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ABSTRACT

The first part of the thesis concerns Green’s functions of discrete Laplacians
on lattices. In thé continuous case, it is well known that the corresponding Green’s
functions decay polynomially. However, an identical proof of this fact fails in the
discrete case, since the constant energy surfaces of the discrete Laplacian are not
convex. T'wo approaches are presented to turn around this problem. One consists of
adapting the stationary phase method in order to treat non convex surfaces admitting
k > 0 non vanishing principal curvatures at each point, as suggested by Littman [27}.
The other consists of changing the discretization of the Laplacian, as suggested by
Molchanov and Vainberg [30]

The second part of the thesis concerns random Schrédinger operators of type
Anderson on the d-dimensional lattice. Sufficient conditions are presented for such
operators, H = A + V, to satisfy almost surely the following, remarkable spectral
and scattering properties:

1. Outside spec(A), the spectrum of H is pure point with exponentially decaying
eigen‘functions (so-called Anderson localization). Examples where the spec-
trum of H is equal to the whole real line are also exhibited, in which case the
eigenvalues of H are in addition dense in R \ spec(A);

2. Inside spec(A), the spectrum of H is purely absolutely continuous (so-called
delocalization);

3. Inside spec(A), the wave operators between H and A exist and are complete.

iv



Such Anderson operators are exhibited for the first time in the literature. Using the
estimate of the first part of the thesis, the mentioned sufficient conditions appear to

be sparseness conditions on the support of the potential.



ABREGE

La premiere partie de cette these traite des fonctions de Green des laplaciens
discrets sur Z¢. Rappelons que, dans le cas continu, les fonctions de Green correspon-
dantes décroissent polynomialement. Toutefois, la preuve de ce résultat ne peut étre
reproduite pour les laplaciens discrets, puisque les surfaces d’énergie constante de
ces derniers ne sont pas convexes. Deux solutions & ce probléme sont proposées. La
premiere, suivant Littrnah, consiste a adapter la méthode des phases stationnaires
pour qu’elle s’applique aux surfaces non convexes dont en chaque point au moins
k& > 0 courbures principales ne s’annulent pas. La seconde, suivant Molchanov et
Vainberg, consiste & modifier adéquatement la discrétisation du laplacien.

La seconde partie de cette these traite des opérateurs aléatoires de Schrodinger
de type Anderson sur des réseaux. Des conditions suffisantes pour que de tels
opérateurs, H = A + V, vérifient presque siirement les propriétés remarquables
suivantes sont présentées:

1. En dehors de spec(A), le spectre d’H est purement ponctuel et ses fonctions
propres décroissent exponentiellement (localisation d’Anderson); nous mon-
trons en plus que, pour certains exemples, le spectre d’H est égal a R, dans
lequel cas sa partie purement ponctuelle est dense dans R \ spec(A).

2. A Vintérieur de spec(A), le spectre d’'H est purement absolument continu
(délocalisation);

3. A Pintérieur de spec(A), les opérateurs d’ondes entre H et A existent et sont

complets.

vi



De tels opérateurs d’Anderson sont présentés pour la premiere fois dans la littérature.
Au moyen de la borne polynomiale établie dans la premiere partie de cette these, nous
montrons que les conditions suffisantes en question reviennent a ce que le potentiel

soit clairsemé (sparse).
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CHAPTER 1
Introduction?

1.1 Historical Background

Quantum physics is governed by the Schrédinger equation, following which ob-
servables (like the position, momentum, and energy of a particle) are captured by
selfadjoint operators on a Hilbert space. In particular, the energy of a single particle
is given by a Schrédinger operator, A + V, acting on a certain Hilbert space (made
of square summable functions). Here, the kinetic energy, A, is an extension of —1
times the usual Laplacian, while the potential energy, V, is the operator of multi-
plication by a certain function which depends on the physical context. The possible
values of the energy are then given by the spectrum of ‘A + V, that is, the numbers,
e, such that A + V — e is not invertible. To develop spectral theory (which studies
spectra of selfadjoint operators on Hilbert spaces) has thus been a major concern for
understanding quantum phenomena since the beginning of the last century.

About fifty years ago, new developments in quantum mechanics arised after
Anderson introduced his model, in which the potential, V, is affected by a random
parameter [4]. This last model was designed for studying solid state physics (for

instance, the evolution of electrons submitted to a potential coming from impurities;

! Precise statements of the main theorems proven in this thesis are found in its
conclusion (section 5.1).



since the exact nature of the impurities is not known, the best description of the in-
duced potential is given by a probability distribution). The Anderson model provides
a new insight in quantum mecechanics, since, being interested in results that happen
with probability one, pathological, unobserved counterexamples are discarded. The
introduction of this model contributed to Anderson’s Nobel prize in physics. His
main conjecture, about the spectral nature of A + ¢V for ¢ small, is still unsolved
and attracts great scientists around the world (like the Fields medalist Jean Bour-
gain).

In order to find results motivating the Anderson conjecture, other models were
suggested. For instance, in the discrete framework the underlying Hilbert space con-
sists of square summable sequences over the d-dimensional lattice, and the Laplacian
becomes the adjacency operator of this grid (up to an additive constant). Moreover,
scientists have been interested in the case where the potential is sparse, i.e., has non
zero values on more and more distant sites only. One then investigates the spectral
nature of the operator and asks which parts of its spectrum are absolutely continu-
ous (so-called delocalization), pure point with exponentially decaying eigenfunctions
(so-called Anderson localization), singular continuous, which parts admit possibly
complete wave operators (scattering theory), etc.

1.2 Objectives

The present thesis concerns discrete, random Schrodinger operators of Anderson
type with sparse potentials. Its objective is to exhibit for the first time in the
literature a family of random Schrédinger operators, H = A + V, acting on [2(Z%),

satisfying almost surely the following, remarkable spectral and scattering properties:



1. The spectrum of H is dense pure point outside spec(A) with exponentially
decaying eigenfunctions (so-called Anderson localization);
2. The spectrum of H is purely absolutely continuous on spec(A)‘ (so-called delo-
calization); .
3. The wave operators between A and H exist and are complete on spec(A).
Our main result, developed in Chapter 3, states that the above properties may
hold under a suitable sparseness condition on the sites of the random potential,
V. This result is an application of famous theorems in random perturbation theory
(Simon-Wolff Theorem, Jaksié¢-Last Theorem), and more specifically of the Jaksié-
Last criteria of exiétence and completenéss of wave operators for Schrédinger oper-
ators on graphs [17]. These last criteria apply under the following, main condition:
suppose the random potential, V, is supported on I' € Z% let us denote by I'; the

set consisting of all sites in I' and their immediate neighbors; denoting by 1; the

projection on [2(T';), it is required that for alln € T
11, (H — e —10)716, | < o0

on the considered interval of energy (say, for e € la, b[), where 4,, denotes the Kro-
necker delta.

In the present thesis two approaches are used to verify the previous condition:
one is deterministic, the other is probabilistic.

In the deterministic case we investigate the free, restricted resolvent

1,(A —e—i0)"'1, (1.1)



and explain how it is affected by a sparseness condition on I'. Our key observation
is the following: if ' is sufficiently sparse, then (1.1) is the sum of a superdiagonal
operator and a compact operator. Using this last decomposition, the sparseness of I'
also permits to control ||1;(A — e —10)7*1;]|. Then, one passes from A to H using
the resolvent identity in conjunction with Fredholm’s analytic theory.

In the probabilistic case, (1.1) is estimated by means of the Aizenman-Molchanov
theory. The key observation is the following: if I' is sufficiently sparse, then there
exists a finite set, F C I', such that the Aizenman-Molchanov method applies to
H + 1n\#V, where 1\ is the characteristic function of I'\ F. One then goes from
this last operator to H by the resolvent identity.

A preliminary prolem occured, which is discussed in the first part of the thesis.
The conditions found in our main theorems are expressed in terms of the Green’s

functions of A, more precisely, in terms of
G(n,e+10) = (0o | (A — e —i0)715,).

They constitute a sparseness condition on I' only if an a priori estimate on G(n, e+i0)
(when |n| — o0) is known. In the continuous case such an a priori estimate is easily

established using the stationary phase method, due to the fact that constant energy



surfaces? of the continuous Laplacian are strictly convex (indeed, they are spheres).
However, strict convexity of constant energy surfaces fails in the discrete case.

Two approaches may be used to turn around this problem. One consists of gen-
eralizing the stationary phase method in order to treat non convex surfaces without
planar point [27], which gives a weak, but satisfying estimate. The other consists of
changing the discretization of the usual Laplacian, as suggested by Molchanov and
Vainberg [30].

This last idea is simple. At the first glance, periodicity of A forbids convexity
of its level surfaces, since, when lifting the level surfaces to the usual covering of the
torus (¢.e., to Euclidean space), on‘e may obtain unbounded connected components
which decompose in patterns reproduced at every (2m,...,27), creating an oscilla-
tion. However, convexity is still possible if A is factorized, in which case the level
surfaces consist of bounded connected components enclosed in a system of hyper-
planes.

One thus seeks for a discretization of the Laplacian whose symbol is factorized,
which is easily found when considering the associated random walk. For instance, if
each single step of a random walk is determined by several independent trials, one
per axis, each trial determining the direction of the walk along its corresponding axis,

then the resulting stochastic process is the product of 1-dimensional, independent

2 Given an operator, A, on L2(R%) or 12(Z4), its symbol, A, is its lifting via the
Fourier transform. If the symbol of A is (the multiplication by) a function, the
constant enerqy surfaces of A are the level surfaces of A.



processes, so the resulting symbol is factorized (each factor corresponding to the
symbol of a 1-dimensional random walk). Notice that the random walk just described
then goes along full diagonals; hence, the construction of the proposed Laplacian is
based on full diagonal neighbors instead of immediate neighbors. It is not difficult
to verify that the constant energy surfaces of the resulting operator are convex [35].

The above, preliminary problem and its solutions were the occasion for the
author, firstly, to write a chapter reviewing the stationary phase method and its
applications to Green's functions of discrete Laplacians—this text, based on [45, 46,
42], constitute the first part of the present thesis and will appear in [36] ;73 secondly,
to promote the use of the diagonal Laplacian in the context of scattering theory of
the Anderson model. In this context, the operator in question has been named the
Molchanov—Vainberg Laplacian.
1.3 Pre-requisites

Since Chapter 2 is a review of the stationary phase method and its application

to Green’s functions, only a small knowledge of differential geometry of surfaces

3 In certain respects the mentioned text goes beyond a simple review. For in-
stance, results and proofs coming from [45] are adapted in order treat a parameter,
thanks to which proofs are simplified (e.g., the corollary of Theorem 3 is deduced
by induction). This treatment of a parameter also permits to deduce a decay for
Fourier transforms of smooth functions over non convex surfaces (in particular, tech-
nical details omitted in [27] are complemented here). Then, the strategy presented in
[42] for estimating Green’s function of the standard discrete Laplacian on a certain
interval of energy becomes available for other intervals of energy, or for other discrete
Laplacians without assuming that their constant energy surfaces are convex on the
considered intervals.



in R? is assumed [6]. However, Chapter 3 uses pre-requisites in measure theory,
harmonic analysis, functional analysis, probability theory, and especially in random
perturbation theory.

The interested reader may consult [41] for a standard exposition of measure
theory and harmonic analysis.

In functional analysis, a strong knowledge of the spectral theorem for unbounded
selfadjoint operators is required; a good reference is [40]. As a complement, we
strongly recommend [13]. In this last reference, the proof of the spectral theorem
follows an interesting outline which is described in the first part of Appendix 4.2;
this appendix may be read before Chapter 3, since it gives an accurate overview of
results, notations, and terminology used in this last chapter.

In random perturbation theory the Simon-Wolff theorem [44], the Aizenman-—
Molchanov theory [3], and the Jaksi¢-Last theorem [16] are assumed. These special-
ized results are described in the second part of Appendix 4.2.

Finally, for a general treatment of random Schrodinger operators, the monogra-

phies [7, 8] are recommended.



CHAPTER 2
Stationary Phase Method and Applications to Green’s Functions

An oscillatory integral is an integral of the form

/ elre@ f(1) du,
Rd

where r € R and ¢(z) is real valued. Its amplitude and phase are f(x) and ¢(z),
respectively. The phase is stationary at zq if Vio(xg) = 0. Such a stationary phase
point, xg, is non degenerate if in addition det D2p(zq) # 0.

In this chapter we establish 1) the rapid decay of an oscillatory integral whose
phase is nowhere stationary, for a given compactly supported amplitude; 2) the
polynomial decay of an oscillatory integral whose stationary phase points are not
degenerate; 3) similar results for Cauchy principal values of oscillatory integrals.
Given an analytic function, ®(z), on T¢, we then consider Fourier transforms of

functions over level surfaces of the form
I'(e) = {z € T; &(z) = e}

and investigate their decay when the I'(e)’s are regular, compact, and admit at every
point at least ¥ > 0 non vanishing principal curvatures. Then, we do a similar study
for Cauchy principal values of such Fourier transforms. Finally, we deduce the decay
of Green’s functions of generalized Laplacians for energies inside their associated

spectra.



In all our results a parameter ¢ € R™ is considered. It permits to deduce
multidimensional results from 1-dimensional ones using a simple induction. When
studying Fourier transforms over I'(e), it also permits to deduce uniform estimates
in e and, furthermore, to generalize our results to surfaces whose Gaussian curvature
may vanish, but which admit at least k¥ > 0 non vanishing principal curvatures. It
permits to study the decay of Cauchy principal values of such Fourier transforms
and hence, to calculate the decay of Green’s functions of a general class of operators.
Finally, it permits to show that this last decay is uniform in e, where e is the level
of energy.

We adopt the following conventions: most of our theorems establish the existence
of a neighborhood on which a certain phenomenon occurs. For sake of simplicity
(and without loss of generality), we consider only non empty, bounded, open, cubic
neighborhoods and we call them cubes.

Given a real valued phase, ¢(z,t), we define

N e (L
Rd

where r > 0, t € R™, and f(z,t) is a complex valued function—provided that this
integral makes sense.
In the present text, smooth is used for infinitely differentiable. The vector space

of all (complex valued) smooth functions on R? is denoted by C*®(R?). It contains

! Recall that a cubic neighborhood in R? is a subset of the form I; x « - - X 14, where
each I; is an interval.



two important subspaces: C*(R%), consisting of all analytic functions on R%, and
C>=(R?), consisting of all compactly supported smooth functions on R®.
The transpose of a lincar transformation on C°(R?) is defined by duality with

respect to the following bracket:

(F@)lg(z)) = | f(z)9(z)dz.

For instance, denoting by 8m{j) the differentiation with respect to zt/), integration
by parts gives 8,:)" = —8,4). Morcover, denoting by F(z) the multiplication by a
smooth function of the same name, F(z)* = F(z).

Our notations regarding asymptotic behavior are standard: for instance,
fr)y=0(r"% whenr — oo

means the existence of a positive constant, C, such that |f(r)] < Cr~* when r is
sufficiently large. In the weaker circumstance where f(r) = O(r=**¢) for all € > 0

(where the constant C' depends on €), one writes
F(r)=0(r"*") when r — 0.

In the stronger circumstance where f(r) = O(r~?) for all & > 0 (where the constant

C depends on «), one writes
f(r)=0(r~%) when r — oo.

Finally,

o0
f(r) ~ Zajr“j when r — o0
7=0

10



means that for any N > 0

N
fr) = a7 = 0@
7=0

If the function f also depends on a parameter, ¢, we say that the previous esti-
mates/asymptotics are uniform in ¢ if the constants C may be chosen independently
of t.
2.1 Oscillatory Ihtegral without Stationary‘ Phase Point

The following theorems are stated in the way they are used when studying
Fourier transforms over surfaces. They establish the existence of neighborhoods on
which a certain phenomenon occurs, given a fixed phase. The given phase, ¢(z,t),

is supposed to be smooth in (z,t) € R* x R™.

Lemma Let d = 1. Suppose Oy # 0 at a given (zg,%) € R x R™. Then, there
exists an arbitrarily small cube, U x B, containing (xo,tq) such that the following
holds: if the amplitude, f(x,t), is smooth in the neighborhood of R x B and vanishes
on U¢ x B, then

14(r,8)] = O(™)

uniformly in t € B.?

2 U° denotes the complementary of U with respect to a set determined by the |
context; here, U¢ =R\ U.

11



Proof: By continuity, d,¢(z,t) # 0 on a certain cube U’ x B’ containing (zo, to).

The operator D = '5;51(??3

Delre@t) = jpaire(@t) gnd Dt = —§, o m. Let U x B 3 (zg,t) be a cube whose

o 0, is thus well defined on this cube, where it satisfies

closure is in U’ x B'. If f(x,t) satisfies the asserted properties, then for any N > 0

andt € B

1 ir
Il = /U (DNeim(@) f(z. ¢) da
1 .
T_N /Uolrcp(x,t)(Dt>Nf(x’t) dx
Cy |

PN’

<

where the constant Cy does not depend on t € B. O

The multidimensional analogue follows:
Theorem 1 Suppose V. p(zo,t0) # 0 for a given (xg,to) € R x R™. Then, there
exists an arbitrarily small cube, U X B, containing (xo,tg) such that the following
holds: if the amplitude, f(x,t), is smooth in the neighborhood of R® x B and vanishes
on U® x B, then
[s(r,t)| = O(r™)

uniformly in t € B.
Proof: By assumption, d,m¢(xo,tg) # 0 for a certain 1 < k < d, say, for k = 1.
Interpreting (z(?,..., 2% ¢) as a parameter, there exists an arbitrarily small cube,

Uy x (Uy x -+ x Uy x B), containing (a:(()l);x(()z), e ,méd),to) on which the previous

12



lemma applies. Hence, if f(z,t) satisfies the asserted properties, then

/Ul @ £z 1) dzW| < f_]zvv_
uniformly in (z®,..., 29 t) € U, x ... x Uy x B. In particular,
i(r,t)] = / / ere@d) £z, 1) dzM dz®@ ... d¢<d>
Usx...xUqg JU
< lng...de%\—]\i
uniformly in ¢t € B. O

Scholium A similar result holds when considering oscillatory integrals over the

torus,
/ @ f (g 1) da,
Td

without stationary phase point. One then assumes f(-,t) is periodic for every t (in-
stead of being compactly supported). The same proof works, due to the absence of

boundary term when integrating by parts a smooth periodic function.

2.1.1 Cauchy Principal Value
We now turn our attention to Cauchy principal values of oscillatory integrals
without stationary phase point. To this end, we now consider a parameter (e,t) €

R x R™ and a phase, o(z;e,t), smooth in (z;e,t) € R? x (R x R™). We thus let
Ii(riet) = / e@ied) f(gre,t) da
Rd

13



and study

pv. [
|

1

n—el<s 11— €

Iy{rim, ) dn = lim

I¢(ryn,t) dn

el0 Jec|p—elcs M — €

for a given § > 0. Our results are based on the following elementary estimate:

Lemma Suppose f(h) is a continuously differentiable function in the neighborhood

of [—6,0], where § > 0 is given. Then, for any € € ]0, 6]

In particular,

h
# dh} < zéﬁglf'(hﬂ

Proof: By the mean value theorem, there exist numbers |€,] < § such that

/ J(h) dh‘ _
e<ihi<s N

/: ) = Jh dhl

i

/ C2f (6 dhl

£

< 25%%”%)[’

Theorem 2 Suppose Vyp(xg,0,t5) # 0 for a given (xg,ty) € R x R™. Then, there

exists an arbitrarily small cube, U x B, containing (xq,%9) and an arbitrarily small

14



6 > 0 such that the following holds: if the amplitude, f(x,h,t), is smooth in the
neighborhood of R? x [—68,6) x B and vanishes on U¢ x [—6,6] x B, then

8
p.v. / Lirh.b) dh’ = 0(r™)
s h

uniformly in t € B.
Proof: By the lemma it suffices to estimate 8,1;(r, h,t). In fact, the dominated
convergence theorem implies
ah‘[f(ra ha t) - / eimp(x]h’t) (ahf(xa ha t) + i?"f(.l', ha t)ahSO(xa ha t)) dz.
Rd
Hence, by Theorem 1 there exist an arbitrarily small cube, U x B, containing (o, to)

and an arbitrarily small § > 0 such that for f(x,h,t) as stipulated

C
|Onds(r, b, 1) < ;‘11’\\7[‘

uniformly in (h,t) € [~6,6] x B. The result follows. O

Applying the above to the phase ¢(z, h;e, t) = @(z, h + e,t) and the amplitude

f(z,h;e t) = f(z,h + e, t), one obtains:

Corollary Suppose Vao(xo, €0, to) # 0 for a given (xo, e, t9) € REXR x R™. Then,
there exist an arbitrarily small cube, U X B, containing (xo,%o) and an arbitrarily
small 6 > 0 such that the following holds: if the amplitude, f(x,e,t), is smooth in the
neighborhood of R% x [eg — 8, ey + 6] x B and vanishes on U°® X [eg — 6, eo + 8] x B,
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then,

n—e
uniformly in (e,t) € [eg — 5,0 + 3] X B.

In—e|<d

2.2 Oscillatory Integral with Non Degenerate Stationary Phase Points
2.2.1 Quadratic Phase

We now investigate the decay of oscillatory integrals admitting non degenerate
stationary phase points. Via the Morse lemma, which is proven below, our study

reduces to oscillatory integrals whose phases are canonical, not degenerate quadratic

forms: ,
Qz) = S @2 = 3 @,
Jj=1 k=s+1

where 0 < s < d.
Exceptionally, in the next threc lemmas the variable r € R is allowed to be

negative. Moreover d = 1 (so z varies in R).

Lemma Suppose |r| > 1. For alll € N there exist constants cg-l) € C independent

of |r| such that |
o0 o
[ttt 2 S
=0

-0
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Proof: Let us denote hy ()% the branch of the square root whose singular cut is

the positive imaginary axis. Let z = (1 — ir)%:c. Then,

/e_(l—")”gxl dz = (/ e dZ) (1 —ir)5) 7, (2.1)
R 5

where ~y is the oriented path (1 — ir)3R. Observe that

= o,|r|? (% - i)é , | (2.2)

1 if r>1

[SIES

(1 —ir)

where

o =
i if r<-1

(so g, does not depend on |r|). Moreover the Taylor expansion

(=} =3 | 239
=0

|~

is valid for all |w| < 1, by choice of the branch of z2. Thus, substituting w = sgn(r)

T

in the above, the result follows from (2.1), (2.2), and (2.3). O

Lemma Suppose f(z,t) is smooth in the neighborhood of R x B and vanishes on
Ue x B, where U C R and B C R™ are cubes. For anyl € N there exists a C; > 0

independent of |r| satisfying

. |
l/ o3l f(2,8) dz| < CGifr|~F

-0
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uniformly int € B.

Proof: Let x(z) be a compactly supported smooth function on R such that 0 <

x(z) < 1 everywhere and

0 if |z|>=2
x(z) =

1if Jz <1

For an arbitrarily fixed € > 0, [ e gl f(x,t) doz = I + II, where

I = / cimzwlf(x,t)x(g) dz,
|| < 2¢ €

I = /m>€ eimgxlf(:c, t) (1 - X (—Z—) ) dzx.

Concerning I, there exist constants (generically denoted by Const ) independent
of t € B, but depending on [, satisfying
2e
|1| < Const / |z|' dz = Const ™.

—2e

Concerning II, let D = = o 0,, which is well defined on the support of the

1
€T
2

integrand. Since 5-D fixes ¢,

I = <%7">N/|m|>g e (DYN b f (x, ¢) (1 - X (—g—)) dz.

Letting F'(z,y,t) = f(z,t)(1 — x(y) ), notice that

D2'F(x,x/e,t) = 272 Fy(z, z /e, t) + 2t e Ry (2, 2 /e, 1),
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where Fy(z,y,t) and Fi(z,y,t) are bounded on R x R x B. More generally, notice
that (DY)NVF(z,z/e,t) is of the form

2Ny (x, x /e t) + 2N e R (2,2 e, ) + -+ 2N e TN Py (x, 2 /e, 8),

where Fo(z,y,t),..., Fn(z,v,t) arc bounded on R x R x B. Hence,

[(DYVF(z,2/e,t)] <
< Const (’x’l—QN + |:E|l—2N+lg—l + |m‘l—2N+26—2 e lel—NE—N)
< Const (jz)"2N + |z|=Ne™),

where N > [ + 1 is fixed. Therefore,

|11l < Const|r|‘N/ (Jz|=2N 4+ |z|=NeN) da
|z|>e

= Const |r| Negl=2N+1,

In total,

[T+ I} < Const (e 4 |p| Vel 72N+,

where N > [ + 1 is fixed. Choosing ¢ = [r[“% then completes the proof. O

Lemma Consider a function, f(xz,t), smooth in the neighborhood of R x B (where

B C R™ is a cube) and vanishing when |z| < € (where € > 0). Suppose that for all
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N 2 0 there exist a Dy > 0 and an ay > 0 such that
18 f (2, t)] < Dy (1 + |z]*)
uniformly int € B. Then,

/ =1 p(z 1) dz = O(r~)

o0

uniformly int € B.

Proof: The derivation D = % o 0, is well defined on the support of the integrand.

Notice that =D fixes ¢r® and D' = -8, o 1. Then,

(&)

Our assumption on the derivatives of f(x,t) makes the integral on the right side of

/ e(ir_l)""gf(x, t) da
R

/ e (DYN (e f(z,1)) dz| .
|z >e

the previous equation uniformly bounded in ¢ € B, where N is arbitrarily fixed. The

result follows. |

In dimension onc we are interested in the phase z2, so let
[ee] . 2‘
I¢(r,t) =/ e f(xz,t) dz.
oo :
According to our convention r > 0. However, since we are also interested in the
phase —z2, we allow r to be negative. We are ready to compute the asymptotic

expansion of I¢(r,t) (resp. I¢(—r,t)) when |r| — oo:
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Theorem 3 Consider an amplitude, f(x.t), smooth in the neighborhood of R x B
and vanishing on USx B, where U C R and B C R™ are cubes. There exist constants,
a;(t), depending smoothly on t € B such that

o o0

/ & flz,t) de ~ |r7F D a0

o pa
uniformly int € B when r — oo. The same result holds when v — —00, with
different constants a;(t).
Proof: Lect x(z) be a smooth, bounded, compactly supported function such that

x(z) = 1 on an interval containing U U {0}. Then, for f(z,t) as stated

2

Iy(r 1) = / o152 (2, 1) () da

By Taylor’s theorem (in dimension 1), for any fixed N there exists a polynomial,

1=0
and a smooth remainder, R;(x), both depending smoothly on (z,t) € R x B, such
that
¢ f(z,t) = Pz) + xRy ().

Thus, I;(r,t) decomposes into I + II + III, where

N

I = Zbl(t)/e(i’"“l)‘"le dzx,
=0 R
I = /c(ir‘l)””sz“Rt(:C)X(w)dx,
R
I = / =07 P (2) (x(x) — 1) dz.
R
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Concerning I the first lemma gives the existence of cg.l) € C such that for any

|r] > 1
N l 0
1
=Y b= E >
=0 7=0
N N 1ot
1 1 i i1 i
= 723 a0 P+ a@lrmE Y el
=0 7<_2‘£ =0 ]>N2~—l
Notice that
N
L / . _N_
SoirmE > Sl =07
=0 _7'>N2—l

uniformly in ¢ € B when 7 — oo (resp. » — —oo). Consequently, we have found

coefficients, ax(t), smooth in ¢t € B, satisfying

I=1r]"2 Y an(®)lr] 5 +O(r[7%7)

k=0
uniformly in ¢ € B.

Moreover, the last two lemmas give respectively
II=0(r|"%"Y) and I = O(|r|™)
uniformly in ¢ € B. In total,
1 N k N
Ip(r,t) = |r[72 Y ar(@)lrl ™2 + O(Ir|72 )
k=0

uniformly in ¢t € B when r — oo (resp. r — —00), as desired. O
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Our treatment of a parameter ¢ € R™ permits to deduce from the previous

theorem its multidimensional analogue by induction. Indeed, let us consider the

phase
8 d
Qz) =Y @2 = 3 @,

Jj=1 k=s+1

where z € R? and 0 € s < d. Returning to the convention that r > 0, we let
Is(r,t) = / clrQ@) £ (1, t) dz.
Rd
Then,
Corollary Consider an amplitude, f(x,t), smooth in the neighborhood of R*x B and

vanishing on US x B, where U C R* and B C R™ are cubes. There exist constants

a;(t) depending smoothly on t € B such that
a d j
/ "W (1) d ~ 72 Z a;(t)r=%
Rd pard

uniformly in t € B, when r — 0.
Proof: Suppose the result holds for a certain d — 1. Let z; = (z™®,...,2(@1) and

Q1(z1) be defined by
Q(z) = Q1(z1) + (z19)2.
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Recall that U may be written U; x .-+ x Ug. Then, by the inductive hypothesis, for

~ an arbitrary N > 0

]_f(T,t) - /U e:ﬁ:ir(x(d))2 Ad 1 eiTQl(ml)f(:L‘l;.’L‘(d),t) dzy dx(d)
g -

N+1

i :tlr(:r(d))z d— b (d) d+N+1 (d)
= p(zx r% 4 O(r~ )| dx
R )

uniformly in (2@ ¢) € U; x B. The following estimates then hold when r — oo,

uniformly in ¢t € B:

I¢(r,t) = Zr‘i%_”l/ O (2@ 1) dz@ + O(r‘wzlﬂ)
k= Ua
N+1 N
= Y <r‘% ch,z(t)r_%> +0(r= %)
k=0 1=0
N
= % Z a;()r" 3 +O(r™ s ).
7=0
Since N is arbitrary, this completes the proof. O

2.2.2 Morse Lemma

The investigation of oscillatory integrals with non degenerate stationary phase
points reduces to the above case by means of Morse’s lemma, which we now prove.
Let the anticipated phase, o(h,t), be a smooth function in (h,t) € R? x R™
satisfying
$(0,t) =0, Vuo(0,t) =0 and det D3¢(0,t) #0
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for all t € B, where B C R™ ig a given cube containing a given t, € R™. Such
a function can be expressed like a quadratic form, but with coefficients varying

smoothly in (h,):

Lemma In the above circumstances there exist functions, ¢;i(h,t), smooth in

(h,t) € R x R™ and satisfying

d d
=33 b(h, )hIRE),

j=1 k=t

where ¢ip(h,t) = dri(h,1).

Proof: Using our hypotheses on ¢(h,t), the fundamental theorem of calculus and

integration by parts give for any t € B

b(h,t) — /O By(d(sh, 1)) ds — /0 (1= $)0%(o(sh, 1)) ds.

Expanding 6%(¢(sh,t)) in the above gives the result. O

The next step consists of applying Lagrange’s algorithm, which is better under-
stood using matrices. Using the standard basis on R?, h is represented by a column
(also denoted by h), while the “quadratic form” given by the previous lemma is rep-
resented by a d x d matrix, denoted by ®(h,t). The (7, k)-th element of ®(h,t) is

then given by the function ¢,x(h,t), so the previous lemma gives

d(h,t) = hi®(h, t)h.
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For any given ¢ € B the rank of ¢(0,¢) is read through the Hessian of ¢(h,t) using

the following, straightforward relation:
Lemma Under the above circumstances, for any t € B, D2¢(0,t) = 2®(0, ¢).

In order to perform Lagrange’s algorithm one uses the following elementary
line/column operations:

e Given a scalar ¢ # 0, to multiply the j-th row and then the j-th column by ¢,
which is denoted by CL;(c);

e Given a scalar ¢ € C, to add ¢ times the k-th row to the j-th row and then ¢
times the k-th column to the j-th column, which is denoted by CLj(c);

e To interchange the j-th row with the k-th row and then the j-th column with
the k-th column, which is denoted by C'Lyy.

By the previous lemma, since det D2¢(0,t) # 0 and since ®(0,t) consists of
smooth elements, there exists a cube Vo x By C R? x B containing (0, ¢y) such that
®(h,t) is invertible for all (h,t) € Vy X Bo.

Without loss of gencrality ¢1;(h,t) # 0 on a certain cube Vi x By C Vy x By
containing (0,9). Otherwise, ¢11(h,t) vanishes at (0,to). However, considering the
Laplace expansion of the above determinant along the first row, there exist a cube,
Vi x B CVp % By, containing (0,%9) and an index 1 < k < d such that ¢1x(h,t) # 0~
for all (h,t) € V] x B]. Applying CL1(1) to ®(h,t), the resulting upper left element

does not vanish on V{ x B} (which then replaces Vi x By), as desired.
1 1
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Then, one may reduce the upper left element to +1 (depending on the sign of
¢11(h,t), which does not change on V, B1) by applying CL{(|¢1:(h, t)|‘%‘) to (the
possibly refreshed) ®(h,¢). Finally, this resulting constant on the upper left corner
permits to cancel the rest of the first line and column, by applying CLi1{f(h,t)) for
k =2,...,d successively—where f(h,t) is equal to the element to cancel (up to the
sign). All these operations are represented by matrices having smooth elements in
(h,t) € V1 x By. They transform ®(h,t) in a block diagonal matrix, having £1 as
its first block and a square (d — 1) x (d — 1) matrix as its second block.

Repeating this procedure for the second block, ®(h,t) is transformed in a block
diagonal matrix having £1 as its first two blocks and a square (d—2) x (d —2) matrix
as its third block. All the operations used for this second step are represented by

matrices having smooth clements in (h,t) € Vo X By, where
(O,to)éVgXngVleBlg%XBo.

So on and so forth one transforms ®(h, t) into a diagonal matrix having elements
+1 only. All the required operations are smooth (in the previous sense) for (h,t)
varying in a cube V; x By containing (0,¢p). One then applies permutations C'Ljy,
so the resulting matrix becomes diag(1,.. .‘, 1,—1,...,—1), where the element 1 is
repeated, say, s times. Since s does not depend on (h,t) € V; X By, the previous
lemma and the Sylvester Inertia Theorem permit to recover s from the signature of
D2¢(0, to), which is then (s,d — s,0).

In summary, we have proven:
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Lemma In the above circumstances there exist a cube, Vy x By, containing (0,tg)
and a nonsingular linear map, Q(h,t), whose matriz elements are smooth in (h,t) €

Vi x By such that

Q(h,t)'®(h, t)Q(h, t) = diag(1,...,1,-1,...,—1).

In the above the clement 1 is repeated s times, where (s,d — s,0) is the signature of

It is thus tempting to consider the non linear mapping h — Q(h,t)"*h defined
on V; as a potential change of variables given a fixed ¢t € By. Considering ¢t € By
as a parameter, {Q(h,t) " h},cp, is indecd a family of smooth mappings depending
smoothly on ¢ in the strong sense that (h,t) — Q(h,t)"'h is jointly smooth on
\% >< B,;. Moreover, all these mappings map 0 to 0. They really consist of invertible

changes of variables when restricting suitably the ranges of h and ¢, as shown below:

Lemma In the above circumstances there exists a cube, V' x B', such that
(0,t0) € V' x B' C V; x By,

on which

(h,t) = (Q(h,t) "R, 1)
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is a smooth diffeomorphism. In addition, this diffeomorphism maps V' x B' onto an

open bounded set, hence contained in a certain cube V' x B'.

Proof: Let F(h,t) = (Q(h,t) " h,t) for (h,t) € V3 x By. A direct computation
shows that

det, D(h‘t)F(O, to) = det Q(O, to)_l,

which is not zero. Thus, F'(h,t) is a local diffcomorphism in a neighborhood of (0, £y).
Choosing a cube, V' x B’ 3 (0, ty), whose closure is included in this last neighborhood

(and in V; X By) then yields the result. O

The previous diffeomorphism maps V' x B’ onto a bounded open set DCV'xB.
We want to fix t € B, so let D, = {h € R%; (h,t) € D}. Then, D, C V' is an open

set in R?. Let us consider the restriction
V' — D, h Q(h,t)" h,

which is also a smooth diffeomorphism. It may be used as a smooth invertible change

of variables by setting
h=Qh,t)"'h
for h € V’. Notice that 0 is then mapped to 0. Let P, be the inverse change of

variables, so

h = PFy(h)
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for h € Dy. Then, h = P'(h) = Q(h, )~ 'h, which implies b = Q(h, t)h and hence

O(Pi(h),t) = @(hit) |
= ¢(Q(h,t)h,t)
= RQh 1) P(h, t)Q(h, t)h

s d
= Z(E(j))Q - Z (R*N)?2,
j=1 k=s+1

We have thus proven the Morse lemma with special care of the parameter ¢:
Theorem 4 Given a cube B C R™ containing a fived to, suppose ¢(h,t) is smooth
in (h,t) € R x B and satisfies

$(0,8) =0, Vio(0,£) =0, and detD2(0,t) #0

for all t € B. Then, there erists a cube V' x B' C R? x B containing (0,t) such

that the following holds: for allt € B' there exists an invertible change of variables

h= P (h)
on V', smooth and with smooth inverse, mapping 0 to 0, which satisfies
- s d
(B = S 3 (O,
J=1 k=s+1

The resulting family of changes of variables, {Pt(ﬁ)}tE g, depends diffeomorphically

ont € B’ in the following sense: setting D, = P7H(V'),

D=|J D x{t}

teB’
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is an open set in R x R™ (contained in a cube V' x B') on which
D—V' xB, (ht)— (P(h)t)

1s a diffeomorphism.
2.2.3 Continuation
The corollary of Theorem 3 joined with the Morse lemma finally yield:

Theorem 5 Suppose ¢(x,t) is smooth in (z,t) € RY x R™ and satisfies
Vep(zo,to) =0 and det D2p(zg, o) # 0.

Then, there exists an arbitrarily small cube, U X B, containing (zq,to) such that the
following holds: if f(x,t) is smooth in the neighborhood of R® x B and vanishes on
U x B, then

o0

Ip(r,t) ~ e Or=8 3" a,(t)r 4,

7=0
where 0(t) is real valued, the a;(t)’s are complex valued, and all these functions are

smooth in t € B. Moreover, these estimates are uniform in t € B.

Proof: By the Implicit Function Theorem there exists a smooth function
By CR™ = R%, ¢ x(t)

defined on a cube By 3 ¢y such that (V,¢)(x(t),t) = 0 for all ¢t € By and x(tg) = 0.

Without loss of generality we also suppose

det D2p(x(t),t) # 0
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for all t € By. Let
P(h,t) = o(x(t) + h, t) — o(x(t), 1),

which is smooth in (h,t) € R? x By. Then, ¢(h, t) satisfics the hypotheses of Morse’s
lemma. Hence, there exists a cube, V' x B, containing (0, %) and whose closure is

in R? x By, and a family of diffeomorphisms
PV =D, CV'  (wherete B)

such that, letting h = P,"1(h), one obtains

s d
$(P(R), 1) = Y (WD) = >~ ()2,
j=1 k=s-+1

Notice that 0 = 2o —x(ty) € V’. Consequently, there exists an arbitrarily small cube,

U x B 3 (xg,ty), such that
(x —x(t),t) e V' x B’

for all (z,t) € U x B. In other words, U x B is mapped onto a region whose closure
is in V' x B’ via the change of variables (h,t) = (z — x(¢),?).
Let us consider an amplitude, f(z,t), satisfying the asserted properties. Since

for a fixed ¢t € B the integrand in
I;(r,t) :/ elre@t) £z 1) dz
Rd
is supported in U, it follows that the right-hand side in

I(rt) = /R ) e £(h 4 x(t),1) dh = re O / elred) £ (b + x(t),t) dh

Rd
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is supported in V’. Then, by Morse’s lemma the change of variables h = Pt“l(h) is

available, yielding

Ii(r,t) = clre:(®b / "M £(P(R) + x(8),£) J.(R) db,

Dy
where J,(h) is the Jacobian and
~ i ~ d ~
Q(R) =D (D) = " (RO,
Jj=1 j=s+1

Since the amplitude in the above extends smoothly on R? x B and vanishes for

h ¢ V', the corollary of Theorem 3 then completes the proof. U

Finally, the following result is an intercsting application of our treatment of a
parameter:

Theorem 6 Suppose p(z,t) is smooth in (z,t) € R x R™ and satisfies
Voo(zo,t0) =0 and rank D2p(zg, to) = k,

where k = 1. Then, there exists an arbitrarily small cube, U x B, containing (xq, o)
such that the following holds: if f(x,t) is smooth in a neighborhood of R? x B and

vanishes on U¢ x B, then

a1

Ly(r,t) = O(r™2)

uniformly in t € B.
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Proof: Since the rank of D2¢(zg, 1) is equal to the order of its largest non zero

principal minor, there exist indices, j1,..., j., such that, letting
&' —_ (x(?l), . ,x(jfi))’
det DZ(zo,to) # 0. After permuting the variables we write

z=(&x), and zo= (%, X0),

with the obvious definitions of x, &, and xo. Interpreting (x,t) as a parameter the

previous theorem gives the result. O

Remark Using the previous decomposition one cannot derive the complete asymp-
totic expansion of the considered oscillatory integral, since the resulting coefficients

would be oscillatory integrals themselves! Their decay is not known a priori.

2.2.4 Cauchy Principal Value
We now derive similar results for Cauchy principal values of oscillatory integrals

with non degenerate stationary phase points. To this end let us consider first

p.v./ oimm dhzlim/ eirhf(h) dh,
h el0 Jin|>e h

-0
where the amplitude, f(h), is smooth in A € R and compactly supported.
Notice that the lemma of Theorem 1 generalizes to a complex valued phase

provided that the path of integration remains in C,, explicitly: Given a smooth
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regular® path, v(t), lying in the closure of C., and an amplitude, f(z) = f(z,v),
smooth in x and compactly supported along this path,
/oi”f(z) dz =0(r =)
Y

when r — 00.

Lemma Suppose f(h) is smooth in h € R, compactly supported, and analytic at 0.
Then,

b / ” eirh@ dh = 7if(0) + O(r)

hade el

when r — 00.

Proof: For ¢ > 0, let C; be a smooth regular path starting at —2¢, going through

[—2¢, —¢], then avoiding the origin, but staying in
{zeC; |Re(z)] <ecand 0 <Imz < ¢},

and finally going through [e, 2¢]. Since

eimM = @ -+ analytic
z z

in a punctured neighborhood of the origin,

lim e
elO Ce

irzﬂ;—) dz = —mif(0).

3 A smooth path, v(t), is regular if 7'(t) # 0 for any ¢.
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Thus, letting 7. = |—o00, —2¢] % C, * [2¢, 00[ (where % denotes the concatenation),
which is smooth and regular,

1:).\/./11{{0M—Jf—(ﬁ2 dh —7wif(0) = lim/ ei”ﬂz—) dz

h 10 z

= /eimf—(zl dz,
y

z

where v = v, for a fixed, but small cnough ¢¢ > 0. The result follows from the

statement preceding the lemma. O

The analyticity assumption may be removed in the following way-—where a
parameter ¢ € R™ is also introduced for later purpose:
Theorem 7 Given § > 0 and a cube B C R™, consider a function, f(h,t), smooth
in a neighborhood of R x B and vanishing on |—6,8[° x B. Then,

p.v. /oo o““hﬁ%ﬁ dh = 7if(0,t) + O(r~)

—o0
uniformly in t € B, when r — oo.
Proof: Let x(z) be a smooth function in z € R, compactly supported, such that
0 < x(z) £1onRand x(z) =1 in a neighborhood of 0. The considered principal

value then decomposes into I + II + III, where

_ ir‘f(hvt)
. / HED G xw) an

I = /Reirhf(h’t);ﬂo’t)x(h) dh, and

I = f(o,t)p.v./ei’h-@ dh.
R h
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The lemma of Theorem 1 implies I = O(r~*°) and II = O(r~*°) uniformly in t € B.4

Since x(z) is analytic at 0 and x(0) = 1, the result follows from the lemma. O

We now turn our attention to a phase, ¢(h,t), smooth in (h,t) € R x R™, such
that Ohe(0,t9) # 0. Our study reduces to the previous theorem by a change of
variables, regarding which the following elementary result is helpful: Given a cube

B C R™, suppose f(h,t) is smooth in a neighborhood of {0} x B, where it salisfies
f(0,t) =0 and O,f(0,t) #0.

Then, %’%ﬁ extends smoothly to a neighborhood of {0} x B, the extension being

equal to 1 when h = 0.

Lemma Suppose Onp(0,ty) # 0 for a certain to € R™. There exist a § > 0 and
an arbitrarily small cube, B, containing to such that the following holds: if f(h,t) is

smooth in a neighborhood of R x B and vanishes on |—8,0° x B, then
p.v. / eirgo(h,t) f(};ba t) dh = O'7Tif(0, t)eiw(o,t) + O(,r—oo)
R .

uniformly in t € B, where o = sgn(0,p(0, t5)).

4 More precisely, the result follows from the proof of this lemma, by noticing that
U’ x B may be chosen to be equal to R x R™—since the derivative of the phase is
1 # 0 everywhere. '
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Proof: By continuity there exists a cube, |—6,6[x B’ 3 (0,%9), on which d,p(h,t) #
0. Let pi(h) = p(h,t) — ¢(0,¢) and F(h,t) = (@(h),t), which is smooth in (h,t) €
R x R™. Then,

det Dy F'(h,t) = Opp(h,t) #0

on |—4,5[ x B'. Hence, F'(h,t) admits a smooth inverse, G(h,t) = (¢4(h),t), defined
on F(]—-4,6] x B’). Notice that ¢;(0) = 0 = ;(0) and

U(0) = =7 #0.

In particular, o = sgn(¥;(0)). Moreover, by the statement preceding the lemma
hapt(R) /4,(h) has a smooth extension to a neighborhood of {0} x B (where B C B’
is arbitrarily chosen), which is equal to 1 when A = 0. For f(h,t) of the stipulated

form and ¢t € B, the change of variables h = ©¢(h) then gives

ir (h,/)f(h’ t) _ Jirh i (o,)f("pt(il)at) 17 7
P.V./Ro \d f———————h dh = p.v./Ro e t—w [y (h)| dR
— Ueirw(O,t)p.V.Aeirﬁg(%) t) dil,
where
3 NCCAD)
h,t) = (h),t ==,
g(h,t) = f(¥u(R) )¢t(h)

Notice that g(0,t) = f(0,t). Morcover, g(h,t) vanishes when ¢ € B and h ¢]—4,4]

for a certain § > 0. The previous theorem thus applies, which completes the proof. [
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Let us now consider a phase, p(z, h,t), smooth in (z, h,t) € R x R x R™, and

Iy(rht) = [ GehO (1) da.
Rd
Theorem 8 Suppose V,o(x0,0,to) = 0, det D2¢(x0,0,) # 0, and

8}Lg0(.730, 0, to) 75 0.

Then, there exist a 6 > 0 and an arbitrarily small cube, U X B, containing (xq,to)
such that the following holds: if f(z, h,t) is smooth in the neighborhood of R* xR x B

and vanishes on (U x |—8,68])° x B, then

o0

1 : :
p.v./Ril—If(?”, h,t) dh ~ ¢™®r=3 > a;(t)rE

=0
uniformly in t € B, where 0(t) and a;(t) are smooth in the neighborhood of B.
Proof: Interpreting (z,¢) € RYxR™ as a parameter, the previous lemma holds, since
Onp(0,0,t9) # 0. Moreover, interpreting (h,t) € RxR™ as a parameter, the theorem
5 also holds, since Vmgp(mo, 0,%0) = 0 and det D2¢(z0, 0, t9) # 0. Consequently, there
exist a § > 0 and an arbitrarily small cube, U x B, containing (g, o) such that for

f(z, h,t) of the stipulated form

p.v. / eiw»h»ﬂf-(—‘”’—hh’—t) dh = orif(z,0,1)d@0D 4 O(r=) (2.4)
R

uniformly in (z,t) € U x B and
/ @0 £(2.0,1) de ~ Ot > a;(t)r=% (2.5)
R . e

uniformly and smoothly in t € B, both when r — oo.
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By Fubini’s and the dominated convergence theorems

1 .
p.v. / —I¢(r, h,t) dh = / p.v. / elrw(w,hﬁm dh dz,
R h Rd R h

where the dominator is given by the lemma of Theorem 2. By the equation (2.4),

the above is equal to

/ omif(z,0,t)e™ ™0 dg 4+ O(r~)
Rrd

uniformly in t € B. The equation (2.5) then yields the result. O
In the same way as we derived from Theorem 2 its corollary,

Corollary Suppose Vp(zo, €0, to) = 0, det D2p(xq, €9, t9) # 0, and

Oetp(z0, €0, t0) # 0.

Then, there exist a § > 0 and an arbitrarily small cube U x B containing (xq, to) such
that the following holds: if f(z,e,t) is smooth in the neighborhood of R?x R x B and
vanishes on (U x Jeg — 0, e + 8[)° x B, then
o0
p.v. / ———~]f r.n,t)dny ~ eirflet) =4 Zaj(e, tr-
=0

uniformly in (e,t) € [eg — 8,eq -+ 8] x B, where 8(e,t) and aj(e,t) are smooth in the
neighborhood of [eg — 6,eq + 0] X B.

More generally, by the argument used in Theorem 6 (which we repeat!),
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Theorem 9 Suppose V (2, ep,lo) = 0, rank D2p(x, eg, tg) = &, and

aeQO(.fo, €9, tO) % 0.

Then, there exist a 6 > 0 and an arbitrarily small cube, U x B, containing (zg,to)
such that the following holds: if f(z,e,t) is smooth in the neighborhood of RE xR x B

and vanishes on (U X |eqg — 6, e9 + 8[)° x B, then

K

1
v | ——I(ryn,t)dn=0(r"2
pr. [ L. dg = 0GH)

uniformly in (e,t) € leg — 6,e0 + 8] x B.

Proof: There exist indices, j;,- -, j«, such that, for
£= (20, - ,a0h),
det D (2o, to) # 0. After permuting the variables we write

= (& x) and zo = (&, X0)

with the obvious definitions of x, &, and xo. Interpreting (x,t) as a parameter,
the above corollary gives the existence of a § > 0 and an arbitrarily small cube,
U' x (U" x B) 3 (&; Xo,to), such that, letting U = U’ x U" 3 g, for f(z,t) of the

stipulated form

1 o€ _&
p-V./ ; . / el?"tp({,x,n,t)f(é-; X T t) dg d77 = O(T 2)
R~ . :
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uniformly in (x, e, t) € U” x [eg — 6, €0 + 6] x B. Therefore,

1 . _s
/Ww p-V-/]R77 — 6/ oTEENTD f(¢5 X, 1) A€ dn dx = O(r™ %)

uniformly in (e, t) € [eg — &, eg + 6] x B. By Fubini’s and the dominated convergence

theorems this last integral is equal to

1
/ p.v. / —— "= f (g, 1) dn da,
R rR7—¢€

and hence (for the same reasons) to

1
p-V-// —— "m0 f (5, ¢) dz d,
RJRET] — €

where both times the dominator is given by the lemma of Theorem 2. The proof is

thus complete. O

2.3 Fourier Transforms over Level Surfaces of Analytic Functions
We now consider a real valued function, ®(z), analytic in z € R%. Usually, the
level surfaces of ®(x) consist of several connected components; let us focus on some

of them, say, the connected components whose reunion is given by
I'(e)={zeR; &(z) =e}

for an appropriate domain R C R
Given a function, f(z), summable on I'(e), its Fourier transform over I'(e) is

defined as
F(T(e), f)(n) = /F RO
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for n € Z%, where dS(z) denotes the element of surface on I'(e). In this section we
derive the decay of F(I'(e), f)(n) when |n| — oo and show its uniformity when e
varies on an appropriate interval. We then derive an analogous result for the Cauchy
principal value of such a Fourier transform.

Leta’ <V and &' = (I'(e) be given. We assume:

e€la’ b’
Assumption A
o O(x) is real valued and analytic in R?;
o VO(z)#0 forallz e S

e T'(e) is compact for all e € ]a/, V.

The second statement in Assumption A and the Implicit Function Theorem ensure
that I'(e) is a regular smooth surface for any e € |a’,b'[. In particular, I'(e) may be
covered by real-analytic local parameterizations, U —Z» T'(e), where each U c R¢™!
is open, each o(u) is a smooth homeomorphism between U and ¢(U) in the topology
of I'(e), and

U o) =T(e).

(U,g)
Moreover, if two of the previous local parameterizations, (U,o) and (V,7), have a
non empty overlap, D = o(U) N7(V) C I'(e), then the change of parameterizations

771 o o(u) is a real-analytic diffeomorphism from ¢~*(D) to 77(D).
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Given a local parameterization, (U, o), the restriction of the Fourier transform

to o(U) gives

Flo(U), f)n) = / L &S@) 38
= /ei”"’(“')f(a(u))J(U) du
U

for any f(z) summable on ¢(U), where J(u) du is the element of surface. Of course
the decay of such an integral when |n| — oo is studied by means of the stationary
phase method.

Let n = rw be the polar form of n € Z% so r = |n| and w € S*!. The phase
in the previous integral then becomes ¢(u,w) = w - o(u). Let us consider a point,
zo = 0(ug), in o(U). Remarkably, the fact that ug is or is not a stationary phase
point depends on intrinsic properties of T'(e) only; if ug is stationary, the rank of
D2p(ug,w) is also intrinsic. Indeed,

Theorem 10 In the above circumstances ug is stationafy if, and only if w is per-
pendicular to T'(e) at 2o = o(ug). Then, the rank of the Hessian of o(u,w) at ug is
equal to the number of non vanishing principal curvatures of I'(e) at z.

Proof: Notice that v is stationary iff
Vuw - o(ug) = (w - dyma(ug), ... ,w- dye-no(ug)) = 0.
Since the tangent plane of I'(e) at xq is generated by
{dno(uw); j=1,...,d—1},
the first statement follows.
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Suppose up is a stationary phase point and consider any other local parame-
terization, (V,7), of a neighborhood of zo = o(ug). Let D = o(U) N 7(V) and
F(v) = 07" or(v). Then, F'(v) is a smooth diffeomorphism from 771(D) to o~ (D)
. satisfying |

w-T(v) = w-o(Fv)). (2.6)

Let vg = 771 {(x0), s0 (Vu(w - 0))(F(vg)) = Vy(w - 0)(up) = 0. Then, the chain rule

applied to (2.6) gives
Dj(w - 7)(vo) = D (w - 0) (o) (Dy F (v0)).
“Since F'(v) is a diffecomorphism, D, F(vg) is invertible and hence
rank D2 (w - 7)(vg) = rank D (w - o) (uyg),

which shows that this last rank is intrinsic.

Finally, since ug is a stationary phase point, w is perpendicular to I'(e) at xq, so

W= ivz®<$0)
 IVe@(@o)l”

Moreover, there exists a j € {1, .,d} such that w() # 0. Suppose without loss
of generality w@ # 0, and hence 9, ®(z¢) # 0. Let w = (2, ..., 2@D) and
Wy = (x(()l),...,:céd'l)). By the Implicit Function Theorem there exists a func-
tion, h(w), smooth in the neighborhood of wo, such that ®(w, h(w)) = e and
h(wy) = 249, Hence, v(w) = (w, h(w)) gives a smooth local parameterization of

a neighborhood of zy as a graph of a smooth function. Differential geometry then

shows that rank D2 h(w) is equal to the number of non vanishing principal curvatures

w
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at zo € [(e). Since

D, (w 7)(w) = w YD} h(w),

w

the proof is complete. O

2.3.1 Joint system of parameterizations

Given a fixed ey € |a/, '], we now construct a system of parameterizations for
I'(ep) compatible with all T'(e)’s for e varying in a small neighborhood of ey (so the
derived estimate for Fourier transforms will be uniform in e). We make the following

hypothesis:

Assumption B For every e € o', V[, T'(e) admits at least k non vanishing princi-

pal curvatures at any point, where kK 2 1 is a fixed integer.

The plan is the following: starting from an arbitrary system of real-analytic
parameterizations for I'(eg), we will parametrize I'(e) using the local coordinates of
I'(ep), by lifting them orthogonally to I'(eg) (for e very close to eg).

Let {(Us, v5)} 5L, be a system of real-analytic parameterizations covering I'(eo).
Since I'(ep) is compact, we assume M to be finite. Without loss of generality, we
also assume v4(u) is analytic in a neighborhood of Uy, so the expression ys(u) for

u € OUz makes sense.
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Let zg € T'(ep), say, zo = ya(uo) for a given ug € U and a given 1 < B < M.

Since V,®(z) is perpendicular to I'(ep) at any = € I'(ep), we need to solve
D(vp(u) + AV P(5(w))) —e =0 (2.7)

in the neighborhood of (u,e, A) = (ug,ep,0). The derivative at 0 with respect to
A of the left-hand side in (2.7) is |V, ®(y5(u))||?, which is strictly positive. Hence,
there exists an analytic function, A(u, e), defined on an arbitrarily small cube, U’ x

leo — A eg + A'l 3 (ug, eg), satisfying
Ya(u) + Alu, e) Vo @(v5(u)) € T(e), A(uo,e) = 0. (2.8)

Remarkably, A(u, e) depends on vg(u) only, not on its local coordinates u:

Lemma Suppose v (u;) = xq and let v’ = ﬁyg,l o ys(u), where u varies in

V5 (vs(Us) N va (Us)).

Define N'(u', e) as above with respect to vg (u')—while M(u, e) was defined with respect
. B

to va(u). Then, Mu,e) = N(u/,e) when e is close enough to eq.

Proof: \(u,e) is the unique solution of

C(vp(u) + Mu, ) Ve ®(y5(u))) =€, Muo,e0) =0
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in the neighborhood of (ug, €g), similarly for A (v, €) with respect to vz (u'). Hence,

letting F' = 5" o yg on ;' (vs(Us) N vz (Us)), one obtains
(e (W) + AMF(U), e) Vol (v (4))) = e, MF(up),e0) =0
in a neighborhood of (uy, eq). By uniqueness of X'(v/, e), it follows that
N e) = MF@'),e),
in other words, that A'(u/,e) = A(u, e) for any e sufficiently close to - d
Since the considered surfaceé are compact, this last lemma ensures the existence

of an analytic function, Az, e), defined on T'(eq) X Jeg — A, eq + A'[ (where T'(eg) is

endowed with its surface structure), such that
z+Az,e)V,®(z) € T'(e) and A(zg,e0) = 0. (2.9)
Incidentally, the function A(u,e) has the following, interesting properties:

Lemma For every u € U, Mu,es) = 0. In particular, 8,;:M(u,ep) = 0 for any

j=1,...,d—1.

Proof: Let vy € U’ and consider the equation

®(vp(1) = AV ®(75(w))) —eo = 0
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in the neighborhood of vy. Since the derivative of its left-hand side at A = 0 (with
respect to A) is || Vo®(ys(u))||? > 0, there exists a unique implicit function, A(w),
satisfying

B(ys(w) — A(u) VoD (1p(u))) = eo, Alvo) = e (2.10)

in the neighborhood of vg. This implicit function is thus identically zero. Indeed,
letting vo vary in U, the family of equations (2.10) defines piecewise a unique solution

to
®(va(u) = M) Vo ®(v5(u)) = €9, AMuo) = eo

on the whole U’. Since A(u, eg) is such a solution, it identically vanishes. O

Lemma 0.A(ug,€y) > 0.

Proof: In fact, since ®(zg + Aug, €)V,P(x)) = e, the chain rule‘gives

1
e A(uo, €0) = 11V (z0) |12

The equation (2.8) permits to define the following local parameterization of I'(e):

a(u, e) = ys(u) + A(u, €) Vo B (75(u)),

where u € U’ and |e — ey| < A’. Notice that o(u,e) is real-analytic. Indeed,
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Lemma o(u,e) is a real-analytic diffeomorphism in a neighborhood of (ug,€g).

Proof: Notice that the ambient space, R%, is generated by the tangent vectors of
I'(eg) at 2o (namely, d, o ys(ug) for 1 € j < d —1) and V,®(zy). The penultimate
lemma and a direct computation show that the columns of the matrix D, )0 (uo, €o)

in canonical basis arc

du(j)’)/g(UO) fOT 1 éj S d -1

OcA(ug, €0) Vo ®(z9) for j=d,

which are linearly independent by the last lemma. The Inverse Mapping Theorem

then completes the proof. OJ

We thus select an arbitrarily small cube, U X Jeg — A, eq + A[ 3 (ug, €g), con-
tained in U’ x Jeg — &, e + A'[, such that o(u,e) is a real-analytic diffeomorphism
in the neighborhood of U x [eg — A, eq + A, |

Let o(u;e,w) = w- o(u,e) be the anticipated phase, where u € U, |e — eg| < A,
and w € S¢471. By Theorem 10, the associated stationary phase points and rank D2¢
at these points are intrinsic properties of T'(e). Let wy € S?! be arbitrarily fixed. Tt
appears that if zq is a stationary phase point, then d.¢(ug; eg, wy) is also “intrinsic”

in the following sensc:



Theorem 11 Suppose xo = o(ug, eg) is a stationary phase point. Then,

+1
Bep(uo; €0, wo) = 57
V@ (o) |
Proof: By Theorem 10, since x is stationary, wg = iﬁgf%' In particular,
detp(ug; €0, wo) = wp - Geo(ug, €g)
+1

= Tooag) o) - G luo,co).

Since ®(o(u,e)) = e, the chain rule gives V,®(zg) - 8.0(ug,€9) = 1, which completes

the proof. O

Consequently, O.¢(ug;e0,wp) # 0 if zq is a stationary phase point. Hence,

whether V,p(ug; eg,wp) # 0 or

VuSO(Uo;eo,wo) = 0,
rank D2 (ug; €9, wo) = K,

Oep(ug; €0, wp) # 0.

By Theorems 1, 6, the corollary of Theorem 2, and Theorem 9 there exists an ar-
bitrarily small cube, U x B C U x R¢, containing (ug,wy) and an arbitrarily small
0 < ¢ < A such that the following holds:

| If f(u;e,w) is smooth in the neighborhood of R*~! x R x B and vanishes

on (U X leg — 6, eo + §))¢ x B, then

Ii(r;e,w) = O(r~%) and
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p.v. /-——I,e rin,w)dn = O(r~%),
where both estimates are uniform in (e,w) € [eg — 6, e9 + 8] x B.
Of course, the previous cube and associated constructions depend on the fixed

eo, wo, and zg € T'(eg). Repeating this procedure for all x € T'(eg), where eg and wq

are still fixed, one obtains a system of I'eél—analytic diffeomorphisms,

{(U7 X ]60 - 527, €0 + 533[ ’ O-m)}mel“(eo)’

and a family of cubes, {B,}Y_,, satisfying the above properties, from which one

extracts a finite subsystem, {(U, X |eg — 8a, €0 + 8al, 0a) }3_1, which covers T'(eg):

N
U Uon eO

We limit our considerations to an arbitrarily small cube, B, whose closure is in-
side N, B,, and to {(Uy x Jeg — &', eq + &'[,04) Y, where 0 < & < min®_, 6, is
arbitrarily small.

By the equation (2.9) the local parameterizations

Ta(U, €) = Y, (1) + Aa(u, €) VP (7, (u))
yield the following, arguably global parameterization of I'(e):
Y(z,e) =z + Az, e)V,P(z), (2.11)

where z € T'(eg) and |e — eg] < ¢'. In particular, when z varies over the entire I'(ep),
Y(z, e) describes a whole “closed” surface included in I'(e) (which should therefore

corresponds to I'(e), as long as I'(eg) and T'(e) have the same number of connected
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components). In other words, one expects

U (Uase). (2.12)

However, it is easier to shorten ¢’ in order to prove the previous relation.

This may be done in the following way: suppose by contradiction there does
not cxist a ¢ such that the relation (2.12) holds for all e € Jeg — d, €9 + §[, where
0 < § < ¢. Then there exist a sequence, {e,}, converging to ey, and points, z,,
on I'(e,), such that z,, ¢ U —10a(Uq, ). Letting S = Ule_eol<51“(e), the z,,’s lie
in the compact set S, so they accumulate towards a certain z* € S. Going to a

subsequence, again denoted by z,, — 2*, one finds

®(z") = ®(lim z,,) = lim ®(z,,) = lim e, =e.

00 n—oo n—oo

Therefore, z* lics in Ug;l 0a(Uy X leg — ', 69 + &'[), while the z,’s do not, contra-
dicting the fact that this last region is open in R%.

Indeed,
Theorem 12 There exists a § € 0,0 such that for any e € leg — 8, €9 + 8|, X(z,€)
i a real-analytic diffeomorphism between I'(eg) and T'(e) (endowed with their surface
structures).
Proof: The previous paragraph shows that X(x, e) is surjective for e close enough
to eo.‘ By a similar argument suppose there does not exist a ¢ > 0 such that 3(z,e) is
injective for every e € Jeg — 0,0 4 8[. Then, there exist a sequence, {e,}, converging

to eg, and points, x,, on I'(e,), such that

Ty = E(yn, en) = E(zm en)
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for distinct points y, and z, on I'(ey). Since the z,’s accumulate towards a certain
z* € I'(eq), yn and 2, are eventually in the same coordinates neighborhood, contra-

dicting the fact that ecach o, is a diffeomorphism. O

N
a=1"

We limit our considerations to the system {(U, X Jeg — 6, eq + 6, 04) }2_;, where
d is specified by the previous theorem. We have proven:
Theorem 13 Let wy € S%71, ep € |/, V], and € > 0 be arbitrarily fived. Under the

assumptions A and B, there exists a finite family of cubes of diameters less than €,

{U, x Jeo — 8, €9 + 6] x B}

a=1"

where [eg — &, e + 8] C la', V'] and wo € B C R%Y, and functions,
0a: Uy X |eg — 8,60+ 6] — U I'(e)
le—eq|<d
such that the following holds:
1. For every a, g,(u,e) is a real-analytic diffeomorphism from a neighborhood of
U, x [eg — 6,e0 + 6] to ils image.
2. For alle € leg — 8,e0+ 3], T(e) = U, 06 (Us,€).®
3. Let us denote by I}a)(r; e,w) the oscillatory integral of amplitude f(u;e,w)
with respect to the phase wu(u;e,w) = w - oq(u,e). If f(u;e,w) is smooth in

the neighborhood of R x R x B and vanishes on (U, X Jeg — 8, eq + 6])° x B,

5 In other words, {(Us, 04(-,€))})_, is a system of real-analytic parameterizations
~of I'(e) for any e € leqg — 6, eq + 1.
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then

where both estimates are uniform in (e,w) € [eg — 9, € + 8] x B.

We now construct a smooth, joint “partition of unity” subordinated to the

N
a=1"

system of neighborhoods {o,(U,,€)
Theorem 14 Let 0 < 6 < & and S = Uje—eoj<s T(€).  There ezists a family of
functions, {xo(z)}Y_,, smooth in z € RY, satisfying:

* 0 Xas 1,

® SUPD Xo C 0o(Us X |eg — 0, €0+ 4[),

o N Xa(z)=1foralzeS.
Proof: Notice that S ¢ |J_, 0 (U, x |eg — 8, o + 8[), so in particular

{O’l(Ul X ]60 —(5, 60+5D,...,0’N(UN X ]60 —(5, 60+(5D,Rd\g}

is a finite open covering of R After discarding yn.1(x), any partition of unity,

{xa(z)}YF!, subordinated to the previous covering satisfies the stated properties. O]

2.3.2 Fourier Transforms

We are ready to compute (uniform!) decays of Fourier transforms, F(I'(e), f),
for suitable amplitudes and derive an analogous result for Cauchy principal values.
Theorem 15 Let n = rw be the polar form of n € Z%, where n # 0, and let the

amplitude, f(x), be smooth in x € R?. Consider any interval [a,b] C |a’,V'[. Under
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Assumptions A and B,

uniformly in (e,w) € [a,b] x S, ;
Proof: Let ey € [a,b] and wy € S9! be fixed. By Theorems 13 and 14, there exist

a d >0, acube, B3 wp, ajoint system of parameterizations,

{(U, x Jeo — 20, €0+ 20],04) Y2,

N

a=1

and a joint partition of unity, {x, summing at 1 on U|e—eo|<6 ['(e), such that

the following holds: Let

1@ (r;e,w) = / o"a () £ (g, (1, €))Xa(0a(u, €)) Ja(u, €) du,

o

where J,(u,e) du is the element of surface of 0,(U,,€). Then,

N

F(T(e), flrw) = Y I (r;e,w)

a=1
for every (e,w) € [eo — J,e9+ 6] x B. Since xa © 04, and hence the integrand of
I (r; e,w) vanish outside U, x Jeg — 26,¢eq + 28], by Theorem 13, I (r;e,w) =

O(r~%) uniformly in (e,w) € [eg — 8, ep + 8] x B. Thus,

F(L(e), f)(rw) = O(r™7)

uniformly in [eg — 6, ep + 8] x B. Since ey € [a,b] and wy € S¥! are arbitrary, the

result follows from the compactness of [a, b] x S¢71. O
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2.3.3 Cauchy Principal Value

An analogous result for principal values may be derived when affecting the
amplitude by a cutoff function.

We establish first that the element of surface on any local part of I'(e) varies
smoothly in (u, e). Having in hand a common system of parameterizations, o, (u, e),
for u € U, and |e — eg| < 0 (where eq € Ja’, V[ is arbitrarily fixed), let us compute
this element of surface. To this end, one considers the determinants, Mo(,l), of the
submatrices of format (d — 1) x (d — 1) obtained from [0, o (u,e)]y, by removing

its I** column, where o, = (0&1), e 0,(;1)). Let
Ja(ua 6) = (Mél)(ua 6), _Mc(mg)(ua 6), ) (_—1)d—1MO(ld)(u’ 6))

By definition the element of surface is ||J,(u, e)|| du.
Theorem 16 ||J,(u,e)|| = |V.®(o4.(u,e))|| | det D, 0a(u, e)|.

Proof: The chain rule applied to ®(o,(u,e)) = e gives

V2 ®(0a(u, €))Daeyoa(u,e) =[0 - 01],

t

which we abbreviate V®Do, = es*. Since o,(u,€) is a diffcomorphism, Do, is

invertible. Thus,

1

V& = eq' (Do) dot Doy

eq*(adjDoy, ),
where adj stands for the classical adjoint. The result follows from

eq (adiDoy) = (=1)* ' Ja(u, e).
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Corollary || J,(u,e)|| is smooth in (u,e) € U, X leg — 6, €y + 6.

For fixed wg € S9! and eq € |a’, '], let {(U, x Jeo — 38, €0+ 38[,04)} ", B>
wo, and {x,}Y_,, summing at 1 on Ule—eo|<2s I'(€), be given by Theorems 13 and 14.
Let us define a cutoff function, 0 < Xe,(z) < 1, smooth in z € R?, such that©
1 if [®(x) —e] <6,

Xeo(x) =
0 if ’CI)(:C) - eol > 20.

Notice that x.,(z) is analytic in the neighborhood of I'(eg)—which will become im-
portant later. Under Assumptions A and B,

Theorem 17 For f(z) smooth in z € R* and r > 0

pv. [ = F (O o)1) dy = O )

uniformly in (e,w) € [eg — &, eq + 8] x S471.

Proof: The considered principal value is equal to

N

1 (@)

p-V-/ Iy (ryn,w) dn,
Rn%g; d

6 Since the amplitude we will use does not depend on w, the following cutoff
function does not depend on wyp; in other circumstances if it does, the following
argument still holds.
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where Fo(u,7) = (Xeo/Xa)(0a(t, )| Ja(u, n)||. Notice that

1 if l’)’] - €Q| < 4,
Xeo(0a(w, 1)) =
0 if l?] - €o| > 20.

Hence, F,(u,7n) is smooth on R%7! x R and vanishes when
(u,m) & Uy X Jeg — 28, eq + 26].

By Theorem 13 the principal value under consideration is thus O(r~7) uniformly in
(e,w) € [eg — 8,e0 + 6] x B. Since wy € S%! is arbitrarily fixed, the result follows

from compactness of S%1. O

2.3.4 Analyticity of Fourier Transform

We close this section by showing that for any fixed n € Z¢ the following Fourier
transform, F(I'(e), f)(n), is analytic at e; when the amplitude, f(z), is analytic in
the neighborhood of T'(eg) C R? (where eg € |, V[ is arbitrarily fixed). To this end
the diffeomorphism between I'(ep) and I'(e), X(z, e), defined in the relation (2.11) is
helpful, because, given a system of disjoint open neighborhoods on I'(ey) covering
all I'(eg) except a set of area zero, its lifting to F(e)‘ via X(z, e) also covers the whole
I'(e) except a set of area zero.

In details, let {(U, X Jeg — 8,0 + 6[, 0a)}2., be given by Theorem 13.

Theorem 18 There exists a finite, joint system of local parameterizations,

{(Vs xJeg = 8,e0 + 8], 08) }iL1,
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such that: ,
o For all B € {1,...,M} there exists an ag € {1,...,N} such that V3 C U,,
and og = Oq4 [V,
o For all e € Jeg — 6,0+ d[ the coordinates neighborhoods {og(Va,e)}5L, are
mutually disjoints,
o Foralle € |eg — d,eq + [ the area of T'(e) \Ug/{__l o3(Vs,e) is zero.”
Proof: One may construct a system of disjoint, open neighborhoods of full area on

.
I'(eo) by considering all non empty cells of the form 3
Oar(Uars€0) N N oo, (Uayseo) Noay,, (Uayyyr €)M - N Fon(Uays€0)°,

where {a1, -+ ,an} = {1,--+, N}. Thesc cclls are open, disjoint, and cover all I'(eg)
except the set 01(0U1,e0) U -+ U on(0Un,e), whose area is zero. The diffeomor-
phism X(z, e) lifts this exceptional set onto an exceptional set in I'(e) (which is not
a surprise). The peculiarity of X(z,e) is that all points on T'(e) which are not the

image of an exceptional x € T'(eg) are covered. The result follows. O

Theorem 19 Suppose f(x) is analytic in a neighborhood of T'(ey) C R%. Then, for

any fived n € Z¢ the Fourier transform F(T'(e), f)(n) is analytic at ey € ]a’, ¥'].

7 In other words, the integral of 1 over this surface is zero.

8 The complements are taken with respect to T'(ep).
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Proof: By the previous theorem, for any e € Jeg — 0, ey + §]

F(I( Z/ in-a5(ne) f(o5(u, €))Ja(u, €) du, (2.13)

where Jg(u, e) du is the element of surface of o45(Vp,e). Since the integrand in this
last expression is analytic in the neighborhood of Vj X [eg —0/2,e0 + /2] (that is,

converges to its Taylor’s series), the result follows. g

2.4 Green’s Functions
We turn our attention to
ol
G(n,z) = /er @)=z dz, (2.14)
where 2z € C., n € Z¢, and ®(z) is real valued, analytic, and periodic on T¢. Here, T¢
denotes the torus of dimension d, that is, the set [—, 7r] endowed with the quotient

topology induced by congruence modulo 27. In particular,
{z € T?; ®(z) = e} =T(e)

is a compact manifold. Tt may be covered by a ﬁnitevsystem of coordinates neigh-
borhoods admitting a subordinated partition of unity. Since each coordinate neigh-
borhood is embedded in R%, it is clear that all results in section 2.3 apply under

appropriate hypotheses, namely: Let o’ <’ and 8" = ¢y I'(€)- “We assume:

Assumption C

o &(z) is real valued, analytic, and periodic on T¢;
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o VO(z)#0 forallz € §';

o For every e € |a/,0'[, I'(e) admits at least k non vanishing principal curvatures

at any point, where k 2 1 is a fized integer.

For e € R let

G(n,e) = lim G(n,z),
zZG(Cj.
where of course the existence of such a limit has to be established. In this section
we compute the decay of G(n,e) as |n| — oco. We are especially interested in the
case where e is in the range of ®(z); otherwise, since by assumption ®(z) admits a
holomorphic extension, one may slightly change the domain of integration in (2.14)
and deduce that G(n, e) decays exponentially.

The following decomposition theorem is interesting in its own and will be used

in the next chapter. Before, we need this elementary lemma:

Lemma Consider a function, f(n), continuous inn € [a,b] and analytic at e € |a, b].

Then,
b b
lim S dn = mif(e) + p.V./ S dn.
seCoda ™2 a N—6€

Proof: Given an ¢ € |0, (b —a)/2], let C, be a path joining e — ¢ and e + ¢, and

lying inside the lower half-planc. Let v, = [a,e — €] * C¢ * [e + €, b], where * denotes
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the concatenation. By Cauchy’s theorem

[ Ly, [ 10,
o N2 be 1 —%2

for any z € C, if € is sufficiently small. Thus, by the dominated convergence theorem

secy Ja T 2 7 1€
= lim f( ) dn + lim f(n) dn
el0 c.M—E¢€ el0 In—e|>e 11— €
(by Cauchy’s theorem again). The result follows. O

For fixed wy € $% ! and eg € |/, V[, let {(U, x Jeo — 38, €0+ 36[,04)}Y_;, B 3
wo, {Xa}_,, summing to 1 on U[e——eo|<25F(e)7 and xe, be given by Theorems 13, 14,
and 17. '

Theorem 20 Suppose |e — eg| < § and w € B. Then, G(n,e) exists and is equal to

FT0), xeo P) (1) d + / nal = Xeol@) g

mF(T(e), P)n) +pv. [ — ' B -

—oo 1 — €

where P(z) = o507

Proof: Notice that

X?o Xeo Xa ()
inx d — in-m .
/Td ¢ O(z) — 2 = Z:/ x) — 2 dz

The change of variables z = 0,(u,n) applied to the above gives

Z / /R gt ) Xeo (T (1, 1)) Xa(0a(u, 77))|det D) Ta(t,7)| du dn,

n—=z
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which, by Theorem 16, is equal to

E:An_z " Xeo )Xo () P(2) dS(a) d,

where dS(z) denotes the elemcnt of surface. Hence,

ina_Xeo(T) . 1 ,
/qrd ¢ P(z) — 2 dz = /R n— 2‘7:<F(77)’ XeoP)(n) dn. (2.15)

Notice that x., P is analytic in the neighborhood of I'(e) when |e—eg| < §. Hence, by
Theorem 19, F(I'(n), xe, FP) is analytic at n = e. The result follows from the lemma

and the dominated convergence theorem. OJ

The desired decay follows:
Theorem 21 Let n = rw be the polar form of n € Z%, where n # 0, and consider

any interval [a,b] C |a',b/[. Under Assumption C

K

G(n,e) = O(r 2)

uniformly in (e,w) € [a,b] x 41,
Proof: For wy, e, etc. as above, by Theorems 15 and 17
miF(C(e), P)(n) = O(r~3) and

b [ A xeoP) ) dn = 06

— 0

uniformly on [eg — &, e + 8] X B. Moreover, by the scholium of Theorem 1
/ ein-a:l - Xeo(m) dr = O(?"—OO)
Td Q(z) —e
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uniformly on [eg — §, o + 6] x B. Since (eq, wo) is arbitrary in [a, 8] x S%~!, which is

compact, the result follows. O

In the second part of the present thesis uniformity is needed in the complex
plane:

Theorem 22 In the above circumstances, let
S={e+iy;a<e<b 0<y<l1}

Then, G(n,z) = O(r~% Inr) uniformly in (z,w) € S x §%1.

Proof: Since G(n, z) = O(|n|™*°) uniformly in {e+iy; a <e<band c<y <1}
for any ¢ > 0, we assume w.l.o.g. y € [0, ] for an arbitrarily small ¢. Moreover, we
restrict our attention to e € [eg — §, eg + d] for an arbitrarily chosen ey € [a,b] and a
sufficiently small § > 0, which is done w.l.o.g. sihce [a, b] is compact. Then, the cutoff
function x., () restricts ®(z) to the interval [eg — 26, eq + 28] and the decomposition -

used in Theorem 20 gives (by the equation 2.15)

eq+24 1 in-ac1 — Xeo (1’)
0= [ R P = [ e el

Integration by parts shows that the second integral in the above is O(|n|~) uni-
formly on the considered strip. Hence, it suffices to analyze the first term, which we
denote F(n, z).

Letting F(n,e) = F(I'(e), Xe, P)(n), we thus consider

eg+240
Fn, z) = / Fln,n) dn

0—28 n—=z
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for z varying over ‘the strip {e+1y ; |e—es] <dand 0 <y < c}. Our strategy
consists of estimating F(n,e + iy) and 8, F(n,e + iy);° applying the fundamental
theorem of calculus to the latter; joining the former and the resulting estimate in
order to obtain the desired decay.

If ¢ is sufficiently small,

eg+24 1
Fn,e+iy)] < sup |F(n,7y dn
£ _ I s In—eo|<26 7 m) eo—26 \/(n—e)?+y?

e+36

1
< su F(n, dn
ol <23 Fin,m) e-35 /(N —€)?+y?
30 + /962 + 42
|F(n,n)| In ( ; )

= 2 sup
|n—eg|<28

< Const|n|"2(1+1In(1/y)),

so in total

|F(n,e+iy)| < Const |n|~2 In(1/y) (2.16)

uniformly on the considered strip.

9 For a fixed n we denote by 8,,F(n,z) the derivative of F(n,z) along a line
parallel to the imaginary axis. Since F'(n, z) is holomorphic, this last derivative is
indeed equal to the complex derivative.
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On the other hand, by the dominated convergence theorem

eg+24§ 1
OyF(n,e+iy) = / —————F(n,n) d
yF'( y) s e (n,m) dn

eg+28 1
= /60% m(ﬁ(n»n)—f(nae))dn +

eg+20 1
+Fn,e/ ———d
M) | o e
= [+1I.

feo+25 1 (177

Notice that c0-26 TT=e=T)°

< Const uniformly when e + iy varies on the con-

sidered strip, which may be scen by changing the integration path. Hence, |I7]| <
Const |n|~% uniformly on this last strip. Moreover, the mean value theorem implies
eg428

Il < sup [9,F(n,n)| |7 —
In—eq|<26 ! eq—26 (77 - 6)2 + 12

el dn.
Observe that the dominated convergence theorem applied to the explicit decomposi-
tion of F(n,n) given in the equation (2.13) yields 8,F(n,n) = O(|n|"2+!) uniformly

inn € feg— 28,eq + 26 Therofdre,

eg+26 _
I < Constln[”%“/ __|Z7__2_‘3|___§d17
w-2s (N—€)P+y
< Const{nl‘%“/ _In—el g,
e—34 (77—'8) -I—y

x 2+ 942
= Const|n|"2 ' In (y———t—g—-——)

y2

< Const|n|"2 (1 +1n(1/y)),

so in total

|0, F'(n, e+ iy)| < Const |n|_‘§‘+1 In(1/y)
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uniformly on the considered strip.

By the fundamental theorem of calculus

Y
F(n,e +iy) — Fn,e)| < / 0, F(n, e +is)] ds
0

9
= / |0y F'(n, e+ is)| ds
0

Yy
< C’onst|nl_g+l/ In(1/s) ds
0

Il

Const |n|~ s (yIn(1/y) +y)

= Const|n| 2 yIn(1/y).
Hence, since F(n,e) = O(|n|™%) uniformly in e € [eg — 6, ¢y + 6],
|F(n,e+1iy)| < Const |n|~2 T yIn(1/y)

on the considered strip. Notice that /7In(1/y) goes to 0 when y | 0. A fortiori,

this last expression is bounded. Consequently,
|F(n,e+iy)| < Const |n| 2 /7.
In particular, for y < I—#’
|F(n,e+iy)| < Const |n|™%.
Otherwise, y > #, so In(1/y) < 21In|n| and the equation (2.16) implies

|F(n, e+ iy)| < Const |n|~% In|n|
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uniformly on the considered strip. The proof is thus complete. O

As an immediate corollary notice that
G(n,z) = O(T“%+) when |n| — oo

uniformly in (w, 2) € S9! x S, i.e., for all € > 0 there exists a C. independent of w
and z such that

fa

|G(n,2)| € Cer™zte

for all 7 > 0. The above theorem will be used in this last form in the applications.
2.5 Application to Generalized Laplacians |

In this section we apply the previous results to Green’s functions of concrete
Laplacians on [?(Z4). We focus on two specific examples: the standard Laplacian
and the Molchanov-Vainberg Laplacian. |

At a higher level of generality let us consider a simple graph without loop, whose
set of vertices is denoted by X (where X is allowed to be infinite). For m,n € X,
d(m,n) denotes the graph distance between m and n, that is, the length of the
minimal chain joining m and n in the graph (oo if m and n lie in two different
connected components). Of course, d is a metric distance with values in N U {oo}.
Notice also that (X, d) determines the graph completely, since {m,n} is an edge if
and only if d(m,n) = 1.

We are interested in the Hilbert space, {?(X), consisting of square summable

sequences indexed by X. Its usual basis is {0, },cx, where 6 denotes the Kronecker
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delta:
1 if m=n,
On(m) = Lmy(m) =4
0 if m#n.
The adjacency operator on [?(X) with respect to (X, d), sometimes called Laplacian,

is defined as

(A)(n)= D (m),

d(m,n)=1

where ¢ € I?(X). In particular, (Ad,)(m) = 1y, (m), where
Vo={me X ; dim,n) =1}

In the sequel we suppose that the degrees of the vertices of the considered graph
are bounded, in other words,

sup #Vn, < B

for a certain B < 00.}® Then,

Theorem 23 The adjacency operator, A, is a bounded, selfadjoint operator on

12(X).

10 Tn general #A denotes the cardinality of A.
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Proof: For any ¥(n) € I3(X)

1Ag]? =) 1(Ay)(n)?

neX
= Z Z Y(m
. meVn

neXx

< BY D Wm)?

neX mey,

< Byl

which shows that the adjacency operator is bounded. Moreover,

(O | A8,) = 1y, (m) = 1y, (n) = (A | 52,

which completes the proof. O

We are now interested in the case where X = Z% and the graph distance, d(m, n),
is translational invariant. In these circumstances we call A a generalized Laplacian.
Then, d(m,n) is a function of m — n only. Hence, letting V = V, (where 0 €
Z% denotes the origin), the considered graph is clearly determined by (Z4,V). In

particular,

:::E:7p(n'+'v%

veY
where #V < B is still agsumed to be finite.

Recall that the Fourier transform of ¢ € [2(Z%) is the following function, defined

for z € T¢:

D(z) = (Fy)(z) = 2m) "2 3 ™ 4(n)

nezd
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The symbol of A, denoted by 3, is the lifting of A via the Fourier transform:
A=FAF

Theorem 24 Let A be the generalized Laplacian associated with a given V C Z°.
Then, its symbol is the multiplication by
O(z) = Zei” = Zcos (v-2),
VeV vEY
wheré z € T
Proof: A maps{b\(x) to the following function:

(2%)“% Z el @ Zw(n +v) = (2@*% Z Z ei(n—v)-xw(n)

nezd veEY veV neZd

= Y e e(a).

veY

Notice that

veEY <= d(v,0)=1 <« d(0,—-v)=1 <= —v e .

Hence, denoting by VT the set of v € V whose first non zero coordinate is positive,

ZO—IU'ZL‘ — E VT — E 2COS(’U . x) = E cosv -,

veY veY veY+ veY

which completes the proof. ‘ O

Since the range of ®(z) is equal to the spectrum of A, one obtains:
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Corollary spec(A) = [min &, #)V)].

Notice that ®(z) is analytic at each z € T¢. Hence,
E={zeT¢,; V,®(z) =0}

has Lebesgue measure zero. In particular, spec(A) is purely absolutely continuous. 1*

The Green’s function of A is defined as
G(m,n;2) = (6m | (A — 2)716,)

for m,n € Z% and z € C,. .Since A is translational invariant, this last function
depends on m —n and z only. In fact, G(m,n;z) = G(0,n — m; z) so we denote this
latter simply by G(n —m, z). Since the Fourier transform is unitary, for any n € Z¢

and z € C,

G(n,z) = (50 [ (A~ ) 5( )2

11 This may be seen in the following way: L?(T%) = L?(T¢\ E). Moreover, by the
Inverse Function Theorem ®(z) is invertible on T4\ E. Let ¥(y) be its inverse, so
the change of variables y = ®(z) gives a unitary equivalence between L?(T¢) with
the Lebesgue measure and L?(®(T¢\ E)) with the measure ||V, ¥(y)|| dy. Via this
unitary equivalence the operator of multiplication by ®(z) is lifted to the operator
of multiplication by y, so by definition ||V, ¥(y)| dy | ®(T¢\E) is a spectral measure
for A—and is clearly absolutely continuous.
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By Theorem 20 the limit
G(n,e) = lim G(n, 2)

z—e
2€Cy

exists for any e ¢ E. We will compute its decay when |n| — oo in two particular-
examples: the standard discrete Laplacian and the Molcha,nov—Vamberg'Laplacz'an,
which are described in the rest of the section. Both are important in mathematical
physics, since both are diécrotizations of the continuous Laplacian on R? (up to an
additive constant).
2.5.1 Standard Laplacian

The standard Laplacian is the adjacency operator of the usual grid on Z¢; it is

specified by the graph distance

d
d(m,n) = |m —n|, = Z ImY) — n@],

J=1

8o the set of immediate neighbors of the origin is
V= {(£1,0,...,0),(0,%1,...,0),...,(0,0,...,£1)}.

Hence, by Theorem 24 the symbol of the standard Laplacian is the operator of

multiplication by
d .
b(x) =2 Z cosz\,
j=1

Thus, the spectrum of A is purely absolutely continuous and equal to [—2d,2d].
Notice that

V.d(z) = (-2sin M . —2sin a:(d)),
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which vanishes only if cosz!” = %1 for all j = 1,...,d, in which case ®(z) €
{—2d,-2d +4,...,2d — 4,2d}. In particular, the level surfaces of ®(z),

T(e) = {z € T¢; ®(z) = e},

are regular for all e ¢ {—2d, —2d + 4,...,2d — 4, 2d}.
Let us show that for such e’s the level surfaces are exempt of planarity, except
for e = 0:

Theorem 25 Let
E={-2d,-2d+4,...,2d — 4,2d} U {0}

and suppose e € [—2d, 2d)\ E. Th,eh,, T'(e) admits at least one non vanishing principal
curvature at any point.

Proof: Let x4 € I'(e) be fixed. By choice of e, I'(e) is regular, so there exists a j
such that sin xgj) # 0. After renaming the variables, the equation defining I'(e) in a

neighborhood of zg thus becomes
2cosul) + - 4+ 2cosu + 2cosh = e, (2.17)

where sin h # 0 on a certain interval. In particular, the derivative with respect to h
of the left-hand side in (2.17) is not zero. Therefore, writing u = (u(¥), ... ud=1)

there exists an implicit function, h(u), such that

2cosut + ... L 2cosul® V) + 2cos h{u) =e



for all u in a neighborhood of wg, where (ug, h(ug)) is the permuted z. The number
of non vanishing principal curvatures at z, is then given by the rank of D2h(uy).
Indeed, for any j = 1,...,d — 1, differentiating the previous cquation with respect
to ul) gives

—sinu' —sinh d,nh =0, (2.18)
where h = h(u). Consequently,
—sin h D2h(w) = diag(cosul, ..., cosu!¥™) + cos h [B,m h(u)d,mh(w)]%L,.

Since sin A # 0, it suffices to show that the right side in the previous equation does

not vanish in a neighborhood of uy. By the equation (2.18) this matrix is equal to

cosh

diag(cosu'?, ..., cosuld™1) + [sin u") sin u(k)]?,;il. (2.19)

Sin

Suppose by contradiction there exists an u in the considered neighborhood such

that the above vanishes. Then, forall j=1,...,d—1
cos ul sin? b + cos hsin? ul) = 0,
which is equivalent to
(1 — coshcosul)(cosu + cosh) = 0.
Moreover, since sin h # 0, it follows that 1 — cos hcosul) # 0, so

cosu) = —cosh forj=1,...,d—1
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at such an u. Hence, by the equation (2.17), 2(2—~d)cosh =e. If d = 2, then e = 0,
contrary to our assumption. Thus, the previous situation would occur only when
d > 2, in which casc cosh = —5#~ and cosut) = s for j =1,...,d — 1. Then,

cos? h = cos?ul?) for any j, so sinu® sinu® = 4sin? h. Consequently, the (4, k)-th

element of the considered matrix, (2.19), is 0 when j = k, but &£ otherwise. This
last quantity differs from zero (since e ¢ F), which provides a contradiction.
In conclusion, at any point in a neighborhood of zg, I'(e) admits at least one

non vanishing principal curvature. Since zg is arbitrary, this completes the proof. O

Theorems 21 and 22 thus give a polynoi’nial decay for the Green’s function,
G(n,e), associated with the standard Laplacian. Without asserting that this decay

is (or is not) optimal, it suffices for our applications in the second part of this thesis.

Corollary Let B = {—2d,—2d+4,...,2d — 4,2d}U{0} and suppose e € [—2d, 2d]\
E. Then,
G(n,e) = lim G(n,z) = O(|n|™?)

Z-=e
z€C

when |n| — oo, uniformly in e on each compact and uniformly in w € S, where

n = |njw is the polar form of n # 0.

Corollary Suppose [a,b] C [—2d,2d] \ F and let

S={e+iy;a<e<dh 0<y<l1}.
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Then,
G(n,z) =0(|n|77 )

uniformly in (z,w) € S x S*°1,

2.5.2 Molchanov—Vainberg Laplacian

In order to avoid convexity problems, Molchanov and Vainberg have suggested
to change the discretization of the Laplacian. They have based their construction
on the 2¢ full-diagonal neighbors of clements in Z¢, instead of their 2d immediate
neighbors. The constant energy surfaces of the resulting operator are strictly convex
in any dimension, as shown below.

Explicitly, the Molchanov-Vainberg Laplacian (or diagonal Laplacian) is the
adjacency operator of the translational invariant graph specified by the following set

of points adjacent to the origin:
V={w®,..  ,v®); 0 e{1,-1} forj=1,...,d}.

By an elementary combinatorial argument, n € Z¢ is in the component of the origin
if and only if the n()’s are all even or all odd. Indeed, the considered graph consists

of 29! connected components with set of representatives

{(O,n(z),...,n(d‘)) b e {0,1} forj=2,...,d}.
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The graph is also specified by the following metric:

|m — n|e if the components of m — n have the same parity,
d(m,n) =
o0 otherwise,
where |n]e = max?_, [n/)].
Remarkably, the symbol of the Molchanov-Vainberg Laplacian factorizes:
Theorem 26 A is the operator of multiplication by ®(z) = 2% cosz™ ... cosz?,
where = (2N, ... (@) € T¢.

Proof: Let us denote by {ey,...,es} the standard basis of Z¢. By Theorem 24 the

symbol of A is the multiplication by

d
(I)(fl') _ Zeim.v — j :eix'zz‘izlv(j)ej — ZHeim~v(.‘i)8j

vEY veEY veY j=1
d d
= H(e‘“"ej +e %) = ZdHcos 2,
J=1 Jj=1
as claimed. O

Consequently, the spectrum of A is purely absolutely continuous and equal to

[—2¢,27). Moreover,

Lemma Suppose 0 < le| < 2%, Then, for all z € T'(e), V,®(x) # 0. In particular,

T'(e) defines a reqular surface for such an e.
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Proof: If z € ['(e), then cosz) £ 0 for j = 1,...,d, s0 0, ®(z) = —2% tan 29,
Thus, |V, ®(2)|? = 4%2 Z?zl tan? zU), which differs from 0, since e # £29, O

Let us investigate the constant energy surfaces associated with ®(z). Firstly,
let us consider the covering I'(e) = {z € R? ; &(z) = e}.

If e = 0, T'(e) consists of the hyperplanes of equation ) = (2k + )2 fork€Z
and 7 = 1,...,d. Thesc hyperplancs divide R? into open hypercubes, which we call
cells. The cells admit a good bicoloration in the following sense: starting from a set
of two colors, say, red and blue, it is possible to paint each cell in such a way that
the 2d neighbors of any red cell are blue and vice versa. Let us accomplish this, the
cell containing the origin being painted in red.

If e = 27, then T'(e) is a discrete set consisting of the centers of the red cells. On
the other hand, if e = —2¢, then T'(e) consists of the centers of the blue cells.

When z varies continuously, ®(z) changes sign each time one of the previous
hyperpianes is crossed. It follows that the connected components of f‘(e) are enclosed
in the red cells when e > 0, each red cell containing one component. Moreover, these
components are all congruent. The situation is the same when e < 0, but replacing
the red cells with the blue ones.

Finally, I'(e) is obtained from the previous surface by restricting I'(e) to the
torus, where e € |—2¢, 27\ {0} is fixed. It follows that I'(e) consists of 2%~ identical
connected components.

As Molchanov and Vainberg conjectured,

Theorem 27 For 0 < [e] < 2% any component of T'(e) is strictly conver.
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Proof: Suppose 0 < e < 2% the other case being similar. Then, without loss of

generality the considered component is
{z € ] IE [d ; QdHcosxm =el.
2 3 2 H
Let m = d—1 and h = z{9. The cquation defining the previous component becomes
2¢cosz™M ... cosz™ cosh = e.
Since each factor in the above is positive,
dIn2 +Incosz™® + ... +Incosz™ + Incosh — Ine = 0. (2.20)

Since the considered component is symmetric with respect to the hyperplanes
£ =0 and 20) = 29, where j, 1 € {1,...,d} are distinct, it suffices to show the
result on the fundamental domain A < 2 < ... < z(™ < 0. There, h # 0 since
e # 2%,

The derivative with respect to h of the left side in (2.20) is — tan A, which does
not vanish. Consequently, an implicit function, h = h(z,e), satisfying (2.20) in
a neighborhood of an arbitrarily fixed point in the fundamental domain exists, is
analytic, and induces a local parameterization of the previous component.

It thus suffices to show that D2h(z, e) is positive definite. Differentiating (2.20)

with respect to () gives

—tanz\) — tan h O, h = 0,
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where h = h(z,e). Differentiating this last equation with respect to 2z gives

—sec? 20 —sec® h (0,;mh)* —tanh 2 h = 0 if =7,

X

—sec? h O, hd,mh —tanh 0,;:h0,mh = 0 otherwise.

Let aj; = —tanh 0,;»0,wh. Since —tanh > 0, it suffices to show [aj] > 0. By the
above,

[aj] = diag(sec?z™ ... sec? z97Y) + sec® h [0, hO,w ).

Clearly, the first term of the right-hand side in the previous equation is strictly pos-
itive. Moreover, the second term is non negative, since all its principal minors are

zero except the first, which is a square. Hence, [a;;] > 0, which completes the proof.

O

Theorems 21 and 22 then give an optimal decay for the Green’s function, G(n, e),

associated with the Molchanov-Vainberg Laplacian. Explicitly,

Corollary Let E = {—2%,0,2%} and suppose e € [-2%,2¢] \ E. Then,

G(n.e) = lim G(n, 2) = O(jn|~"T)

2eCy
when |n| — oo, uniformly in e on each compact and uniformly in w € S, where

n = |n|w is the polar form of n # 0.
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Corollary Suppose [a,b] C [~2%,29] and let
S={z+iy;a<z<b and 0 <y<1}.

Then,

d—1+

G(n,z) = O(|n|7"7 )

uniformly in (z,w) € S x 8971
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CHAPTER 3
Scattering From Sparse Potentials!

3.1 Basics in Scattering Theory
Let H be a Hilbert space.? Given two selfadjoint operators, A, B € L(H), and

a Borel set, S C R, the wave operators on S are defined as the strong limits

QF(B,A) = lim "B 415(A).

t—too

In the sequel we supposc that Q € {QT(B, A), Q7 (B, A)} exists.
Proposition 28 Q is a partial isometry whose initial space is 1g(A)H.
Proof: If ¢ L 15(A)H, then 15(A)p = 0 and hence Q¢ = 0. Since €'*® and e1*4

are unitaries, the result follows. O

Proposition 29 e“20 = Qe'*4.

Proof: e*B0e714 = lim, el(*+)Be-ils+)41 4 (A) = Q. .

! For a detailed description of results, terminology, and notations used in this
- chapter, the reader is invited to consult Appendix 4.2,

2 In this thesis all Hilbert spaces under consideration are separable. Also, given
a Hilbert space, H, B(H) denotes the set of bounded linear operators on H, while
L(H) denotes the set of all lincar operators on H, bounded or unbounded.
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Indeed, using Stone’s theorem one obtains:

Proposition 30 BQ = QA. In other words, Q¢ € dom B iff v € dom A and for
any such ¢, By = QAp.

clsA

v — A+, Since O is bounded,

§

Proof: Let ¥ € dom A, so lim,_g

JsA
0AY = lim oY=
80 S
) eiSBQU) _ Qw
= lim —————
5—0 S
= iBOWY
These last relations also hold for Q¢ € dom B; thus, QA = BS. 1

In particular, the isometry 15(A)H 2, ran 0 provides an identification between

the restrictions 1s(A)H A, 1s(A)H and ran 2 2, ran Q3

1s(AH 3 15(AH
Q| IRy
ran {2 A ran €

Notice that ran ) is closed, since 15(A)H is.

Proposition 31 ranQ C 15(B)H.

3 Except if S C R is bounded, we do not pretend by the following picture that the
domains of the identified restrictions are full, but only that they coincide via §2.
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Proof: Trivially 15(Al)(Al—2)~! = (A]—2)7! for any 2z ¢ R. Since A[and B/ are

unitarily equivalent, the functional calculus gives

In other words, the spectral measure of any ¢ € ranQ with respect to BJis concen-

trated on S. The result follows. 0
The following proposition is known as the chain rule:
Proposition 32 Let A, B,C € L(H) be selfadjoints operators. Then,
Q= (C, BIYE(B, 4) = Q4(C, A),

provided that these wave operators exist.

Proof: By the previous lemma, for all p € H
0= (1= 1s(B)O*(B, A)p = lim (1 - Ls(B))e" e *15(A)g
strongly. Writing el®“e~#415(A)y as
GtCeB(] _ 14(B))eBomitA14(A)p + ¢1Com 1B ¢ (B)eltBeit41 4(A) ¢
and taking the strong limit of both expressions, the previous relation yields

QE(C, A)p = Q¥(C, B)QE(B, A)p.
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In connection with the penultimate proposition the wave operator  is said to
be complete if ran§) = 15(B)H. Scattering theory is concerned with existencevand
completenecss of wave operators. The following proposition shows that these problems
are formally equivalent.

Proposition 33 Q = Q*(B, A) is complete iff QO (A, B) ezists.
Proof: Suppose (2 is complete and let ¢ € ‘H. By hypothesis there exists a ¢ €H
such that 1s(B)y = Q. Hence,

0 = lim [[L5(B) — ¢*Be *15( A = lim [[e*4e™*15(B)p — Ls(A)].

so Q%(A, B) exists.
Conversely, suppose *(A, B) exists. It suffices to show that ran 15(B) C ran Q.
By the chain rule 15(B) = Q*(B, B) = QQ*(A, B), from which the result follows. [J

Let us indicate explicitly that 2 depends on S:

Of = QE(B,A) = lim *Be™*414(A) (strongly).

t—=00

Proposition 34 Suppose Sy S, i.e., S1 € S C -+ and Uy Sy = S. If every
QfN exists, then Qg? also exists.

Proof: Let ¢ € H be arbitrarily fixed. From S\ Sy \ 0, it follows that 15, (A)p —
15(A)p and hence

Cii&Be—itAlsN (A)QO —_ eitBe_itA].s(A)QO (31)

87



uniformly in ¢. Hence, since the left-hand side of (3.1) is Cauchy in ¢, the right-hand

side is also Cauchy. The result follows. O

Let S, T'C R be Borel sets. Suppose T C S. If Q§ exists, then eri also exists,
for QOF = Q517(A). Suppose instead 7N S = 0. If OF and QF both exist, then QF
also exists, for Qg‘UT = Q§ + Q% Finally, suppose S and T are arbitrary. If Qf and
Q? both exist, then Q?UT also exists; this follows from our previous considerations,
writing

SUT = SNR\T)UESNT)u(TNR\S)).

Of course, the previous result may be generalized to finite unions by induction.

Hence,
Corollary Suppose S =, Sn. If every Qfﬂ exists, then Qf also exists.

Proof: We have just seen that the wave operators exist on Uﬁ:f:l Sy, for every N > 1.

The result follows, since |JY_, S, /S when N — oc. O

3.2 First Criterion of Completeness of Wave Operators

In this section we establish a sufficient condition for the existence and complete-
ness of wave operators coming from Schrodinger operators on graphs. This criterion,
due to Jaksgi¢ and Last, is based on Kato’s smooth perturbation theory.

The setting is the following (for more details see Section 2.5): we consider a

simple graph, (X, d), having countably many vertices, whose degrees are assumed to
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be bounded. Here, X denotes the set of vertices of the graph, while d(m,n) denotes
the distance between m, n € X, that is, the length of the shortest path connecting
them in X (oo if m and n lie on two different components). The adjacency operator,
A, on X is an operator acting on H = [>(X) as follows: for ¢ € I2(X)
Ap(n)= > p(m).
d(m,n)=1
Let‘ 'C X and V: T — R be given. We interpret V as a potential supported on T’
and study Hamiltonians of the form
H=A+Y"V(n)(d,|)dn,
nel
where {6n},cza 18 the standard orthonormal basis of H = (*(X).

Weset Hy=A and V = H — Hy, so H = Hy + V. However, the conscientious
reader will notice that Hy and H may be reversed in the present section without
affecting the results. This important notice will be used in the corollary of the main
theorem. |

We denote by 'y the R-fattening of T';
I'r={neX;dn,TI) <R}

The projection on [?(T'g) is denoted by 1g, while the projection on its orthogonal

complement is denoted by 15.
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We denote by K be the Hilbert subspace cyclically generated by {4, ; n € I'}
with respect to Hy, which is clearly invariant for H.* Since H is selfadjoint, Xt is
also H-invariant. In particular, for any bounded Borel function, f, the projections

on K and K+ commute with the calculus:
JHK) = f(H)IK, f(HIKY) = f(H)IK

Notice that Kt is included in the Hilbert space generated by {8, ; n ¢ I'}, which
implies

HIK' = Hy[ K.
In particular, for any ¢t € R

eltHoe—ltH — eltHOVCe—xtHVC a1

with respect to the orthogonal decomposition H = K@ K+, Thus, when proving the
existence or completeness of Q*(H, Hy), it suffices to restrict our considerations to
KC. The same argument yields a similar conclusion when replacing  with IC;, where
the latter denotes the Hilbert subspace cyclically generated by {4, ; n € I'1} with
respect to Hy.

In order to state our main result we need the following, abstract definition.
Given a Hilbert space, H, a selfadjoint operator, A € L(H), a bounded operator,
B € B(H), and a Borel set, U C R, B is A-smooth on U if there exists a C > 0 such

4 In fact, using perturbation theory, Jaksi¢ and Last [19] observed that this space
is equal to the subspace cyclically generated by {6, ; n € T'}, but with respect to H.
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that for all ¢ € 1y(A)H

/R |Be |2 dt < Cllg|®

The following characterization is also used in the sequel (see [38]):

Theorem 35 In the above circumstances, B is A-smooth on U iff

sup ||B(A —e —ie) ' B*|| < o0.
0<e<1
eeU

Remark [In fact, by continuily of the resolvent B is then A-smooth on U.

In the sequel U C R denotes a fixed open set. Let

D= {go cranly(H); / 17 )2 dt < oo} ,
R

so D is a vector space, not necessarily closed, but satisfying the following invariance

properties: clearly, D is invariant for ¢ for any s € R. Morcovor

Lemma Given an f € LY(R), let us denote its Fourier transform by

fib =g [ e@

Let o € D and C = 1e 7|2 dt, which is thus finite. Then,
¥ R

GH T C
[ e Rl at < 1l
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In particular, D is invariant for‘f(H ).

Proof: By Jensen’s inequality

2
e Funel = 5| [ e e fa)p do
= lfH —izH |f( )ldx)
< anl( [ e L
e —i(t+z)H QIf( )]dm
< gl [ el 2 C

Hence, by Tonelli’s theorem

—itH 7 1 ~i
[ e Fel v < oI [ e ol a
R T R

as claimed.

Corollary With ¢ and C as above, let z = e + iy ¢ R. Then,

C
?’.

/R L6 (H — 2) | dt <

In particular, D is invariant for (H — z)™%.

Proof: By Kato’s formula, for a fixed z € C,

(H-2)"" = i/ c7i2(F=2) dg
0

= V2mi F(Lygeof(z)e™)(H).
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Since ||1j0,c0(2)e™* |1 = %, the result follows from the lemma. Similarly, for a fixed

zeC_
O .
(H—2)"1 = —i/ e~ie(H=2) g
= —V2mi F(e"" 1)_oo0(z)) (H),
and again the result follows. tJ

Scholium The previous corollary has an interesting consequence: if ¢ € D, then

foranyy >0
[ ey — e~y el < c.
R ,
Letting y | O, Fatou’s lemma yields

A||11e“itH11{e}(H)¢||2 dt < C,

that is, [o |11l (H)|? dt < oo. Hence, 111y(H)p = 0 for all ¢ € D. In

particular, restricting our attention to the Hilbert subspace K,
LlaHK)p=0

forallp e DNK.
Letn el and 2z ¢ R, so (H — z)7'6, is a typical generator of K. Then, for any

w € DNK the previous relation yields

(H = )78 | g (H)p) = = (Lid | 1 (H)9) =,
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which implies 1(y(H K)o = 0 for any ¢ € DN K. In particular, if DN K is dense
in K, then the spectrum of H [ K is purely continuous. The same arqument yields a

simalar conclusion for H | ICy.

Our main theorem states that in the present setting if 1, is Hg-smooth on U
and D is dense in ran 1y (H), then the wave operators QF (Hy, H) exist on U. Since
in this context the usual wave operators are QF(H, Hy), we establish their complete-
ness, but without assuming their existence. The proof is preceded by several lemmas,

which are shown under the same assumptions as the main theorem, namely:

Assumption D
e 1, is Hy-smooth on U,

e D is dense in ran 1y (H).

Let T' = [Hy, 15]. The following, trivial properties are useful. Observe how H

and Hy may be interchanged in their statement:

Lemma
o 1,H = 1gHy, H1y = Hoyly, and hence [H, 1) = T = [Hy, 1g).
o Therefore, [H, 1y = [Hy, 1o}.
o T=1,T=T1,=1,T1; and |T| < 2||Ho||.
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Proof: By direct computations. O

Finally, the following computational tool is frequently invoked:
Proposition 36 Let B be a Banach space and R L. Bbea continuous, strongly

differentiable function whose derivative is uniformly bounded:
AIM:Yte R /()] < M.

Suppose moreover that f € LP(R), that is

/ 1F )P dt < oo
R

for a given 0 < p < 0o. Then, lim;_4. f(t) = 0.

Proof: Suppose by contradiction limsup,_, ||f(¢)]] > O (the case where t — —o0
being similar). Then, there exists an € € |0, M| and an increasing sequence, t, — 00,
sdtisfying tnt1—tn > 1 and || f(t,)]| > 2¢ for all n. Let s, = t, + 4, so the intervals
Jtn, sn| do not intersect. Notice that the assumption || f/(¢)|| < M and the mean value

theorem imply || f(t) — f(s)|| € M|t — s| for all s,¢t € R. In particular, for t € ]t,, 8,

il e FACY] B FACH R O]

> 2 — M|t -ty

vV
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Therefore,

/Rllf(t)H”dt > };/t £ dt
2 5PZ(Sn_tn)

n
€p+1

M

a contradiction. The rcsult follows. O

We now come to our succession of lemmas:

Lemma For all ¢ € 1y(H)H, limy_ 14 1oe o = 0.

Proof: Let f(t) = e 1ge " p. f(t) is continuous, since ||f(t+h) — f(t)|| <

e Loe™ P — 14]| |l 229 0. Furthermore, f(t) is square integrable, since by As-

sumption D

/R LF@)? dt = / 1o~ ]2 dr < / L~ ol dt < Const ||

Finally, f/(t) = ic*®[H, 1) = ic'*[Hy, 19)e *H p, which implies that || f'(¢)| <

2||Ho|l. The previous proposition then completes the proof. O

The proof of the following lemma uses Dunford’s calculus, which specializes as

follows. Let =y be positively oriented Jordan curve in C, whose interior is denoted by
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©. Consider any closed operator, F € L(H), whose spectrum does not intersect +.

Then,

1
1(—)(F) = —% (F - Z)—l dz.
v

In particular, for any selfadjoint operator A € L(H) and Borel set B whose closure

is in © the trivial inclusion spec(15(A)A) C © implies

1p(A) = 15(A)1e(15(A)A)

~ 18 (—5 fa(A1A -2 dz)
_ _%ﬁﬁlB(A)(lB(A)A ~2)dz
= —% ‘7€(A — 2) M1 p(A) dz.

Thus, if ¢ € 15(A)H, then ¢ = — = fw(A — 2)"tpdz.

2mi

On the other hand, let us denote the exterior of v by ©’. For any Borel set B’

whose closure is inside ©’, the trivial inclusion spec(1g/(A)A) C © implies

0 - 1B/(A)1@(13/(A)A)

= 1p(A) (.--2—175 ?{(13,(A)A —z)7 dz)

_ _-2—%]513,(14)(13,(_4),4 )t de
1

= e (A——Z)_l].Bl(A) dZ.

27 -

Thus, if ¢’ € 15 (A)H, then —55 ¢ (A —2)7'¢' dz = 0.

27ri

In the following lemma we denote U® =R\ U.
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Lemma limy_ 1o 1ye(Ho)et#olge 1, (H) = 0 strongly.

Proof: Let I C U be a finite closed interval whose endpoints are not eigenvalues
of H and whose opening is not empty. Let v be a positively oriented Jordan curve
in C separating I from U° (in R). Given a vector ¢y € D, let us consider p(t) =
1ye(Hp)e" o 15e7 71, (H)y. We first show lim;_+. ¢(¢) = 0 and then conclude the
proof by a limiting argument.

Since w.l.o.g. U¢ is outside v and ¢(t) € 1y<(Hp)H, the previous discussion
gives 0= —5 ¢ (Ho — 2) 'p(t) dz, so

0= -—% 1Uc(Ho)e‘tH°(H0 — Z)—ll(')e—ltHlj(H)'(/) dz.
v

Furthermore, since I is inside v and e™"f1,;(H)y € 1;(H)H, the same discussion

gives e *H1,(H)Y = —5 6. (H — 2)7'e "1, (H)y dz, so

2ni

1 . .
() = —=— b Lye(Ho)e ™ 15(H — 2)~ "1, (H)p dz.

271 J,
Subtracting both equations,

p(t) = L 7{ 1ye(Ho)c™((Ho — 2) 7' — 15(H — 2)"Ne ™™ 1;(H)y dz.

2mi 7

By the resolvent identity

(Hy—2) Mg —1g(H - 2)"t = (Hy—2)"*(1gH — Holg)(H — 2)7*

= —(Hy—2)"'T(H—2z)"".
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Thus,

1 . ' ‘
(P(t) = —2—7('i lUc(Ho)CltHO(I‘IO - Z)_lT(H - Z)—lC—ltHl[(H)¢ dz.
Y

Since 1ye(Hp)elto(Hy—2)! is bounded uniformly in ¢, |T|| < 2||Ho|, and T = T'1;,

it follows that

le(®)l < Const f 111 (H — )~ e 1, (H)y| d=.

By the dominated convergence theorem, in order to establish lim; ¢(t) = 0 it suffices
to show that the integrand in this last expression tends to zero.

For a fixed z € v let
B, = ||Li(H - 2)~'e " 1,(H)|,

which is finite. There exists a hounded sequence of C* functions supported in [
that converges pointwise to 17.(z), where I° denotes the opening of 7. Notice that
1/.(H) = 1;(H), since the endpoints of I are not eigenvalues of H. Hence, for any

£ > 0 there exists a g(x) in the previous sequence satisfying
(Lr(H) — oIl < 5
where z € 7 is still fixed. Since g(H) = 1;(H)g(H), it follows that
111(H = 2)7 e (1 (H) — g(H))¥|| <e.
Consequently, the integrand under consideration satisfies the following relation:
111(H = 2)~te ™1, (H)y|| < e+ [|[E(@)],
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where F,(t) = 1;(H — 2)"'e *Hg(H)y. Since £ is arbitrarily small, the problem
reduces to show lim; F,(t) = 0. |

This last fact follows from the preliminary proposition: F,(t) is clearly continu-
ous. Furthermore, it is square integrable, since ¢ € D and ¢ is a smooth, compactly
supported function, so the invariance properties of D imply (H — 2)"1g(H)y € D.®
Finally, F/(t) = 1,(H — 2)7}(~iH)e *Hg(H)+, which is clearly bounded, since
Hg(H) is bounded. Thus, F,(¢), and hence ¢(¢) tend to zero.

Let B(t) = 1ye(Hy)e*He1ge | which is uniformly bounded. We then have to
prove that B(t) —4 0 strongly. Since ¥ is arbitrarily fixed in .’D, which is dense
in ran 1y (H), the above shows that for every finite, closed interval I C U whose
endpoints are not eigenvalues of H, B(t)1;(H) —L5 0 strongly. As an immediate
consequence, if /7 C U is a finite union of disjoint closed intervals whose endpdints
are not eigenvalues of H, B(t)1r(H) 50 strongly. Since U is open and the set
of eigenvalues of H is countable, U is approachable by such F’s, say f1 C Fo C ---
with {J, F, = U. Then, 1g,(H) — 1y (H) strongly, so B(t)1g,(H) — B(t)1y(H)
strongly, uniformly in ¢. These facts imply that B(¢)1y(H) —‘ 0 strongly, which

completes the proof. O

We now come to the announced result, asserting in some sense the “complete-

ness” of the usual wave operators, Q*(H, Hy), but without assuming their existence.

5 Recall that a smooth, compactly supported function is the Fourier transform of
an L! function (indeed, of a Schwartz’ rapidly decreasing function).
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Theorem 37 (Jaksié—Last) Under Assumption D, Q*(Hy, H) exist on U.
Proof: Let ¢ € D. Since D is dense and ¢ € D is arbitrary, it suffices to establish

the existence of lim; ¢'*foe™ "o, By the last two lemmas
li}rn 0107y = 0 and

li{n 1ye(Hp)et o156 o = (.

Letting ¢(t) = 1y (Hp)e*olge~ "t p, it thus suffices to show that lim;_,+.0 (¢) both
exist.

For ¢ € H

L1e) = 1 (H) e (Haly - 1M H)

= i(e7 1y, (Hy)y | Te ™ ).
By the fundamental theorem of calculus, for s < ¢

t
(W) —¢(s)) = i/ (e o1y (Ho)y | Te™ ™) dr
= i/t<110"iTH°1U(HO)1/)[Tlle'iTH@ dr,

since T = 1;7T1;. Thus, hy the Cauchy-Schwarz inequality

(W 1¢() = SN < HTH/ 1107701y (Ho)y | 11267 o] dr

1 1
t ) 3 4 ) 3
< i ([ e ongtgip o) ([ el ar)

t 3
< Const (/ Hl1(>_iTH<P”2dT) 1],
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since 1, is Ho-smooth on U. Furthermore, the integral [; [|1:e7""||?dr is finite by
the definition of D. Hence,
IS() = ¢l = sup [(¢[<(E) = <(s))]

llfi=1

¢
< Const (/ l|11e“”Hg0H2dT) 250

Thus, both lim: 4. ((f) exist and the result follows. O

Scholium The beginning of the proof asserts the following: it suffices to establish
the ezistence of lim, e H o for o € D, because D is dense in 1y(H)H. However,
as discussed at the beginning of the section the result is trivvﬁdl for ¢ € K+. Since
DNK is dense in 1y (H)K, it then suffices to prove the existence of the limit for
w € DNK. In other words, Assumption D may be weakened in the following way:

e 1, is Hy-smooth on U,

e DNK is dense in 1y (H)K.
Notice that a similar conclusion holds by replacing K with Ky (see the proof of The-

orem 43).
Applying twice the previous theorem,

Corollary If 1, is both H-smooth and Hg-smooth on U, then the wave operators

OF(H, Hy) exist and are complete on U.
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3.3 Deterministic Approach

Using the definitions and conventions of the previous section, we now turn our
attention to the scattering properties of H = Hy + V. In the present section V is
assumed to be bounded.

Let a < b. The existence and completeness of wave operators on |a, b[ except on
a closed set of Lebesgue measure zero will follow from various hypotheses regarding

the following quantities:

I = inf inf Im {3, |(Hy —e—ig)7'6,),
nel a<e<h
0<e<1

T(n,m) = sup [{6,|(Ho— e — i) '6,)|, where n,m € X,

a<e<b
O<e<l

I(n) = Z 7(n,m), where n € T
1n§P

We adopt the following convention: except mentioned explicitly, z varies in the

rectangle

S:{e+biy;a<e<band0<y<1},

while N, M vary in X, N, M in I'y, and n,m in I". Thus, the previous quantities

may be abbreviated
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I = inf Im (8, | (Hy — 2)7*6,),
(N, M) = sup|{Sy|(Ho— 2) " 6u)],
¥4

I(n) = Y r(n,m).

m#n
Theorem 38 The spectral measure associated with Hy, dn, and dpr s real valued.

Proof: Let us denote this measure by uyas. It is characterized by the relation

(6 | f(Ho)om) :/Rf(t) dunm(t),

which holds for any bounded measurable f. Since {6y | H}8r) represents the number
of paths from N to M of length [ in the graph (X, d), it is a positive integer, a fortiori |
a real number. Thus, (6x | p(Hg)dnr) is real fof any polynomial p on R. By density,
it follows that (dn | 15(Ho)dnm) = unm(B) is real for any Borel set B. O

1

As a consequence, the matrix elements of (Hy — 2)~"' are “real symmetric” in

the sense that (0n | (Ho — 2)7'6n) = (8m | (Ho — 2)~'dn), which implies 7(N, M) =
(M, N).

In this section we make the following assumptions, which involve Hy only:

Assumption E  [(n) — 0 asn — oo, i.e., for all € > 0 there exists a finite set

F C T such that l(n) < e for everyn ¢ F.
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Assumption F  [(n) < oo for alln €T.
Assumption G [ > 0.

Assumption H The function Cy — B(H), z — 1,(Hy — 2)7'1, extends contin-

uously to Cy4 U [a,b], where B(H) is endowed with the uniform topology.

Notice that the property E is vacuously truc when I' is finite. Similarly, the
case where the potential lies on a single site is not really discarded by the definition
éf l(n), interpreting a sum over an empty sct of indices as zero. However, we are
mainly concerned in the case where I is infinite.

Concretely E, F, and H may come from sparseness of I" and an a priori estimate
on the Green’s function of Hy. At the level of operators theory the condition G
implies that the diagonal part of (Hq— 2)7! [{(T) is invertible, while E and F imply
that its remaining part is compact, as we shall see later.

Finally, Assumptions G -and H imply the following:

Theorem 39 The spectrum of Hy restricted to Ky is purely absolutely continuous
on [a,b]. Moreover, its essential support contains [a, b].
Proof: Let uy be the spectral measure of §y with respect to Hy, and Py be its

Poisson transform. Then, for z = z + iy € C,

1
) = | g sl
Im (3 | (Ho — = = iy)~'dn).

I
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Assumption H ensures that Py(z) extends continuously to a function Py(z) on [a, b].
Moreover, by classical Harmonic Analysis the measure %PE(‘/E + iy) dz converges
vaguely to dun(z) when y | 0. It follows that duy(z) is equal to 1Py(z) dx
on [a,b], i.e., for all N, uy is purely absolutely continuous on [a,b]. Limiting our

considerations to the subspace cyclically generated by {dn}yer,

B= Z aNpN
N

then defines a spectral measure for Ho [ Ky, where ay > 0 and )y ay = 1. Since
each py is purely absolutely continuous on [a, b], the first conclusion follows. Finally,

since the density of p with respect to the Lebesgue measure is given by
1 ‘=1
—ZaNIm (On | (Ho — 2 —10)" 6n),
T = =

which exists almost everywhere (by classical Harmonic Analysis) and is positive for

z € [a,b] (by Assumption G), the second conclusion follows. O

Let us focus on the Hilbert subspace 1*(T) and consider
Wo: 8 — B(I3(T)), Wo(z) = 1o(Hy — 2) " 1.
Clearly, Wy(z) is analytic on S and extends to a continuous function
Wo: S — B(I(I))

by Assumption H. Moreover,

Theorem 40 Wy(z) is invertible for all z € S.

106



Proof: Let ¢ vary in [>(T") and let us denote its spectral measure with respect to

Hy by p,. For afixed z =2 +1iy € S,

Im (o | Wo(2)p) = Im{p|(Ho—2)" )

1
~ y/m o g Helt)

This last quantity is strictly positive; indeed, it is bounded away from zero when ¢
varies in [?(T"), since |t| < ||Ho|l on the support of the integrand. Thus, the closure
of the numerical range® of Wy(z) is included in C,. In particular, 0 ¢ spec(Wy(z2)),

from which the result follows. : O

Let us define the following opcrators, which act on the underlying Hilbert space
I2(T):
Do(z) = diagWo(2)
= Z(én | Wo(2)6n) (0n | -)0n,

n

Kolz) = Wolz) — Dol
Notice that ||diagA|| < ||A] for any bounded operator A, since

[diagAll = sup (8, | Ad,)] < [IA].

6 Recall that the numerical range of a hounded, Sélfadjoint operator, A, is defined
as {{p|Ap) ; v € H, ||¢|| = 1}; it is well known that its closure contains spec(A).
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In particular, Dy(z) is bounded for any z € §. Moreover, Dy is clearly analytic on

S. Tt extends continuously to S, letting
Do(z) = diag Wo(z)

for x € [a,b]. Hence, Ky inherits the same properties, namely: Ky(z) is bounded for

any fixed z € S, Kj is analytic, and K extends continuously to S.
Lemma Ky(z) is compact for any z € S.

Proof: Let ¢ > 0. By Assumption E there exists a finite set, 7; C T', such that

l(n) < § for any n € T'\ Fy. In other words, sup,¢z D, T(n,m) < §, that is, for

m#n

an arbitrarily fixed z € S

qupZ[é | Ko(2)0m)| <

né¢F

wlm

m

Moreover, by Assumption F there exists a finite set F, C I such that

€
su On | Ko(2)0m)| < =.
3 16 Kole)oul| < 5
Letting F = F; U Fa, one finally finds
sup 3 {60 | Ko(2)3)| +5up 3 [{6n | Ko(2)om)| < e (32)

ngF " meF

Let F be the finite rank operator defined as follows:

5n K 5m if , E.;E,
(60| Fom) = | Ko(2)om) i,

0 ~ otherwise.

108



As already noticed the matrix elements of Ky(z) are “symmetric in the real sense”.

Hence, so are the matrix elements of Ky(2) — F, i.e.,
{0n | (Ko(2) = F)0m) = (6m | (Ko(2) — F)dn).
In particular, by the Riesz—Thorin Interpolation Theorem (c¢f. Appendix 4.3)
[1Ko(2) — Flly = [[Ko(2) = Flleo 2 [ Ko(2) — F].

Since the infinity norm of Ky(z) — F is precisely the left-hand side in (3.2), one
concludes

[Ko(2) = Fl <.

Since ¢ is arbitrary, Ky(z) is compact. O

Scholium We proved more, namely: for all € > 0 there exists a finite dimensional

projection, P, such that for any z € S
HKO<Z) - PK()(Z)P” < £.

This comes from the fact that our choice of F did not depend on z € S—defining P

as the projection onto the vector space generated by {6, ; n € F}.

Lemma The diagonal operator 1 + Do(2)V acting on [*(T") is invertible for any
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Proof: By Assumption G, Dy(z) consists of invertible diagonal clements. If 7

1
V(n)| < m,

then
1+ Do(2)V)(m)| = 1—|Do(2)(m)] V()
> 1—||Do<z>um

I
2’
o [(1+ Do(2)V)~!(n)| < 2. Otherwise, [V(n)| > (2||Do(2)]])~", and then

(14 Do(2)V)(m)| > [Im (1 + Do(z)V)(n)]

= [V(n)| [Im Do(2)(n)|
s L
= 2 Do(2)I)

0 |(1+ Do(2)V) " (n)| < A2 1 total,

1(1+ Do(2)V)7Y| < max{ QHDE)_( )H}

7 In the sequel we denote by A(n) the n* diagonal element of a diagonal opera-
tor A.
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which ensures that the inverse of 1+ Dy(2)V, whose existence follows from Assump-

tion G, is really in B(I*(T)). O

Let us déﬁne
W: S — B(I3T)), W(z) = 1o(H — 2)"'1,.

From the fact that V is bounded, the argument used in Theorem 40 shows that W(z)
is invertible for any z € §. Morcover,

Theorem 41 There exists a closed set of Lebesque measure zero, R C [a,b], such
that W extends continuously to a function S \ R — B(I*(T")).

Proof: For the moment, let z vary in §. By the resolvent identity

W(z) = Wo(2) = 1o((H~2)"" = (Ho—2)"")1o
= —10(H0 - Z)—IV(H - 2)_110

= —Wo(2)VW(z),
since V = 13V1;. Thus,
(1 + Wo(2)V)W (2) = Wo(2).

Notice that 14+ Wy(2)V is invertible for any fixed z € S, since W(z) and Wy(2) are.
Thus,
W(z2) = (1+ Wo(2)V) ' Wy(2), (3.3)
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where z € §. We wonder to which extent (1 + Wy(2)V)™! is still invertible for

z € 0S. Indeed, for any 2z € S,

14+ Wo(2)V = 14+ Dy(2)V + Ko(2)V

= (1-K(2))(1+ Do(2)V).

where K(z) = —Ky(2)V (1 + Dy(2)V)7! is compact. Since for z € § both 1+ Dy(2)V
and 1 4+ Wy(z)V are invertible, 1 — K(z) is. By a variant of the Fredholm ana-
lytic theorem (¢f. Appendix 4.4), 1 — K(z) is thus invertible in B(I*(T")) for all
z € [a,b] \ R, where R C Ja,b] is a closed set of Lebesgue measure zero. Since
‘—S'—\R — B(I*(1")), z — (1 = K(2))™! is still continuous (c¢f. Appendix 4.4), so is
z — (14 Wy(2)V)~!. Hence, the right-hand side of (3.3) extends continuously to
S\ R, as desired. | O

Since the natural embedding B(I3(T)) — B(H) is an isometry,

Corollary There exists a closed set of Lebesque measure zero, R C [a, b], such that

W extends continuously to a function S\ R — B(H).

The main theorem in this section is deduced from this last corollary, by working

out

Wli S — B(H), Wl(z) = ll(H— Z)_lll.

Lemma There exists a closed set of Lebesque measure zero, R C [a,b], such that
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W extends continuously to a function S\ R — B(H).

Proof: We first prove the existence of a similar extension for 1,(H — z)~'1,. By

the resolvent identity

11(H0 - Z)_l].o — 11(111[ — Z)—l].o = 11((H0 - Z)—'l — (H - Z)_I)].O
= ll(H() - Z)—IV(H — Z)_llo

= ll(Ho -~ Z)—l].()VW(Z),

since V = 14V 1. By Assumption H, 1;(Hy — 2)"11g = 1;(Hy — 2)7 1,1, extends
to S, while by the previous corollary W(z) extends to S\ R. Thus, 1:(H — 2)711,

extends on S \ R, as claimed. Again, by the resolvent identity,

11(H0 - 2)'_111 - Wl(Z) = 11((H0 - Z)—l - (H - Z)_l)ll
= 11(H - Z)—IV(HO - Z)—lll

= ll(H o Z)—ll(]Vll(Ho - Z)_lll.

Both 1;(Hy —2)7'1; and 1;(H — 2)7'1, extend appropriately by Assumption H and

the above. The result follows. O

Using the criterion in Section 3.2 (corollary of Theorem 37), we have proven:
Theorem 42 Under Assumptions E, F, G, and H, there exists a closed set of Le-
besque measure zero, R C |a, b, such that the wave operators, O*(H, Hy), exist and
are complete on ]a,b[\ R.

More generally,
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Corollary Let © C R be an open set. Suppose Assumptions E, F, G, and H hold
for any [a,b] C ©. Then, there exists a set of Lebesgue measure zero, R C ©, such

that the wave operators, QF(H, Hy), exist and are complete on © \ R.

Proof: Since © is open,

o= J la.

fa,blCO
a,beQ

By the theorem, for all [a,b] C © there exists a closed set of Lebesgue measure zero,

Rap, such that the wave operators exist and are complete on [a, b] \ R,p. Letting

R= {J Ran
la.blc©
a,beqQ
which is not necessarily closed but has measure zero, it follows from the discussion
after Proposition 34 that the wave operators exist and are complete on each [a, b] \R,

where [a,b] C © has rational endpoints. Hence, by the corollary of Proposition 34

the wave operators exist on © \ R. O

3.3.1 Conclusion in Random Frame
It is possible to remove the exceptional set, R, in the above theorem by working
in the random frame. Then,

H=Hy+YV,
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where {V(n)},cr is a family of independent, identically distributed random variables
of law p, where p is a probability measure on R (¢f. the beginning of Section 3.5).
Assume the support of p is bounded, so V' is bounded almost surely. Then,
Theorem 43 Let © C R be an open set. Suppose Assumptions E, F, G, and H hold
for any [a,b] C ©. Then, the wave operators Q*(H, Hy) exist and are complete on
© almost surely.

Proof: It suffices to establish the existence and completeness of the wave operators
QF(H Ky, HoKy) on ©,

For all V' the previduS theorem ensures the existence of a random set of Lebesgue
measure zero, Ry, such that QF (H, Hy) exist and are complete on © \ Ry, a conclu-
sion that persists when restricting the operators to ;. By Theorem 39 the spectrum
of Hy | Ky is purely absolutely continuous on ©. Thus, 1e\r, (Ho [K1) = 1e(Hs [Ky),
so the wave operators QF(H [ Ky, Hy | K1) exist on © for all V.

By Theorem 39 the essential support of Hy [ Ky on © is full. Since the ran-
dom variables {V(n)},er arc i.1.d., the essential support of H [ Ky is almost surely
full by random perturbation theory. By the Jaksié-Last theorem, it follows that
spec(H [ K;) is purely absolutely continuous on © (a.s.), so the wave operators

QOF(Ho | K1, HKy) almost surely exist on ©. O
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3.3.2 Application to Generalized Laplacians

In this section we show that the previous, abstract theorem applies to random
Schrodinger operators with generalized Laplacians and sparse potentials. Our sparse-
ness conditions will come from the a priori estimates on free generalized Laplacians
derived in Chapter 2.

Let Hy = A be a generalized Laplacian. Then," Hy = A comes from a trans—v
lational invariant graph on Z¢, whose distance is denoted by d(m,n). In order to

apply Theorem 43 to the random operator
H=A+YV,

where V' is assumed to be bounded almost surely, we show that A satisfies Assump-
tions E, F, G, and H.

On specific examples condition G comes from Theorem 20. Let © C spec(A) be
an open set on which Theorem 20 applies. For instance, suppose A is the standard

Lgplaciafl and let
E={-2d,-2d+4,...,2d — 4,2d} U {0};
alternatively, suppose A is the Molchanov-Vainberg Laplacian and let
E ={-2%0,2%.

We then set © = spec(A) \ E. As in the previous section we focus on an interval

[a,b] C © and define S with respect to this interval.
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Firstly, by translational invariance

I = inflm <(50 I (HO - Z)_150>
= infIm G(0, 2),

where following our convention z € S. Secondly, by Theorem 20, for any fixed

e € [a,b]

1
ImG(O,e) :WA(e)mdx > 0.

On the other hand, if e + iy € S is not real, then

CoN —d Y
ImG(0,e + iy) = (2m) /ﬂ‘d @) = 1 dz > 0.

Since G(n, z) exists and is continuous on S, which is compact, it follows that I >
0. Hence, all generalized Laplacians (in particular, both the standard and the
Molchanov—Vainberg ones) satisfy Assumption G for [a, b] included in their respec-
tive ©.

The main work consists of verifying Assumption H. To this end, we use the
following, stronger versions of Assumptions G vand E, which yield our sparseness
assumption.

Before stating these assumptions, let us partition I'y in the following way: for

all n € I', we select a non empty neighborhood
Bn)C{Nel;; d{N,n) <1} (3.4)

in such a way that |J, B(n) =T’y and B(m)NB(n) # 0 if m # n. Of course, equality

is necessary in (3.4) if d(m,n) > 2 for all m # n (where according to our convention

117



m, n € I'). Moreover, for all N € T'; there exists exactly one n € T such that
N € B(n). We thus set B(N) = B(n), and then define
LIN)= Y 7(M,N).
M¢B(N)
This last sum is an analogue of I(n) for M, N varying I'; instead of I". Moreover,
instead of removing only the diagonal element (M = N) from this summation, the
whole B(N) is removed.

We suppose:

Assumption I L(N) — 0 when N — oo. In other words, for all € > 0 there exists

a finite set, F C I'y, such that L(N) < € for all N ¢ F.
Assumption J L(N) < oo for all N € T.

We then decompose Wi(z) = 1;(Hy — 2)7'1; into two summands: a superdiag-

onal,

Diz) =3 3 (onl(Ho—2) " 60 (6us | ),
)

N MeB(N

and the other part, .
Kl(Z) = Wl(Z) - Dl(z).
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By Theorem 20, (0y | (Hy — € — i0) 16/ exists for any e € [a, b] and M, N € Z°.
In particular, defining
Wi(e) = Y (o | (Ho — e —10)™6r) (8ar | O,
MN
it follows that

lim Wi(z) = Wi(e) weakly.

z€Cy

In this situation Wi (e) is bounded, which is a well known application of the Steinhaus-
Banach uniform boundedness principle (see [40]); here, this fact will be deduced from
further computations.

Similarly, let us define D;(e) and K;(e) in the obvious way, so these last oper-
ators are weak limits of D;(2) and K(z) respectively. We want to show that under
Assumptions I and J

lim Wy(z) = Wi(e) uniformly, (3.5)

Z—e
zeCy

the two mentioned assumptions joint with the a prior: estimate in Chapter 2 then

yielding our sparseness assumption.
Observe that Wi(z) = Dy(z) + Ki(2) for all z € § (including values in R). In

order to prove (3.5) we first show:

Lemma For any e € [a,b], lim Dy(z) = D;(e) uniformly.
zéCi

Proof: Let {C;}f; be an indexation of all subsets of {N € Z% ; d(N,0) < 1}

containing 0. Then, for all n € I" there exists one and only one 7, which we denote
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j(n), such that B(n) —n = C;. Thus, one may rearrange D;(z) in the following way:

L

=3 S Gk | (Ho = 2)604) s | Ynikc

7=t {n;j(n)=j} JKeC;
By translational invariance this last expression is equal to
L
Z D2 GU=K2) D (Gnes|)onsk
j=1 J,KeC; {n:j(n)=7}

from which the result follows. O

It remains to show that the convergence of Ki(z) to Kj(e) is also uniform.

Exactly as we did for Ko(z),

Lemma (of the lemma) Let € > 0 be arbitrarily fired. Then, there exists a finite

rank operator, F.(z), such that
|Ki(2) — Fe(2)|| < €

for any z € S (including values in R). Moreover, the function F.: S — B(H) is

continuous at z € S, where B(H) is endowed with the uniform topology.

Proof: By Assumptions I and J, for all € > 0 there exists a finite set, 7 C I'y, such

that

sup > (o | K1(2)8u)| + sup Y [(0n [ K1(2)dm)] < (3.6)
NeF NeF MEF
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Let V be the vector space generated by {0y ; N € F} and
Fe(2) = Ki(2) V.

Notice that F.(z) is weakly continuous and hence uniformly continuous at z € S,
since V is finite dimensional. Moreover, the matrix elements of Ki(z) — F.(z) are

“symmetric in the real sense”, so the equation (3.6) is equivalent to
1K:(2) = Fe(2)ll = [|K1(2) = Fe(2)]lo < &

The Riesz—Thorin Interpolation Theorem then completes the proof (¢f. Appen-
dix 4.3). m

Lemma For any e € [a,b], lim Ki(z) = K1(e) uniformly.
zéCi

Proof: Let € > 0 be arbitrarily fixed. Then, for a given e € [a,b] and 2z varying

inS

1K1(2) = Kile)ll < [1K1(2) = Fe(2)]| + [ Ku(e) = Fe(e)|| + (| Fe(2) — Fele)l

< ([Fel(z) = Fe(e)ll + 2.

Since £1£ne F.(z) = F.(e) uniformly and ¢ is arbitrarily small, this completes the
2eCy

proof. O
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In conclusion, by the two previous lemmas Wi (z) admits a uniformly continuous
extension to S (i.e., Assumption H holds) and this, under Assumptions I and J.
Since I and J arc stronger versions of E and F, and since G is already shown, we
have proven:

Theorem 44 Consider a random Schridinger operator acting on 12(Z%),
H=A+YV,

where A is a generalized Laplacian and V' is a random potential bounded almost
surely. More precisely, assume {V(n)},er are i.4.d. random wvariables of low u,
where 1 is compactly supported. Let © C spec(A) be an open region of validity
of Theorem 20. If Assumptions I and J hold for any [a,b] C ©, then Theorem 43
applies, i.e., the wave operators QE(H, A) ezist and are complete on © almost surely.
Assumpti.ons I and J with the estimate derived in Chapter 2 then yield our
sparseness assufnption. On specific examples,
Theorem 45 Consider H as above, where A is the standard Laplacian and V is
bounded almost surely. Suppose T' is sparse in the following sense: there exists an

€ > 0 such that

Z In—m|"2% < oo forallneTl and (3.7)
msn
lim n—m|71t = 0, | 3.8
MHOOT%;H\ | (3.8)

where m and n vary in T'. Then, the wave operators Q*(H, A) exist and are complete

on spec(A) = [—2d, 2d] almost surely.
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Remark [t is perhaps possible to remove the condition (3.7) using (3.8) and the
finiteness of d, but from our point of view le jeu n’en vaut pas la chandelle, i.e., to
verify (8.7) on concrete examples is so easy that seeking for a general argument does

not seem appropriate.

Proof: Let © = [—2d,2d] \ FE, where E = {—2d,-2d+4,...,2d —4,2d} U {0}.

Since the spectrum of A is purely absolutely continuous,
QE(H,A) = Q[i_ 2a2a (1, )

if these wave operators exist. Moreover, by a theorem of Jaksi¢ and Last [16] based on
spectral averaging, the deterministic and finite set E' does not contain any eigenvalue

of H | almost surely. Therefore,
Qg(A’ H) = Q[i-zd,zd](Aa H)

almost surely if these last operators exist. Hence, it suffices to prove existence and
completeness (a.s.) of the wave operators on ©.
Equation (3.8) implies |n — m| — oo when m and n are distinct and go to

infinity. For this reason, in order to verify I and J it suffices to show that
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is finite for every N € I'; and tends to 0 when |N| — 00. Indeed, for M, N € I'y,

since

#{N eZ: d(N,0) <1} =2d+1 < o0,

the second corollary of Theorem 25 gives for any fixed N € 'y

Z T(M,N) < Z N — M3

d(M,N)>2 d(M,N)>2

< (2d+1) Y (In—m| —2)73F
m#n
< Const Zln—m\‘%*’e,

ms#n
where n € T is adjacent or equal to the given N € I';. Notice that n is unique
eventually and |n| — oo when |N| — oco. Hence, Assumptions I and J are satisfied.

The result follows. : O

By exactly the same argument and with the same remark, which we will not re-
peat, a weaker sparscness assumption is obtained when A is the Molchanov-Vainberg
Laplacian: |
Theorem 46 Consider H as above, where A is the Molchanov-Vainberg Laplacian
and V is bounded almost surely. Suppose T' is sparse in the following sense: there

exists an € > 0 such that

Z In—m|" T+ < oo forallnel and (3.9)
m#n
d—1
lim n—m|~z ¢ = 0, 3.10
Jm 3 (510

124



where m and n vary in T. Then, the wave operators Q*(H, A) exist and are complete
on spec(A) = [—2%,29] almost surely.
More generally,

Theorem 47 Consider H as above, where A is a generalized Laplacian and V is
bounded almost surely. Let © be an open region of validity of Theorems 20 and 21;
in particular, we assume that the constant energy surfaces of the Green’s function
associated with A have at least & > 0 non vanishing principal curvatures at any point
when the energy lies in ©. Suppose T' is sparse in the following sense: there exists

an € > 0 such that

Z In—m| 2 < oo foralln €T and (3.11)
m#n
; ~E4e  _
1n1|£nm Z |n—m|72% = 0, (3.12)
m#En

where m and n vary in T'. Then, the wave operators Q= (H, A) exist and are complete
on © almost surely.
To provide numerical, explicit examples is easy. For instance, if A is the standard

or the Molchanov—-Vainberg Laplacian, one may consider the set of sites
I'={(j%0,...,0) € Z%; j € Z}.

Since there exists a constant such that |j*—k*| > Const |j|° for any distinct j, k € Z,

it follows that

S5t - K4 TET < Const Y |57 < oo
J#k J#0
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for any fixed £k € Z (by choosing ¢ < %) Then, not only our first sparseness

assumption is satisfied, but the dominated convergence theorem applies and yields

lim Z 7 — k4|"%+E = 0.
Ik

3.3.3 Remark About Clusters

It is possible to relax the geometric constraint imposed by our sparseness con-
dition by considering clusters. Let D € N* and C C T', C # 0. Let us denote the
elements of C by underlined small letters, e.g., n € C. Interpreting them as the

centers of the clusters, and D as the maximal radius of the clusters, we suppose
rc|J{vez!; d@ N) < D}
n

Then, the sparseness conditions found for n varying in I may be replaced with similar
conditions for n varying in C (without affecting the exponents).
This can bhe seen in the following way. Imitating the argument used in the

previous case, one partitions I'; into classes
B(p) C{Ne€T; dN,n) <D+1},

so for all N € I'; there exists one and only one n € C such that B(_]\_/'_) = B(n). Then,

one defines

LIN)= Y 7(M,N)

M¢B(N)
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and make the usual sparseness hypotheses: L(N) < oo and L(N) — 0 when |N| —
0o. The operator W;(z) then decomposes into D;(z) + K;(z), where
D) =" S (8| (Ho— =) 600} (6s | Yo
N MeB(N)

Let {C;}, be an indexation of all subsets of {N € Z%; d(N,0) < D + 1} containing

0. Hence, there exists a unique 7 = j(n) such that B(n) —n = C;, so

Di(2) = Z Z G(J - K, z) Z {Onts | )n+x-

j=1 JK€C; {n:i(m)=s}
The rest of the proof is identical. We thus have:

Theorem 48 Consider a random Schrédinger operator acting on 12(Z2),
H=A+YV,

where A is a ‘qenemlized, Laplacian and V is a random poteﬁtz’al almost surely bounded.
More precisely, assume {V(n)},cr are ii.d. random variables of law p, where p is
compactly supported. Let © C spec(Q) be an open region of validity of Theorem 20.
Let n € C be centers of clusters of radius (at most) D < oo inT'. If L(N) < oo and
L(N) — 0 when |[N| — oo (with respect to any [a,b] C ©), then the wave operators
QOF(H, A) exist and are complete on © almost surely.

The resulting conditions for the standard and the Molchanov—-Vainberg Lapla-
cians are respectively similar, replacing n € T' with n € C. However, when proving

this fact one shows that

> T(M,N)

d(M.N)>2D
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is finite and tends to 0 when |N| — o0, using a similar argument.
3.4 Second Criterion of Completeness of Wave Operators

This section is a continuation of Section 3.2. Using the same setting (and similar
notations), we present a sufficient criterion for Theorem 37 to apply. This provides
a second criterion of “completeness” for the usual wave operators, Q*(H, Hp), in the
sense that QF(Hy, H) exist, but without assuming that the formers do. The derived
criterion will be used in Section 3.5 for unbounded potentials.

Recall that K and K; are the Hilbert subspaces cyclically generated by {6, ; n € '}
and {0y ; N € I'1} respectively (with respect to Hy). Therefore, K, K1, and their
orthogonal complements are Hy- and H-invariant, so the restrictions to K, K1, K,
or Ky+ commute with the caleulus for Hy and for H.‘

Recall that U C R is a given, non empty, open set and
DAK = {pe Ly(HK: Z/ (6az | e~ P o) dt < o0).
M R :

In this section we establish a sufficient condition for D N K to be dense in 1y(H)K
(¢f. Scholium of Theorem 37). Explicitly,
Theorem 49 Suppose that the spectrum of H | 1y(H)K; is purely absolutely con-

tinuous. If for alln € T' and almost alle € U
> Im (S | (H — e —i0)76,)[* < oo, (3.13)
M

then DN K is dense in 1y (H)K.
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Proof: Let K, be the cyclic subspace generated by §, with respect to Hy and let
D, =DN1y(H)K,, where n € T isﬁrbitrarily fixed.® Since D is a vector space,‘
it suffices to prove that D, is dense in 1y(/1)K,, in which casc ), Dy is dense in
1y(H) Y, K, so D is dense in 1U(H)/C.vg

Let.

Ui={ecUn[-j4l; Y Mm{y|(H —e—i0)"'8,)? < j}.

M

By assumption, U differs from Uj U; by a sct of Lebesgue measure zero. Moreover,
vctco /YU
J

so 1y(z) = lim; 1y, () almost cverywhere. Since the spectrum of H [ K is purely
absolutely continuous on U, it follows that 1y (H [ K1) = lim; 1y, (H | K1) strongly.

Since K; and K+ are H-invariant, this last equation is equivalent to
1y(H) Ky = lim 1y, (H) [ K, strongly.
J
Consequently, {1y, (H)K, ; j 2 1} is dense in 1y (H)Ky, so in particular

D, = {f(H)1y,(H)0n ; f € L*(R),j = 1}

8 We declare w.l.o.g. 1 ¢ X in order to avoid a conflictual notation with KC;.

% Here, >, D,, denotes the lincar, not necessarily closed space generated by U, Dn,
and similarly for 3 K.
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is dense in 1y (H)K,. It thus suffices to show

> [ Houle )P di < o0
M

- for any ¢ € Dy, say, for ¢ = f(H)1y,(H)é,, where f € L*R),j=>1,andn €T
arc arbitrarily fixed.
By assumption the spectral measure of oy and 4, with respect to H | K; is

purely absolutely continuous on Uj. In particular,
(6p | e ™) = / e f(e ) —Im {6y | (H — € —i0)7'5,,) de
U]

_ \/g;vuyj(e)f(enm (Gac | (H — ¢ = 10)16,)](¢),

where F denotes the Fourier transform. By Plancherel’s theorem,

/ {6 ¢ tH }2 dt = —72;/ |f(e)|2|1m (Op | (H—e— i())_1(5n>|2 de.
Uj
It follows that
Z/ l —1tH |2 dt =

= 2 [ 1P (e | (B - e = 0) ) e

2 .
< CFIE 1T
4 .
< =lIfI% 52

™
< 00,
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which completes the proof. O

The scholium of Theorem 37 and the above immediately give another criterion

of “completeness” in the sense that:

Corollary (Jaksié—Last) Under the hypotheses of the previous theorem, if in ad-

dition 1, is Hy-smooth on U, then the wave operators Q*(Ho, H) ezist on U.

3.5 Random Result Inside spec(Hy)

We now turn to the study of the Anderson type Hamiltonian H = Hy+V, where
{V(n)},er is a family of independent, identically distributed random variables of law
w19 This time, we do not assume that g is compactly supported, i.e., that V is
bounded almost surcly; some cases where p has full support are in fact of special
interest (¢f. Scholium of Theorem 61).

In this section we establish a sufficient condition for the following, stronger

version of (3.13) to hold:

Ynel :||1,(H —e—i0)714,| < oo. (3.14)

10 Explicitly, i;he probability space = RF is endowed with its Borel o-algebra and
the probability measure dP = ], du, where du is a given probability measure on
R. The n* random variable in our family is then the projection @ — R, V = V(n).
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Our computations are based on the Aizenman—Molchanov theory and apply under
these conditions on u:
1. u is absolutely continuous,

2. For a given 0 < s < 1 the decoupling constant‘s
b = g dalz el = 07 dute)
apec  [o |z = 0] Sdu( )
K. — oy dalelle = B duta)
see Julz — Bl dula)

satisfy k; > 0 and K, < o0.

and

Given a non empty, open interval |a, b, let us define 7(M, N) as in Section 3.3
and let
3 = inf (8, | (Ho — 2) 78,

where following our cohvention nelandze{et+iy;a<e<band 0<y<1}.1

We now state our assumptions on Hg, which involve these last quantities and

l(s) ZTnm

n#m

Assumption K [©)(m) — 0 when m — oo, i.e., for all € > 0 there exists a finite

set F C T such that 1¥)(m) < & for allm ¢ F.

11 This replacement of I with J becomes essential in Section 3.6 only.
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Assumption L supZT(n,_M_)s < 00,
oM

Assumption M 7 > 0.

On concrete examples Assumptions K and L come from sparseness of I and
an a priori estimate on the Green’s function associated with Hy. At the level of
random operators theory Assumption K permits to control the {* and [* norms of
the operator whose matrix elements are 7(m, n)?; this is essential for the Aizenman-
Molchanov method to apply. Explicitly, there exists a finite set, F C I' (which we
now fix until the end of this section), such that

19 (m) < oK

for all m ¢ F. Mak:z'ngj the convention that n, m, ... € I' \ F, the previous relation

is equivalent to
Tk,
2K,

sup Z 7(n,m)® < (3.15)

= on¥m

The Aizenman-Molchanov method will then apply and provide an estimate on the
resolvents when restricting the potential to [2(T"\ F). Then, Assumption L will

permit to recover from this last estimate the full strength of the equation (3.14).

Remark Let 0 < R < o0 be a fized integer. Remarkably, all computations derived

in the present section still work when replacing T'y with T'r. Hence, for later reference
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the conscientious reader will adopt the convention

for an arbitrarily fixed R € NU {co}. The interesting case in the present section is

still R =1, but results are used in Section 3.6 with R = oo.

Let us define

ﬁ = Hy + ZV(EN%I '>5ﬂ

and use the abbreviations

Ro(N,M,z) = (Sn|(Ho— 2)""0um),
R(IN,M,z) = {6n|(H—2)"um),

o~

RN, M,2) = (0n|(H —2)7"0u).

The following lemma implies that R(N, M, z) is ”symmetric in the real sense”
for any fixed z € S, i.e.,
R(N,M,z) = R(M, N, z),

which is repeatedly used in the sequel without explicit mention. Of course similar

conclusions hold for Ry and R.

Lemma The spectral measure of 6y and dn with respect to H is real valued.
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Proof: Since the characteristic function of any Borel set is approachable in the L2

sense by bounded, continuous, real valued functions, it suffices to show

(Om | f(H)oN) ER

for any such f. Since {8y | (Ho + V)7éy) € R for any j > 0,
(Om | p(H)dn) €R

for any real valued polynomial, p. Assuming first that V" is bounded, the Weierstrass

Theorem (applied to real valued functions on the interval [—||H||, || H]||]) implies

(Om | f(H)on) €R

for any bounded, continuous, real valued f.

Suppose now that V' is not bounded. Let

Vin) if|V(n)| <L,
Vi(n) =
0 otherwise

and HL = HQ + VL.
We claim that lim; o Hr = H in the strong resolvent sense. Indeed, by the

resolvent identity
(H — Z)_l - (HL - Z)—l = —(HL - z)‘l(V - VL)(H — Z)—l.
Notice that (H — z)"'¢ € domV for any ¢ € H. Hence, it suffices to show

lim (V = Vo) =0

L—oo
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for any ¥ € dom V. In fact, by the dominated convergence theorem (with dominator

V(n)e(n)[?)
IV = Ve)ul? = 3 LgvasnlV)Pwm)? = o,

which proves our claim.

Consequently (see [40]), for any bounded Borel f

Llim f(Ho+ V) = f(H) strongly,

a fortiori
(O | f(H)On) = Jim (Oar | f(Ho + Vi )on),

which is real (for f as stipulated) by the first part of the proof. O

In the scquel we use repeatedly the Aizenman—Molchanov decoupling lemma in

conjunction with the resolvent identity; this latter implies

o~

R(N, M, 2) = Ro(N, M, 2) —'Z Ro(N,p,2)V (p)R(p, M, 2) (3.16)

for any M, N € X. As a first instance,
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Proof: By the cquation (3.16)

R(n.m.2)(1+ Ro(n.n, 2)V(n)) = Ro(n,m, ) = Y _ Ro(n, p, 2)V(p)R(p,

p#ER

m,z).

Using the triangle inequality for |- |* and then taking the expectation,

E |1+ Ro(n,n,2)V(n)]*| R(n, m, 2)|* <

< | Ro(n,m, 2)P + Y | Ro(n, p, 2) "BV (p)*| R(p, m, 2) "
p#n

The decoupling lemmas then give
ko{Ro(n, 2, 2)"E | R(n, m, 2)[* <

< |Ro(n.m, 2) + K, Y |Ro(. p, 2)'E |R(p, m, 2)|°
pFn

12 Our convention consists of using parentheses with E in analogy to ¥. For in-
stance, we write E X?* for E (X*) as opposed to (E X)?, and EXY for E(XY) as
opposed to (EX)Y. :
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and the result follows from the definitions of J and . O

Let us fix m and z, n € T'\ F being thought as the only variable. We define the

following vectors on [*°(I'\ F):

They are well defined, since

1 X loo < [Tm 2|7

and || B < 0o, the latter by Assumption L . Indeed, this last assumption also

ensures that ||B|; < co. Let us define the operator

(A () = 5 3 Tl p) V),

pFR

which acts on both [%°(TI'\ F) and [}(I"\ F), where it is bounded. Indeed, by the

equation (3.15)
> sup E 7(n,p)° <
ksJ5 " e

n
= p#n

[Alloe = 1Al =

Y

N —

where we have used 7(n, p)* = 7(p,n)*; see also Appendix 4.3. Hence, the previous

lemma may be restated as
X < AX + B (pointwise).

From this fact and since we have controlled the ! and [* norms of the operator

A, we obtain:
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Theorem 50 sup supZ]E \ﬁ (n,m, 2)|° < o0.

Proof: By the lemma, (1 — A)X < B (pointwise). Furthermore, by our choice of

F, |AllL = || 4]l < 3, so the geometric series gives
o0
-l = ZA-’ and |(1—A)7' <2
j=0

Since all matrix elements of A are positive, the matrix elements of (1 — A)~! are

also positive. Thus, this last opcrator preserves pointwise positivity of vectors. In

particular,
X < (1 = A)"'B (pointwise), (3.17)
SO
X0 < (1= A7 Bllx < 20 Bl
Explicitly,

ZE|R___,I kszZT(n,m)s-

Since m and 2 are arbltrary, Assumption L finally yields

supsupZ]ElR n,m,z)|°

We now use the full strength of Assumption L in order to improve the last

theorem. Before stating the resulting theorem, we need:
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Lemma

E|R(N,M,2)]" < T(N,M)*+ K, >_7(N,p)E|R(p, M, 2)|". (3.18)

p

Proof: The triangle inequality for | - |* applied to (3.16) gives

RN, M, 2)|* < |Ro(N, M. 2)[* + 3 1Ro(N, p, 2) [V (0) | B(p, M, 2)I".

P

Taking the expcectation,
E|R(N,M,2)I < |Ro(N,M,2)] + > |Ro(N,p, 2)'E|V (p)| R(p, M, 2)|°
¥4

< TN, M)+ 3T (Np)E[V(p)I|R(p, M, 2)P°,

p

so the decoupling lemma yiclds the result. ‘ O

Theorem 51 sup supZE }ﬁ(n,M_, 2)]° < o0.
z n M

Proof: Let

C = sup z T(n, M)*,
n M_

D = supsu ]Eﬁn,m,z s
ip mpzﬂ: |R(z, m, 2)]

140



which are finite by Assumption L and the previous theorem respectively. By the

lemma,
E|R(N,m,2)" < T(N,m)* + K, 3 7(N,p)°E | R(p,m, 2",
SO ¥
> EIR(N,m 2 < O+ K.C ) _E|R(pm,2)P
N P
and hence

sup supZIE \(ﬁ(_,m_, 2} < C+ K,CD.
z m N

By the lemma,

E|R(n, M, 2)]°* < r(n, M)* + KSZT(TL,}_))SE Iﬁ(p_, M, 2))%,

P

so by the above

S E|R(n.M, 2" < C+K,Csuwpy E|R(gM,2)°
M 1 M

< C+K,C(C+K,CD) < o

uniformly in n and 2z, as desired. O

The previous theorem is used in the following weaker form only:

Vn supZElﬁ(n,M, 2)|* < oo0.
M

We want to abstract from this last relation information about ﬁ(n, M, e +1i0). By

classical Harmonic Analysis, for a given potential V' the previous limit exists almost
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everywhere (a.e.) on ]a, b[. In the case where V' is random the limit in question exists
almost everywhere and almost surely (a.e. & a.s.) on |a, b[x Q (by Fubini’s theorem).

We obtain:

Lemma forallnel

Z \R(n, M, e+i0)]* < 00 a.e. & a.s. on ]a,b] x Q.
M

Proof: Let n be fixed. Since E(n,_]\i, e +10) exists a.e. & a.s. on ]a, b x Q,

a<e<b

b , ~
/ EZIR(n,M_,e%—iO)Pde < (b—a)esssup ]EZIR(n,_M_,e—i—iO)Is
a M JY;

= (b— a)esssup Z]E|§(n,_]\_/£,e+10)|s,

a<e<b M

where ess sup denotes the essential supremum with respect to the Lebesgue measure.

By Fatou’s lemma, it follows that

b
/ E |R(n,M,e+i0)]° de <
@ M

a<e<b ¢

< (b—a)esssup liminf > E|R(n, M, e+ ie)|*
(b — a) esssup m in ; |R(n, M, e + ie)|
< (b—a)sup Y E[R(n, M, 2)[",

M

which is finite by‘ the previous theorem. The result follows. O
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The triangle inequality for |- |2 immediately yields:

Corollary Foralln el

2:|1§(n,M,e+iO)l2 < oo ae & as onla, bl x Q.

It remains to go from R to R to conclude the argument;
Theorem 52 Under the assumptions of the present section (with respect to a given

0SR<L ), forallnel
|1p(H —e— iO)_15nH < oo a.e. & a.s onlab]x Q.
Proof: Let n € T be fixed. By the resolvent identity

R(n, M, 2) = R(n, M, z) = 3" V(n)R(p, M, 2)R(n,p, 2)

pEF

for any V € Q and z € 8. Hence, by classical Harmonic Analysis

R('n,_M,e+iO)=§(n,_M_,e+10 ZV p,M e +i0)R(n, p, e + i0)

pEF

a.e. & a.s. on Ja, b[ x Q. Consequently, by Schwarz’ inequality

|R(n, M, e +i0)]* <

A(IR(n, M, e +i0)* + 3 |V(p)*| R(p, M, e+10)> |R(n,p, e +i0)[?)

peF
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a.e. & a.s., where A is the number of elements of F plus one. Consequently,

> |R(n, M, e +i0)|*

Z|Rn M,e+i0)* + M(e Z|V (p)|*|R(n, p, e +10)|?)

pEF

a.e. & a.s., where M(e) = maxper )y, ]ﬁ(p,M, e +10)|%. Notice that the finiteness
of F and the previous corollary give M(e) < oo a.e. & a.s.; the latter also gives
Y |R(n, M,e+i0)[? < 0o a.e. & a.s. for our fixed n, while the former and classical

Harmonic Analysis yield

Z V(»)|*|R(n, p,e +i0)|* < 00 a.e. & aus.

peEF
Hence, ZM |R(n, M, e +i0)|* < oo almost everywhére and almost surely on |a, b x 2.
In other words,

I1r(H — e —i0)7"6,|°> < oo a.e. & as.,

which concludes the proof. ]

3.5.1 Conclusion

As already noticed, the previous theorem is a technical requirement for the
second criterion of completeness to apply. We are especially interested in the follow-
ing context, which may be realized inside the spectrum of Hy only (see the remark

below):
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Lemma Suppose

> Im {6y | (Ho — e —i0)"on) > 0

for almost all e € la,b|, and that the wave operator Q¥ (H, Hy) exists almost surely
on |a,b]. Then, on |a,b|, the spectrum of H [ Ky is purely absolutely continuous and

its essential support is full, almost surely.

Proof: Let uy be the spectral measure of oy with respect to Hg. Then, for an
arbitrary choice of ay > 0 such that Y _yan =1,
HHy = Z aNpN
N
is a spectral measure for Hy | K;, whose Radon-Nicodym derivative with respect to

the Lebesgue measure is equal to
1 ‘-1
‘7; Z aﬂlm <6_1\l| (HO — € — 10) 5LV_.>
N

Thus, our first assumption asserts that the absolutely continuous spectrum of Hy [ Ky
on Ja, b has full esscntial support.

By assumption, Q]*(; »((H, Hy), equivalently Q]t of(H 1 K1, Ho I K1), exists almost
surely. Let V be a potential for which this last property holds. Then, the restric-
tions Ho | 1jo(Ho)Ky and H | QF(H, Ho)K: are unitarily equivélent (see Section
3.1). In particular, their spectral measures, which we denote by wmgn,, ,(Ho)c, and
K+ (H,H )k, Tespectively, are equivalent. It follows that the Radon—Nicodym deriva-

tive of ppn+ (1, o), With respect to the Lebesgue measure is strictly positive on ]a, b[.
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Moreover, Q% (H, Ho)K1 C 1)p((H{)K1 by Proposition 31 in Section 3.1. Denoting
by O the orthogonal complement of QT (H, Hy)K; in 1),4(H)K;y,

KH, y(H)C1 = BHQ(H,Ho)K1 T KHO

is a spectral measure for H | 1j,4(H)Ky, since Q% (H, Hy)K, is H-invariant. Thus,
the Radon-Nicodym derivative of pmp,, . (m)x, with respect to the Lebesgue measure
is also strictly positive. In particular, the essential support of spec,.(H [ K1) on la, b]
is full for any such V, i.e., almost surely. The Jaksié-Last theorem finally yields that

spec(H [ Ky) is purely absolutely continuous on ]a, b[, almost surely. O

Remark The beginning of the previous argument shows that under the circumstances
of the lemma, spec(Hy) is purely absolutely continuous on ]a, b and has full support

on this last interval, which justifies the title of the present section.
Assumption L may be strengthened for the following lemma to apply:

Lemma Assume supz:T(ﬂ,_M)S < oo with respect to a given R € N U {oo}.
N
M

Then, 1p is Hy-smooth on la, b
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Proof: By assumption

00 > supd sup (o | (Ho =)™ o)l
M z

> supsup > _ (o | (Ho — 2) " 6u) "
z N
= M
By the triangle inequality for || it follows that
sup sg{pz |(0n | (Ho — 2) " )| < oo
S M

Interpreting 1(Hy — z) "' 1 as an operator on [?(I'g), its {* and {*® norms are then
given by the above quantity. The Riesz—Thorin Theorem then implies (see Appendix
4.3)

sup |[1g(Ho — z)_11R|| < 00.

Thus, 1y is Hg-smooth on |a, b[, as desired. O

Finally, this general, abstract conclusion may be drawn:
Theorem 53 Suppose
1. The wave operators QE(H, Hy) exist on ]a, b almost surely,
2. 1¥(m) -0 wheh m — 00,
3. J>0,
4. For R=1, supy >3, 7(N, M)* < o0.
Then, spec(H) is purely absolutely continuous on |a, b| and the wave operators O*(H, Hy)

are complete on |a, bl, almost surely.
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Proof: DBy the above lemmas, the theorem 52, and the second criterion of com- -

pleteness (corollary of Theorem 49). _ O

3.5.2 Application to Generalized Laplacians

We now consider the case where Hg = A is a generalized Laplacian. In the
sequel © denotes an open region of validity of Theorems 20 and 21; in particular, we
assume that the constant energy surfaces of the Green’s function associated with Hy
at any level of energy inside © have at least x > 0 non vanishing principal curvatures.

For instance, if A is the standard or the Molchanov—Vainberg Laplacian, we let
© =spec(A)\ E,

where F = {—2d,—2d + 4,...,2d —4,2d} U {0} when A is the standard Laplacian
and E = {—2%,0,29} when it is the Molchanov—Vainberg one.*?

In Section 3.3.2 we established that for any [a,b] C ©
infIm (6, | (A — 2)718,) > 0.

A fortiori, the condition 3 of the previous theorem holds. By the a priori estimates
calculated in the first part of the present thesis, the conditions 2 and 4 reduce to a

sparseness assumption on the sites of the potential:

13 Recall that k = 1 for the standard Laplacian in any dimension (without pretend-
ing that this result is optimal) and k = d — 1 for the Molchanov—Vainberg Laplacian
in dimension d.
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Theorem 54 In the present circumstances suppose the sites of the potential are

sparse in the following sense: there exists an € > 0 such that

Z In—ml™2™ < oo foranymeT and (3.19)

n#EM
lim n—m|~ Tt = 0, 3.20
Jm 3 (3:20)

where m and n vary in I'. If the wave operators Qg(H, Hy) exist a.e., then they are
complete on © and the spectrum of H is purely absolutely continuous on ©, almost
surely.

Proof: It suffices to show that the conditions 2 and 4 of the previous theorem apply
for any [a,b] C ©. The former is an immediate consequence of the equation (3.20)
and the estimate

7(n,m) = O(ln —m|™%")

given by Theorem 22. We now prove the latter.
In many details, let (Z¢, d) be the graph from which the considered generalized
Laplacian is defined. Since this graph is translational invariant and since the degrees

of its vertices are bounded, there exists a constant, o, such that
|N — M| <o when d(N,M) <1
The condition 4 is weaker than the following,

%up Z 7(N, M)* + sup Z (N, N+ K) < (3.21)

N |M—-N|>4o X |K|<4a
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which we now verify. Indeed, translational invariance and the first part of the thesis

yield that for any fixed K
T(N,N + K) =sup|G(K, z)| < oo.

In particular, the second sum in the equation (3.21) is finite and independent of NV.
Hence, the problem reduces to show supy ZlM_M>4aT(ﬂ,_M_)S < oo. Indeed, by
Theorem 22, 7(N, M) = O(|N — M_|‘%+), so it suffices to show

sup Z N~ M|~%% < .

N | M-Nl>4a

By the definition of Ty, cach M € I'; is adjacent to or equal with an m € T'. Since
M — m| < « and since the degrees of the m’s are bounded, it suffices to show
SUPN D N> 3l — m| — a)” %+ < oo. For the same reasdns, but regarding N
instead of M, it suffices to show sup, 3, _uis2a(l? — m| — 2a) "% ¢ < oo, which is

clearly equivalent to

sup Z In—m|~ T < oo,

" im-n|>20

Finally, this last relation is implied by (3.19), provided that (3.20) holds. The proof

is now complete. O

Remark As ezplained in the proof of Theorem 45, if A is the standard Laplacian
or the Molchanov-Vainberg one, existence and completeness of the wave operators
on © = spec(A)\ E are equivalent to their ezistence and completeness on spec(A)

(with the suggested definition of E). This last equivalence holds for the two following
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reasons: spec(A) is absolutely continuous and E does almost surely not contain any

eigenvalie of H [ K—by a theorem of Jaksi¢ and Last.

Supplemeﬁtal conditions may be imposed to the geometry of I' in order to as-
sure the existence of the wave operators. These include other sparseness conditions
discussed in the literature—for instance, see [32]. It is thus natural to wonder if
the conditions (3.20) and (3.19) indeed suffice. However, the present thesis does not

answer this legitimate question.

Example Consider the Anderson type Hamiltonian H = A + V, where A is the
standard (or the Molchanov- Vainberg) Laplacian. Suppose the potential, V', consists

of independent random variables, lying on
I'={(%0,...,0)€Z*; j€Z}

and whose common distribution is Cauchy (alternatively, normal).’* Observe that
I is sparse in the sense of the previous theorem (with s sufficiently close to 1).
Moreover, the wave operators QF(H, A) exist on spec(A): since I' is included in the

hyperplane Z4~! C Z¢%, their existence follows from a deterministic result of Jaksi¢

14 Notice that V is not bounded a.s., so the deterministic approach presented in
Section 3.3 does not apply.
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and Last [15].1® Hence, by the previous theorem not only spec(H) is purely ab-
solutely continuous on spec(A), but the wave operators are also complete on this

last region (almost surely).

3.6 Random Result Outside spec(Hy)

In this section we apply techniques and results of the previous one for values of
energy outside spec(Hy). We show that eigenfunctions associated with these values
of energy decay exponentially. The sctting and notations of the previous section (es-
pecially our convention regarding indices) are maintained in the sequel. In particular
(without restating our hypotheses exhaustively) H = Hy + V', where Hy is the adja-
cency operator of a graph, (X,d), and V is random. Also, m, n vary in I, z varies

in aset {r+iy; = €ja,b[ and 0 <y < 1}, where this time [a,b] C R\ spec(Ho),
I =inf |(0, | (Ho — 2)7'8,)],

ete.
At the highest level of generality the desired decay of eigenfunctions will be

expressed in terms of a given weight, v, on X, that is, a function

v: X x X — [0, 0]

15 The model considered in this last work is the half-space model (for which the
Laplacian is not translational invariant) with a random potential at the boundary;
however, according to V. Jaksié¢ the argument in the mentioned work may be slightly
modified in order to include the above situation.
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6

satisfying all axioms of metric distances except positive definiteness.’® Hence, in

the sequel (X,7) is a given weighted graph sharing its vertices, but not necessarily
its edges with (X,d).}7

Our results hold under the following hypotheses:

k’Y(N>M) <

Assumption N For any k > 0, supZe“ 0.
N m

Assumptiori O There exist constants D and B such that
r(n, M)* < De—Br(mM)
forallneTl and M € T'pg.
Assumption P inf,zm y(n,m) — oo when m — oo, i.e., for all L > 0 there exists
a finite set, £ C T, such that for everym ¢ &

inf v(n,m) = L.

n#m

16 More precisely, v(M, N) = 0 is allowed when M # N; however, v(N, N) = 0 for
all NeX.

17 On concrete examples, X = Z% d is translational invariant, and « is the
Pythagorean distance: v(M, N) = |M — N|. Then, (X, d) is a translational invariant
simple graph, while (X,7) is a complete graph on Z¢ whose vertices, {M, N}, are
weighted by |[M — N| for any distinct M, N € Z-.
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Assumption Q T > 0.

Notice that Assumption O is realistic outside spec(Hy)—which justifies the title
of the present section. Moreover, Assumption Q is trivially verified in our applica-
tions (where Hy = A comes from a translational invariant graﬁh——see Section 2.5).
Finally, Assumption N extends by induction:

Theorem 55 For any k and o such that 0 < a < k there exists a Cro > 0 satisfying
Z o BO (N P)+y(PrPo) o4y (BLM) Cllé,ae—a‘Y(N’M) (3.22)
Py, By '
for every N,M € X and [ € N.
Proof: Since 0 < « < k, therc exists an s € )0, 1[ such that a = sk. By Assump-
tion N,

B = supZe"k”’(N’M) < 00
N Tm

for any k > 0. Let us show that Cy, = By satisfies the desired property, where
t=1-—s.
The triangle inequality for v implies that the left-hand side in (3.22) is bounded

above by
Z e~ tR(Y(M,PL )+ +y(PLN)) g=ay(M.N)
Plv-'aPl

for any fixed [ > 0. It thus suffices to show

Z o~ th(Y(M,Pr)+-+7(P,N)) < le&k
P,....P
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for any [ > 0, which we do by induction on [.

The result is trivial for | = 0, so suppose it holds for { — 1. Then,

Z o th(Y(M,PO)++v(PL,N)) -

Pla--'s}:)l
= YR Y AR A
Py P,... P
-1 !
< Bthtk = Btka
as desired. O

As a final preliminary remark,
Theorem 56 All assumptions of Section 3.5 are satisfied.
Proof: Assumption L follows from Assumptions N and O. More interestingly, As-

sumption K is satisfied, since

(n) = Y 7(n,m)’

m#n
< D Z e“B'Y(nvm)
m#n
< Dsup o= g(nm) Z o= 5(na)
mEn g#n
< | Dsup) e~ 5100 | gup o= F70m),
Pog#p m#n

which goes to zero when n — co by Assumptions N and P. Finally, Assumption M

is satisfied by fiat. (]
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We are thus free to use results and computations of the previous section in order
to establish our main theorem: there exists a universal constant k > 0 such that the
following assertion holds for almost all e € |a,b[ and almost all V € Q:

For alln € T there exists a K > 0 such that
(8, | (H — e —i0)"10y)| < Ke k(D

for all M € Tp.
The main part of the present section is devoted to proving the above, from which
the exponential decay of the eigenfunctions will be deduced using Simon-Wolft’s
theorem.

Recall that F C T is a finite set, chosen in such a way that (3.15) holds (where

m,n € '\ F). From now, by enlarging F if necessary, we also require'®

_gc'f J°ks

e e
K,Cg 3D’
23

(3.23)

where d = inf,, inf, 4, v(n, m), which is possible by Assumption P.

Let m and z be fixed, n being thought as the only variable. Then, with the
notation explained immediately before Theorem 50 the inequation (3.17) applies,
namely

X <(1-A)"'B (pointwise).

Consequently,

18 In the following expression, 8, D, and C%, 8 refer to Assumption O and Theorem
55.
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Lemma X < Const (1 — A)~'6,, (pointwise), where the constant is universal.

Proof: Since

K, g
(A6p)n) = 1201 = 6)(m)r(n,m)
K;B(n) — ksjsT(m, m)*om(n),
it follows that B = }—%Aé_m_ + ksljsT(_m_, m)*6y,. The inequation (3.17) thus becomes
X < h(1— A s, ¢ T gyt
S K, S "
1 1 r(mm)’ . 1
= KS(SL”—'JF (Ks + T ) (1—-A)" 0
1, r(mm)* -1 N
< —_ — .
< (Ks + T )(1 A)7'6, (pointwise)

The result follows, where Const is explicitly equal to 7<1—S + Elﬁ’* sup, 7(p,p)*, which

is finite by Assumption L. O

Theorem 57 There exist universal constants Const and k such that
E|R(n,m,2)|* < Const e~ *r(m)

foralln,m e '\ F and z € {z +1iy; z € |a,b[,0 <y < 1}.

Proof: The lemma and the geometric series give

E|R(n,m,2)* < Const Y (6, | Alp). (3.24)

Jj=0
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Moreover,

] KS ’ s s
A(n,m) = <k js) . Z Lnsp T(0,p,) "'12j,1#mT(Qj—1’m) ,
s Py

where 1,., abbreviates 1 — d,(g). Since by Assumption O

1ysm(p,@)° < Dlyye @9

_8d _p
< De Te 7729

Theorem 55 yields

AN
j K., De 7 s s )
Alln,m) < s 7 o) om2E, m
( ) ~ < k.sjs ) Z

Dy ’P.j—i

1 K,Cs gDe_%E
33

Cs g ksJs

2°3

J

<

By choice of F the equation (3.23) holds, so there exist constants Const and k such

that
[o.0)
Z Al(n,m) < Const e~ Fr(mm)
j=0
The equation (3.24) then completes the proof. -

We now use the full strength of Assumption O in order to improve the previous

result:
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Corollary There exist universal constants Const and k such that

E |§(n,M, 2)|? < Const ¢~ Frimd),

Proof: The equation (3.18), Assumption O, and the previous theorem yield
E|R(N,m,2)]* < (N, m)° +KZ p)°E|R(p, m, 2)|’

< Const e P Em 4 K, Z Const ¢~ F/(Xp)g=Fm)

P

for some constants generically denoted by Const and k. It follows from Theorem 55
that E|R(N,m, z)|* < Conste #&m)  Using this last relation and the equation
(3.18) again, a similar computation gives

E|B(n,M,2)" < 7(n,M)°+K,> 7(n,p)E|R(p, M, )|’

p

< Const ¢ kM)

as desired. O

We now obtain the announced result for R instead of R:
Theorem 58 For alln € T and almost all (e,V) € |a,b] x Q there exist constants,

Const and k, the latter universal, 43atvl3fy7lng
lﬁ(n7_M7 & + IO)I § C’O?’],St e—kV(nvM_)
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for all M € I'g.
" Proof: By classical Harmonic Analysis I/%(n, M, e+i0) exists for almost all (e, V) \‘G

la,b] x Q. Thus, the previous corollary and Fatou’s lemma give

b
E / |R(n,M,e+i0)*de < (b— a)Constc™F/ D

= Const k(M)
For a fixed n € T let us define
Ay = {(e,V) €]a,b[x Q; [R(n, M, e +10)| > ¢~z (MM}

where k is determined by the previous ineQuality. Then, denoting the Lebesgue
measurc by d,
b, R
S(dx dB)(Ay) < B [ FIR(n, Me - i0)f de
M, a

M

< Const Ze‘g“/("vl‘ﬁf.)’
M

which is finite by Assumption N. The Cantelli lemma then implies

(dx dP)( (] | Aw) =0.

ECTR MEE
£ finite

In other words, for an arbitrarily fixed n € T there exists a finite set £ C I'g such

that for all M ¢ &

]ﬁ(n,_]\l,e +10)| < o2 M) 56 & as.
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Since & is finite, one concludes the existence a.e. & a.s. of a constant, Const, de-

pending on e, V, and n, but not on M, satisfying

|[R(n, M, e +10)| < Const =572,

which completes the proof. ‘ O

The above theorem will be used in the following special form:

Corollary Let £ C T be a finite set. For alln € T' and almost all (e, V') € |a,b[ x

there exist constants, K and k, the latter universal, satisfying
|B(q, M, e +10)| < Ke 2D
for every M € T'g and g€ €.
Proof: Since £ is finite, the theorem ensures for almost all (e, V') the existence of

constants satisfying

lﬁ(q’ M.v € -+ 10)| g Congt e—k'Y(QvM_)

for all M € 'g and g € £. Since

(g, M) < 7v(n,q) — v(n, M),

one obtains

—k ,M k: 1 —k 1M
Const o ¥1@d) < Const k1@ gkr(nd)
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The result follows, letting K = Const e¥s!Paee 7(0), OJ

We now prove the announced, main result:
Theorem 59 There exists a universal constant k > 0 such that the following propo-
sition holds for almost all e € |a,b[ and almost all V € Q.

For alln € T there exists a K > 0 such that
(8, | (H — e —i0)"0ar)| < Ke™/(md)

for all M € T'y.
Proof: By the resolvent identity

R(n, M, z) = R(n, M, z) ZR n,p, 2)V(p)R(p, M, 2).

peEF

Moreover, for any M, N € X both R(N, M, e +10) and E(N, M, e + i0) exist almost

everywhere and almost surely. Thus,

R(n,M,e+i0) = ﬁ(m_M_, e+10) — Z R(n,p,e+ iO)V(p)E(p,M_, e+1i0) a.e. & a.s.
pEF

In particular, for almost all (e, V) and for all n € T' there exists a constant, L =

sup,cx |R(n,p,e +i0)V(p)|, which depends on n, e, and V, but not on M, and

satisfies
|R(n, M, e +10)| < |R(n, M, e+i0)| + LY |R(p, M, e +i0)]. (3.25)
peEF
The result follows from the previous corollary applied to & = F U {n}. O
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3.6.1 Conclusion

We now draw a general conclusion under the following hypothesis,

su T(N,M)® < 0,
Np%: (N, M)

which is a reinforcement of Assumption L with the supremum taken over I and with
R = 00.19 For this choice of R and under the previous assumptions, the last lemma

of Theorem 53 and the definition of relative smoothness then give
sup || (Ho — 2) 7| < o0,

where z varies in {x+1iy ; z €]a,b[,y >0}. Then, Hy, — z is invertible for all
z € Ja, b[, which justifies the title of the present section.?

Moreover, under the conditions of Section 3.5 with R = oo the first part of
Simon-Wolff’s theorem and Theorem 52 yield that the spectrum of H|[ K is almost
surely pure point on ]a, b[. Since H = Hy on K+ and }a, b[ is in the resolvent of Ho,
and since X and K1 are H-invariant, it follows that the spectrum of H is almost
surely pure point on ]a, b], where it is equal to the spectrum of H{ K. Finally, under
the assumptions of the present section Theorem 59 holds with R = oco. Hence, by

the second part of Simon-Wolfl’s theorem the eigenfunctions decay exponentially.

In summary,

19 Notice that for this choice of R, M may be denoted by M, since I'r =T

20 We use the fact that limsup,_, . l[(Ho—2)7'|l = co if and only if z €

spec(Hy), which is easily seen using Weyl’s sequences.
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Theorem 60 Suppose
1. For any k > 0, supy 3., e F70M) < o,
7(n, M)* < De=® ™M) for qlln €T and M € X,
I>0,
supy > TNV, M)* < o0,

inf,m y(n, m) 25 0.

Then, the spectrum of H on la, b is almost surely pure point with simple eigenvalues
obeying the following exponential decay: for an eigenfunction, ¢ € L*(X), associated
with an eigenvalue, e, there exists a fived site, ng € X, and a coefficient, Const, both

depending on V and e, and a universal exponent, k > 0, such that
W(N)| < Const e™¥1tN-m0)

for all N € X.
3.6.2 Application to Generalized Laplacians
Assume Hy = A is a generalized Laplacian on X = Z%. Let © = R\ spec(Hy)

and suppose [a,b] C ©. Let v be the Pythagorean distance on VAR
(M, N) = |M — N|.

The condition 1 of the previous theorem is then trivially satisfied. If in addition

there exist a D > 0 and a 8 > 0 such that

T(N,M)* < De™PN-M| (3.26)
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for all N,M € X, then the condition 4 is deduced from 1, while the condition 2
holds by fiat. Since z = e + iy is bounded away from spec(Hp) and |z| is bounded,
the condition 3 is also satisfied, for, denoting by p, the spectral measure of é, with

respect to H,

J > inf

N,z

t—e ‘ [t — e
f g | -ut g o

Therefore, the theorem applies under the sparseness condition 5.
In‘ fact, the relation (3.26) ié an immediate consequence of the equation
N
G(N,z) = /Tdm dz,

since S is at a positive distance of the range of ®. More precisely, since ®(x) is
analytic, one may replace each 29 by ) + i3 in the previous integral without
affecting its value, where 3 > 0 is so small that ®(z -+i(3,...,3) ) remains bounded
away'from S, and deduce G(N, z) = O(e™AIV) uniformly in z € S when |N| — oo.
In other words,

T(N,M)=supG(M — N, z) = O(c™PIN-M)
2€S
when |N — M| — oo.

We have proven:

Theorem 61 Consider a random Schridinger operator acting on 1*(Z%),
H=A+V,

where A is a generalized Laplacian and V is a random potential supported on I' C VAK

we assume that the random variables {V (n)},er are i.i.d. and absolutely continuous.
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Suppose V is sparse in the sense that

lim inf |n —m| = co.
[n|-—o00 m#n
nel’ meTl

Then, almost surely the spectrum of H = A + V outside spec(A) is pure point
with simple, exponentially decaying eigenfunctions. More precisely, given such an
eigenfunction, ¢ € 12(Z%), almost surely there exist constants, Const and k, both
depending on 1, such that

Y(N) = Const eIVl

for any N € Z°.

Scholium Since in the present model the V(n)’s are 4.4.d., it is well known that the
essential spectrum of H = A+ V is almost surely equal to a certain deterministic set
[38]. This last set was characterized by Molchanov and Vainberg [30, 823 Using
their result, one may construct examples in which the spectrum of H covers the whole
real line. This happens for instance when the random potential on a single site has

a Cauchy or a normal distribution. Then, the spectrum of H is dense pure point in

R\ spec(A).

21 In their original proof Molchanov and Vainberg considered only the case where
A is the standard Laplacian. However, their proof may easily be adapted in order
to treat any generalized Laplacian; in particular, the spectrum of A does not have
to be centered.
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Example Consider the example following Theorem 54, in which H consists of the
standard (or Molchanov-Vainberg) Laplacian, A, added to a random potential, .V,
lying on

r={(*0,...,00€ 2%, j€Z}.

Assume again that {V(n)},cr is a family of independent random variables whose
common distribution is Cauchy (alternatively, normal). As we have seen, the spec-
trum of H is then purely absolutely continuous spec(A), and the wave operators exist
and are complete on this last .region (almost surely). Moreover, since I' is sparse,
the previous theorem implies that the spectrum of H on R \ spec(A) is pure point
with exponentially decaying eigenfunctions (almost surely). Finally, as pointed out
in the previous scholium, the spectrum of H in this situation covers the whole line
(almost surely), which implics in particular that the eigenfunctions of H are dense

in R\ spec(Q).
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CHAPTER 4
Appendices

4.1 Estimate Using Bessel Function
Let A be the standard discrete Laplacian in dimension d > 4. Its Green’s

function is denoted by
Gn—m,z2) = (6m | (A —2)718),
where m,n € Z¢%, z € C,, and § is the Kronecker delta. By Kato’s formula,

0
Gn,2) = i / ¢t (5, | €85, dt. (4.1)

Recall that the symbol of A is the multiplication by ®(z) = ZZJ _, cosz'), where

z=(zW,...,2¥) € T? Hence,
d o

d
= Hl J))Jn(]) zt

j=1
at any n = (nM,...,n®) and 2z € Cy, where Jy,(t) = 5= [7 e™e 07 dk is the
Bessel function.

It is well known that there exist a universal constant, C, such that

a0 €~ and [Jn(t)] <
|3 1]3
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for any m € Z and t € R (see [26]). Consequently, since d > 4, for an arbitrarily
fixed € > 0

(B0 | €28,)| < C 6|75t 73 (¢ ~3 ([t]~§ [nl0| = 5% |nlo) |5 . |nUa)| =5,

where (nt), ... nUa) is a permutation of (n@, ..., n'@). This last estimate, the

~equation (4.1), and the dominated convergence theorem then give
|G(n,e+1i0)| < Const In09|=%5% [nls)| =5 InGa)| =3,
Since € and the permutation of (nV, ..., n{@) are arbitrary, it follows a fortiori that
G(n,e +i0) = O(|n|73)

in dimension at least 4.
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4.2 Overview of Spectral Theorem and Random Perturbation Theory

In the first part of this appendix we sketch a proof of the spectral theorem
(following [13] and [14]).which is based on elementary harmonic analysis. The second
part discusses the Simon-Wolff theorem, the Aizenman—Molchanov theory, and the
Jékéié—Last theorem in random perturbation theory. Aside, the reader will find
results, notation and terminology used in Chapter 3.

For the purposc of spectral theory, harmonic analysis, which studies relationship
between harmonic functions and their boundary values, is better realized in the upper
half-plane, which we denote C,.. As an instance of a harmonic function on C,, which
is positive, one may start from a Borel positive measure on R satisfying fm ) o0

1442

and constitutes its Poisson transform:

d
Fu(z +1y) =y/R@—_TF;gQJ;F

where y > 0. The relationship between P,(z) and its boundary values is the following:

denoting by —3%(3:) the Radon-Nikodym derivative of u with respect to the Lebesgue

measure,
lP,J(:H—iy) dz 2 du(z) vaguely,
7r
while
1 . yl0 d/“ 1
-P, — —— €.
ha i) 2% i) ae

1 Almost everywhere.
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Indeed, given a positive harmonic function, f(z), on Cy, the Poisson represen-
tation theorem ensures the existence of a unique Borel positive measure, u, and a
unique constant, ¢, such that f(x +1iy) = cy + P,(z +iy). In particular, there exists

a p such that

LV(z +iy) da YO (e vaguely,
V(z +iy) () guely (42)

2V (2 + iy) vio, (z)  ae
As an immediate corollary,? if F(z) € H*(C.), then F(z +10) exists almost every-
where.

Let ‘H be a separable Hilbert space and consider a selfadjoint operator, H, acting

on H. By the Fredholm analytic theorem, for an arbitrarily fixed p € H

2= Im (p| (H = 2)7'¢)

is harmonic. Moreover, this last function is strictly positive on €, where it is equal
to Im z||(H — z)"'¢||*>. Hence, by the Poisson representation theorem there exists a

positive Borel measure, 4., satisfying

m (| (H — ) —Im/ Aelt)

t—z

for z € C,. Since the holomorphic functions (¢ | (H — 2)~tp) and fp —d%f—iﬁ have the

same imaginary parts and their limits when |z| — oo are both equal to 0, they are

indeed equal for any z € C,. It is not hard to deduce the same relation for z € C_,

2 Recall that the Hardy class, H*(C, ), consists of all bounded analytic functions
on C,.
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so for all z ¢ R
(ol (k- 2)7g) = [ S (43)

t—2z
The positive measure w,, which is characterized by the previous equation, is called
the spectral measure of p with respect to H.

Let
1

i+ (| (H—2)"1p)’

where z € C,. Clearly, F(z), which never vanishes, is in the Hardy class H*(C,);

F(z)=

1 —iF(2) is also in this last class. Since

(| (- 2)"p) = 1—‘F{l)<—)

it follows that (¢ |(H —e —i0)"'y) exists for almost every e € R. By polarization
(¢ | (H — e —10)"Yp) also exists a.e. for any given o, € H.

The idea is to use (4.3) in conjunction with the resolvent identity: for u,v ¢ R
(H=u) ' —(H-v)"=(H-uw(u-v)(H-v)""
Doing so, the equation (4.3) yields that for every u, v ¢ R
(H—w) ol (H=v)"'p) = {(t—u)7 [ (t=v) s,

where (-]-); denotes the scalar product on L?(R, du,(t)) (which we abbreviate
L*(u,)). Since {£ ; u ¢ R} is total in L?(p,), this last relation suggests that

the closed vector space generated by {(H — 2)7'¢; z ¢ R}, which we denote by K,
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is unitarily equivalent to L?(u,). Moreover, since

(H=u)"'o|(H =27 (H=v)" ) = (t-u) " [(t=2) (=) )2

it suggests that the operator (H — z)~" is lifted to the multiplication by (¢t — z)™*

via this last unitary equivalence.
Indeed, not only the previous considerations arc right, but H itself is lifted to
the multiplication by t. More precisely, denoting by U the unitary equivalence in

question, the following diagram commute: *

K, & K,

Ul LU

L2(,u<p) 5 LQ(M@)

The subspace K, is called the cyelic space generated by ¢ with respect to H; as
one may expect, if H is bounded it corresponds to the smallest H-invariant, closed

subspace containing ¢.*

3 By this, we do not pretend that A and the multiplication by ¢ are bounded, but
that their respective domains coincide via U.

4 Given a subset, F C H, the cyclic space generated by F with respect to H
is then defined as the closure of the linear span of {(H —2)"'¢ ; ¢ € F, z ¢ R}.
However, a closed subspace is said to be cyclic only if it may be generated by a
single element.

173



More generally, H decomposes into a direct sum, &,H.,, of cyclic spaces. Hencé,
there exists cyclic generators, @, and a unitary equivalence between H and @, L?(u,, )
such that H is lifted to the operator of multiplication by ¢ on each summand. Then,
H is said to be diagonalized in the representation @,L%(u,,). As we have just
sketched, all selfadjoint operators on a separable Hilbert space are diagonalizable.
This last statement constitutes the spectral theorem.

The main application of the spectral theorem is the following: since H is iden-
tified with ¢ on each cyclic summand, f(¢) being known, f(H) is also known! More
precisely, suppose H is identified with @,L*(u,,). Then, denoting by ®,f(t) the
operator of multiplication by f(¢) on cach summand of ®,L?*(u,,), f(H) is defined
as the lifting of @, f(¢) via the given identification.

| Doing this for any bounded Borel f, one obtains a functional calculus for H,
that is, a morphism of %-algebras between Borel bounded functions on R and B(H),
the set of all bounded linear applications on H. Indeed, the calculus for H is unique,
being characterized by several properties it satisfies.”

Since H is identified with ¢ on each cyclic summand, the set of values of H, say,
on the n-th cyclic summand, is commonly defined as the support of pu,,; in total,
the set of values of H is thus equal to its spectrum. However, one may seek for more
precise information and try to identify on which Borel sets values of H (identified

with t) are relevant, i.e., on which Borel sets not all spectral measures, f,,, vanish.

5 Among these properties, the following is frequently used: if f,(t) 25 f(t) for
all t € R, where the f,(t) are uniformly bounded, then f,(H) —— f(H) strongly.
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In other words, from our point of view a complete knowledge of the values of H
consists of identifying every Borel set, F, such that 1g(H) # 0, where 1g denotes
the characteristic function of £.

As a first step, one may wonder which parts of the spectrum of H are pure point,
Which parts are absolutely continuous, and which parts are singular continuous, with
the following, obvious definitions: given a Borel set, B, the spectrum of H is pure
point on B if there exists a countable set, P C B, such that 1z p(H) = 0; it is purely
absolutely continuous on B if 1g(H) = 0 for all S C B of Lebesgue measure zero;
finally, it is purely singular continuous on B if there exists a Borel set of Lebesgue
measure zero, S C B, such that 1p\s(H) = 0 and furthermore 1 (H) = 0 for all
z € B.

Alternatively, one may define the above notions in the following way: For an
arbitrary sequence of positive numbers, {a,}, let us consider 4 = >_,_ anfiy, and call
it a spectral measure of H. Tt is easy to sce that the spectral measures of H are
all equivalent, 4.e., they induce the same sets of measure zero. The spectrum of H
is pu,i"e point, purely absolutely continuous, or pﬂrely singular continuous on a given
Borel set, B, if and only if i1 | B is pure point, purely absolutely continuous, or purely

singular continuous on B, respectively.

Remark The values of H are said to be localized on B if the spectrum of H is pure

point on B, and delocalized on B if the spectrum of H is purely absolutely continuous

6 The operators 1x(H) are called spectral projections of H.
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on B.

* ok ok

The scientific community is interested in localization and delocalization of the
operator of energy, H = A+V, in the Anderson model, discussed in the introduction
of the present thesis. Here, the kinetic energy, A, is a discrete Laplacian on 12(Z9),
while the potential, V', is random; V is supported on a given set of sites, I" C VA
A general criterion of localization applying to this model was given by Simon and
WOolff [44]. Tt is used in Chapter 3 of the present thesis in the following special form.

Let {V(n)},cr be a family of iid. random variables of law v, where v is
absolutely continuous.” Let {6,}, 4 be the usual basis of *(Z%), where § denotes
the Kronecker delta. Given a subset of sites, I' C Z? we focus on the subspace
cyclically generated by {6, ; n € I'} with respect to A, which we denote by K.
Theorem 62 (Simon—Wolff) Consider an arbitrary Borel set, B C R. If with
probability one ||(H — e —10)7'8,|| < oo for alln € T and almost all e € B, then the

spectrum of H [KC on B is almost surely pure point with simple eigenvalues.

7 The underlying probability space is given by R", i.e., by the set of functions
from I to R, which is endowed with its Borel o-algebra and the probability measure
P = [],cr v The random variables in question are then the projections V' — V(n)
for n € I', where V € RY is the random parameter.
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Suppose in addition that for almost all V', almost alle € B, and alln € T', there

exists constants, C > 0 and k > 0, such that
(6n | (H — € — i0)™"0,)| < CeFim

uniformly in m € Z*. Then, the eigenfunctions of H | K are almost surely exponen-
tially bounded, which means: if @ is such an eigenfunction, for almost all V', there

exists constants, D > 0 and [ > 0, both depending on v and V, satisfying
p(n)] < De™™

for everyn € T,

The proof of this last theorem is based on spectral averaging (see [43]), condi-
tional Fubini’s theorem, and rank one perturbation theory (especially, the Aronszajn-
Donoghue theorem).

In order to apply the Simon-Wolff theorem, it is convenient to estimate quanti-

ties of the form

R(m,n,2) = (0p | (H — 2)716,);

the Aizenman-Molchanov theory is designed to this end [3]. More precisely, it is

designed to estimate E|R(m,n, z)|*, where s € |0, 1] is a structural constant. One

then removes the expectation by using Cantelli’s lemma.®

8 The Cantelli lemma asserts: if {An},en 45 @ family of events satisfying
Y. P(A,) < oo, then P(Ny Upsn An) = 0.
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The Aizenman-Molchanov method is based on the resolvent identity,
(H =)™ = (H = o)™ = (H — )™ (u =) (H = v)™",

where u and v are appropriate numbers or operators, in conjunction with the decou-

pling lemmas, which we now state.

Lemma Suppose there exists an s € 10, 1[ such that

o glr = ol = 670 dv(x)
ko = a&r?lefc - Jg |z — Bl=s dv(z)

> 0.
Then, for any deterministic function, F(n,m, z),
E |V (m) — F(m,n, 2)|°|R(m,n, 2)|* 2 k,E|R(m,n, 2)I.

Suppose instead there exists an s € ]0,1[ such that

Jg |zl?le — B8]~ dv(z)
K, =su <
Ser [ |z — A1 du(z)

Then, E|V(m)|*|R(m,n,2)]* < KE|R(m,n,2)°.

Notice that both hypotheses in the previous lemma are satisfied for large classes
of probability measurcs, which includo Caussiang, Cauchy distributions and uniform
distributions [1, 2, 3, 11, 20, 28].

Finally, the celebrated Jaksic-Last theorem gives a criterion of delocalization

applying to the Anderson model [16]. It involves the notion of essential support,
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Y(H), of the absolutely continuous spectrum of [, which is defined as follows: de-
noting by u a spectral measure of H and by %5(33) its. Radon—Nikodym derivative
with respect to the Lebesgue measure,
dp
YH)=3zeR; —(z)>0¢.
(1) = {o e ®s Fw>of

9

Notice that L(H) is defined "up to a set of Lebesgue measure zero”.” Notice also

that by the first part of this appendix

Gy = LS (1 = e —i0)716,) e

dz T
n

where {6, } is any set generating cyclically 12(Z%) with respect té A.

Before stating the Jakgi¢-Last theorem, let ﬁs mention the following property of
the essential support: in the present setting—where the random variables V(n) are
independent—there cxists a deterministic set, & C R, such that XL(H) = X almost
surely. This last property, which is a consequence of the Kolmogorov 0-1 law and
random perturbation arguments, is used in Chapter 3.

In the present setting, ‘

Theorem 63 (Jak§ié—Last) Consider an arbitrary Borel set, B C R. If with prob-
ability one B C $.(H), then almost surely the spectrum of H on B is purely absolutely

continuous.

9 Rigorously, the essential support is thus defined as the equivalence class of the
given X(H), where two Borel sets are said to be equivalent iff the Lebesgue measure
of their symmetric difference is zero.
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This last result is a non trivial consequence of Poltoratskii’s theorem (see [18]).
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4.3 [, 1, and > Norms of Operators

In this appendix we present a special instance of the Riesz—Thorin theorem.
More precisely, from the /! and the [° norms of an operator we derive a bound on
its [2 norm.

Given an index set, I', let A be a linear operator acting on the vector space

generated by {4, ; n € I'}, where § denotes the Kronecker delta:

1 if m=n,
Op(m) =
0  otherwise.

We denote by A(m,n) = (6,,] Ad,) the (m,n)-th matrix element of A with respect

to the previous basis.

Lemma If sup Z |A(m,n)| < oo, then A extends continuously to a bounded oper-

nel meTl

ator from IX(T") to I1(T"), whose norm is given by

[ Ax = sup Y |A(m, n).

nel mer

Proof: Let ¢ € [}(T"). The inequation

YD lAm )l fe(n)] < sup YA Y le(n)]
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shows that Y A(m,n)p(n) is absolutely convergent for any m € T', is in I*(T'), and
that

1A]l: < sx;pz | A(m, p)|. (4.4)

Moreover, since for any p € I’

lAl = sup 3

flelli=1"7

> Z ZA(m,n)dp(n)

m

= > |Am,p)l,

the equality is attained in (4.4). O

>~ Alm,n)e(n)

Lemma If sup Z |A(m,n)| < oo, then A extends continuously to a bounded oper-
me nerl
ator from [°(T") to 1°°(T), whose norm is given by

|Allec = sup Z |A(m, n)|.

mer nel

Proof: Let p € [®(T"). The inequation

sup D [A(m, m)| kp(n)] < sup 3 |AGm, n)l sup [ (p)|
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shows that 3 A(m,n)p(n) is absolutely convergent for any m € T', is in [*°(T'), and

that
Al < supy_ |A(m,n)|.

Moreover, for a fixed m € T, let @pn(n) = e @8AMmm  Then, |[pmlle = 1 and

A(m, n)em(n) = |A(m,n)], so

|Alc = sup sup
m lolleo=1

S A(m, n)p(n)

n

> sup Y |A(m, )l

Scholium One may deduce | All1 from ||Allw and vice versa, using
Al = 1A% lcos (4.5)
where A*(m,n) = A(n,m). The equation (4.5) follows from the Hélder inequality,

(o) < llelllY]loos
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where p € 1), ¢ € 1=(I), and (-|.) denotes the canonical pairing between ['(T)

and [°(T'). In particular, since in this last expression the cquality is attained,

[Allh = sup [{Ap|9)|

llli=1
¥lloo=1

= sup [{p|A™Y)|

flefli=1
[#fleo=1

= HA*HOC

The knowledge of the I and [*° norms of an operator provides a bound on its

2 norm:10

Theorem 64 || Al < [|A]1[Alo-

Proof:
IAl; = sup ||l
llelia=1
= sup Z} Ap)(n)]?
lella=1
2
= sup Z ZA n, k)
llell2=1

< sup ZZ|A n, k) ZlA(n,l)go(l)l.

flella=1

10 Notice that a relation similar to the following one is trivially derived for sequences
instead of operators.
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For any fixed ¢ such that |||l = 1, the triple sum in this last expression is equal to

the following, which is bounded by applying twice Schwarz’ inequality:

D o) e AR, k) A(n, )] <
k l n

1
2

< Yletk) <Z<Z1A<n”“>f4<"’”‘>2>
< (ZZ(Z{A(n,k)A(n,l)I)Z)
B n

2
Consequently, expanding the square in the last expression,

1AIE < (D200 D 1AM k)| |A(m, DI |A(n, k)| |A(n, l)!)
k I m n

[

2
1

= D0 [Am B AMm, D[} Y 1A, k)| |A(n, l)l)

.l n

=

N

{Slgpz |[Alm, )| [A(m, DI} Y 1A, k)| [A(n, l)l)
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(&1

sup |A(m, )| |A(m, )] |A(n, k)| IA(TLJ)\>

P kJlmn

sup{sup Z |A(n, )| |A(n, k)|} Z |A(m, p)| |A(m, )]
m,l

qupZ|A n,q)| |A(n, k)|

%upZ{ZIA n, k)[HA(n, q)]

qup{qupz |A(p, k) [}ZIA n,q)|
HAHooHANl
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)

1
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4.4 Variant of Analytic Fredholm Theorem

In this appendix we present a natural extension of the analytic Fredholm theo-
rem, due to B. Simon, which gives us a sufficient criterioﬁ for a set to be closed and
of Lebesgue measure zero.

Given a domain, D C C, let us consider an analytic function'!
f: D— B(H).

For later purpose, if f admits a continuous extension D — B(H), where B(H) is
endowed with the uniform topology, we set £ = D; otherwise, we set £ = D. Hence,
f: & — B(H) is continuous on £ and analytic in the interior of £.

We will use the following elementary lemmas:

Lemma Suppose f(z) is invertible for any z € €. Then, z — f(2)7! is continuous

on &.

Proof: Given a fixed z € £, consider any h such that z+ h € €. Then,

Fle+h)™ = f(2)7 = fE+ ) THE) = 2+ ) f() 7 (4.6)

11 Recall that f is analytic at z iff the strong limit limy,_ £ Z“Lh})t"f @) exists. It is
well known that this last requirement is equivalent to the following, a priori weaker
one: for all I € B(H)*, the complex valued function ! o f is analytic.
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Therefore,

fE+R)TH = () = fz+m)f(2)7) = f()7,
where 1 € B(H) denotes the idontity‘. Since f is continuous, given our fixed z € £,
there exists a § > 0 such that, if |h| < 6 and z+ h € £, then

1

I(f(2) = flz+ W) ()7 < 5

Then, by the gcometric series 1 — (f(z) — f(z + h))f(2)~! admits an inverse whose

norm is less than 2 uniformly in hA. Thus, the norm of

fl+h)™ = (1= (f(x) ~ fe+ W) ()T ) ()

is bounded for such A’s. The result then follows from the continuity of f and the

equation (4.6). O

Lemma Suppose f(z) is invertible for any z € D. Then, f7(2) = f(2)~" is analytic

on D, where it satisfies

(f(2) = ~F) T () f ()7

Proof: Given a fixed z € D, if h is sufficiently small, then

AR CNLCCE (47)
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is well defined and equal to

(flz+h) = f(2)7)

o ey (B pi) e,

Hence, the norm of (4.7) is bounded by

1F(z+ 1) = f() 7

1f z+h)

+[1f ()7 — f'(2)

1fz+h) f(z)
h

which clearly tends to zero when h — 0. O

We now prove the Fredholm analytic theorem. Let zy € £ be fixed. Then, there
exists a 6 > 0 such that ||f(z) — f(z0)] <  when z € B(2,6) N E. Moreover, since

f(z0) is compact, there exists a finite rank operator, F, such that

I£(z0) = Fll < 5

Thus, ||f(z) — F|| <1 on B(z,0) N S; which implies (by the geometric series) that

1 — f(2) +F is invertible. One then studies the injectivity of

1= f(z)=(1=F(1~[(z)+ F)™)(1 - f(2) + F),

which is realized iff 1 — F/(1 — f(2) + F))~! is injective.

Let us denote by 7 the projection of H onto ran F'.
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Lemma In the above circumstances, 1— f(z) is not injective iff the secular equation,
det(1 —7F(1 = f(2) + F)"'r) = 0, (4.8)

is satisfied.

Proof: Let ¢ be in the kernel of 1 — F(1 — f(2) + F)7, so
p=F1-[(z)+F) e
In particular, ¢ belongs to the range of F, so
¢ =nF(1 - f(2)+ F) lre.

Since ran F' is finite dimensional, the result follows. O

Lemma In the above circumstances, if 1— f(z) is injective, then it is also surjective.

Proof: Again, 1 — f(2) is surjective iff 1 — F'(1 — f(z) + F)“l is surjective. For an

arbitrarily fixed + € H, one wonders if there exists a ¢ € H satisfying

(1-F1-/f(2)+F) =19
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If s0, v is of the form ¢ — ¢ for a ¢ € ran F'; thus, one may assume ¢ = ¢ + ¢ and

seek for a ¢ € ran F' satisfying
(1= F1~f(2)+ F)) W+ ) =¥
This last equation is equivalent to
(1—7F(L= f(z) + F)"'n)p = F(1 = f(2) + F) ™',
which admits a solution when det(1 —7F(1 — f(z) + F)™'m) # 0. The result follows
from the previous lemma. ' O

Therefore, by the Inverse Mapping Theorem:

Corollary In the above circumstances, if 1 — f(z) is injective, then it admils a

hounded inverse.

Proving now the classical Fredholm analytic theorem, let us consider the case

where 2y € D. Without loss of generality, we assume B(zp,6) € D. Then,
dot(1 — 7F(1 — f(2) + F)™'n)

is analytic in B(zo,6). In particular, either this last function is identically zero on
B(z,6), either its zeroes on B(zp,d) are isolated. In conclusion,
Theorem 65 (Fredholm) Given a domain D C C, consider an analytic function,

f: D — B(H), whose values are compact operators. Then, either the operators
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1 — f(2) are not invertible for z € D, either they are invertible for all z € D except
1solated points.

Let D € C denote the open unit disk. Our variant of the previous theorem is
based on the following classical result, whose proof is given, for instance, in [23]: 2
Theorem 66 If f: D — C is continuous on D and analytic in D, then either
{z€D; f(z) =0} is the whole D, either it is a closed set of Lebesque measure zero
whose intersection with D consists of isolated points.

We now consider the case where D = C, and where f: C, — B(H) admits a
continuous extension,

[+ Co — B(H);

in this case & = C;.

If the secular equation, (4.8), identically holds on C.., then by continuity it holds
on C,, so 1 — f(2) is never invertible.

Otherwise, assume zg € R, the case where z; € C, being covered by the classical
theorem. By Riemann’s Conformal Mapping Theorem (or by an explicit construc-
tion) there exists a conformal equivalence from B(zg,d) NC,. to D, which extends to
a homeomorphism from m to D (since the boundary of the former region
is regular). Thus, by Theorem 66 the secular equation for z € W is never
satisfied, except on a closed set of Lebesgue measure zero whose intersection with

B(z9,6) N C, consists of isolated points. Thus, a connectedness argument yields:

12 Tndeed, the following result holds under weaker assumptions, for instance, for f
bounded in D or, which is even better, for f of exponential type in D.

192



Theorem 67 (Simon) Suppose f: C, — B(H) is continuous on C, and analytic
in Co. Then, either 1 — f(z) is never invertible, either it is invertible except on a

closed set of Lebesque measure zero whose intersection with C,. consists of isolated

points.
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CHAPTER 5

Conclusion
5.1 Main Results
After an extensive review of the stationary phaée method, Chapter 2 is devoted
to Green’s functions of discrete Laplacians on Z¢. Here, generalized Laplacians are
defined as adjacency operators of translational invariant graphs on Z¢. Explicitly,
given such a graph, whose distance is denoted by d, the associated Laplacian is

defined as

o(m),

d 1

Ap(n)= >
(mym)=
where ¢ € [2(Z%) and n € Z°.
Let V = {n € Z%; d(n,0) = 1}. Then, the symbol of A is (the multiplication

by) &(z) = E e'V®, so its Green's function is
veY

(b | (H = 2)716,) = G(n —m, z) = (2m) ™ M dz
Td (I)(CC) -z

for any m, n € Z% and z € C,, where § denotes the Kronecker delta. We are
y

interested in the decay of G(n,e) = lim G(n,z) when |n| — oo for spectral values
—e
zeCy
of energy, e € spec(A) = ran ®. The stationary phase method yields:

Theorem Consider an open set, © C spec(A), such that V®(z) # 0 on ®71(6).
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- Notice that ®1({e}) is then a real-analytic regular surface for any e € O, sup-
pose that for any e € © this last surface admits at least K non vanishing principal

curvatures at any point, where k = 1. Then, for any compact K C ©
G(n,e) = O(In|™%)

uniformly in (e,w) € K x S%, where n = |n|w.

Two concrete cxamples are emphasized: the standard Laplacian, whose graph
is determined by V = {(£1,0,---,0),(0,%£1,---,0),---,(0,0,--- ,£1)}, and the

Molchanov—Vainberg Laplacian, whose graph is determined by
V={(o1, - ,00) €Z; 0; € {~1,1} for any j}.

Notice that the spectrum of the former is [—2d, 2d], while the spectrum of the latter
is [—Qd, 2"']. In the former cése an elementafy argument shows that the previous
theorem applies on © = [—2d,2d] \ ({—2d,—2d+4,--- ,2d — 4,2d} U {0}) for k =1
(without pretending that this result is optimal). In the latter case the theorem ap-

plies on © = [—2¢,27] \ {-24,0,2%} for kK = d — 1, which is optimal.

After a revision of basic scattering theory, Chapter 3 is devoted to random
Schriidihger operators of the form H = A+ V, where A is a generalized Laplacian
and V is a random potential. We are interested in scattering and spectralvproperties
of H that hold almost surely when the sites of the potential are sparse. Our work

is a continuation of [17], where abstract criterions of existence of the wave operators
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QL(H, A) = limy 100 e ¥ 15(A) and Q5(A, H) = limy_po0 €Pe ™ 15(H) are
presented in a more general framework (in which A is the adjacency operator of
any simple, countable graph). Two approaches are used in our study: one, based on
Fredholm’s analytic theory, is deterministic, while the other, based on the Aizenman—
Molchanov theory, is probabilistic.

Let us denote by I' C Z¢ the sites of the random potential, V.

In the deterministic approach {V(n)},ep consists of independent random vari-
ables of law u, where p is a compactly supported probability measure on R (so V' is

almost surely bounded). In these circumstances,

Theorem Let © be a region of validity of the previous theorem with respect to a
certain k > 1. If T is sparse in the sense that for a certain € > 0
> e
mel\{n}

is finite for all n € T and tends to O when |n| — oo in T, then the wave operators

QL (H,A) and Q5(A, H) ezist almost surely.

More generally, if the sites of the potential are partitioned in clusters whose
diameters are bounded, the previous theorem still holds if onc replaces I' with the
set of centers of the clusters.

In the probabilistic approach {V(n)}nef consists of independent random vari-

ables of law u, where p is an absolutely continuous probability measure, not nec-

essarily compactly supported, and satisfying the decoupling hypotheses for a given
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s €10,1f:

—alflz — 875 d Sl A|—s
inf Jele —alle -4 “(x)>0 and suprlx' [z — 817 du(z)

a,BeC flR I.CC — ﬁ|~s dﬂ(ﬂ?) BeC fR I:C - IBl—s d,u(ac) =

In these circumstances,

Theorem Suppose I' is sparse in the sense that for © and k as above and for a

certain € > 0

> it

mel\{n}

is finite for allm € T and tends to O when |n| — oo in I'. If the wave operators
OX(H,A) ezist almost surely, then the wave operators QF(A, H) also exist and the

spectrum of H is purely absolutely continuous on ©, almost surely.

Notice that the existence of Qg(A, H) may come from other sparseness condi-
tions on I' found in the literature; see for instance [32].

In the present circumstances similar calculations outside spec(A) yield:

Theorem The spectrum of H is pure point outside spec(A) with exponentially de-
caying eigenfunctions, almost surely. More precisely, for almost all V', if ¢ is such
an eigenfunction, then there exist positive constants, C and «, both depending on 'V

and @, such that |p(n)| < Ce™®™ for all n € Z°.

If A is the standard or the Molchanov—Vainberg Laplacian, then the spectrum

of A is purely absolutely continuous, while © is equal to S = spec(A) minus a finite

197



set. Hence, QE(H,A) = QF(H, A) (if they exist). For the same reason, under the
conditions of the penultimate theorem QE(A, H) = Q% (A, H) almost surely, by a
theorem of Jaksi¢ and Last [19].

In summary, if T is sufficiently sparse, H = A + V' then satisfies almost surely
the following, remarkable propertics:

1. Outside spec(A) the spectrum of H is (possibly dense) pure point with expo-
nentially decaying cigenfunctions;

2. Inside spec(Q) the spectrum of H is purely absolutely continuous;

3. Inside spec(A) the wave operators QF(H, A) and QF(A, H) exist.

The existence of a family of random Schrodinger operators satisfying these last
properties is thus established (at our knowledge for the first time in the literature).
* ok %

Historically, sparse potentials were introduced by Pearson [34] in order to ex-
hibit examples of Schrédinger operators whose spectra present singular continuous
parts. Since this time, scveral models of sparse potentials have been suggested in
the literature, having in common that the number of sites of the potential included
in a cube of length L centered at the origin decreases With L. Both continuous and
discrete cases have been investigated.

The idea to construct wave operators for showing that Schrédinger operators
with sparse potentials possess an absolutely continuous part is due to Krishna [24],
who used a deterministic model. Krishna et al. [25] then exhibited mized spectra

(i.e., spectra containing both an absolutely continuous part and a singular one)
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for Schrodinger operators submitted to random, sparse potentials in high disorder
regime.!

- Sparse potentials were also investigated by Kirsch et al. [5, 12, 22] and Mol-
chanov et al. [28, 29, 30, 31, 32]. These teams established that the spectrum of a
random Schrodinger operator, H = A + AV, with sparse potential is mixed: almost
surely, its absolutely continuous part covers spec(A), where in addition the wave
operators exist; almost surely, its singular part lics outside this last region and is
pure point. Using potentials almost surely bounded, they exhibited examples where
the pure point spectrum is discrete outside spec(A) (with accumulation points at the
edges) if and only if the disorder is small. Moreover, they characterized the essential
spectrum, which was already known to be fixed almost surely.

In summary, examples of random Schrodinger operators with sparse potentials
satisfying the properties 1 and 2 in the above enumeration, whose discrete pure point
spectrum outside spec(A) has dense parts (alternatively, is discrete), and for which
wave operators exist were constructed in the past.2 Therefore, the main novelty of
the present dissertation, which is a continuation of [17], is the second part of the
property 3: the wave operators are complete on spec(A). Our result thus provides
a complete description of the absolutely continuous spectrum for a class of random

Schrodinger operators with sparse potentials.

! Given a Schrodinger operator, H = A + AV the disorder is defined as A.

2 Notice however that our results use new techniques and yield substantially dif-
ferent sparseness criterions.
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5.2 Perspectives

Several little projects may be built from the present thesis.

Regarding our model, the potentials of the considered Schrédinger operators are
random, bu£ supported on determiﬁistic sets of sites; it may be physically relevant
to randomize these last sets. Moreover, we studied generalized Laplacians coming
from translational invariant graphs only. Other discretizations of the Laplacian may
be investigated, for instance, coming from non invariant, weighted graphs or, in the
hardest case, from non invariant, weighted, oriented graphs.

Regarding Chapter 2 one may wonder on which subintervals of energy the con-
stant energy surfaces of the standard Laplacian admit 2, 3, ... non vanishing principal
curvatures at every point. One may also calculate the complete asymptotic expan-
sion of the Green’s function of the standard Laplacian in concrete dimensions, say,
2,3,...5 We also presented the Molchanov—Vainberg Laplacian, whose symbol (with
respect to the Fourier transform over Z4) has strictly convex level surfaces. One may
try to generalize this result using a different lattice.

Regarding Chapter 3, in the unbounded case our sparseness condition, which
ensures the existence of Q*(A, H) inside spec(A), may be compared with sparseness
conditions found in the literature which ensure the existence of Q*(H, A) instead.

In particular, one may wonder if our sparseness condition indeed suffices to ensure

3 The complete asymptotic expansion of the Molchanov-Vainberg Laplacian may
easily be derived in dimension d using techniques shown in the present thesis.
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the existence of all these wave operators. Finally, other forms of sparseness may be

investigated (especially, sparse clusters in the unbounded case).
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