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Abstract 

Diagnostic cognitive assessment (DCA) was explored using Bayesian 

networks and evidence-centred design (ECO) in a statistics learning domain 

(ANOVA). The assessment environment simulates problem solving activities that 

occurred in a web-based statistics learning environ ment. The assessment model 

is composed of assessment constructs, and evidence models. Assessment 

constructs correspond to components of knowledge and procedural skill in a 

cognitive domain model and are represented as explanatory variables in the 

assessment model. Explanatory variables represent specifie aspects of student's 

performance of assessment problems. Bayesian networks are used to connect 

the explanatory variables to the evidence variables. These links enable the 

network to propagate evidential information to explanatory model variables in the 

assessment model. The purpose of DCA is to infer cognitive components of 

knowledge and skill that have been mastered by a student. These inferences are 

realized probabilistically using the Bayesian network to estimate the likelihood 

that a student has mastered specifie components of knowledge or skill based on 

observations of features of the student's performance of an assessment task. 

The objective of this study was to develop a Bayesian assessment model that 

implements DCA in a specifie domain of statistics, and evaluate it in relation to its 

potential to achieve the objectives of DCA. This study applied a method for 

model development to the ANOVA score model domain to attain the objectives of 

the study. The results documented: (a) the process of model development in a 

specifie domain; (b) the properties of the Bayesian assessment model; (c) the 
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performance of the network in tracing students' progress towards mastery by 

using the model to successfully update the posterior probabilities; (d) the use of 

estimates of log odds ratios of likelihood of mastery as a measure of "progress 

toward mastery;" (e) the robustness of diagnostic inferences based on the 

network; and (f) the use of the Bayesian assessment model for diagnostic 

assessment with a sample of 20 students who completed the assessment tasks. 

The results indicated that the Bayesian assessment network provided valid 

diagnostic information about specifie cognitive components, and was able to 

track development towards achieving mastery of learning goals. 
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Resumé 

L'évaluation cognitive diagnostique (DCA) a été explorée en utilisant les 

réseaux bayésiens et le design centré sur l'évidence (EDC) dans un domaine 

d'apprentissage des statistiques (ANOVA). L'environnement de l'évaluation 

stimule des activités de la résolution des problèmes qui se sont produits dans un 

environnement en-ligne d'apprentissage des statistiques. Le modèle d'évaluation 

est composé des construits d'evaluations et des modèles d'évidence. Les 

construits d'évaluations correspondent à des composantes du savoir et des 

compétences procédurales dans un modèle à domaine cognitif et sont 

représentés comme étant des variables explicatives dans le modèle d'évaluation. 

Les variables explicatives représentent des aspects spécifiques de la 

performance des étudiants sur les problèmes d'évaluation. Les réseaux 

bayésiens sont utilisés pour joindre les variables explicatives aux variables 

d'évidence. Ces connexions permettent au réseau de propager l'information 

évidente aux variables du modèle explicatif dans le modèle d'évaluation. Le but 

de la DCA est de déduire les composantes cognitives du savoir et de la 

compétence qui ont été maîtrisées par l'étudiant. Ces déductions sont réalisées 

de façon probabilistique en utilisant le réseau bayésien afin d'estimer la 

probabilité qu'un étudiant a maîtrisé des composantes spécifiques du savoir ou 

compétence basé sur des observations de caractéristiques de la performance de 

l'étudiant d'une tâche d'évaluation. 

L'objectif de cette étude était de developer un modèle d'évaluation 

bayésien qui peut implémenter la DCA dans un domaine spécifique des 
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statistiques et de l'évaluer en relation au potentiel d'accomplir les objectifs de la 

DCA. Cette étude a appliqué une méthode pour le développement du modèle au 

domaine de modèle du score ANOVA afin d'atteindre les objectifs de l'étude. Les 

résultats documentent: (a) le processus du développement du modèle dans un 

domaine spécifique; (b) les propriétés du modèle d'évaluation bayésien; (c) la 

performance du réseau pour tracer le progrès des étudiants vers la maîtrise en 

utilisant le modèle pour mettre à jour avec succès les probabilités postérieures; 

(d) l'utilisation des estimés du logarithme de l'odds ratio de la probabilité de la 

maîtrise comme une mesure du progrès vers la maîtrise; (e) la robustesse des 

déductions diagnostiques basée sur le réseau; et (f) l'usage d.u modèle 

d'évaluation bayésien pour l'évaluation diagnostique avec un échantion de 20 

étudiants qui ont completé les tâches d'évaluations. Les résultats indiquent que 

le réseau d'évaluation bayésien fournit de l'information diagnostique valide à 

propos des composantes cognitives spécifiques et a été capable de tracer son 

développement vers l'atteinte de la maîtrise des buts d'apprentissage. 
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CHAPTER ONE: INTRODUCTION 

1.1 Identification of the Problem 

With the rapid development of technology, networked computers are 

increasingly used in colleges, universities, and other training programs to support 

innovative problem-based learning through web-based learning tools and on-line 

learning environments. These new tools and environments can be used to 

challenge and improve learners' progress in knowledge acquisition, skill 

development, and problem-solving. However, current assessment tools, 

procedures and modern theories of testing do not provide effective and precise 

assessments of student cognitive processes and knowledge development in 

these learning environments. Therefore, instructors using web-based and other 

on-line learning systems to support student learning are critically concerned with 

the problems of identifying student learning strategies, with examining transitions 

in the development of student expertise (Alexander, 2003; Lajoie, 2003), and with 

developing cognitive assessments based on student learning processes. 

Moreover, there is a serious concern that conventional tests are not weil suited to 

newer models of instruction and learning that emphasize the active construction 

of knowledge and that promote learning in dynamic problem-based 

environments. Fortunately, advances in cognitive and educational psychology 

have resulted in a better understanding of how people acquire, organize, and use 

knowledge, (Greeno, Collins, & Resnick, 1996). For instance, recent theories of 

evidence-centered assessment design (ECAD) hold promise for developing 
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effective assessment procedures and tools (Mislevy, Steinberg, Almond, Haertel, 

& Penuel, 2001). 

The research topic explored here concerns design and implementation of 

assessment systems that are based on cognitive objectives using evidence­

centered assessment (ECA) (Mislevy, Steinberg, Almond, Haertel, & Penuel, 

2001). An effective assessment theory must be based on evidence of student 

conceptual knowledge, procedural knowledge, strategies, knowledge 

applications, expertise, and skills in task performances. By incorporating diverse 

aspects of knowledge acquisition and skill development such a theory can be 

used for diverse assessment purposes. 

1.2 Theoretical Frameworks for Learning Assessment 

Theories of assessment are very important in the design and development 

of assessment procedures. The béliefs of assessment researchers and 

practitioners typically guide the design and implementation of assessment 

activities. Learning assessment is influenced by its relationships to other areas of 

education (e.g. curriculum) which are reflected in its theoretical framework. Three 

theoretical frameworks have influenced my assessment design: (a) Shepard's 

(2000) historical and learning culture framework, (b) Pellegrino, Chudowsky and 

Glaser's (2001) cognitive framework, and (c) Mislevy, Steinberg, Almond, 

Haertel, and Penuel's (2001) evidence-centred framework. 
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1.2. 1 Shepard's Historical and Cultural Framework 

ln her "Iearning culture" assessment framework, Shepard (2000) adopts a 

historical perspective in conceptualizing the interlocking tenets of a model of 

learning that encompassed not only theories of curriculum and instruction, but 

also cognitive and constructivist learning theories, and assessment. Shepard 

focuses on expertise and cognitive abilities as principled and coherent ways of 

thinking about and representing problems within current cognitive and 

constructivist learning theories. In Vygotsky's (1978) social-historical perspective, 

cognitive abilities develop through social interaction. New perspectives on how 

people learn provide a basis for redesigning and reorganizing curriculum and 

assessment theoretical foundations that are, thus, epistemologically robust 

assessments, which must reflect both current cognitive and constructivist 

theories, and parallel changes in curriculum development. Shepard particularly 

emphasizes formative assessment in examining student-Iearning processes and 

in assessing the step-by-step acquisition of competence. Consequently 

researchers and practitioners have adopted dynamic assessment, the use of 

feedback, and student self-assessment. 

Shepard locates assessment in the relatively large context of education 

and culture. Cognitive and social constructivist learning theories are important 

both in the design of a constructivist curriculum and in the assessment of 

learning. Assessment must also meet the demands of challenging subject matter 

and must instantiate what it means to learn and to understand the content of 

different subject domains (Shepard, 2000). Shepard's learning culture framework 
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depicts situations in which researchers can identify the role of assessment in 

larger educational contexts, and its relation to other aspects of education. This 

framework usefully insists that the design and development of an assessment 

must be validated with reference to subject domains and classroom contexts of 

students learning. 

1.2.2 Pellegrino's Cognitive Framework 

Pellegrino, Chudowsky, and Glaser (2001) regard assessment as a 

process of reasoning from evidence. They postulate a triadic model for 

assessment in which the three dimensions of cognition, observation, and 

interpretation, must be coordinated and interrelated. Cognition refers to how 

students represent various domains of knowledge and develop competence in 

these domains. In assessment, observations are made in tasks or situations that 

allow one to observe students' performance. Interpretations pertain to different 

methods of making sense of assessment data. 

Cognition is represented by means of a theory consisting of a set of 

beliefs about individuals' knowledge, performance and learning. This idea 

coincides with Shepard's cognitive and constructivist learning theories. A subtle 

difference is that in Shepard's framework, cognitive constructivist learning 

theories encompass constructivist, social, and cultural perspectives, while in 

Pellegrino et al's framework, cognitive theory encompasses a more abstracted 

perspective. The theory can be elaborated qualitatively and quantitatively, and in 

general or specifie ways. Cognition can be modeled in various ways. For 
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example, in a general sense, cognition can be represented as sets of theories or 

models. In a specifie sense, it can be characterized as expertise in a given 

domain. Qualitatively, it can be represented in terms of declarative and 

procedural knowledge. While quantitatively, it can be expressed probabilistically 

in the form of Bayesian networks. 

ln order to validate cognitive theories and models, observations are 

interpreted from the perspective of the triad model. This approach was borrowed 

from natural science. Once a hypothesis has been determined, a theory-driven 

design is adopted. Data-driven processes use observations as evidence to test 

hypotheses. However, observations in this model are complex processes and the 

steps in moving from data collection to establishing rules of evidence and to 

making inferences based on carefully assembled models of assessment. 

Interpretation involves sets of methods for making sense of data. These 

methods bridge cognition theory and empirical observation (Pellegrino, 

Chudowsky, & Glaser, 2001). They specify how observations derived from 

assessment tasks constitute evidence of such cognitive variables as skills and 

expertise. Methods of interpretation also encompass processes for developing 

"measurable objects". 

Pellegrino, Chudowsky, and Glaser (2001) explicitly characterize triadic 

assessment theory as determining how the three components are integrated into 

a coordinated whole to provide us with a theoretical framework for decomposing 

and analyzing assessment. The development of cognitive processes and 

expertise is situated (Clancey, 1997) and observations within specifie domains 
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are distributed (Derry, DuRussel, & O'Donnell, 1998). Cognitive theories require 

specifie statistical tools to support interpretations that bridge cognition and 

observation. Mislevy's model (Mislevy, Steinberg, & Almond, 2000) specifies a 

design framework that can be used to establish an effective assessment 

framework in order to deliver effective cognitive assessment. 

1.2.3 Mislevy's Evidence-cenfred Assessmenf Framework 

Evidence-centred assessment (ECA) design was initially developed at the 

Educational Testing Service by Mislevy, Steinberg, and Almond (2000). This 

framework provides an effective structure and process for designing, producing, 

and delivering assessments that can be used to enhance the validity of learning 

assessments. The statistical mechanism of Bayesian networks can be used 

effectively to connect cognitive processes and evidence from given task 

performances. 

Mislevy's framework contains three logically connected models: student 

model, evidence model, and task mode!. 

Student models represent student knowledge, skills and expertise. 

Although they cannot be directly observed, knowledge, skills and expertise can 

be indirectly inferred through what students say or do which provide evidence 

about assessment constructs, that is, student-model variables (Mislevy, 

Steinberg, & Almond, 2000). 

Evidence models consist of two submodels: (a) the evaluative submodel, 

and (b) the statistical mode!. The evaluative submodel is composed of a set of 
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evidence rules by means of which features of student responses and 

performance are extracted. The statistical model is applied to make inferences 

about student model variables (assessment constructs) based on evidence 

variables. In current applications, the statistical model usually takes the form of 

an item response model, a latent class model, or a Bayesian network model. The 

actual statistical model adopted in an assessment framework depends on both 

the student model and the task model 

Task models provide a framework for establishing the contexts and tasks 

which will be used to observe individual performances. They may be expressed 

in different specifications based on researcher beliefs and goals, and the 

research design. A task model is crucial to the assessment process because it 

determines what kinds of task model variables can be extracted from data. 

ECA framework provides us with a level of generality that underpins many 

conventional and web-based assessment formats. Mislevy, Steinberg, Almond, 

Haertel, and Penuel (2001) provide three examples to iIIustrate how ECA 

framework works: (a) the GRE, (b) the Dental Interactive Simulation Corporation 

(DISC), and (c) the MashpeeQuest, although ail three have the same 

assessment rationale and ECA design, they have different student variables, 

tasks variables, and optional statistical models. 

Shepard's historical and cultural framework, Pellegrino's cognitive 

framework, and Mislevy's ECA framework describe the relation of assessment to 

other aspects of education, interpret relations among components of assessment 

systems, and provide theoretically-based tools for constituting effective 
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assessment systems. The three assessment frameworks specify the ecology, 

epistemology, and methodology of an effective assessment system. Therefore, 

these frameworks will be referred to at different levels when considered later in a 

detailed analysis of assessment structure. 

1.3 Implications of Cognitive and Learning Theory for Assessment 

The effective assessment of learning can be understood and evaluated 

with respect to several theoretical issues. (a) What theories and models of 

learning and the development of competency have emerged in modern cognitive 

research? What are their implications for the assessment of student knowledge, 

performance, and learning? (b) From a cognitive perspective, what deficiencies 

are there in currently implemented assessment methods? (c) What promising 

features have been implemented in alternative assessments as compared to 

conventional assessment procedures? (d) What are the main streams of 

research exploring various assessment systems or procedures, and how can 

they contribute to developing systematic cognitive assessment procedures? 

1.3.1 Changes in Leaming Theories Relevant to Assessment 

Assessment is a critical component in Shepard's (2000) triadic framework. 

Fundamentally, assessment provides feedback to learners, educators and 

stakeholders about how weil a given instructional strategy serves a specifie 

learning process, and how weil an assessment procedure promotes student 

learning. However, as theories of learning have developed, assessment theories 
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and methods have failed to keep pace (Mislevy, 1993). Assessment theories 

should be able to identify cognitive processes and results. 

Theories of learning have changed a great deal since the beginning of the 

20th century. Metaphors of learning are constantly shifting in the natural sciences, 

computer science, cognitive science, and educational epistemology. Basically, 

three paradigms have emerged: associationist, information-processing (IP), and 

situated-constructivist. Unfortunately, test theory, assessment, and assessment 

procedures have not developed in a parallel fashion. 

The associationist paradigm views learning as changing the strength of 

stimulus-response associations (Mayer, 1996). The assumption is that external 

behaviors reflect mental processes. Associationists believe that general and 

precise laws of learning can be identified (Brown, 1994) and applied uniformly 

and universally across ail kinds of learning and learning situations. Historically, 

researchers began by using the experimental method to observe animal and 

human mental activity, ultimately transferring research results on animal behavior 

to human mental processes. 

The information-processing paradigm is based on the metaphor that the 

mind is a symbolic digital computer (Kyllonen, 1996; Mayer, 1996). When 

psychologists realized that they had to abandon the associationist view of 

learning as the strengthening of stimulus-response associations, they believed 

that they could use symbolic data and the information-processing procedures of 

computers as a metaphor for human cognition. The human-computer metaphor 

is based on the premise that both computers and humans engage in cognitive 
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processes such as acquiring and retrieving knowledge. Computers perform 

cognitive tasks by processing information. They take symbols as inputs, apply 

operators to that input, and produce outputs. Psychologists argued that humans 

are also information processors. According to information-processing theory, 

learning is a process of knowledge acquisition in which information is transmitted 

from teachers to learners (Mayer, 1996). Learners are information processors, 

and learning is associated with the construction of mental representations. The 

strength of this metaphor lies in fact that it allows psychologists to analyze mental 

processes sequentially and to formulate cognitive models and structures. 

However, there are limitations to this metaphor in that it ignores the fact that 

learning is active, schematic, and effortful. Moreover, it does not take into 

account the emotional, affective, and motivational aspects of learning. 

The situated-constructivist paradigm views learning as knowledge 

construction in the sense that it regards learners as sense makers (Hardy & 

Taylor, 1997; Mayer, 1996). Learners actively construct rather than passively 

receive knowledge (Brown, 1994). Human learning involves both knowledge and 

feelings. The quality of experiences depends on how they function (Confrey, 

1995; Duit, 1995; Eisner, 1993; Ernest, 1993; Fosnot, 1993). Perception, 

conception, and physical action cannot be separated. Learners construct 

knowledge and meaning from their own experiences. Cognition is embedded in 

social and cultural contexts where emotions and cognitive activities are jointly 

situated in both brains and environments. According to this metaphor, learning is 

socially situated in groups that function as "communities of learners" and in such 
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socially-enacted activities as "reciprocallearning" (Brown, 1994). This model of 

learning assumes that learners learn by operating in zones of proximal 

development (Wertsch, 1985) which are defined as the distance between a 

learner's current level of knowledge and the level s/he can reach with the help of 

teachers and/or tools. The model stresses learning in the real world and is 

beneficial in providing a view of learners as active, strategie, self-conscious, self­

motivated, and purposeful participant in learning environments. 

1.3.2 An Integrated Learning Model, Information Processing, 

Constructivism and Situated Metaphors 

Unified theories of cognition and learning as multi-faceted phenomena are 

beginning to emerge (Carroll, 1993, 1998; Horn, 1998; Scarr, 1998). It is 

necessary to develop more complex theoretical frameworks of learning and 

cognition. 

Information-processing theory is limited by its atomistic view of information 

and its failure to deal with the fact that humans process information for specifie 

purposes and in specifie contexts. The constructivist metaphor stresses the 

purpose of cognition, and identifies differences between information and 

knowledge which is constructed out of information. Information is transformed 

into knowledge in constructivist environments. Knowledge is changed step-by­

step into higher-Ievel knowledge and meta-knowledge. And at a certain stage, it 

emerges as a new format of information which integrates information with other 

reprocessed information. 
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Yet, the opposition between IP and constructivist views of cognition and 

learning is simplistic. Integrating situated cognition (Brown, Collins, & Duguid, 

1989; Clancey, 1997; Collin, Brown, & Newman, 1989) and IP can produce a 

cognitive theoretical framework that can be applied to complex learning 

processes. The situated perspective partly overlaps with constructivism. Situated 

cognition maintains that cognitive processes "stretch out" from internai cognitive 

processes to external social situations. Thus, cognitive processes occur in both 

the individual and through the interaction of individuals in social situations. 

Cognitive processes involve both information and knowledge. Thus, cognitive 

activities comprise strongly interrelated cognitive, social, and cultural aspects. An 

integrative cognitive theoretical framework must incorporate IP, constructive, and 

situated metaphors. 

The development and application of learning theories inevitably requires 

corresponding theories of assessment in order to validate and interpret different 

aspects of learning in various learning environments. However, assessment and 

measurement theories are as yet not sufficiently weil developed to measure and 

interpret learning in complex authentic environments and domains. 

1.3.3 The Discordance befween Methods of Learning and Assessment 

Unfortunately, recent changes in modes of instruction have produced 

discrepancies between learning and assessment. Criticisms have been voiced 
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from researchers in the learning sciences, cognitive science, and educational 

measurement (Birenbaum, 1996; Embretson, 1993; Hambleton, Swaminathan, 

& Rogers, 1991; Horn, 1998; Snow, 1998; Snow & Lohman, 1989, 1993; 

Thissen, 1993). The problem is that theories of measurement and assessment 

have not adapted themselves to developments in theories of learning and 

cognition. Assessment has not responded to changes in the interpretation of 

processes and results in learning and instruction. 

Changes in learning and cognitive theory have challenged assessment 

and test theory since the 1950s (Bechtel, Abrahamsen, & Graham, 1998) when 

IP theory in the cognitive sciences (Simon & Kaplan, 1989) began to influence 

perspectives on the measurement and assessment of cognitive processes. 

Cognitive theory interpreted the learning process as computing symbols within 

cognitive architectures (Newell, Rosenbloom, & Laired, 1989; Pylyshyn, 1989). 

Learning in cognitive theory is different from learning as response strengthening 

in traditionallearning theory (Mayer, 1996). Cognitive theories seek to describe 

what happens in learning in much more detail entailing mental representation, 

memory' reasoning, and problem solving strategies. Traditional test theory based 

on the true score model cannot handle this complexity. Changes in learning 

theory require measurement and test theory to interpret cognitive processes in 

alternative ways. 
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1.3.3.1 Changing Conception of Learning Tasks and Pro cesses 

There have been important changes in conceptions of learning and 

instruction. Knowledge and skills are no longer conceived of as limited and static, 

but rather as extensive and dynamic. A competently functioning person has 

acquired new knowledge and can use it to solve new unforeseen problems. 

Learners must have not only declarative knowledge and procedure knowledge, 

but also application knowledge and strategies. In the information era, learners 

are seen as adaptable, self-regulated learners, capable of communicating and 

cooperating with others. Required competencies include: (a) cognitive 

competencies: problem solving and critical thinking; (b) meta-cognitive 

competencies: self-reflection; and (c) social competencies: communicating and 

cooperating (Birenbaum, 1996). Such competencies cali for instructional 

strategies and alternative forms of learning which in turn require new strategies 

and procedure for measuring and testing in order to provide effective feedback 

and assessment of learning (Shepard, 2000). 

1.3.3.2 Changing Learning Environments 

Clearly, changes in learning environments should inform and be informed 

by changes in theories of cognition and learning. New learning tools such as 

videotapes, computers, and the World Wide Web can be seen in more and more 

classrooms. Research has focused on intelligent tutorial systems, computer­

coached learning, virtuallearning, and case-based learning (Arcos, Muller, Orue, 

Arroyo, Leaznibarrutia, & Santaner, 2000; Hmelo, 1998; Lajoie & Lesgold, 1989). 
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There is greater focus on problem-based and collaborative learning. Instructors 

and learners have reasons to believe that the objective of learning is not just to 

acquire declarative and procedural knowledge and skills, but also to develop 

effective strategies for understanding, creating and applying knowledge to new 

situations. They also recognize that virtual, web-based, simulated, and problem­

oriented and collaborative learning environments can introduce different learning 

processes and outcomes. Learning activities in such complex learning 

environments can lead to experiences in which cognitive processes are highly 

distributed and socially situated (Greeno, 1998). 

Such situations pose serious challenges for assessment. As learning 

environments change, effective assessment and testing procedures must 

respond by providing meaningful results pertinent to the knowledge and skills 

such environments afford. Testing procedures will require robust measurement 

and testing models to provide strong empirical support for inferences based on 

them. Learning in such environments requires explanations based on a new form 

of measurement and theoretical frameworks. Unfortunately, current 

measurement and test theory cannot yet respond to these changes. 

1.3.3.3 Side Effecfs ofConvenfional Tesfing Procedures and Tools 

The primary negative side effect of conventional testing practice is the 

tendency for testing to reduce teaching to the level of testing technology-away 

from learning and reasoning skills to more easily measurable skills. Another 

negative side effect is that present testing often encourages students to 
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memorize facts rather than to understand, which is what the construction of 

knowledge requires. These side effects are apparent in testing by multiple-choice 

items (Collins, 1990). When based on objective cognitive analysis, multiple­

choice questions (MCQ) can indeed measure higher-order cognitive skills if the 

item can be validated as assessing higher-Ievel mental processes. However, in 

practice, most MCQs measure the simple recall of information (Frederiksen, 

1990). In short, test formats used on student achievement examinations lack the 

support of cognitive theory and construct validity. 

1.4 Desirable Features of Cognitive Assessments 

As a unifying concept of conventional assessment, standard test theory is 

a statistical model that encompasses classical true score theory and item 

response theory. Standard test theory appears to be largely incompatible with the 

implications and findings of contemporary psychological theories and research 

on assessment practices (Pellegrino, Baxter, & Glaser, 1999). Alternative 

objectives must be considered in order to establish new assessment frameworks 

and appropriate statistical and evidence models based on a construct-centered 

approach (Messick, 1992, 1994, 1995). 

1.4. 1 Cognitively Diagnostic Assessment 

Cognitive science provides a theoretical basis for developing new 

methods of assessment that can improve instruction and learning (Frederiksen, 

1990). Assessment is not only a procedure for measuring objects and reporting 
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scores statistically, it can also support inferences about what happens in the 

mind, what learners know, and how learners process information. Cognitive 

research typically emphasizes knowledge representation and organization, and 

problem-solving procedures and strategies which must be part of a cognitively­

based assessment framework (Mislevy, 1993). 

The substantive foundations of diagnostic assessment emerge from the 

connection between the theories of instruction, aptitude and the theory of 

cognition (Embretson, 1990). The purpose of diagnostic assessment is to explore 

observed facts and to make inferences about the nature of entities underlying 

those facts (Marshall, 1990). Diagnostic assessments are designed to make 

inference about the state of students' mastery of specific cognitive ski Ils and 

knowledge on the basis of observations of their performance in task 

environments. Diagnostic information is based on observations that are 

influenced by both cognitive and psychometric models (Corter, 1995). Cognitive 

models inform observations that arise from task situations, and statistical models 

allow inferences about explanatory variables underlying such observations. 

1.4.2 Dynamic Assessmenf Focusing on Leaming Processes 

Dynamic assessment is one of the more successful methodologies for 

assessing transition in learning (Lajoie, 2003). It can be defined as a moment-by­

moment assessment of learners during problem solving so that feedback can be 

provided in the context of the activity (Lajoie & Lesgold, 1992). 

Dynamic assessment has been increasingly emphasized in the last two 

decades. It focuses on assessing the learning processes by which knowledge 
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acquired and problem solving ski Ils are developed. Two weil known examples of 

dynamic assessment are currently being implemented in educational 

assessment: portfolio assessment and computer-based assessment (Lajoie & 

Lesgold, 1992). 

Dynamic assessment is not necessarily cognitive, but cognitive 

assessment often demonstrates features of dynamic assessment especially in 

enriched learning environments because cognitive assessment often involves 

tracking the process by which knowledge and skills are acquired, and problem­

solving strategies are formed. Lajoie (2003) postulates regarding the relations of 

dynamic assessment to expertise and new learning environments: 

Dynamic assessment implies that human or computer tutors can evaluate transitions in 

knowledge representations and performance while learners are in the process of solving 

problems, rather than after they have completed a problem. Immediate feedback can 

then be provided to learners during problem solving, wh en and where they need 

assistance. The purpose of assessment in these situations is to improve learning in the 

context of problem solving. (p. 22) 

Lajoie (2003) cites ECA as an example of how to implement dynamic 

assessment. Conversely, ECA can be embedded in dynamic cognitive 

environments. It is not necessary but quite possible that knowledge, skills, and 

expertise can be assessed in dynamic assessment processes. 

1.4.3 Performance Assessment of Declarative and Procedural Knowledge 

Performance assessments are becoming increasingly popular because 

they promise authentic and direct appraisals of educational competence leading 
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to positive consequences for teaching and learning outcomes (Messick, 1994). In 

cognitively complex domains, learning often involves performance on complex 

tasks, although conventional assessments seldom use such performance tasks 

as measurable objects. This tendency has led to the failure to use authentic 

performance tasks in assessment. Performance assessment emphasizes 

monitoring the acquisition of both declarative and procedural knowledge thus 

increasing their construct validity. The characteristics of alternative assessments 

have become increasingly prominent due to increased demands for assessments 

stemming from advances in cognitive theory related changes in the goals and 

standards of instructional practices, and the increased use of multimedia and 

web-based learning systems. Therefore, current research on alternative 

assessment theories and practices increasingly emphasizes theory-based 

assessment frameworks that integrate complex cognitive task designs. 

1.4.4 Summary 

These theoretical frameworks provide a robust basis for developing 

alternative assessment designs. They allow researchers to explore effective 

assessment procedures in terms of cognitive theories combined with modern 

statistical models. Assessment procedures based on traditional learning theories 

are not appropriate for use in such new knowledge and problem focused learning 

environments as web-based learning. Modern learning theories require new 

assessment procedures and theories to measure learning . 

• 
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Conversely, current assessment procedures including conventional tests 

used to measure achievement in universities have been confined to reporting on 

the acquisition of information or skills rather than to diagnosing relevant errors 

and demonstrating learner progress in acquiring and developing knowledge and 

skills. 

Cognitive assessment focuses on both diagnosis and learning, and should 

assess development of components of competency in the performance of 

complex, authentic tasks. These characteristics are ail necessary, and may be 

implemented using web-based and computer-based learning assessments. 

A new theoretical framework for assessment, and the identification of 

current problems with current assessment practices informed the development of 

alternative assessments appropriate to new assessment purposes and learning 

environments. 
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CHAPTER TWO: OBJECTIVES AND RESEARCH ISSUES 

2.1 Purpose and Objectives of the Study 

This study aims to explore a cognitive diagnostic assessment procedure 

for student learning problem solving skills in the domain of statistics. The 

assessment procedure is diagnostic because it will identify mistakes and 

deficiencies. The assessment system will report dynamic cognitive processes 

and student learning processes at each step. The assessment system is 

cognitive-based involving two kinds of cognitive performances: students' 

problem-solving processes and semantic explanations. There are five research 

objectives: 

1. To develop and explore a method for diagnostic cognitive assessment 

in a complex problem solving domain (statistics) based on the implementation of 

a cognitive-based Bayesian assessment model which is applicable to other 

complex problem solving domains. 

2. To develop an assessment procedure that can be applied to task 

performance in various situations. 

3. To develop a model that can potentially be implemented on web-based 

coached practice environments and to assess performance in well-understood 

cognitive domains. 

4. To explore the potential of Bayesian Belief Network (BBN) models in 

cognitive assessment. 
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5. To evaluate the assessment model and design with data from students 

in statistics and simulated data. 

2.2 Research Issues Investigated 

ln terms of these five objectives, three specifie issues will be addressed. 

1. How can an effective assessment model and environ ment using 

Bayesian belief networks (BBNs) be designed to provide valid diagnostic 

assessments of cognitive knowledge and performance skills on tasks in complex 

problem-solving domains? 

2. How weil can the assessment model diagnose the mastery or non­

mastery of components of cognitive knowledge and competency on the basis of 

performance data of individuals performing appropriate tasks? 

3. How robust are diagnostic assessments over variations in the 

conditional probability tables used in the network? 
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CHAPTER THREE: COGNITIVE MODELS IN ASSESSMENT 

The representation and organization of knowledge is a priority in the 

design of cognitive assessment systems as they inform the validity of such 

systems. Two cognitive models will be used in complex assessment: (a) expert 

models (Frederiksen & Donin, 2005), and (b) student models (Mislevy, Steinberg, 

Almond, Breyer, & Johnson, 2001; Mislevy, Steinberg, Almond, Haertel, & 

Penuel, 2001). Although expert models act as a basis for inferring student 

models, both models can be used to describe student knowledge structure. The 

cognitive assessment literature has emphasized student models in order to 

explain progress in student learning. Models of expert knowledge and 

performance have been neglected and are usually discussed in research on 

expertise in cognitive science and in research on artificial intelligence (AI), expert 

systems, and intelligent tutoring systems. Nonetheless, cognitive assessments 

include expert models as they are closely tied to student models. Comparing 

student models to expert models is important in tracking the development of 

expertise. Examination of both models is important in analyzing the entire 

assessment process. 

3.1 Expert Models, Expertise and Types of Knowledge Representation 

Expert models and expert systems are often discussed together. Ignizio 

(1991) states that an expert system is a model within specifie domains composed 

of procedures that exhibit a degree of expertise in problem solving that is 

comparable to that of a human expert. An expert system contains knowledge 
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derived from an analysis of human expertise in some domain and this knowledge 

is used to train individuals using the expert system to solve problems in that 

domain. 

Ignizio (1991) merges the concepts of expert model and expert system. In 

fact, an expert model is an organized database of declarative and procedural 

knowledge for a particular domain. It represents the subject matter knowledge of 

an expert in that domain. Expert systems (rule-based systems) and semantic 

networks are two ways of modelling expert knowledge (Hay & McTaggart, 2003). 

An intelligent tutoring system is an example of an expert system, whose aim is to 

provide users with help in acquiring expert knowledge in some domains. (Hay & 

McTaggart, 2003). If the expert model incorporated in an intelligent tutor 

demonstrates high quality of expertise and knowledge structures, learners can 

quickly and effectively adapt themselves to the learning environment (i. e., the 

tutorial system). The expertise and the classification of knowledge are very 

important in describing trajectories of student learning and representation of 

knowledge. 

3. 1. 1 Expertise and Cognitive Assessment 

Expertise as an assessment model has been explored in such 

assessment paradigms as the web-based cognitive assessment of performance. 

The development of expertise from the "acclimation to proficiency" (Alexander, 

2003) provides opportunities for giving feedback and diagnostic information in 

different ways. This perspective is highlighted by contrasting the Model of 

Domain Learning (MDL) with such traditional models of expertise as 
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expert/novice theory. Alexander (2003) and her colleagues believe that 

expert/novice theory has over-simplified the features of expertise. They claim that 

MDL focuses on learning in academic domains and describes the development 

of expertise in three stages: (a) acclimation, (b) competence, and (c) proficiency 

based on research investigations in such academic domains as social studies, 

biology, educational psychology, and special education (Alexander, Jetton, & 

Kulikowich, 1995; Alexander, Murphy, Woods, Duhon, & Parker, 1997; 

Alexander, Sperl, Buehl, Five, & Chiu, 2004; Murphy & Alexander, 2002). The 

"continuum" view of expertise as a multistage process of development (i.e. 

acclimation, early competence, mid-competence, and proficiency) indicates that 

models of expertise can be included in a cognitive model of evidence-based 

assessment and thus connected to statistical models of diagnostic assessment 

(Williamson, Steinberg, Mislevy, & Behrens, 2003). 

3.1.2 Expertise and Problem Solving Strategies 

Since the 1970s, theories of expertise have established a base by 

exploring expert-novice problem-solving performance in difterent domains, 

especially medicine (Alexander, 2003; Arocha & Patel, 1995; Joseph & Patel, 

1990). It has been found that experts share several cognitive characteristics (Chi, 

Farr, & Glaser, 1988). According to Lajoie (2003): 

Experts seemed to share the following characteristics: superior memory for information in 

their domain, better awareness of what they know and do not know, greater pattern 

recognition, faster and more accu rate solutions (although they tend to spend more time 

initially analyzing problems prior to solving them) and deeper, more highly structured 
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knowledge. Despite commonalities, a key constraint to developing expertise is that it is 

domain specific. Experts are experts at something, be it chess or avionics. This is 

important because it demonstrates that expertise is more than general intelligence. (p. 

21) 

ln research on problem solving, Patel, Evans, and Kaufman (1990) and 

Patel and Groen (1986) identified directionality of reasoning in clinical diagnostic 

domains: Forward on data-driven and backward on hypothesis-driven reasoning. 

Medical experts employ forward reasoning while novices and intermediate 

medical practitioners are more inclined to use backward reasoning developing 

and testing hypotheses against available data (Arocha, 1990; Patel & Groen, 

1993; Patel, Groen, & Arocha, 1990). In the literature on expertise and problem­

solving strategies, reasoning and problem-solving strategies are popular topics. 

Consequently problem-solving strategies and expertise are useful in designing 

cognitive models for assessing learning in complex domains. 

3. 1.3 Trajectories of Expertise Developmenf, and Dynamic Assessmenf 

Lajoie (2003) initially argued for the view that the development of expertise 

can be fostered along cognitive trajectories. She proposed that the development 

of expertise has two goals: determining what experts know, and how to help 

novices enhance their competence. 

Identifying what experts know can help determine the trajectory towards competence for 

the task. This trajectory, or path, is not necessarily linear and it can have several 

signposts where learning transitions can take place. Once such trajectories are mapped 

out assessments can be designed that assess learning transitions along the road to 

competence. Research must specify how to promote transitions or changes in 
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competence in different learning situations. Models of expertise that include different 

trajectories to competence can be used to design instruction and assessment for both in 

and out-of-school contexts. (p.21) 

Thus, expertise develops along a non-linear, cognitive trajectory. Knowing 

a given trajectory of expertise can help in identifying changes in learner domain 

competencies. However, a number of investigations have shown that cognitive 

trajectories can follow different directions. In analyses of avionics experts, a 

trajectory may consist of problem solving plans, actions, and the use of mental 

models (Lesgold, Lajoie, Logan, & Eggan, 1990). In a real-world study of expert 

surgical nurses (Lajoie, Azevedo, & Fleiszer, 1998), a trajectory of expertise is 

composed of the following components in the following order: hypothesis 

generation, planning of medical intervention, action performed, results of 

evidence gathering, interpretation of results, heuristics, and the overall solution 

paths. These multi-signpost trajectories provide assessment possibilities for 

revealing diagnostic information for learners. 

Lajoie argues that the acquisition of expertise is a transitional process that 

can be enhanced through dynamic assessment which provides ways to evaluate 

transitions in the organization and representation of knowledge and performance. 

Dynamic assessment is a moment-by-moment assessment of learner problem 

solving (Lajoie & Lesgold, 1992). It focuses on actuallearning processes (Lidz, 

Jepsen, & Miller, 1997) and shares many of the functions and features with 

diagnostic assessment which emphasizes such cognitive aspects as learner 

errors expressed as misrepresentation, novice problem-solving strategies, and 
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reasoning (Embretson, 1993; Feltovich, Spiro, & Coulson, 1993; Lajoie & 

Lesgold, 1992;). 

Lajoie and Lesgold (1992) describe dynamic assessment and cognitive 

diagnostic assessment as follows: 

Dynamic assessment implies diagnostic assessment in that it is used to both monitor and 

improve the learning situation. The diagnostic monitoring of skill and knowledge 

acquisition implies that information relevant to the process of learning in a domain can be 

recorded and preserved to provide a continuous record of changes in knowledge, skill, 

and understanding as students encounter problems of increasing complexity. (p. 366) 

Dynamic and diagnostic attributes of assessment will work together in 

complex learning environments such as web-based tutorial systems. Dynamic 

assessment is an effective method for assessing transitions in expertise and for 

tracking trajectories of expertise development. 

3.1.4 Types of Knowledge as Possible Cognitive Models in Cognitive 

Assessment 

According to Lajoie (2003) and Alexander (2003), transitions in the 

development of cognitive processes can be characterized in different ways. For 

instance, they can be characterized in terms of plans, goals, actions, and 

outcomes, or in terms of types of knowledge such as declarative and procedural 

(Anderson, 1982; Bitan, Karni, & Bitan, 2004; Byrnes & Wasik, 1991; Corbett & 

Anderson,1995; Rittle-Johnson & Alibali, 1999; ten Berge & van Hezewijk, 1999). 

Shavelson and Ruiz-Primo (1998) proposed that a cognitive assessment 

framework must include three types of knowledge: declarative, procedural, and 
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strategic. Declarative knowledge involves the knowledge of facts and concepts 

within some domains such as force, mass, acceleration in physics. Procedural 

knowledge involves knowing how to do something ("hands on"). Strategic 

knowledge involves knowing where, why and how to apply specific knowledge, 

that is, when a complex task should be completed and what problem-solving 

plans are required. 

Shavelson and colleagues have conducted several studies based on 

different hypotheses about different cognitive dimensions. For instance, 

Shavelson (2000), and Ayala, Ayala, and Shavelson (2000) characterize 

reasoning in terms of three cognitive "dimensions": basic knowledge and 

reasoning, spatial mechanical reasoning, and quantitative science reasoning, 

which they used to examine student reasoning on scientific problems in 

laboratory learning environments. Yin, Ayala, and Shavelson (2001) explored 

student problem solving in a science program and identified strategies of problem 

solving strategies: attending, processing information, reading and planning, 

observing, and conjecturing. 

Most of this research is based on think-aloud protocol and analyses of 

data collected on student learning processes. Shavelson and colleagues claim 

that student learning should emphasize processes of both thinking and 
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performing and propose a "hands on and minds on" perspective. These cognitive 

hypotheses allow theoretical interpretations of results in terms of data cOllected, 

and analysis. However, these cognitive dimensions have not yet been clarified as 

well-articulated expert and student models. 

3. 1.5 Expertise Contained in Semantic Networks Distributively and in Procedure 

Structures Hierarchically 

A semantic network is a graphical notation for representing knowledge in 

patterns of interconnected nodes and arcs. What is common to ail semantic 

networks is a declarative graphie representation that can be used to represent 

knowledge and/or support reasoning (Sowa, 1987, 1991, 2000). Sowa (2005) 

classified semantic networks into six types of networks: (a) definitional, (b) 

assertional, (c) implicational, (d) executable, (e) learning, and (f) hybrid. Sowa 

(2005) characterizes these networks as follows: 

Definitional networks emphasize the subtype or a relation between a concept type and a 

newly defined subtype. The resulting network, also called a generalization or 

subsumption hierarchy, supports the rule of inheritance for copying properties defined for 

a supertype to ail of its subtypes. Since definitions are true by definition, the information 

in these networks is often assumed to be necessarily true. Assertional networks are 

designed to assert propositions. Unlike definitional networks, the information in an 

assertion al network is assumed to be contingently true, unless it is explicitly marked with 

a modal operator. Some assertional networks have been proposed as models of the 

conceptual structures underlying naturallanguage semantics. Implicational networks use 
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implication as the primary relation for connecting nodes. They may be used to represent 

patterns of beliefs, causa lit y, or inferences. Executable networks include some 

mechanism, such as marker passing or attached procedures, which can perform 

inferences, pass messages, or search for patterns and associations. Learning networks 

build or extend their representations by acquiring knowledge from examples. The new 

knowledge may change the old network by adding and deleting nodes and arcs or by 

modifying numerical values, ca lied weights, associated with the nodes and arcs. Lastly, 

hybrid networks combine two or more of the previous techniques, either in a single 

network or in separate, but closely interacting networks. (p.1-2) 

Different semantic networks provide mechanisms for describing relations 

among different categories of knowledge, and can be used to describe different 

levels of expertise. The semantic networks of an expert are richer, more intricate 

and more interconnected than those of novices (Derry, 1990). The expert 

semantic networks are more internally coherent than those of a novice (Roth, 

1990; Tweney & Walker, 1990). Experts recognize and store more patterns, and 

organize information into larger chunks (Chase & Simon, 1973; Perkins, 1981). 

These findings are closely associated with different focus of analysis and 

methods of data-collection such as cognitive analysis (Annett, 2000) and 

discourse analysis (Schiffrin, 1994). Discourse analysis, especially propositional 

analysis, can represent expert declarative and schematic knowledge in semantic 

networks at different levels (Chi, 1997). 
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3.1.5.1 Application of Semantic Networks to Monitoring and Assessing 

Declarative Knowledge and Skills 

Semantic networks can be used to monitor cognitive processing 

(Frederiksen & Breuleux, 1990), and student acquisition of knowledge and skills 

in many domains such as biology, chemistry, and medicine. They have also been 

used in assessing the capacity for discourse and comprehension in 

neuropathology (Frederiksen, 1999; Frederiksen & Breuleux, 1990; Frederiksen 

& Stemmer, 1993). Discourse analysis is one way of developing semantic 

networks. Discourse is viewed as a sequence of natural language expressions 

produced by speakers or writers to represent and communicate conceptual 

knowledge to listeners or readers in various contexts (Frederiksen & Stemmer, 

1993). Propositional analysis is used to represent knowledge at a micro-Ievel 

(Frederiksen, 1975) and can be used to develop semantic networks. Semantic 

networks produced through propositional analyses can reflect the development of 

knowledge and skills. Frederiksen and Breuleux (1990) proposed two 

approaches for defining cognitive models representing semantic networks: 

canonical frames and semantic grammars. 

Models of semantic representation and methods for analyzing the processes involved in 

generating and manipulating semantic structures ought to provide a basis for cognitive 

monitoring or diagnosis of learners' knowledge and performance in semantically complex 

tasks. Cognitive diagnosis in semantically complex domains involves the evaluation of: 

(a) an individual's state of knowledge in a domain, (b) the semantic representations an 

individual generates in the performance of a task, and (c) the processes that are 

employed in retrieving, generating, applying, modifying, or in other way manipulating 

knowledge representation. (p. 356) 
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Frederiksen and Breuleux characterize canonical frames and semantic 

grammar as follows: 

A canonical representation (or frame) is a particular network structure or pattern that 

contains variables. Variables are symbols in a pattern that can be replaced by specifie 

values ... A canonical frame defined in this way thus is capable of representing a large 

number of structures or "instantiations." The canonical frame approach to defining a 

propositional representation consists of defining an exhaustive set of such patterns, each 

of which represents a particular type of structural possibility ... 

A semantic grammar adopts a generative approach to definition, specifying a model by 

means of rules that generate ail acceptable patterns within the grammar. It is weil known 

within the theory of generative grammar that a relatively small set of recursive ru les can 

be much more powerful than a large of canonical frames. (p. 359-360) 

Frederiksen (1986) developed a semantic BNF grammar for analyzing 

proposition to monitor cognitive processing in such content domains as medicine 

(Frederiksen, 1999; Patel & Arocha, 1995; Patel & Groen 1986). Propositional 

models can represent relations in semantic processes as cognitive processes 

both qualitatively and quantitatively. Propositional models typically contain 

several types of propositions: events, systems, states, propositional relations, 

identities, algebraic relations, functions, binary dependency relations, and 

conjoint dependency relations (Frederiksen & Breuleux, 1990). These proposition 

types plus the BNF grammar constitute a system for developing semantic 

networks. 

Based on propositional analysis, Frederiksen proposes a general model of 

cognitive evaluation in which relations between expert and student models have 

been described (Frederiksen & Breuleux, 1990). In expert models, structures are 
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organized into three submodels: (a) expert knowledge model where experts 

demonstrate their knowledge base; (b) expert processing models which 

represents sources of information received such as formai language, 

experienced events, graphie information, numeric data; and (c) expert dataltask 

models divide the expert processing model into two parts: rules applied to 

specifie task information and methods for applying rules. In short, although there 

are many forms of data analysis and semantic frame building, semantic networks 

offer greater opportunities for monitoring and assessing declarative and 

schematic knowledge. 

3. 1.5.2 Expertise in Procedure and Sfrafegy Knowledge, and Assessmenf 

ln such cognitively complex domains as science education, medicine, or 

nursing (Ayala, Ayala, & Shavelson, 2000; Frederiksen, 1999; Lajoie, Azevedo, & 

Fleiszer, 1998), learner progress is based on judgments as to whether they have 

acquired declarative, procedural, schematic, and strategie knowledge, and 

whether they can use that knowledge to solve problems competently. In general, 

these kinds of knowledge are implicitly contained in such learning contexts as 

problem-based learning (Frederiksen & 8reuleux 1990). To develop expertise in 

a professional domain, students must not only acquire and apply a rich body of 

declarative and procedural knowledge for solving authentic problems, but they 

must also learn to function in the various social contexts in which professionals 

typica"y co"aborate to solve problems. Thus both declarative and procedural 

knowledge are indispensable in the development of expertise. For example, 
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problem solving varies according to different occasions and organizational 

formats such as small group collaborations. Although researchers have been 

aware of procedural and strategic knowledge in the last three decades (Schacter, 

1989), they have yet to be successfully assessed and monitored (Le. Ayala, 

2003; Baxter, Shavelson, Goldman, & Pine, 1992; Hunt, 1995; Marshall, 1995). 

As computer-based coaching systems and web-based learning systems become 

more common in various content domains and complex learning environments, 

assessment of learning becomes an increasing concern (Lajoie, 1993; Schwartz, 

Biswas, Bransford, Bhuva, Tamara, & Brophy, 2000; Sugrue, 2000). 

Expertise can be expressed in different types of knowledge, ski Ils, 

reasoning and problem solving strategies. Ali of these components of expertise 

demonstrate the common cognitive characteristics indicating progress from 

novice to expert. In recent assessment research on computer-based learning 

environments, hierarchical models (Frederiksen & Donin, 1999; Frederiksen, 

Donin, Bracewell, Mercier, & Zhang, 2002), network models (Heffernan, 2001), 

and mixture models (Lajoie, 1993) have been employed to monitor the 

acquisition of procedural knowledge and problem solving strategies. Although 

other models have been used in the design of such tutorial systems as Multi 

Agent Architecture for Adaptive Learning Environment (MAGALE) (McCalla, 

Vassileva, Greer, & Bull, 2000), and Web-based Authoring Toois for Aigebra 

Related Domain (WEAR) (Virvou & Moundridou, 2000), hierarchical models are 

potentially useful in cognitive assessment and are weil adopted to Bayesian nets 

as their statistical models. 
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Minor references to the use of hierarchical models in student models and 

statistical models can be found in the assessment literature. However, little has 

been done with respect to expert models. Heffernan (2001) used a network 

model to design a tutorial system for algebra. This model provided possible paths 

for students to choose. If students encountered problems at sorne stages, the 

tutorial system provided helpful feedback. 

Another tutorial system, Bio-world (Lajoie, 1993) provides a computerized 

coaching environ ment in which secondary school students learn to diagnose 

medical problems. Bio-world is a mixed or "semi-hierarchical" network. Students 

can choose such keywords as "AlOS" and then select from several available 

patients. To help students to uncover more diagnostic information, Bio-world 

provides a notebook in which diagnostic reasoning structures can be 

hierarchically developed. For example, in moving from hypothesis to the disease 

in question, students move through a hierarchical space. 

The McGiII Statistics Tutorial System (Frederiksen & Donin, 1999) adopts 

a cognitively complete hierarchical design and is organized on the basis of 

studies of how problem-solving procedures are structured in the memory of 

experts. The procedure frame represents complex procedures by decomposing 

them into hierarchies of actions and goals: 

At the top level, solving a data analysis problem involves six component procedures: (a) 

defining the research problem, (b) specifying the data, (c) carrying out a descriptive 

analysis of the data, (d) performing an ANOVA with the data, (e) conducting any post-hoc 

analysis, and (f) drawing conclusions based on the results obtained from previous steps. 

Each of these main procedures is composed of subprocedures. For example, procedure 
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(d), performing the ANOVA, is composed of eight main subprocedures to be performed: 

(a) specifying the research design, (b) specifying a linear model for scores on the 

dependent variable, (c) obtaining least squares estimates of the grand mean and ail 

effects in the linear model, (d) partitioning the total sum of squares according to the 

ANOVA model, (e) preparing an ANOVA table for organizing results, (f) computing 

ANOVA statistics, and (g) conducting F tests. (p. 399) 

This hierarchical model contains conceptual, theoretical and procedural 

knowledge and records student performance while solving such statistics 

problems as two-way ANOVA problems by representing statistical models as 

Bayesian networks. 

3.2 Student Models in Cognitive Assessment 

Student models, as related to cognition and assessment, have been 

proposed and applied in intelligent tutorial systems (ITSs) (Hay & McTaggart, 

2003), and also discussed as tools (Reusser, 1993) in cognitive assessment 

(Ohlsson, 1990) and diagnostic assessment (Corbett & Anderson, 1995). 

Reusser postulated that "the student model, which encompasses both the 

learner's knowledge and behavior as he or she interacts with the ITS, acts as a 

guidance system that helps lead the student through the domain's knowledge 

base" (p. 6). Therefore, the student model can be seen as a process through 

which assessors can assess student performance during the development of 

knowledge and skills. 
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ln their research on teaching avionics troubleshooting skills in computer­

based learning environments (CBLE), Lajoie and Lesgold (1992) characterize 

their student model dynamically as follows: 

Student modeling refers to the programming techniques that enable an instructional 

system to develop and update an understanding of the learner's performance on the 

system. More broadly defined, student modeling includes the processes that utilize the 

system's knowledge about the student as a basis for diagnosing student problems and 

selecting instructional approaches that best address the diagnoses. (p. 375) 

ln a later study, Derry and Lajoie (1993) expanded the definition of student 

modeling. 

Narrowly speaking, student modeling refers to the programming techniques and 

reasoning strategies that enable an instructional system to develop and update an 

understanding of the student and her performance on the system. More broadly defined, 

student modeling also includes the processes that actually utilize the system's knowledge 

about the student as a basis for diagnosing student problems and for selecting 

instructional approaches that best fit current diagnoses. (p. 2) 

Thus, the definitions of student modeling are nearly identical. The only 

major difference lies in the addition of "reasoning strategies" Furthermore, 

"understanding of the student and hisl her performance," is stressed as opposed 

to simply focusing on "performance", per se. The last sentence of Derry and 

Lajoie (1993) refers to "approaches to the best fit current diagnoses" rather than 

"best address the diagnoses." ln short, Lajoie and Lesgold, and Derry and Lajoie 

have elaborated and expanded the definition of student modeling. They 

emphasize student performance, the diagnosis of student problem sOlving, and 

the effects of student modeling on the selection of instructional approaches. 



Diagnostic and Model-based Assessment 58 

Frederiksen and Breuleux (1990) present another point of view on the 

study of relationship between expert and student model: 

A student model is defined in terms of an expert system in which a learner is described in 

terms of his or her knowledge of production rules in the system. The student model is 

determined by inferring the rules the learner has applied on the basis of his or her 

response. (p. 355) 

Based on the three components of the expert model: knowledge, 

processing, and data representation, Frederiksen and Breuleux (1990) proposed 

a four-step procedure for developing student models. Frederiksen and Breuleux's 

(1990) research on monitoring cognitive processing in semantically complex 

domains establishes the principle that student and expert models can be 

developed in parallel. 

Such concepts and definitions certainly help to characterize student 

models carefully. However, considering the purposes and functions of student 

models are important to better understanding of how they can be used in 

cognitive assessment. 

3.2. 1 Pur poses and Functions of Sfudenf Modeling 

The purposes of student modeling are diverse and closely associated with 

the functions of student models. Zhou (2000) suggests that a student model is 

useful for guiding pedagogical decision-making in ITSs. For example, in 

medicine, an author may intend to help first-year medical students solve medical 

problems. Obviously, the design of this type of tutorial system is pedagogically 

oriented. Because of the importance of medical diagnostic skills, decision-ma king 
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is often a focus for research. When Ganeshan, Johnson, Shaw, and Wood 

(2000) explored the causal relationships between symptoms and disease states 

they described the purpose of the student model in the following manner: 

It is for capturing "ail of the knowledge the student is expected to bring to bear on the 

diagnostic process including the steps and their associated properties, the findings 

associated with the steps, the hypothesis, the hierarchical relationships between 

hypotheses, the causal relationship between the findings and hypothesis, and the 

strengths associated with these relationships." (p. 36) 

Student models are also relevant to the design of tutorial systems. For 

example, Online Assessment of Expertise (OLAE) (VanLehn, 2001) and 

Probabilistic Online Assessment (POLA) (Conati & VanLehn, 1996) are physics 

learning tools. OLAE is mainly for assessment, while POLA is mainly for 

probabilistic online assessment. Thus, student models have multiple uses in 

computer-based and web-based learning. 

ln summary, student models are important. In ITS, student models 

fundamentally fulfill three functions (Gitomer, Steinberg, & Mislevy, 1995). First, 

to help determine a set of instructional options, which can tailor appropriate 

pedagogical suggestions for an individual; second, to predict student actions, 

from which their validity can be inferred; third, to enable "the ITS to make claims 

about the competency of an individual with respect to various problem-solving 

abilities" (p. 74). Further identification of the purposes and functions of student 

modeling will be beneficial to the design of cognitive assessments based on ECA 

(Mislevy, Almond, & Lukas, 2004). 
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3.2.2 Examples of Application of Student Models in Tutorial Systems 

Student models are also relevant to the design of tutorial systems. Tutorial 

systems in physics and medicine have used student models. Several examples 

iIIustrating applications of student models in physics and medicine follow. 

3.2.2.1 A Student Model in Web-based Tutoring System for Problem Solving of 

Digital Logic Circuits 

Kassim, Ahmed, and Ranganath (2001) use a student model to trace 

student progress in a web-based problem solving learning environment for digital 

logic circuits. Records of student progress are kept in a database, where they are 

monitored and instructional options are selected based on student models. 

Based on their research, Kassim et al (2001) regard student models as 

dynamic representations of the knowledge and skills that students demonstrate 

in solving problems in digitallogic circuits. Kassim et al. (2001) wrote that "the 

student's inputs to the system provide evidence of learning and are used to 

update the student model" (p. 26). 

Kassim et al (2001) attempt to establish a relation between the expert 

model and student model which they cali an overlay model in which student 

knowledge is regarded as "a subset of the expert's knowledge and the goal of 

tutoring is to enlarge this subset toward the expert's knowledge" (p. 27). 
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3.2.2.2 Student Models in ANDES and OLAE: Physics Learning Tutorial and 

Assessment System 

ANDES is an intelligent tutoring system for students learning Newtonian 

physics in an introductory physics course (Vanlehn & Niu, 2001; Vanlehn, Niu, 

Siler, & Gertner, 1998). Students receive visualizations, immediate feedback, and 

procedural and conceptual help. The ANDES student model emphasizes the 

development of declarative and procedural knowledge. ANDES has two models: 

A homework Assignment Editor and a Tutor. The homework module involves 

Bayesian reasoning to maintain a long-term model of the students' mastery of 

physics concepts and preferred problem solving techniques. The tutor has four 

components: workbench, helper, assessor, and author's toolbox. The workbench, 

which includes a calculator and algebraic equation solver, allows learners to 

choose activities and complete series of tasks. Learners receive feedback on 

final answers or intermediate results. The helper module provides information on 

plans and goals, and helps learners to solve physics problems. It also explains 

workbench feedback. The assessor is a relatively independent module on Online 

Assessment of Expertise (OLAE) and Probabilistic Online Assessment (POLA) 

which are associated with ANDES. The Author's Tooi Box is used to modify the 

physics knowledge base, and to create and modify individual homework 

activities. 

Assessment functions were included in early versions of ANDES. The 

OLAE was developed and associated with each version of ANDES (Martin & 

VanLehn, 1995a). OLAE provides detailed reports of student performance, 
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students' abilities to solve physics problems. OLAE adopts three purposes in 

assessing student competence in solving physics problems (VanLehn & Martin, 

1998): 

(1) to collect detailed performance data on student actions as they performed tasks in a 

web-based learning environ ment , 

(2) to analyze student competencies in detail, and 

(3) to ensure data analysis can be sound and computationally feasible. (p.181) 

8ased on this, a detailed student model of OLAE is expressed as student 

knowledge representations containing sets of rules. The student model is 

designed to cover correct and incorrect physics rules. OLAE also uses a three­

level model of mastery. In OLAE, each rule is assumed to be in one of three 

states: 

(1) Non-mastery: the student never applies the rule. 

(2) Partial mastery: the student app/ies the rule when using paper and pencil, but does 

not use the rule when mentally planning a solution. 

(3) Full mastery: the student applies the rule whenever it is applicable. (p. 184) 

This student model is potentially associated with a theory of expertise in 

which trajectories and development are represented as three level scales. 

3.2.2.3 A Student Model in the CIRCSIM Tutor system for Physiology Learning 

The CIRCSIM-Tutor project is building a language-based ITS to assess 

medical students in learning to solve medical problems in physiology. Hence, the 

student model helps students learn to solve problems using qualitative-causal 

reasoning and highlights student initiative (Farhana, Evens, Michael, & Rovick, 

2002). Student initiative occurs when a student temporally takes control of a 
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session, by saying something that forces the tutor to change its course of action 

and respond to a new situation. Student questions serve as initiatives. 

Students communicate through writing with CIRCSIM which controls 

conversations, alternatively teaching concepts and asking questions. Such 

interactions can be problematic as conversations are still constrained by the 

system. The researchers are currently exploring different ways for students to 

interact with the tutorial system through natural language. 

3.3 Summary of Expert Models and Student Models 

Expert and student models are referred to as cognitive models in the 

design of DCA. Expert models are organized databases and frameworks of 

knowledge and expertise in given domains. Student models are systems 

designed to record student knowledge and behaviour, then are defined in terms 

of expert systems in which domain expertise is applied. The designers of student 

models collect the products of student learning to understand the students' 

learning trajectories. 

This chapter has reviewed relations between expert systems and 

expertise, and representation of expertise in semantic networks. Student models 

and their functions, along with some exemplars have been examined. Student 

models have various uses in research and tutoring applications based on the 

purposes and characteristics of the learning environments. 

From a cognitive assessment perspective, expert and student models are 

cognitive models which can be used to build assessment models. The application 
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of these models is an issue of great concern to assessment researchers. 



Diagnostic and Model-based Assessment 65 

CHAPTER FOUR: STATISTICAL AND TASK MODELS IN COGNITIVE 

ASSESSMENT 

4.1 Statistical Models Applied in Achievement Assessment 

A statistical model in Mislevy's framework (Williamson, Bauer, Steinberg, 

Mislevy, Behrens, & DeMark, 2004) is embedded in an evidence model, which 

links observations of evidence variables to theoretical assessment constructs 

(components of the student model). An evidence model consists of two 

submodels: an evaluative model and a statistical modal. The evaluative model is 

a set of rules for extracting components of student's knowledge and skills from 

student scores on evidence variables (reflecting performance). Evidence 

variables are developed based on learning tasks. Statistical models are critical in 

transferring information from evidence variables to assessment constructs 

(theoretical variables). A specifie statistical model used in an assessment system 

depends on the assessment purposes, the student model, and the task model. 

ln order to focus on cognitive assessment and evidence-centred design 

(ECO) (Behrens, Mislevy, Bauer, Williamson, & Levy, 2004) this section will 

review three mainstream theories that are likely to continue to play powerful roles 

in the future development of assessment: item response theories (IRT), latent 

class models (LCM) and Bayesian networks (BN). 
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4.1.1 IRT: Assumptions and Models 

Item response theories (IRT) have been developing for more than four 

decades and still dominate achievement measurement as a psychometrie 

paradigm (Embretson, 1984; Hambleton & Swaminathan, 1985; Hambleton, 

Swaminathan, & Roger, 1991; Junker, 1999). Initial contributions to IRT can be 

traced to Richardson (1936) and Tucker (1946). Richardson established the 

connection between IRT model parameters and classical item parameters and 

Tucker postulated the concept of the item characteristic curve (ICC), a monotonie 

increasing curve specifying that as the level of proficiency increases, the 

probability of a correct response to an item increases. ICC is a critical element in 

IRT because it describes a non-linear relationship between the proportion of 

correct responses to an item and a criterion variable (Baker, 1992). No matter 

how IRT models change, ICC is still a fundamental characteristic of them. 

IRT is a model-based measurement because it specifies how trait levels 

and item properties are related to a person's item responses (Embretson & 

Reise, 2000). IRT models describe the relations between item response scores 

and proficiency levels where item responses are usually expressed in terms of 

their probabilities. 

Two important assumptions, unidimensionality and local independence, 

provide a theoretical foundation for IRT models and their extensions. In addition, 

the unitary items assumption will also be discussed. 
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4. 1. 1. 1 Two Fundamental Assumptions for Item Response Theories 

According to unidimensionality, one trait or proficiency is necessary to 

account for the performance of an examinee on a task. However, in practice, this 

assumption cannot be strictly met because other cognitive, personality-related, 

and test-taking factors impact test performance. A dominant component or factor 

must influence test performance for a set of test data to adequately meet this 

assumption. This dominant component is referred to as the ability measured by 

the test (Hambleton & Swaminathan, 1985). Two methodologies for assessing 

unidimensionality are usually used: test of essential unidimensionality 

(DIMTEST) (Stout, 1987, 1990), and factor analysis. 

DIMTEST is a statistical procedure for testing the hypothesis that an 

essentially unidimensionallRT model fits observed binary item response data on 

a given test. Here a set of items are considered unidimensional when the 

average between-item residual covariance after fitting a one-factor model 

approaches zero as test length increases. 

Factor analysis methods may be used to determine whether responses 

are consistent with unidimensionality. The non-linear factor analytic model 

(Nandakumar, 1994) and the accompanying principle of weak local 

independence have been shown to be useful for identifying the number of 

dimensions underlying a set of binary item responses. Other factor analysis 

methods such as full information factor analysis (Zwick, 1987) may also be used 

to evaluate the unidimensionality of an IRT model. 
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Unidimensionality is reflected in a theoretical, single item parameter, the 

estimation of which is achieved through mathematical estimates. A major 

functional consideration in IRT unidimensionality is to enhance the interpretability 

of a set of test scores for a given performance. 

Local independence is the assumption that the response to any item is 

unrelated to the response to any other items when the trait level is controlled. 

Items may be highly correlated in the whole sample. However, if the trait level is 

controlled, local independence implies that ail test items are unrelated 

(Embretson & Reise, 2000). Thus, after taking examinee abilities into account, 

examinee responses to different test items will be unrelated (Hambleton, 

Swaminathan, & Roger, 1991). 

Because the assumptions of local independence and the 

unidimensionality of the latent space are equivalent, factor analytic techniques 

can be used in estimating local independence (Hambleton & Swaminathan, 

1985). The Q3 method (Yen, 1984, 1993) is another effective approach for 

investigating the local dependence issue. The Q3 index represents correlations 

between items after isolating latent trait variables. Based on differences between 

raw scores and expected scores in IRT models, a residual is obtained and 

correlations are obtained for residual scores among item pairs. If a Q3 value is 

relatively large, the relevant item may share other factors with the other items. 
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4.1.1.2 The Assumption of Unitary Items 

The basic assumption in most IRT models is that items correspond to 

unitary tasks. Some newer IRT models assume that items can be decomposed 

into subtasks or attributes, each of which becomes a component of item 

parameters that are still subject to unidimensionality. 

4.1.1.3 Classification of IRT Models in Achievement Assessment 

IRT models can be categorized in terms of: (a) response scales (b) trait 

dimensionality, and (c) number of item parameters. Responses can be 

dichotomous or polytomous; trait dimensionality can be unidimensional or 

multidimensional; the number of parameters can be one, two, or three. Any 

combination of these features constitutes a particular model category. 

4.1.1.3.1 Dichotomous unidimensional models. 

Dichotomous unidimensional models can often be found in assessments 

of achievement using Multiple Choice Questions (MCQs). Basic IRT models 

usually assume that traits are one-dimensional. Rasch models (Rasch, 1960) 

combine dichotomous and unidimensional features. Rasch models explain the 

occurrence of a data matrix containing dichotomously scored answers of a 

sample of persons on a fixed set of items by assuming that the items measure 

the same latent trait. A similar IRT variation is in Lord (1953), Lord and Norvick 

(1968) and Birnbaum (1968) except that Lord (1953) uses a normal Ogive model 
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and 8irnbaum uses the logistic mode!. However, both models predict similar 

probabilities. For practical purposes, the Logistic model is more commonly 

applied in current achievement assessment. The normal Ogive model can be 

transformed into the Logistic model by means of a scaling factor (D=1.7) which is 

used to multiply the power of exponent terms in the Logistic model equation. The 

logistic model will be used in discussions of ail models in this section. 

IRT models are parametric models which involve an item difficulty index 13, 

and may involve a discrimination index a, and a guessing index y. Models with 

only 13 are referred to as one-parameter models. Models with a and 13 are 

referred to as two-parameter models, and models with a, 13, y are referred to as 

three-parameter models. Models become more complicated as parameters are 

decomposed into sub-components. The linear logistic latent trait model (LLTM, 

Embretson, & Reise, 2000) is such a case. 

(1) One-parameter logistic (1 PL) models 

1 PL models are Rasch models. They depict the relationships between 

examinee scores on a single trait and an item parameter (Rasch, 1960). A single 

latent trait is assumed to be sufficient to characterize differences between 

examinee trait scores and item parameters (Embretson & Reise, 2000). 

Examinee proficiency can be conveyed in the exponent format of trait and item 

parameters. 

exp(f) -[3) 
P(X =11f) [3)= s / 

is s'· 1 (f) [3 ) 
1 +exp s - i 

(Formula 4.1) 
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Where Xi 5 is the response of examinee s to item i (takes 0 or 1) 

8s is the trait level for examinee s. 

Bi is the difficulty of item i. 

Formula 4.1 cannot be directly understood. It describes a non-linear 

relationship assessing the proficiency of examinees based on responses to a set 

of items, between latent trait and item difficulty. It can be more easily understood 

in a logit format. 

(Formula 4.2) 

Formula 4.2 is the naturallogarithm of the odds ratio which is modeled by 

the simple difference between an examinee trait score 85 and item difficulty Bi' 

The model specifies that the logarithm of the ratio of the probability of examinee 

success on item i, Pis, to the probability of examinee failure on item i, 1- Pis, is a 

function of the item and ability parameters. It is the difference between trait level 

and item difficulty level. 

(2) Two-parameter logistic (2PL) models 

The only difference between 1 PL and 2PL models is that 2PL models 

include a second parameter, the item discrimination parameter. In 1 PL models, 

the default assumption is that ail items demonstrate the same discrimination 

power and in 2PL models the assumption is that ail items demonstrate different 

discrimination levels. 
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2PL models specify the relationship of examinee proficiency to examinee 

probability for a correct response to an item. This relationship involves the latent 

trait, an item difficulty parameter, and an item discrimination parameter: 

exp[aCB - 13)] 
P(X is = 1/ B s' 13 / a) = 1 + exp[ ~ i (è s _ P)] (Formula 4.3) 

The item discrimination parameter ai is proportional to the slopes of the 

ICC at point bi on the trait scale (Hambleton, Swaminathan, & Rogers, 1991) and 

can theoretically be defined in the range of ("00, +00). However, in practice it is 

recommended that items with negative discrimination indexes or with values 

larger than 2 be removed. (Hambleton & Swaminathan, 1985). Thus, the range of 

a good discrimination index is between 0 and 2. The discrimination index for 

unidimensional models is a single value and for multidimensional models it is a 

vector. In the multidimensional model, the discrimination index becomes a 

summation of multidimensional components (Reckase, 1997; Reckase & 

McKinley, 1991). 

(3) Three-parameter logistic (3PL) models 

3PL models have become popular since multiple-choice questions have 

become common response formats in secondary and tertiary educational 

settings. Birnbaum (1968) explicated the 3PL model. 3PL models add a new 

parameter V, a lower-asymptote parameter, also ca lied the pseudo-chance-Ievel 

parameter, which represents the probability of low proficiency examinees 

correctly endorsing an item. V represents a binomial floor on the probability of 
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getting an item correct (Sireci, Wainer, & Braun, 1998). Essentially 3PL models 

correct an estimating bias when examinees with low proficiency levels respond to 

multiple-choice items. 

(Formula 4.4) 

Here, V ranges between 0 and 1. 

(4) LLTMs allowing for Item Complexity 

ln the Linear Logistic Latent Trait Models (LLTMs) (Embretson, 1990), 

item parameter bi (Formula 4.1), the item difficulty index, has been modified and 

expanded. In 1 PL models, the difficulty index is one variable-J3i; but in LL TM, 

the difficulty index is a linear combination of three sub-parameters 'lm, qim. and d. 

(Formula 4.5) 

Where /3; is the item difficulty index for item i; qim is the complexity score of item i 

on factor m (m=1, ... , M factors); 'lm is the difficulty weight of factor m; and dis a 

normalization constant. LL TMs model item difficulty as a linear combination of 

values of these m parameters. 

4.1.1.3.2 Applications of dichotomous, unidimensional models to cognitive 

assessment. 

ln the model discussed above, dichotomy and unidimensionality have 

confined the application of LL TM to achievement assessment and diagnostic 

assessment of knowledge and performance skill development. With changes in 
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learning environments, learning tasks have become increasingly complicated. 

Many studies focus on parameter estimation (Baker, 1992; Bock, 1972), model fit 

(Andrich, 1978), and response categories (Bennett, Morley, & Quardt, 1998). 

These IRT models are used in assessment in many different learning domains. 

Verguts and de Boeck (2000) applied a Rasch model to detect learning on an 

intelligence test. Their initial idea was to use a basic IRT model, but it was 

obvious that 1 PL models cannot satisfy more complex tasks. Assessment 

research based on ECD (Mislevy, Almond, & Lukas, 2004; Mislevy, Steinberg, 

Almond, Haertel, & Penuel, 2001) has addressed dichotomous and 1 PL models 

used in different assessment designs. For example, the GRE which tests verbal, 

quantitative, and analytical reasoning skills has been used to explore relations 

between student models and evidence models. Variable e represents proficiency 

in a specified task domain. ECD assumes that single latent traits are appropriate 

only when students are solving unitary tasks. 

Dichotomous and unidimensional models have been used in task-based 

language assessments (Mislevy, Steinberg, & Almond, 2002) to establish 

evidence for claims about whether students have mastered sorne skills or pieces 

of knowledge. The study examined different relationships between a single claim 

based on a single continuous student assessment variable, and multiple claims 

based on multiple continuous student assessment variables. The assumption 

being examined is a single IRT variable e accounts weil for performance across 

tasks in particular domains. 



Diagnostic and Model-based Assessment 75 

ln measurement and assessment practice, most tasks are very 

complicated, and dichotomous unidimensional models cannot satisfy the 

objectives of these achievement tests. Therefore, multidimensional models have 

been applied to assessment in various content domains (Embretson, 1993; 

Kelderman & Rijkes, 1994). 

4.1.1.3.3 Multidimensionallatent trait IRT models applied in cognitive 

assessment. 

MultidimensionallRT models (Embretson, 1993; Embretson & Reise, 

2000) were developed from Rasch models. In these models, the trait 9s is no 

longer a variable consisting of a single dimension as in unidimensional models. 

9s is replaced by a set of components: 9s1, 9s2, ... , 9Sk. This section introduces 

two typical multidimensionallatent trait IRT models used in cognitive 

assessment: the multidimensional Rasch model, and the multidimensional linear 

logistic model (MLLM). 

(1) Multidimensional Rasch models 

McKinley and Reckase (1982) describe multidimensional Rasch models 

as follows. 

M 

eXPCL{) sm + 8) 
PCX is = 11 es' 8) = _---<::.m=':-=~:;---_ 

1 + exp(L{) sm + 8) 
m=1 

(Formula 4.6) 

where Xis is the response of examinee s on item i (0 or 1) 

8sm is trait level for examinee s on dimension m 
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Di is easiness intercept for item i 

M is the number of dimension 

This model assumes that multiple dimensions are equally weighted for 

each item. Thus different trait levels cannot be separately estimated. This 

problem has been solved by multidimensional extensions of two parameter 

logistic models (Embretson, & Reise, 2000). 

(2) Multidimensional Linear Logistic Models (MLLMs) 

MLLMs aim to abandon the unidimensionality requirement in favour of 

multidimensionality which cognitive assessment requires in some domains. 

Fischer and Seliger (1997) proposed a model in which no assumption about the 

latent dimensionality of an item is necessary and they applied the model to 

assess children's intellectual development. In MLLMs, examinees are 

characterized by parameter vectors Oj= (Olj, ... ,Onj). The components of Oj are 

associated with items 11, ... , ln. There is no assumption about the mutual 

dependence or independence of latent dimensions. Consequently, this model is 

more flexible for many areas of research. 

MLLMs are usually applied in repeated measurement designs for two or 

more time points. Given two time points, two model equations are as follows. 

exp«().) 
P(+IS IT)= lj 

j i 1 1 + exp«() .) 
lj 

(Formula 4.7) 

exp«() .. - 8 .) 
P( + 1 S 1 T ) = lj J 

j i 2 1 + exp«() . _ ~ .) 
lj V J 

(Formula 4.8) 
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Where ().. is examinee S . 's position on latent dimension D. measured by u } 1 

item 1 i at time point Tl' 

8 j is the amount of change in S j between Tl and T 2 

MLLMs are widely used to measure change, and the expanding of 

unidimensionality to multidimensionality is useful for heterogeneous cognitive 

tasks. 

To solve different cognitive tasks, MLLMs can be classified into 

compensatory and non-compensatory models. Embretson (1990) provides a 

clear description of these two types of models. 

A noncompensatory model that is appropriate for processing components is the 

multicomponent latent trait modal. This model contains both person and item parameters 

for each component. In this case, non-compensatory implies that each component is 

necessary for item solvin9, 50 that the model is multiplicative. Thus, a low ability in one 

component implies a low probability of item solving regardless of the ability levels on the 

other components. 

ln a compensatory latent trait model, a person's response potential for a given 

item depends on the item's threshold and a weighted combination of several abilities. (p. 

423) 

Thus, the two models are used to assess cognitive tasks in terms of task 

features and assessment design where different subtasks require different 

knowledge structures. 
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4.1.1.3.4 Tatsuoka's fuIe space model (RSM) and its application in 

cognitive assessment. 

Tatsuoka's RSM represents a combination of cognitive and psychometrie 

models. It begins with the design of an incidence Q matrix which identifies 

cognitive components of performance (Uattributes") that are required to complete 

tasks (items) by which an individual's proficiency is assessed (Junker & Sijtsma, 

2001; Tatsuoka, 1990, 1995). Items that require the same attributes for their 

successful performance are identified (using the Q matrix), and constitute an item 

type. For each item type, a Rule Space Model R is constructed in which an IRT 

model is used to assess rule mastery (Le., proficiency 6). The model includes a 

slip probability for each item representing the occurrence of a statistically random 

error component ("slip") in solving the item. The rule space model is used to 

estimate examinee proficiency and diagnose examinee performance. An 

example of the application of Tatsuoka's RSM will be described, a summary of 

how to develop a RSM is presented, and finally a description of how the RSM is 

used to provide diagnostic assessment will be given. 

(1) An example of the application of Tatsuoka's RSM 

Tatsuoka's RSM has been applied to assess algebra problem solving 

(Tatsuoka, 1990, 1995). The RSM represents cognitive attributes which specify 

the declarative knowledge, cognitive processes and solution strategies that are 

involved in solving algebra problems. A classification space formulated in terms 

of relationship between these attributes and items is cognitively mode lied by a Q 
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matrix consisting oftwo vectors: attributes A1, A2, ... Ak, and items h, 12, ... Ik. Five 

attributes have been identified for fraction addition problems (Tatsuoka, 1995): 

A 1 Convert the first mixed number to a simple fraction 

A2 Convert the second mixed number to a simple fraction 

~ Take the common denominator and make equivalent fractions 

~ Add the two numbers 

As Answer to be simplified to the simplest term. (p.337) 

Solving given fraction addition problems requires one or more of these 

attributes. There may be a variety of combinations among the attributes A1-As 

for different addition fraction items. If the response space is dichotomous, 

examinee responses to items would be combinations of O's and 1's in various 

patterns. Based on the cognitive attributes, different combination patterns reveal 

different diagnostic information and progress information as examinees solve 

fraction problems. 

(2) Developing the RSM 

Gierl, Leighton, and Hunka (2000) summarize Tatsuoka's RSM in test 

development and analysis. They propose that a task domain such as fraction 

addition must be defined by clarifying the items and attributes required to perform 

the tasks. First, dependency relations linking attributes are represented in order 

to specify the ordered or hierarchical relationships constituting an attribute model. 

Second, a potential pool of item types reflecting ail possible patterns of attributes 

must be listed in a Q matrix. Third, items, inconsistent with the attribute model, 

are eliminated in order to obtain the effective Q matrix. Further, an IRT model is 
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applied to estimate a latent proficiency Sm for each attribute. Finally patterns of 

scores on these attribute mastery scores are used to classify subjects into 

knowledge state categories using discriminant analysis techniques. Attribute 

patterns provide diagnostic information about errors or misconceptions, and 

about knowledge states when compared to ideal patterns. 

(3) Approach to Diagnosis in Tatsuoka's RSM 

The Rule Space Model for an item type class is used to calculate two 

measures based on an examinee performance patterns on sets of items of 

particular item type (Tatsuoka,1983, 1985). If K=(X1, X2, ... , xm) is a vector of 

item score (0 or 1 on each of n items), the Rule Space Model estimates two 

"parameters" for each subject, based on the vector of scores for that subject: (a) 

SR, the subject level of mastery (proficiency) of the knowledge components 

needed to solve items of the particular item type; and (b) ~R, a measure of the 

discrepancy of subject performance X from an ideal performance that would be 

predicted for a subject at a particular proficiency level S. This discrepancy index 

reflects the occurrence of "slips" (errors) in the subject's performance on the 

items. 

Rule Space Models are developed for ail the different item types (Katz, 

Martinez, Sheehan, & Tatsuoka, 1998). Bug distributions are introduced into the 

models as slip parameters. Students' response patterns are used to compute the 

values of SR and ~R, in the rule space for each item type, and students are 

matched to the closest rule centroid (Le., mean values of SR and ~R) in the rule 
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space. Discriminant analysis is used to calculate posterior probabilities for each 

item type. In this way, diagnoses of bugs in specific rules are obtained for each 

student. 

Psychometrically, this is a complex model. Its application is confined to 

cases where ail attributes have been clearly identified. Items must represent at 

least one attribute. The attributes and items constitute a complex space in a 

complex task domain. 

4.1.1.3.5 IRT models that introduce multiple responses into the model. 

As task or item levels become more complex, polytomous IRT models can 

be considered. Polytomous IRT models are needed to describe relations 

between participant trait levels and their probability of responding in particular 

categories to an item (Andersen, 1995; Embretson & Reise, 2000). 

Polytomous models are c1assified as direct and indirect in terms of steps 

needed to determine the conditional probabilities of test subject responses in 

given categories. Indirect models require two steps for estimating parameters 

and proficiency. Typical indirect models are graded response models (GRMs; 

Samejima, 1969, 1996) and modified graded response models (M-GRMs, 

Muraki, 1990). Direct models require one step for estimating parameters and 

proficiency. Typical direct models are partial credit models (PCMs) initially 

developed by Masters (1982) and general partial credit models (G-PCMs; 

Muraki, 1992). 
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GRMs are appropriate when task data can be characterized in a format of 

ordered categorical responses. These ordered categories are used to assess 

student performance such as in rating scales. The mathematical model is: 

• exp[a·(B-f3JJ 
P (B) = 1 lj 

lX 1 + exp[aJB - f3JJ 
lJ 

(Formula 4.10) 

where x is an examinee's raw item response 

i is the number of an item 

• 
Pix(B) is the "operating characteristic curve" used to estimate examinees' 

trait level e based on category thresholds. Thus, in a graded response item with 

four categories, three f3ij parameters are involved. Based on each P:(B) , the 

item operating characteristic for each category P ix (B)' s is defined by the 

difference between two consecutive Pix(B)'s GRM item parameters determine 

the shape and location of item category response curves. The between category 

threshold parameter J3ij dictates the location of the operating characteristic curve. 

M-GRM (Muraki, 1990) is used to analyze questionnaire data in which 

items correspond to equally-spaced categories along a scale. Here J3ij is the 

difference between a location parameter bi and a threshold parameter Cj. 

According to Embretson and Reise (2000): 

The difference between the GRM and M-GRM is that in the GRM one set of category 

threshold parameter (f3ij) is estimated for each scale item, whereas in the M-GRM one set 

of category threshold parameters (Cj) is estimated for the entire scale, and one location 

parameter (bj) is estimated for each item. (p. 103) 
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PC Ms (Masters, 1982; Master & Mislevy, 1993) are used to analyze test 

items requiring multiple steps to complete, as in solving mathematical problems. 

PC Ms are direct models so the probability of getting a given category response is 

expressed in the exponential model (Embretson & Reise, 2000): 

x 

exp[~::CO - Ou)] 
p (0) = _--,-J_=o __ _ 

IX mi r 
(Formula 4.11) 

I[exp I(B-tSij)] 
r=O j=O 

° where Io-tSij == 0 
j=O 

ln Formula 4.11, Oij is the "item step difficulty" for step j. For item i, e is the 

subject's score on the latent dimension where there are mi + 1 steps from 0 to mi 

on item i. 

PCMs were developed from Rasch models, and assume that ail items 

share the same discrimination parameter. Having considered different 

discrimination parameters, or slopes between different items, Muraki (1992) 

modified PC Ms by adding a parameter ai to each exponent term. The resulting 

G-PCM provides more information for learning assessment: 

x 

exp Ia;(O - tSij). Polytomous models have been developed for a variety of 
j=O 

different tasks or item responses, and designs. 
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4.1.1.3.6 Application of multicomponent IRT models in cognitive 

assessment. 

Multicomponent IRT models have been applied to assess multiple latent 

proficiency components (Embretson, 1997; Whitely, 1980). Although cognitive 

tasks are often assumed to require multiple processing stages and strategies, it 

may not be appropriate to view these cognitive aspects as different trait 

dimensions. Rather, in multicomponent IRT models, they are seen as distinct 

cognitive components. Multicomponent IRT models have been applied to spatial 

tasks (Pellegrino, Mumaw, & Shute, 1985) and to mathematical problems 

(Embretson, 1995). Three multicomponent IRT models will be considered: (1) 

LL TM models which incorporate task components into IRT models, (2) ML TM 

models which strictly require mastery of multiple traits m that correspond to 

corresponding task components m, and (3) GL TM models. 

Embretson (1993), and Embretson and Reise (2000) merge Linear 

Logistic Latent Trait Models (LL TMs) and multicomponent latent trait models 

(MLTMs). 

(1) LLTMs (see section 4.1.1.3.1 (4) above) were developed to incorporate 

task components into predictions of task success by specifying relations between 

content factors and specifie component tasks: 

K 

expCB j - LTkqik) 
PCX li = 11 B J' T k) = k=IK (Formula 4.12) 

l+expCB j - LTkq.) 
hl ik 

Where qik is the value of stimulus factor k (k=1, ... , K) in item i; 
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T k is the weight of stimulus factor k in item difficulty 

Embretson (1993) applied LL TMs to a spatial folding task which involved 

spatial reasoning. Based on previous research (Shepard & Feng, 1972; Shepard 

& Metzler, 1971), it was suggested that the angle of rotation is linearly related to 

response time, and the number of surfaces carried also influences processing 

difficulty. Based on these studies, Embretson (1993) proposed an attached 

folding model for the spatial folding task that comprises four major task 

components: encoding, attaching, fOlding, and confirming. Having compared 

different cognitive models based on these components, Embretson (1993) 

established a linear equation of item difficulty index consisting of four qim's as 

their coefficients. The LL TM made progress by expanding the difficulty index, but 

it does not involve a multicomponent and ability parameter. 

(2) ML TMs were developed to measure multiple processing components 

in which both multi-trait levels and multiple difficulties are estimated for each 

component m. Item success is assumed to depend on success of several 

components. MLTM is a strict non-compensatory modal. 

M exp((). -fJ ) 
P(X = 11 () fJ) = TI Jm lm 

ijT -/ _i m=! l+exp((). -fJ ) 
Jm lm 

(Formula 4.13) 

Where Sj is the trait levels of examinee j on M components (m=1, 2, ... , M) 

fJ. is the vector of item difficulties i's on the M components (m= 1, 2, ... , M) 
-1 

Sjm is the trait level of person j on component m (m=1, 2, ... , M) 

Pim is the difficulty of item i on component m (m=1, 2, ... , M) 
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Embretson and Reise's (2000) ML TM dealt with relations between abilities 

and item difficulties in spatial folding reasoning tasks. Abilities 8sm and item ~im 

difficulties were estimated for each subtask. 

(3) ln order to build a comprehensive model, Embretson (1984) postulated 

the general component latent trait model (GL TM) which used a multiplicative 

relationship between item success probabilities for subtasks. 

(Formula 4.14) 

Where r km is the weight of stimulus factor k on component m (m=1, 2, ... , 

M) 

qikm is the value of stimulus factor k (k=1, ... , K) on component m for item i 

GL TMs include Rasch models (Formula 4.1) for each subtask including 

K 

trait scores e. and item parameters f3. (f3. = Lr kmq . ,the item difficulty 
lm lm lm Ikm 

k=l 

parameter for component m). GL TMs are extensions of ML TMs. The element 

which distinguishes Formula 4.13 from Formula 4.14 is the ~ term. While in 

ML TMs (see formula 4.13) the ~ term is a single ~im, in the GL TM (see formula 

4.14), the ~ term is a summation of the products of r km and qikm· 

The basic assumption is that because the completion of a task requires at 

least two different ability dimensions, ML TM emphasizes the trait dimensions, 
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which can distinguish initial ability from modifiability, the change between 

successive measurements. Maris (1995) applied ML TM to examine two 

components involved in success on synonym items: (a) generation of a potential 

synonym, and (b) evaluation of a potential synonym. The assumption is that 

these two cognitive aspects are viewed as different cognitive components rather 

than two dimensions of one single trait. 

4.1.2 Latent Class Models (LCMs) Potentially Applicable to Cognitive 

Assessment 

LeMs were developed to examine qualitative differences in knowledge 

structures and problem solving strategies in describing different traits and 

proficiencies of examinees in solving problems. LCMs are relatively independent 

of statistical models and have recently been used in cognitive assessment 

(Pellegrino, Chudowsky, & Glaser, 2001). 

ln LCMs, latent constructs have been characterized as discrete classes in 

either ordered or unordered ways (Pellegrino, Chudowsky, & Glaser, 2001; Rost, 

1990). Selecting an ordered or an unordered model depends on the task to be 

completed and its problem solving features. The determining factor is how useful 

the particular measurement model is in reflecting the nature of the cognitive task 

and providing effective assessment information. 

ln a basic LCM, it is assumed that there are W latent classes (Pellegrino, 

Chudowsky, & Glaser, 2001) which correspond to theoretical attributes. These 

latent classes are directly connected to observed variables. If the design is 
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theoretically driven, the latent classes will explain the data and predict its 

distribution. However, if the design is data-driven, the latent classes will be 

quantitatively updated. The "weights" among different class members will be 

modified (Le., the conditional probability of responses given each class 

membership). 

This section introduces three LeMs used in cognitive assessment: (1) the 

restricted LeM, (2) the hybrid LeM, and (3) the unified LeM. Latent class models 

emphasize specific ability structures in developing parameters and characterizing 

relations between traits and tasks. 

(1) Restricted LeMs 

Haertel (1989) and Haertel and Wiley (1993) present a restricted LeM, 

referred to as the "binary skills model," to determine the skills required by sets of 

test items. The model was applied to reading achievement data from a large 

sample of 4th-grade students and offers useful perspectives on test structure and 

examinee ability. Restricted LeMs are slightly different from basic LeMs. 

Mathematically, a set of latent attributes have been added to the between layer 

of the modal. In the first layer, there are W latent classes which determine 

student traits; students in the same latent class share the same knowledge and 

problem solving skills. Thus, it is assumed that students possess the same array 

of attributes. Attribute variables and latent response variables conjunctively 

describe the stochastic version of restricted LeMs (Maris, 1995; Pellegrino, 
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Chudowsky, & Glaser, 2001). The "between" layer specifies classes of test items 

each of which are linked to individual test items in a specifie item class. 

(2) Hybrid LCMs 

Yamamoto and Gitomer (1993) developed a hybrid model to assess 

cognitive skill representation, which combines a traditionallRT model with the 

latent class approach which is used to give diagnostic assessment information 

and to model qualitative aspects of performance. If an assessment is intended to 

provide diagnostic information about the acquisition of knowledge and ski Ils, 

standard IRT models are inadequate for describing trajectories on these 

changeable aspects. Hybrid LCMs directly emphasize relationships between 

responses from data and a categorical theoretical structure. Yamamoto and 

Gitomer (1993) characterize hybrid models thus: 

The hybrid model was developed to cope with the need for models to represent 

qualitative aspects of performance, while at the sa me time recognizing that performance 

of some individuals may best be captured by continuous models. The HYBRID model is a 

hybrid of IRT and latent classes. Examinees are characterized either on an IRT scale or 

as belonging to one of severallatent classes that represent key, qualitatively meaningful 

cognitive states. As with many measurement models, conditional independence is 

assumed to hold for both IRT and latent class groups. (p. 277-278) 

This statement indicates how the two models are combined into a new 

hybrid model, extending its function based on separate features of the modal. 

The hybrid model consists of a latent class model, and a two-parameter logistic 

IRT model which includes two item parameters ai and !3i. In short, the hybrid 

model has three sets of parameters: (a) the item parameters ai and !3i for each 
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item, and a trait score Sj reflecting the proficiency of examinee j; (b) weights of 

individuals for the IRT model and the latent classes, and (c) a set of conditional 

probabilities for each latent class. 

If a two-parameter logistic IRT model is applied, proficiency with 

conditional probability of a correct response for item i with parameter values 

Çi = (ai,!l) given examinee j's score on traite j: 

(Formula 4.15) 

where ai is the item discrimination parameter 

Pi is the item difficulty parameter. 

Based on the assumption of conditional independence in IRT models and 

latent class groups, the joint conditional probabilities of a response vector X 

under (a) the IRT class, and (b) the latent class can be expressed respectively 

(for a test consisting of i items) as: 

P(XIO,Ç)=TIP(Xi= lle,ç)XTl-P(xi=lle,çi)]l-XI (Formula4.16) 
i=1 

P(Xlr=K) = TI P(Xi= 1 Ir=K)XTI-P(xi=llr=K)]l-xi (Formula 4.17) 
i=1 

Where r = 1 represents the IRT group, and r >1 represents the K latent classes. 

Formulas 4.16 and 4.17 can be combined to provide a basis for modeling 

the proficiency of a response pattern vector X given the IRT parameter ç and the 

latent classes r in a merging model: 



Diagnostic and Model-based Assessment 91 

K 

P(X/Ç)= Ip(X/Ç,y)P(y=K) (Formula 4.18) 
K=1 

Formula 4.18 represents the hybrid model combining the IRT and the 

latent class models. 

(3) Unified latent class model 

OiSello, Stout, and Roussos (1995) present a unified format for LeMs. 

This multi-strategy model is a unified model that "brings together the discrete, 

deterministic aspect of cognition and the continuous, stochastic aspect of test 

response behavior that underlie item response theory" (p. 361). In unified model 

development, OiSello, Stout, and Roussos (1995) stress the response variations 

featured in multiple strategies, completeness, positivity, and slips. OiSello, Stout, 

and Roussos (1995) used the unified model in the domain of solving algebra 

problems to provide better diagnostic information for students' learning to solve 

algebra problems. However, the unified model is complex and has many 

parameters. 

As cognitive components become more complicated and learning 

environments change, increasing numbers of parameters and the complexity of 

assumptions does not enhance the validity of cognitive constructs. Especially for 

web-based learning, more effective statistical models should be developed and 

applied to give stakeholders richer diagnostic information and assessments of 

learning processes. 
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4.1.3 Bayesian Networks in Evidence-centred Performance Assessment 

Bayesian network models are relatively independent in their development 

and are rooted in AI. However, over the last two decades they have been applied 

to assess physics and mathematics problem solving, and to assess 

troubleshooting skills in aeronautical hydraulics in a tutoring system (Gitomer, 

Steinberg, & Mislevy, 1995; Martin & VanLehn, 1995a; Mislevy, 1995). 

Bayesian networks can be used to assess complicated learning tasks 

where learners and instructors are more concerned with learning processes, the 

problems that occur, and the troubles that develop as learning progresses. The 

tasks usually have multiple steps which are often ordered or conditionally 

dependent. These features coincide nicely with the functions of Bayesian nets 

(Jensen, 2001). 

4.1.3.1 Fundamental Representation of Bayes Theorem and Bayesian Networks 

Bayesian networks are used to make predictions in situations where data 

or observations are limited. The basic theory is based on Bayes theorem and its 

variations (Pearl, 1988,2000) which can be written mathematically as the 

Bayesian inversion formula: 

P(B 1 A) = P(B)P(A 1 B) 
P(A) 

(Formula 4.19) 

Where P(BIA) is the conditional probability of the hypothesis B given evidence A; 
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P(B) is the prior probability of hypothesis B; 

P(AIB) is the conditional probability of evidence A given model B; 

P(A) is the probability of evidence A (Jensen, 2001). 

Formula 4.19 can be expanded into more than one hypothesis. For 

example, if a vector B =: BI' ... , B i' ... , B m ' then the probability of hypothesis Bi 

given evidence Ais: 

P(Bj 1 A) =: nP (A IB)P <Bi) 
'f.p (A IB)P (Bi) 
/=1 

n 

Where P (A ) =: LP CA 1 B)P CB) 
;=1 

(Formula 4.20) 

The Bayesian theorem describes relations between prior and posterior 

probabilities, and provides a theoretical basis for Bayesian network theory, on 

which Bayesian networks are defined (Jensen, 2001). A Bayesian network is 

represented as a directed acyclic graph (DAG): 

A set of variables and set of directed edges between variables; 

Each variable has a finite set of mutually exclusive states; 

The variables together with the directed edges form a directed acyclic graph (DAG) from 

To each variable B with parents A1 .... , An. there is an attached potential table P(B 1 A1 • 

.... An). (p.18-19) 

The definition identifies the variable children that are (e.g., Bi) of variables 

representing parent nodes (e.g., Ai). 

A more general expression of the joint probability distribution of 

observations (X1, X2, ... , xn) can be expressed as the product of the conditional 
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distribution of each variable Xj given only its parents paj: P(X;lX1, ... , Xj-1)=P(x;lPaj). 

The joint probability of the variables in a DAG network of a parent-child relations 

(Pearl, 2000) can be written as: 

n 

P(XI""'X) = IIp(x;lpa) 
1=1 

(Formula 4.21) 

We assume that when parent probability paj's have been given, the 

number of parameters grow as the size of the network increases. However, the 

joint distribution increases move rapidly. The D-separation rule and the chain rule 

for Bayesian networks (Jensen, 2001) have been effectively applied to solve the 

problem computationally enabling the efficient calculation of node probabilities 

(posterior probabilities) conditional on other network nodes. 

4.1.3.2 A Basic Rule of Bayesian Network: D-Separation 

The D-separation rule states that if variables A and B are separated by V 

which has also been instantiated, then A and B are D-separated. Information 

from A does not transfer to 8. Thus, variables A and B are independent. 

The chain rule for Bayesian networks states that over a set of nodes U= 

{A1, ... , An}, the joint probability distribution P (U) is the product of ail potential 

variables specified in a Bayesian network (Jensen, 2001): 

n 

peU) = Il P(Ai 1 pa (A)) (Formula 4.22) 
;=1 

Where parA;) is the parent set of Aj. 

The D-separation and chain rule provide an elegant method for dealing 

with the huge amount of joint distribution information. When D-separation exists 
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between two variables, information does not transfer. The chain rule indicates 

that as long as we know the probability of the adjacent parent, the children's 

probabilities can be inferred. It is not necessary to trace back to remote parent 

variables. Therefore, the D-separation and the chain rule achieve compactness 

in calculating the joint probabilities of nodes by factoring joint distributions into 

local, conditional distributions for each variable given its parents. 

4.1.3.3 Example of a Bayesian Nef Applied in Assessmenf fo Physics Problem 

Solving in College 

Bayesian networks have been applied in college physics problem solving 

(Martin & VanLehn, 1995b). Martin and VanLehn built a Bayesian network model 

in OLAE, a computer-based physics learning environment. To model problem 

solving behaviour (applications of sequences of rules) by a sample of students, 

their assessment emphasized the problem solving process rather than only the 

results and diagnosis of the presence or absence of components of student 

knowledge and skills. In complicated problem-solving tasks such as physics 

problem solving, diagnostic assessment inevitably involves uncertainty. As 

students solve problems, typing errors (slips) occur, correct answers are 

guessed, or there are multiple solution paths. To tackle assessment 

uncertainties, OLAE uses Bayesian nets, since this approach allows both the 

ranking of hypotheses and considerations of the impact of prior knowledge. 

OLAE Bayesian nets use four types of nodes to represent learning 

trajectories (Martin & VanLehn, 1995b). 
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(a) the student knows a rule from the student model of elementary physics (rule node), 

(b) the student actually used a rule during solution of a given problem (rule application 

node), 

(c) the student believes a particular fact about the given problem (fact node), and 

(d) the student has pertormed a particular action (action node). Fact nodes include 

equations that the student might write. These nodes are connected by directed edges 

(arrows) in the net. (p.579) 

The four types of nodes provide sufficient options for developing a large 

set of Bayesian nets for recording and assessing student problem-solving 

activities. Probability distributions of student knowledge and skills in problem 

solving have thus been characterized and modeled in Bayesian networks. 

OLAE Bayesian nets assume prior probabilities to be uniform under the 

condition of limited sample size. However, the expectation maximization (EM) 

parameter estimation technique was used to estimate conditional probability 

parameters, as large amounts of data become available. The Bayesian nets were 

composed of two kinds of node (variable) relation: leaky-AND gates (to 

determine the probability that a Boolean function was computed incorrectly), and 

leaky-XOR gates (to satisfy the assumption that learners rarely infer the sa me 

fact twice). The XOR rule guarantees that only one input is true (Martin & 

VanLehn, 1995a; Martin & VanLehn, 1995b). 

4.1.3.4 Example of a Bayesian Network in Assessment of Mathematics Problem 

Solving 

Another application of Bayesian networks is to assess mathematical 

problem solving in secondary school (Mislevy, 1995). The main task was to build 
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an inference network, based on an analysis of mathematical problem solving. 

The study focussed on developing the consecutive steps students used in 

solving fraction problems. Mislevy (1995) summarized the method used to 

construct the Bayesian assessment model in seven steps. 

Step 1. Recursive representation of the joint distribution of variables. 

Step 2. Directed graph representation of step 1. 

Step 3. Undirected, triangulated graph. 

Step 4. Determination of cliques and clique intersections. 

Step 5. Join tree representation. 

Step 6. Potential tables. 

Step 7. Updating scheme. (47-56) 

ln step 1, a representation of the joint distribution of the defined variables 

is described based on a directed acyclic graph (DAG). In step 2, a DAG is 

created to represent a sequential task. The DAG specifies the Bayesian 

inference rules needed to indicate conditional dependency relationships among 

variables used to complete joint probability distributions. Step 3 is used to 

confirm that the graph is composed of singly connected networks of these 

variables, and the information in the network is not allowed to loop. Step 4 is 

about determining cliques and clique intersections. Cliques define local structure 

analysis, and serve to "recognize" variable patterns. For instance, for two sets of 

variables, usually, groups of overlapping variables are represented by clique 

intersections. There are multiple ways to define cliques in terms of analysis 

angles (relations) and purposes. Step 5 is to join the cliques into a tree 

representation. As soon as the cliques and clique intersections are defined, 

possible connected structures among cliques and clique intersections can be 
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determined. Step 6 is used to make a local calculation of probabilities within 

cliques and their intersections. These probability distributions are depicted in 

conditional probability tables associated with each link in the clique. Potential 

values are prepared for use in step 7, local updating. In step 7, new evidence is 

acquired from marginal probability distributions of variables, and is used to 

update conditional probability tables. 

Bayesian networks have been used in cognitive and diagnostic 

assessment in expert systems in medicine, avionics and aeronautical hydraulics 

ITS and social science (Andreassen, Jensen, & Olesen, 1990), the dental 

interactive simulation corporation (DISC) project in stomatology and dental 

hygiene (Mislevy, Steinberg, Almond, Breyer, & Johnson, 2001), MashpeeQuest, 

an on-Ii ne history project (Mislevy, Steinberg, Almond, Haertel, & Penuel, 2001), 

and HYDRIVE, an operational computer-based intelligent tutoring system built to 

help Air Force technicians develop skills for troubleshooting hydraulics system in 

aeronautical hydraulics (Gitomer, Steinberg, & Mislevy, 1995; Mislevy & Gitomer, 

1996). These applications show how to build domain models, how to develop 

Bayesian networks based on domain models and how to compare models 

according to test performance. The different research aspects of Bayesian 

networks provide a solid foundation for exploring cognitive assessment. 

4.2 Task Models and Task Environments in Cognitive Assessment 

Task models play essential roles in the design of construct-based 

assessments and influence structures of assessment design from assessment 
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construct to evidential variables and tasks. In presenting the evidence-centred 

design approach to cognitive assessments, Mislevy, Steinberg and Almond 

(1999) stated that: 

A task model provides a framework for describing the situations in which examinees act. 

ln particular, this includes specifications for the stimulus material, conditions, and 

affordances, or the environ ment in which the student will say, do, or produce something. 

It includes rules for determining the values of task-model variables for particular tasks. 

And it also includes specifications for the work product, or the form in which what the 

student says, does, or produces will be captured. Altogether, task-model variables 

describe features of tasks that encompass task construction, management, and 

presentation. (p. 19) 

Mislevy, Steinberg and Almond (1999) provide a general description of the 

aspects of a task model that is of concern in the design of cognitive assessment. 

However, learning objectives and processes can have many formats and 

trajectories. In particular learning situations and task models may be developed 

in distinct ways. Fundamental considerations in developing a task model and 

establishing its relevance are: (a) the specification of cognitive tasks, (b) the 

establishment of a task model for these tasks, and (c) the task environments. 

These aspects determine the features and functions of task models, and 

relations between a task model and other models such as the student model, and 

a model of how the components of knowledge and competency are connected to 

the evidence based on student performance. 
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4.2.1 Cognitive Tasks and Measurable Objects 

Defining cognitive tasks for cognitive assessment is a complex process 

because it requires consideration of assessment purposes, theoretical modelsof 

domain knowledge competency, and the design of statistical models that 

connects components of theoretical models to evidence based on task 

performance. From various cognitive task designs perspectives, Hollnagel (2003) 

summarized several steps in the development of cognitive tasks: 

• The first step is observation for familiarisation. This should identify cognitive tasks 

and supporting functions from a functional analysis. 

• The second step is to identify criteria for where to locate such tasks in the 

organization with respect to issues such as the mission requirements, manpower and 

support equipment, command structures, or operational effectiveness. This step 

requires a task synthesis to derive what is required to be done by the system and 

how it must be done ... 

• The third step is to look at task loading resulting from alternative implementations in 

terms of acceptable workload and th en to consider how to redress what is 

unacceptable and reiterate the assessment with the revised implementation. This 

step derives preferred locations for the cognitive tasks. 

• The forth step is to identify the necessary supporting functions, or to redress 

overload. 

• The fifth step is to check the viability of the options, amend the task synthesis, and 

re-evaluate task-Ioading implications. 

• The sixth step is to review the viable options. (p. 236-237) 

These steps may help task designers define different tasks to fit 

alternative assessments motivated by theoretical models of cognitive 

assessment. Even for a single assessment purpose, different-aspects of 
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knowledge or skills may be highlighted, and the cognitive tasks might have 

different formats or be organized in different ways. Therefore, even though sorne 

task design processes may reflect the steps listed above designers need not 

follow the same steps for cognitive tasks. 

ln the case of a simple mathematics problem or a multiple choice question 

in medicine or engineering, cognitive tasks are often relatively weil defined and 

have clear problem spaces. Other tasks may not be so very weil defined. For 

example, cognitive tasks in medical problem solving can be il! defined (VanLehn, 

1989), so that it may be difficult to lay out a complete problem space. An unclear 

problem space is usually apparent in two ways: (a) problem statements may be 

unclear and may represent incomplete or ambiguous problem spaces; and (b) 

cognitive processes required to solve problems may be complicated even though 

problem spa ces are relatively weil defined. The latter case recently occurred in 

OLAE (Martin & VanLehn, 1995b). Although it is theoretically possible to clarify 

the task space, in practice, there are so many ways of doing a task that 

determining a complete task space can be very difficult. 

One critical task attribute is object measurability. Cognitively, when an 

assessment task is limited to observable behaviors, it is measurable, and can be 

referred as to a measurable object. In a sense, learning tasks are relatively 

unconfined. However, they can certainly be limited by time, feasibility, and 

assessment. Therefore, measurability is important and very relevant to the 

design of statistical and theoretical models. 
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4.2.2 Task Models and Structures 

Task models are structures for arranging and connecting cognitive tasks 

and measurable objects to statistical and theoretical models. They involve 

processes and networks, especially in complex cognitive task environments. 

4.2.2.1 Compensatory and Non-compensatory Task Models 

Task design in cognitive assessment can be traced back at least three 

decades even though theoretical models often were not very weil defined. 

Embretson (1990) designed cognitive tasks for a diagnostic test to measure 

cognitive processes in mathematical reasoning. In her research, the design of a 

theoretical model was oriented toward diagnosing certain errors or problems that 

occur when students are learning to reason mathematically. Theoretical models 

specify the constructs to be assessed through a dynamic assessment process. 

She used an additive factor model in her design to provide a basis for developing 

cognitive tasks. 

Two different task models were applied to assess mathematical reasoning 

and to determine the statistical models: compensatory and non-compensatory 

models, which correspond to different task models. The compensatory model 

used a multidimensionallatent trait model in which response proficiency depends 

on the task's threshold and a weighted combination of several aspects of ability. 

The non-compensatory model employed a multicomponent latent trait model in 

which the ability to complete each subtask was assessed. 
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ln compensatory task models the four task components were nested 

bottom-up so that each item covers the task listed for itself, and the tasks below 

it. In the theoretical model, the knowledge structure consists of four categories: 

factual, schematic, strategic, and algorithmic. Whereas Task 4 targets algorithmic 

knowledge, Task 3 covers strategic and algorithmic knowledge. In the same 

fashion, Task 2 requires sChematic, strategic and algorithmic knowledge, and 

Task 1 covers ail categories of knowledge. The advantage of the compensatory 

task model is that different knowledge components can be isolated in steps. For 

example, if an examinee can complete Task 3, but not Task 2, a simple 

subtraction will indicate that the examinee failed to master schematic knowledge. 

The contrast between any two combinations of tasks can lead to different 

response patterns. 

The theoretical structure of the non-compensatory task model 

incorporates the same categories, but uses different subtasks. In this design, the 

task covers ail four knowledge categories; sub-tasks 1, 2, 3 and 4 emphasize 

assessing each knowledge category. The advantage of this model is that each 

kind of knowledge can be tested without contrasting different subtasks. 
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4.2.2.2 Schema-based and Network Task Models as a Basis for Developing 

Measurable Objects 

A cognitive task can be implemented as measurable objects using 

different formats. It can be a well-defined item, an ill-structured problem, a 

physical problem, or a collection of patient symptoms to be diagnosed (Marshall, 

1990). Network task models can be used in such complex cognitive tasks. This 

section introduces two different network task models: A schema-based task 

model and a hierarchical task modal. 

Marshall (1990) in her research on ability structure analysis proposed a 

schema-based task modal. She believed that cognitive complexity is relevant to 

models of schema knowledge, based on which a learner's competence can be 

assessed. The fundamental assumption in schema assessment is that 

knowledge structures are organized into networks. Marshall (1990) states that: 

There are at least three distinct sets of elements: declarative facts, preconditions, and 

subsequent procedures or ru les. Any test item for a schema would cali for subsets of 

these three sets. The diagnostic problem is to test various subsets and thereby to 

estimate efficiently the completeness of an individual's knowledge of the schema. (p.441-

442) 

ln graph theory, a schema consists of a set of nodes and arcs. 

Concept knowledge is represented by nodes, and relations are expressed by 

arcs. The ability of learners to carry out cognitive tasks is closely related to the 

extent to which nodes and arcs can be applied in complex cognitive tasks 

(Marshall, 1990): 

Construct a set of items, l, to test the sam pied nodes of S. In the extreme case, one 

might sam pie ail N nodes, and one might evaluate each node by one test item, so that 
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N=5=1. For the moment, assume that N>5=1. That is, we sam pie a subset of nodes 5 and 

construct one item to test each node. Present the item to the individual, and score the 

response as 1 or 0 according to the individual's success or failure in responding. Denote 

the response as Xi. with i=1, ... , 5. the overall success of the individual can be expressed 

by p= 1/5 Xi' (p. 444) 

This statement indicates that different learners assume different patterns 

on task containing N nodes. Different patterns represent different task models 

and demonstrate a particular distribution of successful and unsuccessful 

performance. In addition, the number of nodes indicates the difficulty of a 

cognitive task. 

A hierarchical task model is a special case of a network task model 

(Annett & Cunningham, 2000; Essens, Post, & Rasker, 2000; Frederiksen & 

Donin, 2005). The former 1:wo research groups focused on a cognitive task 

analysis of Marine Corps command posts in which the cognitive skills of a team 

are modeled using hierarchical task analysis. These analyses do not emphasize 

aspects of cognitive assessment. 

The latter research group focussed on a statistics (ANOVA) learning 

system characterized as a web-based tutoring process in which students can 

select any problem from a web-based problem bank. The learning process is 

decomposed into several cognitive tasks. The stimuli are questions based on the 

learning and assessment characteristics. In each task, sub-tasks can be 

hierarchically arranged. The hierarchical model decomposes the task into basic 

components determined by learning goals and assessment. This model 
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combined with an appropriate statistical model, can extract information that has 

been learned and can determine how much is known about given subtasks. 

According to Mislevy, Steinberg, and Almond (1999), task models cover 

such topics as specifications of stimulus material, conditions, affordances and the 

environ ment. Having specified a task model, the next issue is to investigate the 

task environ ment. 

4.2.3 Task Environments in Cognitive Assessment 

Cognitive task environments can be physical, social and informational 

environments in which cognitive tasks are produced, organized and supported. 

Mislevy, Steinberg and Almond (1999) specify relevance conditions, affordances 

and environments in their definition of task models. The scope of cognitive task 

environments in this study may be considered to be somewhat larger than in 

Mislevy's framework. Environments include everything except cognitive tasks 

and task models. Those that support and are involved in cognitive tasks belong 

to cognitive task environments. 

Cognitive tasks are measurable objects that have long been applied in 

traditional testing and assessment situations, especially with such objective 

questions as multiple-choice questions (Haladyna, 1999) which are usually 

constructed from the domain knowledge of instructors or test developers. Test 

items may be based on textbook definitions of concepts or readings. As cognitive 

environments, such item-based tests are often simple and far from authentic, 
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although they provide easy affordances for cognitive task developers to produce 

measurable objects. 

As criticism increases concerning the use of objective items in 

achievement assessment, authentic cognitive tasks are receiving much more 

attention (Birenbaum, 1996; Segers, 1996). Cognitive tasks used in performance 

assessment (Sackett, 1998) and tasks involving the assessment of complex 

cognitive skills (Mumford, Baughman, Supinski, & Anderson, 1998) are more 

complex than textbook tasks. Researchers have begun to realize that dynamic 

assessment is more valid and useful than static assessment, and that diagnostic 

information is more meaningful than simple test scores. This trend has led to the 

design of cognitive tasks emphasizing complexity, authenticity and dynamism. 

4.2.3.1 Authentic Prob/ems and Simulated Prob/em Situations as Comp/ex Task 

Environments 

The application of authentic tasks to cognitive assessment is flourishing. 

As Segers claims (1996): 

The assessment of students' level of competence in problem-solving is a determinant 

stimulus for the focusing of students' learning activities on problem-solving. [It demands 

that] the assessment system is based on authentic problems: contextualized 

assessment. In PBL it is essential that students learn by the analysis and solving of 

problems which are representative of the problems to which students will have to apply 

their knowledge in future. Consequently, a valid assessment system should evaluate 

students' competences with an instrument based on reallife problems. (p. 204) 

The selection and creation of authentic problems are important for 

cognitive task design and is feasible in such fields as mathematics, physics, and 
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chemistry. Segers (1996) provides an example from economics. The need for 

authentic tasks is important in such high-risk, high stakes fields as the military 

and medicine. Lesgold, Lajoie, Logan, and Eggan (1990) developed cognitive 

tasks to improve the performance of Air Force technical specialists. The task 

environment was a complex operational system. The researchers developed 

tasks to simulate avionics troubleshooting procedures based on protocol analysis 

and task extraction processes embedded in avionic systems. 

Gadd and Pople (1990) simulated cognitive tasks for internai medicine 

teaching rounds on a computer-based system. Because interviewing patients is 

often difficult and deficient, simulated cognitive tasks are effective learning 

resources and can be used again and again. Human problem solving discourse 

has been used to model human-machine interaction in developing computer­

based simulations. Clearly, such cognitive task environments are becoming more 

and more complex. For instance, cognitive tasks for medical students can involve 

at least two kinds of task environments: (a) diagnostic tasks based on the 

relevant experiences of medical experts, and (b) computer-based systems which 

are developed by examining expert cognitive processes, and are used to 

diagnose student errors and misconceptions. Therefore, information provided by 

the system, and authentic expertise are relatively different and independent. 
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4.2.3.2 Web-based Leaming and Assessment Systems as Cognitive Task 

Environments 

Web-based learning and assessment systems provide alternative 

cognitive task environments, and can use dynamic and instantaneous hypertexts. 

Lajoie, Azevedo, and Fleiszer (1998) developed a simulation-based intelligent 

tutoring system (ITS) for nurses working in a Surgical Intensive Care Unit (SICU). 

The rationale was to model expertise for nurses learning in complex decision­

making environments. The system mimics real world tasks on web-based 

cognitive environments from which the cognitive tasks can be developed. The 

cognitive tasks demonstrate various characteristics: 

(1) iII-structured problems, (2) incomplete, ambiguous, and changing information, (3) 

shifting, iII-defined, and competing goals, (4) decisions occur in multiple event-feedback 

loops, (5) time constraints, (6)stakes are high, (7) multiple participants contribute to the 

decision making process(es), and (8) the decision maker must balance personal choice 

with organizational norms and goals. (p. 208) 

These characteristics inform cognitive tasks that can be developed in a 

variety of formats to satisfy the needs of cognitive diagnostic assessment, though 

these characteristics were contextualized in decision-ma king situations. 

Cognitive task environments can also emphasize different aspects of 

tasks. For example, in a drill-and-practice tutoring system for reading and writing 

Chinese characters (Almond, Steinberg, & Mislevy, 2002), cognitive tasks can be 

expressed as different task models. To explore different task features, a cognitive 

task can be categorized as reading, phonetic transcription, writing, and character 

identification. Relations between morphemes and phonemes have been 
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investigated in reading task environments. In phonetic task environments, 

relations between short strings of characters and phonetic pronunciations have 

been studied. In writing task environments, the pronunciation of characters used 

in sentences has been explored. Character identification task environments can 

involve morphemically similar characters. 

Web-based task environments usually provide the possibility of task 

variables returning different diagnostic information. In a statistics tutoring system 

(Frederiksen & Donin, 2005), task variables corresponding to help categories can 

be used to assist learners as they attempt to solve ANOVA problems. Task 

component response times are another task variable. 

Web-based task environments can express different aspects of conditions, 

affordances, and relevance. The creation and development of new cognitive 

tasks in such environments can potentially produce valid and valuable 

assessment information. 

4.3 Summary and Conclusion 

A statistical model is an engine that connects a theory model to a task 

model. The kind of statistical model that can be used in cognitive assessment 

design depends on the theory model, task model, and assessment purposes. 

Because an appropriate task model is based on a statistical model we began by 

reviewing statistical assessment models. 

Statistical models cover many topics including IRT models, latent class 

models (LCM), and Bayesian network models. Developers of IRT models began 
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by analyzing dichotomous responses and expanded to polytomous models. Item 

parameters included in IRT models ranged from one to two or three parameters. 

Assumptions were expanded from unidimensional to multidimensional examinee 

traits. These aspects and others inform many item response models that are 

applicable to different cognitive tasks, measurable objects, and proficiency and 

ability assumptions. 

ln the assumptions of LCM, latent constructs have been characterized as 

discrete classes that may be either ordered or unordered. Latent classes are 

often directly connected to observed variables and they may be used in 

conjunction with IRTs to estimate examinee proficiency. 

Bayesian network (BN) models consider statistical models in a different 

way. In a BN model, examinee abilities are usually expressed probabilistically. 

Information about variables from different network layers can be transferred 

based on D-separation, chain and other rules. Transferring information from top 

layer (theory) variables to bottom layer (observable) variables depends on 

networks of parent-child relations. Further the direction of information can be 

reversed to infer mastery of theory variables on the basis of observed (evidence) 

variables. 

Task environments may be distinguished from traditional task models 

used in item-based tests. Task models, task environments, and their relations 

were discussed. Cognitive task and measurable objects were examined. 

Authentic and simulated cognitive task environments were also discussed. 
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CHAPTER FIVE: METHOD 

The fundamental task of cognitive diagnostic assessment for statistics 

learning with a tutoring system is to establish a model-based assessment 

framework which provides an effective approach to assessing the details of 

knowledge and skill acquisition. Based on Mislevy, Almond, and Lukas' (2004) 

evidence-centred assessment (ECA) framework, evidence cornes directly from a 

performance task which is embedded in an authentic or simulated learning 

environment. The McGiII Statistics Tutoring project (MSTP) is an environ ment 

which serves as a platform for presenting cognitive tasks and for coaching 

students as they carry them out. First, the ANOVA tutoring system will be 

described as a task environment. See Frederiksen and Donin (2005) for a more 

complete description. Second, a stand-alone performance assessment test 

based on tasks developed in the ANOVA tutor environment will be described. 

Third, the data collection method will be described, including participants, and 

data. Fourth, assessment rubrics for scoring student task performance, evidence 

rules and variables are examined. Fifth, fundamental features of Bayesian 

networks will be tested on simulated and collected data. Finally, the assessment 

methodology will be summarized in terms of a model-based assessment 

framework. 

5.1 The Statistics Tutorial System as a Task Environment 

A research environment is a platform for implementing a research 

framework. In this project, the tutorial system functions as a hypertext research 
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environment. Tutorial systems have been used in assessment for at least a decade 

(VanLehn, 2001). Two types of tutoring systems have been used in the cognitive 

assessment of student problem solving in physics and statistics (Martin & 

VanLehn, 1995a; Frederisken & Donin, 2005): ITSs and knowledge/coaching­

based tutoring systems. 

5. 1. 1. The Features of Intelligent Tutoring Systems Function in Cognitive 

Assessment 

ITSs (du Boulay, 2000; Wenger, 1987) have been designed to individualize 

the educational experience of students according to their level of knowledge and 

skills. ITSs provide students with individualized, dedicated tutoring based on AI 

analysis of the procedures. ITSs provide users with feedback, assistance, 

guidance, use simulations and other highly interactive learning environments 

requiring learners to use their knowledge and skills. Such learning environments 

help students apply their knowledge and skills more effectively. 

ITSs rely on three knowledge models: expert models, student models, and 

instructor models. While expert models represent subject matter expertise and 

specify teaching contents and strategies, student models represent learner 

knowledge spaces and possible problem solving patterns. Instructor models 

encode instructional strategies. 

ITSs are student-model-centred systems. They adapt students into learning 

environments and attempt to control student learning processes. Many of ITSs 
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have been used in training staff and to assess their knowledge and skills in applied 

physics and mathematics. 

5.1.2. The Features of Knowledge-Based Tutoring Systems (KBTS) Functions in 

Cognitive Assessment 

Knowledge-based coaching systems (Frederiksen & Donin, 2005) represent 

an alternative stream to tutoring systems. They can support learning in ways that 

are consistent with such cognitive theories as situated learning (Brown, Collins, & 

Duguid, 1989) and social constructivist theories (Confrey, 1995). A knowledge­

based coaching system emphasizes the importance of student acquisition of self­

monitoring competence and their need to function as a self-directed learner, 

providing coaching resources to support student learning and problem-solving 

strategies. KBTSs are based on models of domain knowledge so that the database 

includes learning tasks, coaching guidance and assistance in various problem­

solving components. Conceptually organized problem-solving knowledge provides 

cognitive models for use in developing the student model component of a Bayesian 

network assessment model (Mayo & Mitrovic, 2000). Knowledge-based coaching 

system can support interaction between tutorial systems and learners, and 

dynamic assessment. 

Tutorial systems present problems for students to practice but not 

automatically. Such systems contain learning problems at different levels of 

difficulty, which students working alone or in group can select. They also include 

hierarchically organized hints and information based on learner errors. Systems 
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help learners identify and connect their mistakes through guided self-evaluation. 

They provide diagnostic information in self-evaluation contexts and can assess 

student learning in an ECA framework. 

They emphasize the ability of students to control their learning, and provide 

tutorial help and coaching. The knowledge assessment can take a Bayesian 

inference with evidence variables in evidence modal. 

5.1.3 A Selected Domain and a Tutorial System in Statistics Learning 

ln this research project, the tutorial system for learning statistics leans 

towards a knowledge-based coaching system. As cognitive tools, such systems 

assist students in developing knowledge and ski Ils in various domains. The 

ANOVA tutor (Frederiksen & Donin, 2005) helps students learn to solve ANOVA 

data analysis problems in the context of coursework or independently 

(individually or collaboratively). 

The ANOVA tutorial system has two-phases and a multi-component 

hierarchical design. ANOVA problems are classified as one-way, two-wayand 

others, and each problem is organized into eleven tasks. After selecting a 

problem, students work through the component tasks (see Figure 5.1). In order to 

write a relatively complete analytical report, students must complete each task. 

When students begin working on a task, they can get help by consulting the 

hierarchically structured on-Ii ne tutorial system. 
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Tssk Selection 
The selected problem has been broken down into the following tasks. 
Plcase select a task to work on : 

Task #00 - Introduction co ANOVA 
Task #01 - The rese,aFch design and methods of data collection 
Task #02 - Preparing the sample data file 
Task #03A - Descriptive data analysis using sam pie statistics 
Task #036 - Graphie analysis of the data 
Task #04 - $peciFving ANOVA designs 
Task #05 - ANOVA score rnodels 
Task #05 - Estimating parlilmeters of ANOVA score models 
Tl.Isk #07 - Constructing an ANOVA table 
Task lOS - Calculating and using ANOVA statistic:s 
Task #09 - Testing hyootheses in ANOVA 
Task #10 - Analysing contrasts arnong groups 
Task #11 - Evaluatîng statistical as.sumptions about the data 
Task 112 - Reporting conclusions about the ANOVA rssutts 

Fig 5.1. Task selection list in McGill Statistics Tutoring Project 

Consider task 9, from a two-way ANOVA problem: "effects of cognitive 

organizers on students learning." After clicking task 9, "Testing of Hypotheses in 

ANOVA" appears with six options: 

New Tutoring System, 

Edit Personal Profile, 

Get Solution Template, 

Show Task Help, 

Submit Your Answer, and 

Show Previous Self-evaluation. 

Students click "show task help" to get help. "Testing Hypothesis in 

ANOVA" under "Task Help" is expanded by clicking œ to view a list of sub-help 

indices. "Ask tutor" or "Coaching" can be selected for each row of information. 

Help indices are organized into three dimensions. One dimension is task help 

(listed hierarchically) and the other two are "ask tutor" and "coaching." 
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"Asking tutor" and "Coaching" are paraI/el while "Task help" and "Asking 

tutor, and "Task help" and "Coaching" are crossed (see Figure 5.2). 

" McGiII Statistlcs Tutoring Project 

~,[;~~~:;~i~' ',' \,'S ,"KI éif\,ing' b-e tested 
• Sp:e-c:ifytng the NuU Hypothesis 
• Speâfytno the altcrnattve hypothcsls 

• The Sampling Distribution .of the F Statistic under Ho 
• Exact Probabillty 01 th. f Stalbtic under Ho 
• Crlticat values orthe F statistic for Partic:utaf' Signiticance Levets 
• A.ucz$ing the Power of your Stati5tical Tesa. 

Task: (D9) TesUnç tlypoti"!e$CS in ANOVA 
Problem: (1.1) (1'fO(1$ of toçnltiv~ Orçanl:rers on StutetU' t.earning 
C-oursc; ANOVA flltonnç Stucy 

Figure 5.2. Tutor index segment of task 9: Testing Hypotheses in ANOVA 

This feature helps students since topics are Iisted in an orderly and logical 

fashion. "Help Index" is presented as an outline with indented subtopics. For 

example, it models a task: Writing the ANOVA Score Model, with a two-way 

ANOVA model help index which has six sub-indexes on three levels: "Writing 

ANOVA Score Model", "Two-way (Two-factor) mode/" and "Grand Mean." (see 

Figure 5.3). 

~ McGIII Statistics Tutoring ProJect 

Ti!~1c Me!" 
.. Wrlting ANOVA Score Modele o Ol'le "Nay Seore Madel 

ct Two·we.y (Two·f.ador) mode! 
• Score of subje<.t i in groups j and k XI(jk) 
• Grand MeHtn 
• Effèet cf le-vel j of Factor A 
• Eff~(:t (If lèvel k of Factor B 

Tack: (OS} ANOVA soort' moc;t.e!, 
Prqbfenu (1.1) ff!e(ls or C:ogni1;'iv~ Orçanlzers on S\\Kl.~I't$' I.earrur;ç 
Cou,,": "'NOVA futorH"IÇ: SMY 

• Effort of interaction of Iovol j of f'Oç-tor A wlth !evoll( of fa-ttor D 
• Error $t;ore of subJect 1 wlthin tevel j of Factor A and !e .... el j( ln B 

4) AOQltivo Mtldels 
C Multiwey ffletorial Modcls 
o Modots with Nested Feetors o Mode'" with C"~$ed and NtI.sted Faetot'5 
0: Mode.ls wlth Rondom r~u:tO("Q 

Figure 5.3. A path of help indices of task five: Writing ANOVA Score Model 
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This design allows learners to select any route in collecting problem 

solving information. To get help on the effect of level j of factor A, students can 

go from the "Writing ANOVA Score Model" to "Two-way (Two-Factor) Model" to 

reach the "Effect of level j of Factor A. " 

ln each help indexed item, there are two phases directing students to two 

aspects of the information: asking the tutor and coaching. 

There are six components in the "ask tutor" phase. 

1. Goal: What is the goal of this component procedure? 

2. Condition: What must be done before applying the current procedure? 

3. Result: What will the results be? 

4. Problem State: What is the current situation in which you will be 

applying the procedure? 

5. Theory: What is the conceptual and theoretical background for the 

procedure? 

6. Action: What operations are to be performed? 

Two kinds of help are available for each procedural step. 

Tooi help for: 

1. SAS: How to use the SAS tools to perform actions. 

2. Graphie: How to use any graphie displays. 

Figure 5.4 shows test of hypothesis trajectory and can be described as: 

test of hypotheses ~ specifying the hypotheses to be tested ~ ask tutor ~ goal. 

Under "Goal," the goal hypothesis is described in a short paragraph. This 
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information can help students think about the purposes of hypotheses in their 

ANOVA problem. 

~ McGiU Statistics Tutoring Project 

Hel!} 
Testlng Hyp<>these. in A/IlOVA 

.·.,·;':, •.•• ~*JfiI~thli.;!IY"~ii$.i·tiî!~~!lttid··· 
• Specifylng the Nul! Mypothe,l. 
• Specifying the alternative hypoth".ls 

• The Sampllng Distribution of the F Stati,tic under He 
• Exact Probability of the F Statistic under Ho 

Taw, (09) ·festing hypothe .... in ANOVA 
Problem: (1.1) Effect. of Cognitive O'llilnlzers 00 StutlentS' Learnlng 
Cou_: ANOVA Tutorlng St\.1dV 

• CriUcal values of the F stati.tie for Particular Signifrcance Levels L~ lÇÇlll"J:!.i.!l!ll 
• Asses.ing the Power Of your Statistlcal Tests ~ Ic:""chingl 

Ask Tutor 
§S!!!! 

Condition 

~ 
frgblqm Stat!j 

» Goal 
'four goal'. to speciry each Of the hypotheses to be tested in your ANOVA, 'fou need to state vour hypo!h.,,,,,. 
befo~ vou can carry out tests 01 the hvpothell"" bas"" on the results 01 Vou. ANOVA (glven ln the ANOVA 
table), 

Theory: 
part 1 
.Ea!:U 
P.ru:U 
~ 
Part 5 
~ 

~ 

~ 

Figure 5.4. Tutor index segment of Task 9: Test of hypotheses trajectory of 

asking tutor and further goal. 

There are four components in the coaching phase: "Questions", "Deep 

Questions", "Clarification of the Qu~stions", and "Hints." 

1. Question: The tutor asks a prompt question. 

2. Deep Question: Questions requiring conceptual or theoretical 

answers. 

3. Clarification: The tutor clarifies questions by giving more information. 

4. Hint # 1 

Hint # 2 
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Hint # 3 

Hint # 4: Hints give suggestions to prompt various actions required to 

solve this component of the problem. 

Figure 5.5 shows another test of hypothesis trajectories: test of 

hypotheses ~ specifying the hypotheses to be tested ~ coaching ~ question. 

Under the terms of the question, learners can continue thinking and problem-

solving as prompted by questions. 

~ McGIII Statistics Tutoring Project 

InANQVA , ~§m 1it~,t1Ii$!;eil'" 
he Nuit Hypothesis 

• SpoclfVlng the alternative hypoth.,,,i. 
• The $amplln" Distribution of th" F Statistic under Ho 
• Exact Probability of the F Statistic under Ho 
• Critical values of the F "tlltistic for Partlcular Significance Level. 
• A.nsslng the Po""'r of your Statistlcal Tests 

'>:;. Question 

Task, (09) T .. stlnç hypotheses ln ANOVA 
Prob}em: (1.1) êffects of CognltJ ..... .e Of'ganizers 001'1 Stuœnts' leamlog 
coun'" ANOVA rutorlnç Stuèy 

,Deeo:Quest;i9n 

Çl8riftcaUon 

Hint~ 

ln conductlng Y"ur ANOVA, vou obtalned an ANOVA Table which provlded the Mean Squares and degr"". of 
freedolll for eaeh source of variation ln your ANOVA modelJ and an F statistic: for ea-ch effect ln your modet 
What statistical hypoth"s"s about then effects do you want ta test ba.ed on the mean "'luore", degrees of 
freedom, and F statistlcs? 

il. 
#2 
n 

Figure 5.5. Tutor index segment of Task 9: test of hypotheses trajectory of coach 

and further question. 

The "Ask tutor" and "Coaching" features emphasize different cognitive 

aspects to help students solve problems. In the "Ask tutor" phase, knowledge is 

organized hierarchically according to a cognitive model of expert procedural and 

knowledge structures. Learners can choose any topic for help. For example, 
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learners solving a two-way ANOVA problem may need help with certain concepts 

and procedures. They can choose an item such as "Theory, part 1." Note that 

Task 9 and a top-Ievel topic have been selected as an illustration. The scenario 

can be seen in Figure 5.6: 

~ McGIII Statistics Tutoring Project 

_li!<iIIf_lI'flii~l'tI:l~t'èk:l:i"";'""/",i;"""A,nf'i,,,;?lWii,;,,k7':'igr;:i~';:,Y;;i&::,i2 
• Sp-ec:wylng the Hypotnes-es ta bo tested 

• Spedfylng the Nul! Hypothesls 
• SpecWylng the alternative nypothc-ois 

• The SampUng Distrfbutlon of the F Statistk un-dCF Ho 
• Exact ProbabiHty of the F Statisbc under Ho 
• Crltlcal values of the F s.tati-G-tic for Plil'tlc.ular' Signlflcance Levets 
• Assessing the Power of your $tatlGtical TestG 

Ask Tutor 
~ 

~ 
~ 
Probfem State 

Theorv: 
R!!:U 
l3'!!:U 
EAt;,U 
EJ:ui.!! 
!?m..l1 
EArt&. 

é&lliu:l 
Tools Ue~p For-:-

liA:< 
~ 

- Part 1. 
YOUl' ANOVA Nodal spedfloc th. eNecfs assoelated wlth th. 1 • .,eJs D' the' Pacf<o,. 01" l'.tn:tors ln l'Our 
design and any Jntoractions omon. Facto .... How do. you test· hypo-tbos_ Hout th ... efltec:ts in th. 
population b.sed on the .anJple val.,.. 0' the lilean SqIHll'e4l, degrees 0' frecdom, and , s lafis tics 
J'OU o-bt_ned ln VOU,. ANOVA7 Wh_ i$ tho ntltionale 'D" th_e tests? 

The sœps ln te$-tlng the Sitatlsth;."J slgnlfl-c.af'lç-c of caeh effcc.t in your ANOVA model c.onstltute a logic.al 
seQuence: 

~: ~~~~:d~Uy:':i~~~~; t'h~I\'i1:?t%re t; ::ti:û~~;.o:e::;~ ~:ee~~liln h~~~~~~~Vf:r'::~dc~'efrect, and 
Identl'v the ""1pUnO distribution of the F Atatlstlc under the assumptton thet the nun hypoth-QsJ$ ls truc 
in the p>opu:latlon, 

3. Thlr'd .. VOU U&-e the s.an,pling -dIstribution for eaeh F vlIilue to ootala the exact pcobAbHttv of F~ i.e. t the 
prob",bility thDt oc value h.'iro~w thl!in yOU" $ample value of th-e F statt.Gttc could hove be:en ôbUifn-c-d by 
chan-c.-e alone if the null nYPQthesl-s wcre truc (thI$ stop fs donc for vou bv mOiSt mode", .. computer 
programs). 

4. Fourth. vou use .an ap-proprlate ç.rltka' yalue-(~) to dc'Cldo whether or nat to relgct tM nuU 
~ for e-ach effect. 

S. FlrtaHYt you shol,lld 8S5eS$ the post Jtpc AAwer of each of your' statit.tical lests- glven the r valyes vou 
obtaln-ed ln vour ANOvA. 

Figure 5.6. Theory part one in test of hypotheses task 

ln Figure 5.6, the tutor has posed a "Deep Question" about hypothesis 

testing in ANOVA. The tutor scaffolds the student by presenting five steps 

involved in testing hypotheses. Consecutively, a question about them has been 

posed and then a series of steps have been suggested. 
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ln the coaching phase, knowledge is organized into questions, deep 

questions, clarifications and hints. The purpose of the tutor is not to directly 

explain and describe any concepts, definitions, theoretical mechanisms, models, 

and their relations. Rather the "Coaching" phase seeks to trigger a chain of deep 

thinking in learners. For example, in Figure 5.7, a deep question prompts 

students to consider the components of an ANOVA model, and then raises the 

questions of how to test their significance. Students receive three hints to prompt 

their thinking about solving this component (Le., testing the hypothesis). 

~ McGiII Statistics Tl.ltoring Project 
Talk: (09) Tff$!'lng hypotht.-ses i:J ANOVA 
Problem: (U} ffftv.s of ~tiw: OrÇ:lltllW$ (m $t\ièc:t.s' leel'1'li1'1g 
(oum: AkOvA 'fUtofinç StuGy 

~ 
lle.~J1.ll.Yl::liJjg.n 
Clarifkati-on 

,",Int: 
!1 
!< 
D. 
t1 

YO"~r ANOVA Mod<::l.speclfle$ the main cfk:cU: a'$O(lated wlth the level$ of the Factot' or FactOfs ln 
VOY/" design "nd anV interactions among Factors. How da yOu test nvpothesc$ about thesc effccts ln 
the population based on the $})mple values of the Meon Squarcs, degree$ of freedoOl, and r statlstiC5 
you obt~ined in vour ANOVA? What Îs the rationate f.or thesc tc$ts? 

Figure 5.7. Deep question in test of hypotheses task (Task 9) 

ln brief, the tutorial system provides a research environment in which data 

can be collected as learners finish ANOVA problem solving tasks. During on-Ii ne 

tutorial-assisted learning sessions, students must select indexed components to 

obtain useful information. Their trajectories or combinations of sessions help 

complete the task. As students progress they will need to consult the tutor less. 
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5.2 A Stand-Alone Test as an Alternative Task Environment 

A set of stand alone performance tasks corresponding to ANOVA tutor 

tasks were implemented as questions in a Performance Assessment of Statistical 

Learning Test (PASLT) (see Appendix A). PASLT simplifies the task of assessing 

cognitive processes, learner proficiency and ANOVA problem solving mastery 

without help from the Tutoring System. Since the tasks matchthose of the tutor, 

the cognitive model implemented in tutor explanations, coaching, and task 

structure can be used as a knowledge model in the assessment modal. 

5.2.1 The Structure of the Stand-a/one Performance Assessment Test 

The fundamental test structure simulates the structure of the statistics 

tutor system. PASLT consists of 13 tasks: 

1. Task 1: research method and data collection 

2.* Task 2: the sample data file 

3. Task 3A: descriptive analysis of the data using sample statistics 

4. Tasks 38: 

5. Task4: 

6. Task 5: 

7. Task 6A: 

8. Task 68: 

9. Task 7: 

10. Task 8: 

interpretation of graphie representation of the means 

ANOVA design 

ANOVA score model 

estimating effects 

estimating residual scores 

analysis of variance table 

calculating and using ANOVA statistics 



11. Task 9: 

12.* Task 10: 

13.Task11: 
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testing hypothesis in ANOVA 

testing contrasts among groups 

conclusion from the ANOVA 

Tasks with an asterisk are optional and may be skipped if learners 

encounter difficulties when solving them. 

These tasks directly reflect the complete ANOVA problem solving process 

and scaffold learners as they try to learn ANOVA problems. If learners can follow 

this procedure, they will be able to write a relatively complete report reflecting 

general task difficulty. In the current stand-alone test, Task 2, "the sample data 

file" and Task 10, "testing contrasts among groups" can be omitted. 

The performance assessment test emphasizes two aspects of student 

cognitive competency: ability to apply knowledge to solve each subtask, and 

ability to use their knowledge to explain task components. Each task has two 

types of questions. Table 5.1 summarizes their distribution across 13 subtasks. 

Table 5.1 indicates that there are 2 to 6 questions in each task. The 

numbers of performance and semantic explanation questions are unbalanced 

across tasks, reflecting different cognitive demands for each task. 
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Table 5.1. Two Types of Cognitive Tasks Distribution 

Number Tasks Performance Semantic expia nation Total 

1 Task 1 3 3 6 

2 Task2 1 2 3 

3 Task 3A 3 2 5 

4 Task 3B 0 5 5 

5 Task4 0 3 3 

6 Task5 3 2 5 

7 Task 6A 4 1 5 

8 Task 6B 1 1 2 

9 Task7 4 1 5 

10 Task8 6 0 6 

11 Task9 3 2 5 

12 Task 10 1 3 4 

13 Task 11 1 1 2 

Total 30 26 56 

5.2.2 The Structural Features of Each Task Worksheet 

Task work sheets consist of two parts. On page one there is a vignette 

followed by several questions. Vignettes ean be ANOVA problem descriptions, 

SAS data steps, SAS program statements, SAS text outputs, or SAS graphie 

outputs. For example in task five, the ANOVA seore model, the vignette is a 

segment of a SAS statement: 

Proe anova data=kirk; 

Class group duration; 

Model attitude=group duration group*duration; 

Run; 
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This four-line statement gives implicit and/or explicit information to which 

learners can refer in completing the required subtasks. 

5.3 Data Collection and Participants 

Data was collected from twenty student responses to the stand-alone test. 

Twenty participants were selected fram students enrolled in a graduate 

intermediate statistics course covering ANOVA models and designs or who were 

not currently enrolled but had equivalent statistics background. Participants were 

informed about the experimental pracess and that the results would be used only 

to improve a web-based computer coaching systems and in research on building 

cognitive diagnostic assessment frameworks based on it (see Appendix 1). 

While the participants responded to items, they were not allowed to refer 

to the tutor system. The assumption is that they had some experience using the 

coaching system and that they had some knowledge and relevant prablem 

solving ski Ils in statistics (including SAS). When they focused on each task, they 

were allowed to reter back to previous task sections and to their previous 

response praducts and previous task vignettes. Student performance records on 

the stand-alone test were used to develop a scoring rubric that defined 

observable assessment variables. These variables were used to test cognitive 

and statistics models in the cognitive diagnostic assessment. 
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5.4 Development of Assessment Rubrics, Evidence Rules and Assessment 

Constructs 

An assessment (score) rubric represents a step-by-step process for 

decomposing the ANOVA score model components. The assessment rubric 

reflects criteria and demands of the stand alone test questions, solution features 

and relevant expertise embedded in the tutorial system database. Task 5 stand 

alone test questions implicitly demand students to respond to sorne aspects of 

the ANOVA score model knowledge. Solution features are a set of critical points 

and rules of solutions to tasks representing possible problem spaces. Relevant 

expertise is widely distributed across tutor modules in help and coaching. 

The assessment rubric is a "bridge structure" in building assessment and 

evidence models. It was developed based on cognitive and content analysis and 

provides a basis for assessment criterion for student ANOVA task performance. 

The assessment rubric was elaborated to acquire evaluation rules and then to 

develop evaluation variables. Rubric structure follows possible decompositions of 

ANOVA score models into components of which can become rubric categories 

which can be broken down into sub-components. For example, the error term is 

decomposed into 3 sub-terms: e( ), i(jk) and eiOk) which provides a basis for 

representing a part of a cognitive model. Then, a set of evidence variables can 

be defined. 

On the basis of the assessment rubric, evidence rules are developed. 

They represent ail fundamental features of this assessment rubric and develop 

the terms and sub-terms of the assessment rubric into "fine grain" components 
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which serve as evidence variables. Assessment rubric categories are 

explanatory variables which provide a basis for developing an elaborate 

assessment modal. The feasibility of applying Bayesian networks was 

considered and a Bayesian network model, assessment construct, was used to 

assess an ANOVA score model. 

5.5 Fundamental Features of Bayesian Networks 

Once the Bayesian assessment network was built, fundamental features 

were examined using simulated data. Some clique patterns were examined in 

terms of Bayesian network structures. It probably assumed that prior probabilities 

were ail binomial in consideration of acquiring simplicity and clearness of student 

responses to the items. Prior probabilities of parents were tested at different 

levels in mastery states (such as p at 0.50, 0.67 and 0.75) which indicated the 

probability of correctly answering a question. Prior probability is dispensable for 

examining student responses on the basis of Bayesian network models. 

Elaborating a Bayesian network requires a huge sam pie size of evidence to 

update it. A more reasonable measure of prior probability is needed based on 

experimental and practical experiences. 

Iteration tests were conducted based on prior parent node levels in 

Bayesian networks. A probability value was pre-defined as 0.95. Combinations of 

simulated response patterns were shown. In the final run, a last updated 

probability was produced. If the value was less than 0.95, the parent prior 

probability would be updated for the next run. Iteration was ceased when the 
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posterior probability attained was equal to or larger than 0.95. During iterations, 

the updating processes were observed and sorne characteristics were examined. 

Types of Bayesian net cliques such as simple and complex were 

summarized. Sorne of them were analyzed in consideration of assessment 

models. Clique patterns included one parent-one child Bayesian net clique, one 

parent-multi-child Bayesian net cliques, and mixed (multi level and multi 

component) Bayesian net cliques. The outcomes of these cliques were applied to 

assessment models. 

5.6 Examination of Bayesian Assessment Models on the Basis of the Features of 

Bayesian Net Cliques 

Updating trajectories of posterior probabilities in Bayesian assessment 

models were examined based on an examination of Bayesian net cliques. In one 

assessment model, the evidence variable space was estimated. In each class of 

the evidence model space, one case of the entire combination was sampled and 

posterior probabilities were carried out. Ali pattern classes were observed. Thus, 

for a given explanatory variable, a continuous change pattern was observed. The 

robustness and mastery level of the Bayesian assessment model were observed. 

Internai relations of selected explanatory variables were examined. 

Finally, 20 student performances on the ANOVA score model were tested 

with the established assessment models. Diagnostic assessment information 

was reported in posterior probabilities and linear transformation of these 

probabilities to represent extent of student mastery. 
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5.7 Methodological Framework of Model-Based Assessment as a Summary 

Framework 

Figure 5.8 summarizes the method of model development. It is divided 

into two parts by a dotted line. In the tutor development phase, Tutor Knowledge 

Data Base was a fundamental basis for theoretical and technical aspects of the 

tutorial system. It constitutes full content and structure information. Tutor tasks 

are introduced in Tutor Tasks and Questions so learners can go through the tutor 

help and learning environment. Questions designed in the tutorial system ask 

learners to respond to cognitive tasks. The Questions connect tutor designers 

and instructors, and learners have consistent expectation of what to complete in 

problem solving. Solution Features are a group of key points and principles to 

complete cognitive tasks. For example, items 1, 3, and 4 of Solution Features of 

Task 5 are: the score model is a linear equation; right of the equal sign is a sum 

of terms; and the first term is the symbol ~ for the population grand mean 

respectively. They outline key points and clues for completing the cognitive tasks. 

Tutor development phase as a submerged platform provides robust theory 

and database basis which can be transferred into parameters of expert 

knowledge models to guide assessment construct and assessment model. 

The model-based assessment phase is below the dotted line in Figure 5.8. 

Assessment Tasks and Questions are the tasks and questions developed in the 

Stand-alone Performance Assessment Test. Based on assessment purposes, 
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these questions are related to those in the tutorial system, but they have been 

refined. 

Scoring rubrics and evidence rules for performance assessment are two 

very close versions of documents. Scoring rubrics depict the categories of 

potentially observable components. Evidence rules are more the operational 

version used to decide what knowledge point has been applied or what is still 

deficient in student response processes and results. In the aid of evaluation and 

evidence rules, observable variable are dynamically instantiated based on data 

samples. 

Assessment constructs were built based on expert knowledge models and 

tutor knowledge databases. Assessment models (probability networks) were 

used to test and validate assessment constructs. 
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Figure 5.8. Methodological framework of model-based assessment 
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CHAPTER SIX: CONSTRUCTION AND EVALUATION OF THE ASSESSMENT 

MODEl 

The structure of the model-based assessment in this study of statistics 

learning is task-based. The assessment system is designed to focus on learning 

tasks and assessment models are developed on the basis of these tasks. "PASl: 

ANOVA" is a stand-alone test (Appendix A) which is based on learning tasks 

used in the ANOVA tutor. "PASL: ANOVA" consists of 13 learning tasks and the 

structure simulates the ANOVA tutorial system. Therefore, the tasks in both the 

ANOVA tutoring system and "PASL: ANOVA" have the same structure and 

content. This study focuses on the development of an assessment model of one 

of these 13 learning tasks. The procedure for developing such an assessment 

model has been designed so as to be generalized to the other 12 ANOVA tasks 

(and other tasks as weil). Task 5, the ANOVA score model task, was chosen as 

the content domain for developing an assessment model and procedure because 

it is a familiar topic to students in intermediate and advanced statistics course. 

This chapter describes how the assessment model was developed. This 

will involve: (a) building an assessment structure and model, (b) developing 

evidence variables and a probability model connecting evidence variables to 

explanatory variables representing component knowledge and skills, and (c) 

establishing some basic characteristics of the network and applying the model to 

simulated data to examine its behaviour. 
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6.1 Establishment of an Assessment Structure and Model 

An assessment structure is a framework for representing an arrangement 

of knowledge components in a hierarchical network. The network structure will 

define links among potential explanatory variables (constructs), which will be 

used to evaluate and interpret student mastery of these learning objects 

(constructs) and changes in student mastery over the course of learning. These 

knowledge and skill components cannot be observed directly and it may be 

necessary to decompose them into more fine-grained components for given 

assessment purposes. They must also be linked to evidence variables derived 

from observations of student performance. 

Normally, an assessment structure can be established through a semantic 

analysis of the content of verbal problem-solving or tutoring protocols, combined 

with a cognitive task analysis of the problems solving. Assessment purposes and 

the desired "grain" of analysis influence the precision of the analysis carried out 

to build procedural and semantic models of required problem-solving knowledge. 

For the ANOVA score model, (a) writing the ANOVA score model components, 

and (b) explaining what these components refer to semantically, constitute two 

different aspects of knowledge and skill. Hence, the assessment structure 

consists of two submodels: (1) writing an ANOVA score model (a procedural 

model) and (2) explaining the ANOVA score model (a semantic model). Whereas 

1 is about a procedure and 2 is about the meaning of the ANOVA score model. 

An ANOVA score model can be decomposed into several component procedures 

which become the basis for assessment model development: 
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(Formula 6-1) 

YiOk) is the score of individual i in group jk. To the right of the equal sign, 

there are five components: Grand mean /-l, the Main effect for group aj, the Main 

effect for duration ~k, the Interactive effect Yjk, and Residual score eiOk). These 

terms are defined differently (see Table 6.1) to distinguish them in the procedural 

and semantic phases. The terms are listed for both phases in terms of rubrics in 

the columns. 

Table 6.1. Examples of Scoring Categories for both Process and Semantic 

Aspects of the ANOVA Score Model 

Category Procedural phase Semantic phase 

Score Score Yij(k) 

Grand mean mu 

Main effect for group alpha j 

Main effect for duration beta k 

Interaction effect 

Residual score 

Score of individual i in group 

jk 

Population GrandMean of 

scores 

Main Effect Level j of factor 

A 

MainEffectLevel k of factor 

B 

Interaction of level j of A x 

level k of B 

Error in an individual score 

Figure 6.1 presents a hierarchical frame representing the knowledge 

required to complete an ANOVA score model (for a two-way classification) and 

will be referred to as the "ANOVA Score Model (2way)" Frame. 
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Term components are arranged hierarchically in Figure 6.1. Procedural 

phase parameter (UModeIEquation" submodel) are used to represent knowledge 

of how to write the Grand mean /-l, the Main effect for group aj, the Main effect for 

duration Pk, the Interaction effect )'jk, and the Residual score eiQk). Semantic phase 

parameters ("Score Model" submodel) are used to represent knowledge of how 

to explain: "Score", "GrandMean", "Main EffectLevelofA" , "MainEffectLevelofB", 

"lnteractionAXB", and "Error". In the semantic explanation phase, the node 

"EffectOfFactors" refers to knowledge of effects. "GrandMean" refers to 

knowledge of the grand mean, and "Error" refers to the error in a person's score. 

"ScoreDecomposition" refers to knowledge of how an individual's score has been 

decomposed. 

The 2-way "ANOVA score model" represents the fundamental constructs 

corresponding to components of student knowledge and skills required to 

complete and explain an ANOVA score model. These components can be 

diagnostically assessed. In a cognitive perspective, these network components 

are defined as different knowledge and skill components. The goal is to build an 

assessment network that reflects knowledge and skills revealed bya cognitive 

analysis of expert knowledge representations. 

The assessment construct (Figure 6.1) provides a basic theoretical 

assessment network for explaining and tracking the development of knowledge 

and skills. Network nodes correspond to explanatory variables in Bayesian 

networks. Components such as "lndexValues" were added to ensure the 

completeness of the model to be tested in a Bayesian network. In addition, such 
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components as "Score Y ijk" are further decomposed to include an explanatory 

variable "ijk" representing knowledge of how to write and apply the index to the 

score variable (see Figure 6.2). 

\ 

\ 

/ ~l~lF.ctO" :t. 
! t \ 

/ /\ \m. 
i i " IZction:AxB 

M EI'/e~t:L.v.lofA 
G dM •• n ' 

Ml"ect:LevelofB 

Figure 6.1. Basic assessment constructs of the ANOVA score model 

Nodes in Figure 6.1 are potential explanatory variables in the Bayesian 

network used in assessment. These nodes reflect components of student 

problem solving knowledge and skills. However, in building the assessment 

construct, it is unclear when current network nodes are potential explanatory 

variables. Anode found to be unlinked to any supporting evidence cannot be a 

potential explanatory variable. To function as an explanatory variable, nodes 

must be linked to evidence nodes. Evidence nodes are variables linked directly to 

performance by means of scoring rules. 
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Figure 6.2. Assessment expansion construct of the ANOVA score model 

6.2 Development of the Evidence Variables and Probability Model 

Evidence variables require specification of scoring rules that extract 

values of observable variables from individual performance in relevant task 

environments. In this study, two sources were used to develop evaluation and 

evidence variables: (a) assessment tasks and questions, and (b) solution 

features. Both sources are needed to define evidence variables and to establish 

their values based on student performance. 

6.2.1 Assessment Tasks and Questions 

Assessment questions are developed in the assessment task framework, 

which roughly mimics tutoriallearning system tasks. Assessment tasks and 

questions were developed into a test book let, "Performance Assessment of 
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Statistics Learning" (PASL, see Appendix A). The structure of the tasks was 

described in section 5.2.1. 

ln Task 5, examinees have six sub-tasks: 

(5.1) Write the ANOVA score model for your design. 

(5.2) Explain the formula used in the ANOVA score modal. 

(5.3) What are the main effects? How are they interpreted? 

(5.4) What are the interaction effects? How are they interpreted? 

(5.5) What is the grand mean? How is it interpreted? 

(5.6) Identify the residual or error score. How is it obtained from subject's 

observed score on the dependent variable? 

Assessment questions and solution features of Task 5 have the same 

cognitive construct in the assessment modal. As a set of leading statements, 

these sub-tasks appeal to student cognitive processes, and to products of 

knowledge and skill development. Sub-tasks 1-6 represent cognitive components 

of the Solution Feature and the Score Rubric. Sub-tasks 1-6 attempt to lead 

students to an understanding of the ANOVA score modal. 

Sub-task 5.1, "Write the ANOVA score model for your design," asks 

students to symbolize variables and parameters of the ANOVA score modal. 

Students must use these terms and their relations to describe the ANOVA score 

modal. Sub-task 5.1 asks for the ANOVA score model to be written in both a 

general and a specific way. For example, X ( ) can be written as Xijk or as X223, 

with different indexing. 
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Subtask 5.2 asks for a single explanation of X ( ) and asks students to 

decompose the score model terms expressed in semantic expia nation 

competence. For X ( ), students must describe the relations expressed in X 

indexing of ijk or in 223. 

Sub-task 5.3 and 5.4 involve an analysis of relations between terms. In 

two-way ANOVA, main effect: group, main effect: duration and their interactions 

are represented. Students must know how to express relations between aj, I3k, 

and Yjk, between a, 13, y and their indexing j, k and jk, and how to describe 

relations between aj, I3k, and Yjk. 

Sub-task 5.5 asks students to define and interpret the grand mean which 

involves specifying the relation between the group mean and the grand mean. 

Sub-task 5.6 asks students to describe ei Ok) which requires them to realize 

that the residual score has the same indexing as the score variable Yi Ok), and 

relations between ei Ok) and others variables. 

Questions for ANOVA score model may vary. However, a main rule in 

designing sub-task 5.1-5.6 was for students to demonstrate their ability to acquire 

knowledge of the ANOVA score modal. 

6.2.2 The Relations of Solution Features and Score Rubrics 

Most tasks respond to components of Solution Features list. Solution 

Features form sets of solution characteristics applied to individual task 

performances. They specify response steps and provide a comprehensive basis 

for responding to tasks. They facilitate students to answer questions correctly 
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and they help assessors work out score rubrics for judging student task 

performances. 

When task score rubrics are represented, Solution Features help explain 

relations among model components based on them. 

Section 6.2.2 emphasizes relations between task score rubrics and 

Solution Features. Developmental details will be introduced in 6.2.3. The 

complete task score rubric for Task 5 (Appendix C) is composed of seven items: 

(a) Score, (b) Grand Mean, (c) Main Effect (Group), (d) Main Effect (Duration), 

(e) Interactive effect, (f) Residual score, and (g) Complete model equation. 

Solution Features can represent the detail needed to elaborate more fine-grained 

ru bric components. They can cover components across score rubric items. One 

Solution Feature may be involved in several score rubrics. 

Table 6.2 shows relations between score ru bric and solution features. 

There is no one-to-one relation between the score rubric and solution features. In 

fact they cross each other. One rubric rule may correspond to more than one 

Solution Feature description, and a Solution Feature may be linked to more than 

one rubric. Table 6.2 is a practical illustration of list items between rubric and 

Solution Features. 

Table 6.2 presents Solution Features which are a relatively flexible way to 

provide assessment information. Score rubrics consist of rules which may be 

used to develop cognitive constructs and evidence variables. 
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Table 6.2. The Corresponding Relations between Solution Feature and Score 

Rubrics 

Score rubric items 

(a). Score: 

(1)Ya symbol for score variable 

"attitude toward minority". 

(2) Index for score variable, ijk or 

i(jk) 

(3) Complete expression Yi (jk) for 

score of individual i in group j and 

duration k 

(b). Grand mean: 

Solution features * 

1. The equation begins with a 

variable label representing the 

score on the dependent variable 

with appropriate subscripts to 

indicate the specifie levels of 

factors used to cJassify a subject, 

and an index number for the 

subject. 

Identical to solution feature 1. 

Identical to solution feature 1. 

(4) JJ symbol for population mean. 4. The first term is a symbol (Greek 

Parameter pooled in j and k mu) for the population grand mean. 

(c). Main effect (Group): 
(5) a symbol for main effect 6. The next terms are symbols 

parameter representing population main effect 

parameters for additional factors. 

Each effect parameter is indexed 

according to the level of this factor (as 

it was indexed on the score variable). 
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Table 6.2. (confinued) 

Score rubric items 

(6) j index for group 0=1,2, 3) 

(7) aj main effect for group j 

(d). Main effect for duration: 
(8) J3 for main effect parameter 

(9) k index for duration 

(10) J3k main effect of duration k 

(e). Interactive effect: 
(11) y for interactive effect 

(12) Ok) for index of ce" in design 

(13) Y (jk) for interactive effect of 

individual i in cell 0, k) 

(f). Residual score: 

(14) e= residual score 

Solution features * 

Identical to solution feature 6. 

Identical to solution feature 6. 

Identical to solution feature 6. 

Identical to solution feature 6. 

Identical to solution feature 6. 

7. If you have a crossed design with 

two or more factors, terms 

representing the population two-way 

interaction effects for pair wise 

combinations of factors are included in 

the mode!. Each effect parameter is 

indexed according to the levels of 

these factors (as they were indexed 

on the score variable). 

Identical to solution feature 7. 

Identical to solution feature 7. 

8. The last term is a symbol (variable 

na me) for the error (i. e., residual) 

score having the same indexing as the 

score variable. 

(15) iOk) same index as score variable Identical to solution feature 8 
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Table 6.2. (continued) 

Score rubric items 

(g). Complete model equation: 

(16) eiOk) error score in group j, 

duration k and subject i 

(17) Yi Ok) = IJ + aj + ~k +Yjk + ei Ok) 

Solution features * 

Identical to solution feature 8. 

1. The score model is a linear 

equation. 

3. Right of the equal sign is a sum of 

terms. 

26. By decomposing the participants' 

score into a grand mean, effect 

components, and a residual score, we 

can systematically investigate the 

additive effect of each component as 

a contribution to the subjects' scores. 

* The item numbers of the solution feature column indicate the one in Appendix B: Solution 

Feature of Task Five 

6.2.3 Development of Evaluation Rules for the Performance Assessment 

Evaluation Rules, also referred to as Scoring Rubrics (for Task 5), were 

developed based on Solution Features and assessment task questions. The 

Scoring Rubric provides basic criteria for connections between explanatory and 

task variables and for defining ANOVA score model symbols. 
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Task 5 Scoring Rubrics consist of the 7 components of its model equation: 

score component, grand mean, main effect for group, main effect for duration, 

interaction effect, residual score, and complete model equation (see Appendix 

C). 

Three features will be demonstrated for the score component: (a) to define 

"Y is a symbol for score variable"; (b) to clarify the index of score variable, ijk; 

and (c) to write the complete expression Yi Ok) for the score of individual i in group 

j, corresponding to level j of factor A and duration k corresponding to level k of 

factor B. 

Component 2, the grand mean, the symbol for the population mean ~ 

must be written and defined. 

Component 3, main effect for group, the symbol alpha must be written; the 

j index for group must be written; and the expression alpha j written to represent 

the main effect for each level j of the group variable. 

Component 4, the main effect for duration, the beta symbol must be 

defined; the k index for duration must be written; and the expression beta k must 

be written to represent the main effect for duration k. 

Component 5, the interaction effect, the gamma symbol must be written; 

the index jk must be written for the combination of level j of group and level k of 

duration; and the expression gamma jk must be written to represent the 

interaction effect for group j and duration k. 
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Component 6, the residual score, a symbol for the error must be written. 

The index ijk for the score variable must be written for individual i in group j and 

after duration k; and the expression e iQk) for the error score of individual i in 

group j and duration k, must be written to represent the residual score. 

Component 7 is writing the complete model equation. Even though 

learners may know knowledge component 1-6, these must be presented in an 

appropriate equation using the correct symbols. 

Scoring rubrics include seventeen items. Process and semantic 

expia nations are two aspects of the score rubrics. Thus, there are thirty-four 

items ("Solution Features") in ail. Written productions of symbols and expressions 

demonstrate student performance component in completing Task 5-writing an 

ANOVA score model. Semantic Explanation scoring components reflect student 

understanding of why they write the model as they do, and how they assign 

meanings to score model components. Scoring Rubrics depict relatively fine­

grained patterns for learner performances and semantic explanations. 

Diagnosing student performance and knowledge requires the application of an 

assessment model that can account for patterns of the thirty-four student score 

components. Thus, student score components will be linked to evidence 

variables, which are represented as observable evidence nodes in the 

assessment network. Evidence nodes are linked to bottom level explanatory 

constructs of the assessment model in Figure 6.1. 
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6.2.4 From Rubrics to Diagnostic Assessmenf: Evidence Ru/es 

Evidence rules are sets of highly decomposed knowledge and skill 

components that apply to both performance and semantic phases for Task 5. 

Evidence rules are used to determine whether students have mastered the 

knowledge and skills necessary for solving ANOVA score model problems. 

Evidence rules for the ANOVA Score Model contain 45 items categorized into the 

performance process and semantic comprehension phase. The performance 

phase focuses on knowledge and skill components used in the performance 

process. The semantic phase focuses on components required for understanding 

concepts related to corresponding processes. In Y "(1), Y," is an indexed 

variable. Students can write Yjjk on the left side of the equal sign in the ANOVA 

score model equation. They will be assessed on having completely mastered the 

performance process. In item "(27) 18 Dep. Var," the student must know the 

definition of Y which refers to the observed dependent variable "attitude towards 

minorities." Tables 6.3 and 6.4 provide details of these knowledge and skill 

components. As observable variables, these components are decomposed in a 

Bayesian network and then associated with rules for judging whether they have 

mastered the knowledge and skills needed to solve an ANOVA score model 

problem. 
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Table 6.3. Evidence Rules for Scoring Procedural Components 

Evidence node Evidence node Solution feature Content 
{scoring item} (name) description category 

Expression Item 
inANOVA number 
model 
eguation 
y (1 ) Y Y(indiCeS) (indexed Variable 

variable) 

i(jk) (2) (3) 2aj,2bj, (part of index) Index 

(4) 
2c_k (part of index) 

k (part of index) 

YiQk) (5) 3_Applylndex Apply indices to Y Apply Index 

= (6) 4 = equal sign Equivalence 

IJ (7) 5_1J IJ (parameter) Parameter 

a (8) 6a_alpha aindex (indexed Parameter 

parameter) 

(9) 6bj (index) Index 

aj (10) 7 _applyindex apply j to a Index 

~ (11) 8a_beta ~index (indexed Parameter 

parameter) 

k (12) 8b_k k (index) Index 

~k (13) 9_Applylndex apply k to ~ Index 
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Table 6.3. (Continued) 

Evidence node Evidence node Solution feature Content 
{scoring item} (na me) cescription category 

Expression Item 
inANOVA number 
model 
equation 
y (14) 10_gamma Y(index) (indexed Parameter 

parameter) 

jk (15) (16) 11aj,11b_k (part of index) Index 

k (part of index) 

Vjk (17) 12_applylndex Apply jk to gamma Index 

e (18) 13_e eindex (variable) Variable 

iOk) (19) (20) 14aj (error), (part of index) Index 

(21) 14bj (error), 
(part of index) 

k (part of index) 
14c_k (error) 

eiOk) (22) 15_Applylndex apply iOk) to error Index 

term 

Sumof (23) 16_sum terms Apply appropriate Function 

score com-
sign + (sum) 

ponents 

Index (24) (25) 17a i=1 ... ,n i index value Index 

ranges (26) 17bj=1 ... ,J 
i= 1, 2,3 ... ,n; n=5 

j index value 
17c_k=1 ... ,K 

j=1, 2,3 

k index value 

k=1,2,3 
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Table 6.4. Evidence Rules for Scoring Semantic Components 

Evidence node Categorical Items Content 
{scoring item~ phases category 

Description Item 
Number 

Dependent (27) 18_Dep. Y refers to the observed Variables 
variable Var. dependent variable 

"attitude towards 
minorities" as measured 
bya scale. 

Case ID (28) 19_Case ID Index i refers to an Case Indices 
integer/numerical index 
where i refers to an 
individual examinee 

Levels of (29) 20_Level ü) j refers to level j of the Levels of 
group of A independent variable. effects 
Levels of (30) 21_Level (k) Group k refers to level k Levels of 
duration ofB of the independent effects 

variable duration. 
Interaction (31) 22_Grp. Ok) jk refers to the cross- Levels of 
of group in 2Way classification cell of the effects 
with table table of subjects (police 
duration officers) where each 

officer is classified into 
a category (cell), one 
category for each 
combination of group j 
(one of 3 areas 
patrolled) and duration 
of program k (one of 3 
durations) 

Equivqlence (32) 23_Equiva- Equivalence means that Equivalence 
of score and lence the expression (sum of relation 
score term) reflecting the 
components decomposition of the 

score on the right side 
of the equal sign is 
equivalent to the 
individual's score on the 
dependent variable (the 
left side of the equal 
sign} 
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Table 6.4. (Continued) 

Evidence node Categorical Items Content 
{scoring item} phases category 

Description Item 
number 

GrandMea (33) 24_GMRef Grand mean refers to Grand mean 
n-pooled the pooled mean of ail 

scores (pooling over 
groups and durations) in 
the population 

GrandMea (34) 25_Mean of The grand mean is the Grand mean 
n-Avg of Grp. Means average of the group 
GrpMeans means. 
Main effect (35) 26_Main ai "refers to" the main Effects and 
of group Effect A (j) effect of the their 

independent variable expression 
group on the dependent 
variable, independent of 
group in the population. 

Main effect (36) 27_Grp. ai= J.lr J.l. This term Effects and 
ofGrp Mean(j)-GM means main effect A their 
(definition) can be written as a expression 

difference between the 
mean of group /-li 
(pooling over duration) 
and the grand mean /-l in 
the population. 

Main effect (37) 28_Main ~k refers to the main Effects and 
of duration Effect B(k) effect of the their 

independent variable expression 
duration on the 
de~endent variable. 

Main effect (38) 29_GrpMean ~k = J.lk- J.l . Main effect B Effects and 
of duration (k)-GM refers to the difference their 
(definition) between the mean of expression 

group k (J.lk) (pooling 
over group) and the 
grand mean (J.l) in the 
~o~ulation 
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Table 6.4. (continued) 

Evidence node Categorical Items Content 
{scoring item} phases category 

Description Item n 
number 

1 nteraction (39) 30_lnterac- YOk) refers to the Effects and 
effect interaction effect of the their 

tion effect combination of group j expression 
and duration k on the 

ABUk) subject's score-that is, 
a value of the 
dependent variable 

Interaction (40) 31_GrpMUk) YOk)= !Jik - !Ji -!Jk +!J. Effects and 
effect The interaction effect their 
(definition -MU)- YOk) is the mean of the expression 
1) combination of group j 

M(k)+GM with duration k minus 
the pooled (marginal) 
mean of group j and the 
pooled (marginal) mean 
of duration k plus the 
grand mean (population 
values). 

Interaction (41) 32_GrpM YOk)= !Jjk- aj - ~k + !J Effects and 
effect Uk)-EffU)- The interaction effect their 
(definition Eff(k)-GM may also be written as expression 
2) the mean of the 

combination of group j 
with duration k (cell 
mean) minus the main 
effect of group (ai) 
minus the main effect of 
duration (~k) minus the 
grand mean. 
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Table 6.4. (continued) 

Evidence node Categorical Items Content 
~scorin9 item) phases category 

Description Item 
number 

Residual (42) 33_Residual eiOk)= YiOk) - 1..1 - aj - ~k- Variables 
variable var Yjk 

The error term is a 
variable that refers to 
the residual portion 
(part) of a subject i's, 
score on Y after ail of 
the effects and the 
grand mean have been 
subtracted out. 

Residual (43) 34_Sco re eiOk)= YiOk) - IJjk The Relation of 
score (ijk)-GrpMük) error term is the errors with 
(def1) difference between a otherterms 

subject's score on Y 
and the subject's cell 
mean. 

Residual (44) 35_Score eiOk) = (YiOk) - 1..1)- (aj + ~k Relation of 
score (ijk)-GM- + (a~)jk). The error errors with 
(def2) Effects score can be interpreted otherterms 

as that portion of a 
subject's observed 
score on the dependent 
variable (expressed as 
a deviation from the 
general mean), which is 
not predictable from the 
effects of the 
individual's particular 
combination of group 
and duration. 

Additive (45) 36_ Add itive (1..1+ aj + f3k + YOk) + Additive 
components Combination eiOk» components 

The score 
decomposition consists 
of a sum of five 
components: main 
effect of group, main 
effect of duration, 
interaction of group and 
duration, and error. 
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Evidence rules are classified in terms of knowledge contents in procedural 

and semantic scoring components. Procedural scoring components have 6 

knowledge types: variable, index, apply index, parameter equivalence, and 

function (sum) (see Table 6.5). The dependent and error variables are both 

random variables. Indices are associated with scores (variables and parameters), 

and define specific observations of variables or particular parameter levels. 

"Apply Index" refers to student ability to apply indices in appropriate positions 

when referring to variables or parameters. Parameters are constants whose 

values are estimated as specific population properties. These values determine 

characteristics of model equations. The summation function defines the sum of 

the model parameter and error variables. The equivalence relation equates the 

scores on dependent variables with scores on model terms. Ali six classifications 

are used in examining student performance. Although detailed explanation is 

unnecessary, student must apply ail procedures completely. 

There are 8 classifications in the semantic scoring components: variables, 

case index, levels of effects, effects and their expressions, equivalence, grand 

means, relations of errors with other terms, and additive components (see Table 

6.6). 

Content classification "variables" reflect student understanding of the 

dependent and error variables. Students are required to explain what they refer 

to. The "case" index shows that students know that an individual can be identified 

in relation to a combination of group and duration and how these are reflected in 

subscript positions of the dependent and error variables. Student explanations of 
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"Ievels of effects" demonstrate their understanding of duration levels of 

independent variables in cross-classifying observations by group and duration 

factors. 

There are three levels of groups, three levels of durations, and nine cross-

classifications of j by k. Student ability to explain "Effects and their expressions" 

reflects their understanding of effects and their relations to other parameters. For 

example, main effect A tells what aj refers to; and "aj= IJr IJ" indicates that "main 

effect A" is the difference between the group mean and grand mean. Correct 

explanation of "Equivalence" reflects student understanding of the right part of 

the model equation interpretation, and decomposition of the score given in the 

left part of the equation. Successful expia nation of the grand mean reveals two 

ways of understanding the grand mean as a pooled (marginal) mean and as an 

average of the group means. Explaining the "Relation of Errors with other terms" 

requires students to know how the error score is related to other ANOVA model 

components. 

Table 6.5. The Content Classification of Procedural Scoring Components 

Term 

Variable 

Index 

Apply Index 

Parameter and indexed parameter 

Equal sign 

Function (sum) 

1 The order number in table 6.3 

(1), (18) 

(2), (3), (4), (9), (12), (15), (16), (19), 

(20), (21), (24), (25), (26) 

(5), (10), (13), (17), (22) 

(7), (8), (11), (14) 

(6) 

(23) 
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The relationship between errors and other terms demonstrate student 

understanding of the error variable which can be written in alternative term 

combinations. 

(Formula 6-2) 

(Formula 6-3) 

Although, the two errors are mathematically equivalent, they provide 

different explanations of error. The first characterizes errors as deviations of 

observed scores from group means and the second characterizes errors as 

residuals after ail ANOVA score model parameters have been subtracted from 

the score. Table 6.5 and 6.6 summarize classifications of procedural and 

semantic scoring components with respect to knowledge contents. 

Table 6.6. The Content Classification of Semantic Scoring Components 

Terms 

Variables 

Case index 

Levels of effects 

Effects and their expressions 

Equivalence relation 

Grand mean 

Relations of error with other terms 

Addition component s 

The order number in table 6.4 

(27), (42) 

(28) 

(29), (30), (31) 

(35), (36), (37), (38), (39), (40), (41) 

(32) 

(33), (34) 

(43), (44) 

(45) 
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6.2.5 Defining Evaluation Variables 

Evaluation variables can be observed directly or they can be decomposed 

of observed variables. Observed data and evidence are transferred to potential 

explanatory variables and assessment constructs through evaluation variables. 

The decomposability of evaluation variables is relative. If a variable can be 

further decomposed, then it can become a potential explanatory variable; if the 

variable does not require further decomposition, it is an observable variable. 

ln assessment models evidence variables can transfer evidence to 

potential explanatory variables. If a potential explanatory variable has no child 

node and is also observable, the assessment construct variable can be redefined 

as an evaluation variable. For example, if the variable "mu" in an Assessment 

Construct (Figure 6.1) can be decomposed into child nodes, then it can become 

a potential explanatory variable in assessment construct variables. In the ANOVA 

Score Model, "mu" is not a potential explanatory variable and is viewed as an 

evaluation variable. 

After assembling the 45 assessment model evaluation variables, it is easy 

to determine whether they are evidence variables for transferring data from 

observations to potential explanatory variables. Tables 6.3 and 6.4 identify 

evaluation variables. 

6.2.6 Generation of an Assessment Model: the Probability Nefwork 

The assessment model is composed of an assessment construct (network 

of explanatory variables) and a set of evidence variables which together define 
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an assessment modal. Cognitively, assessment construct evidence variables 

(see Figure 6.2) cover performance and explanation. In the performance phase, 

students demonstrate their knowledge and skills in developing an ANOVA score 

model for a set of data. In the explanation phase, students give each component 

a semantic explanation. The assessment construct maintains 22 of 33 nodes 

(Figure 6.2 and Table 6.7) as explanatory variables. 

Table 6.7. The Intermediate Explanatory Variables in the Networks 

Object Nodes in procedural network Object Nodes in semantic network 

1 alphj 13 Score 

2 beta_k 14 GrandMean 

3 12jk 15 Main Effect: LevelofA 

4 15JOk) 16 Main Effect: LevelofA 

5 GammaOk) 17 1 nteraction :AXB 

6 Error _ eiOk) 18 Error 

7 2JOk) 19 EffectsOfFactors 

8 2WayModeiParameters 20 ScoreDecomposition 

9 LHS 21 ScoreModel 

10 RHS 22 ANOVAScoreModel2way 

11 IndexValues 

12 ModelEquation 

The remaining 11 nodes are classified as evidence variables in the 

evidence modal. Once explanatory and evidence variables have been 

determined, the organization and structure of the entire assessment network 

must be determined in order to transfer information from observations to potential 

explanatory variables. This structure is discussed in section 6.2.6.1. 
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6.2.6.1 Definitions of the Assessment Network 

The assessment model requires a network structure to describe 

relationships linking evidence and explanatory variables. Network models serve 

to estimate knowledge and skills underlying the ability of students to solve 

ANOVA score model problems by inferring components of performance or of 

semantic explanation. Explanatory variables that underlie student abilities must 

be inferred. The hypothesis is that ail explanatory variables are mutually 

exclusive, though in practice, there may be some correlation among examinees' 

estimated values for these variables. To represent causal relations among 

variables, a hierarchical model has been adopted in which top-down and bottom­

up relations can be examined. Student abilities to solve ANOVA score models 

can be inferred from observations, sets of limited evidence variables, rather than 

from observations of ail network variables. In so doing, some information will be 

lost; however, certain confounding relationships will be discarded. Such an 

approach will result in efficient causal explanations based on observations of 

group evidence variables to estimate values of explanatory variables. 

Hierarchical models organize data into tree-like structures to limit the 

number of network relationships. Hierarchical models define a kind of parent­

child relationship where each parent has at least two children. Conversely, this 

model restricts each child node to exactly one parent. 

Hierarchical models permit assessment variables to use parent-child 

relationships repeatedly. The network assessment model can be trained on the 

collected data to provide robust diagnostic learner assessments. 
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6.2.6.2 Probabilistic Spa ces of Potential and Evidence Variables in a Bayesian 

Network 

Variables in Bayesian networks applied in educational assessment stand 

for knowledge and skills. In Bayesian inference, variables can be categorized into 

potential explanatory variables and evidence variables. Variable spaces in 

assessment network models can be defined as binary or multi-category values 

based on assessment purposes and assumptions. A binary variable space was 

selected to simplify the problem. For ail networks variables, the variable space 

has been defined as two states ca lied "mastery" where students have mastered 

an ANOVA score model component and "non-mastery" where students have 

failed to master an ANOVA score model component. The state of a child node 

depends on the state of its parent. For the top-Ievel "parent" node, there will be a 

prior probability that the student has mastered the ANOVA model skill, and a 

probability of 1.0 minus the prior probability of mastery that the student has not 

mastered the skill. For each child node, the probability of mastery of the node 

depends on the state of its parent node. This dependency is represented by four 

conditional probabilities which can be arranged in a 2x2 table. 

~.C!t_L."'.I.m 
,/ ',\ 

" , 

/ 

Figure 6.3. Main effect of A with two evidence variables 
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Figure 6.3 shows a parent node with two child nodes. The parent node, 

labelled "MainEffectLeveIA," and its two child nodes labelled "MainEffectAO)" 

and "GrpMeanO}-GM" respectively. The prior probability for "MainEffect:LeveIA" 

is defined as: 

P(MainEffect: LeveIA)= Pt if the variable instantiates as true (Le. mastery) 

P(MainEffect: LeveIA)= Pf if the variable instantiates as false (Le. non-mastery). 

The prior probability of "MainEffectAO)" is conditional on the probability of 

its parent node, "MainEffect:LeveIA" which has two values, true (mastery) and 

false (non-mastery). "MainEffect AO)" has two states for each condition listed 

above. Therefore, there are four conditional probabilities for each child node. 

The conditional probabilities for "MainEffectAOr are 

P ("MainEffectAO)"=true l "MainEffect: LeveIA"=true)= Ptt 

P ("MainEffectAO)"=false l "MainEffect: LeveIA"=true)= Ptt 

P ("MainEffectAO)"=true l "MainEffect: LeveIA"=false)= Ptt 

P ("MainEffectAO)"=false l "MainEffect: LeveIA"=false_= Pff 

The prior probabilities of "GrpMeanO}-GM" have the sa me structure. The 

conditional probability tables for the ANOVA score model Bayesian network will 

contain the same conditional probabilities. 

6.2.6.3 Cliques and Levels in the Hierarchical Assessment Model 

According to Xiang (2002), "a maximal set of nodes that is complete is 

ca lied a clique; a clique is a maximal set of variables without graphically 

identifiable conditional independence" (p. 72). A clique in a hierarchical model is 
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an open walk (or path) with alternating sequence of vertices and edges whose 

first and last vertices are different. In a hierarchical network applied to an 

assessment model, a "sense-making clique" consists of at least one potential 

explanatory variable and its children. Therefore, the top level node of the clique 

should be a potentially explanatory variable. In addition, there should be at least 

one evidence variable in a clique at the bottom level of a hierarchical assessment 

Bayesian network. A "sense-ma king clique" is an open walk which begins at any 

explanatory variable going down to its evidence variables at the bottom without 

any disconnections. 

ln a Bayesian network, the length of a walk is the number of edges used; 

similarly, clique levels can be defined by the number of nodes used. If there are 

several consecutive parent-child relationships, the hierarchical model is multi­

level. The maximum number of an adjacent node pairs in a route comprises the 

levels of the model. In the assessment construct for the ANOVA score model 

(Figure 6.2), there are six nodes connected one to the other from the top node 

"ANOVAScoreModeI2way" to the bottom node "jk." Therefore, this network model 

has six levels. If "jk" had one more child, it would have 7 levels. Clique position in 

different levels of nodes hierarchically determines how anode functions when it 

occurs in different positions. The closer the node is to the top, the more weight 

the function has. Therefore, it is important to know the relative positions of nodes. 
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6.2.6.4 Evidence Spaces Considering Evidence Node Instantiations 

ANOVA score model evidence nodes indicate the number and distribution 

of student responses on knowledge and skill components. Perhaps, one student 

responds to sorne evidence nodes and another may respond to ail nodes. 

Different student responses constitute the evidence space. From the perspective 

of mathematical combination, it is necessary to know the evidence space in order 

to estimate the probabilities of different responses. 

Problem solving assessment variables in the ANOVA score model can be 

in two states: true or false. Assuming there are n evidence nodes, and a student 

responds to r nodes. The response evidence space is based on the 

mathematical combination: 

cr = n! 
/1 r!(n-r)!· 

(Formula 6-4) 

If one evidence node is instantiated, the evidence space is 21C ~ . 

If two evidence nodes are instantiated, the evidence space is 22 C ~ . 

If three evidence nodes are instantiated, the evidence space is 23 C! . 

If r evidence nodes are instantiated, the evidence space is 2' C: . 
If n evidence nodes are instantiated, the evidence space is 2n C: . 
The summation of these terms constitutes the evidence variable space: 

n 

I2rC: = 21C~ +22C~+23C: + ... +2 kC: + ... +2nC: (Formula 6-5) 
r=l 
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The evidence variable space is huge. If students respond to ail knowledge 

and skill components, the evidence variable space is 2n C:. If there are 5 binary 

evidence variables, the spaces will be 25 X 1= 32. Thus, there will be 32 possible 

variations of 5 variable state combinations. 

6.2.6.5 Hierarchical Structure for Assessment of ANOVA Score Model 

Knowing the variable space, the entire assessment network model has 

been defined (Figure 6.4). The model is designed to reflect performance 

processes and semantic understanding. In the performance phase, the top-Ievel 

variable is node "ModeIEquation"; in the semantic phase, the top-Ievel variable is 

node "ScoreModel". Both nodes share a parent node "ANOVAScoreModeI2way" 

which is at the pinnacle, and can be viewed as a potential explanatory variable 

that describes the comprehensive ability of students to solve an ANOVA score 

model problem. 

The assessment network model contains 67 nodes (see Figure 6.4). In 

performance processes, there are 38 nodes. In semantic explanation, there are 

28 nodes. Adding the top parent node, there are 67 nodes in ail. 

There are 45 evidence variable nodes in performance and semantic 

phases. There are 26 performance process evidence nodes and 19 semantic 

comprehension evidence nodes. 
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There are 22 "potential explanatory" variable nodes: 12 performance 

process phase nodes and 9 semantic comprehension phase nodes. Finally, there 

is one top level parent node. 

6.3 Fundamental Structures and Characteristics of the Hierarchical 

Assessment Network: The ANOVA Score Model Assessment Network 

Before applying the ANOVA score model assessment network to collected 

data, the fundamental features of the network will be examined. The entire 

network consists of cliques comprised of parent nodes and several child nodes. It 

is necessary to examine characteristics of the propagation of information through 

routes between a parent and children within cliques. 
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6.3.1 Definitions of Three Types of Network Cliques 

Patterns can be found by observing cliques in the ANOVA score model 

Bayesian network. The concept of simple and complex net cliques can be 

defined. A simple net clique is a network structure segment that has only two 

levels: a simple parent node and one or more child nodes. If ail child nodes are 

evidence variables, it is a "simple evidence net clique". A complex net clique is a 

network structure segment which has three levels. Third level nodes can have 

several explanatory nodes. Consequently, first level parent variables cannot be 

estimated sim ply from second level variables. Evidence must come from third 

level variables and must consist of instantiated evidence variables, so that their 

value pattern information can be propagated to the top parent variable. Once 

evidence variables are instantiated, the size of the problem space for the results 

will increase exponentially. Such net cliques are referred to as "complex net 

cliques." If the bottom level variables of complex net cliques consist of evidence 

nodes, the clique will be referred to as a "complex evidence net clique". 

Cliques can also be complete or incomplete. Ali the children of a complete 

clique are evidence nodes and ail the children of an incomplete clique are not 

evidence nodes. In practice, cliques are usually mixed or incomplete and 

atypical. For example, if a simple net clique consists of only two levels of nodes, 

and level two nodes are still potential (unobserved evidence nodes), it is 

incomplete. Therefore, simple net cliques, complex net cliques, incomplete 

cliques, and mixed cliques represent functionally different clique patterns. These 
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clique patterns involve different compound cliques. A complex clique is 

composed of at least two simple cliques. The ANOVA score model Bayesian 

network can have three different types of mixed cliques: 

Type 1: one parent + multi children 

Type 2: multi-parents + common children 

Type 3: multi-parents + no common child 

This classification will be useful in examining information propagation from 

the evidence variables to potential variables. 

6.3.2 Nomenclature of Bayesian Net Cliques in the ANOVA Score Model 

Network 

It would be convenient to define a naming system to describe a network 

clique as a written code to complement its representation as a graph segment. A 

graph segment is a clique within a Bayesian network graph (such as (JavaBayes) 

Cozman, 1998 and (Netica) Norsys, 2006). For a potential node, if the parent 

node position in the clique is coded A, then the positions of its children can be 

coded B. The number of parents or children can be indicated by a natural 

number following A or B respectively. Any parent node can be designated as P, 

and any child node can be designated as C. Dashes designate relations between 

parent A and child B nodes. For example, clique "alpha j" has one parent and 

three children. That means in position A there is one parent, in position B there 

are three children. The dash is used to describe parent-child relations. This 
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relation is coded as: A 1 P-B3C. Following this notation, Table 6.8 shows the 

written code for each clique. 

Table 6.8. Description of Potential Cliques in Written Codes 

Obj. Cliques (by top node) No. of No. of Express code 

parent children 

1 alph~ 1 3 A1P-B3C 

2 beta_k 1 3 A1P-B3C 

3 12~k 1 2 A1P-B2C 

4 15JGk) 1 3 A1P-B3C 

5 GammaGk) 2 2 A 1 P-B2C-B 1 P 

6 Error_eiGk) 2 2 A 1 P-B2C-B 1 P 

7 2JGk) 1 3 A1P-B3C 

8 2WayModeiParameter 4 1 A 1 P-B 1 C-B3P 

9 LHS 2 2 A 1 P-B2C-B 1 P 

10 RHS 3 1 A 1 P-B 1 C-B2P 

11 IndexValues 1 3 A1P-B3C 

12 ModelEquation 4 1 A1P-B1C-B3P 

13 Score 1 5 AIP-B5C 

14 GrandMean 1 2 A1P-B2C 

15 Main Effect LevelofA 1 2 A1P-B2C 

16 Main Effect LevelofA 1 2 A1P-B2C 

17 Interaction:AXB 1 3 A1P-B3C 

18 Error 1 3 A1P-B3C 

19 EffectsOfFactors 4 0 A1P-B3P 

20 ScoreDecompositio 4 1 A 1 P-B 1 C-B3P 

21 ScoreModel 3 1 A 1 P-B 1 C-B2P 

22 ANOVAScoreModel2way 1 2 A1P-B2P 
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These "express codes" can be used to identify simple or complex net 

cliques. The parent A position is coded as A 1 P. If the child position B is coded as 

BXe, where X is a number, the clique is simple clique (such as clique 13-Score, 

and clique 18- Error; see Table 6.8). If the child position Bis coded as BXP, 

(X=an integer), the clique is no longer simple since it includes children nodes that 

are parents in other cliques. Thus, complex and incomplete net cliques can be 

easily identified. The main advantage of this nomenclature system for Bayesian 

net cliques is that it recognizes the complexity of the net cliques. 

6.3.3 Prior and Posterior Probabilities and Evidence Propagation in the ANOVA 

Score Model 

Section 6.3.3 will introduce the calculations of Bayesian joint probabilities, 

posterior probabilities, and Bayesian updating processes with evidence. Basic 

Bayesian probabilities in Bayesian networks are prior and conditional 

probabilities which represent sets of beliefs that are determined by experts or 

other relevant researchers before any behavioural observations. These 

probabilities may be determined logically or on the basis of previous data. Prior 

probabilities are probability value vectors describing parent states. Probabilities 

of children are conditional on parent node states. Parent node posterior 

probabilities are probability value vectors that are calculated based on 

observations of child node states (evidence nodes). Updating is the computation 

process through which explanatory node posterior probabilities are calculated 

after entering the evidence values into child nodes (evidence variables). 
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6.3.3. 1 Joint Probabilities as a Function of Prior and Conditional Probabilities 

Once the prior probabilities of top parent nodes and the conditional 

probabilities of ail other nodes have been defined, joint probabilities can be 

computed according to the chain rule which is a recursive representation of the 

probability distribution. Assuming there are N variables Xi, then the joint 

probability of the N variables can be expressed as (Pearl, 1988): 

n n 

TIp(xj 'Xj_I,···XI) = TIp(xj 'pa(x) (Formula 6-6) 
j~ j~ 

where pa(xj) is the product of the probabilities of the parents of Xj. 

This indicates that the joint probability of N variables can be written as a 

product of N-1 conditional probabilities and one parent P(X1), i.e. the top level 

node. For example, if there are only two variables, one parent A and one child B, 

the formula can be shortened to: 

p(AB) = p(B' A)p(A) (Formula 6-7) 

If A and B are binary variables, Formula 6-7 can be specialized based on 

each state: 

p([ABt) = p(B+ , A = true)p(A = !rue) + p(B+ 'A = false)p(A = false) (Formula 6-8) 

p([ABr) = p(B-, A =true)p(A = true) + p(B-, A = false)p(A = false) (Formula 6-9) 

where [ABt indicates event AB is true; [ABr indicates event AB is false; 

where B+ indicates event Bis true; B- indicates event Bis false. 
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6.3.3.2 Posterior Probabilities Based on the Evidence Patterns 

As conditional probabilities are produced and joint probabilities are 

calculated, posterior probabilities will be estimated using entered evidence. 

Suppose that we have N evidence elements comprising E, a vector of evidence 

values and potential vector variables of values of explanatory nodes designated 

as H (Pearl, 1988). 

Evidences: 

Hypothesis: 

The posterior probability of a potential belief represented by hypothesis vector Hi 

can be expressed as: 

(Formula 6-10) 

Ifwe select an ANOVA score model net segment in which there is only 

one potential parent variable A and two evidence child variables 81 and 82, 

posterior probabilities can be determined based on 8ayesian calculations. The 

number of combinations of 81 and 82 values is four since each has two states. 

Let the probability of Abe designated as ct>A, probabilities 81 and 82 be 

designated as ct>S1 and ct>S2 respectively, and the state of probability for true be 

indicated by "+" and for false be indicated by "-". The results and processes of 

evidence updating will be shown in section 6.3.3.3. The details will facilitate 

understanding of how evidence improves and changes beliefs (posterior 

probability) in the top parent Javel. 
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6.3.3.3 An Example of Updating: A Two-evidence and One Parent Clique 

A simple net is selected from the ANOVA Score Model (Figure 6.4). The 

prior probabilities for parent P(A) and conditional probabilities for two children 81 

and 82 are arbitrarily chosen here for iIIustrative purposes. 

Figure 6.5. A Bayesian net with one parent and two children 

Prior and conditional probabilities are: 

t/J A= (true fa/se) 
0.30 0.70 

PCA-)] 
0.10 

0.90 

PCA-)] 
0.15 

0.85 

Posterior and joint probabilities are obtained by running Java8ayes (Cozman, 

1998) before entering any evidence: 

ForA: (
Yes: 0.3) 
No: 0.7 

(
Yes: 0.31) For 8

2
: (Yes: 0.24) 

No: 0.69 No: 0.76 

Evidence combination results for P(A) after running Java8ayes are: 
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ln 81- and 82- case: ~ P(A): 

ln 81+ and 82+ case: => P(A): 

(
Yes' 0.05805J 
No; 0.94195 

(
Yes' 0.2222J 
No; 0.7778 

(
Yes' 0.6893J 
No; 0.3107 

(
Yes' 0.91139J 
No; 0.08861 

The computation al processes have been decomposed into steps in order 

to examine these results. If evidence variables have been instantiated regardless 

of whether they are true or false, the four combinations will be realized by varying 

the parent variable A using the fo"owing rule. 

(Formula 6-11) 

ln the hierarchical model, nodes 81 and 82 are loca"y independent given A. 

P (81, 82 1 A) = P (81 1 A) P (82 1 A). (Formula 6-12) 

Consequently: 

P (A 1 8 8) = P(B) 1 A)(B2 1 A)P(A) 
1 2 Ip(B) 1 A)P(B2 1 A)P(A) 

(Formula 6-13) 

A 

Here A has two values: A and A +, 8 1 has two values 8 1- and 81 + and 82 has two 

values 82- and 82+, respectively. Theoretica"y, the combination space is 23=8: 

(Formula 6-14) 
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P (A' 81- 82-) = 0.9xO.85xO.7 
0.9x O.85xO.7 + O.2xO.55x 0.3 

= 0.5355 _ 0.5355 = 0.94195 
0.5355 + 0.033 0.5685 

(Formula 6-15) 

P (A+' 8
1
-8

2
-) = 0.2x0.55xO.3 

0.9 x 0.85 x 0.7 + 0.2 x 0.55 x 0.3 

= 0.033 = 0.033 = 0.05805 
0.5355 + 0.033 0.5685 

(Formula 6-16) 

P (A-, 8t 8
2
-) = 0.1xO.85xO.7 

0.1 x 0.85 x 0.7 + 0.8 x 0.55 x 0.3 

= 0.0595 = 0.0595 = 0.3107 
0.0595+0.132 0.1915 

(Formula 6-17) 

P (A+' 8
1
+82) = 0.8xO.55xO.3 

0.1 x 0.85 x 0.7 + 0.8 x 0.55 x 0.3 

= 0.132 = 0.132 = 0.6893 
0.0595+0.132 0.1915 
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(Formula 6-18) 

P (A-I 8
1
-8

2
+) = 0.9xO.15xO.7 

0.9x 0.15xO.7 +0.2x0.45 xO.3 

= 0.0945 = 0.0945 = 0.7778 
0.0945+0.027 0.1215 

(Formula 6-19) 

P (A+ 1 8
1
-82+) = 0.2x 0.45 x 0.3 

0.9xO.15x 0.7 +0.2x 0.45xO.3 

= 0.027 = 0.027 =0.2222 
0.0945+0.027 0.1215 

(Formula 6-20) 

P (A 1 8t 8
2
+) = 0.lx0.15xO.7 

O.lx 0.15x 0.7 +0.8x0.45x 0.3 

= 0.0105 = 0.0105 =0.08861 
0.0105+0.108 0.1185 

(Formula 6-21) 
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P (A+ 1 BtB
2
+) = 0.8x0.45xO.7 

O.lx 0.15x 0.7 +0.8x 0,45 x 0.3 

= 0.108 = 0.108 -0.91139 
0.0105 + 0.108 0.1185 

Calculation results are identical to those from JavaBayes. Section 6.3.3.3 

has iIIustrated the fundamental rules of how to calculate joint and posterior 

probabilities in terms of the evidence combinations. The above example can aid 

in understanding data propagation in the ANOVA score model Bayesian network. 

Data propagation includes inference from parent potential explanatory variables 

to the observable nodes, and updating from instantiated evidential variables to 

the parent potential explanatory variables. 

This section focuses on demonstrating the rudimentary principles for 

building the ANOVA score model Bayesian network components and on 

specifying prior and conditional network node probabilities. Hence, it is important 

to examine the structure of the Bayesian network for the ANOVA score model 

domain. 

6.3.4 Fundamental Structure in the Bayesian Cliques Contained in the ANOVA 

Score Model Nelwork 

ANOVA score model Bayesian networks contain many cliques. Several 

rudimentary clique patterns were chosen to examine network structures. There 
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are typically two to five children for the simple cliques in ANOVA score model 

networks. Although most simple network cliques are patterns with one parent and 

two or three children, we will focus first on several clique patterns. The one 

parent and one child models are very basic and were chosen though there are no 

such cliques in ANOVA score model nets (Figure 6.6). Two children (Figure 6.7), 

three children (Figure 6.8), and four children (Figure 6.9) cases will also be 

examined. 

Compound clique patterns will also be explored. There were two levels of 

potential explanatory variables in compound cliques, with a single top node 

connected to two or three child nodes, each of which is the parent of a simple 

clique having evidence nodes as children. Lastly, a complicated net structure 

consisting of three levels of potential explanatory variable levels with four 

connected cliques is examined (Figure 6.13). 

Different conditional probability values were tested in order to examine 

conditional probability effects on the calculation of posterior probability networks, 

prior probability and conditional probability networks. We hypothesized "No 

knowledge" of the state of the parent variable, which means that prior 

probabilities for true and false for top nodes were both set to 0.5. For the 

conditional probabilities, three levels were set specifying the conditional 

probabilities for child nodes states. Table 6.9 shows details. 

Ali clique probabilities are arranged as in Table 6.9. The symmetric 

probability pattern and the expected symmetric probability changes can be noted. 
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Table 6.9. Condition al Probability Level Sets in Each Clique Type 

Conditional probability level Prior probabilities (at true=0.5/false=0.5) 

value of parent node 

Levelone 

Leveltwo 

Level three 

True 

0.6 

0.67 

0.75 

True 

False 

0.4 

0.33 

0.25 

6.3.4.1 One Parent and One Child Bayesian Net 

True 

0.4 

0.33 

0.25 

False 

False 

0.6 

0.67 

0.75 

First clique was defined as a one parent and one child Bayesian net. 

Potential variable was set as true=0.5 level. This means that the student 

understands potential variables with 50% possibility to complete the task. Figure 

6.6 illustrates this model graphically. Conditional probabilities have been set at 

three levels in Table 6.10. 

Figure 6.6. One parent with one child Bayesian net model 



Diagnostic and Model-based Assessment 179 

The first test sets conditional probabilities at level one. Prior and 

conditional probabilities are as follows: 

Prior probability of parent states: [true= 0.5 false=0.5] 

Conditional probability: 

p(Evid 1 Potential V) 

Parent State (Potential V) 

Evidence state 

True 

False 

true 

0.60 

0.40 

false 

0.40 

0.60 

Table 6.10 shows the resulting evidence states from updating the 

posterior probabilities with several evidence patterns. 

Table 6.10. Updating Prior Probability with Consecutive Evidence Pattern for 

Clique having One Child Mode 

# Prior prob. Estimated posterior prob. of the parent 

variable given 

Posterior probability of Zero evidence Full evidence 

parent 

True False True False True False 

1 0.5 0.5 0.4 0.6 0.6 0.4 

2 0.6 0.4 0.5 0.5 0.6923 0.3077 

3 0.6923 0.3077 0.6 0.4 0.7714 0.2286 

4 0.7714 0.2286 0.6923 0.3077 0.8350 0.1650 

5 0.8350 0.1650 0.7714 0.2286 0.8836 0.1164 

6 0.8836 0.1164 0.8350 0.1650 0.9193 0.0807 

7 0.9193 0.0807 0.8836 0.1164 0.9447 0.0553 

8 0.9447 0.0553 0.9192 0.0807 0.9624 0.0376 

Note: When the value larger than 0.95 is found, the iteration stops. 
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Test 2 sets conditional probabilities as level two. The prior and conditional 

probabilities are as follows: 

Prior probability 

Conditional probability: 

p(Evid 1 Potential V) 

[true= 0.5 false=0.5] 

Parent p (Potential V) 

True 

False 

true 

0.67 

0.33 

false 

0.33 

0.67 

The results of updating prior probabilities with consecutive evidence in the 

full evidence space are shown in Table 6.11. 

Table 6.11. Updating Prior Probability with Consecutive Evidences for One Child 

Model 

# Prior prob. Estimated posterior prob. of the parent 

variable given 

Posterior probability Zero evidence Full evidence 

of parent 

True False True False True False 

1 0.5 0.5 0.33 0.67 0.67 0.33 

2 0.67 0.33 0.5 0.5 0.8048 0.1952 

3 0.8048 0.1952 0.67 0.33 0.8933 0.1067 

4 0.8943 0.1067 0.8048 0.1952 0.9444 0.0556 

5 0.9444 0.0556 0.8932 0.1068 0.9718 0.0282 

Note: When the value larger than 0.95 is found, the iteration stops. 
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The third test starts to set conditional probabilities as level three. The prior 

and conditional probabilities are as follows: 

Prior probability 

Conditional probability: 

p(Evid 1 Potential V) 

[true= 0.5 false=0.5] 

Parent p (Potential V) 

True 

False 

true 

0.75 

0.25 

false 

0.25 

0.75 

The results of updating prior probabilities with consecutive evidences in 

the full evidence space have been shown in Table 6.12. 

Table 6.12. Updating Prior Probability with Consecutive Full Evidences 

# Prior prob. Estimated posterior prob. of the parent 

variable given 

Posterior probability Zero evidence Full evidence 

of parent 

True False True False True False 

1 0.5 0.5 0.25 0.75 0.75 0.25 

2 0.75 0.25 0.5 0.5 0.9 0.1 

3 0.9 0.1 0.75 0.25 0.9643 0.0357 

Note: When the value larger than 0.95 is found, the iteration stops. 

"Excellent mastery level" has been set at 0.95. If the probability of 

Potential V is larger than 0.95, the learner has mastered this knowledge point 

with excellence. If evidence conditional probability equals 0.6 for true and false, 
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eight runs are required to top 0.95. If evidence conditional probability equals 0.67 

for true and true, only 5 runs are required to top 0.95. If the evidence conditional 

probability equals to 0.75 for true and true, only 3 runs are required to top 0.95. 

This indicates that if conditional probabilities for mastery are set to a higher level, 

updating will occur more quickly than when it is set to a lower conditional 

probability javel. Of course, the assumption is that for each run, positive evidence 

will be instantiated. 

6.3.4.2 One Parent and Two Chi/dren Bayesian Net 

This Bayesian net indicates that two evidence variables support one 

potential variable. If the potential variable receives full positive evidence 

propagation, the potential variable will have a higher posterior probability of 

mastery. Figure 6.7 is a clique taken from the Bayesian network for assessing 

the ANOVA score modal. The a12jk is a potential variable and aj and b_k are 

two evidence variables. There are several possible evidence combinations. Zero 

evidence shows the learner fails to respond to either evidence variable. One true 

and one false for the evidence variables indicates that the student demonstrates 

partial knowledge and skill in responding to evidence variables resulting in mixed 

evidence. Finally, full positive evidence demonstrates that the learner performed 

successfully on both evidence variables. 
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Figure 6.7. One parent with two children Bayesian net model 

Test 1 starts by setting the conditional probabilities at level one (see table 

6.13). The prior and conditional probabilities are as follows. 

Prior probability [true= 0.5 false=0.5] 

The two evidence variables (15)11aj and (16)11b_k have the same conditional 

probability tables. Here, the conditional probability table of (15)11aj is listed. 

Parent node state (a12jk) 

Conditional probability: true false 

p(Evid 1 a12jk ) True 0.60 0.40 

False 0.40 0.60 

The results of updating prior probabilities with consecutive evidences in 

the full evidence space are shown in Table 6.13. 
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Table 6.13. Updating Prior Probability (True = 0.6) with Consecutive Evidences 

for Two Chi/dren Madel 

# Prior prob. Estimated posterior prob. of the parent node given 

Posterior zero evidence One true& one Ali true evidence 

probability of false 

parent 

True False True False True False True False 

1 0.5 0.5 0.3076 0.6923 0.5 0.5 0.6923 0.3077 

2 0.6923 0.3077 0.5 0.5 0.6923 0.3077 0.8350 0.1650 

3 0.8350 0.1650 0.6923 0.3077 0.8350 0.1650 0.9193 0.0807 

4 0.9193 0.0807 0.8350 0.1650 0.9193 0.0807 0.9624 0.0376 

Test 2 sets conditional probabilities as level two. The prior and conditional 

probabilities are as follows: 

Prior probability [true= 0.5 false=0.5] 

Two evidence variables (15)11 aj and (16)11 b_k share the same conditional 

probabilities, here the conditional probability distribution of (15)11 aj is listed 

here as illustration. 

Conditional probability: 

p(Evid 1 a12jk ) True 

False 

Parent p (a12jk) 

true 

0.67 

0.33 

false 

0.33 

0.67 

The results of updating prior probabilities with several rounds of 

consecutive full evidence have been shown in Table 6.14. 
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Table 6. 14. Updating Prior Probability (True = 0.67) with Consecutive Evidence 

for Two Chi/dren Model 

# Prior prob. Estimated posterior prob. of the parent node given 

Posterior zero evidence One true& one Ali true evidence 

probability of false 

parent 

True False True False True False True False 

1 0.5 0.5 0.1952 0.8048 0.5 0.5 0.8048 0.1952 

2 0.8048 0.1952 0.5 0.5 0.8048 0.1952 0.9444 0.0556 

3 0.9444 0.0556 0.8048 0.1952 0.9444 0.0556 0.9859 0.0141 

Test 3 sets conditional probabilities as level three. The prior and 

conditional probabilities are as follows: 

Prior probability [true= 0.5 false=0.5] 

Two evidence variables (15)11aj and (16)11b_k share the sa me 

conditional probabilities, here the conditional probability distribution of (15)11 aj 

is listed here as illustration. 

Conditional probability: 

p(Evid 1 a12jk ) True 

False 

Parent p (a12jk) 

true 

0.75 

0.25 

false 

0.25 

0.75 
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The results of updating prior probabilities with several consecutive 

evidences in full evidence space are shown in Table 6.15. 

Table 6. 15. Updafing Prior Probabilify (True = 0.75) wifh Consecutive Evidences 

for Two Chi/dren Model 

# Prior prob. Estimated posterior prob. of the parent node given 

Posterior zero evidence One true& one Ali true evidence 

probability of false 

parent 

True False True False True False True False 

1 0.5 0.5 0.1 0.9 0.5 0.5 0.9 0.1 

2 0.9 0.1 0.5 0.5 0.9 0.1 0.9898 0.0122 

When the conditional probability of true evidence variables is given and 

true mastery of parent node equals 0.6, the Bayesian net needs four runs to 

reach 0.95 probability. However, as conditional probability of true evidence and 

given mastery is set as 0.67, the net needs only three runs to reach 0.95 

probability. When conditional probability is set to 0.75, only two runs are required 

to reach 0.95 probability. 

The conclusion is almost the same as that for one parent and one child 

modal. As true values of conditional probabilities increase, the updating process 

will occur faster with the lower conditional probabilities. 
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6.3.4.3 One Parent and Three Chi/dren Bayesian Net 

The Bayesian net for one parent and three children was chosen from the 

Bayesian Network for Assessment of the ANOVA score model (see Figure 6.8). If 

a learner knows a and the index j very weil and also knows how to apply j to a, 

the learner is believed to have acquired knowledge segment aj very weil. Figure 

6.8 iIIustrates this situation. 

Figure 6.8. One parent with three children Bayesian net model 

ln this model, the conditional probabilities are identical to previous models. 

The "true and true" conditional probability has been set at the three values 0.6, 

0.67, and 0.75. The first prior probability is still 0.5 to 0.5 for both true and false. 

ln test 1, the "true and true" conditional probability=0.60, "fa Ise and fa Ise" 

conditional probability=0.6 (see Table 6.16). 
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Table 6. 16. Updating Prior Probability (True = 0.6) with Consecutive Evidences 

for Three Chi/dren Model 

# Prior prob. Posterior prob. of potential variables given 

Post prob of Zero evid. One true Two true Ali true evid. 

evid. evid. evid. 

True False True False True False True False True False 

1 0.5 0.5 0.23 0.77 0.4 0.6 0.6 0.4 0.77 0.23 

2 0.77 0.23 0.5 0.5 0.69 0.31 0.83 0.17 0.92 0.08 

3 0.92 0.08 0.77 0.23 0.88 0.12 0.94 0.06 0.97 0.03 

Note. "Evid." is the abbreviation for evidence 

Test 2 is about the prior probability, "true and true" conditional probability 

is 0.67, false and false is 0.67 (see Table 6.17). 

Table 6. 17. Updating Prior Probability (True = 0.67) with Consecutive Evidences 

for Three Chi/dren Model 

# Prior prob. Posterior prob. of potential variables given 

Post prob of Zero evid. One true Two true Ali true evid. 

evid. evid. evid. 

True False True False True False True False True False 

1 0.5 0.5 0.11 0.89 0.33 0.67 0.67 0.33 0.89 0.11 

2 0.89 0.11 0.5 0.5 0.80 0.20 0.94 0.056 0.99 0.01 

Note. "Evid." is the abbreviation for evidence 
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Test 3 is about the conditional probability true and true is 0.75, false and 

false is 0.75 (see Table 6.18). 

Table 6.18. Updating Prior Probability (True = 0.75) with Consecutive Evidences 

for Three Chi/dren Madel 

# Prior prob. Posterior prob. of potential variables given 

Post prob Zero evid. One true Two true Ali true evid. 

of evid. evid. evid. 

T F T F T F T F T F 

1 0.5 0.5 0.036 0.964 0.25 0.75 0.75 0.25 0.964 0.036 

Note. "Evid." is the abbreviation of evidence. T is true and Fis false 

The three net tests show that posterior probability updating speeds up as 

the number of evidence variables increases and the conditional probability is set 

higher. For example, when conditional probability is set at 0.75 prior probability is 

expected to be over 0.95 after one test with full true evidence. 

6.3.4.4 One Parent and Four Children Bayesian Net 

This Bayesian net was created to mimic a clique of the ANOVA score 

modal. One parent potential explanatory variable has four child evidence 

variables. The ideal state is that ail four evidence variables receive positive 

responses. Figure 6.9 shows this situation. 
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Figure 6.9. One parent with four children model 

ln this model the conditional probabilities are set at three levels. The "true 

and true" in the conditional probabilities has been set at values of 0.6,0.67, and 

0.75. The first prior probability is still 0.5 and 0.5 for both true and false. 

The first test is about true and true of the conditional probability =0.60. 

Table 6.19 shows the results. 

Table 6. 19. Updating Prior-Probability (True = 0.6) with Consecutive Evidences 

for Four-Children Model 

No. Evidence Posterior probability of 

potential 

Prior probability:[true=0.5 false= 0.5] True False 

1 zero true evidence, four false evidences 0.1649 0.8351 

2 one true evidence, three false evidences 0.3077 0.6923 

3 two true evidences, two false evidences 0.5 0.5 

4 three true evidences, one false evidence 0.6923 0.3077 

5 four true evidences, zero false evidence 0.8351 0.1649 
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Table 6.19 (continued) 

No. Evidence Posterior probability ot 

potential 

Prior probability:[true=0.8351 talse= 0.1649] True False 

1 zero true evidence, tour taise evidences 0.5 0.5 

2 one true evidence, three taise evidences 0.6924 0.3076 

3 two true evidences, two taise evidences 0.8351 0.1649 

4 three true evidences, one taise evidence 0.9193 0.0807 

5 tour true evidences, zero taise evidence 0.9625 0.0375 

Test 2 is about the conditional probability when true and true is set at 0.67, 

and taise and taise is 0.67 (see Table 6.20). 

Table 6.20. Updating Prior Probability (True = 0.67) with Consecutive Full 

Evidences for Four-Children Madel 

No. Evidence Posterior probability ot 

potential 

Prior probability:[true=0.5 talse= 0.5] True False 

1 zero true evidence, tour taise evidences 0.0556 0.9444 

2 one true evidence, three taise evidences 0.1952 0.8048 

3 two true evidences, two taise evidences 0.5 0.5 

4 three true evidences, one taise evidence 0.8048 0.1952 

5 tour true evidences, zero taise evidence 0.9444 0.0556 
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Table 6.20. (continued) 

No. Evidence Posterior probability ot 

potential 

Prior probability:[true=0.9444 talse= 0.0556] True False 

1 zero true evidence, tour taise evidences 0.5 0.5 

2 one true evidence, three taise evidences 0.8047 0.1953 

3 two true evidences, two taise evidences 0.9444 0.0556 

4 three true evidences, one taise evidence 0.9859 0.0141 

5 tour true evidences, zero taise evidence 0.9965 0.0035 

Test 3 is about the conditional probability true and true is 0.75, and taise 

and taise is 0.75 (see Table 6.21). 

Table 6.21. Updating Prior-Probability (True = 0.75) with Consecutive Evidences 

for Four-Children Model 

No. Evidence Posterior probability ot 

potential 

Prior probability:[true=0.5 talse= 0.5] True False 

1 zero true evidence, tour taise evidences 0.0112 0.9878 

2 one true evidence, three taise evidences 0.1 0.9 

3 two true evidences, two taise evidences 0.5 0.5 

4 three true evidences, one taise evidence 0.9 0.1 

5 tour true evidences, zero taise evidence 0.9878 0.0112 
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The problem space increases in the one-parent-four-child modal. The 

evidence combination is five. As conditional probability levels increase, the range 

of true posterior also increases. For example, in Test 1, the conditional 

probability true and true is set at 0.6; the difference between posterior true 

between zero true-evidence and four true-evidences is 0.6702 (0.8351-0.1649). 

When the conditional probability true and true is set at 0.75, the difference 

between the posterior true between zero true evidence and four true evidence is 

0.9756 (0.9878-0.0122). 

6.3.4.5 Mu/ti Leve/ Mu/ti Clique Bayesian Net Mode/s 

Multi-Ievel and multi-clique complex models will be examined. These 

explorations will help in understanding more complicated models such as the 

ANOVA score model Bayesian network. Multi-Ievel means that more layers are 

counted from the top parent to bottom evidence nodes. Multi-cliques show that 

more than one clique is connected to the up-Ievel parent in a paraI/el fashion. 

Section 6.3.4.5 will include (a) three-Ievel two-clique models, and (b) three-Ievel 

three-clique models. 

Three-Ievel two-clique models have one top parent variable at level 1 and 

two potentials at level 2. Five observable variables at the bottom categorize two 

cliques, one with two evidential variables and another with three. 
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Figure 6.10. Three-Ievel with two cliques Model 

Top_Var is the parent of the net and midA and midB are two potentials. 

There are two cliques connected to top explanatory variable Top_Var: midA and 

midB. "midA" has two evidence nodes and "midB" has three. For each clique, 

evidence space is evidence node number plus one. The entire network evidence 

space is the product of evidence spaces of two cliques. Therefore, the space of 

this network is 3 X 4 = 12. The prior probability has been defined as true and 

false at both 0.5. The conditional probabilities are ail set at p(true 1 true) = 0.67, 

p(truel fa Ise) = 0.33, p(false 1 true) = 0.33, and p(false 1 false) = 0.67. For future 

reference, any one of the four probability combinations may be specified at one 

time. Therefore, by default, prior probabilities for both true and false are set at 

0.5; conditional probabilities for both true and true are set at 0.67. Table 6.22 

displays the distribution of posterior probabilities of potential variables based on 

different evidence instantiated combinations for the model in Figure 10. 

Table 6.22 shows that when ail evidence is false, Top-Var value is 0.2751; 

when ail evidence is true it is 0.7249. An interesting phenomenon is that values 

for each column have a complementary relationship, Le. the values sum to 1, 
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about an imaginary central axis between Rows 6 and 7. For example, in the 

Top_Var true column, the values in Row 1 and Row 12 are complementary. 

Another interesting point is that values show gradually increasing trends from ail 

false evidence to ail true evidence for each true column. 

Table 6.22. Updating Prior Probabilities with Different Combinations of 

Instantiated Evidences for a Three-Ievel Two-Clique Model 

# Evidence of Posterior Probabilities of 

children of 

midA midB midA midB Top Var 

true fa Ise true false true false 

1 FF FFF 0.1682 0.8318 0.0940 0.9060 0.2751 0.7249 

2 FF TFF 0.1832 0.8168 0.2996 0.7004 0.3424 0.6576 

3 FF TIF 0.2079 0.7921 0.6381 0.3619 0.4531 0.5469 

4 FF TTI 0.2255 0.7745 0.8790 0.1210 0.5319 0.4681 

5 TF FFF 0.4545 0.5455 0.1067 0.8933 0.3663 0.6337 

6 TF TFF 0.4803 0.5196 0.33 0.67 0.4422 0.5578 

7 TF TIF 0.5196 0.4803 0.67 0.33 0.5578 0.4422 

8 TF TTI 0.5455 0.4545 0.8937 0.1067 0.6337 0.3663 

9 TI FFF 0.7745 0.2255 0.1210 0.8790 0.4681 0.5319 

10 TI TFF 0.7921 0.2079 0.3619 0.6381 0.5469 0.4531 

11 TI TIF 0.8168 0.1832 0.7004 0.2996 0.6576 0.3424 

12 TI TTI 0.8318 0.1682 0.9060 0.0940 0.7249 0.2751 

Note: T indicates that anode is true; F indicates anode is false. 
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Figure 6.11 shows a three-Ievel three-clique model. It has one top parent 

variable at level1 and three level2 potentials: Middle_A, Middle_B and 

Midlle_C. Nine observable variables at bottom, level 3, are categorized into 

three cliques with 2, 3 and 4 evidence nodes respectively. Evidence node 

Figure 6.11. Three-Ievel with three cliques modal. 

Figure 6.11 shows that the entire evidence space is a product of the 

evidence spaces of three cliques. The evidence space for each clique is the 

number of cliques plus one. Therefore, the space of this network is 3 X 4 X 5 = 

60. In order to make the report briefer, several critical and typical values are 

shown in Table 6.23. 

A complementary relationship about the central axis still exists in this 

modal. It can be seen between numbers 1 and 60, numbers 2 and 59, numbers 

29 and 32, and numbers 30 and 31. Another interesting point is that as the 

number of evidence variables increase, the column values between adjacent 

items decreased. For example, in Table 6.22, the difference between Row 1 and 

2 in column Top-Var true is 0.0673 (0.3424-0.2751); while in Table 6.23 the 
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difference between Row 1 and 2 in Column Top_potential true is 0.0305 (0.1995-

0.1690). This suggests that differences will decrease as the number of evidence 

variables increases. As the number of evidence variable approaches infinity, 

theoretically, potential variables will progress from discrete variables to become 

almost continuous. 

Table 6.23. Updating Prior Probabilities with Different Combinations of 

Instantiated Evidences for a Three-Ievel with Three-Clique Madel 

Posterior Probabilities of 

midA midB midC midA midB midC Top Potential 

true false true false true false true false 

(1) FF FFF FFFF 0.1445 0.8555 0.0792 0.92080.0414 0.9586 0.1690 0.8310 

(2) FF FFF TFFF 0.1513 0.8487 0.0834 0.9166 0.15130.8487 0.1995 0.8005 

(3) FF FFF TTFF 0.1682 0.8318 0.0940 0.9060 0.42350.5765 0.2751 0.7249 

(29)TF TFF TTT FO.5160 0.4840 0.3619 0.6381 0.7921 0.2079 0.54690.4531 

(30)TF TFF TTTT 0.5329 0.4671 0.3771 0.6229 0.9401 0.0599 0.5967 0.4033 

(31)TF TTF FFFF 0.4671 0.5329 0.6229 0.3771 0.05990.9401 0.4033 0.5967 

(32)TF TTF TFFF 0.4840 0.5160 0.6381 0.3619 0.2079 0.7921 0.4531 0.5469 

(58)TT TIT TTFF 0.8318 0.1682 0.9060 0.0940 0.5765 0.42350.72490.2751 

(59)TT TIT TTTF 0.8487 0.1513 0.9166 0.0834 0.8487 0.15130.80050.1995 

(60)TT TIT TTTT 0.8556 0.1445 0.9208 0.0792 0.9586 0.04140.83100.1690 

Note. The node is designated T when true and designated F when taise. 
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6.3.4.6 Mixed Model Combining Potential Nodes and Evidence Nodes as 

Chi/dren 

The model being used to assess the ANOVA score model problem has 

many mixed models including two or more potential variables connected in 

parent-child relations. These potential variables have their own evidence 

variables. From the entire assessment network model (Figure 6.4), one mixed 

model has been selected for analysis. 

E 

• __ .~ ...... Ivlnde x 

Figure 6.12. A mixed model with two potential variables and multi-evidences 

The mixed model in Figure 6.12 consists of two connected potential 

variables in parent-child relations. They have two and three evidence variables 

respectively. The evidence space of this network is calculated in two steps. In 

Step 1, evidence nodes 18 and 22 are considered together with three 

combinations (TT, TF, FF). In Step 2, evidence nodes 19,20, and 21 are 
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considered with four combinations (TTI, TIF, TFF, FFF). The product of Steps 1 

and 2 is twelve different combinations. Updating results are shown in Tables 6.24 

and 6.25. 

Table 6.24. Updating Prior Probabilities with Consecutive Evidences for Mixed 

Model 

Evidences of Posterior Probability of 

(18) (22) (19) (20) (21) Error-ei(jk) 15-i(jk) 

True False True False 

F F F F F 0.1230 0.8770 0.0728 0.9272 

F F F F T 0.1613 0.8387 0.2444 0.7556 

F F F T T 0.2343 0.7657 0.5714 0.4286 

F F T T T 0.2956 0.7044 0.8461 0.1539 

F T F F F 0.3663 0.6337 0.1067 0.8933 

F T F F T 0.4422 0.5578 0.3300 0.6700 

F T F T T 0.5578 0.4422 0.6700 0.3300 

F T T T T 0.6337 0.3663 0.8933 0.1067 

T T F F F 0.7044 0.2956 0.1539 0.8461 

T T F F T 0.7657 0.2343 0.4286 0.5714 

T T F T T 0.8387 0.1613 0.7556 0.2444 

T T T T T 0.8770 0.1230 0.9272 0.0728 

Note: The node is designated T when true and designated F when taise. 
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Table 6.25. Updating Prior Probabilities with Consecutive Evidences for Mixed 

Model * 

Evidences of Posterior Probability of 

(18) (22) (19) (20) (21) Error-ei(jk) 15-i(jk) 

True False True False 

F F F F F 0.2533 0.7467 0.1598 0.8402 

F F F F T 0.4874 0.5126 0.4395 0.5605 

F F F T T 0.7588 0.2412 0.7637 0.2363 

F F T T T 0.8981 0.1019 0.9302 0.0698 

F T F F F 0.5831 0.4169 0.3558 0.6442 

F T F F T 0.7968 0.2032 0.6948 0.3052 

F T F T T 0.9284 0.0716 0.9037 0.0963 

F T T T T 0.9732 0.0268 0.9748 0.0252 

T T F F F 0.8522 0.1478 0.5156 0.4844 

T T F F T 0.9417 0.0583 0.8144 0.1856 

T T F T T 0.9816 0.0184 0.9476 0.0524 

T T T T T 0.9934 0.0066 0.9868 0.0132 

Note: T indicates the node is true, F indicates the node is taise. 

*potential nodes: Error-iljk) with the posterior probabi/ities starting at true=O. 8770 and 

false=0.1230; 15-iljk) with the posterior probabilities starting at true=O. 9272; false=0.0728) 

Evidence states start from ail false states in which the posterior probability 

for Error-ei(jk) being true is 0.1230 and for 15-i(jk) is 0.0728. As the number of 

true states increases, the probabilities of true for these potentials increases to 

0.8770 for Error-ei(jk) and to 0.9272 for 15-i(jk). Another interesting fact is an 

"inversely complementary phenomenon", where any summation of probabilities 

of the combination is 1. In the second run, this phenomenon does not exist 
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because the starting parent and potential probabilities are not symmetrical (true 

0.5 to false 0.5). 

Section 6.3.4.6 has discussed the fundamental structures of Bayesian net 

from one-parent one-child structures, to one-parent four-child structures. 

Following that, complex Bayesian net models were explored. In fact, two models 

are involved: three-Ievel two-clique models and three-Ievel three-clique models. 

These two models reveal that the top potential probability can receive sufficient 

updating as the number of evidence variables and the number of cliques 

increase. Finally mixed models have two connected potentials. This submodel 

indicates the complexity of transferring knowledge from one state to another. In 

other words, assessment of the ability to complete a knowledge task becomes 

more robust as the Bayesian net becomes more complicated and the number of 

cliques and evidence variables increases if they are efficiently validated. 

6.3.5 Assessment Models Used to Examine the Knowledge and Ski/ls Underlying 

Mastery of ANOVA Score Models 

The basic purpose of the assessment model is to examine the ability of 

learners to manage ANOVA score model problems. The model assesses 

knowledge and skills with respect to procedural and semantic process 

explanation. Bayesian networks, which express these assessment purposes, 

have two phases which can be integrated into a unified modal. Three practical 

models will be tested and named for top parent variable codes: ModelEquation, 
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ScoreModel, and ANOVAScoreModel2way. Before applying the models to 

survey data, their characteristics will be examined. 

6.3.5.1 The Mode/Equation Sub-Nefwork Assessment of Performance Pro cess 

The ModelEquation phase is a part of the ANOVA score assessment 

model. It has 38 variables: 12 potential variables and 26 evidence variables. The 

maximum node layer is five. There are 5 connecting nodes from top parent node 

to bottom evidence nodes. The minimum number of node layers is 2, e.g. from 

ModelEquation to "=", the equal sign. There are two evidence nodes in the 

smallest clique "12jk" and 3 evidence nodes in the largest clique "lndexValues." 

Figure 6.13 displays the detailed structure of this model. 

ln this model, the prior probability of the top parent variable being true is 

0.5, and being false is 0.5. This assumes that in the absence of evidence, prior 

probability reflects complete uncertainty with respect to mastery of the ANOVA 

score model. Conditional probabilities are ail set for "true given true" at 0.67; 

"false given false" at 0.67. This probability is satisfied by an assessment 

judgment that, give knowledge needed to complete the task represented by a 

child node, learners have a two-thirds chance of completing the specifie task 

component. 
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Figure 6.13 ModelEquation phase to assess performance process 

The problem space is designated by: 

This is a huge problem space. In order to simulate evidence patterns 

instantiated in practice, a random sampling method was applied to test evidence 

states from one true evidence observation to 26 true evidence observations. 

When k true evidence observations were chosen, 26--k false evidences were 

automatically produced. After sampling, random evidence combinations were 

recorded (see Appendix D). For example, one true evidence instantiation with 25 

false evidence instantiations was defined by randomly selecting the number 9 for 

the number of true evidence nodes. As soon as the evidence series was 

determined, the potential nodes for assessment were chosen. 
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Tab/e 6.26. Updating Probabilities of Random Evidence combinations for 
Mode/Equation Phase 

No. LHS alphaj beta_k GammaOk) Error_eiOk) IndexValues ModelEquation 

1 0.08 0.22 0.07 0.09 0.08 0.07 0.09 

2 0.11 0.07 0.22 0.09 0.08 0.07 0.10 

3 0.11 0.22 0.07 0.13 0.08 0.07 0.10 

4 0.12 0.06 0.06 0.08 0.17 0.31 0.37 

5 0.30 0.07 0.07 0.12 0.27 0.58 0.25 

6 0.11 0.24 0.24 0.14 0.15 0.08 0.14 

7 0.34 0.54 0.07 0.14 0.11 0.25 0.18 

8 0.27 0.36 0.36 0.72 0.37 0.08 0.16 

9 0.19 0.25 0.25 0.39 0.11 0.57 0.22 

10 0.61 0.68 0.14 0.74 0.49 0.09 0.25 

11 0.55 0.29 0.59 0.43 0.64 0.12 0.51 

12 0.57 0.69 0.69 0.24 0.15 0.37 0.56 

13 0.18 0.69 0.69 0.25 0.80 0.26 0.21 

14 0.48 0.16 0.90 0.77 0.83 0.38 0.60 

15 0.50 0.74 0.74 0.84 0.21 0.61 0.35 

16 0.82 0.92 0.75 0.85 0.21 0.10 0.29 

17 0.90 0.65 0.65 0.71 0.54 0.74 0.78 

18 0.44 0.78 0.93 0.87 0.88 0.65 0.48 

19 0.83 0.77 0.93 0.72 0.66 0.76 0.84 

20 0.89 0.44 0.92 0.70 0.66 0.93 0.89 

21 0.92 0.93 0.93 0.53 0.67 0.93 0.90 

22 0.88 0.93 0.93 0.64 0.91 0.69 0.63 

23 0.59 0.94 0.94 0.92 0.91 0.89 0.60 

24 0.92 0.73 0.91 0.88 0.92 0.93 0.90 

25 0.89 0.94 0.94 0.92 0.92 0.93 0.90 

26 0.92 0.94 0.94 0.91 0.92 0.93 0.91 
Note: No. indicates the number of evidence combinations. For details on combinations, refer to 
Appendix D. 
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Given ail the explanatory nodes in the network, seven were selected: LHS, 

alphaj, beta_k, GammaOk), Error_eiOk), IndexValues, and ModelEquation, 

These potential nodes reflect most of the knowledge components for assessing 

performance of the ANOVA score model problem task. 

JavaBayes with incremental evidence combinations (each step increases 

positive evidence by one node) was used to update posterior probabilities of 

potential variables. The results are in Table 6.26. 

Table 6.26leads to several conclusions. First, as the number of 

instantiated evidence nodes increases, their probability values gradually 

increase. However, the probability values of potential are non-monotonically 

increasing. 

Second, increases of instantiated evidences do not necessarily increase 

the entire performance level. 

Third, the posterior network probabilities tend to become more stable as 

the number of instantiated evidences nodes increases. 

Fourth, when the number of instantiated evidence nodes approaches 20, 

network posterior probabilities gradually tend towards a stable state. Probability 

values in each column almost maintain a monotonous increase except for 

random fluctuation due to step-wise random sampling of positive nodes. 

Random incremental conditions in network node performances indicate 

that learners can, in principle, master the ANOVA score model problem 

incrementally. Students must master at least 76.92% (20/26) of knowledge and 
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skill nodes for their ability to solve the problem to become robust. Students 

demonstrate excellent mastery as they approach 92.30% (24/26). 

6.3.5.2 The ScoreModel Sub-Network: Assessment of Semantic Explanation 

The ScoreModel phase is the second part of the ANOVA score model 

assessment network. This submodel consists of 28 nodes: 9 potential variables 

and 19 evidence variables. The longest chain consists of four levels of nodes. 

The sub-network structure is in Figure 6.14. 

ln this model, the prior probability that the top parent node variable was 

true was set at 0.5 and the prior probability for false was also set at 0.5. This 

assumes that the prior probability reflects an assumption of complete uncertainty 

about mastery of the ANOVA score model in semantic explanation, in the 

absence of evidenc~ from observed performance variables. The conditional 

probability that a child node is true given a true parent node was again set at 

0.67; and the conditional probability for fa Ise was also set at 0.67. These 

probabilities satisfy the assessment judgment that learners have a two-thirds 

chance of completing this problem component, given the knowledge 

corresponding to its Bayesian parent node. 

Before examining evidence effects, the problem space will be examined. 

Formula 6-23 gives the number of possible evidence space patterns. 

~ r r 1 1 2 2 3 3 k k 19 19 L.J2 C19 = 2 C19 + 2 C19+2 C19 + ... + 2 C19 + ... + 2 C19 (Formula 6-23) 
r=1 
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Figure 6.14. ScoreModel phase to assess semantic explanations 

The instantiated evidence space is enormous. The sa me sampling method 

used for as the ModelEquation sub-network was used here, and a similar table of 

random evidence combinations was generated (see appendix E). For example, 

one true evidence instantiation with 25 false evidence instantiation was obtained 

by randomly selecting the number 31 for the number of true evidence nodes. The 

selected potential nodes to be assessed were Score, GrandMean, Ma i neffectA , 

MainEffectB, InteractAB, and Error. The updating probabilities of potential nodes 

were obtained based on the provided evidence combinations. Results are given 

in Table 6.27. 
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Table 6.27. Updating Probabilities of Random Evidence Combinations for 

ScoreModel 

No. Score GrandMean MainEffectA MainEffctB InteraAB Error ScoreModel 
1 0.08 0.12 0.14 0.14 0.07 0.07 0.14 

2 0.02 0.37 0.15 0.40 0.08 0.07 0.14 

3 0.08 0.17 0.16 0.16 0.26 0.09 0.19 

4 0.08 0.40 0.14 0.14 0.08 0.57 0.18 

5 0.13 0.21 0.43 0.17 0.10 0.33 0.52 

6 0.12 0.42 0.17 0.74 0.10 0.27 0.45 

7 0.26 0.14 0.48 0.48 0.63 0.25 0.21 

8 0.39 0.54 0.46 0.19 0.31 0.38 0.64 

9 0.86 0.17 0.46 0.19 0.62 0.58 0.39 

10 0.71 0.48 0.48 0.77 0.19 0.64 0.68 

11 0.73 0.55 0.82 0.82 0.40 0.15 0.74 

12 0.88 0.59 0.52 0.23 0.67 0.91 0.55 

13 0.71 0.51 0.83 0.83 0.72 0.66 0.71 

14 0.73 0.82 0.83 0.57 0.71 0.90 0.75 

15 0.97 0.79 0.57 0.83 0.91 0.67 0.51 

16 0.74 0.87 0.86 0.86 0.75 0.93 0.81 

17 0.98 0.87 0.85 0.85 0.75 0.77 0.86 

18 0.92 0.88 0.86 0.86 0.93 0.93 0.86 

19 0.98 0.88 0.87 0.87 0.93 0.93 0.87 

Note: No. indicates the number of evidence combination. For details on combinations, refer to 

Appendix E. 

ScoreModel network results are similar to those obtained with 

ModelEquation network. As the updated posterior probability values increase, 

some instability and fluctuations in probabilities accompany the process. When 
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the number of instantiated evidence nodes approaches 17, the situation begins 

to change. When the network reaches 17, 18, or 19 true instantiated evidence 

nodes, the updated posterior probabilities indicate a robustly increasing trend. 

Quantitatively, if 89.47% (17/19) of knowledge nodes are mastered, a robust 

mastery level is established. In the case of the ModelEquation sub-network, only 

76.92% of knowledge nodes have be mastered to establish robust mastery. The 

ScoreModel network requires mastery of 12.55% more nodes to attain a stable 

mastery javel. This phenomenon indicates that a robust assessment result 

requires mastery of more components of the entire knowledge network when the 

total number of knowledge nodes is smaller. This implicitly suggests that we 

need to consider the size of the network when we require robust assessment 

results. 

6.3.5.3 The Full Assessment Model to Examine both Performance and Semantic 

Explanation to ANOVA Score Model Leaming 

The full assessment model is composed of the ModelEquation phase and 

the ScoreModel phase. The purpose of the assessment is to examine the 

mastery of knowledge and skills for solving an ANOVA score model problem. 

This model has 68 evidential and potential variables in ail: 1 top level node, 22 

potential variable nodes, and 45 evidence variable nodes. The longest chain 

spans 5 nodes. The structure is iIIustrated in Figure 6.15. 
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Figure 6.15. The full assessment model to examine the performance and 

semantic explanations. 

Formula 6.24 represents the evidence space. 

This is a very large evidence space. In order to test the full assessment 

model, a sampling method comparable to that used for the score model was 

applied, and similarly a table of random evidence combinations was written (see 

appendix F). The potential nodes for estimation chosen were: ModelEquation 

(MEq), ScoreModel (SMo), LHS, RHS, IndexValues (IVa), Score, 

ScoreDecompostion (ScDe) and ANOVAScoreModel2way (ASMo). 

The prior probabilities of ASMo for true and false were both 0.5. 

Conditional probabilities are set at 0.67 for true and true combination. 
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Table 6.28. Updafing Probabilities of Random Evidence Combinations for Full 
Model 

# Top node ModelEquation Top Node Score Model Top node of joined 
(Performance Model) (Semantic Model) network 

Meq LHS RHS IVa Smo Score Sc De ASMo 
1 0.08 0.08 0.09 0.07 0.12 0.07 0.07 0.25 

2 0.08 0.08 0.09 0.07 0.11 0.02 0.07 0.25 

3 0.08 0.08 0.09 0.07 0.13 0.07 0.11 0.26 

4 0.08 0.10 0.09 0.07 0.12 0.02 0.11 0.26 

5 0.08 0.08 0.10 0.07 0.12 0.02 0.13 0.26 

6 0.12 0.26 0.13 0.07 0.17 0.24 0.17 0.28 

7 0.21 0.10 0.12 0.83 0.17 0.08 0.25 0.31 

8 0.09 0.10 0.15 0.07 0.11 0.02 0.09 0.26 

9 0.14 0.32 0.11 0.08 0.37 0.11 0.13 0.35 

10 0.12 0.08 0.11 0.23 0.43 0.11 0.32 0.37 

11 0.12 0.11 0.11 0.23 0.33 0.60 0.41 0.33 

12 0.14 0.11 0.22 0.24 0.17 0.25 0.11 0.29 

13 0.45 0.36 0.23 0.33 0.26 0.09 0.55 0.41 

14 0.33 0.15 0.20 0.10 0.47 0.34 0.15 0.44 

15 0.22 0.76 0.18 0.09 0.26 0.27 0.43 0.34 

16 0.26 0.47 0.41 0.28 0.19 0.25 0.15 0.33 

17 0.41 0.13 0.36 0.32 0.20 0.25 0.15 0.38 

18 0.14 0.17 0.12 0.24 0.42 0.63 0.68 0.37 

19 0.43 0.43 0.76 0.63 0.16 0.08 0.17 0.37 

20 0.21 0.18 0.60 0.09 0.53 0.36 0.35 0.42 

21 0.64 0.60 0.60 0.39 0.35 0.30 0.63 0.50 

22 0.63 0.20 0.59 0.69 0.48 0.65 0.71 0.53 

23 0.28 0.55 0.24 0.28 0.75 0.73 0.75 0.51 

24 0.56 0.47 0.77 0.88 0.67 0.70 0.39 0.57 

25 0.26 0.47 0.33 0.28 0.46 0.64 0.77 0.42 
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Table 6.28. (continuted) 

# Top node ModelEquation Top Node Score Model Top node of joined 
(Performance Model) (Semantic Model) network 

Meq LHS RHS IVa Smo Score ScDe ASMo 

26 0.78 0.64 0.46 0.91 0.76 0.91 0.42 0.66 

27 0.68 0.68 0.34 0.71 0.40 0.62 0.45 0.52 

28 0.80 0.65 0.57 0.92 0.76 0.91 0.42 0.67 

29 0.79 0.65 0.82 0.74 0.46 0.87 0.40 0.58 

30 0.77 0.32 0.71 0.91 0.79 0.92 0.58 0.67 

31 0.79 0.82 0.88 0.44 0.59 0.89 0.78 0.62 

32 0.28 0.25 0.50 0.28 0.84 0.98 0.84 0.54 

33 0.68 0.89 0.78 0.90 0.59 0.89 0.82 0.58 

34 0.77 0.39 0.75 0.91 0.47 0.64 0.64 0.57 

35 0.89 0.89 0.87 0.93 0.42 0.32 0.79 0.60 

36 0.87 0.89 0.83 0.77 0.88 0.93 0.92 0.73 

37 0.80 0.71 0.66 0.74 0.88 0.98 0.90 0.71 

38 0.91 0.92 0.89 0.93 0.60 0.89 0.78 0.65 

39 0.91 0.92 0.83 0.93 0.87 0.93 0.89 0.74 

40 0.92 0.92 0.91 0.93 0.82 0.92 0.66 0.73 

41 0.86 0.73 0.90 0.76 0.88 0.98 0.89 0.72 

42 0.88 0.68 0.90 0.93 0.89 0.98 0.92 0.73 

43 0.92 0.92 0.91 0.93 0.88 0.93 0.93 0.74 

44 0.92 0.92 0.91 0.93 0.89 0.98 0.93 0.75 

45 0.92 0.92 0.91 0.93 0.89 0.98 0.93 0.75 

Table 6.28 shows that knowledge and skilllevels of the full assessment 

model network display in two stages. Stage 1 is basic mastery, which is above 

Row 36. The results will be found in column ASMo which stands for the general 
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problem solving javel. In this column, except for Row 38 which is 0.65, ail values 

increase in a stable fashion. Stage 2 approaches excellent mastery which is 

above Row 41. ASmo keeps increasing with stability. Quantitatively, Level1 is 

greater than 80% of the nodes (36/45); the advanced level is above 91.11 % of 

the nodes (41/45). These results indicate that the network can provide stable 

benchmarks for assessing mastery levels of problem solvers. 

The fundamental structures of Bayesian nets contained in the ANOVA 

score model network have been explored. This covers simple cliques including 

one-parent one-child, one-parent two-child, one-parent three-child, and one­

parent four-child cliques. Multi-Ievel cliques and complex Bayesian networks 

were also examined. The features acquired from these net segments are very 

useful for understanding genuine Bayesian assessment systems developed for 

recognizing knowledge components and skills. Finally, a two-parent parent-child 

relation compound model was examined and an inverse symmetry was 

observed. 

Following this, three assessment networks were tested by sampling 

evidence instantiated from possible evidence spaces. The first two networks 

used simulated data to examine assessments of performance and semantic 

explanations for solving ANOVA score model problems independently. The 

complete model, a combination of these two sub-networks was also tested using 

simulated data to assess performance and semantic explanations. In Chapter 7, 

these networks will be applied to data to examine the knowledge and skills of 20 

students learning to solve an ANOVA score model problem. 
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CHAPTER SEVEN: APPLICATION OF THE BAYESIAN NETWORK TO 

COGNITIVE ASSESSMENT OF STUDENTS' PERFORMANCE 

Chapter seven will present the frequency distributions of participant 

observed performance scores and will introduce estimated log-odds of mastery 

as measures of student proficiency, that is, of their progress toward achieving 

mastery of component skills and knowledge in the domain of performance. 

Sections 7.1 to 7.5 examine a natural way for representing estimated posterior 

probabilities as transformations of odds ratios to log odds ratios. Section 7.1 

reports the frequency distribution and descriptive statistics of observed 

participants' performance scores. Section 7.2 analyzes model estimates of log 

odds of mastery for high-Ievel explanatory variables in the Bayesian mode!. 

Section 7.3 focuses on log odds ratios for mastery of explanatory variables 

corresponding to complex net-cliques in the hierarchical mode!. Section 7.4 

investigates relationships of log odds ratio estimates of proficiency to external 

variables. Section 7.5 examines correlations between raw scores and log odds 

ratios. Finally, section 7.6 provides an analysis of robustness and reports results 

of a global neighbourhood robustness analysis with E-contaminated probabilities 

that produce upper and lower bound posterior probability estimates. The analysis 

uses the JavaBayes program and robustness algorithm (Cozman, 1999). 
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7.1 Frequency Distribution of Participants' Observed Performance Scores and 

Estimated Log-Odds of Mastery (ELOM) 

Twenty intermediate statistics students voluntarily took part in this study of 

building an assessment modal. Ali students registered in an intermediate 

statistics course had opportunities to solve ANOVA problems. They had time and 

opportunity to access an on-Ii ne tutoring system to assist their learning 

(Frederiksen and Donin, 2005). Participants with two types of background 

experience defined the two external variables used to predict log odds of mastery 

of ANOVA score model knowledge and problem solving skills (in Section 7.4). 

Section 7.1 reports the pooled frequency distributions of (a) observed participant 

performance scores, and (b) estimates of participant log-odds of mastery based 

on using their new performance scores as evidence variables to update Bayesian 

network estimates of posterior probabilities of explanatory variables (model 

constructs). 

7. 1. 1 Frequency Distribution of Participant's ObseNed Performance Scores 

The following is a summary of the observed scores of the 20 participants 

on the performance and semantic expia nation components of the ANOVA score 

model task (see Table 7.1). The scores indicate the distribution of student 

performance and semantic expia nation scores as in a traditional test. 
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Table 7.1. Participants Performance and Semantic Explanation Score 

Student No. Performance Semantic Explanation Total 

1 6 6 12 

2 23 7 30 

3 15 5 20 

4 17 5 22 

5 12 4 16 

6 23 12 35 

7 23 3 26 

8 23 5 28 

9 22 7 29 

10 23 6 29 

11 19 5 24 

12 23 5 28 

13 23 4 27 

14 23 6 29 

15 6 2 8 

16 23 6 29 

17 23 7 30 

18 23 5 28 

19 23 6 29 

20 8 4 12 

Table 7.2 presents average student scores on performance and semantic 

explanation subtasks. Standard deviation, minimum and maximum values are 

also reported. Distribution of data was not expected to conform closely to a 

normal distribution because there were only 20 students in the sample. 
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Table 7.2 Descriptive Statistics of Performance and Semantic Explanations 

Variable N Mean Ste Dev Minimum Maximum 

Performance 20 19.00 6.16 6.00 23.00 

Explanation 20 5.45 1.85 2.00 12.00 

Total proficiency 20 24.55 7.23 8.00 35.00 

Tables 7.1 and 7.2 present score distributions of 20 participants regarding 

performance, semantic explanations, and general proficiency scores. In the 

performance phase, minimum, maximum and mean values are 6.00, 23.00, and 

19.00 respectively. In the semantic explanation, minimum, maximum, and mean 

values are 2.00, 12.00, and 5.45 respectively. For general proficiency, minimum, 

maximum and mean values are 8.00, 35.00, and 24.55 respectively. The largest 

standard deviation is for general proficiency and the smallest for explanations. 

The raw scores (shown in Tables 7.1) consist of the total number of 

Solution Feature components scored as complete in scoring students. Student 

scores were treated as if they had taken a conventional test and received raw 

total scores reported above. However, a model-based assessment is based on 

an organized knowledge and skill-based assessment framework. The 

assessment takes the form of estimates of posterior likelihoods that students 

have mastered the knowledge and skill components represented by explanatory 

variable nodes in the Bayesian assessment network. This estimate is based on 

evidence variable nodes that reflect scored Solution Feature components 

reflected in student performance. Evidence variables have different weights 

based on their network positions. A knowledge or skill component is not an 
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isolated piece of data; it is closely related to other knowledge and skill network 

components. The refore, raw scores cannot properly discriminate student mastery 

of different knowledge and skill components which must be considered as model­

based knowledge network components. 

7. 1.2 Log-Odds of Mastery as Measures of Proficiency 

Raw scores on performance and semantic explanation subtasks identified 

in the model-based assessment framework do not adequately explain the student 

performance and behaviour as they solve the ANOVA score model problem. Raw 

scores are based on su ms of values of evidence variables. In a Bayesian 

network, network variables can be used to infer posterior probabilities by 

updating the network using instantiated evidence variables. 

For example, as defined in Section 6.2.6.2, for the top-Ievel parent, the 

variable space was defined as having two mutually exclusive states: (a) mastery, 

where students have mastered the ANOVA score model task; and (b) non­

mastery, where students have not mastered the ANOVA score model task. The 

prior probabilities of mastery and non-mastery sum to one. The odds ratio or the 

probability of mastery divided by the probability of non-mastery is a measure of 

the probability of mastery relative to the probability of non-mastery. 

The statistical distribution of observed responses is usually assumed to be 

binomial (or multinomial) in terms of option spaces for each individual evidence 

variable (Le. dichotomous or polytomous response options). Two posterior 

probabilities in odds ratios are obtained for each explanatory variable after 
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updating the network based on evidence variables. Posterior probabilities are 

usually assumed to have a Dirichlet prior distribution (Fredette & Angers, 2002). 

Under these assumptions, asymptotic distributions of log odds ratios have been 

studied and the unit normal density has been found to approximate this 

distribution (Fredette & Angers, 2002). 

Tables 7.3,7.4 and 7.5 present several measures of student proficiency 

based on (a) procedural performance (7.3), (b) semantic explanations (7.4), and 

(c) general performance on the ANOVA score model tasks (7.5). In Table 7.3, 

Student 1 has an estimated posterior probability of mastery on ModelEquation 

sub-task of 0.4399, an odds ratio of 0.7854, and a log odds ratio of -0.2415. 

Student 2 has an estimated posterior probability on ModelEquation of 0.7653, an 

odds ratio of 3.2608, and a log odds ratio of 1.1820. If the posterior probability of 

mastery is used as a measure of proficiency, a difference of 0.3254 is obtained 

for Student 1 and Student 2. However, these two probabilities do not follow a 

normal distribution, and the distribution of their difference is complex. When log 

odds ratios are used as measures of proficiency (-0.2415 and 1.1820 

respectively), the difference is 1.4235. Log odds scores follow an approximately 

normal distribution in the population, and differences are meaningful since log 

odds ratios constitute an interval scale. Thus, differences in log odds of mastery 

can be interpreted as differences in proficiency. 

Advantages of using the log odds measure can be seen in comparing 

student performance on ModelEquation model, ScoreModel model, and 
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ANOVAScoreModel-2way. The scores are presented in Tables 7.3,7.4 and 7.5 

respectively. 

Table 7.3. Raw Scores, Model-estimated Odds Ratios, and Log Odds Ratios of 

Procedural Performance Construct (ModelEquation Sub-task Model) 

ID Raw Estimated Estimated Odds Log Odds 

Score posterior posterior Ratios Ratio 

probability of probability of 

Mastery Non-mastery 

1 6 0.4399 0.5601 0.7854 -0.2415 

2 23 0.7653 0.2347 3.2608 1.1820 

3 15 0.6422 0.3578 1.7949 0.5849 

4 17 0.6188 0.3812 1.6233 0.4845 

5 12 0.5142 0.4858 1.0585 0.0569 

6 23 0.7654 0.2346 3.2626 1.1825 

7 23 0.7654 0.2346 3.2626 1.1825 

8 23 0.7654 0.2346 3.2626 1.1825 

9 22 0.7653 0.2347 3.2606 1.1819 

10 23 0.7654 0.2346 3.2626 1.1825 

11 19 0.7549 0.2451 3.0780 1.1243 

12 23 0.7654 0.2346 3.2626 1.1825 

13 23 0.7654 0.2336 3.2626 1.1825 

14 23 0.7654 0.2346 3.2626 1.1825 

15 6· 0.1800 0.8200 0.2195 -1.5164 

16 23 0.7654 0.2346 3.2626 1.1825 

17 23 0.7654 0.2346 3.2626 1.1825 

18 23 0.7654 0.2346 3.2626 1.1825 

19 23 0.7654 0.2346 3.2626 1.1825 

20 8 0.1734 0.8266 0.2098 -1.5616 
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Table 7.4. Raw Score and Odds Ratio of Semantic Explanation (ScoreModel 
Sub-Task Model) 

ID Raw Estimated Estimated Odds Log Odds 

Score posterior posterior Ratios Ratio 

probability of probability of 

Mastery Non-mastery 

1 6 0.4398 0.5602 0.7851 -0.2419 

2 7 0.1914 0.8086 0.2367 -1.4410 

3 5 0.1600 0.8400 0.1905 -1.6581 

4 5 0.1550 0.8450 0.1834 -1.6961 

5 4 0.1550 0.8450 0.1834 -1.6961 

6 12 0.4371 0.5629 0.7765 -0.2530 

7 3 0.1434 0.8566 0.1674 -1.7874 

8 5 0.1551 0.8449 0.1836 -1.6950 

9 7 0.2936 0.7064 0.4156 -0.8780 

10 6 0.1710 0.8290 0.2063 -1.5784 

11 5 0.1550 0.8450 0.1834 -1.6961 

12 5 0.1550 0.8450 0.1834 -1.6961 

13 4 0.1449 0.8551 0.1695 -1.7749 

14 6 0.1609 0.8391 0.1918 -1.6513 

15 2 0.1443 0.8557 0.1686 -1.7802 

16 6 0.1710 0.8290 0.2063 -1.5784 

17 7 0.2205 0.7795 0.2829 -1.2627 

18 5 0.1551 0.8449 0.1836 -1.6950 

19 6 0.1710 0.8290 0.2063 -1.5784 

20 4 0.1420 0.8580 0.1655 -1.7988 
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Table 7.5. Raw Score and Odds Ratio of Pooled Mastery (ANOVA 
ScoreModel2way) 

ID Raw Estimated Estimated Odds Ratios Log Odds 

Score posterior posterior Ratios 

probability of probability of 

Mastery Non-mastery 

1 12 0.3547 0.6453 0.5497 -0.5984 

2 30 0.4847 0.5153 0.9406 -0.0612 

3 20 0.4312 0.5688 0.7581 -0.2769 

4 22 0.4216 0.5784 0.7289 -0.3162 

5 16 0.3838 0.6162 0.6228 -0.4735 

6 35 0.5694 0.4306 1.3223 0.2794 

7 26 0.4643 0.5357 0.8667 -0.1431 

8 28 0.4717 0.5283 0.8929 -0.1133 

9 29 0.5171 0.4829 1.0708 0.0684 

10 29 0.4774 0.5226 0.9135 -0.0905 

11 24 0.4680 0.5320 0.8797 -0.1282 

12 28 0.4717 0.5283 0.8929 -0.1133 

13 27 0.4681 0.5319 0.8801 -0.1277 

14 29 0.4739 0.5261 0.9008 -0.1045 

15 8 0.2817 0.7183 0.3928 -0.9345 

16 29 0.4775 0.5225 0.9139 -0.0900 

17 30 0.4950 0.5050 0.9802 -0.0200 

18 28 0.4718 0.5282 0.8932 -0.1129 

19 29 0.4775 0.5225 0.9139 -0.0900 

20 12 0.2950 0.7050 0.4184 -0.8713 

Thus, although posterior probabilities do discriminate student problem 

solving performance on the ANOVA score model, log odds measures are 



Diagnostic and Model-based Assessment 223 

preferable for assessing student proficiency since they can be analyzed as 

normally distributed random variables. Therefore, log odds ratios were calculated 

from the odds ratios of estimated posterior probabilities. Log odds ratios are 

known to have an approximately normal distribution with a mean of zero 

(representing uncertainty about the student state of mastery). Increasingly 

negative values represent decreasing likelihoods of mastery, and increasingly 

positive values indicate increasing likelihoods of mastery. Estimated log odds of 

mastery were used to measure student levels of proficiency, where proficiency is 

thought of as progress toward achieving a state of mastery on any component 

skill of the knowledge structure. 

7.2 Analysis of Model Estimates of Log Odds of Mastery of Top Level (general) 

and Sub-task Explanatory Variables Reflecting Different Evidence Patterns 

Instantiated values of log odds ratios for explanatory variables 

approximately follow a normal distribution, although more accu rate 

approximations of posterior distribution have been studied and found to have 

subtle differences in terms of different approximation methods (Fredette & 

Angers, 2002). The density of posterior log-odds ratios approaches the standard 

normal distribution as sample sizes increase. 

Normalization of odds ratios enables meaningful estimations of student 

proficiency levels on interval scales, Le., their log odds likelihood of mastery with 

respect to their knowledge and skill components (see Table 7.6). Note that a zero 

log odds value corresponds to a posterior probability of mastery of 0.50 which 
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represents complete uncertainty with respect to student mastery of knowledge 

and skill components. Thus, log odd ratios scale values measure the likelihood 

that students have mastered or failed to master knowledge and skill components 

associated with potential explanatory variables in the Bayesian network. 

Table 7.6. Relationships of Posterior Probabilities, Odds Ratios and Log-Odds 

Ratios 

Probabilities Odds ratios Log odds ratios 

0.0474 0.0498 -3.000 

0.0500 0.0526 -2.945 

0.0705 0.0758 -2.580 

0.1235 0.1409 -1.960 

0.2690 0.3679 -1.000 

0.5000 1.0000 0.000 

0.7311 2.7183 1.000 

0.8765 7.0993 1.960 

0.9296 13.1971 2.580 

0.9500 19.0000 2.945 

0.9526 20.0855 3.000 

0.9900 99.0000 4.5951 

ln log odds ratios, a negative value reflects the likelihood that students 

have not mastered knowledge and skill components, with negatively increasing 

values indicating greater certainty that they have not mastered the components. 

A positive value indicates likelihood that students have mastered the 

components, with increasing values indicating greater certainty that they have 
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mastered the components. Log odds ratio scores can be converted to normal 

percentiles as another measure for assessing student progress toward mastery. 

Table 7.3 in Section 7.1.2 reports raw scores, posterior probabilities of 

mastery, odds ratios and log odds ratios for ModelEquation. The data represent 

the performance of 20 students on the ANOVA score model problem. 

Table 7.4 in Section 7.1.2 reports raw scores, posterior probabilities of 

mastery, odds ratios and log odds ratios for ScoreModel, where the data 

represent semantic explanations of 20 students on the ANOVA score model 

problem. Table 7.5 in Section 7.1.2 reports raw scores, posterior probabilities of 

m a ste ry, odds ratios and log odds ratios for ANOVA ScoreModel2way. 

The data show that with respect to student mastery of the ANOVA score 

model problem, conclusions that are drawn from log odds ratios based on 

posterior probabilities, estimated by updating the Bayesian network, differ from 

raw score based conclusions. The former provides measures of cognitive 

components of performance, and semantic explanation, that provide more 

plausible assessment information on which to base diagnostic decisions. Several 

cases in Tables 7.3 and 7.4 iIIustrate how they different from traditional raw 

scores. 

ln Table 7.3 Student 3 received a raw score of 15 and Student 4 received 

a raw score of 17. However, the mastery probability of Student 3 is higher than 

that of Student 4. The log odds ratio of Student 3 (0.5849) is larger than the log 

odds ratio of Student 4 (0.4845). 
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Table 7.4 shows a similar situation in which Students 2 and 9 receive the 

same raw score of 7, but their mastery probabilities are 0.1914 and 0.2936 

respectively, and their log odds ratios are -1.4410 and -0.8780 respectively. The 

likelihood of mastery for Student 9 is higher than that of Student 2. 

Table 7.4 also shows that Student 1 received a raw score of 6, and 

Student 2 received a raw score of 7. However, their mastery probabilities are 

0.4398 and 0.1914 respectively, and their log odds ratios are -0.2419 and 

-1.4410 respectively. The likelihood of mastery of Student 1 is higher than that of 

Student 2, although Student 2's raw score is higher than that of Student 1. These 

two cases iIIustrate that log ratios based on posterior probabilities estimated by 

updating the Bayesian network provides model-based assessment information 

that differs from raw scores, rendering the data potentially much more valid and 

effective as it reflects the structure of knowledge represented by the Bayesian 

network. 

7.3 Log-Odds of Mastery of Explanatory Variables (net cliques) that Correspond 

to Components of the Hierarchical Model 

Students' log odds ratios for such high level components as: (a) 

performance, (b) semantic explanation, and (c) general mastery of ANOVA score 

models were presented in section 7.2. The results presented correspond to 

"macro" level nodes in the Bayesian assessment network. The estimate of log 

odds ratios at the level of cliques or net cliques are of importance since they 

provide cognitive diagnostic information that is a principal aim for using Bayesian 
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assessment networks. In this section, examples of net cliques will be chosen and 

estimated log odds ratios for parent nodes of these structures will be examined. 

Parent nodes reflect proficiencies associated with the clique as a whole. Two net 

cliques were selected: Error_eiOk), a component of ModelEquation and 

EffectsOfFactors, a component of ScoreModeJ. 

7.3.1 Estimated Log Odds Ratios for a Comp/ex Net Clique: Erro_eiljk) 

Error_eiOk) is a complex net clique in performance model, ModelEquation. 

It consists of seven nodes: two explanatory variables: Error_eiOk) and 15J(jk). 

15JOk) has three evidence nodes: (19)14aj, (20)14bj, and (21)14c_k. Error-

ei(jk) has one explanatory variable, 15JOk) and two evidence variables, (18)13_e 

and (22)15_Applylndex. If Error-eiOk) is an up-explanatory variable, th en there 

are five evidence variables sending information to it. The Bayesian network of 

Error-ei(jk) is presented in Figure 7.1. 

Figure 7.1. Complex clique error_eiOk) with evidence notes 

Raw performance scores from the 20 students are listed in Table 7.7 

along with mastery probabilities, odds ratio and log odds ratios. 
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Table 7.7. Raw Score, Odds Ratio and Log Odds Ratio of Clique Error_ei(jk) 

ID of the Performance Posteriior Odds Ratios Log Odds 

Students Score Probabilities Ratios 

1 0 0.0904 0.0994 -2.3086 

2 5 0.9172 11.0773 2.4049 

3 3 0.6409 1.7847 0.5793 

4 1 0.3510 0.5408 -0.6147 

5 3 0.5127 1.0521 0.0508 

6 5 0.9172 11.0773 2.4049 

7 5 0.9172 11.0773 2.4049 

8 5 0.9172 11.0773 2.4049 

9 5 0.9172 11.0773 2.4049 

10 5 0.9172 11.0773 2.4049 

11 5 0.9118 10.3379 2.3358 

12 5 0.9172 11.0773 2.4049 

13 5 0.9172 11.0773 2.4049 

14 5 0.9172 11.0773 2.4049 

15 1 0.2823 0.3933 -0.9332 

16 5 0.9172 11.0773 2.4049 

17 5 0.9172 11.0773 2.4049 

18 5 0.9172 11.0773 2.4049 

19 5 0.9172 11.0773 2.4049 

20 2 0.4631 0.8625 -0.1479 

Log odds ratios of student performance on clique "Error_eiOk)" represent 

results similar to results presented in section 7.2. The fact that two examinees 

have the same raw scores does not mean that the log odds ratios of their 

performance will be the same. For example, Students 3 and 5, both have 
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performance scores of 3, but their log odds ratios are 0.5793 and 0.0508, 

respectively. This indicates that raw scores only represent how many evidence 

variables have been successfully instantiated. They cannot reflect the details and 

the importance of individual evidence nodes. Log odds ratios can represent 

patterns of evidence information. Based on this information, diagnostic details 

can be traced back. 

7.3.2 Estimated Log Odds Ratios for a Complex Net Clique: EffectsOfFactors 

EffectsOfFactors is a complex net clique in the semantic explanation 

submodel: ScoreModel. It consists of eleven nodes: 4 explanatory variables: 

EffectOfFactors, MainEffect:LevelofA, MainEffect:LevelofB, and Interaction:AxB. 

Main Effect: Levelof A has two evidence nodes: Numbers 35 and 36; 

MainEffect:LevelofB has two evidence nodes: Numbers 37 and 38; and 

Interaction:AxB has three evidence nodes: Numbers 39, 40 and 41. 

EffectsOfFactors is a parent explanatory variable in a net clique in which there 

are 7 evidence variables sending information to EffectsOfFactors as shown in 

Figure 7.2. Raw performance scores from the 20 students as listed in Table 7.8 

together with estimated posterior probabilities of mastery, odds ratios, and log 

odds ratios. 
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Figure 7.2. Complex clique EffectsOfFactors with its evidence nodes 

These assessment variables for clique EffectsOfFactors provide different 

assessment information (see Table 7.8). Three examinees had raw scores of 5, 

4, and O. The other seventeen had raw scores of 3. However, the log odds ratios 

were different for almost ail students ranging from -1.7958 ta 0.4322 revealing 

again that raw scores do not represent differences in cognitive components 

underlying student performance. 

ln summary, using Bayesian networks ta assess general mastery in 

writing ANOVA score models, including performance and semantic explanation 

submodels, the analyses of log odds ratios show that they discriminate details of 

student proficiency that raw scores are unable ta detect. Thus, log odds ratios 

produced by updating the Bayesian network with student evidence patterns 

produces diagnostic rich information about the cognitive components of student 

proficiency. 
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Table 7.8. Raw Score, Odds Ratio and Log Odds Ratio of Clique 

EffectsOfFactors 

ID of the Semantic Posterior Odds Ratios Log Odds Ratio 

Student Explanation Probability 

1 3 0.3539 0.5477 -0.6020 

2 3 0.3753 0.6008 -0.5095 

3 3 0.3319 0.3319 -0.6996 

4 3 0.3457 0.5284 -0.6379 

5 3 0.3307 0.4941 -0.7050 

6 5 0.6064 1.5407 0.4322 

7 3 0.3153 0.4605 -0.7754 

8 3 0.3457 0.5284 -0.6379 

9 3 0.3440 0.5244 -0.6455 

10 3 0.3488 0.5356 -0.6244 

11 3 0.3457 0.5284 -0.6379 

12 3 0.3457 0.5284 -0.6379 

13 3 0.3307 0.4941 -0.7050 

14 4 0.4567 0.4567 -0.1736 

15 0 0.1424 0.1660 -1.7958 

16 3 0.3472 0.5319 -0.6313 

17 3 0.3517 0.5425 -0.6116 

18 3 0.3457 0.5284 -0.6379 

19 3 0.3472 0.5319 -0.6313 

20 3 0.3264 0.4846 -0.7244 

7.4 Relationships of Log-Odds Estimates of Proficiency to External Variables 

ln this section, scores on assessment variables (Le., log odds ratio 

estimates of proficiency for particular explanatory constructs) were predicted 
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from two external variables characterizing participants. The focus is on 

relationships between student background variables and seven critical 

assessment variables. LHS, RHS and Index Values (IMD) are top-Ievel 

components of ModelEquation (MEQ). Score, and ScoreDecompostion (Sc De) 

are top-Ievel components of ScoreModel (Smo). ModelEquation and ScoreModel 

are the two submodels of ANOVAScoreMode12Way. These critical explanatory 

variables that were investigated correspond to the seven explanatory nodes 

listed above. Data analyzed consisted of estimated log odds ratios based on 

updating the Bayesian network for each student. 

7.4.1 Effects of External Variables and Explanafory Variables on Estimated Log 

Odds Ratios: ModelEquation, LHS, RHS and IndexValues 

ln the performance model, ModelEquation (Meq), LHS, RHS and IndexValues 

(IND) were the four within-subject target variables. Dependent variables 

consisted of log odds ratios scores. Between-group independent variables were 

student background variables: using the tutor system (UT: 1=yes, 2=no) and 

taking a statistics course (SC: 1=yes, 2=no). Repeated measures MANOVA were 

carried out with explanatory variables (Meq, LHS, RHS and IND) as the within­

subject (repeated measure) factor. The results indicated that UT and SC were no 

statistically significant effects of the dependent variables, nor were there any 

significant interactions with explanatory variables. However, there were 

significant differences within-subject among LHS, RHS and IND. Table 7.9 

reports results of subject contrasts between the explanatory variables. The 
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results show that there were no significant differences between LHS and RHS, or 

between LHS and IND. However, there was a significant difference between 

RHS and IND. The differences between Meq and the other three variables were 

ail significant. Table 7.10 provides mean and relevant descriptive details to help 

understand relations among these variables. 

Tab/e 7.9. Within-subject Contrasts among Mode/Equation, LHS, RHS and /ND 

Log Odds Ratio Scores trom Repeated Measures Ana/ysis MANOVA 

Source OF 

Main effect 3, 14 

explanatory variable 

Meq vs LHS 1,16 

LHS vs RHS 1,16 

RHS vs IND 1,16 

Meq vs RHS 1,16 

Meq vs IND 1,16 

LHS vs IND 1,16 

Multivariate Pr>F 

F value 

44.31 <0.0001 

25.92 <0.0001 

0.92 0.3530 

69.86 <0.0001 

5.93 0.0270 

137.69 <0.0001 

0.18 0.6798 

Tab/e 7.10. Descriptive Statistics for Estimated Log Odds Ratios for Four 

Exp/anatory Variables in the ModelEquation Clique 

Variable N Mean Std Oev Minimum Maximum 

MEQ 20 0.7124540 0.8837510 -1.5715200 1.1825200 

LHS 20 1.5348815 1.2306079 -2.2918500 2.1828600 

RHS 20 1.2782640 1.2654482 -1.6258500 2.0298900 

IND 20 -1.7679090 0.2531364 -2.4450700 -1.6397400 
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7.4.2. Effects of Extemal Variables and Explanatory Variable on Log Odds 

Ratios: Score Model, Score and ScoreDecomposition 

ln the semantic expia nation model, ScoreModel, Score, and 

Score Decomposition were the within-subjects variables. Dependent variables 

consisted of log odds ratios scores. The between-group independent variables 

were UT and SC. A repeated measure MANOVA was carried out with 

explanatory variables as the within-subject factor. The results indicated that 

effects UT, SC and the UT by SC interaction were not statistically significant, nor 

did they interact with the within-subjects variables. Table 7.11 indicates there 

was a significant main effect of Explanatory Variables (the within-subject factor), 

and there were significant contrasts between ScoreModel and Score, and 

between Score and ScoreDecomposition, but no significant difference between 

Scoremodel and ScoreDecompostion. 

Table 7.11. Contrasts among Smo, Score and ScDe of Log Odds RatioScores 

from Repeated Measures MANOVA 

Source OF F value Pr>F 

Main effect of 2, 15 3.24 0.0679 

explanatory variables 

Smo vs Score 1,16 6.84 0.0188 

Score vs Scde 1,16 6.77 0.0192 

SmovsScDe 1,16 1.08 0.3152 

Table 7.12 provides mean and relevant descriptive details which help 

understand relations among variables. 
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Table 7.12. Descriptive Statistics for Estimated Log Odds Ratios for Three 

Explanatory Variables in the ScoreModel Clique 

Variable N Mean Std Dev Minimum Maximum 

Smo 20 -1.4812515 0.4720172 -1.8626000 -0.2419700 

Score 20 -2.7851400 1.6036146 -3.9072400 1.8643200 

ScDe 20 -1.4491825 0.3718885 -2.1664900 -0.3285200 

7.4.3. Effects of Extemal Variables and Explanatory Variables on 

Estimated Log Odds Ratios: ModelEquation, ScoreModel, and 

ANOVAScoreModel2way 

The full proficiency model includes ANOVAScoreModel2way (ASM), 

ModelEquation (Meq), and ScoreModel (Smo). These were the levels of the 

within group factor, and UT and SC were the between-group independent 

variables. A repeated measure MANOVA was carried out with Explanatory 

Variables as the within-subjects factor. The results indicated that effects of UT, 

SC and the UT by SC interaction were not statistically significant, nor did they 

interact with the explanatory variables. However, the main effect of Explanatory 

Variables (the within-subjects factor) was statistically significant. Table 7.13 

reports pairwise contrasts among these within-subject variables. The results 

indicated that significantly different levels of mastery of the two submodels (Meq 

vs. Smo), and mastery levels of the submodels that differed from the mastery 

level for the entire model (ASM) contribute to the general mastery model in 

different weights. 
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Tab/e 7.13. Contrasts among Mode/Equation, Score Mode/ and 

ANOVAScoreModel2way of Log Odds Ratio in MANOVA 

Source DF F value Pr>F 

Main effect 2, 15 79.96 <0.0001 

Meq vs Smo 1,16 76.84 <0.0001 

SmovsASM 1,16 169.90 <0.0001 

Meq vsASM 1,16 16.87 0.0008 

Table 7.14 provides mean and relevant descriptive details which help in 

understanding the relations among those variables. 

Table 7. 14. Descriptive Statistics for Three Explanatory Variables in the 

Score Mode/ Clique 

Variable N Mean Std Dev Minimum Maximum 

Meq 20 0.5809360 0.8402908 -1.6814800 1.1532300 

Smo 20 -1.4779565 0.4202720 -1.9450000 -0.1297800 

ASM 20 -0.2159060 0.2969554 -0.9360400 0.2794000 

On the basis of three repeated measure MANOVAs, several points may 

be summarized. First, the external variables UT, SC and their interaction UT*SC 

had no statistically significant effects on the log odds ratios, nor did they interact 

with the Explanatory Variables. The twenty student samples constituted a small 

data set and background variables on these subjects. This sample did not 

contain sufficient variation in background information to predict the log odds 

scores on the Explanatory Variables. Second, the submodels ModelEquation and 

ScoreModel are two significant contributors to assessing student mastery of both 
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performance and semantic knowledge in the ANOVA score model domain. Third, 

the two submodels are significant components in a unified assessment model, 

ANOVAScoreModel2way. They are indispensable for assessing student 

performance and semantic expia nations. 

7.5. Correlations between Raw Scores and Log Odds Ratios 

Correlations between raw scores and log odds ratios were computed to 

examine their relationships as assessments of student performance and 

semantic explanations of the ANOVA Score Model. Three explanatory variables 

were selected: performance, semantic explanation, and pooled mastery. Raw 

scores and Log odds ratio for each variable constituted the variables in the 

correlation matrix (Table 7.15): 

Rasg indicates raw score of General Model; 

Rameq indicates raw score of ModelEquation; 

RaSMo indicates raw score of ScoreModel; 

Lodg indicates log odds ratio of General Model; 

Lomeq indicates log odds ratio of ModelEquation; and, 

LOSMo indicates log odds ratio of ScoreModel. 

Table 7.15 presents correlations among (a) raw scores and (b) log odds 

ratios, for the general model performance, and semantic explanation. 

The top-Ieft cell of Table 7.15 reports inter-correlations of variables when 

raw scores are used. It can be seen that the "general model" is correlated at 

0.9675 with ModelEquation, and 0.6286 with ScoreModel. This difference reflects 
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the fact that score levels on ModelEquation were much higher than ScoreModel. 

Consequently they contributed more to the total. In addition, there was a 

correlation of 0.4154 between ModelEquation and ScoreModel based on raw 

scores. 

The lower -right cell of Table 7.15 reports the inter-correlations of these 

variables using scores consisting of log odds ratio estimates of likelihood of 

mastery. It shows that "general model" proficiency is correlated at 0.9403 with 

ModelEquation and at 0.2443 with ScoreModel. This result also shows that the 

"general mode!" proficiency estimate reflected high influence of ModelEquation 

on general proficiency estimates, and small influence of ScoreModel on general 

proficiency. Correlation of ModelEquation with ScoreModel was only 0.0654 

which reflects the near independence of these submodels when model-based 

estimates of proficiency are used. 

The upper -right cell of Table 7.15 reports cross-correlations between raw 

scores and log odds proficiency estimates for the three assessment variables: 

the correlation between general model raw scores and general modellog odds 

ratio is 0.9531; the correlation for "Model-Equation" between raw score and log 

odds ratio is 0.9301; and the correlation for ScoreModel between raw score and 

log odds ratio is 0.7427. These correlations show that Bayesian estimates of 

general model proficiency are very high indicating high agreement, especially for 

the "general model" variable. Thus, the top-Ievel proficiency estimate from the 

Bayesian model may serve as a measure of mastery that will agree weil with 

other global assessments (total score, as an IRT mode estimate). However, the 
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component proficiencies estimated using the Bayesian network approach 

provides evidence of components of mastery that raw total scores do not provide. 

Table 7.15. Correlations befween Raw Scores and Log Odds Ratios of Three 

Model Explanatory Variables 

Assessment Raw score Log-Odds ratio 

Variable Rasg Rameq RaSMo Lodq Lomeq LOSMo 

Rasg 1.0 0.96752** 0.62856** 0.95306** 0.91964 0.12636 

Rameq 1.0 0.4154 0.90212** 0.93010** -0.9331 

RaSMo 1.0 0.66055** 0.45396** 0.74266** 

Lodq 1.0 0.94027** 0.24432 

Lomeq 1.0 0.06539 

LOSMo 1.0 

** Indlcates p value < 0.01 

7.6. Robustness Analyses of the Bayesian Network Assessment Models 

After building a Bayesian assessment network, robustness is a concern 

that reflects both the quality and application efficiency of assessment networks. 

Due to possible imprecision in prior and conditional probability parameters that 

are often based on assumptions and input from experts or other sources, the 

results will depend on these parameters. Therefore, to evaluate the effects of 

changes in model parameters on assessment results, it is desirable to 

supplement point estimates of posterior probability values with probability 

intervals for these parameters. The size of estimates for conditional probabilities 

will indicate the extent to which estimates depend on conditional probabilities that 
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were used in the model. The idea of robustness analysis is to employ sets of 

distributions to represent perturbations and variations in probabilistic models. The 

goal is to generate bounds on expected values of posterior probabilities. Intervals 

between upper and lower bounds induced by sets of distributions reflect the 

quality of the model and the data; small intervals indicate robustness to effects of 

perturbations. 

The Bayesian network assessment model represents a joint distribution 

through a collection of locally defined probability distributions. However, to 

understand the robustness of the entire model, it is necessary to check global 

neighbourhoods of Bayesian networks because they can describe the effects of 

global perturbations in model probabilities on estimates of posterior probabilities. 

JaveBayes software (Cozman, 1997) offers several different methods for 

evaluating robustness in relation to perturbations in global neighbourhoods of 

probability distributions. For any Bayesian network, there is a cover set of 

probability distributions that can be used, called a "credal set". One way to 

specify a credal set is to specify s-contaminated and lower density bounded 

classes, which is a common way to describe posterior probability intervals in a 

global sense. An s-contaminated class is generally characterized by a distribution 

p, q and a real number e E (0,1). The p refers to the distribution of probabilities for 

the current model, a weight E is specified (0<E<1) which controls the amount of 

perturbation in the probabilities. Then, q, a probability of any weighted arbitrary 

distributions can be added. 
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r(x) = (1- c)p(x) + cq(x) (Formula 7-1) 

The E controls the amount of contamination by the arbitrary distribution. 

Cozman's (1997) method can be used to estimate upper and lower bounds for 

posterior probability estimates obtained when using the network to infer posterior 

probabilities of explanatory variables given evidence values. According to 

Cozman (1997), an liE-contamination of 0.1" means that expectation being correct 

90% of the time, but in 10% of the cases it is expected that other joint 

distributions are possible. 

The robustness of global neighbourhoods with E-contaminated class has 

been included in JavaBayes software (Cozman, 1997). Expected interval values 

can be calculated as the evidence is instantiated for the evidential variables in 

the entire Bayesian network. Parameters are output in the format of a lower­

envelope and an upper-envelope. The lower envelope is usually designated 

by p , and the upper envelope by "ft. As an Evalue is defined and variables are 

instantiated, bounds on ail posterior probabilities can be generated. The E'S were 

set at 0.10,0.05, and 0.01. Once E is set, pairs of upper and lower bounds are 

produced for probabilities of mastery and non-mastery. 
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Table 7.16. Effects of e-contamination on Explanatory Variables of Posterior 

Probabilities for Full Model 

Subject Posterior Prob (mastery) Prob (non-mastery) Robust 
probability 

Lower Upper Lower Upper mastery 

bound bound bound bound 
decision 

estimate estimate estimate estimate 
overlap 

for p for p for q for q 

E =0.10 
1 0.4592 0.4132 0.5133 0.4867 0.5867 * 

2 0.4847 0.4363 0.5362 0.4637 0.5637 * 

3 0.4312 0.3881 0.4881 0.5119 0.6119 

4 0.4216 0.3795 0.4795 0.5205 0.6205 

5 0.3838 0.3454 0.4454 0.5546 0.6546 

E =0.05 

1 0.4592 0.4362 0.4862 0.5138 0.5638 

2 0.4847 0.4605 0.5105 0.4895 0.5395 * 

3 0.4312 0.4097 0.4597 0.5403 0.5903 

4 0.4216 0.4005 0.4505 0.5494 0.5994 

5 0.3838 0.3646 0.4146 0.5854 0.6354 

E =0.01 

1 0.4592 0.4546 0.4646 0.5354 0.5454 

2 0.4847 0.4799 0.4899 0.5101 0.5201 

3 0.4312 0.4269 0.4369 0.5631 0.5731 

4 0.4216 0.4174 0.4274 0.5726 0.5826 

5 0.3838 0.3740 0.3840 0.6100 0.6200 

* indicates it is e -contaminated 

Table 7.16 represents estimates for 5 subjects as examples of robustness 

analyses with E set at 0.10, 0.05 and 0.01. A judgemental rule intuitively is that an 

overlap of an upper bound value in one boundary group with a lower bound value 

in another boundary group is judged as E-contaminated. When E is set at 0.10, 

there are two cases, Students 1 and 2 are E-contaminated. The overlap value for 
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Student 1 is 0.0266 (from 0.5133-0.4867); the overlap value for Student 2 is 

0.0725 (fram 0.5362-0.4637). When E is set at 0.05, only Student 2 is still E­

contaminated. However, the overlap value decreased from 0.0725 to 0.021. 

When E is set at 0.01, there are no E-contaminated cases. The change reveals 

that the number of E-contaminated estimates decreases as the value of E 

decreases. In other words, the network is becoming more robust as E is set at 

smaller and smaller values. The E-contaminated details for ail 20 students for 

general mastery, performance and semantic explanations are reported in 

Appendix H. 
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CHAPTER EIGHT:DISCUSSION AND CONCLUSION 

This study explored diagnostic cognitive assessment (DCA) using 

Bayesian networks and evidence-centred design in a statistics learning content 

domain. The initial motivation was to design an effective assessment 

methodology for statistics in a context of learning within a web-based tutorial 

environment. Therefore, the assessment environment simulates problem solving 

activities that occurred in a web-based statistics learning environment known as 

the McGiII Statistics Tutoring Project (MSTP). A stand-alone test entitled the 

Performance Assessment of Statistical Learning Test (PASLT) was developed. 

PASLT mimics the task constructs and the structures of MSTP. 

The approach to cognitive assessment may be summarized as follows. On 

the basis of cognitive and content analyses of expert tutoring and performance 

data, cognitive models of components of expert knowledge and performance 

skills were developed (Frederiksen & Donin, 2005). Assessment models 

composed of (a) assessment constructs and (b) evidence models were 

developed based on these cognitive models. In an assessment model, 

assessment constructs correspond to components of knowledge and procedural 

skill identified in the cognitive models. These constructs are represented as 

explanatory variables in the assessment model, and explanatory variables are 

linked to evidence variables. The evidence variables represent specific aspects 

of student task performance or semantic expia nations which may be identified in 

a student's performance of assessment problems. The assessment model 

constructs and evidence variables represent different aspects of both task 
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performance and semantic explanations that are produced over the course of a 

student's performance of ANOVA tasks. Bayesian networks are used to connect 

the explanatory variables to evidence variables and these links enable the 

network to propagate evidential information to explanatory model variables in the 

assessment model. 

Chapter 8 will be organized into three parts: (a) a summary of objectives, 

methods and results of the study; (b) conclusions concerning the 

appropriateness of the approach to Bayesian cognitive assessment and its 

relationship to IRT and to other Bayesian cognitive assessments; and (c) an 

evaluation of the significance and limitations of the findings, and 

recommendations for future research. 

8.1. The Objectives, Methods and Results of the Study 

8.1. 1 Objectives, Purposes and Assumptions of Diagnostic Cognitive 

Assessment 

This section summarizes the assumptions of the current study, and the 

research objectives and methods used to develop the Bayesian assessment 

modal. 

The purpose of diagnostic cognitive assessment (DCA) is to evaluate a 

student's mastery of the cognitive components (of knowledge and skills) that 

characterize expert/competent performance in a well-defined domain, and their 

successful application to problem-solving tasks in the domain. In the statistics 

learning domain, the objective of assessment was to design an effective 
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assessment procedure by which learning progress, proficiency, and mastery 

could be evaluated and recorded. The objective of the study was to develop a 

diagnostic model and methodology that implements the assessment in a specifie 

domain of statistics, and evaluate it in relation to its potential to achieve the 

objectives of DCA 

The DCA model and methods investigated in the study were based on 

several assumptions. First, DCA should be based on student performance of 

authentic and complex tasks from a learning domain (in this case, a domain of 

statistics). 

Second, task performance in solving or explaining a problem can be 

represented by measures of an exhaustive set of "fine-grained solution features" 

that can be observed and scored (e.g., as present or absent) by an observer 

competent in the domain. 

Third, the results of the assessment will be restricted to inferences based 

on response features of tasks that have been identified and evaluation rules that 

have been applied to "score" records of performance. 

Fourth, the purpose of DCA is to infer which specifie cognitive components 

of knowledge and skill have been mastered by a student. These inferences will 

be realized probabilistically by a measure which indicates, more specifically, the 

likelihood that a student has mastered a specifie component of knowledge or ski Il 

based on the observations of the student's response features during 

performance of an assessment task ("evidence"). 
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Fifth, to make such diagnostic inferences will require that an assessment 

framework, assessment constructs, and an evidence model be developed. This 

can be accomplished using a Bayesian probability network (a) to represent 

cognitive components (of knowledge and skill) as assessment constructs 

(variables), (b) to represent scored components of performance as evidence 

variables, and (c) to make inferences about mastery of assessment constructs 

based on evidence from a student's performance. 

Sixth, a Bayesian assessment is assumed to begin with complete 

uncertainty about a student's mastery of components, Le., the prior probability of 

mastery of an assessment component is 0.5, and the prior probability of non­

mastery is 0.5. The assumption is that without evidence the user of the 

assessment is completely uncertain about whether a student has mastered the 

components of the domain knowledge and problem solving skills at a very 

generallevel, Le., at the top level of the Bayesian belief network. This 

assumption of uncertainty represents a lack of bias in the user's belief before the 

assessment has taken place. After the student completes the assessment 

problem-solving tasks, the evidence variables can be instantiated and then the 

assessment network can be updated, resulting in new posterior probabilities of 

mastery that replace the initial (prior) probabilities. The child nodes are fixed at 

0.67 for mastery status and at 0.33 for non-mastery status, conditional to the 

parent node. This provides a well-defined basis for estimates of the posterior 

probabilities after updating using patterns of the instantiated evidence nodes. 

Even though these values are slightly arbitrary, sufficient and appropriate 
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reasons were provided for the selected values. Their effects can be further 

explored by setting the conditional probabilities to other values. The selection of 

these conditional probability values was found to affect the rate of change in 

posterior probabilities produced by introducing new evidence. 

Seventh, mastery of cognitive components in a domain is adynamie 

process in which mastery of components changes as the student develops the 

knowledge and skills underlying expertise in the domain of assessment. If a 

student's problem-solving progresses following a particular trajectory of 

development of proficiency, this trajectory can be assessed to evaluate a 

student's progress toward a state of mastery. Mastery is viewed as a "milestone" 

of the learning. 

Therefore, from a developmental perspective, the purpose of cognitive 

assessment is to evaluate the student's trajectory in the development of 

components of knowledge and skill in a domain by updating the likelihoods of 

mastery (prob(mastery» of cognitive components over repeated assessments. At 

any point in the assessment, the estimation of the student's posterior 

probabilities of mastery of specifie components can be used to provide diagnostic 

information which can be used to provide feedback and guidance to the student, 

coaches, tutors or others involved in supporting the students' development of 

expertise. 
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8. 1.2 Outcomes of the Study 

This study applied the model development method to the ANOVA score 

model domain in order to attain the objectives of the study. The results 

document: (a) the process of model development in a specifie domain; (b) the 

properties of a Bayesian assessment model; (c) the performance of the BN in 

tracing progress towards mastery by using the model to successfully update 

posterior probabilities; (d) the use of estimates of log odds ratios of mastery as 

measures of "progress toward mastery of cognitive assessment constructs;" (e) 

the robustness of diagnostic inferences based on the BN; and (f) the use of the 

Bayesian assessment model for diagnostic assessment with a sample of 

students who completed the assessment tasks. In general, the study 

demonstrated that an effective diagnostic cognitive assessment methodology for 

statistics learning could be established. 

The study carefully documented the method for developing assessment 

models that meet the above objectives. The application of the method was 

documented for a specifie domain of statistics learning, using cognitive models 

and performance tasks that had been previously developed in the MSTP. 

The hierarchical Bayesian assessment network developed in this domain 

was examined to investigate model updating for network components ranging 

from simple cliques, to net-cliques, to assessment submodels, to the general 

mode!. 
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Simulated data were applied to study assessments resulting from the 

model. Trajectories of progress towards mastery obtained using the model were 

examined. 

The use of log odds ratios as estimates of likelihoods of node mastery, as 

a "measure of progress toward mastery," were proposed and evaluated. The 

instantiated values of log odds ratios for explanatory variables follow a normal 

distribution. Log odds ratios rescale the posterior probabilities of mastery initially 

obtained by updating Bayesian assessment networks based on performance 

evidence. Rescaled measures provided improved measures of learning 

proficiency and mastery. The results demonstrated that log odds ratios are an 

appropriate measure of cognitive construct mastery, and indicated that mastery 

can be tracked by providing increasing evidence to the network and using it to 

update the log odds ratios. The results demonstrated the diagnostic value of log 

odds ratios for assessing model construct mastery. 

Analysis of the robustness of Bayesian assessment networks was carried 

out. The results indicated that BNs were robust on the basis of both student and 

simulated data. 

The diagnostic use of log odds estimates of mastery of explanatory 

constructs were investigated using data from a sample of students studying 

intermediate statistics. First, by examining log odds ratios for different network 

nodes, it was found that the assessments revealed differences in patterns of 

mastery of assessment constructs (components of knowledge and skill) that were 

not reflected in pooled raw scores for components. 
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Second, students with equivalent total scores were found to differ on the 

model-based estimates of general competency and mastery of specifie model 

components. The log odds ratios estimated using the model provided diagnostic 

information that was sensitive to student patterns of solution features (evidence 

variables). Estimates of student log-odds mastery of specifie model components 

were used for diagnostic assessment in situations in which pooled raw 

performance scores were useless. 

Third, analysis of group data revealed that model-based assessments 

successfully detected differences in mastery of different model components. 

Fourth, the external validity of the assessments were determined by using 

survey data from a group of students and examining variables as predictors of 

assessments resulting from the application of the Bayesian assessment network 

to the student data. The results showed that there were no significant differences 

related to the effects of background variables, Le., using the tutor system (UT), or 

taking a statistics course (SC), on the log odds mastery of selected explanatory 

variables. This finding was attributed to the small sample size and the distribution 

of scores on performance tasks. However, there were significant differences 

among these explanatory variables. A further multiple comparison analysis using 

a repeated measure MANOVA procedure revealed differences between parent 

and child explanatory variables, and among child explanatory variables. 

Fifth, correlations between raw scores and log odds ratios for three high­

level assessment variables were examined: "ScoreModel," "ModeIEquation" and 

"ANOVAScoreModeI2way." There were two principal results: (a) the correlation 
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between estimated log odds mastery of the two submodels (Le., the procedural 

and semantic knowledge submodels) was very small and non-significant (0.0654, 

see table 7.15), indicating the local independence of the submodel estimates; (b) 

the correlation between the log odds ratios of general mastery with the raw total 

score was very high (0.9531, see Table 7.15), indicating that the two 

assessments of general proficiency are very closely related. Thus, the Bayesian 

assessment network provides independent diagnostic information about 

submodels, while providing a general assessment of mastery comparable to that 

obtained using a raw total score (or presumably, an IRT estimate). 

Finally, the robustness of the Bayesian assessment network model was 

examined using student data. Results indicated that the SN estimates of 

posterior probabilities of node mastery were very robust. 

8.2 Conclusions 

Section 8.2 seeks to draw conclusions about the appropriateness of the 

evidence-centred design approach. The approach used to develop Bayesian 

assessment models in the domain studied, and potential applications of both to 

DCA in other complex domains of performance and learning. To put these 

conclusions into some perspective, similarities and differences between the 

approach developed in this thesis, and previous work in DCA using both BN 

models and IRT models, will be considered. Comparison of these different 

models as alternative methodological approaches to assessment can provide 

alternative possibilities that can help us design for (a) different kinds of 
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assessment situations: e. g., tests composed of multiple tasks (or "items") vs. 

performance assessments using complex and extended tasks; and (b) different 

assessment objectives: e.g., for use in conjunction with computer-based learning 

environments, in tracking learning, and in establishing evidence of mastery in a 

domain of expertise. It will be argued that construct validity and consequential 

validity should be central considerations in such situations of cognitive 

assessment. 

Finally, it is suggested that there can be a complementary relationship 

between IRT approaches and Bayesian approaches to assessment. Bayesian 

approaches are particularly appropriate for diagnostic cognitive assessment, and 

IRT approaches are particularly appropriate for assessing generalizable 

proficiency in a domain in which many tasks can be designed to sample 

performance in a domain. Bayesian approaches are optimal when the domain is 

complex, performance of domain tasks requires extended problem solving and 

extensive conceptual knowledge, and diagnostic information is important given 

the purposes of the assessment. 

8.2.1 Appropriateness of the Evidence-Centered Design Framework 

Evidence-centered design (ECO) provides an appropriate general 

methodological framework for diagnostic cognitive assessment (DCA). It allows 

the use of assessments to infer individual progress towards mastery of 

components of knowledge acquisition and ski Il development from observations of 

student performance using assessment and learning tasks. These assessments 
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can track an individual's development of general proficiency and its cognitive 

components. The complexity of assessment design depends on how complex the 

tasks are and how learning environments provide affordances to the learning. 

Development of evidence variables from learning tasks to define measurable 

objects is a tactical process. Furthermore, the connection of evidence models to 

assessment constructs requires an efficient and powerful statistical engine. 

ln the evaluation model of ECO, Bayesian networks are often used to 

propagate information from evidential variables to explanatory variables. Both the 

evidential and the explanatory variables can be dichotomous or polytomous. This 

feature allows a great many possibilities for assessment designs to set flexible 

probabilistic state spaces. Such assessment designs can appropriately fit many 

different assessment purposes. 

ln addition, ECO provides a possibility of applying IRT in estimating 

explanatory variables. In other words, any local or general node of a Bayesian 

network can be explored with an IRT model. This implicitly represents a 

connection between IRT and Bayesian networks. On the basis of flexibility and a 

combination of IRT and Bayesian networks, ECO is appropriate for many 

different assessment situations. In the current study, the ECO framework was 

essential in designing the model blocks and assembling them effectively into 

OCAmodel. 
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8.2.2 Appropriateness of the Specifie Bayesian Assessment Model (Developed in 

the Project) 

This study developed a Bayesian assessment network model that was 

designed to accomplish both diagnostic and cognitive objectives. The 

assessment models incorporated performance (procedural) and semantic 

(declarative) knowledge, and applied these models to both real and simulated 

data. In order to simplify the evidence spaces and to implement a goal of 

assessing likelihood of mastery of specifie cognitive components, binary state 

spaces for assessment constructs were chosen. 

Emphasis was placed on assessments as tools for developing beliefs 

about the state of mastery of model components rather than for measuring 

individuals' levels on proficiency scales. Thus, very detailed assessments of 

cognitive components (procedural and declarative knowledge) that provide 

procedural and semantic expIa nations of student performance were obtained on 

the basis of the evidence variables updating to the explanatory nodes in the 

assessment mode/. Assessments trajectories based on this transfer of 

information can be used for reporting on such important process information as 

missing knowledge and skill components, and for tracking progress. 

ln other words, the approach taken was to estimate the likelihood of 

mastery based on evidence consisting of instantiated evidence variables. Linear 

scales of belief were obtained by transforming estimated probabilities of mastery 

into log odds ratios. These scales play critical roles in diagnostic judgments and 

in tracking learning process. Transformation of the likelihoods of mastery to log 
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odds ratios enables a linear scale of "proficiency" that is sensitive to subtle 

changes in patterns of evidence derived from a student's task performance. 

Use of fixed conditional probabilities (vs. data-based estimates) allowed 

unambiguous estimates. Since weights were fixed, assessment estimates only 

reflect the structure of the BN. The choice of specifie conditional probabilities 

effected the rate of change of estimated posterior probabilities of mastery of 

assessment constructs. These can be adjusted to "tune" the sensitivity of BN 

patterns of evidence obtained from simple assessment tasks. 

Model development involved (a) the development of a cognitive model, (b) 

mapping it into an assessment model (a Bayesian network), and (c) the 

development of evidence rules. Thus, the development of a Bayesian network 

(BN) or a Bayesian belief network (BBN) assessment model using this 

methodology does not require large data sets to estimate parameters in an 

assessment mode/. This also provided benefits for the validity of assessments 

and their interpretation. 

The BN assessments developed here allow direct linking of the 

assessments to authentic, challenging, and natural problem solving 

environments. Assessment networks can be flexibly adjusted on the basis of 

cognitive constructs and assessment purposes. They can be repeatedly updated 

to enable the direct tracing of developmental trajectories during learning, and the 

diagnostic reporting of dynamic progress toward mastery. Furthermore, the 

assessment network provides valid diagnostic information about specifie 

components, and tracks development towards mastery of learning goals. By 
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using the assessment model to track progress across multiple domain tasks that 

are authentic and increasingly challenging, convincing evidence of developing 

competencies in domains can be acquired. 

Therefore, the assessment network is appropriate with respect to content 

validity, construct validity, and consequential validity for many assessment 

purposes. 

When an assessment network can be simplified into two layers, its 

structure is very close to an IRT structure. Thus, IRT models may be thought of 

as special cases of a BN (Junker, 1999; Yan, Almond, & Mislevy, 2003). 

Therefore, general assessments of developing proficiency using IRT models can 

provide complementary general assessments which can be supplemental with 

diagnostic information provided by BN models. There is no doubt that this 

diagnostic information will enrich the psychometric information. 

8.2.3 Mastery and Proficiency trom an IRT vs. a BBN Perspective 

Mastery and non-mastery have been proposed as two states in the 

Bayesian student model construct (Desmarais & Pu, 2005) and in Bayesian 

performance assessments (VanLehn, 2001). Proficiency is often used to assess 

an ability or trait in a task domain when a problem solver successfully solves 

multiple tasks (test items). There are different theoretical bases and assumptions 

underlying mastery versus proficiency. BN assessment models can provide 

estimates of posterior probabilities of mastering assessment constructs by which 

learning progress can be reported by inference from evidence variables. We 
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investigated the utility of a log odds ratio transformation to produce linear and 

normally distributed measures of likelihood of mastering assessment constructs. 

IRT is a set of psychometrie models that usually include such item parameters as 

item difficulty, discrimination power and latent assessment variables measured 

on continuous scales. A comparison may be useful in rethinking relationships 

between the two classes of assessment models. 

First, the advantage of SN assessment models over IRT is that the 

assessment of the probability of mastery based on measurable objects in a 

Bayesian model does not rely on single traits representing an ability continuum. 

Bayesian assessment network models can contain both single and multiple 

dimensions of ability in the form of probabilities of mastery of model components 

at different levels. 

Second, BNs can represent student model variables. Andes is one 

example of using a BN approach to assessment (Martin & VanLehn, 1995b; 

VanLehn & Niu, 2001). BNs provide a basis for further developing an evidence­

centred assessment design. IRTs do not necessarily require complex and 

advanced cognitive model. However, deficits in the cognitive model would 

devastate inferences about explanatory constructs (variables) designed to model 

domain knowledge and skills. 

Third, modeling is obviously different between the two classes of models. 

IRT models are derived from test data collected from student performance on 

samples of tasks from a domain. Consequently, model parameters reflect student 

knowledge levels and item parameters that are estimated for the particular sets 
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of test items used. IRTs do not rely on the construction of knowledge models 

based on cognitive task analysis in sorne domain. They are not good at 

representing complex cognitive assessments, and details such as detecting 

misconceptions and learning errors which occurred during the learning process 

are not easily addressed. 

Most Sayesian assessments categorize student mastery or level of 

mastery in terms of a category. In the model presented here, the focus of the 

assessment of mastery was on the estimated log odds of mastery as a measure 

of the Iikelihood that a student has mastered a component of knowledge or skill. 

This approach yields: (a) approximately normally distributed "scores" on a 

continuous scale, and (b) a measure that is appropriate if the purpose of the 

assessment is viewed as a probabilistic judgement about a student's state of 

mastery. Such an assessment of general mastery (Le. of a construct at the top of 

a SN) is probably nearly equivalent to the level of mastery of a student learning 

assessed by an IRT model. 

ln short, the SN model studied in this thesis can provide assessment with 

an approach that combines aspects of both psychometrie and cognitive 

assessment, since the knowledge and skill components represented in the 

cognitive models can often be hierarchically structured. These models can be 

widely applied in complex learning environments (including computer-based 

learning environments), and they can provide both diagnostic information for use 

during learning, and assessments of progress in establishing mastery in domains 

of learning. 
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8.3. Contribution, Limitations and Future Research Directions 

Section 8.3 presents a discussion of the contribution of diagnostic 

cognitive assessment design, limitation of the analyses, and future research 

directions related to the current study. 

8.3.1 Contributions 

This study explored a methodology for establishing diagnostic cognitive 

assessments using an evidence-centered assessment design (ECO) approach. 

As a theoretical framework, ECO has been applied in many different domains. 

However, the current study applying ECO as an assessment design is unique in 

how it combines cognitive model theory and SN in a complex statistics learning 

domain. The contributions of the current study are as follows: 

First, the study examined the application of principles of ECO to diagnostic 

cognitive assessment in a statistics learning domain, and how it enabled 

assessment of student problem-solving competencies and deficiencies 

diagnostically and dynamically. 

Second, the study explored and carefully documented an assessment 

development methodology appropriate to a specific situation of DCA. The 

assessment will allow students to learn statistics while receiving diagnostic self­

assessments on the basis of their performance and semantic expia nations for 

tasks and learning problems they are completing. This capability can be provided 

in computer-coached learning environments such as the MSTP application. 
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Although the study does not realize this engineering objective, it has laid the 

basis for achieving this objective of web-based assessment in a dynamic 

coached-Iearning environment. 

Third, the study demonstrated how an inferential framework from evidence 

to assessment constructs can be implemented as a Bayesian assessment 

network based on a detailed cognitive model. The Bayesian model can be used 

to instantiate the evidence variables and to propagate assessment information 

between the assessment constructs and the evidence variables. 

Fourth, after completing the Bayesian assessment networks, the study 

examined the basic structure of the assessment network from simple to complex 

net cliques. This allowed a better understanding of the characteristics of the 

Bayesian assessment network. 

Finally, on the basis of student and simulated test data the Bayesian 

assessment network was successfully applied to assess the probability of the 

mode!. Mastery vs. non-mastery of cognitive model constructs have been 

proposed in the Bayesian student model construct. The result demonstrated that 

the assessment of mastery based on the estimated log odds of mastery provided 

a good diagnostic measure of the likelihood that a student had mastered specific 

components of knowledge and cognitive skills. Bayesian assessment networks 

of the kind studies here can be constructed for any well-structured domains of 

problem-solving competency, once a cognitive task and knowledge have been 

developed and validated for the domain. 
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8.3.2 Limitations 

One limitation of the study was that student data was limited and not 

evenly distributed in terms of levels of performance on the assessment task. The 

attempt to used student background variables to explore the external validity of 

the assessments was not successful. 

Second, the use of a dichotomous state space for BN nodes may have 

provided coarser information about mastery status unlike perhaps multiple 

mastery states. However the use of dichotomy as state spaces simplified the 

assessment design and the interpretation of assessment results. For example, 

appropriate assessment categories to consider for other assessment situations 

might include mastery, non-mastery, and partial mastery as an intermediate 

state. 

Third, the testing of the assessment network using simulated data cou Id 

be expanded to simulations of large samples of student data including a wide 

range of response patterns. Exploration of "inconsistent" response patterns 

needs to be undertaken to see how these patterns influence network 

assessments. Study of these "buggy patterns" might lead to the addition of bug 

detection features to the assessment model. 

Fourth, a larger sample of student data would have enabled the fitting of 

an IRT model to the data, enabling stronger conclusions about the relationship of 

the Bayesian estimate of "general proficiency" to IRT-based estimates. 
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8.3.3 Future Research Directions 

The current study suggests many possible future research directions. 

1. Apply the DCA methodology to other complex domains of performance, 

learning and skill development. 

2. Test the DCA model with larger student data sets. 

3. Investigate the use of assessment to track learning and to provide 

feedback in instructional situations. 

4. Investigate possible variations on the model, such as, the introduction 

of slip and guessing probabilities into evidence models. 

5. Investigate the relationships of DCA estimates of measures of general 

proficiency (log odds likelihood of mastery) with IRT-based assessment of 

general proficiency using appropriate data sets. 

6. Examine future effects of details of particular BN used in DCA. In 

particular, to investigate the use of multi-category state spaces to evaluate their 

relative advantages. 

7. Implement long-term studies to investigate assessment strategies that 

use Bayesian DCA in combination with IRT-based psychometrie assessment to 

provide both (a) psychometrie estimates of general proficiency, and (b) DCAs to 

obtain diagnostic information useful in developing student knowledge and 

expertise in various domains. 
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APPENDICES 

Appendix A: Performance Assessment of Statistics Learning 

Performance Assessment 
of Statistical Learning 

<ANOVA> 

McGiII Statistics Tutoring Project 
The Faculty of Education 

McGiII University 

February, 2005 
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First name: _______ _ Lastname:, ________ _ 

Statistics courses you have taken (or equivalent course): 

• EDPE 575 (Introduction course in statistics): _yes no 

• EDPE 676 (Intermediate Statistics: ANOVA): _yes _no 

• EDPE 682 (Regression analysis & the General Linear Model) 
_yes _no 

Have you used the McGiII Statistics Tutor _yes no 

If you answer is yes, please describe about how long or how many times you 
used it and give comments about your experience. 
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1 nstruction: 

1). In this assessment you will solve a data analysis problem using analysis of 
variance. In this booklet, you will be given a description of the research problem, 
method, and data sets, as weil as the purpose of the study. 

2). Read the problem description (you can refer back to it if necessary). 

3). You will "carry out" a sequence of tasks to analyze the data using SAS. 
However you will be provided with the SAS commands and results at each step. 

4). For each task, please answer ail the questions using the results that are 
provided as needed. 
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Task One - Research Method and Data Collection 

Description of the Study 

A statistics consultant has been called to assist the police department of a 

large metropolitan city to evaluate its human relations training program for 45 

recently hired police officers. The officers come from different assigned areas 

that they patrol. The areas are classified as: the upper-income area, the middle­

income area, and the lower-income area. The training program was designed to 

improve police attitude towards minorities. The researchers wanted to investigate 

the effect of the duration of the training program on the officers' attitudes. The 

program durations that were compared were five, ten, or fifteen hours of human 

relations training. The officers were randomly assigned to one of these three 

course durations. The attitude of the officer toward minority groups was 

assessed following the program using a test developed and validated previously 

by the consultant (the data will be given in next task). 

1). What are the dependent variables? 

2). What are the independent variables? 
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3). What research questions motivated the study? 

4). How was the sample of subjects obtained? 

5). How were the subjects assigned to the conditions? 

6). What attempts were made to control possible effects of extraneous variables? 
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Task Two - The Sam pie Data File [this task has been deleted, and you 

can skipped ] 

SAS Data Step: SAS Output: 

data kirk; Obs group duration attitude 
input group $ duration $ attitude; 
cards; 1 upper five 24 
upper five 24 2 upper five 33 
upper five 33 3 upper five 37 
upper five 37 4 upper five 29 
upper five 29 5 upper five 42 
upper five 42 6 upper ten 44 
upper ten 44 7 upper ten 36 
upper ten 36 8 upper ten 25 
upper ten 25 9 upper ten 27 
upper ten 27 10 upper ten 43 
upper ten 43 11 upper fifteen 38 
upper fifteen 38 12 upper fifteen 29 
upper fifteen 29 13 upper fifteen 28 
upper fifteen 28 14 upper fifteen 47 
upper fifteen 47 15 upper fifteen 48 
upper fifteen 48 16 middle five 30 
middle five 30 17 middle five 21 
middle five 21 18 middle five 39 
middle five 39 19 middle five 26 
middle five 26 20 midd1e five 34 
tniddle five 34 21 middle ten 35 
middle ten 35 22 middle ten 40 
middle ten 40 23 middle ten 27 
middle ten 27 24 middle ten 31 
middle ten 31 25 midd1e ten 32 
midd1e ten 32 26 middle fifteen 26 
middle fifteen 26 27 middle fifteen 27 
middle fifteen 27 28 middle fifteen 36 
middle fifteen 36 29 middle fifteen 46 
middle fifteen 46 30 middle fifteen 45 
middle fifteen 45 31 lower five 21 
lower five 21 32 lower five 18 
lower five 18 33 lower five 10 
lower !ive 10 34 lower five 31 
lower five 31 35 lower five 20 
lower five 20 36 lower ten 41 
lower ten 41 37 lower ten 39 
lower ten 39 38 lower ten 50 
lower ten 50 39 lower ten 36 
lower ten 36 40 lower ten 34 
lower ten 34 41 lower fifteen 42 
lower fifteen 42 42 lower fifteen 52 
lower f,ifteen 52 43 lower fifteen 53 
lower fifteen 53 44 lower fifteen 49 
lower fifteen 49 45 lower fifteen 64 
lower fifteen 64 

proe print; 
runi 
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1). How does the SAS data step organize the data for processing using SAS? 

2). How are the data organized in the output? 

3). Construct a 3x3 table displaying the attitude scores obtained for the subjects 
in the group for each combination of conditions (group and duration of training). 

Subject Attitude Values for Each Combination of Conditions 

o f ura Ion 0 fT .. rammg 
Group Five Hours Ten Hours Fifteen Hours 
Upper income 

Middle income 

Lower income 



Diagnostic and Model-based Assessment 300 

Task Three (A) - Descriptive Analysis of the Data Using Sample 

Statistics 

SAS Program Statements: 

proe means data--kirk mean; 
var att.i.tude; 
class group; 
proe means data=kirk mean 
var attitude; 
class duration; 
proe means data.=kirk mea.n var std stdexT; 
va.r attitude: 
class group duration; 
proe means data=kirk mean; 
var attitude: 
run; 

SAS Output: 

The MEANS Procedure Analysis Variable attitude 

group duration 

lower fifteen 

five 

ten 

middle fifteen 

five 

ten 

upper fifteen 

five 

ten 

group 

lower 

middle 

upper 

N 
Obs 

15 

15 

15 

Mean 

37.3333333 

33.0000000 

35.3333333 

The MEANS Procedure Analysis Variable : attitude 

duration 

fifteen 

five 

ten 

N 
Obs 

15 

15 

15 

Mean 

42.0000000 

27.6666667 

36.0000000 

The MEANS Procedure Analysis Variable : attitude 

N 
Obs 

5 

5 

5 

5 

5 

5 

5 

5 

5 

Mean 

52.0000000 

20.0000000 

40.0000000 

36.0000000 

30.0000000 

33.0000000 

38.0000000 

33.0000000 

35.0000000 

Variance Std Dev 

63.5000000 7.9686887 

56.5000000 7.5166482 

38.5000000 6.2048368 

90.5000000 9.5131488 

48.5000000 6.9641941 

23.5000000 4.8476799 

90.5000000 9.5131488 

48.5000000 6.9641941 

77.5000000 8.8034084 

Std Error 

3.5637059 

3.3615473 

2.7748874 

4.2544095 

3.1144823 

2.1679483 

4.2544095 

3.1144823 

3.9370039 
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The MEANS Procedure 

Analysis Variable : attitude 

Mean 

35.2222222 

1). Construct a 3x3 table displaying the mean attitude score for each combination 
of the conditions (group and duration) include the marginal (row and column) 
means and the grand mean in your table. 

Mean Attitude Score for Each Combination of Conditions 

o f ura Ion 0 fT .. rammg 
Group Five Hours Ten Hours Fifteen Hours 
Upper income 

Middle income 

~ 

Lower income 

2). Describe the effect of each of the independent variables (group and duration) 
on the mean attitude score. 
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3). Make a table (similar to your table of means) giving the variance and standard 
error of the mean for each cell in the table. 

For the variance 
Duration 0 fT . raming 

Group Five Hours Ten Hours Fifteen Hours 
Upper incorne 

Middle incorne 

Lower incorne 

For the Standard Error of the Mean 
o fT uratlon 0 rammg 

Group Five Hours Ten Hours Fifteen Hours 
Upper incorne 

Middle incorne 

Lower incorne 



Diagnostic and Model-based Assessment 303 

4). Are there any differences in the sample variances? Describe any differences. What is their importance for an Analysis of Variance of the data? 

5). Give an example of how you can use the standard errors to judge the size of 
the differences between ce" means or marginal means? 
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Task Three (8) - Interpretation of a Graphie Representation of the 

Means 

SAS Graphical Output for Group: 

[see the following page] 

1). Interpret the plot of the means of the Groups (pooled over Duration) in terms 
of the effect of the Group variable on mean attitude score. 

2). Use the errer bars to evaluate the size of the difference between groups. 
State your conclusions. 

3). What is the statistical basis for using the errer bars in this way? 
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SAS Graphical Output for Duration: 

[see the following page] 

1). Interpret the plot of the means of the Ouration conditions (pooled over 
Groups) in terms of the effects of the Ouration variable on mean attitude score. 

2). Use the error bars to evaluate the size of the differences between levels of 
Ouration. State your conclusion. 
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Task Four - The ANOVA Design 

SAS program statements: 

Also refer to the Description of the Study (Task One) and the SAS data step 
(in Task Two). 

1). State the ANOVA design for these data. 

2). What are the factors in the design what are their levels? 

3). Is this a balanced design or an unbalanced design and why? 



SAS Statement: 

proe anova data=kirk; 
class g:t'oup dUl'ationi 
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Task Five - The ANOVA Score Model 

model attitude=group duration group*duration; 
runi 

1). Write the ANOVA score model for your design. 

2). Explain the formula used in the ANOVA score model. 

3). What are the main effects? How are they interpreted? 
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4). What are the interaction effects? How are they interpreted? 

5). What is the grand mean? How is it interpreted? 

6). Identify the residual or error score and how it is obtained from subject's 
observed score on the dependent variable. 
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Task Six (A) - Estimating Effects 

SAS ANOVA program statements: 

proe anova data,=kirki 
class group durationi 
model attitude=group duration group*durationi 
means group duration group*duration; 
run; 

SAS output: 

The ANOVA Procedure 

Dependent Variable: 

Source 

Model 

Error 

Corrected Total 

Source 

group 
duration 
group*duration 

attitude 

OF 

8 

36 

44 

R-Square 

0.574912 

OF 

2 
2 
4 

Observed and Residual Scores 

SUIn of 
squares 

2907.777778 

2150.000000 

5057.777778 

Coeff Var 

21. 94074 

Anova SS 

141.111111 
1554.444444 
1212.222222 

Mean Square 

363.472222 

59.722222 

Root MSE 

7.728015 

Mean Square 

70.555556 
777.222222 
303.055556 

The ANOVA Procedure 

F Value 

6.09 

attitude Mean 

35.22222 

F Value 

1.18 
13.01 

5.07 

Level of -----------attitude----------
group N 

lower 15 
middle 15 
upper 15 

Mean 

37.3333333 
33.0000000 
35.3333333 

Std Dev 

15.2299830 
7.2702918 
8.1474507 

Pr > F 

<.0001 

Pr > F 

0.3185 
<.0001 
0.0024 
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Level of -----------attitude----------
duration N Mean Std Dev 

fifteen 15 42.0000000 11.1419414 
five 15 27.6666667 8.7722506 
ten 15 36.0000000 7.0101967 

Level of Level of -----------attitude----------
group duration N Mean Std Dev 

lower fifteen 5 52.0000000 7.96868873 
lower five 5 20.0000000 7.51664819 
lower ten 5 40.0000000 6.20483682 
middle fifteen 5 36.0000000 9.51314880 
middle five 5 30.0000000 6.96419414 
middle ten 5 33.0000000 4.84767986 
upper fifteen 5 38.0000000 9.51314880 
upper five 5 33.0000000 6.96419414 
upper ten 5 35.0000000 8.80340843 

1). Compute the estimate of the main effect for each level of group. 

2). Compute the estimate of the main effect for each level of Duration. 



Diagnostic and Model-based Assessment 311 

3). Show how the estimate of the interaction effect is calculated for any single 
combination of levels of Group and duration (pick a particular combination of 
levels of Group and Duration). 

4). Write the score model in terms of the estimates of the effects for a particular 
combination of levels of group and duration (pick one). 

5). Give your interpretation of the main effect for these data. 
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Task Six (8) - Estimating Residual Scores 

SAS ANOVA program statements: 
proc glm data-kirk; 
class group duration; 
model attitude=group duration group*duration; 
output out=tests r=residual; 
run; 

SAS OutDut: 
Obs group duration attitude residual 

1 upper five 24 -9 
2 upper five 33 0 
3 upper five 37 4 
4 upper five 29 -4 
5 upper five 42 9 
6 upper ten 44 9 
7 upper ten 36 
8 upper ten 25 -10 
9 upper ten 27 -8 

10 upper ten 43 8 
11 upper fifteen 38 -0 
12 upper fifteen 29 -9 
13 upper fifteen 28 -10 
14 upper fifteen 47 9 
15 upper fifteen 48 10 
16 middle five 30 -0 
17 middle five 21 -9 
18 middle five 39 9 
19 middle five 26 -4 
20 middle five 34 4 
21 middle ten 35 2 
22 middle ten 40 7 
23 middle ten 27 -6 
24 middle ten 31 -2 
25 middle ten 32 -1 
26 middle fifteen 26 -10 
27 middle fifteen 27 -9 
28 middle fifteen 36 0 
29 middle fifteen 46 10 
30 middle fifteen 45 9 
31 lower five 21 
32 lower five 18 -2 
33 lower five 10 -10 
34 lower five 31 11 
35 lower five 20 -0 
36 lower ten 41 1 
37 lower ten 39 -1 
38 lower ten 50 10 
39 lower ten 36 -4 
40 lower ten 34 -6 
41 lower fifteen 42 -10 
42 lower fifteen 52 0 
43 lower fifteen 53 
44 lower fifteen 49 -3 
45 lower fifteen 64 12 
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1). This SAS output gives the residual score for each subject. How were the residual scores are computed? 
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2). Interpret the estimated residual scores in the SAS output. What is the 
importance of large residual scores (positive and negtive)? 
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Task Seven - Analysis of Variance Table 

ANOVA Table: 

Dependent Variable: attitude 

SUffi of 
Source DF Squares Mean Square F Value Pr > F 

Model 8 2907.777778 363.472222 6.09 <.0001 

Error 36 2150.000000 59.722222 

Corrected Total 44 5057.777778 

R-Square Coeff Var Root MSE attitude Mean 

0.574912 21.94074 7.728015 35.22222 

Source DF Anova S8 Mean Square F Value Pr > F 

group 2 141.111111 70.555556 1.18 0.3185 
duration 2 1554.444444 777.222222 13.01 <.0001 
group*duration 4 1212.222222 303.055556 5.07 0.0024 

1). Explain what the columns are in the above ANOVA table 

2). Explain what the rows are in the ANOVA table 
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3). What is relationship between the total SS, the Model SS, and the Error SS? 

4). What is the relationship of the Model SS to the Group, Duration, and 
Group*Duration Sums of Squares? 

5). What is the relationship of a mean square to the Sum of Square and Design 
of Freedom in any row? 

6). What is the relationship of the F statistic to the mean squares? 
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Task Eight - Calculating and Using ANOVA Statistics 

ANOVA Table: 

Dependent Variable: attitude 

SUffi of 
Source DF Squares Mean Square F Value pr > F 

Model 8 2907.777778 363.472222 6.09 <.0001 

Error 36 2150.000000 59.722222 

Corrected Total 44 5057.777778 

R-Square Coeff Var Root MSE attitude Mean 

0.574912 21.94074 7.728015 35.22222 

Source DF Anova SS Mean Square F Value Pr > F 

group 2 141.111111 70.555556 1.18 0.3185 

duration 2 1554.444444 777.222222 13.01 <.0001 

group*duration 4 1212.222222 303.055556 5.07 0.0024 

1). Write an equation showing the decomposition of the total SS. Based on 
ANOVA table above, show how the total SS is decomposed into a sum of other 
su ms of squares in the table. 

2). What are the degrees of freedom of these sums of squares and how do you 
calculate them? 

3). What are Mean Squares and how do you calculate them? 
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4). How do you get R2 based on the Sums of Squares in ANOVA table. How is it 
interpreted? 

5) How do you obtain the Root Mean Square Error? How does it relate to the 
"SEM" (Standard Errors of the Means) for the cells in the ANOVA design table 
(Task 3A)? 

6). What is the Coefficient of Variation and how do you interpret it? 
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Task Nine - Testing Hypothesis in ANOVA 
ANOVA Table: 

Dependent Variable: attitude 

Sum of 
Source DF Squares Mean Square F Value Pr > F 

Model 8 2907.777778 363.472222 6.09 <.0001 

Error 36 2150.000000 59.722222 

Corrected Total 44 5057.777778 

R-Square Coeff Var Root MSE attitude Mean 

0.574912 21. 94074 7.728015 35.22222 

Source DF Anova SS Mean Square F Value Pr > F 

group 2 141.111111 70.555556 1.18 0.3185 

duration 2 1554.444444 777.222222 13.01 <.0001 

group*duration 4 1212.222222 303.055556 5.07 0.0024 

1). State ail of the hypotheses to be tested. 

2). What are the F values and how are they obtained? 
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3). How are the F values used to test hypotheses? 

4). What are the expected values of the F statistics under the null hypothesis for 
each hypothesis to be tested? 

Why are the expected F values important in the decision to use a particular F 
statistic to test each hypothesis? 

5). What is the labelled as "Pr > F" in the ANOVA table? How is it determined 
from the F value and the F distribution with the appropriate degrees of freedom? 
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Task ten - Testing Contrasts among 
Groups (This task can be skipped ) 

SAS Program Statement: 

proc glm data=kirk; 
class group duration; 
model attitude=group duration group*duration; 
contrast 'dur 1 vs 3' Duration 1 0 -1; 
contrast 'dur 2 vs 3' duration 0 1 -1; 
means duration/ tukey alpha=.l cldiff; 
run; 

SAS Output of Pre-planned Contrasts: 

Class 

The GLM Procedure 
Class Level Information 

Levels Values 

group 3 lower middle upper 

Dependent Variable: 

Source 
Model 
Error 
Corrected Total 

Source 
group 
duration 
group*duration 

Source 
group 
duration 
group*duration 

Contrast 

dur 1 vs 3 
dur 2 vs 3 

duration 3 fifteen five ten 

attitude 

DF 
8 

36 
44 

R-Square 
0.574912 

DF 
2 
2 
4 

DF 
2 
2 
4 

OF 

1 
1 

Number of observations 
The GLM Procedure 

Sum of 
Squares Mean Square 

2907.777778 363.472222 
2150.000000 59.722222 
5057.777778 

Coeff Var Root MSE 
21. 94074 7.728015 

Type l SS Mean Square 
141.111111 70.555556 

1554.444444 777.222222 
1212.222222 303.055556 

Type III SS Mean Square 
141.111111 70.555556 

1554.444444 777.222222 
1212.222222 303.055556 

Contrast SS Mean Square 

270.0000000 270.0000000 
520.8333333 520.8333333 

F Value 
6.09 

atti tude Mean 
35.22222 

F Value 
1.18 

13.01 
5.07 

F Value 
1.18 

13.01 
5.07 

F Value 

4.52 
8.72 

Pr > F 
<.0001 

pr > F 
0.3185 
<.0001 
0.0024 

Pr > F 
0.3185 
<.0001 
0.0024 

Pr > F 

0.0404 
0.0055 
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SAS Output of Tukey Test: 

The GLM Procedure 
Tukey's Studentized Range (HSD) Test for attitude 

NOTE: This test controls the Type l experimentwise error rate. 

Alpha 
Error Degrees of Freedom 
Error Mean Square 
Critical Value of Studentized Range 
Minimum Significant Difference 

0.1 
36 

59.72222 
2.99758 

5.9813 

Comparisons significant at the 0.1 level are indicated by *** 

Difference 
duration Between Simultaneous 90% 

Comparison Means Confidence Limits 

fifteen - ten 6.000 0.019 11.981 *** 
fifteen - five 14 .333 8.352 20.315 *** 
ten - fifteen -6.000 -11.981 -0.019 *** 
ten - five 8.333 2.352 14.315 *** 
five - fifteen -14.333 -20.315 -8.352 *** 
five - ten -8.333 -14.315 -2.352 *** 

1). What pre-planned contrast were tested for these data and wh y? 

2). State the hypothesis being tested for each pre-planned contrast. Interpret the 
results. 
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3). What is the Tukey post hoc contrast? Interpret the results. 

4). Compare the results of the pre-planned contrasts to those for the Tukey post 
hoc contrasts. What analysis (pre-planned vs post-hoc) would you choose for 
these data and why? 
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Task Twelve -Conclusions from the ANOVA 

SAS Results: See previous displays in the booklet. 

1). State you conclusions based on the results of this study. 

2). If there was any interaction between the eftects of group and duration of 
training, explain your interpretation of this interaction. 

3). What are the limitations of the study and its results? 



Question one: 
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Appendix B: Solution Features of Task Five 

1. The score model is a linear equation. 

2. The equation begins with a variable label representing the score on the 

dependent variable with appropriate subscripts to indicate the specifie levels 

of factors used to classify a subject, and an index number for the subject. 

3. Right of the equal sign is a sum of terms. 

4. The first term is a symbol (Greek mu) for the population grand mean. 

5. The next term is a symbol for a population main effect parameter of the first 

factor indexed according to the level of this factor (as it was indexed on the 

score variable). [FOR ON FACTOR MODElS] 

(question one) the last term is a symbol (variable name) for the error (i. e. 

residual) score having the same indexing as the score variable. (MISSING 

[FOR ONE FACTOR MODEl] 

[FOR TWO FACTOR MODElS: 

6. The next terms are symbols representing population main effect parameters 

for additional factors. Each effect parameter is indexed according to the level 

of this factor (as it was indexed on the score variable). 

7. If you have a crossed design with two or more factors, terms representing the 

population two-way interaction effects for pairwise combinations of factors are 

included in the model. Each effect parameter is indexed according to the 

levels of these factors (as they were indexed on the score variable). 
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8. the last term is a symbol (variable name) for the error (i. e., residual) score 

having the same indexing as the score variable.] 

Question 2: 

9. An individual's score Xij in an ANOVA design can always be written in terms 

of the sum of two terms: the cell mean IJj (i. e., the population mean of the 

individual's group in a one factor model) plus an error or residual score eij. 

(the deviation of the individual's score on the dependent variable from the 

group mean). (This is the Means Version of the Score Model ). 

10. The residual score eij is the deviation of the individual's score on the 

dependent variable Xij from the group mean IJj. 

11. In ANOVA models, each individual's score Xij on the dependent variable is 

expressed as a deviation score by subtracting the population grand mean IJ. 

12. [FOR ONE WA y DESIGNS] ln a one-factor models, the population grand 

mean IJ is also subtracted from the group mean IJj on the right hand side of 

the Means Model equation. This expresses the population group mean as a 

deviation from the population grand mean IJj- IJ. 

13. [FOR TWO WA y DESIGNS] This deviation of the group mean from the grand 

mean is called a Main Effect and written as a single main effect parameter 

for level j of the Factor alpha j. 

14. [FOR TWO WAY DESIGNS] Because they are deviation scores of group 

means from the grand means, the effect parameters for ail the levels of a 

factor add up to zero. A large effect of level j means that the mean of 

group j deviates substantially from the grand mean. 
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15. Population effects must be estimated from the data. Since they are 

differences between population group mean I-Ij and the grand mean 1-1, they 

can be estimated from the sample estimates of these means. 

16. In the one way ANOVA score model, the effect parameter is substituted for 

the difference between the group mean and the grand mean in the Means 

Model. Then the grand mean is added back to both sides. This expresses a 

subject's score as a sum of the grand mean 1-1, a main effect parameter 

alpha j, and a residual (error) score eij. 

17. The identification of comparison or control groups is important for planning 

and contrasts that will be tested in ANOVA. 

18. By decomposing the participants' scores into a grand mean, effect 

components, and a residual score, we can systematically investigate the 

additive effect of each component as a contribution to the subjects' scores. 

19. Individual with large residual scores can be identified as atypical "outlier" 

subjects. This can be important in many analyses. 

[FOR TWO WAY DESIGNS] 

question 2 

20. In two-Way ANOVA models, an individual's score Xijk in an ANOVA design 

can always be written in terms of the sum of two terms: the cell mean I-Ijk (i. 

e., the population mean of the individual's group in a one factor model) plus 

an error or residual score eijk. (the deviation of the individual's score on the 

dependent variable from the group mean). (This is the Mean Version of the 

Score Model). 
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21. the residual score eijk is the deviation of the individual's score on the 

dependent variable Xij from the ce" mean IJjk. 

22.ln Two-Way ANOVA models, each individual's score Xijk on the 

dependent variable is expressed as a deviation score by subtracting the 

population grand mean IJ . 

23.ln ANOVA models with two (or more) factors, there is a population main 

effect parameter for the effect of a level of each factor on the subject's 

score. Each of these is a deviation of the marginal mean for particular 

level of a factor from the grand mean. 

24. In a two way design with two factors, interactions, say of level j of one 

factor and level k of a second factor, are equal to: IJjk- IJj- IJk+ IJ (i. e., the 

cell mean minus the marginal means for the levels of the two factors plus 

the grand mean). 

25. Interaction effects are large when there is a large difference between the 

ce" mean IJjk and the marginal means 1Jj. and lJ.k for levels j and k (of 

Factor A and 8). 

26. By decomposing the participants' score into a grand mean, effect 

components, and a residual score, we can systematically investigate the 

additive effect of each component as a contribution to the subjects' 

scores. 

27.lndividuals with large residual scores can be identified as atypical "outlier" 

subjects. This can be important in many analyses. 
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(a). Score: 

Appendix C: A Score Rubric of Task Five 

Write 

(Process) 

(1) y is a symbol for score variable "attitude toward minority". 

(2) Index for score variable, ijk or i(jk) . 

Explain 

(Semantic) 

(3) Complete expression Yi Ok) for score of individual 1 in group j and duration k 

(b). Grand Mean: 

(4) IJ symbol for population mean. Parameter pooled in j and k. 

(c). Main Effect (Group): 

(5) a symbol for main effect parameter 

(6) j index for group (j=1, 2, 3) 

(7) aj main effect for group j 

(d). Main effect for duration: 

(8) 13 for main effect parameter 

(9) k index for duration 

(10) I3k main effect of duration k 

(e). Interactive effect 

(11) Y for interactive effect 

(12) (jk) for index of cell in design 

(13) y Ok) for interactive effect of individual i in cell (j, k) 

(f). Residual score: 

(14) e= residual score 

(15) i(jk) same index as score variable 

(16) eiOk) error score in group j, duration k and subject i 

(g). Complete model eguation: 

(17) Yi Ok) = IJ + aj + ~k +Yjk + ei Ok) 

*17 X 2=34 items 
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Appendix D: Random Sampling Evidence Nodes in ModelEquation 

Runs True Nades 

01 09 

02 0211 

03 031016 

04 06192124 

05 0516182526 

06 040811 1521 23 

07 020509 10 1521 25 

08 05 07 08 13 14 17 18 21 

09 020409111416202425 

10 01 050708091417181921 

11 02 03 05 06 08 11 12 16 17 18 22 

12 010203060709101113162124 

13 03040708101112151819212225 

14 0305060711121314171820212226 

15 01 02 03 07 08 10 11 12 14 15 17 19 21 25 26 

16 01020304050708091011121415171921 

17 0102030405060910111314171819202425 

18 020507091011121314151718202122232526 

19 01 03 05 06 07 08 09 11 12 13 14 15 16 18 19 20 23 24 26 

20 01 0204050607081112131415161921 2223242526 

21 01 02 03 04 05 06 07 08 09 10 11 12 13 14 19 20 22 23 24 25 26 

22 01 02 03 04 05 07 08 09 10 11 12 13 16 17 18 19 20 21 22 23 25 26 

23 0103040708091011121314151617181920212223242526 

24 01 0203040506080910111213141516171920212223242526 

25 01 020405060708091011121314151617 18 192021 2223242526 

26 01 0203040506070809101112131415161718192021 2223242526 



Runs 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Diagnostic and Model-based Assessment 331 

Appendix E: Random Sampling Evidence Nodes in Score Model 

True Nodes 

31 

3338 

274045 

28344244 

2932354345 

27 32 34 37 38 42 

28 29 36 38 40 41 43 

28 30 32 34 36 40 44 45 

27 28 30 31 36 40 41 42 44 

27 28 30 32 34 35 37 38 42 43 

27 28 29 32 34 35 36 37 38 40 45 

28 29 30 31 33 36 39 41 42 43 44 45 

27 29 30 32 34 35 36 37 38 39 40 42 43 

28 29 30 32 33 34 35 36 37 39 41 42 43 44 

2728293031 3334363738394041 4244 

282931 3233343536373839 4142434445 

2728293031 323334353637383940434445 

28293031 3233343536373839404142434445 

2728 29 30 31 32 33 34 35 36 37 38 39 40 41 42 434445 
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Appendix F: Random Sampling Evidence Nodes in Whole Model 

Runs True Nodes 
01 27 
02 1519 
03 092833 
04 03213542 
05 0810343741 
06 05 1222293044 
07 13 17 24 25 26 29 45 
08 0212131516182042 
09 01 0312 1421 30323739 
10 08 13 26 29 32 35 36 42 43 44 
11 03 12 19 24 27 28 30 35 39 42 45 
12 020717181921252931353638 
13 05 06 08 10 11 22 25 29 33 34 36 42 45 
14 0406091213141619203031 323738 
15 01 02040507141921 27283335373945 
16 02 04 05 08 13 14 17 20 23 24 27 29 35 36 40 43 
17 06121314151617181922252731 35363742 
18 020309101621252829303334353637404345 
19 04 05 07 08 09 13 16 17 18 19 20 22 23 25 26 29 41 42 44 
20 0203070809181920212327293234353637404143 
21 020305 06 07 10 132021 23242931 3334353637 394045 
22 04061011121316171921232426283031333438424445 
23 0203040508091013171819262728313233343739404345 
24 010307111213171821222324252627283132333436373940 
25 01 030408111314151718212226282931 333435363839424445 
26 02 03 05 06 08 09 12 13 18 19 22 24 25 26 27 28 29 30 32 33 35 37 38 40 41 43 
27 01 0203040608111315182021242628293133353637383940414244 
28 01 02040607080912131516182224252627282931 3233353638394142 
29 02030506070809121314151619202223242528293031 33363739404344 
30 02 04 06 08 09 12 14 15 16 17 18 20 23 24 25 26 27 28 29 30 32 34 35 38 40 41 42 43 44 45 
31 01 0405060708091011 1214161718202122232527282931 3334373841424345 
32 0203040708091011 121314151819202122242728293031 323334373940424445 
33 01 02030405081011121415171821222324252627282931 33343537383940424445 
34 02 03 04 06 07 08 09 10 11 12 13 14 15 17 19 23 24 25 26 27 28 29 33 34 35 36 37 38 39 40 41 42 43 44 
35 010204050608091011 13141516171819202122232425263031 33343537394041434445 
36 01 02030506070809101213141517192223242628293031 32333435363739404142434445 
37 01 0203040607 10 11 12 13 14 15 16 17 18 192021 2224262728293031 32333436394041 424344 

45 
38 01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 20 22 23 24 25 26 27 28 29 30 35 36 37 38 39 40 41 42 43 

4445 
39 01 020304050608091011 121415 16 17 18 192021 2324252628293031 323334353637394041 

424345 
40 01 020304 05 06 07 08 091011121314151617182021222324252627283031 32333435363739 

40414243 
41 02030405060708091011 1213141516171819202122232526272829303132333435373839 

4041434445 
42 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 38 39 

404142434445 
43 01 02030405060708091012131415161718192021 22232425262728303132333435363738 

39404142434445 
44 01 02030405060708091011121314161718192021 22232425262728293031 323334353637 

38 39 40 41 42 43 44 45 
45 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

37 38 39 40 41 42 43 44 45 
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Appendix G. Diagnostic Scoring System Student Number: ---

Procedural Scoring Components Semantic Scoring Components 

Item Number Value Item Number Value 

01 27 

02 28 

03 29 

04 30 

05 31 

06 32 

07 33 

08 34 

09 35 

10 36 

11 37 

12 38 

13 39 

14 40 

15 41 

16 42 

17 43 

18 44 

19 45 

20 

21 

22 

23 

24 

25 

26 

Total 
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Appendix H. Examination of the Robustness of the Models for the Student Data 

-------------------------------------------------------------------------------------------------
Student # ModelEquation ScoreModel FullModel {:; 

----------------------------------------------------------------------------.-------------------
1 0* 0* 0 0.01 

2 0* 0* 0 0.01 

3 0 0 0 0.05 

4 0 0 0 0.05 

5 0 0* 2 0.01 

6 0 0 0 0.05 

7 0 0 0 0.05 

8 0 0 0 0.05 

9 0* 0* 0 0.01 

10 0 0 0 0.05 

11 0 0 0 0.05 

12 0 0 0 0.05 

13 0 0 0 0.05 

14 0* 0 0 0.01 

15 0 0 0 0.05 

16 0 0 0 0.05 

17 0* 0* 0 0.01 

18 0 0 0 0.05 

19 0 0 0 0.05 

20 0 0 0 0.05 

-----------------------------------------------------------------------------------------------------------
• indicates that the E is at 0.05 


