressing (HIP) or dynamic routes like explosive compaction. [17] 

In MA the amorphization phenomenon has been explained in literature [22] by 

different mechanisms that can be summarized as follows: 

1. It is the result of rapid quenching of local melts produced by the mechanical 

impact. 

2. In the milling of intermetallic compounds, it is suggested that the 

amorphization is due to the accumulation of deformation-generated defects, 
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which raise the free energy of the compound above that of the amorphous 

phase. 

3. It has been proposed and widely accepted that the amorphous phase nucleates 

at the interfaces and grows by interdiffusion reaction under interfacial 

metastable equilibrium, analogous to that in thin-film diffusion couples and in 

co-deformed metal foils. 

Solid-state amorphization can be reached for phase mixtures with negative 

enthalpies of mixing and large difference in atomic sizes between solute and solvent 

atoms. This metastable amorphous state becomes favourable when the diffusion and 

partitioning of long-range solutes are suppressed [23]. To investigate amorphization 

further, the progress of amorphization during MA of Fe-Zr was investigated by 

Hellstern et al. [24]. Amorphous alloys were obtained after milling layered composite 

material from 2 to 16 hours whereas prolonged milling led to homogenization of 

particles. It was observed that the level of internaI stress was extremely high before the 

amorphization process takes place. They concluded that the main driving force for 

amorphization to proceed is the difference in free enthalpy between the amorphous 

phase and the crystalline composite. 

2.1.5 Compaction and Heat Treatment 

One of the main steps for evaluating mechanical properties and thermal stability of 

mechanically alloyed powders is the production of compacted samples. Mechanically 
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alloyed powders can be sintered in the same way as any other powder produced by 

other means like chemical vapour condensation. However, the irregularity in shape, 

due to collision stresses and the fact that they are heavily work hardened might impose 

sorne differences in sintering and compaction. No recent studies have been carried out 

to investigate the sintering action of MAed powders to compare with powders 

produced by other techniques. In general, consolidation conditions should be dealt 

with in great attention to avoid grain coarsening and subsequence loss of the 

nanostructure. Diffusion is needed for consolidation at the atomic sc ale but it may 

cause grain growth. It is difficult to achieve full consolidation at the atomic level and 

sorne experiments showed that fracture occurs along the original inter-particle 

boundaries. [9] 

For sorne alloy systems, consolidation should be carried out at low temperatures to 

avoid grain coarsening or possible crystallization of sorne amorphous alloys. It was 

stated earlier that from an energy point of view, amorphous materials have higher 

energies compared to their equilibrium crystalline counterparts. Upon heating they 

release this energy to form other stable or metastable phases such as supersaturated 

solid solution or intermetallics [18]. Despite the fact that nanocrystalline materials are 

in metastable state, they could be resistant to grain growth, partly, because of a narrow 

grain size distribution and grain boundary pinning due to solute, inclusions/pores, and 

triple junctions. [18] 
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2.1.6 Process Control Agents (PCA) 

During mechanical milling of ductile elements the powder might become 

agglomerated and hence reduces the efficiency of the alloying process. It is essential 

for effective alloying processes to take place to balance cold welding and fracturing. 

To achieve this, two approaches were adopted. The first is to modify the deformation 

mode of the powder particles in order to facilitate fracture before particles get 

deformed to large strains that are necessary for flattening and cold welding. The 

second approach, which is more common, is to add process control agents (PCA) to 

prevent agglomeration of the resulting powder and to enable extended alloying at the 

atomic sc ale [l0]. Different PCAs and different quantities have been used in MA to 

alter the surface condition of the deformed powders by impeding clean metal to metal 

contact sufficiently for cold welding [25]. 

There exist many types of PCA differing in their properties and effect. Sorne 

examples include: stearic acid, heptane, ethylacetate, ethylenebidi-steramide, 

dodecane, methyl alcohol and polyethylene glycol. One of the key factors in selecting 

the suitable PCA is to account for its melting point. Most of the aforementioned 

additives have melting temperatures lower than DoC, which makes it difficult to utilize 

them with powders. On the contrary, ethylenebidi-steramide has a melting point of 

141°C and this temperature might not be always possible to reach inside the vial 

during MA. For this particular reason stearic acid and polyethylene glycol which have 
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melting points as 68 and 59°C, respectively, represent the PCA of choice for most of 

milling operations. [10] 

2.1.7 Mechanochemistry 

In the late 1980s, Schaffer and McCormick [26] explored mechanochemistry by 

milling Ca and CuO powders. They noticed that a displacement reaction occurring 

during milling, resulting in pure Cu while starting from CuO. It was quite surprising to 

realize that the milIing energy was high enough to initiate chemical reactions without 

the addition of heat. Mechanochemistry was further explored by Shen et al. [27] in the 

Fe-CuO system. Shen et al. referred to the previous work by Schaffer and McCormick 

in which they added only Fe instead of Ca, and noticed the continuation of the 

displacement reaction on their system. 

Three years after the discovery of mechanochemistry, Schaffer and McCormick 

[28] investigated the possible kinetics of solid-state displacement reactions during 

MA. In particular, the effects of charge ratio and ball size on the propagation of the 

reactions, using CuO and Fe. The evaluation was based on the measurable values of 

ignition temperature, combustion time and crystalline size. They found that reaction 

kinetics increase with increasing charge ratio. This is mainly because of the increase in 

collision events within the powder. BalI size has also an effect through partic1e 

collision frequency and collision energy. Solid-state displacement reactions are 

obtained via MA due to the nature of the process where new interfaces are 
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continuously created promotÎng rapid diffusion. This implies that, it is necessary for 

MA to be performed in an inert environment since new (clean) surfaces are always 

created. When two new surfaces impact each other then welding occurs and reaction 

takes place between these internal surfaces. The reduction of metal oxides by solid 

reducing agents is preceded by a collision action that causes an uns table reaction. This 

reaction proceeds by the propagation of a combustion wave through the partially 

reacted powder. If the baIl mass is increased it helps in reducing the crystalline size 

and the ignition temperature due to the increased plastic work and strain for a given 

number of collisions. Also, increasing baIl size can cause the local temperature of 

particles to increase. [28] 

When milling ductile-brittle systems it is first observed that the hard phase 

disperses into the matrix of the ductile phase, before the reactions start. AIso, highly 

negative free energy values would indicate the tendency of the reaction to proceed. 

The three factors that affect reaction rate are: reactants' area of contact, rate of 

nucleation of the product and rate of diffusion of atoms of the product phase. The heat 

generated from the exothermic reaction will propagate the solid-state reaction since 

the diffusion distances and interlayer thickness between reactants is low, which will 

promote reaction in short times. Rence, the displacement reaction occurs faster in a 

self-sustaining way. 
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2.1.8 Applications of MA 

MA can be used to produce alloys that can be used in many applications including: 

aerospace, hydrogen storage, heaters, fertilizers and many others [3]. Alloys produced 

by mechanical alloying found potential applications in industry right from the 

beginning. As mentioned earlier, this process was tirst developed in industry to solve 

sorne of the problems encountered in the fabrication of high temperature superalloys. 

Apart from the tirst alloy developed by mechanical alloying, other alloys like Fe-based 

MA956, Al-based MA952, and Ni-based Inconel MA754 have gone into commercial 

scale production for the use in high temperature applications. One of the largest 

produced alloys for aerospace applications is Incoloy MA956 which was used in the 

precombustion chamber in a new generation of diesel engines developed in 1989. This 

alloy has superior corrosion resistance in addition to its high melting point compared 

with conventional Ni-based alloys. [10] 

To elaborate more on the applications of MAed materials, Weber and Chellman 

[29] compared a newly developed mechanically alloyed Al-Mg-Li alloy (AL-905XL) 

with other commercial Al-based alloys (AA7075-T73 and AA7050-T74). The results 

revealed sorne improvement in density and mechanical properties in AL-905XL, 

which makes it a potential candidate in replacing sorne existing Al-based alloys. 

Moreover, the newly developed alloy possesses improved corrosion and crack 

initiation resistances. On the other hand, MA can be used also to synthesize rare earth 

permanent magnets through mechanochemical reactions induced by milling [30]. 
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2.1.9 Modeling of MA 

As mentioned earlier, different types of materials can be produced using MA 

including: amorphous aIloys, intermetallics, composites and nanocomposites and 

nanocrystalline powders. Despite aIl the advantages and versatility, not much attention 

has been given to the modeling of MA process in order to assist in quantifying the 

produced phases. More understanding is required to develop and advance this process 

to commercial sc ale or turn it into a practical metallurgical process such as casting, 

melting and heat treatment [9]. The quantification attempts are limited to a semi­

quantitative level since MA involves dynamic forces that make the analysis very 

complicated. 

As an attempt to model MA processes, Maurice and Courtney [31] c1assified 

miIling processes into three categories: 

1. Vertical ball mill: attritor with moderate volume and moderate milling times 

(agitation is attained by impellers radiating from a central rotating shaft) 

2. Vibratory or shaker miIl (like SPEX); milling takes shorter times but the 

powder produced is in smaller quantities. It involves complex motion in three 

orthogonal directions. 

3. Horizontal baIl miIl: involves rotation about a horizontal axis. It rotates at a 

speed lower than the critical speed which causes pinning of the balls to the 

wall of the drum. However, large volumes of powders are produced but require 

longer processing times. 
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During MA powders can be fragmented and trapped between two balls, between 

ball and vial wall, and in the case of vertical mill powder, trapped between balls and 

rotating impellers. The number of collision events certainly depends on the type of 

mill modeled. It is assumed that the cold weI ding process occurs when the severely 

plastically deformed surfaces of the powders overlap and become in contact. The 

analysis is made by studying the possible collisions of balls without powder and then 

introducing the powder particles by approximating it as an upset forging process 

between two parallel plates. This way, Maurice and Courtney [31] were able to 

estimate collision times, strain, and powder strain rate. In addition to that, the 

temperature increase can be obtained as a function of the milling times. 

Additionally, Joardar et al. [32] have developed a model to determine the 

temperature of the entrapped powder particles during collision since it is difficult to 

facilitate direct me as ure ment. A temary AINiFe alloy was employed in this model and 

the obtained temperature was as high as 473 K after 4-6 hours of milling. Milling of 

this alloy led to the formation of an AINi intermetallic phase. 

2.1.10 Comparison with Rapid Solidification (RS) 

Rapid Solidification represents one of the main non-equilibrium processing 

techniques. It was started as an academic curiosity in the 1960's and matured into an 

industrially accepted technology with its use for the production of amorphous 
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ferromagnetic sheets for transformer core applications by AlliedSignal (most 

voluminous). Although the science underlying this process was investigated from the 

beginning the applications of its products emerged relatively slowly. This was mainly 

because of the limitations in the product size imposed by the nature of the process 

(melt -spinning). 

In this section, a comparison between MA and RS will be presented as an attempt 

to highlight the importance and popularity of MA over RS. This comparison is based 

on calculating the obtained departure from equilibrium and by comparing extensions 

in solid solubility limits of both methods, since as indicated earlier, MA has the 

advantage of increasing the solid solubility over the equilibrium values. Sorne solid 

solubility values for both MA and RS for different systems are presented in Tables 2.2 

and 2.3. As can be seen, they show different values for different systems, but in almost 

all cases both methods provide solubility limits higher than those obtained under 

equilibrium conditions. For the interest of this study, solid solubility values of Mg into 

Al will be considered. From the second table it is c1ear that RS shows higher solid 

solubility than MA, i.e. 40 at% and 23 at %, respectively. However, these values 

depend mainly on the composition of the starting material as shown previously by 

Calka et al [14] where solid solubility was increased up to 45 at % in MgsoAlso alloy. 

In terms of research interest, it is c1ear from Figure 2.4 that RS gained attention 

right from the beginning since it started as an academic curiosity. This is shown by the 

increased number of publications since 1960. On the contrary, not much attention was 
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paid to MA after its development for two reasons. The first is because it was 

developed to solve an existing industrial problem and by doing so not much attention 

was given to explore the potential of the process. The second reason is that the process 

was holding no promise for production of new materials, and only with the 

development of amorphous alloys, researchers started to recognize this process, and 

began showing more interest. 

Table 2.2: Comparison between MA and RS in terms of solid solubility extension 

[3]. 

/-

So!vent Solute Equilibrium value By MA By RSP 

At RT MaxÎmum 

Ag Cu 0.0 14.0 100 100 

AI Mn 004 0.62 18.5 9.0 
Nb 0.0 0.065 25 2.4 
Ni 0.0 0.11 10 7.7 
Ru 0.0 0.008 14 4.5 
Ti 0.0 0.75 36 2.0 

Ni Ta 3.0 17.2 30 16.6 

Ti Si 0.0 3.5 37.5 6.0 
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Table 2.3: Comparison between MA and RS in terms of solid solubility extension 

[2]. 

Solid 50lubilily, ul.·% 

EQuilibrium at 
Snlvent Solute room tempcraturc RS MA 

Al Fe ()-()25 4-3 4·5 
Al Mg 18-9 40 23 
Al Nb 0-065 2-4 25-30 
AI Zr 0-083 1-5 Y'I 
Ag Ni ~O 3-8 
Mg Ti -0 4-2 
Nb Al <6 25 60 
Ni Ag ~O 9-0 
Ti Al <Il >33 
Ti Mg <0·2 }6 

This can be seen by the rapid increase in the number of publications after the 

development of amorphous phases in 1981. However, this graph does not show the 

number of publications in RS after the year 1980. To complement this graph, the 

number of publications in RS after 1980 should be inc1uded to establish a complete 

comparison between these two processes. 

~ .. 
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(b) Five-Year Period 

Figure 2.4: Comparison in the number of publication for MA and RS [3]. 

2.1.11 Contamination During MA 

One of the main concems with respect to MA process is the easy contamination of 

the powder particles due to the introduction of enormously fresh surfaces during the 

course of the process. The grinding media adds another source of contamination unless 

the grinding ball can be covered with the same milled materials. Iron-contamination of 

the powder is possible when steel balls and vials are used. Additionally, time and 

intensity of milling might also increase the contamination level, especially in high 

energy mills. [3] 

In most cases, care should be taken while loading the powder into the vial since 

any trapped air will trigger oxidation reactions. It also depends on the milled powder 
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and its chemical affinity. Finally, the main concern is related to the formation of very 

fine grains since contamination might affect. 

2.2 Mg-AI and Zr ALLOYS 

2.2.1 Introduction 

Aluminium is the second most important metal used in industry where it ranks 

second to Fe and Steel due to its special properties [10] and for sorne particular 

applications it is leading Fe. Aluminium is emerging in many applications, especially 

automotive and aerospace industries as the demand for lighter and higher performance 

materials is increasingly becoming an important issue. From the physical properties 

point of view, Al has an FCC structure and a density of 2.7 glcm3
• Pure Al is fairly 

soft and ductile at room temperature and possesses relatively low yield strengths. Due 

to its low strengths, Al is alloyed with other metals in order to dramatically improve 

its mechanical properties. Common alloying elements inc1ude: magnesium, copper, 

zinc, manganese and nickel. Strengthening is achieved by solid-solution hardening and 

fine dispersions of precipitates. Among alloying elements, Mg-Al alloys proved to be 

potential candidates for structural, automotive and aerospace applications owing to 

their remarkable high specifie strengths. They also offer good corrosion resistance, 

reasonable ductility and weldability in addition to high energy densities to be used in 

combustion and rocket propulsions. 
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Magnesium-aluminium alloys are processed by a variety of routes resulting in 

equilibrium and non-equilibrium phases. Non-equilibrium techniques are favoured as 

they yield improved properties with a metastable structure which showed to be 

beneficial in producing many desired mechanical and physical properties [14, 16]. 

As stated earlier, mechanical alloying is one of the non-equilibrium processing 

techniques that is capable of producing a variety of metastable phases [33, 34, 35], and 

can be used to fabricate these alloys. As for the Mg-Al system, studies have shown 

that the solid solubility limit of Mg in Al [33, 14, 36] and the homogeneity range of 

Mg-Al intermetallics [33] can be extended beyond the equilibrium values. Besides, the 

mechanical strength of Al-Mg alloys can be improved considerably by employing 

non-equilibrium processing techniques [37] through the formation of nanometric-size 

crystals. This is explained by the resistance of dislocation movement due to the 

increased volume fraction of grain boundaries. Other studies on MAed Al-5at%Mg 

[38] have shown that this particular alloy exhibits four times the strength of 

conventional 5083 alloy, in addition to maintaining good ductility (8.5% elongation). 

TEM studies showed a nanostructure consisting of equiaxed and randomly oriented 

grains with a mean size of 26 nm. 

So, a considerable interest exists in mechanically alloyed Mg-Al alloys due to their 

promising properties. Generally, alloys are synthesized and then compacted to allow 

for mechanical property measurement. In the following section, sorne highlights of the 
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research activities that have recently been carried out in mechanically alloyed Mg-Al 

alloys are presented. 

2.2.2 Research on Binary Al-Mg Alloys 

To study the effect of varying Mg concentrations on the resulting microstructure 

and the formation of metastable phases, Schoenitz and Dreizin [35] milled Al-Mg 

binary alloys with Mg concentration varying between 5 and 50 at%. At a 

concentration of 40 at% Mg, a maximum supersaturation of 20.8 at% of Mg into the 

a-phase was reached. The y-AI 12Mg17 phase was present at Mg concentrations of 30 

at% and above, however, no indication of the formation of the ~-phase was observed 

in which the y only nucleate after heat treatment. The results revealed that the re­

crystallization of y phase was observed near 170°C while precipitation of ~ occurred in 

the range 250-350°C. They concluded that the degree of supersaturation depends 

mainly on the energy of milling (higher ball:powder ratio) and higher levels of PCA. 

The average particle size ranged between 25 and 35 !lm, and was independent on the 

alloy composition and ball:powder ratio. 

In tum, Gao et al. [39] investigated the phase of mechanically alloyed Mg-5wt%AI 

mixtures and the resulting crystallite size. Magnesium crystallite sizes near 140 nm 

along with two types of second phase particles, namely, MgO and MgAI(O) were 

obtained after sintering and extrusion of the resulting powders. Milling for 10 hours 

resulted in the formation of the y-phase which transformed into a solid solution of Al 
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into Mg upon further milling. As for mechanical properties, the yield strength of the 

extruded alloy was remarkably higher than the die-cast alloy of the same composition. 

Other prolonged milling experiments [40] on the same alloy (Mg-5wt%AI) have 

shown that after 30 hours of milling, a solid solution of Al into Mg and y-phase were 

formed. Spinel MgAh04 was observed after sintering of milled samples for 30h, 

which was evidence of oxidation. The crystallite size was dependent on milling time, 

being below 70 nm and 20 nm after 10 h and 30 h of milling, respectively. For 

samples milled for 5 h, grain growth was observed after sintering and extrusion, going 

from 69 nm to an average of about 200-300 nm. On the other hand, the average grain 

size after extrusion was of 60-120 nm for samples milled for 30 h. The presence of 

sorne dispersed particles at the grain boundaries after milling for 30 h was observed, 

which are believed to effectively pin grain boundaries during sintering and extrusion 

in alloys milled for longer periods. 

On the other hand, Zhou et al. [41] investigated the recovery and recrystallization 

stages of mechanically milled AI-7.6 at% Mg with a resulting grain size of 25 nm 

using DSC. The resuIts revealed that recovery occurs during annealing from 100 to 

230°C while recrystallization occurs at a temperature of 370°C. Recovery was 

associated with an exothermic peak which is indicative of strain relaxation and grain 

coarsening. 
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To study the effect of milling temperature on this type of alloys, Hazelton [42] 

investigated the effect of the temperature on the formation of metastable phases in AI­

Mg binary alloys. It was found that the milling temperature has practically no effect as 

it was varied over a range of 200°C, from -140 to 60°C. The formation of amorphous 

phases was possible by the addition of up to 6 at% of Zr, Ti, Y, Ca, V, Er or Pr to 

alloys near the Mg4oAl6o composition. It is believed that this was the first time that a 

study c1aimed the formation of an amorphous phase in the Al-Mg system with the 

addition of a small amount of glass-forming element. However, the results are 

questionable since X-ray diffractograms do not show a strong indication of amorphous 

phase formation, instead they showed c1ear and distinct broadened and low intensity 

peaks. Additionally, no TEM work was provided to support the c1aim of amorphous 

phase formation. Compared to results published in relation to this work, 6 at. %Zr do 

not show to be enough in promoting the formation of an amorphous phase [43]. Other 

researchers have indicated that no amorphous phases are obtained in the Mg-Al 

system even with the addition of glass-forming additives [9, 34]. Moreover, no 

amorphous phase has been reported in the Al-Mg alloy system by RS. 

2.2.3 Beta and Gamma Intermetallic Phases 

From a thermodynamics point of view, the driving force for the formation of the 'Y 

and the P phases should be the same since they have similar values of heat of 

formation. However, from a kinetic perspective the formation of such phases is 

govemed by other conditions. Beta has a complex cubic structure besides the large 
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unit cell (1168 atoms) whilst the y-phase has a much simpler and smaller unit cell (58 

atoms). Therefore, more interdiffusion between Al and Mg is needed for the formation 

of the ~-phase. The y-phase, on the other hand, will form first if the interface between 

AlIMg allows the formation of metastable phases. GeneraIly, at lower temperatures 

diffusion may be impaired and neither phases are thermodynamically stable. In this 

case, supersaturated Fee Al (Mg) and Hep Mg(AI) SS may form instead. 

Zhang et al. [34] milled alloys of varying composition of Al-40, -60, -80at%Mg 

and showed experimentally that the reaction temperature for the formation of y is 

independent of Mg content. They showed that, ~-phase cannot be nucIeated by milling 

since longer-range interdiffusion between Al and Mg is required to nucIeate this phase 

with a complex structure and larger unit cell. Reactions are thought to occur while 

powders are trapped at collision points. Moreover, a procedure to predict the 

temperature inside the vial was carried out by attaching a thermocouple to its outer 

surface, indicating that the stabilized temperature was close to 50°e. 

Singh et al. [33] proved that MA process is capable of extending the homogeneity 

range of Al-Mg intermetallic phases. In their study, they were able to alter the 

homogeneity ranges of the equilibrium phases present in the Al-Mg system, Le. ~ 

(AhMg2) and y (Al 12Mg17)' The Al content obtained for y-phase was 30 at% after 

mechanical milling which is lower than the equilibrium value of 39.5 at.%Al. 

Moreover, it was found that the Al content for the formation of the ~-phase could be 
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reduced from a value between 59.7 and 61.5 at% at equilibrium conditions to almost 

50 at% post-milling. 

To study the effect of temperature on the formation of Al-Mg intermetallics, 

Umbrajkar et al. [44] decreased the milling temperature from 70-80°C to 20-30°C and 

noticed that the amount of dissolved Mg into Al increased from 2-3 at% to -25 at%. 

They also concluded that the formation of intermetallic phases is favoured at higher 

temperatures. 

To further study the effect of milling times and ternary additions, on the evolution 

of phases and final crystallite size, Thein et al. [45] mechanically milled the 

composition Mg-5wt%AI for 5 and 20 h and added Ti to the alloy. The y-phase with a 

grain size in the range 31 to 49 nm was detected after 5 h of milling. After 20 h of 

milling, the grain size decreased to 15-27 nm, with 10.3 %Ti alloy having the smallest 

grain size. Further milling did not reduce the crystallite size since an extremely high 

stress is needed to deform the nanometer-sized grains. 

For the determination of metastable phases, X-ray diffraction is widely used in 

their characterization. When Mg diffuses into Al to form a solid solution (SS) the Al 

diffraction peaks will be shifted to lower angles due to the increase in lattice 

parameters and more diffusion of Mg into Al lattice is characterized by a larger shift. 

The lattice parame ter "a" can be calculated from peak broadening and related to Mg 

content into the SS. In the previous case, if the amount of residual and undissolved Mg 
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is below the detection limit of XRD, which is between 2 and 5 %, depending on the 

instrument, then unalloyed Mg cannot be detected. [34] 

2.2.4 Process Control Agent (PCA) in Mg-Al Alloys 

The influence of PCA on mechanical alloying of Mg-Al binary alloys has been 

investigated by Lu and Zhang [25] by varying the type and amount of PCA. It was 

found that having a small amount of PCA accelerates interdiffusion reactions between 

Al and Mg. They stated that a greater addition of PCA is required when milling ductile 

materials. However, there is a lack of information regarding the effect of PCA when 

milling hard materials. 

In an attempt to determine the adequate amount of PCA needed for proper milling 

of Al-Mg alloys, Zhang et al. [46] studied the optimum amount and type of PCA to 

produce fine particles. They found that the final particle size depends mainly on three 

factors; amount and type of PCA and duration of milling. Two types of PCA were 

used in their study, i.e. stearic acid and polyethylene glycol. Neural networks were 

trained in the research to predict the most suitable amount and type of PCA through 

the evaluation of the resulting mean crystallite size. It was found that at a certain level 

of PCA the average mean particles size is reduced. However, these results are limited 

to the type of materials milled into this study (Mg and Al) and the additives used. It 

was only an attempt to show the possible utilization of neural networks in the vicinity 

of experimental data to optimize the process parameters. 
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2.2.5 Addition of Zr 

Zirconium can be added to Al-Mg alloys to improve fatigue corrosion cracking 

and natural aging resistance [47,48], as weIl as to promote superplastic behavior [49, 

50] through grain size refinement. Mechanical alloying has proved to promote the 

formation of intermetallics [51, 52] for the Al-Zr system, and metastable phases in 

both Mg-Zr [53, 54] and Mg-Al [34,55,35] systems. 

However, it is essential to present sorne detailed studies dealing with the addition 

of Zr to Al and Mg in order to assess the individual effect of Zr addition before 

considering the addition of Zr to the binary Al-Mg aIloy. 

To study the metastable phases formed in the Zr-Al system, Fecht et al. [52] 

investigated the sequence of phase transformation in the mechanically aIloyed Al-Zr 

system over alloy composition of Zr-lO up to 70 at%Al. The characterization of the 

MAed powders was carried out by TEM and XRD. The phase constitution was 

dependent mainly on the composition of the starting powders. For an Al concentration 

of less than 15 at%, a nanocrystalline supersaturated solid solution of a-Zr was 

present. When the Al concentration was increased to values between 15 and 40 at% 

the predominant phase was amorphous. At higher Al concentrations, a metastable FCC 

phase was present with a crystallite size of 4 nm. 
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Additionally, Sheng et al. [51] studied the effect of milling temperature on 

possible amorphization of ZrlOo-xAlx (x= 0-40at%) alloys. They found that at low 

milling temperatures, an amorphous Zr-Al phase appeared under polymorphie 

constraint imposed by intensive external forces. At higher temperatures, an amorphous 

phase is obtained along with a solid solution forming a two-phase region. The results 

showed that the amount of Al needed for complete amorphization increases with the 

milling temperature. With respect to the Mg-Zr system, this mixture does not form 

either intermetallics or metastable phases. Zirconium seems to be present in the form 

of cores in Mg and can be revealed by SEM. 

On the other hand, Desch et al. [16] studied the phase evolution of mechanically 

milled Al-Zr alloys. They confirmed the formation of the AhZr intermetallic with a 

tetragonal crystallite D023 structure under equilibrium conditions. However, the 

metastable cubic L1 2 structure can be produced using non-equilibrium processing 

techniques. This metastable structure forms at high temperatures and is considered 

beneficial for the mechanical properties since the problem with tri-aluminides such as 

AhZr is their brittle nature. As stated previously, maintaining the metastable structure 

of Al3Zr at room temperature is beneficial but quite challenging. Sorne studies [56] 

have suggested that the addition of ternary elements like Li stabilizes the Lb structure 

of Al3Zr. However, such addition might not be feasible and other means of stabilizing 

this phase should be considered. One of the promising routes is the formation of 

nanograins that could act as a pinning mechanism and suppress the transformation of 

this phase into the equilibrium structure. In reality, mechanically milling Al-Zr can 
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produce a fairly stable Lh structure since sorne studies [57] have shown that this 

crystal structure is stable up to approximately 600°C, after which the metastable phase 

transforms into the stable crystal structure D023. It seems that the closeness in lattice 

parame ter and structure between Al and AhZr facilitates the coherent precipitation of 

the metastable phase into the Al matrix. 

For the role of Zr in promoting amorphization, EI-Eskandarany et al. [58] 

mechanically milled AI-50at%Zr and observed that amorphization occurs in two 

distinct stages. First, milling will form layered-composite particles of larger sizes 

resulting from cold welding. In the second stage, the layered powder forms an 

amorphous phase after heating in the DT A to a temperature close to 400°C under Ar 

atmosphere. This transformation is attributed to thermally assisted solid-state 

amorphization, with the activation energy of amorphization Ea being independent of 

milling time. 

For the possible improvement in mechanical properties due to the addition of Zr to 

Al, Rittner et al. [59] mechanically tested Al-Zr alloys produced by inert-gas 

condensation. They found that the modulus of elasticity of nanocrystalline alloys is 

similar to that of coarse-grained Al. Other properties such as hardness, strength and 

ductility seem to be affected by grain size which is reduced at higher Zr 

concentrations. Extremely high hardness values were obtained for these alloys; 

nevertheless, tensile properties were less impressive. For the smallest grain size, the 

material showed brittle-like fracture with no signs of plastic deformation. This can be 
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due to the apparently increased force needed to generate a dislocation to prevent crack 

propagation and generate yielding in the nanostructure regime. In their study the y 

carried out compressive tests only, so the effect of flaws was not determined as they 

were not detrimental to the material's behaviour. It was noticed that extremely high 

stresses can be obtained under the indentor to produce plastic deformation. 

With respect to the Mg-Zr system, very little work has been done to predict the 

possible phases resulting from MAing powder mixtures. Sorne studies [53] on Mg-

0.56%Zr prepared by melting have confirmed only the presence of Zr-rich cores in 

either elliptical or nearly spherical forms. They also observed that these cores could be 

isolated or in c1usters. These Zr-rich cores could be present at the Mg grain boundaries 

as weIl, which are characterized as pure Zr partic1es containing negligible amount of 

Fe as contamination. They conc1uded that in order to have excellent grain refinement 

it is desirable to suppl Y a sufficient amount of Zr to form enough Zr partic1es in the 

melt prior to peritectic solidification. The majority of partic1es were in the range 

between 1 and 5 Ilm forming active nuc1eation sites for Mg grains. However, partic1es 

larger than 5 Ilm were inactive as nuc1eation sites. The best efficiency was achieved 

with partic1e sizes around 2 Ilm. 

On the other hand, most of the work published in the Al-Mg-Zr system has 

focused on the liquid-processing route [50,47,60,61,62,63], and little information is 

available on the processing of Al-Mg-Zr alloys by mechanical alloying. The very few 

published papers on mechanically milled AI-Mg-Zr alloys considered the addition of a 
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maximum amount of 0.6 wt.%Zr [48], and 6 at.%Zr [42], in addition to a published 

work in relation to this research where 5 at. %Zr was considered [64]. Therefore, a 

more thorough study is needed to evaluate phase evolution of the AI-Mg-Zr over a 

wider composition range. 

For the available literature on the aforementioned mechanically milled AI-Mg-Zr 

alloys, Buso et al. [48] studied the microstructure of Al-2wt.%Mg-0.6%Zr using TEM. 

The alloys were prepared via MA, annealed at 623 K, then extruded and compacted. 

They confirmed that Zr contributes to improvement of the fatigue corrosion cracking 

and control natural aging; however, it causes loss of ductility. They mentioned that the 

solubility of Zr into Al-Mg alloys under normal conditions does not exceed 0.28 wt%, 

however, by the powder metallurgy techniques it can be increased by 2.5-5 times 

compared to normal conditions. 

Hazelton et al. [42] added a fixed amount of 6 at.%Zr, and observed that sorne 

phases were suppressed by MA while others became more predominant than those in 

the equilibrium phase diagram. This study also considered the effect of milling 

temperature on the resulting structure and concluded that no effect was observed; 

neither on reaction rates nor on the final structure of the alloy. 
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2.3 Nanocomposites 

At the beginning of this section it is appropriate to elaborate more on the features 

and advantages of having materials in the nanoscale range. In equiaxed 

nanocrystalline metals, two types of atoms can be distinguished, i.e. crystal atoms with 

nearest neighbour configurations belonging to a lattice and loosely packed grain 

boundary atoms with a variety of interatomic spacings. In such arrangement, a 

substantial fraction of atoms resides in the interfaces. This can be as much as 3% for 

100 nm grains, 30% for 10 nm grains and increase to about 50% for 5 nm grains. In 

general, the grain boundaries in nanocrystalline materials are relatively unrelaxed 

(build-up of internaI stresses), astate somewhat similar to rapidly quenched metallic 

glasses, in which the system of boundary atoms has a local but not global energy 

minimum; thus, the material is to be considered in a metastable condition. [18] 

As mentioned earlier, the mechanical routes allow the development of 

nanostructured materials in large quantities. Typical refinement of metallic elements 

and intermetallics could reach 5-20 nm and atomic strains may vary between 0.7-2.5 

% (for intermetallics). [23] 

2.3.1 History and Development 

The development of the nanocomposite materials (NCM) represents one of the 

deviation points in the field of structural materials. NCM materials possess tensile 
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stresses and hardness values higher than those exhibited by single phase amorphous 

materials of the same composition, in addition to retaining good bending ductility. The 

nanocomposites were first introduced by Kim et al. [65] and Chen et al. [66] in 

different alloy systems by melt-spinning (RS technique). The common feature of these 

nanocomposites is that the microstructure is comprised of nanograins embedded in an 

amorphous matrix, which proved to be responsible for the extraordinary improvement 

in properties. 

In the work of Kim et al. [65], the nanocomposites were prepared directly by melt 

spinning alloys of compositions AIggY2Ni9Ml (M = Mn or Fe). The resulting material 

consisted mainly of FCC-AI partic1es of about 3-4 nm in size dispersed in an 

amorphous matrix. The obtained tensile fracture strength (<Jf) and specific strength (<Js) 

of AlYNiFe alloy were in the order of 1320 MPa and 40x103 m, respectively, while 

the highest (<Jf) and (<Js) for Al-based amorphous alloy of the same composition are of 

about 1140 MPa and 38x103 m, respectively. This improvement in properties is 

presumably attributed to the presence of finely dispersed partic1es in the matrix which 

cause dramatic hardening of the FCC supersaturated solution. The improvement of 

strength was correlated to the percentage of dispersed partic1es and it was found that 

the highest fracture strength was obtained in the vicinity of 15 vol. % of the dispersion 

partic1es. 

On the other hand, Chen et al. [66] were able to synthesize Al-based alloy with a 

composition of Al90FesGds through rapid solidification. The alloy consisted of an 
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amorphous matrix and was devitrified to obtain a nanocomposite structure. Partial 

crystallization was carried out by isothermal annealing for 20 minutes at a temperature 

below recrystallization, determined previously by differential scanning calorimetry 

(DSC). An improvement by 1/3 in fracture strength was found compared with the fully 

amorphous material with similar chemical composition. Grain sizes close to 8 nm 

were obtained; however, structure and compositions of nucleants were not reported. 

Considering the aforementioned examples, these nanocomposite materials have 

also shown exceptional mechanical properties at high temperatures. At room 

temperature they exhibited a tensile strength of 1.6 GPa which is three times larger 

than the conventional alloys and 1.5 times higher than the corresponding fully 

amorphous alloy. At temperatures close to 300°C the tensile strength of these 

nanocomposites can reach 1 GPa, which is 20 times larger than the best conventional 

alloys at the same temperature. [67] 

2.3.2 Amorphization 

As indicated, nanocomposite materials can be formed either directly from the non­

equilibrium process or by controlled heat treatment of the fully amorphous alloy 

(devitrification). In this section, sorne highlights on the amorphization process using 

mechanical alloying will be presented again as the amorphous phase represents a 

precursor for obtaining nanocomposites. In general, if any alloy system is an easy 

glass former through rapid solidification process or during solid state reaction in thin 
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films, then the formation of an amorphous phase through MA can be predicted. The 

ease of formation of the amorphous phases by rapid quenching is a reasonable 

indication of the level of difficulty of nuc1eating AxBy compounds that compete with 

the amorphous phase [9]. For Al-Mg alloy systems where it is difficult to nuc1eate the 

amorphous phase, the addition of ternary transition metal seems crucial to promote 

amorphization. 

On the other hand, the nuc1eation of amorphous phases in mechanical alloying can 

take place directly from blended elemental powders or through the formation of an 

intermetallic phase. Two possible routes that can be followed in the formation of the 

amorphous phase: 

mA+nB~(A B) m n amorphous 

mA+nB~(..1 B) . ~(..1 B ) 
L -'m n crystallme L -'m n amorphous 

Where A and B are the elements being milled. 

In addition to that, it is possible to have a solid solution forming prior to the 

formation of the amorphous phase. Having a former solid solution or an intermetallic 

phase depends on the relative free energies of the two competing phases. Moreover, 

the amorphous phase will form if the kinetic conditions of the formation of solid 

solutions are unstable or the intermetallic phase is difficult to nuc1eate. Nevertheless, 

the mechanism of amorphization is not c1early understood. It is believed that a 
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destabilization of the crystalline phase occurs as a result of the accumulation of 

structural defects, viz., vacancies, dislocations and grain boundaries [3]. In general, for 

the production of amorphous phases it should be kept in mind that rapid solidification 

process produces amorphous phases usually around deep eutectic compositions, but 

the composition range in MAed amorphous alloys is generally around equiatomic 

compositions [10]. 

2.3.3 Formation of Nanocomposites 

2.3.3.1 Using Mechanical Alloying 

Since the introduction of nanocomposite materials there has been a considerable 

amount of research aimed at synthesizing similar materials via different processing 

routes. In particular, the synthesis of nanocomposites through mechanical alloying has 

been the subject of research for many years. Sorne successful results were obtained by 

either milling elemental metallic powders of by adding oxides and/or carbides that can 

promote in-situ formation of the nanocomposites. In this section, sorne of the main 

achievements in synthesizing nanocomposites via mechanical alloying will be 

presented along with sorne elaboration on the milling conditions, characteristics of the 

resulting structure and the obtained improvement (if any) in properties. 

On that basis, Murphy and Courtney [68] were able to successfully produce 

nanocomposite materials in 1994 using mechanical alloying. They started with 
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elemental powders of Cu and Nb in the presence of graphite or hexane to form a 

nanocomposite material. The obtained powders were consolidated using hot-press 

resulting in a compact with a relative density near 100%. Compaction of powders was 

carried out at a temperature of 0.3 Tm of NbC to maintain the nanostructure. 

In another work by Krasnowski et al. [69] nanocomposite powders were obtained 

by milling Al50-Fe25-Ths (at%) with ethanol (C2H50H) and ammonium carbonate 

«N&hC03). They obtained a nanocomposite structure consisting mainly of an Fe(AI) 

matrix with sorne dispersed complex carbides of Al-Ti when milling with ethanol. 

Another type of nanocomposite was obtained when ammonium carbonate was added 

to the powder. The resulting powder consisted mainly of Fe(Al) matrix and dispersed 

TiN intermetallic grains. Particle sizes ranged from several nanometers to 20 nm when 

milling for 280 h. 

In other study, Krasnowski and Kulik [70] were able to obtain a nanocomposite 

materials by mechanically milling elemental powders of Al, Fe and Ti, in nitrogen 

atmosphere. The resulting powder was then hot-pressed and consolidated under a 

pressure of 8 GPa to facilitate mechanical testing. Two consolidation temperatures 

were considered in their research, 750 and 950°C, which led to different hardness 

values, 1424 HV for 750 and 1461 HV for 950°C with a relative density of 97% in 

both cases. The nanocomposite consisted mainly of Fe(AI) solid solution and TiN of a 

few nanometers in size. 
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Zhang et al. [71] were able to obtain a nanocomposite material with WC partic1es 

embedded into a Co matrix. The size of the WC partic1es was reduced to Il nm after 

10 hours of milling. In their study, milling was also effective in changing the crystal 

structure of Co from FCC to HCP. AIso, Li et al. [72] prepared a nanocomposite alloy 

by milling Al with NiO. Nickel oxide decomposed after 10 hours of milling without 

forming alumina, which was attributed to the diluent of alumina phase. Upon heat 

treating the alloy milled for 15 h at a temperature of 1400°C for 1 h, alumina was 

observed in addition to the nanosized Ni partic1es. 

On the other hand, mechanical alloying shows to be advantageous in producing 

materials that are free of undesirable phases. For instance, in a study carried out by EI­

Eskandarany [73], mechanical alloying showed to be very successful in producing AI­

SiCp nanocomposites free of the undesirable Al4C3 and Si brittle phases. Consolidation 

of the milled powder into bulk compacts was attained using plasma activated sintering. 

In their study, SiC partic1es were homogeneously distributed into the Al matrix 

providing improved mechanical properties. The content of SiC was varied between 2 

and 10 vol. % and an increase in density, hardness and elastic modulus was observed at 

higher SiC content. 

AIso, Woo and Zhang [74] were able to produce nanocomposite material by 

milling powders of composition AI-7Si-0.4Mg-34wt%SiC. The powders were then 

sintered at temperatures of 570 and 600°C to study the effect of SiC reinforcement on 

the hardness. They observed a considerable improvement in hardness values compared 
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with mixed and sintered composite powders (without milling). This confirms the role 

of milling in producing nanometric- and submicron-size composites with improved 

properties. Milling was also effective in increasing the sintering rate due to the 

enhanced diffusivity. 

Starting from elemental powders, Hwang et al. [75] mechanically milled Mg-Ti-C 

to produce a nanocomposite structure of TiC nanoparticles (size 3-7 nm) embedded 

into nanocrystalline Mg matrix with crystals ranging in size between 25 and 60 nm. 

The obtained powders were subjected to compressive testing upon consolidation, 

showing an improvement in ductility while retaining their high compressive strengths. 

Considering the previously mentioned examples, one might think that the addition 

of oxides, carbides or nitrides is necessary for the formation of a nanocomposite 

structure using mechanical alloying. In practice, the development of nanocomposite 

materials is also possible by directly milling elemental powders without the addition 

of carbides and/or oxides. In that respect, Sheng et al. [76] were able to obtain a 

nanocomposite material after milling Al and In powders for 300 hours. The final 

material was obtained with a composition of A19sIns, where the nanostructure 

contained mainly In particles embedded into an Al matrix. The grain sizes of both Al 

and In were 29 and 18 nm, respectively. However, they did not observe the expected 

layered structure in the resulting material, and this was attributed to the partial 

diffusion of In during milling. Additionally, they reported that there is no evidence of 

amorphization or extended solid solubility between Al and In. Since contamination is 
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expected for prolonged milling, Fe contents of 0.87 at% were observed dissolved in 

the Al matrix after 300 hours of milling. 

2.3.3.2 Mechanochemical Synthesis 

It is also possible to synthesize nanocomposite materials by employing self­

sustained displacement reactions caused by milling (mechanochemistry). In this 

respect, Ying and Zhang [77] were able to produce Cu-Ah03 nanocomposites through 

multiple-milling steps. They milled elemental powders of Al and Cu forming Cu (Al) 

solid solution and then milling the resultant solid solution (SS) with CuO to facilitate 

the displacement reaction between Al and o. The powders were then consolidated to 

form nanometric-size « 200 nm) alumina partic1es with a 20 vol. % embedded into Cu 

matrix. 

On the same basis, Wu and Li [78] were able to obtain a nanostructural composite 

material by milling Al and CuO powders for 56 hours. The formation of this 

nanocomposite was achieved by the progression of mechanochemical reaction 

between Al and CuO to form Al4Cu9 intermetallic, which then transformed upon 

annealing to CuAh. Additional oxides and carbides were present that offered 

substantial reinforcement to the Al matrix. Those precipitates differed in size as CuAh 

was in the range of 100-500 nm and Al20 3 whereas the Al4C3 crystals showed sizes in 

the 10-50 nm range. Compression tests were carried out, showing that the 

nanocomposites exhibited excellent strengths both at room and high temperatures. The 



Literature Review 59 

improvement in strength was attributed to the fine dispersoids embedded in the Al 

matrix. 

2.3.3.3 Other Methods 

Apart from mechanical alloying and rapid solidification, it is possible to synthesize 

nanocomposite materials by other means which inc1ude: direct hot-pressing and spark 

plasma sintering. Selected publications related to these methods will be presented in 

this section which might indicate the possible formation of these advanced materials 

using rather simpler techniques. 

Using hot-press, Yoshimura et al. [79] were able to obtain a nanocomposite alloy 

comprising of SiC partic1es embedded into Y 203 matrix at the grain boundaries by 

directly hot-pressing the powders at temperatures ranging from 1300 to 1750°C. The 

SiC content varied between 2 and 15 vol.% and the measured partic1es sizes were 

below 100 nm. Mechanical properties of this alloy were improved especially at high 

temperatures after the addition of SiC partic1es. The highest fracture strength was 

obtained at 5 vol.% reaching 750 MPa at 1200°C in air. They attributed this 

improvement to the oxidation of SiC partic1es which are present at the grain 

boundaries. 

Gao et al. [80] fabricated Y AG-5 vol. % SiC "nano" -composite by spark plasma 

sintering. The addition of 5 vol. % SiC showed a considerable increase in bending 
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strength over monolithic Y AG ceramics. Sintering was carried out at a temperature of 

15OO°C for 1 h. AlI particles obtained into this study were larger than 1 !lm in size and 

thus the term nanocomposite should not be applied to the resulting alloys. 

2.3.4 Heat Treatment 

As stated previously, nanocomposites can be produced by controlled heat 

treatment from an amorphous precursor, which should be performed with great care 

since extended treatments might lead to the possible growth of the nanograins, hence 

with the loss of the nanostructure. 

In this regard, Inoue et al. [81] investigated the crystallization of amorphous 

Zr6oAllOCU30 alloy prepared by RS. The crystallization occurred by the simultaneous 

precipitation of Zr2Al and Zr2Cu. When Pd was added to the alIoy, the nanostructure 

was preserved and the resulting particle size was - 200 nm. Sorne improvement in 

tensile strength (from 1.76 to 1.88 GPa) as well as Young's modulus (from 81.5 to 

89.5 GPa) were observed due to the increased volume fraction of the Zr2Cu 

intermetallic phase in the nanostructured alIoy. These nanostructural compounds 

coexisted with a surrounding glassy phase that provided improved tensile strength and 

ductility, due to the fact that this glassy phase has a high free volume that remained 

after quenching. 
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As a comparison between different heat treatment routes, Gupta et al. [82] studied 

the early stages of crystallization of an FenCuINb4.5Si13.5B9 amorphous alloy and the 

formation of nanoscale particles. Specimens were devitrified by two means: fumace 

and electrical CUITent. It was observed that there was no significant difference in the 

resulting nanostructures obtained by both routes of annealing. Iron-based amorphous 

alloys were prepared by RS and then annealed at 590°C for 10, 20, and 87 min 

(fumace annealing) and CUITent annealed by passing a DC CUITent of 7.8 A for 12 and 

90 seconds. In this study, the formation of a nanostructured alloy was due to the 

presence of Cu and Nb in the alloy since the immiscibility of Cu in Fe helps in 

forming clusters which nucleate the nanostructured phase. They concluded that the 

addition of Nb was essential in stabilizing the residual amorphous phase and retarding 

grain growth. 
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Chapter 3 

Experimental Techniques and Research 

Methodology 

3.1 EXPERIMENTAL PROCEDURE 

3.1.1 Starting Materials 

62 

In this research, mixtures of elemental Al, Mg and Zr (>99% purity and -325 

mesh) powders provided by Alfa Aesar were used as starting materials. The 

composition of these powders with the level of impurity level is shown in Table 3.1. 

The size of the as-received powders is less than < 45 J..lm (99.9% of the powder). 

Moreover, the as-received materials were analyzed using X-ray diffraction in order to 

assess any possible presence of internaI stresses and it showed no broadening into the 

XRD peaks indicative of stress-free powders. 
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Table 3.1: Compositions of as-received Al-Mg-Zr powders 

(ail values are in wt. %). 

Si Fe Cu Mn H Ni Ca Mg Ga Hf 

Al 0.05 0.13 0.01 0.01 - 0.01 - - 0.02 -

Mg - - 0.02 0.1 - 0.001 - Bal. - -

Zr 0.3 0.08 - - 0.25 - 0.15 0.15 - 0.2 

3.1.2 Alloys Composition 
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other 

<0.03 

<0.06 

<0.09 

The compositions of the prepared alloys were varied in order to assess the effect of 

different A1JMg ratio and the effect of Zr on the formation of the nanocomposites and 

the subsequent effect on hardness. The different compositions of the alloys under 

study are all shown in Table 3.2. The prepared alloys were c1assified into four main 

categories. The first category is the Law Mg Alloys, in which the Mg concentration 

was fixed at 10 at% and Zr was varied from 0 to 35at%. The second category is 

considered as the High Mg Alloys where the content of Mg was raised to 40 at%. Law 

Al Alloys is the third category where the Al concentration was maintained at 10 at%. 

The final category with Al concentration of 40 at% was c1assified as High Al Alloys 

accordingly. Again, in all categories the Zr content was always varied between 0 and 

35 at%. This variation in concentration resulted in 4 binary alloys and 12 ternary 

alloys. 
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Table 3.2: Break-down of compositions of alloys prepared in this research; 

(ail values are in atomic percent). 

Category of Alloys Composition 

lOMg -90AI 

Low Mg-containing Alloys lOMg - 85Al - 5Zr 

MglOAI90_xZr x 

(x=O, 5, 20 and 35at. % ) 
lOMg - 70Al - 20Zr 

lOMg - 55Al - 35Zr 

40Mg-60AI 

High Mg-containing Alloys 40Mg - 55Al - 5Zr 

Mg4oAI60-xZr x 

(x=O, 5, 20 and 35at. % ) 
40Mg - 40Al - 20Zr 

40Mg - 25Al - 35Zr 

lOAI-90Mg 

Low Al-containing Alloys lOAI - 85Mg - 5Zr 

AhoMg90-xZr x 
lOAI - 70Mg - 20Zr 

(x=O, 5, 20 and 35at. % ) 

lOAI - 55Mg - 35Zr 

40AI-60Mg 

High Al-containing Alloys 40Al - 55Mg - 5Zr 

AltoMg60-xZr x 

(x=O, 5, 20 and 35at % ) 
40Al - 40Mg - 20Zr 

40Al - 25Mg - 35Zr 

64 
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3.1.3 Alloys Preparation 

The alloys were prepared using a SPEX 8000 shaker mill and the milling time was 

fixed at 9 hours in all experiments. Previous experiments showed that 9 hours of 

milling is adequate for the production of metastable phases in Al-Mg alloys. Figure 

3.1 shows a photograph of the mill used in this research. The powders were loaded in 

a hardened stainless steel vial under Ar atmosphere using a glove box to minimize 

reaction with air during milling. Stearic acid was added to the powder mixture as a 

process control agent (peA) in a percentage between 2-3%. 

Two balls of 12.7 mm and four of 6.35 mm in diameter were used to obtain a ball­

to-powder (BPR) ratio of 10: 1 in aIl stages of this investigation. Fixing the BPR and 

milling times throughout all experiments is beneficial in eliminating any effects of 

time and ratio on the phase evolution. The milling experiments were periodically 

halted every 1.5 hours for 3 hours to avoid temperature increase in the milling vial. 

Furthermore, to eliminate the buildup of unprocessed powders on the internal walls 

and dead spots the vial was opened after every 3 hours of milling under Ar and the 

deposited powders were scraped from the vial walls and incorporated back into the 

milling mixture. 
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Figure 3.1: SPEX 8000 mill used in preparation of alloys. 

3.1.4 Annealing Experiments 

The as-milled powders were annealed at 400°C for 1 hour to study phase stability 

and to examine possible transformations upon heating. This was performed in a tube 

fumace under Ar atrnosphere to minimize oxidation. A schernatic of the tube fumace 

set-up is shown in Figure 3.2. 

For the annealing experirnents, the alloys were placed into the tube fumace on a 

ceramic plate to avoid any reaction with the holder rnaterial and then inserted carefully 

into the hot zone and then secured at both ends of the tube. In addition to the as-milled 

alloys, pieces of Ti sponge were placed in the fumace in order to act as oxygen getter. 
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If the color of this Ti sponge tums black after the annealing process this indicates the 

presence of excess amount of oxygen during annealing, which is an indication of a 

leakage of air into the tube. 

Diffusion pump 

li 
Vacuum gauge 

Tube fumace 

High vacuum gauge 

Figure 3.2: Schematic of the tube furnace used for annealing. 

The fumace tube was evacuated with a rotary pump up to 100 mtorr and purged 4 

times with Argon. Subsequently, the diffusion pump was started to achieve a vacuum 

of 1 xl 0-7 torr. Once the system is at high vacuum, Ar gas was introduced to remove 

any remaining air that might promote the formation of undesirable oxides. 
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3.2 Characterization of the Prepared Alloys 

3.2.1 X-Ray Diffraction (XRD) 

Phase analysis was performed in both as-milled and annealed alloys in order to 

follow the phase evolution. The X-ray diffractometer consists mainly of three parts: a 

target material where the X-rays are generated, the specimen which is under study and 

the detector which collects the reflected X-rays and counts. The reflections coming 

from the specimen will be detected and the intensity of the counts will be collected for 

every specific position 20. A Phillips APD-1700 X-ray diffractometer with Cu-Ka 

radiation was used with an accelerating voltage of 40 kV and a CUITent of 20 mA, 

where scanning angles were ranging between 25° to 85°, with a step size of 0.01 and a 

scan rate of 1 step/second. For phase identification the purposes X'pert software 

(2004) "pattern treatments program" was used. 

3.2.2 Scanning Electron Microscopy (SEM) 

In sorne stages of the research, it was necessary to study the microstructure and 

surface morphology of the as-milled and annealed powders using JEOL JSM-840A 

SEM. Also, energy dispersive X-ray spectroscopy (EDS) was used along with the 

SEM in order to perform elemental analysis for the prepared alloys. The metallic 

alloys were produced in powder format, thus it was relatively easy to examine them 

for SEM since no gold coating was required to enhance conductivity of the materials 

under study. Powders were placed directly on a Cambridge stub and were inserted into 
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the beam column. To distinguish between elements in the SEM it was rather straight 

forward to differentiate between Al and Zr because of the pronounced difference in 

atomic number but in the case of Al and Mg it was difficult. 

3.2.3 Transmission Electron Microscopy (TEM) 

Transmission electron microscopy was used extensively in this research to 

characterize the nanostructures obtained in the resulting alloys in terms of partic1e 

size, crystallinity, internal structure and elemental distribution. In the TEM, when 

electrons are emitted into the electron gun it is accelerated toward the sample which 

has to be thin enough to allow passing of electrons and the generation of scatterings. 

Based on the intensity of penetrating and diffracting electrons a thickness contrast 

TEM image is formed. Additionally, bright- (BF) and dark-field (DF) images are used 

to measure crystallite size and to study structural defects[83]. Switching between BF 

and DF is accomplished by selecting specifie electrons from the sample under study. If 

the transmitted electrons are collected only then the BF image is generated, while the 

DF image is generated if the scattered electrons are collected only. 

In this research, TEM studies were carried out using a JEOL-2100HR instrument 

operating at an accelerating voltage of 200kV. The measurement of the interplanar 

spacing was performed using Fast Fourier Transform (FFT) procedure. The alloy 

powders were placed on a carbon grid coated with a 1-2 nm thickness polymerie 

membrane (commercial name is FORMV AR). This coating practice was performed to 
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modify the existing grid size in which the polymeric membrane will facilitate holding 

of the smaller powder particles. 

3.2.4 Detection of Amorphous and Crystalline Phases Using XRD and TEM 

Since XRD and TEM were used extensively in this research in characterizing the 

resulting alloys, the following figures show typical XRD patterns and TEM selected 

area diffraction patterns (SADP) for both completely crystalline and amorphous 

phases, in order to familiarize the reader with them. 

Figure 3.3 shows a typical X-ray diffractogram for a crystalline material, showing 

sharp diffraction lines arising from the repeated reflection of crystalline planes 

satisfying the Bragg's law. In addition to that, SADP obtained for crystalline material 

by TEM is shown where it consists of diffraction rings. Starting from the center, 

where the electron beam is transmitted, every diffraction ring represents a reflection 

from distinct atomic planes, with the "hkl" Miller indexes growing outwards. 

Moreover, each diameter of the diffraction rings represents the interplanar spacing "d" 

which corresponds to a specifie family of planes of a particular phase. The presence of 

specifie crystalline materials can be detected from these d values by comparing these 

values to the data obtained from XRD cards. 



Experimental Techniques and Research Methodology 71 

~ 
C 
:::::J o o 

30 40 50 60 70 80 

Angle (28) 

Figure 3.3: Typical XRD and TEM of fully crystalline material. 

On the other hand, a typical XRD diffraction pattern for a fully amorphous 

material is presented in Figure 3.4, characterized by the lack of diffraction peaks. This 

absence of diffraction peaks is due to the presence of a distorted amorphous structure, 

which applies also to the SADPs obtained in the TEM shown in the same figure, 

manifested by the absence of crystalline long-rang order. 

For the purpose of this study and due to the expected presence of both crystalline 

and amorphous phases, XRD analyses were complemented with high resolution TEM 

and SADPs, for a better qualitative characterization of nanocrystalline and amorphous 
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phases, since it is expected to see diffraction rings coexisting with the halo-diffraction 

patterns. 
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Figure 3.4: Typical XRD and TEM offuUy amorphous aUoy. 

3.2.5 Particle Size Determination 

80 

In sorne cases, the average crystallite size was calculated using two methods. First, 

by fitting the non-overlapping diffraction peak profiles using the Scherrer procedure 

from XRD results. Additionally, direct TEM observation using bright- (BF) and dark-

field (DF) images. These two procedures were used for comparison purposes in order 

to assess the indirect procedure of Scherrer with direct TEM observation. It is 

necessary to mention that in order to apply the Scherrer procedure to X-ray 
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diffractograms the peaks indicating the presence of solid solution should be clearly 

present. If these peaks cannot be seen on the XRD patterns, the procedure for 

crystallite size measurement cannot be performed and direct TEM observation is the 

only possible means of measuring the average crystallite size. However, direct TEM 

was used in most cases since it is more straight forward and more precise. 

The procedure for ca1culating the average crystallite size using Scherrer equation 

has been detailed in Suryanarayana and Norton [84]. The reduction in crystallite size 

can be related directly to the broadening in the X-ray patterns in specifie locations and 

thus allows for quantification. The broader the diffraction peak the smaller is the 

crystallite size of the material, which is mainly due to the fact that for smaller crystal 

structures there are less parallel planes available for sharp diffraction, hence 

broadening is observed. Nevertheless, the observed broadening into the peaks cannot 

be related directly to the broadening due to reduction in crystal structure. Other 

sources that cause broadening exist such as: the instrumental effect and lattice strain. 

Therefore, subtraction of these is essential in order to determine the crystallite size 

precisely. The following equations can be used for the calculation. 

The broadening due to the instrumental error can be determined by running an 

annealed sample of the alloy under study and then subtracting the broadening of the 

obtained peaks "Bi". Hence, 



Experimental Techniques and Research Methodology 74 

(3.1) 

Where Bo is the broadening from the material under study and Br is the resulting 

broadening after subtracting the instrumental broadening. Thus, Br is the broadening 

due to crystallite size and lattice strain. After that, the Scherrer equation can be used 

which is: 

B = kÂ 
c Lcos8 

(3.2) 

Where Be is the broadening due to crystallite size reduction only, L is the crystallite 

size, k is a constant and À is the wave length. Broadening due to lattice strain Bs can be 

represented by the relation: 

Since Br = Be + Bs 

And by substituting for the equations above and multiplying by case. 

Br cos 8 = kÂ + 1] sin 8 
L 

Then by plotting the above equation in Br cas8vs. sin8 

(3.3) 

(3.4) 
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The intersection which is equal to kÀ can be depicted which facilitates the calculation 
L 

of crystallite size L. 

3.3 Compaction and Hardness Measurements 

Hardness measurements of the resulting alloys have been undertaken in order to 

assess the mechanical properties as a function of the Zr concentration. Compaction of 

the as-milled powder was carried out by employing combined cold and hot 

compaction procedures. Figure 3.5 shows a photograph of a compacted powder 

sample of 20 mm in diameter along with the die used for this purpose. 

Figure 3.5: Compacted powders. 
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neglecting the presence of intermetallics since it is difficult to know the exact fraction. 

Vegard's mIe can be written as: 

(3.5) 

Where x, y and z are in atomic percentages. 

As-milled powders were compacted using a co Id-press at 1 GPa for 10 minutes. 

The sample and compaction die were placed in a hot-press and kept for 20 minutes at 

400°C prior to compaction under 70 MPa for 10 minutes. This procedure is performed 

to ob tain highly dense samples to facilitate hardness measurements using a Clark® 

LM -1 OOAT microhardness tester with a load of 10 g. 

It is important to mention here that the microhardness measurements were 

performed with great care taking into account the following concems: 

1. If there is particle collapse due to indentation, this reading is ignored. 

Nevertheless, we never had such incident which reassures the high density of 

the samples. 

2. If there are large fluctuations in the hardness measurements, then this might 

indicate that the sample is not compacted enough, thus, taking hardness is not 
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suitable and compaction should be repeated. However, this case has not been 

encountered either. 

3. The readings should be taken from locations far away in the material to avoid 

having local compacts and make sure that the material is showing no porosity. 

4. Any distortion of the indentation (impressions) disqualifies the reading. 

3.4 Research Methodology 

The flow chart presented in Figure 3.6 shows the experimental procedure that can 

be followed. This procedure was used in aIl alloy systems using mechanical alloying 

to verify the possibility of forming nanocomposite material based on predetermined 

alloy constituents. Detailed description of this procedure will be given accompanied 

by all possible modification that can be made to develop a nanocomposite structure. 

Once the alloy compositions and milling parameters are specified, the powders, 

and process control agent (PCA), were loaded in a sealed glove box under Ar 

atmosphere to prevent/minimize contamination by oxidation. Subsequently, the as­

milled powders could be characterized by XRD, SEM, and/or TEMIEDS to verify the 

microstructure, i.e. completely amorphous, partly amorphous or completely crystalline 

phases. As-milled powders were subjected to annealing in order to study the stability 

of the obtained phases and the formation of equilibrium phases. In this research, 

particular emphasis was paid to obtain a nanocomposite structure comprising of 
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research, particular emphasis was paid to obtain a nanocomposite structure comprising 

of nanoparticles embedded in an amorphous matrix. This indicates that the formation 

of an amorphous phase is essential for this purpose. 

From Figure 3.6, it can be seen that if a completely amorphous phase was obtained 

in as-milled samples, then these were subjected to controlled devitrification to 

nucleate nanometric crystals. Devitrification can be performed in the temperature 

range of 150-300°C for short periods of time depending on the system under study. On 

the other hand, if a partly amorphous phase or crystalline phases were obtained then 

further examination was needed to verify if the y resembled a nanocomposite structure. 

Adjusting the heat treatment procedure is very important to obtain the 

nanocomposite material and it can be altered until the desired microstructure is 

obtained. If a nanocomposite material is obtained, then it was possible to proceed to 

compaction and mechanical properties testing; otherwise either devitrification or 

adjustments of the milling parameters, such as milling time and ball-to-powder ratio is 

needed. Compaction should be performed also with great care to avoid coarsening of 

the nanometrÏc grains. In general, compaction can be achieved by either hot- or cold­

pressing. However, cold pressing was preferred to avoid excessive crystal growth. 
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Figure 3.6: Flow chart showing the experimental procedure for the preparation 

of nanocomposites and possible characterization. 
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Chapter4 

Results and Discussion 

4.1 Important Considerations in This Study 

At the beginning of this section it is essential to address sorne key information that 

is useful for the discussion of this chapter. Since mechanical alloying is a non­

equilibrium process, it is important to present sorne of the basic equilibrium phase 

diagrams in order to assess the departure from equilibrium obtained by employing 

mechanical alloying. Figure 4.1 shows the equilibrium Al-Mg phase diagram which 

clearly shows the presence of two main intermetallics, namely ~-AhMg2 and y­

AI12Mg17• The ~ phase can be obtained for Mg concentrations between 38 and 41 at%, 

whilst the y-phase can be produced at concentrations between 45 and 60.5 at%. As 

stated earlier, due to the nature of the alloying process, it is expected that these 
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intermetallic phases form at different Mg concentrations, which depends mainly on the 

milling conditions and phase stability. 
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Figure 4.1: Al-Mg equilibrium phase diagram. 
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It is also useful to show the equilibrium Al-Zr diagram to show the equilibrium 

phases which is necessary to assess the departure from equilibrium by employing 

mechanical alloying. From Figure 4.2 it can be seen that the Al-Zr system is more 

complex compared to the Al-Mg. Since there exist many intermetallic phases exist in a 

narrow range of compositions, this makes the identification and characterization of 

these phases very challenging, and therefore information about their stability is 
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necessary. Sorne of these intermetallic phases nucleate only at higher temperatures in a 

metastable state and decompose upon slow cooling into higher stability intermetallics. 

Additionally, sorne of the se intermetallics can be present in more than one crystal 

structure depending also on how the system is brought to room temperature. For 

instance, the tri-aluminide AhZr can be present in either tetragonal D023 or cubic Lh 

crystal structures. The latter structure is considered as a higher temperature structure 

but can be preserved at room temperature through high quenching rates. This is 

beneficial for achieving improved mechanical properties at room temperature since the 

transformation to the equilibrium D023 phase can cause embrittlement of the material. 
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Figure 4.2: Al-Zr equilibrium phase diagram. 
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For the upcoming results and discussions, different categories of alloys will be 

presented separately. The sequence for results and discussion will be as follows: 

1. X-ray diffractograms will be presented for both as-milled and annealed alloys 

followed by a discussion and comparison with the expected equilibrium 

phases. This step is essential in showing the resulting phases upon milling and 

to study the departure from equilibrium by employing mechanical alloying. In 

addition, the thermal stability of these phases was studied by comparing the 

metastable phases to those obtained after annealing. 

2. The formation of the nanocomposite structure was examined using TEM, by 

investigating the presence of both amorphous and crystalline regions using 

SADPs and high resolution TEM. Moreover, the role of alloy composition on 

the formation of an amorphous phase will be assessed. Selected area 

diffraction patterns (SADPs) are presented from various locations of the 

material to locate the nanocomposite structure and assess the progress of 

amorphization. 

3. Crystallite size measurements will be presented for both as-milled and 

annealed alloys. The crystallite size is another factor influenced by the Zr 

addition, and the role of Zr in retarding grain growth of the nanostructure will 

be highlighted. 

4. Hardness values taken from different locations of the compacts to evaluate any 

improvement in mechanical properties will be presented as a function of Zr 

concentrations. 
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5. The aforementioned sequence of results and discussions will be presented for 

each category of alloys. However, it is important to mention that a detailed and 

thorough discussion will be given for the first category of alloys only. This is 

mainly to avoid repetitions since similar behaviour in terms of phase evolution 

might be observed from one group of alloys to another. 

6. FinaIly, a general comprehensive discussion of aIl the results will be presented 

in order to evaluate the behaviour of aIl alloys prepared in this research and to 

draw overall conclusions. Additionally, the best alloy in terms of combining 

the most suitable structural stability along with mechanical properties will be 

highlighted. 
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4.2 Low Mg-Containing Alloys 

This category of alloys was prepared in order to study the effect of adding a low 

content of Mg and varying the Al/Zr ratio, in nominal compositions according to 

MgJOA190-xZrx (where x: 0, 5, 20, and 35at%). 

4.2.1 Phase Evolution Studies by XRD 

X-ray diffraction patterns of the resulting as-milled and annealed alloys from this 

group are presented in Figures 4.3 and 4.4, respectively. As stated earlier, the Mg 

content was fixed at 10 at% for aIl the alloys, whereas the Zr concentration was varied 

to produce one binary and three ternary alloys. For the binary aIloy, the presence of an 

Al (Mg) solid solution (SS), is shown by the c1ear shift of the a-Al peaks toward lower 

angles, caused by dissolution of the larger size Mg atoms into the Al matrix. The 

broadening of diffraction peaks is another feature that can be noticed, being indicative 

of the reduction in crystallite size and accumulation of strain in the material. 

However, neither the presence of Al-Mg intermetallics nor unaIloyed Mg was revealed 

from the diffraction pattern which may suggest only complete solid solubility. 

Furthermore, upon annealing, the Al (Mg) SS was the only phase present; however, the 

diffraction peaks were slightly narrower due to stress relaxation and grain coarsening. 

These results agree weIl with previous findings [35] in which the a-Al solid solution 

was present in alloys containing up to 30 at. % Mg. 



Results and Discussion:Low Mg-cotaining alloys 86 

To study the phase evolution further and the possibility of forming 

nanocornposites as a result of adding a ternary glass-forming elernent, a series of 

alloys with different Zr concentrations was prepared. In the 5 at.% Zr alloy, sorne free 

Mg was present along with the AI(Mg)SS, suggesting that the solid solubility of Mg 

in Al decreases in the presence of Zr. This rnight be due to the substitution of sorne Zr 

for Mg and the formation of an AI(Mg,Zr) SS. 
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Figure 4.3: X-ray diffraction patterns of the low Mg concentration as-milled alloy 

powders: (a) lOMg~90Al, (b) lOMg-85AI-5Zr, (c) lOMg-70AI-20Zr, (d) lOMg-

55AI-35Zr. 

Upon annealing and due to the high affinity between Al and Zr, however, traces of 

the rnetastable AhZr phase, having a cubic ordered structure Lh were detected [85]. 

This phase can be synthesized directly by MA in alloys with higher Zr contents or by 
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annealing a solid solution with low Zr contents, as in this case. This highlights 

additional advantage of non-equilibrium processing in which it is possible to retain the 

Ai]Zr phase in the cubic ordered Llz structure rather than the equilibrium tetragonal 

DOZ3 structure, which weakens the structure due to its embrittlement [16]. 
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Figure 4.4: X-ray diffraction patterns of the resulting annealed alloy: (a) lOMg-

9OAl, (b) lOMg-85AI-5Zr, (c) lOMg-70AI-20Zr, (d) lOMg-55AI-35Zr. 

Another feature observed in the XRD pattern is the apparent shift of peaks toward 

even lower angles and increased broadening as the Zr content increases. This indicates 

that the addition of Zr causes additional structural refinement and substantial structural 

disruption compared to the binary alloy. Furthermore, for 20 at.% Zr, the presence of 

unalloyed Mg and the formation of the Ai]Zr intermetallic in the as-milled powders 
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were clearly evident from X-ray diffractograms. The small difference in lattice 

parameter and the same crystal structure between the Al and AhZr phases seem to 

facilitate the coherent precipitation of this metastable phase from the Al matrix. 

Nevertheless, no significant changes were observed in the annealed powders except 

for apparent peak narrowing. 

In comparison with alloys with lower Zr content, the addition of 20 at. % caused 

further reduction in crystallite size and even larger structural disorder, as seen from the 

XRD peak width. This trend of continuous refinement in crystallite size and the 

increased shift towards lower angles as the Zr content increases was not observed in 

the case of 35 at% Zr. The higher Zr-containing alloys show c1ear evidence of 

oxidation, along with sorne Al-Zr intermetallics, i.e. AhZr and AhZr4. These two 

phases showed good stability after annealing, together with the appearance of the 

AbZr phase, which is a more stable intermetallic as observed from the equilibrium AI­

Zr phase diagram. 

Since crystallite size measurements by XRD can be influenced by the presence of 

lattice strain and other effects, direct TEM observations were carried out to deterrnine 

structural refinement as a function of the Zr content. Further, due to the higher 

resolution of this technique, it was also possible to observe the nanocomposite 

formation and partial amorphization as a function of the Zr concentration. 
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4.2.2 TEM Studies 

TEM was used to carry out more in-depth examination of the alloys with regard to 

their nanostructural nature and the presence of an amorphous phase. Figure 4.5 shows 

a TEM image of the binary alloy of nominal composition MgIOAI9o. Additionally, the 

selected area diffraction pattern (SADP) taken from the center of this particle "circled 

region" is shown as an insert. 

Figure 4.5: TEM image for the as-milled binary alloy lOMg-90Al powders, 

showing complete crystallinity. 
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It can be c1early se en from the diffraction pattern that the binary alloy shows no 

presence of an amorphous phase which is manifested by the existence of c1ear 

reflections forming diffraction rings. These rings correspond to the Al (Mg) solid 

solution that was revealed previously by XRD of both as-milled and annealed alloys. 

This confirms the difficulty of forming an amorphous phase by milling binary Al-Mg 

alloys under the existing milling conditions. 

Further investigation of the possible existence of small fractions of amorphous 

phases in this alloy was carried out using high resolution TEM (HR-TEM), shown in 

Figure 4.6. From the HR-TEM image the presence of ordered atomic planes can be 

seen, with an interplanar distance of 0.21 nm, corresponding to the (200) plane of the 

Al (Mg) SS. This confirms the diffusion of Mg into Al to form the solid solution since 

an enlargement of the interplanar spacing is obtained by comparison with the 

equilibrium value for Al, which is 0.2024 nm. 

A bright field image of an alloy partic1e containing 5at. % Zr is shown in Figure 4.7 

to study the effect of Zr addition on the formation of nanocomposite structure that 

might contain an amorphous phase. The EDS analysis of this particular alloy was 

taken from the center of several partic1es in order to assess any fluctuation in 

composition from the starting material. A typical EDS is presented in the same figure 

along with the corresponding selected area diffraction pattern (SADP) of the alloy 

containing 5 at.%Zr, taken from the center of a particle (circ1ed area). It can be seen 

from the diffraction pattern (DP) that the continuous rings reveal the presence of a 
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highly crystalline material and the existence of an amorphous phase cannot be inferred 

from this DP. Therefore, the Al-Mg binary alloy and the one containing 5 at.%Zr did 

not apparently show the presence of amorphous phase. 

Figure 4.6: High resolution TEM image of the binary alloy showing complete 

crystallinity and interplanar spacing d. 
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This agrees with previous studies performed in Al-Mg binary alloys [9] in which 

no amorphous phases were detected without the addition of a ternary glass-forming 

element. However, it should be stated that the amount of the glass former depends on 

the system under study. As will be shown later, ternary alloys containing higher Zr 

concentrations showed a nanocomposite structure with SADP images showing 

qualitatively a larger volume of the amorphous phase. It is important to mention also 

that EDS analyses of sorne selected regions of the ternary alloy showed no 

considerable compositional gradient, and the calculated average compositions are 

close to the nominal starting powder mixtures. However, the individual compositions 

of the crystalline and amorphous phases were not resolved. 

A TEM image of a typical particle of 20 at. %Zr is shown in Figure 4.8. 

Additionally, the EDS analysis of the particle is shown, along with SADPs taken from 

the center (labelled "A") and corner (labelled "B") of the particle are shown in the 

same figure. 

It can be seen that the diffraction pattern taken from location "A" reveals the 

presence of crystalline diffraction spots with no clear presence of an amorphous phase, 

which might be due to the higher thickness of the center of the sample. Furthermore, 

by obtaining the SADP of one edge of the sample (labelled "B") a typical halo­

diffraction pattern is shown along with sorne crystalline spots indicating the presence 

of an amorphous phase coexisting with crystalline particles, i.e., a nanocomposite 

structure. 



Results and Discussion:Low Mg-cotaining alloys 93 

Figure 4.7: TEM image of an as-milled lOMg-85AI-5Zr alloy particle along with 

EDS and SADP of the center. 
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Figure 4.8: TEM image of as-milled lOMg-70AI-20Zr, along with EDS and SADP 

from the center and corner locations. Note: the higher degree of amorphization of 

region B. 

A high-resolution image of a selected edge region is shown in Figure 4.9 revealing 

the presence of a crystalline phase, with an interplanar spacing d = 0.213 nm, 

coexisting with an amorphous phase. 
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Figure 4.9: HR-TEM image of a region of the AI-IOMg-20at % Zr alloy showing 

the coexistence of nanocrystals and amorphous phase. 

The HR-TEM image clearly shows regions of structural disorder, likely having an 

amorphous structure. In addition, crystalline regions showing clear atomic planes can 

be seen interspersed in the amorphous regions. This suggests the presence of a 

nanocomposite structure comprising amorphous and crystalline phases in different 

volume fractions. These observations confirm for the first time that such a structure 

can be obtained in the MAed Al-Mg alloys and the specific role of Zr in facilitating 

the development of a nanocomposite structure [86]. 
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Referring to Figure 4.8 and the corresponding SADPs, it is reasonable to comment 

that the thicker part of the particle has experienced less deformation in comparison to 

the thinner part. Consequently, the thinner region has become amorphous while the 

thicker part continued to be highly crystalline, for this particular composition. 

Accumulation of sufficient defect density raises the free energy of the crystalline 

phase above that of the amorphous phase, thus facilitating the preferential stabilization 

of the amorphous phase [87]. 

A TEM image of the alloy with the maximum Zr concentration of 35 at% is shown 

in Figure 4.10 in addition to an EDS analysis and SADPs taken from two locations. 

The presence of a nanocomposite structure comprising nanocrystals and amorphous 

phases is confirmed from these images. This is manifested by the coexistence of both 

crystalline diffraction spots and halo-diffraction regions in the diffraction pattern taken 

from the corner of the particle. This indicates that for this type of alloys increasing the 

Zr concentration to values exceeding 20at% result in the formation of a 

nanocomposite structure with a pronounced fraction of amorphous phase even in the 

center of the particle. 

In order to highlight the role of Zr in promoting the presence of an amorphous 

phase in these alloys, the corresponding SADPs for different Zr concentrations are 

shown in Figure 4.11. It can be seen that as the Zr concentration increases into the 

alloy so does the degree of amorphization; diffraction rings become less pronounced 

and the formation of the diffuse-halo becomes more evident, which can also be seen 



Resu/ts and Discussion:Low Mg-cotaining alloys 97 

from XRD patterns in Figure 4.3. However, it cannot be concluded from these DPs 

that the alloy containing 35 at. %Zr has a grater fraction of amorphous phase than the 

one containing 20 at. % Zr. 

Figure 4.10: TEM image of as-milled 10Mg-55AI-35Zr showing EDS and SADPs 

of two locations (center and corner). They reveal the existence of a 

nanocomposite structure. 
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Figure 4.11: Comparison between SADPs of the Low Mg-containing alloys: (a) 

lOMg-90Al, (b) lOMg-85AI-5Zr, (c) lOMg-70AI-20Zr, (d) lOMg-55AI-35Zr. 

4.2.3 Crystallite Size Measurement 

The crystallite sizes of the resulting alloys in both as-milled and annealed 

conditions at different Zr concentrations are shown in Figure 4.12. The crystallite size 

measurements were carried out using both the Scherrer procedure from XRD patterns 

and direct TEM observation using both dark- (DF) and bright-field (BF) images. 

However, for the alloy containing 35at%Zr, measurements were taken using only DF 
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images since the absence of the sol id solution peaks from X-ray diffractograms did not 

facilitate the application of the Scherrer procedure. 
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Figure 4.12: Crystallite size measurements for different Zr concentrations for as­

milled and annealed alloys, highlighting the role of Zr in the refinement of the 

crystalline structure. 

It can be seen that a reduction in crystallite size is achieved as the Zr content 

increases, showing an asymptotic behaviour for both as-milled and annealed powders. 

One interesting observation is the apparent stability of the grain structure as the Zr 

content increases. In fact, Zr seems to contribute to the stability of the nanocrystals 

and the larger the amount added, the less the post -annealing grain growth. The 

measured average crystallite size for the binary AI-lO%Mg alloy was close to 15 nm, 
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which is smaller than previously reported for AI-5%Mg, being close to 26 nm [38]. 

This could be due to the higher Mg concentration into the alloy contributing further to 

the refinement in crystallite size [88]. However, the se observations need more detailed 

study in order to highlight the role of minor Mg addition in the final crystallite sizes of 

the synthesized alloys. 

The measurement of crystallite sizes were carried out usmg direct TEM 

observation from both bright field (BF) and dark field (DF) images. The crystallite 

size was determined based on the average values from images like those shown in 

Figures 4.13 for the MglOAl55Zr35 alloy in both as-milled and annealed conditions. 

Figure 4.13: Bright field TEM images showing crystallite size for as-milled and 

annealed 10Mg-55AI-35Zr alloy. 
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It can be seen from these images that there is indeed a slight increase in crystallite 

size caused by annealing. However, measurements were taken with great care and in 

magnified images to have more in depth assessment of grain growth. 

Regarding the comparison between the results obtained from the Scherrer method 

and direct TEM observations, it was noted that the crystallite measurements obtained 

using the former are larger by almost 6 % (see Appendix-B). This might be due to the 

fact that measurements by XRD depend primarily on the best fit of non-overlapping 

diffraction peaks, directly relating the broadening of the peaks to the reduction in 

crystallite size. This would be subject to several measurement errors in terms of 

determining the values of the full width at half maximum (FWHM). Furthermore, the 

best precision obtained in crystallite size determination by XRD is about ±10% [84]. 

4.1.4 Hardness Measurements 

The hardness measurements of the resulting alloys were taken in order to assess 

the influence of Zr on the mechanical properties. The hardness values obtained from 

compacted samples are shown in Figure 4.14, showing a continuous increase in 

hardness up to 20at. %Zr. However, the value almost doubles for a Zr content of 35 

at. %, which might be due to the presence of the zirconium oxide that, due to its 

hardness, renders the material significantly harder. However, further work is needed to 

investigate the dependence of hardness values on milling time and to correlate the 
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effect of crystallite size reduction with the obtained improvement in mechanical 

properties. 

900~--------------------------------. 

800 
700 
600 

> 500 
l 

400 
300 
200 
100 

o +---------~--------~----------~------~ 
o 10 20 

at.% Zr 
30 

Figure 4.14: Variation ofhardness with Zr concentration, showing the beneficial 

effect of Zr. 
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4.3 High Mg-Containing Alloys 

In this category of alloys the concentration of Mg was maintained at 40 at. % 

producing alloys of nominal compositions according to Mg4oA16o-xZrx (x = 0, 5, 20 and 

35 at.% Zr). 

4.3.1 XRD Studies 

Phase evolution of as-milled High Mg Alloys is shown in Figure 4.15 while the 

corresponding XRD patterns of heat-treated alloys are shown in Figure 4.16. In the 

binary Mg4oAl6o aIloy, the main phase found for as-milled powders was an Al (Mg) 

solid solution (SS), with the exception of traces of y-Al12Mg17, which then transformed 

into the equilibrium ~-AhMg2 after annealing. These results agree weIl with previous 

findings [34, 35] in which the ~-phase was formed at this Mg concentration, only after 

annealing, due to the complexity of the phase and its larger lattice parameter compared 

to y-phase. This indicates the need for higher energy to allow for the formation of this 

phase. 

When 5at.% Zr was added to the aIloy, it forced Mg to precipitate out of SS with 

the consequence formation of y-AI12Mg17• This can be related to the presence of an 

Al(Mg,Zr)SS, which formed after heat-treatment. The y-phase was also identified after 

heat-treating the aIloy, indicative of the thermal stability of this phase. In addition, the 
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AbZr intermetallic with a cubic Llz crystal structure was also formed due to the nature 

of the non-equilibrium processing [16]. 
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Figure 4.15: XRD patterns for as-milled AI-Mg-Zr alloys: (a) 40Mg-60Al, (b) 

40Mg-55AI-5Zr, (c) 40Mg-40AI-20Zr, (d) 40Mg-25AI-35Zr. 

Upon increasing the Zr concentration to 20at% the SS disappeared, giving way to 

AhZr, sorne unalloyed Mg and small traces of the y-Al 12Mg17. Moreover, sorne Zr 

oxidation was detected, which is attributed to the higher affinity between Zr and O. 

Upon annealing, unalloyed Mg and AhZr are still present, and the volume fraction of 

y-AI12Mg17 increased slightly. The Al-Zr intermetallic showed good thermal stability 

and no phase transformation was observed. When Zr concentration was increased 
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further to 35at%, sorne Al-Zr intermetallics appeared after milling, which then 

transformed into the more thermodynamically stable phases upon annealing. Along 

with the equilibrium AhZr phase, other non-equilibrium phases, i.e. AIZr2 and AhZr3 

were observed. Upon milling, sorne unaIloyed Mg and Zr02 traces were detected for 

this composition as weIl. After heat-treatment, the AIZr2 phase disappeared, 

suggesting low stability, whereas the other phases remained. No Al-Mg intermetallics 

were found to form at Zr concentrations exceeding 20 at%, which reflects the higher 

affinity of Zr for Al. 
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Figure 4.16: XRD patterns for annealed AI-Mg-Zr alloys: (a) 40Mg-60AI, (b) 

40Mg-55AI-5Zr, (c) 40Mg-40AI-20Zr, (d) 40Mg-25AI-35Zr. 
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4.3.2 TEM Studies 

As in the previous series of alloys, the formation of nanocomposite alloys having 

an amorphous phase was not evident from the XRD patterns; therefore, TEM studies 

were carried out. Figure 4.17 shows a TEM image of a partic1e of composition 

Mg4oAI60. Moreover, selected area diffraction patterns (SADPs) where also taken from 

two different regions of the partic1e in order to verify the possible presence of 

amorphous phases, these locations labelled "A" and "B" are shown in the same figure. 

It can be seen that both DPs show c1ear diffraction rings indicating high crystallinity 

of the sample. 

The TEM micrograph of the alloy containing 5 at. %Zr is shown in Figure 4.18 

along with the EDS analysis taken for the whole partic1e the corresponding SADP 

images for both centre and corner areas "A" and "B", respectively. 

The presence of an amorphous phase for this alloy is not evident from the SADP 

images due to the absence of a halo-like pattern. To further investigate the presence of 

an amorphous phase, high resolution TEM images were taken and the interatomic 

spacings were calculated using Fast Fourier Transform (FFT) and shown in Figure 

4.19. Again, there is no c1ear indication of the presence of an amorphous phase, but 

only a polycrystalline material is inferred from the SADP image, with interatomic 

spacing of 0.209 nm. Thus, for both binary and ternary alloys containing 5 %Zr in this 

series of alloys, no c1ear presence of an amorphous phase was found. 
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Figure 4.17: TEM BF-image of as-milled binary 40Mg-60 Alloy and SADPs from 

centre and corner locations showing complete crystallinity. 
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Figure 4.18: TEM image of as-milled 40Mg-55AI-5Zr alloy along with EDS and 

SADPs taken from center and corner regions. Note: clear diffraction rings are 

present in both cases. 
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Figure 4.19: High resolution TEM image of as-milled 40Mg-55AI-5Zr showing 

high degree of crystallinity and interatomic spacing. 

For the temary alloy containing 20 at. %Zr, the TEM image of the selected partic1e 

is shown in Figure 4.20. In addition, an EDS spot analysis is taken for the whole 

partic1e to verify the overall composition, and the SADPs from both regions "A" and 

"B" are also presented. 
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Figure 4.20: TEM image of as-milled 40Mg-40AI-20Zr alloy, along with EDS and 

SADPs showing the presence of nanocomposite structure at the corner area. 

By examining the SADP images, the presence of an amorphous phase was evident, 

in particular from region "B". Therefore, a nanocomposite structure consisting of an 

amorphous phase with crystallites interspersed was evidenced by the coexistence of 

diffraction spots aIong with halo-like patterns, indicative of crystalline and amorphous 
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structures. However, it should be mentioned at this point that the SADP image taken 

from area "A" shows a halo typical of highly amorphous alloys. This should not be 

mistakenly considered as an indication of a completely/highly amorphous structure 

and the main reason for such a reflection is due to the larger thickness of the particle in 

this particular area. This can be explained by the nature of the mechanical alloying 

process, in which the accumulation of defects will affect the structure of the material, 

since defects will build-up in thicker parts preventing atomic planes from diffracting. 

To reinforce this observation further, a high magnification image shown in Figure 

4.21 was taken from the thinner region marked as "B", showing clearly that the 

borders of the particle are more transparent to the electron beam. Moreover, this might 

be due to the fact that aperture size is close to 250 nm and confiding such a small area 

is not possible without obtaining reflections from the amorphous carbon grid. 

Additionally, a high resolution image presented in Figure 4.22 was taken from the side 

of the particle in order to verify the presence of a nanocomposite structure. It can be 

seen by carefully examining this particular image that many randomly oriented 

crystals exist in addition to regions having a disordered structure, which is typical of 

amorphous regions. Thus, the nanocomposite structure developed in this system by 

increasing the Zr concentration to 20 at. %. 
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Figure 4.21: High magnification TEM image of region "B" of the nanocomposite 

structure of as-milled 40Mg-40AI-20Zr alloy. 

The TEM image of the alloy containing 35at. % Zr is shown in Figure 4.23 along 

with the corresponding EDS analysis for the partic1e and the SADPs taken from 

regions "A" and "B". It can be observed that a nanocomposite structure was obtained, 

evidenced by the coexistence of diffraction spots and halo-like diffraction pattern. An 

additional observation is that the crystallinity spots from SADPs for this particular 

alloy are more pronounced compared to the alloy containing 20 at. % of Zr. This might 

be due to the higher oxidation rate that was observed in this alloy from X-ray 

diffractograms which promotes more crystallization of Zr02. However, it could be 

also due to the tilting of the specimen or even larger thicknesses. 
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Figure 4.22: High resolution TEM image of the as-milled 40Mg-40AI-20Zr alloy, 

showing the coexistence of crystallites embedded in an amorphous matrÏx. 

Figure 4.24 shows a compilation of the SADPs for this series of alloys in order to 

assess the progress of amorphization as a function of Zr content. In general, it can be 

observed that as the Zr content increases the diffraction rings diminish in intensity and 

the halo-like diffraction becomes more pronounced. An exception is in the case of 
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35% in which the possibility of having higher oxidation rates or higher thicknesses 

and therefore crystalline oxides led to more pronounced reflections of the crystalline 

phase. 

Figure 4.23: TEM image of as-milled 40Mg-25AI-35Zr particle, along with EDS 

and SADPs of two locations that show the nanocomposite structure. 
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Figure 4.24: SADPs showing the formation of amorphous phase as a function of 

Zr content: (a) 40Mg-60Al, (b) 40Mg-55AI-5Zr, (c) 40Mg-40AI-20Zr, (d) 40Mg-

25AI-35Zr. 

4.3.3 Crystallite Size Measurement 

in this category of alloys, the determination of crystallite sizes was performed via 

direct TEM observation using dark- (DF) and bright-field (BF) images only. The 

results for both as-milled and annealed alloys at different Zr concentrations are shown 
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in Figure 4.25. It can be seen that the crystallite size decreases as the Zr content 

increases for both as-milled and annealed powders. AIso, there is an apparent stability 

in the grain structure as the Zr content increases, as observed by the negligible grain 

growth observed for alloys containing 20 and 35 at. %Zr. In the case of the alloy 

containing 20at% Zr, the presence of the zirconium tri-aluminide intermetallic (AhZr) 

is thought to contribute to the stability of the nanocrystalline structure, via Zenner 

pinning. In general, the se two alloys showed a nanocomposite structure and good 

structural stability when isothermally annealed at 400°C for 1 hour. 
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Figure 4.25: Reduction in crystallite size as a function of the Zr concentration. 

As stated earlier, the measurements of crystallite sizes were carried out using 

direct TEM observations. For illustration purposes, dark field images of both as-milled 
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and annealed powder of the Mg4oAhsZr3s alloy are presented in Figure 4.26. The 

crystallite size was determined based on the average value of several readings. 

Figure 4.26: Dark field TEM images employed in the determination of crystallite 

size for the as-milled and annealed 40Mg-25AI-35Zr alloy. 

4.3.4 Hardness Measurements 

Hardness measurements performed on compacted samples are shown in Figure 

4.27. The values show a continuous increase in hardness up to 20 at. %Zr where the 

values remain almost constant up to 35 at. %Zr. As with low Mg containing alloys this 

might be related to the observed presence of the zirconium oxide acting as a 

strengthening agent. However, the improvement in hardness might be also attributed 

to the formation of the nanocomposite structure and the presence of nanocrystals. 
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The aforementioned crystallite size measurements and average hardness values 

suggest that the alloy containing 20 at. %Zr combines both thermal stability and 

improved mechanical properties. Despite the fact that similar results were obtained for 

the alloy containing 35at%, it should be kept on mind that lower oxidation levels were 

detected for the alloy containing 20at% which might be due to the lower Zr 

concentrations. 
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Figure 4.27: Variation of hardness for different Zr concentrations for High Mg­

containing Alloys. 
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4.4 Low AI-Containing Alloys 

In this category of alloys, the Al concentration was fixed to 10 at.% as in AllOMg90-

xZrx (where x: 0, 5, 20, and 35 at. %) nominal composition which leads to one binary 

alloy and three ternary alloys. 

4.4.1 Phase Evolution Studied by XRD 

X-ray diffraction patterns of the resulting as-milled and annealed powder alloys of 

the Law-Al series of alloys are presented in Figures 4.28 and 4.29, respectively 
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Figure 4.28: X-ray diffraction patterns of the resulting as-milled alloy powders: 

(a) 10AI-90Mg, (b) 10AI-85Mg-5Zr, (c) 10AI-70Mg-20Zr, (d) 10AI-55Mg-35Zr. 
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For the binary alloy, the y-AI 12Mg17 intermetallic along with unalloyed Mg were 

formed after milling. These two phases remained stable after annealing accompanied 

by peak narrowing indicating grain growth and stress relaxation. For this composition 

the phase evolution is in agreement, in terms of the presence of unalloyed Mg, with 

the predictions of the equilibrium Al-Mg phase diagram. Nevertheless, the formation 

of the y-phase intermetallic seems to be promoted by the presence of even a small 

amount of Al. The y-AI12Mg17 phase showed good thermal stability despite the fact 

that it is not the equilibrium phase at this particular composition. 
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Figure 4.29: X-ray diffraction patterns of the resulting annealed alloy powders: 

(a) 10A-90Mg, (b) 10AI-85Mg-5Zr, (c) 10AI-70Mg-20Zr, (d) 10AI-55Mg-35Zr. 
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When 5at%Zr was added to the alloy, the phase constitution did not change (y­

A12Mg17+unalloyed Mg) relative to the binary alloy. The only additional observation 

was that the amount of y-AI12Mg17 increased. Upon annealing at 400°C, the present 

phases remained unchanged, indicating thermal stability. The only noticeable change, 

as in the binary alloy, was the slightly narrower diffraction peaks due to crystallite 

coarsening. Another feature was the apparent shi ft of peaks toward even lower angles 

and the observed broadening. This indicates that the addition of Zr caused addition al 

structural refinement and substantial disruption as the peaks broadened compared to 

the binary alloy. 

On the other hand, the amount of Zr present at this alloy was not detected from 

XRD which might be due to limited detectability of the XRD, suggesting the use of 

other complementary techniques to verify its presence. Figure 4.30 shows a secondary 

electron (SE-SEM) image of an AllOMg85Zr5 particle. Upon switching to the back­

scattered mode Figure 4.31, it is observed that most of Zr appeared in the form of 

cores which is in good agreement with the results reported elsewhere [53] for cast 

alloys. This mainly relates to the low solid solubility of Zr in Mg which remains in the 

form of Zr-rich cores. 
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Figure 4.30: Secondary electron image of the binary 10AI-90Mg alloy. 

Figure 4.31: Back scattered electron image of the binary 10AI-90Mg alloy, 

showing residual amounts of Zr in the form of Zr-rich cores. 

122 
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Furthermore, upon increasing the Zr concentration to 20at%, the XRD plot of the 

as-milled alloys revealed primarily the presence of sorne unalloyed Mg and Zr, along 

with, Zr02, and small amounts Qf y-Ah2Mg17 and AhZr intermetallic. This might be 

due to the presence of low Al concentrations in this alloy which impede the formation 

of addition al Al-Zr intermetallic phases leading to larger amounts of unalloyed Zr. In 

addition, the formation of AhZr intermetallic instead of AhZr was observed which is, 

as mentioned earlier, a more stable phase; however, decomposing upon annealing. 

For the alloy containing 35at%Zr, the X-ray diffractogram of the as-milled alloy 

showed the presence of both unalloyed Mg and Zr. This is in addition to the formation 

of y-AI12Mg17, AIZr intermetallic and ZrOz. The formation of these phases shows 

clearly the obtained deviation from equilibrium under mechanical milling. However, 

no phase transformations were observed by XRD upon annealing, highlighting the 

high stability of these phases. 

4.4.2 TEM Studies 

For this category of alloys, Figure 4.32 shows a TEM image of the binary alloy of 

nominal composition of lOAI-90Mg, along with the selected area diffraction pattern 

(SADP) taken from the center of a particle. 
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Figure 4.32: TEM image of as-milled binary 10AI-90Mg alloy, showing complete 

crystallinity. 

As ob served , the high degree of crystallinity is notorious with no apparent 

indication of an amorphous phase as evidenced by the presence of sharp diffraction 

rings. This observation is in agreement with the XRD results in which no indication of 

amorphization was detected. 
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For the alloy containing 5at%Zr, a BF-TEM image of a typical particle un der study is 

shown in Figure 4.33. 

Figure 4.33: TEM image of as-milled lOAI-85Mg-5Zr alloy, along with EDS and 

SADP of two areas. 

The EDS analysis of this particular alloy, taken from the centre of the particle, 

reveals once again that no compositional changes were obtained as compared with the 
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nominal composition. The corresponding selected area diffraction patterns (SADPs) of 

the alloy containing 5 at. % Zr, taken also from the center and corner of this particle 

(circled areas) are presented as weIl. The continuous rings reveal the presence of a 

highly crystalline material and the existence of any amorphous phase cannot be 

inferred from this DP. Therefore, the Al-Mg binary alloy and the alloy containing 5 

at. %Zr showed no apparent presence of either a nanocomposite structure or an 

amorphous phase. 

Further consideration was given to the previously selected particle regarding the 

presence of the black region located at the top as observed in Figure 4.34. The EDS 

analysis of this region revealed a high Zr concentration, suspected to be the Zr-rich 

cores shown previously from the SEM images Figure 4.31. The presence of such 

regions, however, did not promote the formation of an amorphous phase in this alloy 

evidenced by the sharp diffraction rings of the DP. 

A TEM image of a typical particle with 20 at. %Zr is shown in Figure 4.35; in 

addition, the EDS analysis, taken for the entire particle and showing no compositional 

fluctuation from the starting material, is also presented. Selected area diffraction 

patterns taken from the centre and corner regions of the particle are shown in the same 

figure. However, the diffraction pattern taken from region "A" does not seem to reveal 

the presence of either a completely crystalline phase or the existence of halo­

diffraction typical of amorphous phases; related perhaps to the higher thickness. 
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Figure 4.34: SADP and EDS of a dark (circled) region in as-milled 10AI-85Mg-

5Zr alloy, showing nanocrystals with high-Zr content. 

By considering the DP taken from the corner of the particle in Figure 4.33 

(labelled B), it can be seen that well-defined diffraction rings were formed. Moreover, 

sorne indication of the presence of a region showing a weak-halo-diffraction pattern 

exists supporting the presence of a nanocomposite structure. In order to obtain further 

evidence of the amorphous phase, HR-TEM was used in an attempt to directly observe 

the nanocomposite structure. 
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Figure 4.35: TEM of as-milled 10AI-70Mg-20Zr alloy, showing the presence of 

amorphous materials. 

The high resolution image taken from the corner of the particle is presented in 

Figure 4.36, showing the presence of regions having crystalline ordered structure 

along with low range order regions, indicative of an amorphous phase. However, by 



Results and Discussion:Low Al-cotaining alloys 129 

considering several particles from the same composition, it should be stated here that 

the amorphous phase is present in residual amounts which seems to be the reason for 

the absence of a pronounced halo-diffraction DP compared to other series of alloys. 

Figure 4.36: HR-TEM of region B in Figure 4.35 the corner position of the as­

milled 10AI-70Mg-20Zr powder alloy. Note the presence ofboth crystalline 

ordered structure and amorphous regions. 
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The TEM image along with the EDS analysis and SADP for the alloy containing 

35at%Zr are shown in Figure 4.37. It can be seen for the EDS analysis that no 

significant compositional fluctuation in this particle exists compared to the starting 

composition of this alloy. 

Figure 4.37: BF-TEM image, SADPs and EDS of as-milled 10AI-55Mg-35Zr 

alloy, showing different crystallinity levels in different locations. 
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Moreover, the SADP taken from area "A" shows c1ear presence of crystalline 

regions as observed from the diffraction rings and no convincing evidence of the 

presence of an amorphous phase. However, the SADP taken from the corner of the 

partic1e marked as region "B" shows a halo-diffraction corresponding to an amorphous 

region. This might be due to the possible reflection from the amorphous carbon grid. 

However, a low degree of crystallinity is apparent from this region. 

Thus, high resolution TEM was carried out to facilitate direct observation of the 

possible formation of a nanocomposite structure comprising an amorphous phase. The 

HR image taken from area "B" of the previously selected partic1e is shown in Figure 

4.38. By carefully examining the HR image it can be seen that the nanocomposite 

structure is c1early present. This proves that the nanocomposite structure existed in 

this alloy; however, with small volume fractions of amorphous phase. This might be 

the main reason for the absence of su ch observation from the SADP of region "A". 

Figure 4.39 shows a series of diffraction patterns highlighting the progress of 

amorphization as the Zr content increases. However, it should be stated that for the 

alloy containing 20at%Zr, the presence of an amorphous phase was more pronounced 

compared to the one containing 35%Zr. In general, for this series of alloys the amount 

of amorphous phase was lower than alloys from other series, which might be related to 

the lower Al concentration (10 at.%). 
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Figure 4.38: HR-TEM image of the as-milled 10AI-55Mg-35Zr alloy, showing the 

coexistence of both crystalline and amorphous regions. 
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Figure 4.39: Progress of amorphization as a function of Zr content: (a) 10A-

90Mg, (b) 10AI-85Mg-5Zr, (c) 10AI-70Mg-20Zr, (d) 10AI-55Mg-35Zr. 

4.4.3 Crystallite Size Measurements 

In this category of alloys, the measurement of crystallite size was performed via 

direct TEM observation using Dark field (DF) images only. The results for both as-

milled and annealed alloys at different Zr concentrations are shown in Figure 4.40. For 

as-rnilled, the crystallite size decreases by almost half the value upon the addition of 

5at%Zr and then increases slightly at 35at% Zr. It should be stated that these are 
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average values, and that the small changes in crystallite size values for 5 and 20 

at. %Zr are not considerable. 
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Figure 4.40: Variation in crystallite size at different Zr concentrations. 

The role of Zr can be examined more carefully by examining the crystallite size 

measurement of the annealed alloys. In contrast to the previous series of alloys in this 

research, the addition of Zr did not prevent grain coarsening after the heat-treatment. 

The rate of grain growth was different for each alloy series being more pronounced in 

the binary alloy and the alloy containing 35at%Zr. Surprisingly, the alloy containing 

5at%Zr shows better thermal stability compared to other alloys. Therefore, it can be 

stated that for alloys containing low Al concentrations thermal stability cannot be 
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improved by increasing the Zr content. This might be due to the absence of Al-Zr 

intermetallics that contribute to thermal stability, especially zirconium tri-aluminide, 

AbZr which seems to play a significant role in retarding grain growth. Additionally, 

despite the fact that both alloys containing 20 and 35at%Zr showed nanocomposite 

structures, the formation of such structure did not contribute considerably to the 

thermal stability of the nanocrystals, which might be due to the lack of AbZr 

formation. Thus, it might be stated here that the obtained thermal stability in the 

nanocomposite structure is subject to the formation of larger fractions of the 

amorphous phase and/or the AbZr intermetallic, which proved to be an important 

factor in controlling grain growth. 

Two bright field images of the AhoMg55Zr35 in both as-milled and annealed 

conditions are shown in Figure 4.41, the crystallite size was determined based on the 

average values. 

Figure 4.41: TEM bright field images for crystallite size measurement for as­

milled and annealed 10AI-55Mg-35Zr alloy, provided for comparative purposes. 
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4.3.4 Hardness measurements 

The hardness measurements of the resulting alloys were taken from compacts in 

order to evaluate the effect of Zr addition. Figure 4.42 shows a slight improvement in 

hardness by adding Zr to the binary alloy, which increased slightly upon increasing Zr 

concentration to 20at%. One interesting observation is that despite the presence of 

Zr02 in the alloy containing 20at%Zr, the hardness value was close to that for the 

5at%Zr alloy which has no Zr02. This might be considered as an indication of the 

lower fraction of oxides present into this alloy compared to the alloy containing 

35at%Zr. The alloy with the highest Zr concentration showed the highest value of 

hardness. Overall, the hardness values obtained for this category of alloys are lower 

than values obtained for other series. This could be related to the lower Al 

concentration Ieading to the absence of intermetallics that contribute to the hardness of 

the material or the absence of significant fraction of the amorphous phase. 
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Figure 4.42: Hardness values at different Zr concentrations for the Low Al­

containing alloys. 
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4.5 High AI-Containing Alloys 

In this category of alloys, the Al concentration was maintained at 40 at. % while 

varying the Zr content according to the nominal composition of Al4oMg6o-xZrx (x = 0, 

5, 20 and 35 at. % Zr). 

4.5.1 XRD Studies 

Phase evolution for this series of alloys was followed using XRD analyses. The X-

ray patterns of as-milled and heat-treated alloys are shown in Figures 4.43 and 4.44, 

respectively. 
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Figure 4.43: XRD patterns for as-milled AI-Mg-Zr alloys with ditTerent Zr 

contents; (a) 40AI-60Mg, (h) 40AI-55Mg-5Zr, (c) 40AI-40Mg-20Zr, (d) 40Al-

25Mg-35Zr. 
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For the binary alloy containing 40 at% Al, the y-AI12Mg17 intermetallic was the 

main phase present after milling, which remained stable after annealing. For this 

particular composition, the phase evolution is in agreement with the predictions of the 

equilibriurn Al-Mg diagram. Therefore, upon annealing, no phase transformations 

were observed by XRD, except for sorne narrowing noted from the X-ray peaks upon 

annealing, which indicates grain growth and stress relaxation. 
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Figure 4.44: XRD patterns for annealed AI-Mg-Zr alloys; (a) 40AI-60Mg, (b) 

40AI-55Mg-5Zr, (c) 40AI-40Mg-20Zr, (d) 40AI-25Mg-35Zr. 
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Upon introducing 5 at.% Zr to the alloy, it forced sorne Mg to dissociate from the 

intermetallic phase, thus remaining unalloyed. This could be related to the negligible 
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solubility of Zr in Mg and the fact that Mg and Zr do not form any intermetallic 

compounds. It was not possible to detect Zr in as-milled alloys which might be due to 

the detectability limit of the X-ray diffractometer, the low concentration of Zr, or the 

presence of Zr in the form of an amorphous material. The y-phase was identified after 

heat-treating the alloy, which is indicative of the thermal stability of the phase. Along 

with that phase, AhZr intermetallic was detected in which the annealing energy 

promoted its formation. 

When the Zr concentration was increased to 20at% small traces of y-phase were 

present in addition to AhZr and sorne unalloyed Mg. Moreover, Zr oxidation was 

detected which is attributed to the higher affinity between Zr and o. Upon annealing, 

the presence of unalloyed Mg and AhZr was maintained with the appearance of larger 

amounts of y-AI 12Mg17• The Al-Zr intermetallic showed good thermal stability and no 

phase transformation was observed. 

Sorne Al-Zr intermetallics appeared after milling the alloy containing 35 at. %Zr, 

which then transformed into more thermodynamically stable phases upon annealing. 

The equilibrium phases did not form upon milling and the formation of less stable 

intermetallics was observed. A high temperature phase like AhZrs formed during 

milling, which indicates the degree of deviation from equilibrium state of this process. 

Along with the aforementioned intermetallic phase, traces of AIZr2 and zr02 were 

detected. Upon annealing, partial retum to the equilibrium state was observed 

evidenced by the presence of sorne equilibrium phases at this Zr concentration, i.e. 
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AlzZr. However, the non-equilibrium phases obtained in the as-milled state were still 

present which might be related to the duration of the annealing process, i.e. higher 

temperatures or longer times are needed to initiate phase transformation; although 

traces of the more stable AhZr were detected. For this particular composition, 

however, no Mg was detected and traces of Zr02 were obtained. No Al-Mg 

intermetallics were found to form at Zr concentrations exceeding 20 at. %, which 

reflects the higher stability of Al-Zr intermetallics over Al-Mg. 

4.5.2 TEM Studies 

Figure 4.45 shows a BF-TEM image of the binary alloy of nominal composition 

40AI-60Mg. AdditionallY' the selected area diffraction pattern taken from the center of 

this particle "region A" is shown in the same figure. From the diffraction pattern, no 

signs of amorphization are observed, but instead the presence of clear continuous 

diffraction rings. The interplanar spacings were determined to correspond to the "(­

phase, which is the predominant phase from the X-ray diffractograms in both as­

milled and annealed alloys. This can be confirmed by considering the d values 

obtained from the diffraction rings Figure 4.46 which correspond with those reported 

for the "(-phase. The results are presented along with their space groups in Table 4.1. 
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Figure 4.45: TEM image of binary 40AI-60Mg alloy along with SADP showing 

complete crystallinity. 
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Figure 4.46: d values taken from SADP of the as-milled 40AI-60Mg alloy, 

corresponding to the y-AI12Mg17 intermetallic phase. 
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Table 4.1: d values corresponding to y-phase observed in the as-milled 40AI-

60Mg alloy. 

. . 
(h k 1) Location (20) Reference value (A) Measured d value (A) 

330 36.191 2.48 2.48 

332 40.227 2.24 2.27 

510 43.917 2.06 2.07 

550 62.260 1.49 1.5 

721 65.186 1.43 1.44 
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A BF-TEM image of the alloy containing 5 at.% Zr is shown in Figure 4.47. 

Moreover, the EDS analysis of the whole particle and the selected area diffraction 

pattern (SADP) taken from the center "region A" and corner "region B" of a particle 

(circled are a) are presented in the same figure. 

The continuous rings that can be seen from the diffraction patterns taken from the 

center location reveal the presence of a highly crystalline material and non-existence 

of an amorphous phase. However, the SADP taken from the corner of the particle 

shows lower degree of crystallinity and the possible coexistence of crystalline and 

amorphous phases, but with low proportions of the latter. However, there is a 

contribution in such case from the location where the DP was taken from the grid 

material in this case since it was difficult to only confine the corner location. 

Therefore, the Al-Mg binary alloy and the alloy containing 5 at.% Zr showed 

neither a nanocomposite structure nor an amorphous phase, emphasizing that the 

addition of adequate amounts of the transition element is crucial to promote 

amorphization in the se types of alloys. 

For the ternary alloy containing 20 at. % Zr, the TEM image of the selected particle 

is shown in Figure 4.48. In the same figure, the EDS analysis and the SADPs of both 

regions (center "A") and (corner "B") are also shown. It should be mentioned here that 

the same alloy was presented in the High Mg-alloys section. Therefore, for 

comparison purposes and detailed analysis refer to the High Mg-containing alloys. 
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Figure 4.47: TEM image of as-milled ternary 40AI-55Mg-5Zr alloy, showing EDS 

and SADPs taken from two locations. 

As with other high-Zr containing alloys, the SADP image taken from location "A" 

shows a halo-diffraction typical of full Y amorphous alloys. It was revealed earlier that 

this is due to the higher thickness of the partic1e at this location evident by the 



Results and Discussion:High Al-cotaining alloys 146 

thickness contrast. The accumulation of structural defects leads to blockage of 

diffracting planes. 

On the other hand, it can be seen that traces of amorphous phase were clear from 

diffraction patterns (DP) of the second location "B". The nanocomposite structure was 

obtained in this alloy which is manifested by the coexistence of diffraction spots along 

with halo-diffraction patterns, typical of amorphous structures. The BF diffraction 

pattern and HR-TEM image taken from this alloy were also shown previously into the 

category of Righ Mg-alloys. 

The TEM image of the alloy containing 35 at. % Zr is shown in Figure 4.49, 

accompanied by the corresponding EDS analysis for the whole particle and the SADPs 

taken from both areas "A" and "B". It can be observed that when the Zr concentration 

was increased to 35 at%, a nanocomposite structure was not obtained as can be seen 

by the continuous diffraction rings from SADPs, since the presence of an amorphous 

phase cannot be inferred from these DPs. To study these observations closely, high­

resolution TEM was carried out in order to reveal the internaI structure of the material 

and to confirm the absence/existence of an amorphous phase. The high resolution 

image taken from a corner region is shown in Figure 4.50 which shows no clear 

presence of an amorphous phase manifested by the presence of atomic planes. 
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Figure 4.48: BF -TEM image of as-milled 40Mg-40AI-20Zr alloy. 
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Figure 4.49: BF-TEM image of as-milled 40AI-25Mg-35Zr alloy. 
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Figure 4.50: High resolution TEM image of the corner position showing no 

amorphous phase and perfectly ordered crystalline structure. 
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This might be due to the presence of local concentration of sorne elements which 

promote crystallinity. To further study this possibility, an EDS analysis was performed 

at the corner location and shown in Figure 4.51. It can be seen from the EDS analysis 

that this particular area is Mg-rich which might be responsible for the absence of an 

amorphous phase at the corner of the alloy. The observation of the possible 
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dependence of amorphization on local concentration needs more in-depth investigation 

which can be performed by c10sely studying other corner locations or even other 

partic1es. 

o 
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Figure 4.51: EDS analysis of the corner position of the as-milled 40AI-25Mg-35Zr 

alloy. 

For that reason, another partic1e of the same composition was considered and 

shown in Figure 4.52. The SADP taken from the center and the corner locations of the 

partic1e regions "A" and "B" are also shown in the same figure. It can be seen that 

continuous rings exist from both locations indicating crystallinity and lack of halo-

diffraction patterns, associated with the presence of an amorphous phase. To 

complement the se observations, a high resolution TEM was obtained to study these 

findings c1osely. 

10 
keV 
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Figure 4.52: TEM image of a second particle to further study the absence of 

amorphous structure in the as-miHed 40AI-25Mg-35Zr aHoy. 

The HR-TEM taken from region "B" of the particle under study is shown in Figure 

4.53. By carefully examining this HR image, it can be observed that small fractions of 

amorphous phase exist, which were not detected in the SADPs. To ensure that this 
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observation is not lirnited to the tiny area under study, the HR-TEM was taken frorn 

another location at the bottorn of the partic1e and shown in Figure 4.54. It also 

confirms the presence of a srnall fraction of amorphous phase, evidenced by the lack 

of ordered atomic planes at sorne locations. 

Figure 4.53: HR-TEM image of the bottom location "B" showing the presence of 

a small fraction of an amorphous phase that might not be seen by SADP. 
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Figure 4.54: HR-TEM image of another corner region located at the bottom of 

the sample, confirming the presence of small fraction of an amorphous phase. 

An EDS analysis of such areas was obtained to investigate the possible presence of 

any local compositional gradient, and is shown in Figure 4.55 which reveals higher Zr­

concentrations. This emphasizes the role that Zr plays in the amorphization of Al-Mg 
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alloys, explaining the presence of a fraction of amorphous phase at the corner regions 

of the particle. This observation is governed by the presence of high Zr concentrations 

into the alloy since in previously considered case, where Zr concentration was high in 

sorne areas, no amorphization was obtained (Figure 4.34). An additional observation is 

the low Mg concentration at this location which might be another reason for the 

presence of an amorphous phase. The lack of substantial amount of amorphous phase 

in this particular alloy might be attributed also to the higher oxidation rate, observed 

from X-ray patters, leading to increased crystallinity in the alloy, unlike the alloy 

containing 20at%Zr, where more Zr is free to promote the formation of an amorphous 

phase. 

Zr 

AI 

Cu 

o 

Zr 

fi 2 3 5 7 
Full Scale 1016 cts Cursor:O,OOO 

Figure 4.55: EDS analysis of a partially amorphous region of an as-milled 40Al-

25Mg-35Zr alloy, showing a Zr-rich location with a minor amount of amorphous 

phase. 
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4.5.3 Crystallite Size Measurement 

The crystallite sizes of the resulting alloys in both as-milled and annealed 

conditions with different Zr contents are shown in Figure 4.56. The determination of 

crystallite size was performed via direct TEM observation using bright and dark field 

images. In the as-milled state, no considerable change in crystallite size was observed 

in the whole Zr interval, however, a marked increase was obtained in the heat-treated 

powders for the binary and 5at. % Zr alloys. The apparent stability in the grain 

structure as the Zr content increases to 20 and 35at%, as observed by the negligible 

grain growth, can be related to the presence of AhZr, which contributes to the stability 

of the nanocrystalline structure via Zener-pinning action. In general, both high Zr 

containing alloys presented a nanocomposite structure and good structural stability 

when exposed to isothermal annealing conditions. Bright field TEM images of the 

alloy containing 35at%Zr are shown in Figure 4.57 for comparative purposes. 
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Figure 4.56: Crystallite size at different Zr concentrations for as-milled and 

annealed High Al-containing alloys. 

Figure 4.57: Bright field TEM images used for crystallite size determination for 

as-milled and annealed 40AI-25Mg-35Zr alloy. 
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4.5.4 Hardness Measurements 

The hardness measurements of the resulting alloys were taken from compacts in 

order to evaluate the effect of Zr addition. Figure 4.58 shows that improvement in 

hardness by adding Zr to the binary alloy follows a parabolic behaviour. For the alloys 

containing more than 5at%Zr, this increase in hardness might be due to the presence of 

zirconium oxide. Among all the alloys under investigation, the alloy containing Zr 

concentration of 35at% in this category represented the highest hardness value, which 

is very close to the alloy containing 35at%Zr in the Law-Mg alloys group. 
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Figure 4.58: Variation of hardness with different Zr concentrations. 
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Chapter5 

Comprehensive Discussion 

Considering aIl the results presented earlier, this section is intended to provide a 

comprehensive summary in order to compare the different types of alloys prepared in 

this study and to highlight the main observations and conclusions. For the upcoming 

section, a comparison between the results will be considered in terms of different 

aspects which can be summarized in the following points: 

• The effect of employing mechanical alloying to promote the deviation of the se 

systems from equilibrium state. More specifically, in extending the 

homogeneity range of the y-AI 12Mg17 phase and in the formation of the AhZr 

intermetallic. 

• The effect of different compositions on the formation of the nanocomposite 

structure, comprising nanocrystalline and amorphous phases. 
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• The role of Zr on crystallite size and in retarding grain growth. 

• The stability of the as-milled structure. 

• The variation of hardness with Zr different contents and alloy composition. 

As a starting point, the alloys will be presented as an AI-Mg-Zr temary diagram to 

view the location of each composition and the area covered by each category. Figure 

5.1 shows the location of the alloys, in which each category of alloys is marked. As 

observed, the alloys are located mainly on the left side of the diagram where Zr varies 

between 0 and 35at%. This diagram will be used in order to assess the formation of 

sorne metastable phases and the possible deviation from equilibrium due to the use of 

mechanical alloying. Moreover, the compositions where the nanocomposite structure 

was obtained will be highlighted in similar diagram. 
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Figure 5.1: Location of the alloy groups in an AI-Mg-Zr ternary diagram. 

5.1 Extended Homogeneity Range of y-phase 

It was stated earlier that one of the main characteristics of mechanical alloying is 

the possibility of forming metastable phases at homogeneity ranges beyond 
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equilibrium values. This advantage was the main focus for several research papers, 

especially for Al-Mg alloys [34, 33]. In this present study, the deviation from 

equilibrium imposed by mechanical alloying is assessed in terms of the formation and 

extension of solubility limits of y-Ah2Mg17. The y-phase has a cubic structure and 

forms in the binary Mg-Al alloys at equilibrium conditions and Mg concentrations 

between 45 and 60.5at%. The earlier study by Zhang et al. [34] have shown that the 

homogeneity range of the y-phase could be extended to values between 60 and 80at. % 

Mg. AdditionaIly, reports by Singh et al. [33] have highlighted the extension of 

homogeneity range for this intermetallic phase to values ranging from 50 to 70at% 

Mg. In addition to studying the effect of mechanical alloying on the extension of the y­

Ah2Mg17 homogeneity range, the effect of temary additions is considered. 

The Mg compositional ranges where the y-phase was detected in aIl alloys systems 

are shown in Figure 5.2. It can be seen that for the MAed binary alloys a noticeable 

deviation exists in the homogeneity range of the y-phase compared to equilibrium 

values. The y-AI 12Mg17 was obtained in this research for values between - 40 and - 90 

at. % Mg for as-milled alloys, although it was detected in minor quantities in sorne 

cases. Moreover, the y-phase showed good thermal stability, being detected for Mg 

concentrations ranging from 50 to 90 at. %. The reduction in homogeneity range from 

40 to 50 at. % Mg was due to the transformation of the y-phase to the equilibrium ~­

phase which was promoted by annealing. Referring to Figure 4.60, it can be seen 

clearly that the obtained extension in homogeneity range of binary Al-Mg alloys in 
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this research was over a wider range of Mg composition compared to earlier work, 

which might be attributed to the milling conditions used in their research and the 

compositions they have studied. 

However, it should be mentioned that due to the fact that the y-phase was existing 

partially in sorne alloys, the actual Mg concentration for the formation of the phase is 

close to the value of the starting alloy powders. At this point, the extension in 

homogeneity range was explained solely by taking into account the non-equilibrium 

nature of the processing technique; the effect of adding Zr to the alloy, however, will 

be considered in the coming paragraphs. 

Upon adding 5 aL % Zr, it can be seen that the homogeneity range of y-phase was 

extended to Mg concentrations between - 40 and - 85at%. However, for the temary 

alloy, there are no equilibrium values for AI-Mg-Zr to compare these values with, but 

the extension in homogeneity range was pronounced compared to the equilibrium 

values of the binary Al-Mg alloy. When the Zr content increased further to 20at%, the 

homogeneity range of the y-AI12Mg17 reduced to values between - 40 and - 70%Mg. 

Moreover, the y-phase was still present for alloys containing 35 aL % Zr but in 

compositions limited to - 55at%Mg only. This general trend suggests that upon 

increasing the Zr concentration into these alloys, the formation of y-phase becomes 

more difficult due to the formation of zirconium aluminides, as will be explained in 

the next section. 
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Figure 5.2: Homogeneity ranges of y-phase a function of Mg concentration. 

5.2 The Formation of AhZr and the Extension of Homogeneity Range 

In this research, AhZr appeared in most cases of Zr compositions in the as-milled 

and/or annealed states. This phase can be present in two crystal forms, the Lb cubic 
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structure, considered as a metastable structure and the equilibrium tetragonal D023 

structure at room temperature. It has been stated earlier that retaining this intermetallic 

phase in the Lb structure shows to be beneficial in providing desirable mechanical 

properties in terms of improved ductility, as compared to the tetragonal D023 phase, 

which causes embrittlement in the alloy. The formation of AhZr intermetallic in the 

L 12 cubic structure can also be beneficial in improving the high temperature properties 

of structural materials [89]. This was attributed mainly to the fact that AhZr has a 

density of 4.1 glcm3 and a melting temperature of about 1580°C. 

Despite the fact that Lb cubic structure is a high temperature phase, the 

employment of MA was beneficial for the formation of this phase, also suppressing 

the transformation to the tetragonal D023 crystal structure. In other cases, the 

transformation of this phase into the cubic structure was promoted by annealing. 

The departure from equilibrium in terms of the formation of the AhZr phase at 

different compositions is evaluated in Figure 5.3. It can be seen that the Zr 

compositions leading to the formation of the AhZr are bounded to values between 25 

and 35 at% in the binary Al-Zr alloys produced under equilibrium conditions. 

Referring to Figure 5.3, it is noted that for the alloys containing Zr concentrations of 

24 and 33at%, the formation of AhZr can be obtained under equilibrium conditions 
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Figure 5.3: Departure from equilibrium in the formation of AhZr caused by the 

nature of the mechanical alloying process • 

. In this case, sorne departure from equilibrium concentrations is observed, with 

the formation of this intermetallic extending from 20 to 35 at. % Zr in the as-milled 
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condition. This was observed in the Low Mg-containing alloys, where the formation of 

zirconium tri-aluminide extended post-annealing to values as low as 5 at.%Zr. 

In the case of High Mg-containing and High Al-containing alloys, the formation of 

AhZr was limited in the as-milled condition to a value of 20 at. % Zr. This might be 

due to the high Al concentration into these alloys, leading to the formation of other 

non-equilibrium Al-Zr intermetallics. However, after annealing, the formation of 

AhZr was observed through a wider compositional range. For the High Mg-containing 

alloys, the homogeneity range of this intermetallic was extended to values between 5 

and 20 at. % Zr. As for the High Al-containing alloys, it was extended through a wider 

range of Zr content, i.e. Zr concentrations from 5 to 35 at. %. For sorne compositions 

where the formation of such a phase can be predicted from the phase diagram, the 

formation of AhZr occurred after annealing. For the Law Al containing alloys, the 

formation of this phase was not observed in either as-milled or annealed conditions 

which can be explained by the low Al content. This highlights the role of Al in the 

formation of AhZr in which there exists a minimum concentration of Al required to 

promote the formation of the AhZr. 

In general, the interest in AhZr is mainly due to the fact that, in addition to 

improving ductility, it seems to contribute significantly to the stability of the 

nanostructure. However, this particular observation will be addressed in more detail in 

one of the upcoming sections. 
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To have a more appropriate assessment of the deviation of mechanical alloying in 

terms of formation of AhZr beyond the equilibrium values, the results obtained in this 

research should be compared to values obtained from the temary AI-Mg-Zr phase 

diagram not to the binary Al-Zr phase diagram. However, the existing temary AI-Mg­

Zr phase diagrams from literature were depicted for specific temperatures and due to 

the randomness nature of mechanical alloying process it was not possible to find the 

exact temperature in which the alloying process is occurring. Moreover, it was stated 

in the literature review chapter that until now, no study was able to accurately 

determine the milling temperature because the alloying action occurs randomly at 

local collision points in the milling container. 

5.3 Formation of the Nanocomposite Structure 

In this research, the development of the nanocomposite structure was observed for 

the first time in AI-Mg-Zr temary alloys. Such a structure, comprising of nanocrystals 

embedded into an amorphous matrix, was developed using mechanical alloying. These 

alloys are expected to have improved mechanical properties in addition to good 

thermal stability. 

The compositions where the nanocomposite structure was obtained are shown in 

the temary AI-Mg-Zr diagram, Figure 5.4. It can be seen that this nanocomposite 

structure was observed in all cases where the Zr concentration exceeded 20 at. % Zr, 

regardless of the Al concentration. 
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Figure 5.4: Location of the nanocomposite structure as observed in this research. 

Nevertheless, the fraction of arnorphous phase was not the sarne in aIl cases and 

for sorne compositions the presence of amorphous phase was found in residual 

arnounts. As observed, the nanocornposites cornprising low fraction of the arnorphous 

phase occurred in alloys containing Low Al concentrations, close to lOat%. An 

additional observation is that in sorne alloys, Al4oMg25Zr35 in particular, there exist 
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sorne Mg-rich areas where the nanocomposite structure was not observed. This 

suggests that Mg does not promote the formation of the amorphous phase, which 

might be related to the smaller fraction of amorphous phase observed in the Law Al­

containing alloys. 

5.4 Crystallite Size Formation and the Role of Zr in Retarding Grain Growth 

5.4.1 Stability of Metastable Cubic L12 AhZr Dispersoids 

One of the mam concerns in developing nanomaterials is the stability of the 

structure since nanomaterials produced by MA are considered being in a metastable 

state and grain growth may occur upon exposure to higher temperatures. Thus, the 

interest in studying the factors affecting the stability of the crystal structure and the 

possible suppressionlminimization of grain growth with the addition of particular 

elements/second phases has grown recently in nanomaterials research. In this study, 

thermal stability was of particular interest due to the formation of a nanocomposite 

material that comprises amorphous and nanocrystals in which both can undergo 

undesirable structural transformations upon exposure to high temperatures. 

Additionally, the factors affecting the stability of the nanocomposite structure will be 

considered in the following paragraphs where the role of Zr in stabilizing the 

nanostructure is discussed. 
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Earlier studies [90, 91] have shown that the formation of cubic L1 2 structured 

AhZr dispersoids can be achieved via rapid solidification. In the study of Nes [91], the 

Al-Zr alloy was annealed at a temperature of 460°C and cubic structured AhZr 

dispersoids were found to be stable up to a maximum annealing time of 700 h. 

However, in both of the aforementioned studies the Zr concentration was limited to a 

maximum value of 0.5wt%. Thus, with these low concentrations of Zr it was quite 

surprising to learn that the presence of these dispersoids has a profound influence on 

the stability of the nanostructures. 

Other later studies [92, 93, 94] have also confirmed the formation of AhZr 

intermetallic compound in the L h cubic structure by implementing non-equilibrium 

processing routes, i.e. mechanical alloying and rapid solidification. However, different 

studies have reported different temperatures where A13Zr transformed into the 

tetragonal equilibrium phase. In the work of Guo et al. [92] AhZr was found to 

transform into the equilibrium D023 tetragonal structure when the annealing 

temperature exceeds 500°C. These alloys were produced by rapid solidification and 

the Zr content was limited to a maximum value of 15at%. 

In another study, Srinivasan and Chattopadhyay [95] processed AI-Ni-Zr alloys by 

rapid solidification and it was found that the Lb cubic structure shows significant 

resistance to coarsening up to temperatures exceeding 425°C. Such behaviour was 

attributed to the similarities in structure and lattice constant between Al and AhZr. 

The coarsening of AhZr was evaluated in two cases; when present in AhNi matrix and 
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when present in th~AI matrix. It was found that the coarsening was lower in the latter 

case due to the presence of low energy coherent interfaces [95]. 

For studies of alloys produced by mechanical alloying, Suryanarayana et al. [89] 

milled blended powders of compositions AI-25%Zr-M (M= Fe and Ni) and 

successfully obtained the Lh structure in aIl cases; however with amounts depending 

on the content of the ternary element. In aIl cases the transformation of this phase to 

the equilibrium tetragonal structure occurred upon annealing to a temperature -

900°C, which seems to be high compared to other studies that found the cubic Lh 

structured AhZr to be stable up to 600°C [57]. 

Another study [16] considered the formation of metastable AhZr by employing 

MAing and the effect of elemental additions of Li, Cr, Fe, Ni, and Cu on the thermal 

stability of the prepared alloys. It was found that the metastable L1 2 cubic structure 

was stable up to 550°C in alloys containing 25%Zr. It was also reported that the 

addition of Li and Cr suppresses the transformation of the Lh phase up to 750 and 

740°C, respectively. 

On the other hand, and to highlight the importance of alloying elements on the 

stability and formation of AhZr dispersoids, a model was developed by Robson and 

Prangnell [96]. They used an integrated modeling approach which predicted that the 

addition of Mg accelerates the precipitation kinetics of AhZr compared to binary AI­

Zr alloys. They also predicted that different Mg concentrations will have an effect on 
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the precipitation of dispersoids. However, in this research the AhZr showed good 

thennal stability and no transfonnation was observed perhaps due to the lower 

annealing temperatures compared to previously reported data by other researchers 

where the cubic AhZr was stable at even higher temperatures. 

5.4.2 Effeet of AhZr in Retarding Grain Growth 

Now for the effect of AhZr on the suppreSSIOn of grain growth, it is well­

established that the fonnation of second-phase partic1es renders structural stability via 

the application of Zener drag force (pinning) on grain boundaries [97]. To have an 

overall and homogeneous effect on grain retardation it was stated that the distribution 

of the second-phase partic1es should be unifonn throughout the whole structure, which 

is achieved by combining the right choice of alloying elements and the wise decision 

on materials processing. This combined effect will cause pinning of low- and high­

angle boundaries by the existence of dispersed and c10sely spaced second-phase 

particles. These partic1es could fonn due to the process itself or during subsequent 

annealing and before recrystallization takes place [97]. 

These second-phase partic1es have a plnnmg effect on gram boundaries 

characterized by a significant increase in recrystallization temperature for the alloys. 

An additional reason for such an increase is attributed to the possible effect of these 

partic1es on the fonnation of more unifonnly distributed dislocations. Furthennore, 
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these dispersion partic1es have noticeable stability which was attributed to the low 

solubility of the partic1e in addition to the low interfacial energy [90]. 

For the combined effect of different additions of alloying elements on Al-Mg 

alloys, a study by Lee et al. [98] indicated that good thermal stability was observed on 

AI-Mg-Sc-Zr alloys upon exposing these alloys to temperatures up to 550°C [98]. 

They also produced AI-Mg-Zr alloys by equal-channel angular pressing, finding that 

the alloy was not stable at temperatures above 277°C. However, they did not indicate 

if the formation of the tri-aluminide (AhZr) phase was observed. The absence of this 

intermetallic will certainly affect the stability of the crystal structure. This might be 

the reason for the loss of thermal stability when exposing the alloy to temperatures 

higher than 277°C. This observation is different from the present study in which the 

tri-aluminide was present and imposed structural stability in most cases up to an 

annealing temperature of 400°C. This might be due to the low concentration of Zr in 

their alloy (only 0.2%) or the nature of the alloying process. They [98] concluded that 

the superior grain stability in the AI-Mg-Sc-Zr is attributed to the presence of 

Ah(ZrxScl-x) precipitates that are more stable at high temperatures. Other studies [61] 

also observed an improved grain stability due to the precipitation of Ah(ZrxScl-x) 

which showed effectiveness in inhibiting recrystallization. It is thought that the strong 

drag force is caused by the coherence with the Al matrix, such that pronounced 

recrystallization occurred when coherency is lost. 
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In this present study, it was shown in a previous section that the formation of 

AhZr was extended over a wider range of Zr concentration especially in the post­

annealing conditions. By looking into the results presented in chapter 4, it can be 

observed that the presence of this zirconium tri-aluminide proved to be beneficial in 

retarding grain growth in most cases. More evidence can be seen by referring to Figure 

4.40, where the lack of grain stability in this category of alloys, "Law Al-containing 

alloys" can be attributed to the absence of AhZr according to XRD. The low Al 

content in these alloys seem to be directly responsible for the lack of the formation of 

AhZr. However, it should be pointed out that the optimum results in grain growth 

suppression were obtained in cases where the formation of AhZr occurred in as-milled 

alloys. Sorne grain growth retardation was obtained, though in cases where the 

formation of AhZr was a result of annealing. 

5.5 Influence of Mg on Grain Refinement 

It might be of interest at this stage to comment on the role of Mg in refining the 

crystal structure of the developed alloys since a study by Furukawa et al. [88] on AI­

Sc suggested that Mg has an influence on grain refinement and there exist an optimum 

concentration of Mg in which finer grains can be obtained. In their study, they 

examined a series of AI-0.2%Sc alloys prepared by equal channel angular pressing 

(ECAP) in which the Mg content was varied from 0 to 5%. They observed that the 

addition of 3 % Mg produced the smallest grain size, - 0.2 Ilm. However, in their 

study the Mg content was limited to 5% and more elaboration is needed to highlight 
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the role of Mg in refining the microstructure. Nevertheless, in this research no 

significant effect of Mg was observed on crystallite size refinement as the crystallite 

size measurements were comparable in almost aIl cases regardless of the Mg content 

into the alloy. The difference between the results obtained in this study compared to 

the previously reported ones could be related to the formation of nanocrystalline alloys 

in this research. 

5.6 Hardness Values 

By considering aIl the alloys produced in this study, it can be observed that 

hardness values vary significantly depending on the composition of the starting 

material. The alloy with the maximum hardness value was A14oMg25Zr35, in having an 

average hardness value close to 780 HV, and crystallite size of about 10 nm. 

Moreover, this alloy appears to be thermally stable with grain growth being almost 

negligible following annealing. This alloy seems to be the best alloy in combining 

thermal stability and improved mechanical properties. However, it should be 

mentioned that the oxidation in this alloy was relatively high, which might contribute 

further to the improvement in hardness values. 

For other alloys, like A155MgIOZr35, hardness values close to 720 HV and a 

crystallite size of 9 nm were obtained. Little grain growth was observed in this alloy 

upon annealing, indicative of thermal stability. The common feature among this alloy 

and the aforementioned one is the increased Al and Zr concentrations. This indicates 
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that the addition of Al and Zr to the AI-Mg-Zr alloys in high quantities will improve 

the hardness of the material in addition to the improved stability of the nanostructure. 

However, no studies were found on the mechanically milled AI-Mg-Zr system where 

hardness values can be compared to those obtained in this study. The only study [59] 

found to correlate the higher Zr concentrations to the improvement in hardness for AI­

Zr alloys was published for alloys produced by inert-gas condensation. 

To compare values obtained from different studies, Srinivasan and Chattopadhyay 

[95] investigated the hardness of the resulting melt spun AI-Ni-Zr alloys in which a 

maximum of 500 HV was reached. They attributed this improvement to the formation 

of nanostructures and the presence of trapped solutes. In general, mechanical alloying 

seems to improve the hardness of the material significantly compared to melt­

spinning. This is because of the nature of the process due to the introduction and 

accumulation of structural defects into the material. To highlight this, a study by Moon 

et al. [93] showed that mechanically alloyed AI-Cu-Zr powders had a maximum 

microhardness value close to 990 HV with a crystallite size of about 22.7 nm in the as­

milled and then compacted state using spark plasma sintering (SPS). 

5.7 Recommended Alloys 

In view of the results obtained for the alloys shown in Figure 5.5, there seems to 

be a combination of structural stability and improved hardness values. Both of these 

aIloys faIl into the nanocomposite structure area, which highlights the benefits of 



Comperhensive Discussion 177 

having a nanostructure on the mechanical properties as weIl as thermal stability. The 

improvement of hardness seems to be related to the higher Al and Zr concentrations in 

these alloys. The formation of an amorphous phase does not seem to significantly 

affect the hardness values since it was shown earlier that the Al4oMg25Zr35 alloy 

contained low fractions of the amorphous phase. 

Composition of the alloys 20 
combining highest hardness 
values and improved 
thermal stability 

AI 10 20 30 

Mg 

40 50 
at.% Zr 

at.% Mg 

60 70 80 90 Zr 

Figure 5.5: Compositions of the best alloys combining improved hardness values 

and good thermal stability. 
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Chapter6 

Conclusions, Contributions to Original Knowledge 

and Future Directions 

6.1 CONCLUSIONS 

This work was carried out mainly to develop an AI-Mg-based nanocomposite 

alloys via solid-state synthesis. The following specific conclusions can be drawn from 

the results obtained: 

• The phase constitution of mechanically alloyed binary and temary mixtures in 

the Al-Mg-Zr system was strongly dependent on the alloy composition. 

• The extension of the solid solubility limit of Mg in Al was beyond the 

equilibrium value. 

• The addition of Zr proved to be beneficial in promoting amorphization in the 

Al-Mg alloys fabricated via non-equilibrium processing. 
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• Nanocomposite structure comprising of nanocrystals embedded in an 

amorphous matrix was developed using a solid-state route. It was the tirst time 

that such nanocomposite structures were developed in the AI-Mg-Zr system. 

• It was found that mechanical alloying was capable of extending the 

homogeneity range of many intermetallic phases. Particular interest was given 

to y-Alt2Mg17 in which the homogeneity range was extended beyond values 

reported in previous studies. 

• Employing mechanical alloying proved to be beneficial in successfully 

producing and retaining AhZr in the cubic L12 structure which is known to be 

a high temperature phase. It is known that the retenti on of AhZr in this 

structure improves ductility of the alloy substantially. 

• In most cases, the developed nanocomposite structure showed extraordinary 

grain stability evident by the negligible grain growth following annealing 

experiments at a temperature of 400°C which is related to the presence of 

AhZr dispersoids. However, an exception was found in the case of Low Al 

containing alloys where the AhZr was not present in both as-milled and 

annealed conditions. 

• The recommend alloys from this research, that combined the highest hardness 

values and best thermal stability, were those containing higher Al and Zr 

concentrations, which highlight the role of both elements in this respect, in 

addition to their impact on the formation of the nanocomposite structure. 
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• It was also noted that the homogeneity range of Al3Zr was extended due to 

non-equilibrium processing. However, the obtained values were compared to 

the equilibrium values obtained from the Al-Zr phase diagram. 

• The nanocomposite structure was observed in aIl cases where the Zr 

concentration exceeded 20 at. % Zr. Nevertheless, the fraction of amorphous 

phase was not similar in aIl cases and for sorne compositions the presence of 

amorphous phase was detected in residual amounts. As observed, the alloys 

containing lower Al concentrations (close to 1 Oat. %) were comprised of a low 

fraction of amorphous phase. 

• In general, increasing the Zr proved to be beneficial in refining the structure of 

the nanocomposite and improving hardness. 

• It was found in this research that no significant effect of Mg was observed on 

crystaIlite size refinement as the crystallite size measurements were 

comparable in almost all cases, regardless of the Mg content into the alloy. 
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6.2 CONTRIBUTIONS TO ORIGINAL KNOWLEDGE 

The contributions to original knowledge from this work can be summarized below. 

This research, for the first time, consisted of a thorough study of a wider range of Zr 

concentrations Cup to 35at. %) to Al-Mg alloys. The maximum Zr concentration 

considered in literature, - 6 at% addition to Al-Mg alloys. Specifie contributions are: 

• Development of AI-Mg-Zr nanocomposite materials comprising of 

nanocrystals embedded in an amorphous matrix, and starting from elemental 

powders. 

• A study of the effect of Zr addition on the formation and thermal stability of 

the nanocomposite structure. 

• An investigation of the effect of varying AI/Mg ratio on the final 

microstructure and properties of the composites. 

• Proof on the nanometric scale that the presence of AhZr contributes to the 

stability of the nanostructure. 

• A study of the possible amorphization of AI-Mg-Zr alloys and the role of Zr in 

promoting nanocomposites formation. 

• Determination of the effect of various alloy compositions on nanostructure and 

mechanical properties of the developed alloys. 

• Alloys having a nanocomposite structure that combines higher hardness values 

and improved grain stability were developed. 
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6.3 FUTURE DIRECTIONS 

In light of this research, sorne future research directions can be recommended and 

are listed as follows: 

• The extension of Zr concentrations (above 35at.%Zr) could be carried out to 

study the effect of higher Zr concentrations on the formation of the 

nanocomposite structure and the anticipated improvement in mechanical 

properties. 

• The effect of alloying conditions, like milling time and temperature, on the 

formation of nanocomposite structure could be investigated as weIl. The 

dependence of amorphous phase formation on milling conditions seems like an 

interesting future direction of research. 

• Differential scanning calorimetry (DSC) studies could be carried out to study 

the crystallization behaviour of the amorphous structure further and to 

facilitate more accu rate quantification of the amorphous phase. 

• The effect of different annealing temperatures on the stability of the 

nanocomposite structure might be investigated. AdditionaIly, the possible 

transformation of the cubic structured AbZr to the equilibrium tetragonal D023 

upon annealing could be studied as a function of temperature. 

• Experiments could be carried out to determine the minimum concentration of 

Al needed to promote the formation of AbZr in these ternary Al-Mg-Zr alloys. 
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• Improvement in other mechanical properties could be investigated, like tensile 

and ductility, which might be improved significantly due to the presence of 

cubic structured Ai)Zr. 

• It was shown earlier in this thesis that the formation of an amorphous phase 

does not seem to significantly affect the hardness values since it was shown 

previously that the Al4oMg25Zr35 alloy contained low fractions of the 

amorphous phase. However, the independent role of precipitates and 

amorphous phase on the thermal stability and hardness need to be studied 

further. 

• Mechanical alloying has a tremendous potential to fabricate a variety of 

promising systems especially for the development of nanomaterials with 

improved properties. Glass formers, other than Zr, could be used to explore the 

possible development of similar nanocomposite structures that combine 

structural stability and improved mechanical properties. 
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Appendix - A 

List of Publications 

This research has yielded the following publications: 

Published work: 

• N. AI-Aqeeli, G. Mendoza-Suarez, A. Labrie and RA.L. Drew, "Phase 

evolution of Mg-AI-Zr nanophase alloys prepared by mechanical alloying", 

Journal of Alloys and Compounds, Vol. 400, pp. 96-99 (2005) 

• N. AI-Aqeeli, G. Mendoza-Suarez and RA.L. Drew, "Characterization and 

mechanical properties evaluation of AI-Mg-based nanocomposite alloys", 

presented at the International Symposium on Metastable and Nano Materials 

(ISMANAM-2006), held in Warsaw, Poland, 27th 
- 31 st August, paper will 

appear in Journal of Alloys and Compounds (Accepted) 

Submitted: 

• N. AI-Aqeeli, G. Mendoza-Suarez, C. Suryanarayana and R.A.L. Drew, 

"Development of new Al-based nanocomposites by mechanical alloying", 

Materials Science and Engineering A (Submitted for review) 

In preparation: 

• N. AI-Aqeeli, G. Mendoza-Suarez and RA.L. Drew, "The effect of Zr on the 

formation of nanocomposite structure in Al-based alloys" 

• N. AI-Aqeeli, G. Mendoza-Suarez and RA.L. Drew, "Extension of 

Homogeneity ranges of intermetallics in AI-Mg-Zr alloys" 
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Appendix - B 

Comparison in crystallite size measurements between XRD and TEM 

The following data were obtained by using Scherrer procedure from XRD: 

A18sMgIOZrS 

As-Milled 14.4 12.9 

Annealed 23.1 15 

While these crystallite size measurements were obtained by direct TEM measurement: 

AlssMglOZrs 

As-Milled 13.5 12 

Annealed 22.7 14 

It can be seen by comparing the above crystallite sizes obtained by the aforementioned 

methods it can be seen that the difference is close to 6%. 


