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ABSTRACT 

The first part of the thesis conccrns Green's functions of discrete Laplacians 

on lattices. In the continuous case, it is weIl known that the corresponding Green's 

functions decay polynomially. However, an identical pro of of this fact fails in the 

discrete case, sinee the constant energy surfaces of the discrete Laplacian are not 

convex. Two approaches are presented to turn around this problem. One consists of 

adapting the stationary phase method in order to treat nDn convex surfaces admitting 

/'î, > 0 non vanishing principal curvatures at each point, as suggested by Littman [27]. 

The other consists of changing the discretization of the Laplacian, as suggested by 

Molchanov and Vainberg [30]. 

The second part of the thesis concerns random Schr6dinger operators of type 

Anderson on the d-dimensional lattice. Sufficient conditions are presented for su ch 

operators, H = ~ + V, to satisfy almost surely the following, remarkable spectral 

and scattering properties: 

1. Outside spec(~), the spectrum of His pure point with exponentially decaying 

eigenfunctions (so-called Anderson localization). Examples where the spec­

trum of H is equal to the whole real line are also exhibited, in which case the 

eigenvalues of H.are in addition dense in IR \ spec(~); 

2. Inside spec(~), the spectrum of H is purely absolutely continuous (so-called 

delocalization) ; 

3. Inside spec(~), the wave operators between H and ~ exist and are complete. 
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Such Anderson operators are exhibited for the first time in the literature. Using the 

estimate of the first part of the thesis, the mentioned sufficient conditions appear to 

be sparseness conditions on the support of the potential. 
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ABRÉGÉ 

La première partie de cette thèse traite des fonctions de Green des laplaciens 

discrets sur 7ld . Rappelons qùe, dans le cas continu, les fonctions de Green correspon­

dantes décroissent polynomialement. Toutefois, la preuve de ce résultat ne peut être 

reproduite pour les laplaciens discrets, puisque les surfaces d'énergie constante de 

ces derniers ne sont pas convexes. Deux solutions à ce problème sont proposées. La 

première, suivant Littman, consiste à adapter la méthode des phases stationnaires 

pour qu'elle s'applique aux surfaces non convexes dont en chaque point au moins 

K, > 0 courbures principales ne s'annulent pas. La seconde, suivant Molchanov et 

Vainberg, consiste à modifier adéquatement la discrétisation du laplacien. 

La seconde partie de cette thèse traite des opérateurs aléatoires de Schrodinger 

de type Anderson sur des réseaux. Des conditions suffisantes pour que de tels 

opérateurs, H = 6 + V, vérifient presque sûrement les propriétés remarquables 

suivantes sont présentées: 

1. En dehors de spec(6), le spectre d'H est purement ponctuel et ses fonctions 

propres décroissent exponentiellement (localisation d'Anderson); nous mon­

trons en plus que, pour certains exemples, le spectre d' H est égal à lR, dans 

lequel cas sa partie purement ponctuelle est dense dans lR \ spec( 6). 

2. À l'intérieur de spec(6), le spectre d'H est purement absolument continu 

( délocalisation); 

3. À l'intérieur de spec(6), les opérateurs d'ondes entre H et 6 existent et sont 

complets. 
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De tels opérateurs d'Anderson sont prése~tés pour la première fois dans la littérature. 

Au moyen de la borne polynomiale établie dans la première partie de cette thèse, nous 

montrons que les conditions suffisantes en question reviennent à ce que le potentiel 

soit clairsemé (sparse). 
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1.1 Historical Background 

CHAPTER 1 
Introd uction 1 

Quantum physics is governed by the Schrodinger equation, following which ob­

servables (like the position, momcntum, and cncrgy of a particle) arc capturcd by 

selfadjoint operators on a Hilbert space. In particular, the energy of a single particle 

is given by a Schrodinger operator, 6 + V, acting on a certain Hilbert space (made 

of square summable functions). Here, the kinetic energy, 6, is an extension of -1 

times the usual Laplacian, while the potential energy, V, is the operator of multi-

plication by a certain function which depends on the physical context. The possible 

values of the energy are then given by the spectrum of 6 + V, that is, the numbers, 

e, such that 6 + V - e is not invertible. To develop spectral theory (which studies 

spectra of selfadjoint operators on Hilbert spaces) has thus been a major concern for 

understanding quantum phenomena since the beginning of the last cent ury. 

About fifty years ago, ncw dcvelopments in quantum mechanics arised after 

Anderson introduced his model, in which the potential, V, is affected by a random 

parameter [4]. This last model was designed for studying solid state physics (for 

instance, the evolution of clectrons submitted to a potential coming from impurities; 

1 Precise statements of the main theorems proven in this thesis are found in its 
conclusion (section 5.1). 
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since the exact nature of the impurities is not known, the best description of the in­

dllced potential is given by a probability distribution). The Anderson model provides 

a new insight in quantum mechanics, since, being interested in results that happen 

with probability one, pathological, llnobserved counterexamples are discarded. The 

introduction of this modol contributod to Andorson's Nobel prize in physics. His 

main conjecture, about the spectral nature of D. + cV for c small, is still unsolved 

and attracts great scientists around the world (like the Fields medalist Jean Bour­

gain). 

ln order to find results motivating the Anderson conjecture, other models were 

suggested. For instance, in the discrete framework the underlying Hilbert space con­

sists of square summable sequences over the d-dimensionallatticc, and the Laplacian 

becomes the adjacency operator of this grid (up to an additive constant). Moreover, 

scientists have been interested in the case where the potential is sparse, i.e., has non 

zero values on more and more distant sites only. One then investigates the spectral 

nature of the opcrator and asks which parts of its spectrum are absolutely continu­

ous (so-called delocalization), pure point with exponentially decaying eigenfunctions 

(so-called Anderson localization), singular continuous, which parts admit possibly 

complete wavo opcrators (scattering theory), etc. 

1.2 Objectives 

The present thesis concerns discrete, random Schrodinger operators of Anderson 

type with sparse potcntials. Its objective is to exhibit for the first time in the 

literature a family of random Schrodingcr operators, H = .6. + V, acting on Z2(Zd), 

satisfying almost suroly the following, remarkable spectral and scattering properties: 
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1. The spectrum of H is dense pure point outside spec( il) with exponentially 

decaying eigenfunctions (so-called Anderson localizafion); 

2. The spectrum of His purdy absolutely continuous on spec(il) (so-called delo­

calization) ; 

3. The wave operators between il and H exist and are complete on spec(il). 

Our main result, developed in Chapter 3, states that the above properties may 

hold under a suitable sparseness condition on the sites of the random potential, 

V. This reslllt is an application of famous theorems in random perturbation theory 

(Simon-Wolff Theorem, Jaksié-Last Theorem), and more specifically of the Jaksié­

Last criteria of existence and completeness of wave operators for Schrodinger oper­

ators on graphs [17]. These last criteria apply llnder the following, main condition: 

suppose the random potential, V, is sllpported on r ç Zd; let us denote by rI the 

set consisting of aIl sites in rand their immediate neighbors; denoting by Il the 

projection on [2 (r 1), it is required that for an n E r 

on the considercd interval of cncrgy (say, for e E la, bD, where On denotes the Kro­

necker delta. 

In the present thesis two approaches are used to verify the previolls condition: 

one is deterministic, the other is probabilistic. 

In the deterministic case we investigate the free, restricted resolvent 

(1.1 ) 
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and explain how it is affected by a sparseness condition on r. Our key observation 

is the following: if r is sufficiently sparse, then (1.1) is the sum of a superdiagonal 

operator and a compact operator. Using this last decomposition, the sparseness of r 

also permits to control 1111(~ - e - iO)-11111. Then, one passes from ~ to H using 

the resolvent identity in conjunction with Fredholm's analytic theory. 

In the probabilistic case, (1.1) is estimated by means of the Aizenman-Molchanov 

theory. The key observation is the following: if r is sufficiently sparse, then there 

exists a finite set, Fer, such that the Aizenman-Molchanov method applies to 

H + 1rv' V, where 1rv' is the characteristic function of r \ F. One then go es from 

this last operator to H by the resolvent identity. 

A preliminary prolem occured, which is discussed in the first part of the thesis. 

The conditions found in our main theorems are expressed in terms of the Green's 

functions of ~, more precisely, in terms of 

They constitute a sparseness condition on r only if an a priori estimate on G(n, e+iO) 

(when Inl -- 00) is known. In the continuous case such an a priori estimate is easily 

established using the stationary phase method, due to the fact that constant energy 
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surfaces2 of the continuous Laplacian are strictly convex (indeed, they are spheres). 

However, strict convexity of constant energy surfaces fails in the discrete case. 

Two approaches may be used to turn around this problem. One consists of gen­

eralizing the stationary phase method in order to treat non convex surfaces without 

planar point [27], which gives a wcak, but satisfying estimatc. The other consists of 

changing the discretization of the usual Laplacian, as suggested by Molchanov and 

Vainberg [30]. 

This last idea is simple. At the first glance, periodicity of .6. forbids convexity 

of its level surfaces, since, when lifting the leve! surfaces to the usual covering of the 

tonlS (i. e., to Euclidean space), one may obtain unbounded connected components 

which decompose in patterns rcproduced at every (27l", ... ,27l"), creating an oscilla-

--tion. Howcver, convexity is still possible if .6. is factorized, in which case the level 

surfaces consist of bounded connected components enclosed in a system of hyper-

planes. 

One thus seeks for a discretization of the Laplacian whose symbol is factorized, 

which is easily found when considering the associated random wall<:. For instance, if 

each single step of a random walk is determined by several independent trials, one 

per axis, each trial determining the direction of the walk along its corresponding axis, 

then the resulting stochastic pro cess is the product of I-dimensional, independent 

2 Given an operator, A, on L2(lR.d) or l2('Zd) , its symbol, Â, is its lifting via the 
Fourier transform. If the symbol of A is (the multiplication by) a function, the 
constant energy surfaces of A arc the level surfaces of Â. 
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processes, so the resulting symbol is factorized (each factor corresponding to the 

symbol of a I-dimensional random walk). Notice that the random walk just described 

then go es along full diagonals; hence, the construction of the proposed Laplacian is 

based on full diagonal neighbors instead of immediate neighbors. It is not difficult 

to verify that the constant energy surfaces of the resulting operator are convex [35]. 

The ab ove , preliminary problem and its solutions were the occasion for the 

author, firstly, to write a chapter reviewing the stationary phase method and its 

applications to Green's functions of dis crete Laplacians-this text, based on [45, 46, 

42], constitute the first part of the present thesis and will appear in [36]; 3 secondly, 

to promote the use of the diagonal Laplacian in the context of scattering theory of 

the Anderson model. In this contcxt, the operator in question has been named the 

Molchanov- Vainberg Laplacian. 

1.3 Pre-requisites 

Since Chapter 2 is a review of the stationary phase method and its application 

to Green's functions, only a small knowledge of differential geometry of surfaces 

3 In certain respects the mentioned text goes beyond a simple review. For in­
stance, results and proofs coming from [45] are adapted in order treat a parameter, 
thanks to which proofs are simplified (e.g., the corollary of Theorem 3 is deduced 
by induction). This treatment of a parameter also permits to deduce a decay for 
Fourier transforms of smooth functions over non convex surfaces (in particular, tech­
nical details omitted in [27] are complemented here). Then, the strategy presented in 
[42] for estimating Grccn's function of the standard discrete Laplacian on a certain 
interval of energy bccomes available for other intervals of energy, or for other dis crete 
Laplacians withmd a881J,ming that their constant energy sm:faces are convex on the 
con8idered interval8. 
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in ]Rd is assumed [6]. However, Chapter 3 uses pre-requisites in measure theory, 

harmonie analysis, funetional analysis, probability theory, and especially in random 

perturbation theory. 

The interested l'eadel' may eonsult [41] for a standard exposition of measure 

theory and harmonie analysis. 

In functional analysis, a strong knowledge of the spectral theorem for unbounded 

selfadjoint operators is required; a good reference is [40]. As a complement, we 

strongly reeommend [13]. In this last reference, the pro of of the spectral theorem 

follows an intcl'csting outline whieh is dcscl'ibed in the first part of Appendix 4.2; 

this appendix may be read before Chapter 3, sinee it gives an accurate overview of 

results, notations, and tel'minology used in this last chapter. 

In random perturbation theory the Simon-Wolff theorem [44], the Aizenman­

Molchanov theory [3], and the Jaksié-Last theorem [16] are assumed. These special­

ized results are described in the second part of Appendix 4.2. 

Finally, for a general treatment of l'andom Sehrodinger operators, the monogra­

phies [7, 8] are reeommended. 
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CHAPTER 2 
Stationary Phase Methodand Applications to Green's Functions 

An oscillatory integral is an integral of the form 

r eir<p(x) f(x) dx, 
J~d 

where r E IR and <p(x) is real valued. Its amplitude and phase are f(x) and <p(x), 

respectively. The phase is stationary at Xo if \7 <p(xo) = O. Such a stationary phase 

point, Xo, is non degenerate if in addition det D;<p(xo) #- O. 

In this chapter we establish 1) the rapid decay of an oscillatory integral whose 

phase is nowhere stationary, for a given compactly supported amplitude; 2) the 

polynomial decay of an oscillatory integral whose stationary phase points are not 

degenerate; 3) similar results for Cauchy principal values of oscillatory integrals. 

Given an analytic function, 1>(x), on 1['d, we then consider Fourier transforms of 

functions over level surfaces of the form 

r ( e) = {x E 1['d ; 1> (x) = e} 

and investigate their decay when the r(e)'s are regular, compact, and admit at every 

point at least "" > 0 non vanishing principal curvatures. Then, we do a similar study 

for Cauchy principal valucs of such Fourier transforms. Finally, we deduce the decay 

of Green's functions of generali7,ed Laplacians for energies inside their associated 

spectra. 
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In aIl our reEmlts a parameter t E IRm is considered. It permits to deduce 

multidimensional results from I-dimensional ones using a simple induction. Wh en 

studying Fourier transforms over r(e), it also permits to deduce uniform estimates 

in e and, furthermore, to generalize our results to surfaces whose Gaussian curvature 

may vanish, but which admit at least K, > 0 non vanishing principal curvatures. It 

permits to study the clecay of Cauchy principal values of such Fourier transforms 

and hence, to calculate the dccay of Green's functions of a general class of operators. 

Finally, it permits to show that this last decay is uniform in e, where e is the level 

of energy. 

We adopt the following conventions: most of our theorems establish the existence 

of a neighborhood on which a certain phenomenon occurs. For sake of simplicity 

(and without loss of generality) , we consider onlynon empty, bounded, open, cubic 

neighborhoods and we call them wbes. 1 

Given a real valuecl phase, 'f/(x, t), wc dcfine 

I.f(r, t) = r eir<p(x,t) f(x, t) dx, 
J'R. d 

where r > 0, t E IRm, and f(x, t) is a complex valuecl function-provided that this 

integral makes sense. 

In the present text, smooth is used for infinitely differentiable. The vector space 

of all (complex valued) smooth functions on ]Rd is denoted by Coo (IRd ). It contains 

1 Recall that a cv,bic ne(qhborhood in IRd is a subset of the form Il x ... X Id, where 
each Id is an interval. 
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two important subspaces: cw (IRd) , consisting of aH analytic functions on ]Rd, and 

C~(]Rd), consisting of all compactly supported smooth functions on ]Rd. 

The tmn8pO,9(: of a lincar transformation on C,: (]Rd) is defined by duality with 

respect to the following bracket: 

(f (x) 1 9 (x)) = ( f (x) 9 (x) dx. 
Jw.d 

For instance, denoting by 0xU) the differentiation with respect to x(j), integration 

by parts gives 0x(j) t = -ox(j). Moreover, denoting by F(x) the multiplication by a 

smooth function of the same name, F(x)t = F(x). 

Our notations regarding asymptotic behavior are standard: for instance, 

f(r) = O(r-Œ
) when r --+ 00 

means the existence of a positive constant, C, such that If(r)1 :::;; Cr-Œ when r is 

sufficiently large. In the weaker circumstance where f(r) = O(r-Œ+ê
) for an E > 0 

(where the constant C depends on E), one writes 

f(r) = O(r-é ) when r --+ 00. 

In the stronger circumstance where f(r) = O(r-Œ
) for all Q; ~ 0 (where the constant 

C depends on Q;), one writes 

FinaHy, 

f(r) = O(r-OO
) when r --+ 00. 

00 

f(r) cv L ajr-j when r --+ 00 

j=O 
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means that for any N ~ 0 

N 

f(r) - L ajr- j = O(r-N
-

1
). 

j=O 

If the function f aiso dcpcnds on a parameter, t, we say that the previous esti­

mates/ asymptotics are uniform in t if the constants C may be chosen independentIy 

of t. 

2.1 Oscillatory Integral without Stationary Phase Point 

The following thcorcms are stated in the way they are used when studying 

Fourier transforms over surfaces. They establish the existence of neighborhoods on 

which a certain phenomenon occurs, given a fixed phase. The given phase, rp(x, t), 

is supposed to be smooth in (x, t) E IRd X IRm. 

Lemma Let d = 1. S1J,ppose ox'P =1= 0 at a given (xo, to) E IR x IRm. Then, there 

e,'Eists an arbitrarily small cube, U x B, containing (xo, to) such that the following 

holds: if the amplitude, f (x, t), is smooth in the neighborhood of IR x Band vanishes 

on UC x B, then 

uniformly in t E B. 2 

2 UC denotes the complementary of U with respect to a set determined by the 
context; here, UC = IR \ U. 
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Proof: By continuity, 8x<p(x, t) =J- 0 on a certain cube U' x B' containing (xa, ta). 

The operator D = a ( t) 0 8x is thus weIl defined on this cube, where it satisfies 
x'P x, 

Deirr.p(x,t) = ircirr.p(x,t) and Dt = -8x 0 a ( t)' Let U x B ;:) (xa, ta) be a cube whose 
x'P x, 

dosure is in U' x B'. If f(x, t) satisfies the asserted properties, then for any N ;;::: 0 

and t E B 

where the constant eN does not depend on t E B. o 

The multidimensional analogue follows: 

Theorem 1 Suppose \7 x<p(xa, to) =J- 0 for a given (xo, to) E ]Rd X ]Rm. Then, there 

exists an arbitrarily small cube, U x B, containing (xo, ta) su ch that the following 

holds: if the amplit1.lde, f(x, t), is smooth in the neighborhood of]Rd x Band vanishes 

on UC x B, then 

uniformly in t E B. 

Proof: By assumption, 8x(k) <p(xo, ta) =1= 0 for a certain 1 ~ k ~ d, say, for k = 1. 

Interpreting (X(2), ... ,X(d), t) as a parameter, there exists an arbitrarily smaU cube, 

U1 x (U2 X ... X Ud X B), containing (x~1);x~2), ... ,x~d),ta) on which the previous 

12 



lemma applies. Renee, if f(x, t) satisfies the asserted properties, then 

III eir
4?(x,t) f(x, t) dx(l)1 :::;; ~: 

. . (2) (d) - - - • umformly III (x , ... , x . , t) E U2 X ... X Ud X B. In partlcular, 

uniformly in t E B. D 

Scholium A similar result holds when considering oscillatory integrals over the 

torus, 

( eir<p(x,t) f(x, t) dx, 
IFd 

without stationary phase point. One then assumes f (" t) is periodic for every t (in­

stead of being compactly svpported). The same proof works, due to the absence of 

boundary term when integrating by parts a smooth periodic function. 

2.1.1 Cauchy Principal Value 

We now turn our attention to Cauchy principal values of oscillatory integrals 

without stationary phase point. To this end, we now consider a parameter (e, t) E 

]R x ]Rm and a phase, r.p(x; e, t), smooth in (x; e, t) E ]Rd x (]R x ]Rm). We thus let 

Ir(r; e, t) = ( ei<p(x;e,t) f(x; e, t) dx 
J~d 
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and study 

P.v.j -l-I .r(r; ry, t) dry = lim 1 -l- I .r(r; ry, t) dry 
117-e l<o ry - e éto é<I17-e ld ry - e 

for a given <5 > O. Our results are based on the following elementary estimate: 

Lemma Suppose f (h) is a contin uously differentiable function in the neighborhood 

of [-0, <5], where ° > ° is given. Then, for any é E ]0, <5[ 

Il f(hh) dhl ::::; 26 max 11'(h)l· 
é(lhl(o Ihl(o 

In particular, 

I
p.v.jO f(hh) dhl ::::; 2<5 max 11'(h)l. 

-0 Ihl(8 

Proof: By the mean value theorem, there exist numbers IÇhl < <5 such that 

Il f(h) dhl - 110 
f(h) -hf ( -h) dhl 

é(lhl(o h ~ 

110 

21'(Çh) dhl 

::::; 26 max 1 l' ( h) 1· 
Ihl(o 

o 

Theorem 2 Suppose \7 x'P(xo, 0, ta) i= 0 for a given (xa, ta) E ]R.d X ]R.m. Then, there 

exists an arbitrarily small cube, U x B, containing (xa, ta) and an arbitrarily small 
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b > 0 s1.lch that the following holds: if the ampUtude, f (x, h, t), is smooth i'!1' the 

neighborhood of Rd x [-0,0] x Band vanishes on UC x [-0,0] x B, then 

un~formly in t E B. 

Proof: By the lemma it suffices to estimate 8hI.r(r, h, t). In fact, the dominated 

convergence theorem implies 

8hI.f(r, h, t) = r eiT<p(x,h,t) (8hf(x, h, t) + ir f(x, h, t)8h<P(x, h, t)) dx. 
JlRd 

Renee, by Theorem 1 there exist an arbitrarily small cube, U x B, containing (xo, to) 

and an arbitrarily small 0 > 0 such that for f(x, h, t) as stipulated 

uniformly in (h, t) E [-0,0] x B. The result follows. D 

Applying the above to the phase cjJ(x, h; e, t) = <p(x, h + e, t) and the amplitude 

j(x, h; e, t) = f(x, h + e, t), one obtains: 

Corollary Suppose \7 x<p(xo, eo, to) =1= 0 for a given (xo, eo, to) E Rd X R x}Rm. Then, 

there exist an arbitmrily small cube, U x B, containing (xo, to) and an arbitmrily 

smallo> 0 such that the following holds: if the amplitude, f(x, e, t), is smooth in the 

neighborhood of Rd x [eo ~ 0, eo + 0] x Band vanishes on UC x [eo - b, eo + b] x B, 
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then 

I
p.v. r If(r, Tl, t) dTlI = O(r-OO ) 

JI17 -el<8 fi - e 

uniformly in (e, t) E [eo - 5, eo + 5] x B. 

2.2 Oscillatory Integral with Non Degenerate Stationary Phase Points 

2.2.1 Quadratic Phase 

We now investigate the decay of oscillatory integrals admitting non degenerate 

stationary phase points. Via the Morse lemma, which is proven below, our study 

reduces to oscillatory integrals whose phases are canonical, not degenerate quadratic 

forms: 
s d 

Q(x) = I)x(jl)2 - L (X(k l )2, 
j=1 k=s+1 

where 0 ~ s ~ d. 

Exceptionally, in the next thrcc lemmas the variable r E IR is allowed to be 

negative. Moreovcr d = 1 (so x varies in IR). 

Lemma Suppose Irl > 1. For alll E N there exist constants cyl E C independent 

of Irl su ch that 
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Proof: Let us denote by (.)! the braneh of the square root whose singular eut is 

the positive imaginary axis. Let z = (1 - ir)!x. Then, 

1 e-(1-i1')x
2 Xl dx = (1, e- z2 Zl dZ) [(1 - ir)~rl-1, 

where r is the oriented path (1 - ir) h~ .. Observe that 

1 1 (1 )! (1 - ir)2 = O"1'lrl 2 -:;: - i , 

where 

if r> 1 

if r < -1 

(so 0"1' does not depend on Irl). Moreover the Taylor expansion 

00 

[( .)1.]-1-1 L (1) ]' w - 1 2 = a, w' 
.7 

j=O 

(2.1) 

(2.2) 

(2.3) 

is valid for alllwl < 1, by ehoiee of the braneh of z!. Thus, substituting w = sgn(r) I~I 

in the ab ove , the result follows from (2.1), (2.2), and (2.3). o 

Lemma Suppose f(x, t) is smooth in the neighborhood of IR x Band vanishes on 

UC x B, where U c IR and B c IRm are cubes. For any l E N there exists a Cl > 0 

independent of Irl sati,~fying 

17 



uniformiy in t E B, 

Proof: Let X(x) be a compactly support cd smooth function on IR such that 0 ~ 

X(x) ~ 1 everywhere and 

if 

if 

Ixl ~ 2 

Ixl ~ 1. 

For an arbitrarily fixed [ > 0, IR eirx2 xl f(x, t) dx = l + II, where 

Concerning l, therc cxist constants (generically denoted by Const ) independent 

of t E B, but depending on l, satisfying 

1
26 

III ~ Const Ixll dx = Const [1+1, 

-26 

Concerning II, let D = 1. 0 ox, which is weU defined on the support of the x 

, d S' 1 D fi irx
2 

mtegran, mce 2ir xes e , 

Letting F(x, y, t) = f(x, t)(l - X(y)), notice that 
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where Fo(x, y, t) and Fl (x, y, t) are bounded on IR x IR x B. More generally, notice 

that (Dt)N F(x, xie, t) is of the form 

where Fo(x, y, t), ... , FN(x,y, t) arc bounded on IR x IR x B. Hence, 

::;;; Const (l x ll - 2N + Ixll-2N+le-l + Ixll-2N+2E-2 + ... + Ixll-N E-N) 

::;;; Const (lxll-2N + Ixll-N E-N), 

where N > l + 1 is fixcd. Thcrcforc, 

In total, 

IIII ::;;; Const Irl- N r (lxl l- 2N + Ixll-N E-N) dx 
J1xl>c 

Const Irl- N EI - 2N+1. 

where N > l + 1 is fixed. Choosing E = Irl-~ then completes the pro of. 0 

Lemma Consider a ./7J/nci'ion, f(x, t), smooth in the neighborhood of IR x B (where 

B c IRm is a cube) and vanishing when Ixl < ê (where ê > 0). Suppose that for all 
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N ~ 0 there exist a DN > 0 and an aN > 0 such that 

11.râformly in t E B. Then, 

uniformly in t E B. 

Pro of: The derivation D = ± 0 Ox is weIl defined on the support of the integrand. 

Notice that 2~rD fixes C
irx2 and Dt = -âx 0 ±. Then, 

Our assumption on the derivatives of f(x, t) makes the integral on the right side of 

the previous equation uniformly bounded in t E B, where N is arbitrarily fixed. The 

result follows. D 

In dimension one wc arc intcrcsted in the phase x 2
, so let 

Ir(r, t) = 1: eirx2 
f(x, t) dx. 

According to our convention r > O. However, since we are also interested in the 

phase -x2 , wc allow r to be negative. We are ready to compute the asymptotic 

expansion of I/(r, t) (resp. If( -r, t)) when Irl -+ 00: 
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Theorem 3 Con"ùler an amplitude, f(x, t), smooth in the neighborhood of JR x B 

and 1Janishing on UC x B, where U C IR and B C IRTT! are cubes. There exist constants, 

aj (t), depending smoothly on t E B s7.lch that 

'nniformly in t E B when r -7 00. The 8ame re81ût hold8 when r -7 -00, with 

different constants aj (t). 

Proof: Let X(x) be a smooth, bounded, compactly supported function such that 

X(x) = 1 on an interval containing U U {O}. Then, for f(x, t) as stated 

By Taylor\'l theorem (in dimension 1), for any fixed N there exists a polynomial, 

N 

Pt(x) = L bl(t)Xl , 
1=0 

and a smooth remainder, Rt(x), both depending smoothly on (x, t) E lR x B, such 

that 

Thus, If(r, t) decomposes into l + II + III, where 

N 

l L bl(t) r e(ir-l)x
2 xl dx, 

1=0 JlR 
II 1 e(ir-l)x

2 
XN+l Rt(x)x(x) dx, 

III 1 c(ir-l)x
2 
Pt(X)(X(X) - 1) dx. 
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Concerning l the first lemma gives the existence of cY) E C such that for any 

tri > 1 

N 00 

l L b1(t)lrl-
1
1
1 L cY)lrl-.i 

1=0 .i=0 
N N 

Irl-! L bl(t)lrl-~ L cY)lrl-.i + L bl(t)lrl- lt1 L c;l)lrl-.i. 
1=0 .i~,N2-1 1=0 .i> N:;l 

Notice that 
N 

L bl(t)lrl-111 L c;l)lrl-.i = O(lrl-~-l) 
1=0 .i> N:;l 

uniformly in t E B wh en r -t 00 (resp. r -t -(0). Consequently, we have found 

coefficients, ak (t), smooth in t E B, satisfying 

uniformly in t E B. 

Moreover, the last two lemmas give respectively 

II = O(lrl-~-l) and III = O(lrl-OO
) 

uniformly in t E B. In total, 

N 

Ir(r, t) = Irl-~ L ak(t)lrl-~ + O(lrl-~-l) 
k=O 

uniformly in t E B whon r -t 00 (resp. r -t -(0), as dosired. o 
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Our treatment of a parameter t E IRm permits to deduce from the previous 

theorem its multidirnensional analogue by induction. lndeed, let us consider the 

phase 
8 d 

Q(x) = L(x(j))2 - L (X(k))2, 
j=l k=s+l 

where x E ]Rd and ° ~ s ~ d. Rcturning to the convention that r > 0, we let 

I.f(r, t) = r éQ(x) f(x, t) dx. 
JIRd 

Then, 

Corollary Consider an amplitude, f(x, t), smooth in the neighborhood of]RdxB and 

vanishing on UC x B, where U c IRd and B c IRm are cubes. There exist constants 

aj (t) depending smoothly on t E B such that 

uniformly in t E B, when r --7 00. 

Proof: Suppose the result holds for a certain d - 1. Let Xl = (x(1) , ... ,x(d-l)) and 
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Recall that U may be written U1 x ... X Ud . Then, by the inductive hypothesis, for 

an arbitrary N ~ ° 
I.f(r, t) = 

uniformly in (x(d), t) E Ud x B. The following estimates then hold wh en r -; 00, 

uniformly in t E B: 

Since N is arbitrary, this completes the proof. D 

2.2.2 Morse Lemma 

The investigation of oscilla tory integrals with non degenerate stationary phase 

points reduces to the ab ove case by means of Morse'", lemma, which we now prove. 

Let the anticipated phase, <jJ(h, t), be a smooth function in (h, t) E Rd X Rm 

satisfying 

<jJ(0, t) = 0, \7 h<jJ(O, t) = ° and det D~<jJ(O, t) =J. ° 
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for al! t E: B, where B c ]RTn i~ a given cube containing a given ta E: ]Rm. Such 

a fundion can be expressed like a quadratic form, but with coefficients varying 

smoothly in (h, t): 

Lemma In the above circ7.lmstances there exist junctions, cjJjk(h, t), smooth in 

(h, t) E ]Rd X ]Rm and "at?:,~f.ljing 

d d 

4>(h,t) = LL4>.1k(h,t)h(J)h(k), 
.1=1 k=l 

Proof: Using our hypothcses on cjJ(h, t), the fundamental theorem of calculus and 

integration by parts give for any t E B 

4>(h, t) = 11 8s (4)(Ût, t)) d" = 11 (1 - ,,)8; (4)(sh, t)) ds. 

Expanding 8.; (4)(sh, t)) in the above gives the result. o 

The ncxt step consists of applying Lagrange'" algorithm, which is better under­

stood using matrices. Using the standard basis on ]Rd, h is represented by a column 

(also denoted by h), while the "quadratic form" given by the previous lemma is rep­

resented by a d x d matrix, denoted by <I>(h, t). The (j, k)-th element of <I>(h, t) is 

then given by the function 4>jk(h, t), so the previous lemma gives 

4>(h, t) = ht<I>(h, t)h. 
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For any given t E B the rank of CfJ(O, t) is read through the Hessian of c/J(h, t) using 

the foIlowing, straightforward relation: 

Lemma Under the above circumstances, for any t E B, D~<p(O, t) = 2<I>(O, t). 

In order to perform Lagrange's algorithm one uses the following elementary 

line/column operations: 

• Givon a scalar cf 0, to multiply the j-th row and then the j-th column by c, 

which is denoted by C Lj (c); 

• Given a scalar c E C, to add c times the k-th row to the j-th row and then c 

times the k-th column to the j-th column, which is denoted by CLjk(C); 

• To interchange the j-th row with the k-th row and th en the j-th column with 

the k-th column, which is denoted by CLjk . ., 

By the previous lemma, since det D~,c/J(O, t) f 0 and since <I>(O, t) consists of 

smooth elements, there oxists a cube Va x Bo C ~d X B containing (0, to) such that 

<I>(h, t) is invertible for aIl (h, t) E Va x Bo. 

Without loss of genorality cPll (h, t) f 0 on a certain cube VI x BI ç Va x Bo 

containing (0, to). Otherwise, cP11(h, t) vanishes at (0, to). However, considering the 

Laplace expansion of the above determinant along the first row, there exist a cube, 

V{ x B~ ç Va x Bo, containing (0, to) and an index 1 ~ k ~ d such that c/Jlk(h, t) =1= w 
for aIl (h, t) E V{ x B~, Applying CL1k(1) to <I>(h, t), the resulting upper left element 

does not vanish on V{ x B~ (which thon replaces 1Ii x Bd, as desired. 
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Then, one may reduce the upper 1eft e1ement to ±1 (depending on the sign of 

$l1(h, t), which does not change on V1 x Bd by applying CL1(1$11(h, t)I-~) to (the 

possibly refreshod) CÏl(h, t). Finally, this resulting constant on tho uppor loft corner 

permits to cancel the rest of the first line and column, by applying C Lkl (f(h, t)) for 

k = 2, ... ,d sllccessively-whcrc f(h, t) is eqllal to the element to cancel (up to the 

sign). AlI these operations are represented by matrices having smooth elements in 

(h, t) E VI X BI' They transform <I>(h, t) in a block diagonal matrix, having ±1 as 

its first block and a square (d - 1) x (d - 1) matrix as its second block. 

Repeating this procedure for the second block, <I>(h, t) is transformed in a block 

diagonal matrix having ±1 as its first two blocks and a square (d-2) x (d-2) matrix 

as its third block. AlI thc operations used for this second step are represented by 

matrices having smooth clements in (h, t) E V2 X B2' where 

So on and so forth one transforms CÏl(h, t) into a diagonal matrix having elements 

±1 only. AlI the required operations are smooth (in the previous sense) for (h, t) 

varying in a cube Vd x Bd containing (0, to). One then applies permutations CLjk , 

so the resulting matrix becomes diag(I, ... , 1, -1, ... , -1), where the element 1 is 

repeated, say, s times. Since s does not depend on (h, t) E Vd X Bd, the previous 

lemma and the Sylvester Inertia Theorem permit to recover s from the signature of 

D~$(O, to), which is then (s, d - s, 0). 

In summary, we have proven: 
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Lemma In the above circ1J,mstances there exist a cv,be, Vd x Bd, containing (0, ta) 

and a nonsingular linear map, Q(h, t), whose matrix elements are 8mooth in (h, t) E 

Vd x Bd s1J,ch that 

Q(h, t)tC])(h, t)Q(h, t) = diag(1, ... , 1, -1, ... , -1). 

In the above the element 1 is repeated s times, where (s, d - s, 0) is the signature of 

D~<p(O, ta). 

It is thus tempting to considcr the non linear mapping h 1--+ Q(h, t)-lh defined 

on Vd as a potential change of variables given a fixed t E Bd' Considering t E Bd 

as a parameter, {Q(h, t)-lhLEBd is indecd a family of smooth mappings depending 

smoothly on t in the strong sense that (h, t) 1--+ Q(h, t)-lh is jointly smooth on 

Vd x Bd, Moreover, all thcse mappings map 0 to O. They really consist of invertible 

changes of variables wh en restricting suitably the ranges of h and t, as shown below: 

Lemma In the above circumstances there exist8 a cube, V' x B', such that 

on which 

(h, t) 1--+ (Q(h, t)-lh, t) 
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is a smooth diffeomorphism. In add7:tion, this diffeomorphism maps V' x B' onto an 

open bounded set, hence contained in a certain cube V' x B'. 

Proof: Let F(h, t) 

shows that 

(Q(h, t)-lh, t) for (h, t) E Vd X Bd, A direct computation 

clet D(h,t)F(O, ta) = clet Q(O, tO)-l, 

which is not zero. Thus, F(h, t) is a local cliffcomorphism in a neighborhood of (0, ta). 

Choosing a cube, VI x BI :3 (0, ta), whose c10sure is inc1uded in this last neighborhood 

(and in Vd x Bd) then yields the result. D 

The previous diffeomorphism maps VI x BI onto a bounded open set V ç VI X BI. 

We want to fix t E B', so let Vt = {h E:!Rd ; (h, t) EV}. Then, Vt ç V' is an open 

set in :!Rd. Let us consider the restriction 

which is also a smooth diffeomorphism. It may be used as a smooth invertible change 

of variables by setting 

for h E V'. Notice that ° is then mapped to O. Let Pt be the inverse change of 

variables, so 
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for hE Vt. Then, h = Pt-l(h) = Q(h, t)-lh, which implies h = Q(h, t)h and hence 

cjJ(h,t) 

cjJ(Q(h, t)h, t) 

- htQ(h, t)t<I>(h, t)Q(h, t)h 
s d 

LOi(j))2 - L (h(k)? 
j=l k=s+l 

We have thus proven the Morse lemma with special care orthe parameter t: 

Theorem 4 Given a cube B c }Rm containing a fixed ta, suppose cjJ(h, t) is smooth 

in (h, t) E ]Rd X Band satisfies 

cjJ(O, t) = 0, \lhcjJ(O, t) = 0, and det D~cjJ(O, t) =1- 0 

for an t E B. Then, there exists a cube V' x B' C ]Rd X B containing (0, ta) such 

that the following holds: for all t E B' there exists an invertible change of variables 

on V', smooth and with smooth inverse, mapping 0 to 0, which satisfies 

s d 

cjJ(Pt(h), t) = L(li(j))2 - L (h(k))2. 
j=l k=s+l 

The res1J,lting family of changes of variables, {Pt(h)}tEB" depends d~fJeomorphically 

on t E B' in the following sense: setting Vt = pt-
1 (V'), 

fj = U Vt x {t} 
tEB' 
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is an open set in }Rd X }Rm (contained in a cube VI x BI) on which 

D --+ Vi X BI, (h, t) f-t (Pt(h), t) 

is a diffeomorphism. 

2.2.3 Continuation 

The corollary of Theorem 3 joined with the Morse lemma finally yield: 

Theorem 5 Suppose 'P(x, t) 1:S smooth in (x, t) E }Rd X }Rm and satisfies 

Then, there exi8t8 an arbitrarily small cube, U x B, containing (xa, ta) such that the 

following holds: if f(x, t) is smooth in the neighborhood of}Rd x Band vani8hes on 

UC x B, then 
00 

I.f(r, t) ~ eire(t)r-~ L aj(t)r-~, 
j=a 

where () (t) is real valued, the aj (t) 's are complex v altted, and ail these fanctions are 

8mooth in t E B. Moreover, these estimates are uniform in t E B. 

Proof: By the Implicit Function Theorem there exists a smooth function 

defined on a cube Ba ::7 ta sueh that (\7 x'P)(x(t), t) = 0 for an t E Ba and x(ta) = xo. 

Without loss of generality we also suppose 

det D;<p(x(t), t) =f 0 
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for aIl t E Bo. Let 

rjJ(h, t) = cp(x(t) + h, t) - cp(x(t) , t), 

which is smooth in (h, t) E :[Rd X Bo. Then, rjJ(h, t) satisfics the hypotheses of Morse's 

lemma. Renee, there exists a cube, V' x B', containing (0, to) and whose dosure is 

in :[Rd x Bo, and a family of diffeomorphisms 

p-l: V' --+ 15 C V' t t - (where t E B') 

such that, letting h = Pt-1(h), one obtains 

s d 

rjJ(Pt(h) , t) = ~)h(j))2 - L (h(k))2. 
j=l k=s+l 

Notiee that 0 = Xo -x(to) E V'. Consequently, there exists an arbitrarily small cube, 

U x B :3 (xo, to), such that 

(x - x(t), t) E V' X B' 

for aIl (x, t) E U x B. In other words, U x B is mapped onto a region whose dosure 

is in V' x B' via the change of variables (h, t) = (x - x(t), t). 

Let us consider an amplitude, f(x, t), satisfying the asserted properties. Since 

for a fixed t E B the integrand in 

If(r, t) = ( eiT<p(x,t) f(x, t) dx 
J~d 

is supported in U, it follows that the right-hand side in 

If(r, t) = ( eiT<p(h+x(t),t) f(h + x(t), t) dh = eiT<p(x(t),t) ( eir<p(h,t) f(h + x(t), t) dh 
J~d J~d 
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is supported in V', Then, hy Morse's lemma the change of variahles 'iL = Pt-l(h) is 

available, yielding 

If(r, t) = cir<p(x(t),t) f_ cirQ(h,) f(Pt(h) + x(t), t)Jt(h) dh, 
lDt 

where Jt(h) is the Jacobian and 

oS d 

Q(h) = 2:(hU))2 - 2: (hU))2, 

j=1 j=8+1 

Since the amplitude in the above extends smoothly on ~d x Band vanishes for 

h ~ V', the corollary of Theorem 3 then completes the proof. o 

Finally, the fol1owing result is an intercsting application of our treatment of a 

parameter: 

Theorem 6 Suppose cp(x, t) is smooth in (x, t) E ~d X IRm and satisfies 

where K, ~ 1. Then, there exists an arbitrarily small cube, U x B, containing (xa, ta) 

such that the following hold8: if f(x, t) i8 8mooth in a neighborhood ofIRd x Band 

vanishes on UC x B, then 

uniformly in t E B, 
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Proof: Since the rank of D;rp(xo, t~) is equal to the order of its largest non zero 

principal minor, there exist indices, jl,'" ,j"" such that, letting 

c = (xCj]) x(j,,)) 
~ , ... , , 

det D~(xo, t~) # O. Aner permuting the variables we write 

x = (ç, X), and xo = (ço, Xo), 

with the obvious definitions of X, ço, and Xo. Interpreting (X, t) as a parameter the 

previous theorem gives the result. o 

Remark Using the previo7J,s decomposition one cannot derive the complete asymp­

totic expansion of the considered oscillatory integral, sinee the resulting coefficients 

would be oscillatory integrals themselves! Their decay is not known a priori. 

2.2.4 Cauchy Principal Value 

We now derive similar results for Cauchy principal values of oscilla tory integrals 

with non degenerato stationary phase points. To this end let us consider first 

p.v.l
OC 

eirh f(h) dh = lim f eirh f(h) dh, 
-00 h dO J1hl>c: h 

where the amplitude, f(h), is smooth in hE IR and compactly supported. 

Notice that the lemma of Theorem 1 generalizes to a complex valued phase 

provided that the path of integration remains in C+, explicitly: Given a smooth 
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regv,lar 3 path, ,(t), lying in the cl08ttre of C+, and an amplitv,de, f(z) = f(x, y), 

smooth in x and compactly 81J,pported along this path, 

when r -4 00. 

Lemma Sv"ppose f(h) is smooth in h E]R, compactly sv,pported, and analytie at O. 

Then, 

100 . f(h) 
p.V. -00 elTh

-
h
- dh = nif(O) + O(r-OO

) 

when r -4 00. 

Proof: For c > 0, let Gê be a smooth regular path starting at -2c, going through 

[-2c, -cl, then avoiding the origin, but staying in 

{z E C; 1Re (z) 1 < E and 0 < lm z < E}, 

and finally going through [E, 2E J. Since 

eirzf(Z) = f(O) + analytic 
z z 

in a punctured neighborhood of the origin, 

3 A smooth path, ,(t), is regular if ,'(t) =1- 0 for any t. 
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Thus, letting le = ]-00, -2.s] * Ce * [2.s,00[ (where * denotes the concatenation), 

which is smooth and regular, 

p.v. ~ cirhj~) dh -1fij(O) lim 1 eirz j (z) dz 
elO "le Z 

1 eirz j(z) dz, 
'y z 

whcrc 1 = rea for a fixcd, but small cnough fo > O. The rcsult follows from the 

statement preceding the lemma. o 

The analyticity assllmption may be removed in the following way-~where a 

parameter t E lRm is also introduced for later purpose: 

Theorem 7 Given a > ° and a cube B C lRm
, consider a junction, j(h, t), smooth 

in a neighborhood of lR x Band vani8hing on ]-a, a[C x B. Then, 

100 'hj(h,t) . 
p.v. -00 d r h dh = 7rlf(O, t) + O(r-OO

) 

tmiformly in t E B, when r ----+ 00. 

Proof: Let X(x) be a smooth function in x E lR, compactly supported, such that 

° :::;; x(x) :::;; 1 on lR and x(x) - 1 in a neighborhood of O. The considered principal 

value then decomposes into l + II + III, where 

l ~ cirhf(~, t) (1 - X(h)) dh, 

II ~ eirh j(h, t) ~ j(O, t) X(h) dh, and 

III f(O, t)p.v.l eirhX~h) dh. 
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The lemma of Theorem 1 implies 1 = O(r-OO
) and II = O(r-OO

) uniformly in t E B.4 

Since X(x) is analytic at 0 and X(O) = 1, the result follows from the lemma. 0 

We now turn our attention to a phase, rp(h, t), smooth in (h, t) ER x Rm, su ch 

that Ohrp(O, to) i- O. Our study rcduces to the previous theorem by a change of 

variables, regarding which the following elementary result is helpful: Given a cube 

B c Rm, suppose f(h, t) is smooth in a neighborhood of {O} x B, where it satisfies 

f(O, t) = 0 and ohf(O, t) i- O. 

Then, h~;(~:~)t) extends smoothly to a neighborhood of {O} x B, the extension being 

equal to 1 when h = O. 

Lemma Suppose Ohrp(O, to) i- 0 for a certain to E Rm. There exist ab> 0 and 

an arbitrarily small cube, B, containing to such that the following holds: if f (h, t) is 

smooth in a neighborhood of R x Band vanishes on ]-b, b [e x B, then 

p.v.l einp(h,t) f(~, t) dh = O"7rif(O, t)eiT<p(O,t) + O(r-OO ) 

uniformly in t E B, where 0" = sgn(ohrp(O, to)). 

4 More precisely, the result follows from the proof of this lemma, by noticing that 
U' x B' may be chosen to be equal to R x IRm-since the derivative of the phase is 
1 i- 0 everywhere. 
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Proof: By continuity there exists a cube, ]-0', 0'[ x B' :3 (0, ta), on which âh'P(h, t) =J. 

O. Let 'Pt(h) = 'P(h, t) - 'P(O, t) and F(h, t) = ('Pt(h), t), which is smooth in (h, t) E 

IR x IRm. Then, 

on ]-0', 0'[ x B'. Henee, F(h, t) admits a smooth inverse, c(ii, t) = ('l/JtCii) , t), defined 

on F(]-O', 0'[ x B'). Notice that 'Pt(O) = 0 = 'l/Jt(O) and 

'l/J~(O) = 'Pi~O) =J. O. 

In particular, (J = sgn ('l/J~ (0)). Morcover, by the statement preceding the lemma 

h'l/J~(h)/'l/JtCh) has a smooth extension to a neighborhood of {O} x B (where B c B' 

is arbitrarily chosen), which is equal to 1 wh en iL = O. For f(h, t) of the stipulated 

form and t E B, the change of variables h = 'Pt (h) then gives 

where 

- - h'l/J~(h) g(h, t) = f('l/Jt(h) , t) _. 
, 'l/Jt(h) 

Notice that g(O, t) = f(O, t). Moreover, g(h, t) vanishes when t E Band h ~]-J, J[ 

for a certain J > O. The previous theorem thus applies, which completes the pro of. D 
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Let us now eonsider a phase, y(x, h, t), smooth in (x, h, t) E JRd X JR x JRm, and 

If(r, h, t) = r eir<p(x,h,t) f(x, h, t) dx. 
J~d 

Theorem 8 Suppose 'V Xy(xa, 0, ta) = 0, det D;<p(xa, 0, ta) =1= 0, and 

Then, there exist a 0 > ° and an arbitrarily small cube, U x B, containing (xa, ta) 

such that the following hold",: if f(x, h, t) is smooth in the neighborhood ofJRd x lR x B 

and vanishes on (U x ]-0, olt x B, then 

p.v. r *If(r, h, t) dh rv cirf)(t)r-~ f aj(t)r-~ 
J~ j=a 

uniformly in t E B, where e(t) and aj(t) are smooth in the neighborhood of B. 

Proof: Interpreting (x, t) E JRdxlRm as a parameter, the previous lemma holds, sinee 

8h<p(xa, 0, ta) =1= o. Moreover, interpreting (h, t) E lRxlRm as a parameter, the theorem 

5 also holds, sinee 'V x<p(xo, 0, to) = 0 and det D;y(xo, 0, to) =1= O. Consequently, there 

exist a cS > 0 and an arbitrarily small cube, U x B, containing (xa, ta) such that for 

f(x, h, t) of the stipulated form 

p.v.l eir<p(x,h,t) f(X~h, t) dh = (J1rif(x; 0, t)eir<P(x,a,t) + O(r-OO ) (2.4) 

uniformly in (x, t) E U x Band 

(2.5) 

uniformly and smoothly in t E B, both when r ~ 00. 
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By Fubini's and the dominated convergence theorems 

p.v.1 * I.f(r, h, t) dh = 1d p.v.1 eir<p(x,h,t) f(Xhh, t) dh dx, 

where the dominator is given by the lemma of Theorem 2. By the equation (2.4), 

the ab ove is cqual to 

r (TTrif(x, 0, t)eir<P(x,O,t) dx + O(r-OO ) 

J~d 

uniformly in t E B. The equation (2.5) then yiclds the result. 

In the same way as we derived from Theorem 2 its corollary, 

Corollary Suppose 'V x'P(xo, eo, ta) = 0, det D;'P(xo, eo, ta) =1= 0, and 

o 

Then, there exist a 6 > a and an arbitrarily smalt cube U x B containing (xo, ta) such 

that the following holds: ~f f(x, e, t) is smooth in the neighborhood ofIRd x IR x Band 

vanishes on (U x ]eo - 6, eo + 6[)C x B, then 

uniformly in (e, t) E [eo - 6, eo + 6] x B, where e(e, t) and aj(e, t) are smooth in the 

ne(qhborhood of [eo - 6, eo + 6] x B. 

More generally, by the argument used in Theorem 6 (which we repeat!), 
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Then, there e.rist ab> 0 and an arbdrarily smalt cube, U x B, containing (xo, to) 

such that the following holds: if j(x, e, t) is smooth in the neighborhood ofJRd x JR x B 

and vanishes on (U x ]eo - 0, eo + olt x B, then 

uniformly in (e, t) E [eo - 0, eo + 0] x B. 

Proof: There exist indices, jl"" ,j"" such that, for 

det D~(xo, to) f O. After permuting the variables we write 

x = (ç, X) and Xo = (ço, Xo) 

with the obvions definitions of X, ço, and Xo. Interpreting (X, t) as a parameter, 

the above corollary gives the existence of a 0 > 0 and an arbitrarily small cube, 

U' x (U" x B) 3 (ço;Xo, to), sueh that, letting U = U' x U" 3 xo, for f(x, t) of the 

stipulated form 

p.v. r _1_ r eir<P(Ç;X,17,t) j(ç; X, 'Tl, t) dç d'Tl = O(r-~) 
JIT{ 'Tl - e JIT{I< -
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uniformly in (X, e, t) E U" x [eo - 6, eo + 6l x B. Therefore, 

r p.v. r _1_ r einp(ç;X,1),t) f(ç; X, 1], t) dç d1] dX = O(r-~) 
J~d-K J~ 1] - e J~K 

uniformly in (e, t) E [eo - 6, eo + 0'] x B. By Fubini's and the dominated convergence 

theorems this last integral is equal to 

r p.v. r _l_eiT<P(x;1),t) f(x; 1], t) d1] dx, 
J~d J~ 1] - e 

and hence (for the same reasons) to 

p.v. r r _l_eiT<P(x;1),t) f(x; 1], t) dx d1], 
J~ J~d 1] - e 

where both times the dominator is given by the lemma of Theorem 2. The proof is 

thus complete. D 

2.3 Fourier Transforms over Level Surfaces of Analytic Functions 

We now consider a real valued function, <l>(x), analytic in x E ]Rd. Usually, the 

level surfaces of <l> (x) consist of sever al cbnnected components; let us focus on sorne 

of them, say, the connected components whose reunion is given by 

r(e) = {x En; <l>(x) = e} 

for an appropriate domain n ç ]Rd. 

Given a function, f(x), summable on r(e), its Fourier transform over r(e) is 

defined as 

F(r(e), f)(n) = r ein
.
x f(x) dS(x) 

Jr(e) 
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for n E 7l..d , where dS(x) denotes the element of surface on r(e). In this section we 

derive the decay of F(r(e), f)(n) wh en Inl --* 00 and show its uniformity when e 

varies on an appropriate intcrval. Wc then derive an analogous result for the Cauchy 

principal value of such a Fourier transform. 

Let a' < b' and S' = UeEla/,b l [ r(e) be given. We assume: 

Assumption A 

• <I>(x) is real valued and analytic in :!Rd; 

• V'<I>(x) -1= 0 for all x E S'; 

• r(e) is compact for all e E la', b'[. 

The second statemcnt in Assumption A and the Implicit Function Theorem ensure 

that r(e) is a regular smooth surface for any e E Ja', b'[. In particular, r(e) may be 

covered by real-analytîc local parameterizations, U ~ r( e), where each U C :!Rd- 1 

is open, each O"(u) is a smooth homeomorphism between U and dU) in the topology 

of r(e), and 

U O"(U) = r(e). 
(U,a) 

Moreover, if two of the previous local parameterizations, (U,O") and (V, T), have a 

non empty overlap, V = O"(U) n T(V) ç f(e), then the change of parameterizations 

T- 1 oO"(u) is a real-analytic diffeomorphism from O"-l(V) to T-1(V). 
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Given a local parameterization, (U, 0"), the restriction of the Fourier transform 

to 0"( U) gives 

F(O"(U), f)(n) 1 ein.x f(x) dS(x) 
a(U) 

lu ein.a(n) f(O"(u))J(u) du 

for any f(x) summable on O"(U), where J(u) du is the element of surface. Of course 

the decay of such an intogral wh on Inl --+ 00 is studied by means of the stationary 

phase method. 

Let n = rw be the polar form of n E 7/.,d, so r = Inl and w E Sd-l. The phase 

in the previous integral thon bccomcs cp( u, w) = w . 0"( u). Let us consider a point, 

Xo = O"(uo), in O"(U). Remarkably, the fact that Uo is or is not a stationary phase 

point depcnds on intrinsic propcrt7:cs of r( e) only; if Uo is stationary, the rank of 

D;,cp(uo,w) is also intrinsic. lndccd, 

Theorem 10 In the above circumstances Uo is stationary if, and only if w is per-

pendicular ta r( e) at Xo = otuo). Then, the Tank of the Hessian of cp( u, w) at Uo is 

equal to the number of non vani8hing principal curvatures of r(e) at xo. 

Proof:· Notice that Uo is stationary iff 

Since the tangent plane of r(e) at Xo is generated by 

{dl1(j)O"(uo) ; j = 1, ... , d - 1}, 

the first statement follows. 
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Suppose Uo is a stationary phase point and consider any other local parame-

terization, (V, T), of a neighborhood of Xo = O"(uo), Let D = dU) n T(V) and 

F(v) = 0"-1 OT(V). Then, F(v) is a smooth diffeomorphism from T- 1(D) to 0"-1(D) 

. satisfying 

W' T(V) = w, O"(F(v)). (2.6) 

Let Vo = T- 1(XO), so (\7 11 (w. O"))(F(vo)) = \7 11 (w· 0") (uo) = O. Then, the chain rule 

applied to (2.6) gives 

Since F( v) is a diffcomorphism, DvF( vo) is invertible and hence 

rankD~(w. T)(VO) = rankD~(w· O")(uo), 

which shows that this last rank is intrinsic. 

Finally, since Uo is a stationary phase point, w is perpendicular to r(e) at Xo, so 

Moreover, thcrc exists a j E {l, ... , d} such that w(j) =1 O. Suppose without loss 

of generality W(d) =1 0, and hence Ox(dl<l>(XO) =1 O. Let w = (x(1), ... , x(d-1») and 

Wo = (x61
), ... , x6d

-
1»). By the Implicit Function Theorem there exists a func­

tion, h(w), smooth in the neighborhood of wo, such that <l>(w, h(w)) = e and 

h(wo) = x6d
). Hence, ,(w) = (w, h(w)) gives a smooth local parameterization of 

a neighborhood of Xo as a graph of a smooth function. DifferentiaI geometry then 

shows that rank D;)h( w) is equal to the number of non vanishing principal curvatures 
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at Xa E r(e). Since 

the pro of is complete. o 

2.3.1 Joint system of parameterizations 

Given a fixed ea E Ja', b'[, we now construct a system of parameterizations for 

r(ea) compatible with aIl r(e)'s for e varying in a small neighborhood of ea (so the 

derived estimate for Fourier transforms will be uniform in e). We make the following 

hypothesis: 

Assumption B For every e E Ja', b'[, r(e) admits at least K, non vanishing princi­

pal C1.lrvatures at any point, where K, ~ 1 is a fixed integer. 

The plan is the following: starting from an arbitrary system of real-analytic 

parameterizations for r( ea), we will parametri;w r( e) using the local coordinates of 

r(ea), by lifting them orthogonally to r(ea) (for e very close to ea). 

Let {(U{3, r(3)}~l be a system of real-analytic parameterizations covering r( ea). 

Since r(eo) is compact, we assume M to be finite. Without loss of generality, we 

also assume rO(u) is analytic in a neighborhood of Uo, so the expression rO(u) for 

u E auO makes sense. 
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Let Xo E f(eo), say, Xo = 1j3(uo) for a given Uo E Uj3 and a given 1 ~ (3 ~ M. 

Since 'V;r<P(X) is perpendiclllar to r(eo) at any x E r(eo), we need to solve 

(2.7) 

in the neighborhood of (u, e, À) = (uo, eo, 0). The derivative at 0 with respect to 

À of the left-hand side in (2.7) is Il'V;r<p(rj3(U)) 11
2

, which is strictly positive. Hence, 

there cxists an analytic function, À( u, e), defined on an arbitrarily small cube, U' x 

]eo - 6', eo + 6'[ :3 (uo, eo), satisfying 

(2.8) 

Remarkably, À(u, e) depends on 1j3(u) only, not on its local coordinat es u: 

Lemma Suppose 1j3/(u~) = Xo and let u' = 1{;,1 olj3(u), where u varies in 

Define N (u', e) as above with respect ta 1(3/ (u') -while À( u, e) was defined with respect 

to 1(3(u). Then, À(u, e) = N(u', e) when e is close enough to eo. 

Proof: À( u, e) is the unique solution of 
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in the neighborhood of (uo, eo), similarly for >..'(u', e) with respect to "((31 (u'). Hence, 

letting F = "(/il 0 "((31 on "(/i/("((3(U(3) n"((3I(U(3I)), one obtains 

in a neighborhood of (u~, eo). By uniqueness of >..'(u', e), it follows that 

)..'(u', e) = )"(F(u') , e), 

in othcr words, that >..'(u', e) = )..(u, e) for any e sufficicntly close to eo. o 

Since the considered surfaces arc compact, this last lemma ensures the existence 

of an analytic function, A(x, e), defined on r(eo) x ]eo - 6', eo + 6'[ (where r(eo) is 

endowed with its !mrface strv,ctv,re) , such that 

x + A(x, e)'V x<I>(x) E r(e) and A(xo, eo) = o. (2.9) 

Incidentally, the function )..( u, e) has the following, interesting properties: 

Lemma For every u EU', À(u,eo) = O. In particular, 8u,(j)À(u,eo) = 0 for any 

j = 1, ... , d - 1. 

Pro of: Let Vo E U' and consider the equation 
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in the neighborhood of vo. Since the derivative of its left-hand side at 5. = 0 (with 

respect to 5.) is IIY'x iPb,6(u))112 > 0, there exists a unique implicit function, 5.(u), 

satisfying 

(2.10) 

in the neighborhood of vo. This implicit function is thus identically zero. lndeed, 

letting Vo vary in U', the family of equations (2.JO) defines piecewise a unique solution 

to 

on the whole U'. Since À( u, eo) is such a solution, it identically vanishes. 0 

Proof: In fact, since iP(xo + À( uo, e) Y' xiP(xo)) = e, the chain rule gives 

o 

The equation (2.8) permits to dcfine the following local parameterization of r( e): 

where u EU' and le - eol < 6'. Notice that O'(u, e) is real-analytic. lndeed, 
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Lemma Œ(V., e) i8 a real-analytic diffeomorphi8m in a neighborhood of (uo, eo). 

Pro of: Notice that the ambient space, lR.d , is generated by the tangent vectors of 

r(eo) at xo (namcly, duUlÎfJ(uo) for 1 :s; j :s; d - 1) and 'V x<I>(xo). The pcnultimatc 

lemma and a direct computation show that the columns of the matrix DCu.,e)Œ( Uo, eo) 

in canonical basis are 

dllulÎfJ(uo) for 1:S; j :s; d - 1 

OeÀ(UO, eo)'V x<I>(xo) for j = d, 

which are linearly independent by the last lcmma. The Inverse Mapping Theorem 

then completes the pro of. 0 

We thus select an arbitrarily small cube, U x ]eo -~, eo + ~[ :3 (uo, eo), con­

tained in U' x ]eo - ~', eo + ~'[, such that Œ(U, e) is a real-analytic diffeomorphism 

in the neighborhood of U x [eo - ~,eo + ~]. 

Let <p( u; e, w)= w . Œ( u, e) be the anticipated phase, where u EU, le - eo 1 < ~, 

and w E Bd-l. By Theorem 10, the associated stationary phase points and rank D~<p 

at these points are intrinsic properties of r( e). Let Wo E Sd-l be arbitrarily fixed. It 

appears that if Xo is a stationary phase point, then oe<P( uo; eo, wo) is also "intrinsic" 

in the following sense: 
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Theorem Il Suppose Xo = iJ(uo, eo) is a stationary phase point. Then, 

P f B Th 10 ' . t t' ± 'Yx<P(xo) 1 . l roo: y eorem ,SIDce Xo lS s,a lOnary, Wo = Il'Yx<p(xo)ll' n partlCu ar, 

Wo . OeiJ(UO, eO) 

±1 
IIV' x<I!(XO) Il V' x<I!(XO) . OeiJ(UO, eO)' 

Since <I!(iJ(u,e)) = e, the chain rule gives V'x<I!(xo) ·oeiJ(uo,eo) = 1, which completes 

the pro of. o 

Consequently, oeCP( Uo; eo, wo) t 0 if Xo is a stationary phase point. Hence, 

whether V'l1,CP( uo; eo, wo) t 0 or 

By Theorems 1, 6, the corollary of Theorem 2, and Theorem 9 there exists an ar­

bitrarily small cube, U x B eUx ]Rd, containing (uo, wo) and an arbitrarily small 

o < 0 < ,6. such that the following holds: 

If f(u; e, w) is smooth in the neighborhood of JRd-l x JR x Band vanishes 

on (U x ]eo - 0, eo + olt x E, then 
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1 1 1< 

p.v. --I.f(r; 7], w) d7] = O(r-"2), 
~7]-e 

where both estimates are uniform in (e,w) E [eo - b, eo + b] x B. 

Of course, the previous cube and associated constructions depend on the fixed 

eo, wo, and Xo E r( eo). R.epeating this procedure for aIl x E r( eo), where eo and Wo 

are still fixed, one obtains a system of real-analytic diffeomorphisms, 

and a family of cubes, {BoJ~=l' satisfying the above properties, from which one 

extracts a finite subsystem, {(Uo: x ]eo - bo:, eo + bo:[, 0"0:) }~=1' whieh eovers f(eo): 

N 

r(eo) = U 0"0: (Uo:, eo). 
0:=1 

We limit our considerations to an arbitrarily smaIl cube, B, whose closure is in­

side n:=l BŒ' and to {(Uo: x ]eo - b', eo + b'[, O"Œ)}~=l' where 0 < b' < min~=l bo: is 

arbitrarily smal!. 

By the equation (2.9) the local parameterizations 

yield the following, arguably global parameterization of f(e): 

E(x, e) = x + A(x, e)'\7 x<p(x), (2.11) 

where x E f(eo) and le - eol < b'. In particular, wh en x varies over the entire f(eo), 

L:;(x, e) describes a whole "closed" surface included in r(e) (which should therefore 

corresponds to r(e), as long as r(eo) and f(e) have the same number of eonnected 
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components). In other words, one expects 

N 

r(e) = U (J"a(Uco e). (2.12) 
a=l 

However, it is easier to shorten f/ in order to prove the previous relation. 

This may be done in the following way: suppose by contradiction there does 

not cxist a 0 such that the relation (2.12) holds for an e E ]eo - 0, eo + 0[, where 

o < 0 ~ 0'. Then there exist a sequence, {en}, converging to eo, and points, Xn, 

on f(en ), such that Xn ~ U~=l (J"cx(Ucx , en)' Letting S = U1e-eol<8 f(e), the xn's lie 

in the compact set S, so they accumulate towards a certain x* E S. Going to a 

subsequence, again denoted by Xn -+ x*, one finds 

<I>(X*) = <I>( lim xn) = lim <I>(xn) = lim en = e. 
n-+oo n->oo . n-+oo 

Therefore, x* lies in U~=l O'cx(Ua. X ]eo - 0', eo + o'[), while the xn's do not, contra­

dicting the fact that this last region is open in IRd . 

Indeed, 

Theorem 12 There e.'Eists a 0 E ]0,0'[ such that for any e E ]eo - 0, eo + 0[, ~(x, e) 

is a real-analytic diffeomorphi8m between f(eo) and r(e) (endowed with their surface 

structures) . 

Proof: The previous paragraph shows that ~(x, e) is surjective for e close enough 

to eo. By a similar argument suppose there does not exist a 0 > 0 such that ~(x, e) is 

injective for every e E ]eo - 0, eo + 0[. Then, there exist a sequence, {en}, converging 

to eo, and points, X n , on f(e n ), such that 
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for distinct points Yn and Zn on r( eo). Since the xn's accumulate towards a certain 

x* E r( eo), Yn and Zn are eventually in the same coordinates neighborhood, contra-

dicting the fact that each (J" a is a diffeomorphism. o 

We limit our considerations to the system {(Ua X ]eo - 0, eo + 0[, O"a)};;r=l> where 

o is specified by the previous theorem. We have proven: 

Theorem 13 Let Wo E Sd-l, eo E la', b'[, and E > 0 be arbitrarily fixed. Under the 

assumption8 A and B, there e.'Eists a .finite family of cubes of diameters less than é, 

where [eo - 5, eo + 0] C la', b'[ and Wo E B C IRd
- 1, and functions, 

(J"a: Ua X ]eo - 0, eo + o[ -t U r(e) 
le-eol<8 

8uch that the following holds: 

1. For every a, 0" a (1.1" e) is a real-analytic d~ffeomorphism from a neighborhood of 

Ua X [eo - 0, eo + 0] to if8 ?:mage. 

2. For all e E ]eo - 0, eo + 0[, r(e) = U~=l (J"a(Ua, e). 5 

3. Let us denote by J.ja) (r; e, w) the oscillatory integral of amplitude f( u; e, w) 

with respect to the pha8c 'Pa(u;e,w) = W· (J"a(u,e). Jf f(u;e,w) is smooth in 

the ncighborhood ofIRd-
1 X IR X Band vani8hc8 on (Ua X ]eo - 0, eo + olt X B, 

5 In other words, {(Ua, (J"a(-, e) )}~=l is a system of real-analytic parameterizations 
of r(e) for any e E ]eo - 0, eo + 5[. 
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then 

1 1 1< 

p.v. --I.f(r; fi, w) dfl = O(r-2"), 
[kfl-e 

where both estimates are uniform in (e, w) E [eo - b, eo + b] x B. 

We now construct a smooth, joint "partition of unit y" subordinated to the 

system of neighborhoods {O'a(Ua, e)}~=l' 

Theorem 14 Let 0 < J < band S = U r(e) le-eol<8 . There e.Tists a family of 

functions, {Xa (x )}~=l! smooth in x E Rd, satisfying: 

• 0::;: Xa ::;: 1, 

• supp Xa C O'a(Ua X ]eo - b, eo + b[), 
N -

• L:a=lXa(X) = 1 faT all xE S. 

Proof: Notice that S C U~=l O'a(Ua X ]eo - b, eo + b[), so in particular 

is a finite open covering of }Rd. After discarding XN+l(X), any partition of unit y, 

{Xa (x)} ~,;tll , subordinated to the previous covering satisfies the stated properties. 0 

2.3.2 Fourier Transforms 

We arc ready to compute (uniform!) decays of Fourier transforms, F(r(e), f), 

for suitable amplitudes and derive an analogous result for Cauchy principal values. 

Theorem 15 Let n = rw be the polar fOTm of n E Zd, where n =1= 0, and let the 

amplitude, f(x), be 8mooth in x E ]Rd. Con8ider any interval [a, bJ C Ja', b'[. Under 

55 



Assumptions A and B, 

F(r(e), J)(n) = O(r-~) 

uniformly in (e,w) E [a,b] x Sd-1. 

Proof: Let ea E [a, b] and Wa E Sd-l be fixed. By Theorems 13 and 14, there exist 

a 8 > 0, a cube, B 3 wa, a joint system of parameterizations, 

and a joint partition of unit y, {Xa}:;'==l, summing at 1 on U
1

e-eol<8 r(e), such that 

the following holds: Let 

where Ja(u, e) du is the element of surface of eJa(Ua,e). Then, 

N 

F(r(e),J)(rw) = L:I(a)(r;e,w) 
a==l 

for every (e, w) E [ea - 8, ea + 8] x B. Since Xa 0 eJ a, and hence the integrand of 

I(a)(r;e,w) vanish outside Ua X ]ea - 28,ea + 28[, by Theorem 13, I(a)(r;e,w) = 

O(r-~) uniformly in (e, w) E [ea - 8, ea + 8] x B. Thus, 

F(r(e), J)(rw) = O(r-~) 

uniformly in [ea - 8, ea + 8] x B. Since ea E [a, b] and Wa E Sd-1 are arbitrary, the 

result follows from the compactness of [a, b] x Sd-l. D 
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2.3.3 Cauchy Principal Value 

An analogons resnlt for principal values may be derived when affecting the 

amplitude by a eutoIT function. 

Wc establish first that the clement of surface on any local part of f(e) varies 

smoothly in (u, e). Having in hand a common system of parameterizations, (J" a (u, e), 

for U E Ua and le - eol < 6 (where eo E Ja', b'[ is arbitrarily fixed), let us compute 

this element of surface. To this end, one considers the determinants, Mg), of the 

submatrices of format (d -1) x (d -1) obtained from [âu(k)(J"~)(U, e)Jk,1 by removing 

. [th 1 h ( (1) (d)) L !ts co umn, w ere (J" q: = (J" q: , ••• , (J" q: • et 

By definition the element of surface is Il Jq:(u, e)11 du. 

Theorem 16 Il Jo (1.l, e) Il = IIV x<l>(aa(u, e))111 det D(u,e)aa(u, e)l· 

Proof: The chain ruIe applied to <p(aa(u, e)) = e gives 

which we abbreviate V<PDaO' = edt
. Since aO'(u, e) is a diffeomorphism, DaO' is 

invertibIe. Thus, 

whcre adj stands for thc classical adjoint. The result follows from 
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D 

Corollary Ill~(u, e)11 i8 8mooth in (u, e) E Ua X ]eo - b, eo + br. 

For fixed Wo E Sd-l and eo E Ja', b' [, let {(Ua X ]eo - 3b, eo + 3b[, O"a)};;'=l, B 3 

wo, and {Xa};;'=l, summing at 1 on U
1
e-eol<28 r(e), be given by Theorems 13 and 14. 

Let us define a eut off funetion, 0 ::::; Xeo(x) ::::; 1, smooth in x E :!Rd, sueh that 6 

if 

if 

1<I>(x) - eol < b, 

1<I>(x) - eol > 2b. 

Notice that Xeo (x) is analytie in the neighboihood of r( eo)~which will become im-

portant later. Under Assumptions A and B, 

Theorem 17 For f(x) 8mooth in x E :!Rd and r > 0 

uniformly in (e, w) E [eo - b, eo + b] X Sd-l. 

Proof: The considered principal value is equal to 

N 

1 1 '"' (a) (. ) p.v. ~L...tIFQ r,1],w d1], 
IR 1] a=l 

6 Since the amplitude we will use do es not depend on w, the following cutoff 
function does not depend on Wo; in other circumstances if it does, the following 
argument still holds. 
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Henee, Pa(U,rJ) is smooth on lR.d- l x lR. and vanishes when 

(11" rJ) fj. Ua X ]eo - 20, eo + 20[. 

By Theorem 13 the principal value under consideration is thus O( r-~) uniformly in 

(e, w) E [eo - 0, eo + 0] x B. Since Wo E Sd-l is arbitrarily fixed, the result follows 

from eompactness of Sd-l. D 

2.3.4 Analyticity of Fourier Transform 

We close this section by showing that for any fixed n E Zd the following Fourier 

transform, F(r(e), J)(n), is analytic at eo when the amplitude, f(x), is analytic in 

the neighborhood of r(eo) c IRd (where eo E la', b'[ is arbitrarily fixed). To this end 

the diffeomorphism between r(eo) and r(e), L:(x, e), defined in the relation (2.11) is 

helpful, because, given a system of disjoint open neighborhoods on r( eo) eovering 

aIl r(eo) except, a set of area zero, its lifting to r(e) via L:(x, e) also covers the whole 

r( e) exeept a set of area zero. 

In details, let {(Ua X ]eo - 0, eo + 0[, O"a)}~=l be given by Theorem 13. 

Theorem 18 There exL9ts a ,{inde.' joint system of local parameterizations, 
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sueh that: 

• For all f3 E {l, ... , M} there e.'Eists an a{3 E {l, ... , N} su eh that V{3 ç UŒ;3 

and 0' {3 = 0'0<;3 r V,e; 

• For all e E ]eo - 0, eo + o[ the coordinates neighborhoods {O'{3(V,e, e)}~l are 

mutv,ally di,~joints; 

• For al! e E ]eo - 0, eo + o[ the area of f(e) \ U~l O';3(V;3, e) is zero. 7 

Proof: One may construct a system of disjoint, open neighborhoodsof full area on 
( 

f( eo) by considering aIl non empty' ceUs of the form 8 

where {al,'" ,aN} = {I, ... ,N}. These cells are open, disjoint, and cover aIl f(eo) 

except the set 0'1(8U1 ,eo) U··· U O'N(8UN,eo), whose area is zero. The diffeomor­

phism E(x, e) lifts this exceptional set onto an exceptional set in f(e) (which is not 

a surprise). The peculiarity of E (x, e) is that aU points on f (e) whieh are not the 

image of an exceptional x E r( eo) are eovered. The result follows. D 

Theorem 19 Suppose f(x) is analytie in a neighborhood of f(eo) c Rd. Then, for 

any .fixed nE Zd the Fourier transform F(f(e), f)(n) is analytie at eo E ]0,', b'[. 

7 In other words, the integral of lover this surface is zero. 

8 The complements are taken with respect to f (eo). 
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Proof: By the previous theorem, for any e E ]ea - 6, ea + 6[ 

M 

F(r(e), f)(n) = L ( cin'(7/3(u,e) !(O'{3(u, e))J{3(u, e) du, 
(3=1 JVfJ 

(2.13) 

where J{3(u,e) du is the element of surface of O'p(V{3,e). Since the integrand in this 

last expression is analytic in the neighborhood of V{3 x [ea - 6/2, ea + 6)2] (that is, 

converges to its Taylor's series), the result follows. o 

2.4 Green's Functions 

We turn our attention to 

(2.14) 

where z E C+, n E 7ld , and <D(x) is real valued, analytic, and periodic on ]'d. Here, ]'d 

denotes the ion/,8 of dimension d, that is, the set [-1f,1f]d endowed with the quotient 

topology induced by congruence modulo 21f. In particular, 

{x E ]'d ; <D (x) = e} = r ( e) 

is a compact manifold. It may be covercd by a finite system of coordinates neigh-

borhoods admitting a subordinated partition of unity. Since each coordinate neigh­

borhood is embedded in }Rd, it is clear that aIl results in section 2.3 apply under 

appropriate hypotheses, namely: Let a' < b' and S' = UeEla',b/[ r(e). We assume: 

Assumption C 

, • <D (x) is real valued) analyfic) and periodic on ]'d; 
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• V<I>(x) 1= ° for aU xE 5'; 

• For every e E ]al, b/[, r(e) admit" at least /'i, non vanishing principal curvatures 

at any point, where /'i, ;;? 1 is a .fixed integer. 

For e E IR let 

G(n, e) = lim G(n, z), 
z-->e 

zEIC+ 

where of course the existence of snch a limit has to be established. In this section 

we compute the decay of G(n, e) as Inl -+ 00. We are especially interested in the 

case where e is in the range of <I>(x); otherwise, sinee by assumption <I>(x) admits a 

holomorphie extension, one may slightly change the domain of integration in (2.14) 

and deduee that G(n, e) decays exponentially. 

The following decomposition theorem is interesting in its own and will be used 

in the next chapter. Before, we need this elementary lemma: 

Lemma Consider a funcbon, f(7)), continuous in 1] E [a, b] and analytic at e.E la, br. 

Then, 

lim lb f(7)) d7) = 1rif(e) + p.v.l
b 

f(1]) d7). 
z-->e 11 - Z 11 - e 

zEIC+ a '( a '( 

Proof: Given an E E ]0, (b - a)/2[, let Ce be a path joining e - E and e + E, and 

lying inside the lower haH-plane. Let Té = [a, e - El * Ce * [e + c, b], where * denotes 
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the concatenation. By Cauchy's theorem 

for any z E C\ if E is sufficiently small. Thus, by the dominated convergence theorem 

= lim r !('rI) d'ri + lim r !('rI) d'ri 
dO 1 Ce 'ri - e êtO 117J-el>ê 'ri - e 

(by Cauchy's theorem again). The result follows. o 

For fixed Wo E Sd-l and eo E la', b'[, let {(Ua x]eo - 30, eo + 30[, aa)};;=l, B :3 

Wo, {Xa};;=l' summing to 1 on U1e-eol<28 r(e), and Xeo be given by Theorems 13, 14, 

and 17. 

Theorem 20 Suppose le - eol < cS and wEB. Then, G(n, e) exists and is equal to 

. 100 

1 1 . 1 - Xe (x) 7fIF(r(e), P)(n) + p.v. -F(r('rI), XeoP)(n) d'ri + eIn'x <I>( ) 0 dx, 
-00 'ri - e l'd X - e 

where P(x) = "V'xà(x),,' 
Proof: Notice that 

N 

1 in·x Xeo (x) d -" 1 in·x Xeo (x )xa(X) d e x - L...J e x. 
l'd éj) ( x) - Z a= 1 l'd éj) ( X) - Z 

The change of variables x = aa(U, 'ri) applied to the above gives 
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which, by Theorem 16, is equal to 

where dS(x) denotes the element of surface. Hencc, 

r ein .x Xeo (x) dx = r _1-F(r(1]), XeoP)(n) d1]. (2.15) 
J'Jfd <T>(x) - Z JlR 1] - Z 

Notice that XeoP is analytic in the neighborhood of r(e) when le-eol < <5. Hence, by 

Theorem 19, F(r(1]) , XeoP) is analytic at 1] = e. The result follows from the lemma 

and the dominated convergence theorem. D 

The desired decay follows: 

Theorem 21 Let n = rw be the polar form of n E Zd, where n f- 0, and consider 

any interval [a, b] c la', b'[. Under A88umption C 

un~formly in (e,w) E [a,b] x Sd-l. 

Proof: For wo, eo, etc. as abovc, by Theorems 15 and 17 

1fiF(r(e), P)(n) = O(r-~) and 

100 1 " 
p.v. -F(r(1]), XeoP)(n) d1] = O(r-"2) 

-00 1] - e 

uniformly on [eo - <5, eo + <5] x B. Moreovcr, by the scholium of Theorem 1 
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uniformly on [eo - 0, eo + 0] x B. Since (eo, wo) is arbitrary in [a, b] x Sd-l, which is 

compact, the result follows. o 

In the second part of the present thesis uniformity is needed in the complex 

plane: 

Theorem 22 In the above circumstances, let 

s = {e + iy ; a < e < b, ° < y < 1}. 

Then, G(n, z) = O(r-~ ln r) uniformly in (z, w) E S X Sd-l. 

Proof: Since G(n, z) = O(lnl-OO
) uniformly in {e + iy ; a ~ e ~ band c < y ~ 1} 

for any c > 0, wc assume w.l.o.g. y E [0, c] for an arbitrarily small c. Moreover, we 

restrict our attention to e E [eo - 6, eo + 6] for an arbitrarily chosen eo E [a, b] and a 

sufficiently small 6 > 0, which is do ne w.l.o.g. since [a, b] is compact. Then, the cutoff 

function Xeo (x) restricts <D(x) to the interval [eo - 26, eo + 26] and the decomposition 

used in Theorem 20 gives (by the equation 2.15) 

l
eo+

28 
1 1 . 1 - X (x) 

G(n, z) = --F(r(7]), XeoP)(n) d7] + eln
'
x <1>( ) eo dx. 

eo-28 7] - Z 1['d X - e 

Integration by parts shows that the second integral in the above is O(lnl-OO
) uni-

formly on the considered strip. Hence, it suffices to analyze the first term, which we 

dcnotc F(n, z). 

Letting F(n, e) = F(r(e), XeoP)(n), wc thus consider 

jeO+28 1 
F(n, z) = --F(n, 7]) d7] 

eo-28 7] - Z 
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, 

for z varying over the strip {e + iy ; 1 e - eo 1 ~ 6 and 0 ~ y ~ c}. Our strategy 

eonsists of estimating F(n, e + iy) and 8jy F(n, e + iy); 9 applying the fundamental 

theorem of ealculus to the latter; joining the former and the resulting estimate in 

order to obtain the desired deeay. 

If c is suffieiently small, 

IF(n, e + iy) 1 

so in total 

l
eo+20 1 

~ sup IF(n,7])1 d7] 
117-eol<20 eo-20 V(7] - e)2 + y2 

l
e+30 1 

~ sup IF(n,7])1 d7] 
11)-eo 1<20 e-38 V (7] - e)2 + y2 

(
36 + V962 + y2) 2 sup IF(n,7])lln 

117-eol<28 Y 

~ Const Inl-~ (1 + ln(l/y) ), 

lF(n, e + iy) 1 ~ Const Inl-~ In(l/y) 

uniformly on the eonsidered strip. 

(2.16) 

9 For a fixed n we denote by 8jy F(n, z) the derivative of F(n, z) along a line 
parallel to the imaginary axis. Since F(n, z) is holomorphie, this last derivative is 
indeed equal to the complex derivative. 
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On the other hand, by the dominated convergence theorem 

8jy P(n, e + iy) = j eO+2S 1 
( . )2 F (n,1]) d1] 

<oo- 20 1]-e-lY 

j eO+20 1 

eo-28 (1] - e _ iy)2 (F(n,1]) - F(n, e)) d1] + 

j eo+20 1 
+ F(n, e) ( . )2 d17 

eo-20 17- e - 1Y 

1 + II. 

Notice that 1 reO+22.o ( 1. )2 d'Ill :s;; Const uniformly wh en e + iy varies on the con-J eo-" 7]-e-1Y '1 

sidered strip, which may be seen by ehanging the integration path. Henee, IIII :( 

Const Inl-~ uniformly on this last strip. Moreover, the mean value theorem implies 

Observe that the dominatcd convergence theorem applied to the explicit decomposi­

tion of F(n,17) given in the equation (2.13) yields o7]F(n,17) = O(lnl-~+l) uniformly 

in 1] E [eo - 28, eo + 28]. Thcrcforc, 

so in total 

IOiyF(n, e + iy)1 :s;; Const Inl-~+11n(1/y) 
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uniformly on the considered strip. 

By the fundamental theorem of calculus 

IF(n, e + iy) - F(n, e)1 ::::; l Y 

lôsF(n, e + is)1 ds 

l Y 

IÔiyF(n, e + is)1 ds 

::::; Const Inl-~+11Y In(l/s) ds 

- Const Inl- Î +1(yln(1/y) + y) 

Const Inl-~+ly In(l/y). 

Henee, since F(n, e) = O(lnl-~) uniformly in e E [eo - cS, eo + cS], 

IF(n, e + iy)1 ::::; Const Inl- I +1y In(l/y) 

on the considered strip. Notice that JYln(l/y) goes to 0 when y l O. A fortiori, 

this last expression is boundod. Consequently, 

In particular, for y < 1;1 2 ' 

Otherwise, y > 171112 ' so In(l/y) < 2ln Inl and the equation (2.16) implies 

lF(n, e + iy)1 ::::; Const Inl-~ ln Inl 
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uniformly on the considered strip. The proof is thus complete. o 

As an immcdiate eorollary notice that 

,,+ 
G(n, z) = O(r- 2 ) wh en Inl ~ 00 

uniformly in (w, z) E Sd-l X S, i. e., for aIl é > 0 there exists a Ce independent of w 

and z such that 

for aIl r > O. The above theorem will be used in this last form in the applications. 

2.5 Application to Generalized Laplacians 

In this section we apply the previous results to Green's functions of concrete 

Laplacians on l2('z,d). We foeus on two specifie examples: the standard Laplacian 

and the Molchanov- Vainberg Laplacian. 

At a higher levcl of generality let us consider a simple graph without loop, whose 

set of vertices is denoted by X (where X is allowed to be infinite). For m, n E X, 

d(m, n) denotes the graph distance between m and n, that is, the length of the 

minimal chain joining m and n in the graph (00 if m and n lie in two different 

connected components). Of course, d is a metric distance with values in Nu {oo}. 

Notice also that (X, d) determines the graph completely, since {m, n} is an edge if 

and only if d(m, n) = 1. 

We are interested in the Hilbert space, Z2 (X), consisting of square summable 

sequences indexed by X. Hs usual basis is {6n}nEx, where 6 den otes the Kronecker 
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delta: 

m=n, 

The a~jacency operator on l2(X) with respect to (X, d), sometimes called Laplacian, 

is defined as 

(6.1jJ)(n) = L 1jJ(m) , 
d(m,n)=l 

where 1jJ E 12(X). In particular, (6.on )(m) = Ivn (m), where 

Vn = {m EX; d(m, n) = 1}. 

In the sequel we suppose that the degrees of the vertices of the considered graph 

are bounded, in other words, 

sup#Vn ~ B 
n 

for a certain B < 00. 10 Then, 

Theorem 23 The adjacency operator, 6., 28 a b01mded, 8elfadjoint operator on 

10 In general #A denotes the cardinality of A. 
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Proof: For any 1j.J(n) E Z2(X) 

Il,0.1j.J 11
2 L 1(,0.~)(n)12 

nEX 

2 

L L 1j.J(m) 
nEX mEVn 

:::;; BL L 11j.J(m)12 
nEX mEVn 

:::;; B211~112, 

which shows that the adjacency operator is bounded. Moreov8f, 

which completes the pro of. D 

We are now interested in the case where X = Zd and the graph distance, d(m, n), 

is translation al invariant. In these circumstances we call ,0. a generaZized Laplacian. 

Then, d( m, n) is a function of m - n only. Henee, letting V = Va (where 0 E 

Zd den otes the origin), the considered graph is clearly determined by (Zd, V). In 

particular, 

,0.1j.J(n) = L 1j.J(n + v), 
vEV 

where # V :::;; B is still assumed to be finite. 

Recall that the Fourier transform of ~ E Z2 (Zd) is the following function, defined 

for x E 1I'd: 

:J;(x) = (:F1j.J)(x) = (27l")-~ L ein
,
x 1j.J(n). 

nEZd 
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The symbol of ~, denoted by 6, is the lifting of ~ via the Fourier transform: 

Theorem 24 Let ~ be the generalized Laplacian aS80ciated with a given V C Zd. 

Then, its symbol is the multiplication by 

<I>(x) = 2:: eiv.x = 2:: cos (v· x), 
vEV vEV 

where x E 'll'd. 

Proof: 6 maps :J';(x) to the following function: 

2:: e-iV'x:J';(x). 
vEV 

Notice that 

v E V ~ d(v,O) = 1 ~ d(O, -v) = 1 ~ -v E V. 

Renee, denoting by V+ the set of v E V whose first non zero coordinate is positive, 

2:: e-iv
.
x = 2:: eiv

.
x = 2:: 2 cos( v . x) = 2:: cos v . x, 

vEV vEV vEV+ vEV 

which completes the proof. o 

Since the range of <I>(x) is equal to the spectrum of ~, one obtains: 
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Corollary spec(~) = [min <P, #V]. 

Notice that <p(x) is analytic at each x E '1l'd. Hence, 

E = {x E '1l'd ; '9 x <P (x) = O} 

has Lebesgue measure zero. In particular, spec(~) is purely absolutely continuous. 11 

The Green's fu:nction of ~ is defined as 

for m, n E 7ld and z E C+ .. Since ~ is translational invariant, this last function 

depends on m - n and z only. In fact, G(m, n; z) = G(O, n - m; z) so we denote this 

latter simply by G(n - m, z). Since the Fourier transform is unitary, for any n E 7ld 

and z E C+ 

G(n, z) 

11 This may be seen in the following way: L2('1l'd) = L2('1l'd\E). Moreover, by the 
Inverse Function Theorem <I>(x) is invertible on 1I'd\E. Let w(y) be its inverse, so 
the change of variables y = <P (x) gives a unitary equivalence between L2 ('1l'd) with 
the Lebesgue measure and L 2 (<I>(1I'd\E)) with the measure Il'9y w(y)11 dy. Via this 
unitary equivalence the operator of multiplication by <p(x) is lifted to the operator 
of multiplication by y, so by dcfinition Il'9y w(y)11 dy i<P('1l'd\E) is a spectral measure 
for ~~and is clearly absolutely continuous. 
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By Theorem 20 the limit 

G(n, e) = lim G(n, z) 
z->e 

zEC+ 

exists for any e ~ E. Wc will compute its decay wh en Inl -+ 00 in two particular 

examples: the standard discrete Laplacian and the Molchanov- Vainberg Laplacian, 

which are described in the rest of the section. Both are important in mathematical 

physics, since both are discrctizations of the continuous Laplacian on }Rd (up to an 

additive constant). 

2.5.1 Standard Laplacian 

The standard Laplacian is the adjacency operator of the usual grid on Zd; it is 

specified by the graph distance 

d 

d(m, n) = lm - nh = L Im(j) - n(j)I, 

.1=1 

so the set of immediate neighbors of the origin is 

v = {(±l, 0, ... ,0), (0, ±l, ... , 0), ... , (0,0, ... , ±l)}. 

Henee, by Theorem 24 the symbol of the standard Laplacian is the operator of 

multiplication by 
d 

CI>(x) = 2 L cosx(j) . 
.1=1 

Thus, the spectrum of 6. is purely absolutely continuous and equal to [-2d,2dJ. 

Notice that 

'\7 fF.. ( ) - ( 2' (1) 2' (d) ) v x'l! X - - SIn x , ... ,- sIn x , 
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which vanishes only if cosx(j) = ±1 for aIl j = 1, ... ,d, in which case <I>(x) E 

{-2d, -2d + 4, ... ,2d - 4, 2d}. In particular, the level surfaces of <.p(x), 

r( e) = {x E 1I'd ; <D (x) = e}, 

are regular for aIl e ~ {-2d, -2d + 4, ... ,2d - 4, 2d}. 

Let us show that for snch e's the level surfaces are exempt of planarity, except 

for e = 0: 

Theorem 25 Let 

E = { -2d, -2d + 4, ... ,2d - 4, 2d} U {O} 

and suppose e E [-2d,2dl\E. Then, r(e) admits at least one non vanishing principal 

curvature at any point. 

Proof: Let Xo E r(e) be fixed. By choice of e, r(e) is regular, so there exists a j 

snch that sin x~j) =1= O. Aftor rcnaming the variables, the equation defining r( e) in a 

neighborhood of Xo thus becomes 

2 cos 11,(1) + ... + 2 cos U(d-l) + 2 cos h = e, (2.17) 

where sin h =1= 0 on a certain interval. In particnlar, the derivative with respect to h 

of the left-hand side in (2.17) is not zero. Therefore, writing u = (u(1), ... ,u(d-l)), 

there exists an implicit function, h( u), such that 

2 cos U(1) + ... + 2 cos U(d-l) + 2 cosh(u) = e 
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for aIl u in a neighborhood of ua, where (uo, h(uo)) is the permuted xo. The number 

of non vanishing principal curvatures at Xo is then given by the rank of D~h(uo). 

lndeed, for any j = 1, ... ,d - 1, differentiating the previous equation with respect 

to u (j) gives 

- sin u(j) - sin h 0u(j) h = 0, (2.18) 

where h = h(u). Consequently, 

Sinee sin h i- 0, it suffices to show that the right si de in the previous equation do es 

not vanish in a ncighborhood of ua. By the cquation (2.18) this matrix is equal to 

(2.19) 

Suppose by contradiction thcre cxists an u in the considered neighborhood such 

that the abovc vanishcs. Then, for aIl j = 1, ... ,d - 1 

cos u(j) sin2 h + cos h sin2 u(j) = 0, 

which is equivalent to 

(l-coshcosu(j))(cosu(j) +cosh) = O. 

Moreover, sinee sin h i- 0, it follows that 1 - cos h cos u(j) #- 0, so 

cos u (j) = - cos h for j = 1, ... , d - 1 
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at such an u. Renee, by the equation (2.17), 2(2 - d) cos h = e. If d = 2, then e = 0, 

contrary to our assumption. Thus, the previous situation would occur only when 

d > 2, in which case cos h = -2L4 and cosu(j) = 2L4 for j = 1, ... , d - 1. Then, 

cos2 h = cos2 u(.j) for any j, so sinll(j) sin U(k) = ± sin2 h. Consequently, the (j, k )-th 

clement of the considorod matrix, (2.19), is 0 when j = k, but ±2d~4 otherwise. This 

last quantity differs from zero (sinee e tJ. E), which provides a contradiction. 

In conclusion, at any point in a noïghborhood of Xo, r(e) admits at least one 

non vanishing principal curvature. Sinee Xo is arbitrary, this completes the proof. D 

Theorems 21 and 22 thus give a polynomial decay for the Green's function, 

G (n, e), associated with the standard Laplacian. Without asserting that this decay 

is (or is not) optimal, it suffices for our applications in the second part of this thesis. 

Corollary Let E = {-2d, -2d + 4, ... , 2d - 4, 2d}U{0} and suppose e E [-2d,2d]\ 

E. Then, 
1 

G(n, e) = lim G(n, z) = O(lnl-"2) 
z-->e 

zEIC+ 

wh en Inl ---+ 00, uniformly in e on each compact and 7.lniformly in w E Sd-l, 11Jhere 

n = Inlw is the polar form of n =1- o. 

Corollary Suppose [a, b] c [-2d,2d] \ E and let 

s = {e + iy ; a < e < b, 0 < y < 1}. 
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Then, 

v,niformly in (z, w) E S X Sd-l. 

2.5.2 Molchanov-Vainberg Laplacian 

In order to avoid convexity problems, Molchanov and Vainberg have suggested 

to change the discretization of the Laplacian. They have based their construction 

on the 2d full-diagonal ncighbors of elements in Zd, instead of their 2d immediate 

neighbors. The constant energy surfaces of the resulting operator are strictly convex 

in any dimension, as shown below. 

Explici tly, the M olchanov- Vainberg Laplacian (or diagonal Laplacian) is the 

adjacency operator of the translational invariant graph specified by the following set 

of points adjacent to the origin: 

v = {(v(1), ... , V(d») ; v(j) E {1, -1} for j = 1, ... , d}. 

By an elementary combinatorial argument, n E Zd is in the component of the origin 

if and only if the n(j)'s are aIl cven or aIl odd. lndeed, the considered graph consists 

of 2d-
1 connected components with set of representatives 

{ (0 (2) (d»). (j) E {O 1} f . - 2 d} , n , ... , n ,n , or J - ,"', . 
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The graph is also specified by the following metric: 

if the components of m - 71, have the same parity, 

otherwise, 

where 171,100 = max1=1 171,(1)1· 

Remarkably, the symbol of the Molchanoy~Vainberg Laplacian factorizes: 

Theorem 26 .6 is the opemto'T' of multiplication by <T>(x) = 2d cos X(l) ... cos X(d) , 

whe'T'e x = (x(1), ... ,X(d)) E 11"1. 

Proof: Let us denote by {el, ... , ed} the standard basis of Zd. By Theorem 24 the 

symbol of LJ.. is the multiplication by 

as claimed. 

d 

<I>(x) = L ei:c'1} = L eix'L:J=l vUlej L ][l[ eix.v(jlej 

vEV vEV 

d 

][l[ (eix.e j + e -ix.ej ) 

.1=1 

vEV j=l 

d 

2d ][l[ cos xU) , 
.1=1 

o 

Consequently, the spectrum of LJ.. is purely absolutely continuous and equal to 

[ - 2d, ~d]. l'vIoreover, 

Lemma Suppose 0 < lei < 2d
. Then, for all x E r(e), \7x<I>(x) =1- O. In particular, 

r(e) define.'l a rcgl1,[ar .'lurface for .'luch an e. 
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Proof: If x E r(e), then cosxO) =1= a for j = 1, ... , d, so ox(j)<I>(x) = -2detanxO). 

Thus, II\7x<I>(x) 11
2 = 4de2 2:.~=1 tan2 xCi), which differs from 0, sinee e =1= ±2d. 0 

Let us investigate the constant energy surfaces associated with <I>(x). Firstly, 

let us consider the covering r( e) = {x E }Rd ; <I>(x) = e}. 

If e = 0, r ( e) consists of the hyperplanes of equation x(j) . (2k + 1) ~ for k E Z 

and j = 1, ... ,d. These hyperplanes div ide }Rd into open hypercubes, which we caU 

cells. The cells admit a good bicoloration in the following sense: starting from a set 

of two colors, say, rcd and blue, it is possible to paint each eell in such a way that 

the 2d neighbors of any red ceU are blue and vice versa. Let us accomplish this, the 

ceU containing the origin being painted in red. 

If e = 2d , then r(e) is a discrete set consisting of the cent ers of the red ceUs. On 

the other hand, if e = - 2d , then r( e) consists of the centers of the blue ceUs. 

Wh en x varies continuously, <I> (x) changes sign each time one of the previoüs 

hyperplanes is crossed. It follows that the connected compo1)ents of r( e) are enclosed 

in the red ceUs when e > 0, each red ceU containing one component. Moreover, these 

components are aIl congruent. The situation is the same when e < 0, but replacing 

the red ceUs with the blue ones. 

FinaIly, r( e) is obtained from the previous surface by restricting r( e) to the 

torus, where e E ] -2d , 2d [\ {a} is fixed. It foUows that r(e) consists of 2d- 1 identical 

connected components. 

As Molchanov and Vainberg conjectured, 

Theorem 27 For a < lei < 2d any component ofr(e) is strictly convex. 
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Proof: Suppose 0 < e < 2d
, the other case being similar. Then, without loss of 

generality the considered component is 

Let m = d - 1 and h = x(d). The c:quation dc:fining the previous component becomes 

2d cos X(l) ••. cos x(m) cos h = e. 

Since each factor in the above is positive, 

dln2 + Incosx(1) + ... + lncosx(m) + lncosh -lne = O. (2.20) 

Since the considered componc:nt is symmetric with respect to the hyperplanes 

xCi) = 0 and xCi) = x(l), where j,lE {1, ... , d} are distinct, it suffices to show the 

result on the fundamental domain h ~ x(1) ~ ... ~ x(m) ~ O. There, h#-O sinee 

The derivativc: with respect to h of the left side in (2.20) is - tan h, which do es 

not vanish. Consequently, an implicit function, h = h(x, e), satisfying (2.20) in 

a neighborhood of an arbitrarily fixcd point in the fundamental domain exists, is 

analytic, and induces a local parameterization of the previous component. 

It thus suffices to show that D;h(x, e) is positive definite. Differentiating (2.20) 

with respect to xCj) gives 

- tan xCi) - tan h 0x(j) h = 0, 
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where h = h(x l e). Differentiating this last equation with respect to x(l) gives 

o ifl=jl 

Let ajl = - tan h âx(j) âx(l) h. Since - tan h > 01 it suffices to show [ajz] > O. By the 

.[ .l - d' (. 2 (1) 2 (d-1)) 2 h [>=l . h>=l hl aJI - lag sec Xl'" l sec x + sec Ux(J) Ux(l) • 

ClearlYl the first term of the right-hand side in the previous equation is strictly pos-

itive. Moreoverl the second term is non negativel sinee an its principal minors are 

zero except the first l which is a square. Heneel [ajzl > 0 1 which completes the pro of. 

o 

Theorems 21 and 22 then give an optimal decay for the Greenls function l G(n l e)l 

associated with the Molchanov-Vainberg Laplacian. ExplicitlYl 

Corollary Let E = { - 2d l 0 l 2d } and suppose e E [-2d l 2d] \ E. Then, 

d-l 
G(n l e) = Hm G(n l z) = O(lnl--2 ) 

z---j.e 
zEIC+ 

when Inl --+ 00, uniformly in e on each compact and uniformly in w E Sd-1, where 

n = Inlw is the polar form of n =1= o. 
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Corollary Sv,ppose [a, b] C [_2 d , 2dJ and let 

s = {x + iy ; a < x < band 0 < y < 1}, 

Then, 
d-l+ 

G(n, z) = O(lnl--2 ) 

uniformly in (z,w) E S X Sd-l, 
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CHAPTER 3 
Scattering From Sparse Potentials1 

3.1 Basics in Scattering Theory 

Let H be a Hilbert space. 2 Given two selfadjoint operators, A, B E .c(H), and 

a Borel set, S ç IR, the wave operators on Sare definod a..s the strong limits 

D±(B, A) = lim eitBe-itAls(A). 
t->±oo 

In the sequel wo suppose that D E {D+(B, A), D-(B, An exists. 

Proposition 28 D is a partial isometry whose initial space is ls(A)H. 

Proof: If cp 1- ls(A)H, then ls(A)cp = 0 and hence Dcp = O. Since eitB and e-itA 

are uni taries, the result follows. o 

Proposition 29 eisBD = DeisA . 

Proof: eisBDe-isA = limt ei(s+t)Be-i(s+t)Als(A) = D. o 

1 For a detailed doscription of results, terminology, and notations used in this 
chapter, the reader is invited to consult Appendix 4.2. 

2 In this thesis aIl Hilbert spaccs under consideration are separable. AIso, given 
a Hilbert spacc, H, B(H) denotes the set of bounded linear operators on H, while 
.c('H) denotes the sot of alllinoar oporators on 'H, boundod or unboundod. 
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Indeed, using Stone's theorem one obtains: 

Proposition 30 Bn = nA. In otheT' 1lJOT'ds, n1jJ Edam B ifJ 1jJ E dom A and for 

any 81J,ch 1/;, Bn1/; = nA1/;. 

Proof: Let 1jJ E dom A, sa lims->ü ciSAt-1fJ = iA1jJ. Since n is bounded, 

inA1jJ 1
. nèA1/; - n1/; 
lrn--'----
s-o S 

. eisB n1jJ - n1jJ 
hm-----
8---+0 s 

iBD1jJ 

These last relations also hold for n1jJ Edam B; thus, nA = Bn. D 

In particular, the isometry ls(A)H ~ ran n provides an identification between 

the restrictions ls(A)H ~ ls(A)H and ran 0, ~ ran 0,: 3 

ls(A)1i ~ ls(A)1i 

ranO 

Notice that ran n is closed, since ls(A)H is. 

Proposition 31 ran D ç Is(B)H. 

ranO 

3 Except if S ç IR. is bounded, we do not pretend by the following picture that the 
dornains of the identified restrictions are full, but only that they coincide via n. 
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Proof: Trivially ls(AI)(Af-z)-l = (Af-zt 1 for any z ~ R Since Afand Brare 

unitarily equivalent, the functional calculus gives 

In other words, the spectral measure of any tp E ran il with respect to Bns concen-

trated on S. The result follows. o 

The following proposition is known as the chain rule: 

Proposition 32 Let A, B, C E L('H) be selfadjoints operators. Then, 

provided that these wave opera tors exist. 

Proof: By the previous lemma, for aIl tp E 'H 

strongly. Writing eitCe-itAls(A)<p as 

and taking the strong limit of both expressions, the previous relation yields 

o 
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In connection with the penultimate proposition the wave operator n is said to 

be complete if ran n = ls(B)H. Scattering theory is concerned with existence and 

completencss of wavc opcrators. The following proposition shows that these problems 

are formally equivalent. 

Proposition 33 n = n±(B, A) i8 complete if! n±(A, B) e.'Ei8ts. 

Proof: Suppose n is complete and let r.p E H. By hypothesis there exists a 'l/J E H 

such that ls(B)r.p = n'l/J. Reneo, 

so n±(A, B) exists. 

Conversely, suppose n±(A, B) exists. It suffices to show that ran ls(B) ç ran n. 

By the chain rule ls(B) = n±(B, B) = n n±(A, B), from which the result follows. 0 

Let us indicate cxplicitly that n depends on S: 

n± = n±(B A) = hm citEe-itAl (A) (strongly). s s' t->±oo S 

Proposition 34 Suppose SN /' S, i.e., SI ç S2 ç .,. and UN SN = S. If every 

n~N exists, then n~ also exi8t8. 

Proof: Let r.p E H be arbitrarily fixed. From S\SN \. 0, it follows that lSN(A)r.p ---+ 

ls(A)r.pand hencc 

(3.1) 
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uniform1y in t. Henee, sinee the 1eft-hand side of (3.1) is Cauchy in t, the right-hand 

side is also Cauchy. The result follows. D 

Let S, T c lR be Borel sets. Suppose T ç S. If n~ exists, then n~ also exists, 

for n~ = n~lT(A). Suppose instead TnS = 0. If n~ and n~ both exist, then n~UT 

also exists, for n~UT = n~ + n~. Finally, suppose Sand Tare arbitrary. If n~ and 

n~ both exist, then n~UT also exists; this follows from our previous considerations, 

writing 

SUT = (8 n (IR \ T)) U (8 n T) U (T n (IR \ S)). 

Of course, the previous result may be generalized to finite unions by induction. 

Henee, 

Corollary Suppose S = U~=l Sn. rt every nt exists, then n~ also exists. 

Pro of: We have just seen that the wave opcrators exist on U:=l Sn for every N ;:: 1. 

The resu1t follows, since U:=l Sn / 8 wh en N ----> 00. D 

3.2 First Criterion of Completeness of Wave Operators 

In this section we establish a sufficient condition for the existence and complete­

ness of wave operators coming from Schréidingcr operators on graphs. This criterion, 

due to Jaksié and Last, is based on Kato's smooth perturbation theory. 

The setting is the following (for more details see Section 2.5): we consider a 

simple graph, (X, d), having countably many vertices, whose degrees are assumed to 
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be bounded. Here, X denotes the set of vertices of the graph, while d(m, n) den otes 

the distance between m, n EX, that is, the length of the short est path connecting 

them in X (00 if m and n lie on two diffcrcnt components). The adjacency opemtor, 

.6, on X is an operator acting on 1i = l2(X) as follows: for <p E l2(X) 

.6<p(n) = . L <p(m). 
d(m,n)=l 

Let r ç X and V: r ---1 IR be given. We interpret V as a potential supported on r 
and study Hamiltonians of the form 

H = .6 + L V(n)(bn I·)bm 

nEf 

where {bn}nEZd is the standard orthonormal basis of Ji = l2(X). 

We set Ho = .6 and V = H - Ho, so H = Ho + V. H011Jever, the conscientiotls 

reader will notice that Ho and H may be reversed in the present section withotlt 

afJecting the restllts. This important notice will be used in the corollary of the main 

theorem. 

Wc denote by r R the R-.fattening of r: 

rR = {n EX; d(n, r) :s:; R}. 

The projection on 12(r R) is denoted by IR, while the projection on its orthogonal 

complement is denoted by IR' 
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We denote by /( be the Hilbert subspace cyclically generated by {on ; n E r} 

with respect to Ho, which is clearly invariant for H. 4 Since H is selfadjoint, /(1- is 

also H-invariant. In particular, for any bounded Borel function, f, the projections 

on /( and /(1- commute with the calculus: 

f(H I/() = f(H) l/(, f(H 1 /(1-) = f(H) 1 /(1-. 

Notice that /(1- is included in the Hilbert space generated by {t5n ; n ~ r}, which 

implies 

In particular, for any t E IR 

with respect to the orthogonal decomposition H = JG œ /(1-. Thus, when proving the 

existence or completeness of n±(H, Ho), it suffices to restrict our considerations to 

/(. The same argument yields a similar conclusion wh en replacing /( with /(1, where 

the latter den otes the Hilbert subspace cyclically generated by {on ; n E rI} with 

respect to Ho. 

In order to state our main result we need the following, abstract definition. 

Given a Hilbert space, H, a selfadjoint operator, A E L(H), a bounded operator, 

B E B(H), and a Borel set, U ç :IR, B is A-smooth on U if there exists a C > 0 such 

4 In fact, using perturbation thcory, Jaksié and Last [19] observed that this space 
is equal to the subspace cyclically generated by {on; n E r}, but with respect to H. 
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that for aIl y? E lu(A)'H 

The following characteri,mtion is also used in the sequel (see [38]): 

Theorem 35 In the above circumstances, B is A-smooth on U if! 

sup IIB(A - e - ié)-1 B* Il < 00. 
0<e<1 

eEU 

Remark In fact, by continuity of the re80lvent B is then A-smooth on U. 

In the sequel U ç IR den otes a fixed open set. Let 

so 1) is a vcctor space, not necessarily closed, but satisfying the following invariance 

properties: clearly, 1) is invariant for e-isH for any s E IR. Moreover, 

Lemma Given an f E L1(IR), let us denote its Fourier transform by 

Î(k) = _1_100 

e- ikx f(x) dx. 
J2H -00 

Let y? E 1) and C = fIR 1111e-itHY?112 dt, which is th11,8 jinite. Then, 
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In particular, D is invariant for f( H). 

Proof: By Jensen's inequality 

Henee, by Tonelli's theorem 

as claimed. D 

Corollary With <p and C as above, let z = e + iy 1- lR. Then, 

In particular, D is invariant for (H - z) -1. 

Proof: By Kato's formula, for a fixod z E C+ 

(H - Z)-l i 100 

e-ix(H-z) dx 

y'2;i F(l]o,oo[(x)eiXZ)(H). 
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Since Ill]o,oo[(x )eixz III = t, the re~mlt follows from the lemma. Similarly, for a fixed 

z E C_ 

(H - Z)-l ·1° -ix(H-z) d -1 e x 
-00 

-J2;i F( eixz l]_oo,o[(X) )(H), 

and again the result follows. o 

Scholium The previo1J,s corollary has an interesting consequence: if i.p E D, then 

for any y> 0 

Letting y l 0, Fatou 's lemma yields 

1 Il l 1e-itHi1{€}(H)i.p112 dt ~ C, 

that is, flR Ill 11{e}(H)i.p112 dt < 00. Hence, 111{e}(H)i.p = 0 for all i.p E D. In 

particular, restricting our attention ta the Hilbert subspace IC, 

for all i.p E 1) n IC. 

Let n E rand z ~ IR, sa (H - z)-16n is a typical generator of IC. Then, for any 

i.p E D n IC the previous relation yields 
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which implie8 l{e} (H 1 IC)r..p = 0 for any r..p E 'D n IC. In particular, if 'D n IC is dense 

in IC, then the spectrum of H 1 IC is purely continuous. The same argument yields a 

similar conclusion for H 1 ICI . 

Our main theorem states that in the present setting if Il i8 Ho-smooth on U 

and'D is dense in ran 1u(H), then the wave operators n±(Ho, H) exist on U. Since 

in this context the usuaI wave operators are n±(H, Ho), we establish their complete­

ness, but without assuming their existence. The pro of is preceded by severallemmas, 

which are shown under the same assumptions as the main theorem, namely: 

Assumption D 

• Il is Ho-smooth on U, 

• 'D is dense in ran 1u(H). 

Let T = [Ho, 10], The following, trivial properties are usefu1. Observe how H 

and Ho may be interchanged in their statement: 

Lemma 

• 10H = 10Ho, H10 = Ho10' and hence [H,lol = T = [Ho, 10l. 

• ThereJore, [H, 10] = [Ho, 10 ], 

• T = lIT = TIl = llT1l and IITII ~ 211 Holl· 
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Proof: By direct computations. o 

Finally, the following computational tool is frequently invoked: 

Proposition 36 Let B be a Banach space and lR ~ B be a coniinuous, sirongly 

d~fferentiable function Wh08C dcrivaiivc i8 uniformly boundcd: 

3M: Vi E lR: 11f'(t)11 < M. 

Suppo8e moreover that f E LP (lR), that i8 

l llf (i) IIP dt < 00 

for a given ° < p < 00. Thcn, limt->±oo f (i) = O. 

Proof: Suppose by contradiction lim SUpt ....... oo Ilf(i) Il > 0 (the case where i ~ -00 

being similar). Thon, thoro oxists an c E ]0, M[ and an increasing sequence, in ~ 00, 

satisfying in+1- tn > 1 and Il f (in) Il ~ 2c for aIl n. Let Sn = in + ~, so the intervals 

]tn, Sn[ do not intorsect. Notice that the assumption Ilf'(t) Il < M and the mean value 

theorem imply Ilf(t) - f(s)11 ~ Mit - si for aIl s, i ERIn particular, for i Elin, sn[ 

Ilf(t)11 ~ Ilf(in)II-llf(tn) - f(t)11 

~ 2c - Mit - inl 

~ c. 
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Therefore, 

l llf (t)IIP dt ~ ~ l~sn Ilf(t)IIP dt 

~ é
P 2~)Sn - tn) 

n 

00, 

a contradiction. The result follows. 

We now come to our succession of lemmas: 

Lemma For all zp E lu(H)7i, limt->±oo l oe-itH zp = O. 

o 

Proof: Let f(t) = citHloe-itHzp. f(t) is continuous, since Ilf(t + h) - f(t)11 ~ 

IleihHloe-ihH - l ollllzpll ~ O. Furthermore, f(t) is square integrable, sinee by As-

sumption D 

Finally, f'(t) = ieitH[H, lo]e- itH zp = ieitH[Ho, l o]c-itHzp, which implies that 11f'(t)11 ~ 

211Holl. The previous proposition then completes the proof. o 

The proof of the following lemma uses Dunford's calculus, which specializes as 

follows. Let 'Y be positively oriented Jordan curve in C, whose interior is denoted by 
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8. Consider any closed operator, F E .c(71) , whose spectrum do es not intersect "(. 

Then, 

le(F) = --. (F - z)- dz. 1 i 1 
2m , 

In particular, for any selfadjoint operator A E .c(H) and Borel set B whose closure 

is in 8 the trivial inclusion spec(lB(A)A) C 8 implies 

Thus, if i.p E IB(A)'H, then i.p = -2~i f,(A - Z)-li.p dz. 

On the other hand, let us den ote the exterior of "( by 8'. For any Borel set B' 

whose closure is inside 8', the trivial inclusion spec(lB,(A)A) C 8' implies 

Thus, if i.p' E IB,(A)'H, then -2~i f,(A - Z)-li.p' dz = O. 

In the following lemma we den ote UC = IR \ U. 
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Proof: Let 1 cUbe a finite closed interval whose endpoints are not eigenvalues 

of H and whose opening is not empty. Let r be a positively oriented Jordan eurve 

in te separating 1 from UC (in lR). Given a vector 'IjJ E D, let us consider <p(t) = 

luc(Ho)eitHolüe-itH l[(H)'IjJ. We first show limt->±oo <p(t) = 0 and then conclude the 

proof by a limiting argument. 

Since w.l.o.g. UC is outside rand <p(t) E lue (Ho)1i, the previous discussion 

gives 0 = -2;i §,/Ho - Z)-l'P(t) dz, so 

Furthermore, sinee 1 is imdde rand e-itHl[(H)'IjJ E l[(H)1i, the same discussion 

gives e-itHl[(H)'IjJ = -2;i f-../H - z)-le-itHl[(H)'IjJ dz, so 

<p(t) = -~ 11uc(Ho)eitHolo(H - z)-le-itHl[(H)'IjJ dz. 
2m 1, 

Subtracting both equations, 

By the resolvent identity 

(Ho - z)-l(lüH - Holü)(H - Z)-l 

-(Ho - z)-lT(H - z)-l. 
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Thus, 

Since luc(Ho)citH°(flo -z)-l is bounded uniformly in t, IITII ~ 211HoII, and T = TIl, 

it follows that 

By the dominatcd convergence theorem, in order to establish limt rp(t) = 0 it suffices 

to show that the integrand in this last expression tends to zero. 

For a fixed z E r let 

which is finite. There exists a bounded sequence of Coo fundions supported in l 

that converges pointwisc to l[o(x), where JO denotes the opening of J. Notice that 

Iro(H) = Ir(H), since the endpoints of 1 are not eigenvalucs of H. Hcncc, for any 

E > 0 there exists a g(x) in the prENious sequence satisfying 

c 
11(lr(H) - g(H))?jJ11 < Bz' 

where z E r is still fixed. Since g(H) = IJ(H)g(H), it follows that 

Consequently, the integrand under consideration satisfies the following relation: 
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where Fz(t) = Il (H - z)-le-ifH g(H)'Ij;. Sinee E is arbitrarily small, the problem 

reduees to show limf FAt) = O. 

This last faet follows from the preliminary proposition: FAt) is clearly continu-

ous. Furthermore, it is square integrable, sinee 'Ij; E D and g is a smooth, compactly 

supported function, so the invariance properties of D imply (H - z)-lg(H)'Ij; E D. 5 

Finally, F~(t) = ll(H - z)-I(-iH)e-itHg(H)'Ij;, which is clearly bounded, since 

Hg(H) is bounded. Thus, Fz(t), and henee <p(t) tend to zero. 

Let B(t) = lue (Ho)eifHo loe-ifH , which is uniformly bounded. We then have to 

prove that B(t) -!:........ 0 strongly. Sinee 'Ij; is arbitrarily fixed in D, which is dense 

in ran lu(H), the above shows that for every finitc, closed intervalle U whose 

cndpoints are not eigenvalues of H, B(t)l[(H) -!:........ 0 strongly. As an immediate 

consequence, if FeU is a finitc union of disjoint closed intervals whose endpoints 

are not eigenvalues of H, B(t)lF(H) -!:........ 0 strongly. Since U is open and the set 

of cigenvalues of H is countable, U is approachable by such F's, say FI C F2 C ... 

with Un Fn = U. Then, lFJH) ~ lu(H) strongly, so B(t)lFn (H) ~ B(t)lu(H) 

strongly, uniformly in t. These facts imply that B(t)lu(H) -!:........ 0 strongly, which 

completes the pro of. o 

We now come to the announced result, asserting in sorne sense the "complete­

ness" of the usual wave operators, O±(H, Ho), but without assuming their existence. 

5 Recall that a smooth, compactly supported function is the Fourier transform of 
an LI function (indeed, of a Schwart7,' rapidly decreasing function). 
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Theorem 37 (Jaksié-Last) Under Assumption D, n±(Ho, H) exist on U. 

Proof: Let <p E V. Sinee V is dense and <p E V is arbitrary, it suffiees to establish 

the existence of limt eitHoe-itH <p. By the last two lemmas 

Letting ((t) = lu(Ho)eitHolùe-itH <p, it thus suffiees to show that limt-->±oo ((t) both 

exist. 

For 'lj; E ri 

i('lj; Ilu(Ho)eitHo (Halo - loH)e-itH <p) 

i(e-itHo lu (Ho)'lj; 1 Te-itH <p). 

By the fundamental theorem of calculus, for s < t 

('lj; 1 ((t) - ((s)) i lt (e-irHOlu(Ho)'lj; 1 Te-irH <p) dT 

i 11' (lIC-irHOlu(Ho)'lj; 1 Tl l c-irH<p) dT, 

sinee T = 11Tll' Thus, by the Cauchy-Schwarz inequality 

I('lj; 1 ((t) - ((8))1 ::::; IITlllt 1I11c-irHOlu(Ho)'lj;lllI1le-irH<p11 dT 

1 1 

::::; liT Il (lt Illle-irHOlu(Ho)'lj;112 dT) :2 (lt Illle-irH<p112 dT):2 

1 

::::; Const (ft 11 1 IÜ-
irH <p112 dT) '2 Il'lj;11, 
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since Il is Ho-smooth on U. Furthermore, the integral flR 111 1e-iTH cp112dT is finite by 

the definition of V. Henee, 

11((t) - ((8)11 = sup 1\1/J 1 ((t) - ((8);1 
111/111=1 

t 1 
::;;; Const (11111e-iTHcpI12 dT) ~ o. 

Thus, both limt->±oo ((t) exist and the result follows. o 

Scholium The beginning of the proof asserts the following: it suffices to establish 

the existence oflimt eitHoe-itHcp for cp E V, because V is dense in 1u(H)1-l. However, 

as discussed at the beginnù7,g of the section the result is trivial for cp E /C J... Since 

V n /C i8 den8e in 1u(H)/C, it thm svffices to prove the exi8tence of the limit for 

cp E V n /C. In other words, A88umption D may be weakened in the following way: 

• Il is Ho-smooth on U, 

• V n /C is dense ÙI, 1u(H)IC. 

Notice that a similar conclusion holds by replacing IC with ICI (see the proof of The­

orem 43). 

Applying twiee the previous theorem, 

Corollary rt Il is both H -smooth and Ho -smooth on U, then the wave operators 

n±(H, Ho) eri8t and are complete on U. 
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3.3 Deterministic Approach 

Using the definitions and conventions of the previous section, we now turn our 

attention to the scattering properties of H = Ho + V. In the present section V is 

assumed to be bounded. 

Let a < b. The existence and completeness of wave operators on la, b[ except on 

a closed set of Lebesgue measure zero will follow from various hypotheses regarding 

the following quantitics: 

l inf inf lm (6n 1 (Ho - e - ic)-16n ), 
nEr a<e<b 

O<ê<l 

T(n,m) - sup 1(6n l(Ho-e-ic)-16m )l, wheren,mEX, 
a.<e<b 
O<ê<l 

l(n) L T(n, m), where n E r. 
mEr 
m4n 

We adopt the following convention: except mentioned explicitly, z varies in the 

rectangle 

s = {e + iy ; a < e < band 0 < y < 1}, 

while N, M vary in X, N, M in rI, and n, m in r. Thus, the previous quantities 

may be abbrcviatcd 

103 



1 

r(N,M) 
z 

l(n) L r(n, m). 
m'In 

Theorem 38 The spectral measure associated with Ho, 6N , and 6M is real valued. 

Proof: Let us denote thi's measure by f-LNM. If is characterized by the relation 

which holds for any boundcd mcasurable f. Since (6N 1 H66M) represents the number 

of paths from N to M of length l in the graph (X, d), it is a positive integer, a fortiori 

a real numbcr. Thus, (6N 1 p(Ho)6M ) is real for any polynomial p on IR. By density, 

it follows that (ON 11n(Ho)oM) = f-LNM(B) is real for any Borel set B. D 

As a consequence, the matrix elements of (Ho - Z)-l are "real symmetric" in 

the sense that (ON 1 (Ho - z)-lOM) = (OM 1 (Ho - Z)-lON), which implies r(N, M) = 

r(M, N). 

In this section we make the following assumptions, which involve Ho only: 

Assumption E l (n) ---4 0 as n ---4 00, i. e., for all c > 0 there exists a finite set 

Fer such that l(n) < c for every n tf. F. 
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Assumption F l(n) < 00 for all nE r. 

Assumption G 1> O. 

Assumption H The function C+ ---+ B(H), z f-+ II(Ho - z)-111 extends contin­

uously to C+ U [a, b], where B(H) is endowed with the 7J,n~form topology. 

Notice that the property E is vacuously true wh en r is finite. Similarly, the 

case where the potential lies on a single site is not really discarded by the definition 

of l (n), interpreting a sum over an empty set of indices as zero. However, we are 

mainly eoncerned in the case where r is infinite. 

Concretely E, F, and H may come from sparseness of r and an a priori estimate 

on the Green's function of Ho. At the level of operators theory the condition G 

implies that the diagonal part of (Ho - zt l rz2 (r) is invertible, while E and F imply 

that its remaining part is compact, as wc shall see later. 

Finally, Assumptions Gand H imply the following: 

Theorem 39 The spectrum of Ho restricted to ICI is purely absolutely continuous 

on [a, b]. Moreover, ils essential support con tains [a, b]. 

Proof: Let jJN be the spectral measure of 6N with respect ta Ho, and PN be its 

Poisson transform. Then, for z = x + iy E C+ 

y 1 (t - x~2 + y2 djJN(t) 

lm (ON 1 (Ho - x - iy)-ION). 
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Assumption H ensures that PN(z) extends continuously to a function PN(X) on [a, hl. 

Moreover, by classical Harmonie Analysis the measure ~PN(X + iy) dx converges 

vaguely to d/-lN(x) whcn y l o. It foIlows that d/-lN(x) is equal to ~PN(X) dx 

on [a, hl, i.e., for aIl N, /-lN is purely absolutely continuous on [a, hl. Limiting our 

considerations to the subspace cyclicaIly generated by {ON} NErI' 

then defines a spectral measure for Ho r !Cl, where aN > 0 and L:N aN = 1. Since 

each /-lN is purely absolutc1y continuous on [a, hl, the first conclusion foIlows. Finally, 

since the density of /-l with respect to the Lebesgue measure is given by 

~ L aNlm (ON 1 (Ho - x - iO)-lON!, 
N 

which exists almost everywherc (by classical Harmonie Analysis) and is positive for 

x E [a, hl (by Assumption G), the second conclusion follows. o 

Let us focus on the Hilbert subspace l2(f) and consider 

Clearly, Wo (z) is analytic on Sand extends to a continuous function 

by Assumption H. Moreover, 

Theorem 40 Wo(z) is invertible for all z E S. 
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Proof: Let cp vary in l2(r) and let us denote its spectral measure with respect to 

Ho by {L'P' For a fixed z = x + iy E S, 

lm (cp 1 Wo(z )cp) lm (cp 1 (Ho - Z)-lcp) 

y r ( ~2 2 d{L'P(t). Jw: t - x + y 

This last quantity is strictly positive; indeed, it is bounded away from zero when cp 

varies in l2(f), sinee Itl ~ IIHol1 on the support of the integrand. Thus, the closure 

of the numcrical rangé of Wo(z) is included in C+. In particular, 0 ~ spec(Wo(z)), 

from which the result follows. o 

Let us define the following opcrators, which act on the underlying Hilbert space 

Do(z) diag Wo(z) 

L(On 1 WO(z)On) (on I,)on, 
n 

Ko(z) Wo(z) - Do(z). 

Notice that IldiagAl1 ~ IIAII for any bounded operator A, since 

IldiagAl1 = sup I(on 1 Aon)1 ~ IIAII· 
n 

6 Rccall that the nv,merical range of a bounded, selfadjoint operator, A, is defined 
as {(cp 1 Acp) ; cp E H, Ilcpll = 1}; it is weIl known that its closure contains spec(A). 
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In particular, Do (z) is bounded for any z ES. Moreover, Do is clearly analytic on 

S. It extends continuously to S, letting 

Do(x) = diagWo(x) 

for x E [a, b]. Renee, Ko inherits the same properties, namely: Ko(z) is bounded for 

any fixed z E S, Ka is analytic, and Ka extends continuously to S. 

Lemma Ka(z) is compact for any z E S. 

Proof: Let é > O. By Assumption Ethere exists a finite set, :FI ç r, such that 

l(n) ~ ~ for any n E r \ :FI. In other words, sUPnli.rl Em#n T(n, m) ~ ~, that is, for 

an arbitrarily fixed z E S 

Moreover, by Assumption F there exists a finite set :F2 ç r such that 

Letting :F = :FI U :F2 , one finally finds 

Let F be the finit.e rank operat.or defined as follows: 

if n, mE :F, 

ot.herwise. 
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As already noticed the matrix elements of Ko(z) are "symmetric in the real sense". 

Hence, so are the matrix elements of Ko(z) - F, i.e., 

In particular, by the Ricsr,-Thorin Interpolation Theorem (cf Appendix 4.3) 

IIKo(z) - Flh = IIKo(z) - Flloo ~ IIKo(z) - Fil· 

Since the infinity norm of Ko(z) - F is prccisely the left-hand si de in (3.2), one 

concludes 

IIKo(z) - Fil ~ E. 

Since E is arbitrary, Ko(z) is compact. o 

Scholium We proved more, namely: for all E > 0 there exists a finite dimensional 

projection, P, such that for any z E S 

IIKo(z) - PKo(z)PII ~ E. 

This cames from the fact that our choice of F did not depend on z E S -defining P 

as the projection onto the vector space generated by {6n ; nEF}. 

Lemma The diagonal operator 1 + Do(z)V acting on Z2(r) is invertible for any 
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z E S. 

Proof: Dy Assumption G, Do(z) consists of invertible diagonal clements. If 7 

then 

1 
IV(n)1 ~ 21I Do(z)ll' 

1(1 + Do(z)V)(n)1 ;? 1 -IDo(z)(n)IIV(n)1 
1 

;? 1-IIDo(z)1121IDo(z)11 

1 
2' 

so 1(1 + Do(z)V)-l(n)1 ~ 2. Otherwise, IV(n)1 > (21IDo(z)II)-1, and then 

1(1 + Do(z)V)(n)1 ;? IIm (1 + Do(z)V)(n)1 

- JV(n)IIImDo(z)(n)1 
1 

;? , 
21I Do(z)11 

so 1(1 + Do(z)V)-l(n)1 ~ 21ID~(z)ll. In total, 

11(1 + Do(Z)V)-lll ~ max {2, 21ID~(z)II}, 

7 In the sequel wc den ote by A( n) the n th diagonal clement of a diagonal opera­
tor A. 
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which ensures that the inverse of 1 + DO(z)Vl whose existence follows from Assump-

tion Cl is really in B(l2(r)). D 

Let us define 

From the fact that Vis bounded l the argument used in Theorem 40 shows that W(z) 

is invertible for any z E S. Morcovcr l 

Theorem 41 There e.Tists a closed set of Lebesgue measure zero, n c [a, bL su ch 

that W extends contin1wusly to a function S \ n ---+ B (l2 (r)). 

Proof: For the moment l let z vary in S. By the resolvent identity 

W(z) - Wo(z) 

since V = 10 V10· Thus l 

10( (H - Z)-l - (Ho - Z)-l )10 

- -lo(Ho - z)-lV(H - z)-110 

-Wo(z)VW(z), 

(1 + Wo(z)V)W(z) = Wo(z). 

Notice that 1 + Wo(z)V is invertible for any fixed z E Sl since W(z) and Wo(z) are. 

Thus, 

W(z) = (1 + Wo(Z)V)-lWO(Z)l (3.3) 
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where z E S. We wonder to which extent (1 + Wo(Z)V)-l is still invertible for 

z E aS. lndeed, for any z E S, 

1 + Wo(z)V 1 + Do(z)V + Ko(z)V 

(1 - K(z))(l + Do(z)V). 

where K(z) = -Ko(z)V(l + Do(Z)V)-l is compact. Since for z E S both l+Do(z)V 

and 1 + Wo(z)V are invertible, 1 - K(z) is. By a variant of the Fredholm ana­

lytic theorem (cl Appendix 4.4), 1 - K(z) is thus invertible in B(12(r)) for aU 

z E [a, b] \ n, wherc n c [a, b] is a closed set of Lebesgue measure zero. Since 

S \ n --+ B(l2(r)), Z ~ (1 - K(Z))-l is still continuous (cl Appendix 4.4), so is 

z ~ (1 + Wo(Z)V)-l. Hence, the right-hand side of (3.3) cxtends continuously to 

S \ n, as desired. 0 

Since the natural embedding B(l2(r)) "---+ B(H) is an isometry, 

Corollary There e.Ti8t8 a cl08ed 8et of Lebesgue measure zero, n c [a, b], 8uch that 

W extend8 continuously to a function S \ n --+ B(H). 

The main theorem in this section is deduced from this last corollary, by working 

out 

Lemma There exi8ts a closed set of Lebesgv,e meaS7J,re zero, n c [a, b], sv,ch that 
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W 1 extends continuously to a function S \ n ---+ B(H). 

Proof: We first prove the existence of a similar extension for 11(H - z)-110' By 

the resolvent identity 

11((Ho - Z)-l - (H - z)-1)10 

- Il (Ho - Z)-l V(H - z)-110 

11(Ho - z)-110VW(z), 

sinee V = 10V10' By Assumption H, 11(Ho - z)-110 = 11(Ho - z)-11110 extends 

to S, while by the prcvious corollary W(z) extends to S \ n. Thus, 11(H - z)-110 

extends on S \ n, as c1aimed. Again, by the resolvent identity, 

11(Ho - z)-11 1 - W1(z) - 11((Ho - Z)-l - (H - z)-1)1 1 

Il (H - Z)-l V(Ho - z)-111 

11(H - z)-110V1 1(Ho - z)-11 1. 

Both Il ( Ho - z) -111 and Il (H - z) -110 extend appropriately by Assumption H and 

the above. The result follows. D 

Using the eriterion in Section 3.2 (corollary of Theorem 37), we have proven: 

Theorem 42 Under Assumptions E, F, G, and H, there exists a closed set of Le­

besgue measure zero, n c la, br, 8uch that the wave operators, n±(H, Ho), exi8t and 

are complete on la, b[ \ n. 
More generally, 

113 



Corollary Let 8 ç lR be an open set. Suppose Assumptions E, P, C, and H hold 

for any [a, b] c 8. Then, there exists a set of Lebe8gue meaS1J,re zero, R c 8, 8uch 

that the wave operators, [2±(H, Ho), exist and are complete on e \ R. 

Pro of: Sinee 8 is open, 

e = U [a,b]. 
[a"bjC8 
a"bEiQI 

By the theorem, for aIl [a, b] c e there exists a closed set of Lebesgue measure zero, 

Ra"b, sueh that the wave operators exist and are complete on [a, b] \ Ra"b' Letting 

R= U Ra"b, 
[a"bjC8 
a"bEiQI 

which is not necessarily closcd but has mcasure zero, it follows from the discussion 

after Proposition 34 that the wave operators exist and are complete on each [a, b] \ R, 

where [a, b] c e has rational endpoints. Hence, by the coroIlary of Proposition 34 

the wave operators exist on e \ R. D 

3.3.1 Conclusion in Random Frame 

It is possible to remove the exception al set, R, in the above theorem by working 

in the random frame. Then, 

H = Ho + V, 
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where {V (n)} nEf is a family of independent, identically distributed random variables 

of law j.L, where j.L is a probability measure on IR (cf. the beginning of Section 3.5). 

Assume the support of j.L is bounded, so V is bounded almost surely. Then, 

Theorem 43 Let e ç IR be an open set. Suppose Assumptions E, F, C, and H hold 

for any [a, b] c e. Thcn, the wavc operators n±(H, Ho) e.Tist and are complete on 

e almost surely. 

Proof: It suffices to establish the existence and completeness of the wave operators 

n±(H r KI, Ho r KI) on e. 

For aIl V the previous theorem ensures the existence of a random set of Lebesgue 

measure zero, 'R-v, such that n±(H, Ho) exist and are complete on e \ 'R-v, a conclu­

sion that persists when restricting the operators to KI' By Theorem 39 the spectrum 

of Ho f KI is purely absolutely continuons on e. Thus, le\Rv(Ho f Kd = le(Ho f KI)' 

sa the wave operators n±(H r KI, Ho f Kd exist on e for aIl V. 

By Theorem 39 the essential support of Ho f KI on e is full. Since the ran­

dom variables {V(n)}nEf are i.i.d., the essential support of H f KI is almost surely 

full by random perturbation theory. By the Jaksié-Last theorem, it follows that 

spec(H f lCd is purely absolutcly continuous on e (a.s.), so the wave operators 

n±(Ho flCI,H fK I ) almost surely exist on e. 0 
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3.3.2 Application to Generalized Laplacians 

In this section we show that the previous, abstract theorem applies to random 

Schrodinger operators with generalized Laplacians and sparse potentials. Our sparse­

ness conditions will come from the a priori estimates on free generalized Laplacians 

derived in Chapter 2. 

Let Ho = 6 be a generalized Laplacian. Then,· Ho = 6 cornes from a trans­

lational invariant graph on Zd, whosc distance is denoted by d(m, n). In order to 

apply Theorem 43 to the random operator 

H=6+V, 

where V is assllmed to be bOllnded almost surely, we show that 6 satisfies Assump­

tions E, F, C, and H. 

On specifie examplcs condition G cornes from Theorem 20. Let e c spec(6) be 

an open set on which Theorem 20 applies. For instance, suppose ~ is the standard 

Laplacian and let 

E = { -2d, -2d + 4, ... , 2d - 4, 2d} U {O}; 

alternatively, suppose 6 is the Molchanov-Vainberg Laplacian and let 

We then set 8 = spec(6) \ E. As in the previous section we focus on an interval 

[a, bl c e and define S with respect to this interval. 
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Firstly, by translational invariance 

1 inf lm (bo 1 (Ho - z)-Ibo) 
z 

infIm G(O, z), 
z 

where following our convention z E S. Sccondly, by Theorcm 20, for any fixed 

e E [a, b] 

ImG(O,e) = n l(e) IIVx~(x)11 dx > o. 

On the other hand, if e + iy E S is not real, then 

lm G(O, e + iy) = (2n)-d r (<D( ) Y)2 2 dx > O. 
}Yd X - e + y 

Since G (n, z) exists and is continuous on S, which is compact, it follows that 1 > 

O. Hence, aIl generalized Laplacians (in particular, both the standard and the 

Molchanov-Vainberg ones) satisfy Assumption G for [a, b] included in their respec­

tive e. 

The main work consists of verifying Assumption H. To this end, we use the 

following, stronger versions of Assumptions Gand E, which yield our sparseness 

assumption. 

Before stating these assumptions, let us partition rI in the following way: for 

aIl n E r, we select a non empty neighborhood 

8(n) ç {N E rI; d(N,n) ~ 1} (3.4) 

in such a way that Un 8(n) = rI and 8(m) n B(n) of. 0 if m of. n. Of course, equality 

is necessary in (3.4) if d(m, n) > 2 for all m of. n (where according to our convention 
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m, n E r). Moreover, for aIl N E fI there exists exactly one nEf such that 

NE B(n). We thus set B(N) = B(n), and then define 

L(N) = L 7(M, N). 
Mrt.B(li) 

This last sum is an analogue of l (n) for M, N varying fI instead of f. Moreover, 

instead of removing only the diagonal clement (M = N) from this summation, the 

whole B(N) is removed. 

We suppose: 

Assumption l L(N) -7 0 when N -7 00. In other words, for all é > 0 there exists 

a finite set, Fe fI, 87J,ch that L(N) < é for all N ~ F. 

Assumption J L(N) < 00 for all N E fI. 

We then decompose WI(z) = 11(Ho - z)-ll I into two summands: a superdiag-

onal, 

DI(z) = L L (ON 1 (Ho - Z)-IOM)(OM l')ON, 
li MEB(f:!..) 

and the other part, 
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By Theorem 20, (ON 1 (Ho - e - iO)-IOM) exists for any e E [a, bl and M, NE 'li.,d. 

In particular, defining 

W1(e) = L (dN 1 (Ho - e - iO)-lOM)(OM l')ON' 
M,li. 

it follows that 

lim WI(z) = WI(e) weakly. 
z----,>e 

zEIC+ 

In this situation WI (e) is bounded, which is a well known application of the Steinhaus­

Banach uniform boundedness princip le (see [40]); here, this fact will be deduced from 

further computations. 

Similarly, let us define Dl (e) and KI (e) in the obvious way, so these last oper­

ators are weak limits of Dl (z) and KI (z) respectively. We want to show that under 

Assumptions land J 

lim WI(z) = W1(e) uniformly, 
z~e 

zEIC+ 

(3.5) 

the two mentioned assumptions joint with the a priori estimate in Chapter 2 then 

yielding our sparseness assumption. 

Observe that W1(z) = D 1(z) + K 1(z) for all z E S (including values in ~). In 

order to prove (3.5) we first show: 

Lemma For any e E [a, bL lim DI(z) = DI(e) 'IJ,niformly. 
z---,l.e 

zEIC+ 

Proof: Let {C j H=l be an indexation of aIl subsets of {N E Zd ; d( N, 0) ( 1} 

containing O. Then, for aIl n E r there exists one and only one j, which we denote 
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j(n), snch that B(n) - n = Ci' Thus, one may rearrange Dl (z) in the following way: 

L 

DI(Z) = L L L (On+K 1 (Ho - Z)-1 0n+J) (on+J 1')On+K' 
.1=1 {n; j(n)=i} J,KECj 

By translational invariance this last expression is eqnal to 

L 

L L G(J - K, z) L (on+J 1')On+Kl 
j=l J,KECj {n ; j(n)=j} 

from which the result follows. o 

It remains to show that the convergence of KI (z) to KI (e) is also nniform. 

Exactly as wc did for Ko(z), 

Lemma (of the lemma) Let E > 0 be œrbitrarily .fixed. Then, there exù3ts a .finite 

rank operator, Fe (z), such that 

for any z E S (induding values in lR.). Moreover, the function Fe: S ----+ B(H) 2S 

contintwus at z E S, where B(H) 1:8 endowed wüh the tmiform topology. 

Pro of: By Assumptions land J, for aIl E > 0 there exists a finite set, Fer l, snch 

that 
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Let V be the vector space generated by {ON; NEF} and 

Notice that Fe;(z) is weakly continuous and hence uniformly continuous at Z E S, 

sinee V is finitc dimcnsional. Moreover, the matrix elements of KI(z) ,-- Fe(z) are 

"symmetric in the real sense", so the equation (3.6) is equivalent to 

The Riesz-Thorin Interpolation Theorem then completes the proof (cf Appen-

dix 4.3). 

Lemma For any e E [a, b], lim K 1(z) = KI(e) uniformly. 
z-te 

zEC+ 

D 

Proof: Let E > 0 be arbitrarily fixed. Then, for a given e E [a, b] and z varying 

in S 

IIKI (z) - KI (e) Il ~ IIKI (z) - Fe(z) Il + IIKI (e) - Fe(e) Il + IIFe(z) - Fe(e) Il 

~ IIFe(z) - Fc;(e) Il + 2E. 

Since lim F,(z) = Fe(e) uniformly and E is arbitrarily small, this completes the 
z-+e 

zEC+ 

pro of. D 
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In conclusion, by the two previous lemmas W1 (z) admits a uniformly continuous 

extension to S (i. e., Assumption H holds) and this, under Assumptions land J. 

Sinee land J arc st ronger versions of E and F, and sinee G is alroady shown, we 

have proven: 

Theorem 44 Consùler a random Schrodinger operator acting on l2(Zd), 

H=D.+V, 

where D. is a generahzed Laplacian and V is a random potential bounded almost 

surely. More precisely, assume {V(n)}nEr are i.i.d. random variables of law IL, 

where M is compactly s11,pported. Let 8 c spee(D.) be an open region of validity 

of Theorem 20. ft Ass11,mptions land J hold for any [a, bl c 8, then Theorem 43 

appliOi, i. e., the wave operators O± (H, D.) exist and are complete on 8 almost surely. 

Assumptions land J with the estimate derived in Chapter 2 then yield our 

sparseness assumption. On specifie examples, 

Theorem 45 Consider H as above, where D. is the standard Laplacian and V is 

bounded almost s11,rely. Suppose r is sparse in the following sense: there exists an 

E > 0 such that 

L ln - ml-~+€ < 00 for ail 71, E rand 
m4n 

lim Lin - ml-~+E 
Inl-HXl 

m4n 

0, 

(3.7) 

(3.8) 

where m and n vary in r. Then, the wave operators O±(H, D.) exist and are complete 

on spcc(D.) = [-2d, 2d] almost surely. 
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Remark It is perhaps possible ta remove the condition (3.7) using (3.8) and the 

finiteness of d, but from our point of view le jeu n'en vaut pas la chandelle, i.e., ta 

vervify (3.7) on coner'ctc e.'Eamplcs is sa casy that seeking for a geneml argument does 

not seem appropriate. 

Proof: Let 8 = [-2d,2d] \ E, where E = {-2d, -2d + 4, ... , 2d - 4, 2d} U {O}. 

Since the spectrum of 6 is purely absolutely continuous, 

ifthese wave operators exist. Moreover, by a theorem of Jaksié and Last [16] based on 

spectral averaging, the dcterministic and finite set E do es not contain any eigenvalue 

of H r K almost surely. Therefore, 

almost surely if thesc last opcrators exist. Hence, it suffices to praye existence and 

completencss (a.s.) of the wave operators on 8. 

Equation (3.8) implies ln - ml -+ 00 when m and n are distinct and go to 

infinity. For this reason, in order to verify land J it suffices to show that 

L T(M,N) 
d(M,J::1)>2 
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is finite for every N E fI and tends to ° when INI -4 00. lndeed, for M, N E fI, 

since 

#{N E Zd; d(N,O):::; 1} = 2d+ 1 < 00, 

the second corollary of Theorem 25 gives for any fixcd NEf I 

d(M,JY..)>2 d(M,JY..»2 

:::; (2d + 1) L: (In - ml - 2)-~+E 
m,in 

:::; Const L: ln - ml-~+E, 
m,in 

where nEf is adjacent or equal to the given N E fI' Notice that n is unique 

eventually and Inl -4 00 wh en INI -4 00. Hence, Assumptions 1 and J are satisfied. 

The result follows. D 

By exactly the same argument and with the same remark, which we will not re-

peat, a weaker sparsencss assumption is obtained when .6. is the Molchanov-Vainberg 

Laplacian: 

Theorem 46 Consider H as above, where .6. is the Molchanov- Vainberg Laplacian 

and V is bounded almmJt surely. Suppose f is sparse in the following sense: there 

exists an E > ° such that 

'""" d-l + L.t ln - ml--2- € < 00 for all nEf and (3.9) 
m,in 

'""" d-l+ lim L.t ln - ml--2 € 

Inl-+ex.l 
m,in 

0, (3.10) 

124 



where m and n vary in r. Then, the wave opemtors n± (H, 6) exist and are complete 

on spec(6) = [-2 d
, 2d

] almost s'ILrely. 

More genorally, 

Theorem 47 Consider H as above, where 6 Ù, a genemlized Laplacian and V is 

bounded almost surely. Let 8 be an open region of validity of Theorems 20 and 21; 

in particular, 'We assume that the constant energy surfaces of the Green's function 

associated with 6 have at least t\, > ° non vanishing principal curvatures at any point 

when the energy lies in 8. Suppose r is sparse in the following sense: there exists 

an E > ° such that 

(3.11) 
mfn 

0, (3.12) 

where m and n vary in r. Then, the wave operators n± (H, 6) exist and are complete 

on 8 almoBt Burety. 

To provide numerical, explicit oxamples is easy. For instance, if 6 is the standard 

or the Molchanov-Vainberg Laplacian, one may consider the set of sites 

r = {(l,o, ... ,O) E 71..d ; jE 71..}. 

Since there exists a constant such that Il- k4 1 ? Comit Ijl3 for any distinct j, k E 71.., 

it follows that 

L Il- k4 1-!+e ~ Const L Ijl-!+e < 00 

.1# lfO 
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for any fixed k E Z (by choosing E < ~). Then, not only our first sparseness 

assumption is satisfied, but the dominated convergence theorem applies and yields 

3.3.3 Remark About Clusters 

It is possible to relax the geometric constraint imposed by our sparseness con-

dit ion by considering clusters. Let D E N* and C ç; r, C i= 0. Let us denote the 

elements of C by underlined small letters, e.g., Tl E C. Interpreting them a..s the 

centers of the clusters, and D as the maximal radius of the clusters, we suppose 

r ç U{N E Zd ; d(Tl, N) ::;;; D}. 

Then, the sparseness conditions found for n varying in r may be replaced with similar 

conditions for Tl varying in C (without affeeting the exponents). 

This ean be seen in the following way. Imitating the argument used in the 

previous case, one partitions rI into classes 

so for aIl NErI there cxists one and only one Tl E C sueh that B(N) = B(nJ. Then, 

one defines 

L(N) = L r(M, N) 
Mff-B(J:!J 
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and make the usual sparseness hypotheses: L(N) < 00 and L(N) -t 0 when INI -t 

00. The operator W1(z) then decomposes into D1(z) + Kl(Z), where 

D1(z) = L: L: (6N 1 (Ho - Z)-1 6M )(6M 1·)6N. 
li MEB(fi) 

Let {Cj}f'=l be an indexation of an subsets of {N E Zd ; d(N, 0) ~ D + 1} containing 

O. Hence, there exists a unique j = j(11) such that B(11) -11 = C.i , so 

N 

D 1(z) = L L G(J - K, z) L {<511+J 1·)<511+K . 

.1=1J,KECj 

The rest of the proof is identical. We thus have: 

Theorem 48 Consider a random Schrodinger operator acting on [2(Zd), 

H=f1+V, 

where f1 is a generalized Laplacian and V is a random potential almost surely bounded. 

More precisely, assume {V(n)}nEf are i.i.d. random variables of Law p, where p is 

compactly 8upported. Let 8 C spec(f1) be an open region of validity of Theorem 20. 

Let 11 E C be centers of clusters of radius (at most J D < 00 in r. If L( N) < 00 and 

L(N) -t 0 when INI -t 00 (with respect to any [a, b] c 8 J, then the wave operators 

n± (H, f1) e.'Eist and are complete on 8 almost surely. 

The resulting conditions for the standard and the Molchanov-Vainberg Lapla-

cians are respectively similar, replacing n E r with TI. E C. However, when proving 

this fact one shows that 

L T(M,N) 
d(M,N»2D 
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is finite and tends to 0 wh en INI -r 00, using a similar argument. 

3.4 Second Criterion of Completeness of Wave Operators 

This section is a continuation of Section 3.2. Using the same setting (and similar 

notations), we present a sufficient criterion for Theorem 37 to apply. This provides 

a second criterion of "completeness" for the usual wave operators, n±(H, Ho), in the 

sense that n±(Ho, H) exist, but without assuming that the formers do. The derived 

criterion will be used in Section 3.5 for unbounded potentials. 

Recall that /C and /Cl are the Hilbert subspaces cyclically generated by {On; n E r} 

and {6N ; N E rd respectively (with respect to Ho). Therefore, /C, /Cl, and their 

orthogonal complements arc Ho- and H-invariant, so the restrictions to /C, /Cl, /Cl.., 

or Kll.. commute with the calculus for Ho and for H. 

Recall that U ç IR is a given, non empty, open set and 

In this section we establish a sufficient condition for 'D n K to be dense in lu(H)K 

(cf Scholium of Theorem 37). Explicitly, 

Theorem 49 Sv,ppose that the spectrv,m of H f lu(H)Kl is pv,rely absolv,tely con­

tinv,ov,s. ri for all n E rand almost all e E U 

L IIm (6M 1 (H - e - iO)-16n ) 1
2 < 00, (3.13) 

M 

then 'D n K is dense in lu(H)lC. 
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Proof: Let /Cn be the cyclic subspace generated by On with respect to Ho and let 

'Dn = 'D n lu(H)/Cn' where n E r is arbitrariIy fixed. 8 Since 'D is a vector space,· 

it sufficcs to prove that 'Dn is dense in lu(II)Kn' in which case En 'Dn is dense in 

lu(H) Ln /Cn, so V is dense in lu(H)/C. 9 

Let 

Ui = {e E Un [-j,j] ; L Ilm (6M 1 (H - e - iO)-lbn )1 2 < j}. 
M 

By assumption, U differs from Uj Ui by a set of Lebesgue measure zero. Moreover, 

U1 ç Uz ç ... )' U l!j, 
.i 

so lu(x) = lim] luj(x) almost everywhere. Sinee the speetrum of H f /Cl is purely 

absolutely continuous on U, it follows that lu(H I/CI) = limj luj (H I/CI) strongly. 

Sinee /Cl and /(11. are H-invariant, this Iast equation is equivalent to 

Consequently, {lUj (H)/Cn ; j ~ 1} is dense in lu(H)/Cn' 80 in particular 

8 We declare w.l.o.g. 1 rt X in order to avoid a conflictual notation with /Cl. 

9 Here, En 'Dn dcnotes the linear, not necessarily closed space generated by UnVn, 
and similar Iy for 2:::n /(n· 
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is dense in lu(H)lCn . It thus suffices to show 

for any rp E V~, say, for rp = f(H)l Uj (H)6n , where f E DXJ (IR) , j ~ 1, and n E r 

arc arbitrarily fixed. 

By assumption the spectral measurc of 6M and 6n with respect to H r ICI is 

purely absolutely continuous on Uj • In particular, 

r e-ife f(e)..!.Irn (6M 1 (H - e - iO)-16n ) de 
lUj 7r 

~:F[lUj(e)f(e)Im (6M 1 (H - e - iO)-16n )](t), 

where :F denotes the Fourier transform. By Plancherel's theorem, 

1 t follows that 

I: r 1 (6M 1 e-itH rp) 12 dt = 
M lF. 

~ ~ lj If(e)12IIm (6M 1 (H - e - iO)-16n )12 de 

~ ~llfll~jll!jl 
~ .illfl12 j2 

7r CXJ 

< 00, 
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which completes the proof. o 

The scholium of Theorem 37 and the above immediately give another criterion 

of "completeness" in the sense that: 

Corollary (Jaksié-Last) Under the hypothe8e8 of the previou8 theorem, if in ad­

dition 11 Ù, Ho-8mooth on U, th en the wave operator8 n±(Ho, H) exi8t on U. 

3.5 Random Result Inside spec(Ho) 

We now turn to the study of the Anderson type Hamiltonian H = Ho + V, where 

{V (n)} nEf is a family of indcpcndcnt, identically distributed random variables of law 

jJ.lO This time, we do not assume that jJ is compactly supported, i. e., that V is 

bounded almost surcly; sorne cases where jJ has full support are in fact of special 

interest (cf Scholillm of Theorem61). 

In this section we establish a sl1fficient condition for the following, st ronger 

version of (3.13) to hold: 

(3.14) 

10 Explicitly, the probability space n = IR f is endowed with its Borel a-algebra and 
the probability measure dJPl = IlnEf djJ, where djJ is a given probability measure on 
IR. The n th random variable in our family is then the projection n ---t IR, V 1---+ V(n). 
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Our computations are based on the Aizenman-Molchanov theory and apply under 

these conditions on f-t: 

1. f-t is absolutely continuous, 

2. For a given 0 < s < 1 the decoupling constants 

and 

satisfy k8 > 0 and K8 < 00. 

Given a non empty, open interval]a, b[, let us define 7(M, N) as in Section 3.3 

and let 

where following our convention n E rand z E {e + iy ; a < e < band 0 < y < 1}. 11 

We now state our assumptions on Ho, which involve these last quantities and 

Z(S)(m) = L: 7(n, m)s. 
n~m 

Assumption K Z(.~)(m) -> 0 when m -> 00, i.e., for al! é > 0 there exists a finite 

set F ç r 8uch that Z(.~)(m) < é for al! m t/:. F. 

11 This replacement of l with J becomes essential in Section 3.6 only. 
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Assumption L sup LT(n, M)" < 00. 
n M 

Assumption M J > O. 

On concrete examples Assumptions K and L come from sparseness of rand 

an a priori estimate on the Green's function associated with Ho. At the level of 

random operators theory Assumption K permits to control the II and loo norms of 

the operator whose matrix elements are T(m, n)S; this is essential for the Aizenman-

Molchanov method to apply. Explicitly, there exists a finite set, Fer (which we 

now .fix until. the end of this section), such that 

for aIl m ~ F. M aking the convention that Il, m, ". E r \ F, the previous relation 

is equivalent to 

'" ( )8 JSks 
sup L..., T n, m < 2K . 
m w(=m 8 

(3.15) 

The AizenmanMolchanov method will then apply and provide an estimate on the 

resolvents when restricting the potential to l2(r \ F). Then, Assumption L will 

permit to recover from this last estimate the full strength of the equation (3.14). 

Remark Let 0 ~ R ~ 00 be a .fixed integer. Remarkably, all computations derived 

in the present section still work when replacing rI with r R. H ence, for later reference 
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the conscientious reader will adopt the convention 

N, M, '" E f R 

for an arbitrarily fixed R E Nu {oo}. The interesting case in the present section is 

still R = 1, but resv'us are used in Section 3.6 with R = 00. 

Let us define 

and use the abbreviations 

Ro(N, M,z) 

R(N,M,z) 

R(N,M,z) 

(ON 1 (Ho - Z)-lOM), 

(ON 1 (H - Z)-lOM), 

(ON 1 (fi - Z)-lOM)' 

The following lemma implies that R( N, M, z) is "symmetric in the real sense" 

for any fixed z E S, i. e., 

R(N, M, z) = R(M, N, z), 

which ï's repeatedly used in the sequel without explicit mention. Of course similar 

conclusions hold for Ro and R. 

Lemma The spectral mea8ure of OM and ON with respect to H is real valued. 
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Pro of: Since the charaderistic fundion of any Borel set is approachable in the L2 

sense by bounded, continuous, real valued functions, it suffices to show 

for any Ruch f. Sinee (/SM 1 (Ho + V)j/SN) E IR for any j ? 0, 

for any real valued polynomial, p. Assuming flrst that V is bounded, the Weierstrass 

Theorem (applied to rcal valued functions on the interval [-11H11, 11H11]) implies 

for any bounded, continuous, real valucd f. 

Suppose now that V is not bounded. Let 

if IV(n) 1 ~ L, 

otherwise 

We daim that limL->CXJ Ih = H in the strong resolvent sense. lndeed, by the 

resolvent idcntity 

Notice that (H - Z)-l<p E dom V for any <p E H. Hence, it suffices to show 

lim (V - VL)'Ij! = 0 
L-'>CXJ 
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for any 'ljJ E dom V. In fact, by the dominated convergence theorem (with dominator 

n 

which proves our claim. 

Consequently (see [40]), for any bounded Borel f 

lim f(Ho + VL ) = f(H) strongly, 
L-+oo 

a fortiori 

L->oo 
----t 0, 

which is real (for f as stipulated) by the first part of the proof. o 

In the sequel we use repeatedly the Aizenman-Molchanov decoupling lemma in 

conjunction with the resolvent identity; this latter implies 

R(N, M, z) = Ro(N, M, z) - L Ro(N, p', z)V(p,)R(p" M, z) (3.16) 
l!. 

for any M, N EX. As a first instance, 
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Lemma 12 

EIR(ll,m,zW ~ ks~8T(1l,mr + k~;8 LT(1l,E)8EIR(E,m,zW. 
rf-n 

Proof: By the equation (3.16) 

R(ll,m,z)(1 + Ro(ll,ll,z)V(ll)) = RO(ll,m,z) - LRo(ll,E,Z)V(E)R(E,m,z). 
E::fn 

Using the triangle inequality for 1· 18 and thcn taking the expectation, 

~ IRoCil, m, zW + L IRo(!?;,E, zWlE IV(EWIR(E, m, zW· 
E'In 

The dccoupling lemmas thcn give 

~ 1 RO(ll, m, z)J" + Ks L IRo(ll'E' z)1 8
E IR(E' m, zW 

efn 

12 Our convention consists of using parentheses with E in analogy to L;. For in­
stance, we writc EX" for lE (X") as opposed to (lEX)8, and lEXY for lE (XY) as 
opposed to (lE X) Y . 
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and the result follows from the definitions of J and T. o 

Let us fix m and Z, II E r \ F being thought as the only variable. We define the 

following vectors on [00 (r \ F): 

X(ll) lE !R(ll, m, zW, 

B(ll) ks1Js T(ll, m)8. 

They are well defined, since 

and IIBiloo < 00, the latter by Assumption L . lndeed, this last assumption also 

ensures that Il Bill < 00. Let us define the operator 

which acts on both lOO(r \ F) and ll(r \ F), where it is bounded. lndeed, by the 

equation (3.15) 

IIAlloo = IIAIII = kK;s sup LT(ll,p/ < ~, 
s rr !:!.I=rr 

where we have used T(ll, pl = TCE., ll)8; see also Appendix 4.3. Hence, the previous 

lemma may be restated as 

x ~ AX + B (pointwise). 

From this fact and since we have controlled the [1 and [00 norms of the operator 

A, we obtain: 
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Theorem 50 sup sup 2: lE IR(.rr, m, zW < 00. 
z m 

- TI. 

Proof: By the lemma, (1 - A)X :::;; B (pointwise). Furthermore, by our choice of 

F, IIAIII = IIAlloo < ~, so the geometric series gives 

00 

(1- A(l = 2: Ai and 11(1- A)-1111:::;; 2. 
j=ü 

Since aIl matrix elements of A are positive, the matrix elements of (1 - A)-l are 

also positive. Thus, this last operator preserves pointwise positivity of vectors. In 

particular, 

x :::;; (1 - A)-l B (pointwise), (3.17) 

so 

Explicitly, 

Since m and z are arbitrary, Assumption L finally yields 

o 

We now use the full strength of Assumption L in order to improve the last 

theorem. Before stating the resulting theorem, we need: 
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Lemma 

JE: IR(N, M, zW :s; T(N, M)S + Ks LT(N'E)sJE: IR(E' M, zW. (3.18) 
E 

Proof: The triangle inequality for 1·ls applied to (3.16) gives 

IR(N, M, zW :s; IRo(N, M, zW + L IRo(N, E, zWIV(EWIR(E, M, zW· 
E 

Taking the expectation, 

:s; T(N, M)S + LT(N,E)8JE: IV(EWIR(E, M, zW, 
E 

so the dccoupling lemma yiclds the result. 

Theorem 51 supsup LIE IR(n, M, zW < 00. 
z n M 

Proof: Let 
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which are finite by Assumption L and the previous theorem respectively. By the 

lemma, 

so 

and hence 

lE IR(N, m, zW ~ T(N, m)S + Ks LT(N'E)slE IR(E, m, zW, 
12 

sUpSUp LIE I(R(N,m,zW ~ C + KsCD. 
z I!1 li 

By the lemma, 

IE IR(n, M, zW ~ T(n, M)S + Ks LT(n,E)sIE IR(E' M, zW, 
12 

so by the above 

LIEIR(n,M,zW ~ C+KsCsuPLIEIR(~,M,zW 
M 1 M 

~ C + KsC(C + KsCD) < 00 

uniformly in n and z, as desired. 

The previous theorem is used in the following weaker form only: 

'ï/n: sup LIEIR(n,M,z)IS < 00. 
z M 

o 

We want to abstract from this last relation information about R(n, M, e + iO). By 

classieal Harmonie Analysis, for a given potential V the previous limit exists almost 
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everywhere (a.e.) on la, br. In the case where V is random the limit in question exists 

almost everywhere and almost surely (a.e. & a.s.) on la, b[ x D (by Fubini's theorem). 

We obtain: 

Lemma For all n E r 

L IR(n, M, e + iOW < 00 a.e. f:J 0,.8. on la, b[ x D. 
M 

Proof: Let n be fixed. Since R(n, M, e + iO) exists a.e. & a.s. on la, b[ x D, 

l' lE ~ IR(n, M,e + iOll' de ,;; (b - a) esssup IE L IR(n, M, e + iOW 
a<e<b M 

(b - a) esssup LIE IR(n, M, e + iOW, 
a<e<b M 

where ess sup denotes the essential supremum with respect to the Lebesgue measure. 

By Fatou's Iemma, it follows that 

l' lE ~ IR(n, M, e + iOll' de ,;; 

:::; (b - a) csssup lim inf LIE IR(n, M, e + iêW 
a<e<b el M 

:::;; (b - a) sup LIE IR(n, M, z)IS, 
z M 

which is finite by the previous theorcm. The result follows. o 
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The triangle inequality for 1 . 1 ~ immediately yields: 

Corollary For all n E r 

'"' ~ 2 L...., IR(n, M, e + iO)1 < 00 a.c. f3 0,,8. on la, b[ x n. 
M 

'" It romains to go from R to R to conclu de the argument: 

Theorem 52 Under the o,s81J,mptions of the present section (with respect to 0, given 

o ~ R ~ 00), for all n E r 

Proof: Let n E r be fixed. By the resolvent identity 

R(n, M, z) = R(n, M, z) - L V(p)R(p, M, z)R(n,p, z) 
PEF 

for any V E 0 and z ES. H once, by classieal Harmonie Analysis 

R(n, M, e + iO) = R(n, M, e + iO) - L V(p)R(p, M, e + iO)R(n,p, e + iO) 
pEF 

a.e. & a.s. on la, b[ x D. Consequently, by Schwarz' inequality 

IR(n, M, e + iOW ~ 

~ A (IR(n, M, e + iO)1 2 + L IV(p)1 2 IR(p, M, e + iO)12IR(n,p, e + iO)12) 
pEF 
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a.e. & a.s., where A is the number of elements of :F plus one. Consequently, 

L:IR(n,M,e+iO)1 2 ~ 
M 

~ A (L: IR(n, M, e + iO)12 + M(e) L: lV(p)1 2 IR(n,p, e + iO)1 2) 
M ~F 

a.e. & a.s., where M(e) = maxpEF L:M IR(p, M, e + iO)12. Notice that the finiteness 

of :F and the previous eorollary givc M (e) < 00 a.e. & a.s.; the latter also gives 

2:M IR(n, M, e + iO) 12 < 00 a.e. & a.s. for our fixed n, while the former and classical 

Harmonie Analysis yield 

I:IV(pWIR(n,p,e+iO)1 2 < 00 a.e. & a.s. 
pEF 

Hence, 2:M IR(n, M, e + iO)1 2 < 00 almost everywhere and almost surely on la, b[x n. 
In other words, 

which eoncludes the proof. D 

3.5.1 Conclusion 

As already noticed, the previous theorem is a technical requirement for thé 

second criterion of completeness to apply. We are especially interested in the follow­

ing context, which may be realized inside the spectrum of Ho only (see the remark 

below): 
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Lemma Suppose 

2: lm \6N 1 (Ho - e - iO)-16N) > 0 
li 

for almost all e E Ja, br, and that the wave opemtor n+(H, Ho) e.Tists almost surely 

on la, br. Then, on la, br, the spectrum of Hf KI is p71,rely absol7J,tely cont'l:nu071,8 and 

its essential s7Ipport is full, almost sv,rely. 

Proof: Let MN be the spectral measure of 6N with respect to Ho. Then, for an 

arbitrary choicc of aN > 0 such that L:N aN = 1, 

is a spectral measure for Ho f lC I , whose Radon Nicodym derivative with respect to 

the Lebesgue measure is equal to 

:; 2: aNlm \6N 1 (Ho - e - iO)-16N)' 
li 

Thus, our first assumption asserts that the absolutely continuons spectrum of Ho f lC I 

on la, b[ has full esscntial support. 

By assumption, n~"b[(H, Ho), equivalently n~"b[(H f KI, Ho r lCd, exists almost 

surely. Let V be a potential for which this last property holds. Then, the restric-

tions Ho f IJa.,b[(Ho)lC1 and H r n+(H, Ho)lC1 are unitarily equivalent (see Section 

3.1). In particular, their spectral measures, which we denote by MHol1]a,b[(HO)Kt and 

MHIîl+(H,Ho)Kl rcspectivcly, are equivalent. It follows that the Radon-Nicodym deriva­

tive of MHIîl+(H,Ho)Kl with respect to the Lebesgue measure is strictly positive on la, br. 
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Moreover, n+(H, HO)/CI ç l]a,b[(H)/CI by Proposition 31 in Section 3.1. Denoting 

by 0 the orthogonal complement of n+(H, HO)/Cl in l]a,b[(H)/CI, 

is a spectral measure for H r l]a,b[(H)/C I, since n+(H, HO)/Cl is H-invariant. Thus, 

the Radon-Nicodym derivative of /-kHI1)a,b[(H) lC l with respect to the Lebesgue measure 

is also strictly positive. In particular, the essential support of specac ( H r Kd on la, b[ 

is full for any snch V, i.e., almost surely. The Jaksié-Last theorem finally yields that 

spec(H r KI) is purely absolntcly continuous on la, br, almost surely. o 

Remark The beginning of the previous argument shows that under the circumstances 

of the lemma) spec(Ho) is purely absolutely continuous on la, b[ and has full support 

on this last interval) which justifies the title of the present section. 

Assumption L may be strcngthened for the following lemma to apply: 

Lemma Assume sup I: r(N, M)8 < 00 with respect to a given R E NU {oo}. 
!::l M 

Then) IR is Ho-smooth on la, br· 
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Pro of: By assumption 

By the triangle inequality for 1·1 S it follows that 

Interpreting lR(Ho - z)-llR as an operator on [2(rR), its [1 and [00 norms are then 

given by the above quantity. The Riesz-Thorin Theorem then implies (see Appendix 

4.3) 

sup II1R(Ho - z)-llRII < 00. 
z 

Thus, lR is Ho-smooth on la, br, as desired. o 

Finally, this general, abstract conclusion may be drawn: 

Theorem 53 Suppose 

1. The wave operators n±(H, Ho) exist on la, b[ almost surely, 

2. [(s)(m) --t 0 when m --t 00, 

3. J> 0, 

4. For R = 1, SUPN L.:M T(N, M)S < 00. 

Then, spec(H) is purely absolutely continuous on la, b[ and the wave operators n±(H, Ho) 

are complete on la, br, almost S7J,rely. 
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Proof: By the above lemmas, the theorem 52, and the second criterion of com-

pleteness (corollary of Theorem 49). D 

3.5.2 Application to Generalized Laplacians 

We now consider the case where Ho = ~ is a generalized Laplacian. In the 

sequel e denotes an open region of validity of Theorems 20 and 21; in particular, we 

assume that the constant energy surfaces of the Green's function associated with Ho 

at any level of energy insido 8 have at least K > 0 non vanishing principal curvatures. 

For instance, if ~ is the standard or the Molchanov-Vainberg Laplacian, we let 

e = spec(~) \ E, 

where E = {-2d, -2d + 4, "', 2d - 4, 2d} U {O} when ~ is the standard Laplacian 

and E = {_2d
, 0, 2d } wh on it is the Molchanov-Vainberg one. 13 

In Section 3.3.2 wc cstablished that for any [a, bl c e 

A fortiori, the condition 3 of the previous theorem holds. By the a priori estimates 

calculated in the first part of the present thesis, the conditions 2 and 4 reduce to a 

sparseness assumption on the sites of the potential: 

13 Recall that K, = 1 for the standard Laplacian in any dimension (without pretend­
ing that this result is optimal) and K, = d - 1 for the Molchanov-Vainberg Laplacian 
in dimension d. 
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Theorem 54 In the present circumstances sv,ppose the sites of the potential are 

sparse in the following sense: there exists an E > 0 811,Ch that 

L ln - ml-s;'+E < 00 for any mEr and (3.19) 

(3.20) 

where m and n vary in r. rt the wave operators O~(H, Ho) exist a.e., then they are 

complete on 8 and the spectr1J,m of H is purely absolutely continuous on e, almost 

surely. 

Proof: It suffices to show that the conditions 2 and 4 of the previous theorem apply 

for any [a, b] c e. The former is an immediate consequence of the equation (3.20) 

and the estimate 

given by Theorem 22. Wc now prove the latter. 

In many details, let (Zd, d) he the graph from whieh the eonsidered generalized 

Laplacian is dcfincd. Since this graph is translational invariant and sinee the degrees 

of its vertices are hounded, thcre exists a constant, Œ, such that 

IN - Ml ~ Œ wh en d(N,M) ~ 1. 

The condition 4 is weaker than the following, 

sup L T(N, M)S + sup L T(N, N + K) < 00, 
N N - IM-l'{1>4Œ - IKI~4Œ 

(3.21) 
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which we now verify. Indeed, translational invariance and the first part of the thesis 

yield that for any fixed K 

T(N, N + K) = sup IG(K, z)1 < 00. 
z 

In particular, the second sum in the equation (3.21) is finite and independent of N. 

Hence, the problem reduces to show sUPN I:IM-lll>4a T(N, M)B < 00. Indeed, by 

Theorcm 22, r(N, M) = O(IN - MI-~+), so it suffices to show 

sup L IN - MI-
s
;+€ < 00. 

N - IM-lll>4a 

By the definition of r 1 , each MErl is adjacent to or equal with an mEr. Since 

lM - ml ~ ex and sinee the degrees of the m's are bounded, it suffices to show 

SUPN I:lm-lll>3a(IN - ml - ex)_82"+E < 00. For the same reasons, but regarding N 

instead of M, it suffices to show SUPn L:1m-nl>2a(ln - ml - 2ex)_8;+€ < 00, which is 

clearly equivalent to 

s~p L 
Im-nl>2a 

Finally, this last relation is implicd by (3.19), provided that (3.20) holds. The proof 

is now complete. D 

Remark As explained in the proof of Theorem 45, if .6. is the standard Laplacian 

or the Molchanov- Vainberg one, existence and completeness of the wave operators 

on e = spec(.6.) \ E are equùJalent ta their e,Tistence and completeness on spec(.6.) 

(with the suggested definition of E). This last equivalence holds for the two following 
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reasons: spec( 6) is ab8017J,tely contin7J,Q7J,8 and E does alm08t s7J,rely not contain any 

eigenvalue of H 1 Je -by a theorem of J ak9ié and Last. 

Supplement al conditions may be imposed to the geometry of r in order to as-

sure the existence of the wave operators. These include other sparseness conditions 

discussed in the literature-for instance, see [32]. It is thus natural to wonder if 

the conditions (3.20) and (3.19) indeed suffice. However, the present thesis does not 

answer this legitimate question. 

Example Consider the Anderson type Hamiltonian H = 6 + V, where 6 is the 

standard (or the Molchanov Vainberg) Laplacian. Suppose the potential, V, consists 

of independent random variables, lying on 

r = {(l, 0, ... ,0) E Zd ; j E 'Il} 

and whose common distribution is Cauchy (alternatively, normal) .14 Observe that 

r is sparse in the sense of the previous theorem (with s sufficiently close to 1). 

Moreover, the wave operators n±(H, 6) exist on spec(6): since r is included in the 

hyperplane Zd-l C Zd, their existence follows from a deterministic result of Jaksié 

14 Notice that V is not bounded a.s., so the deterministic approach presented in 
Section 3.3 does not apply. 
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and Last [15].15 Hence, by the previous theorem not only spec(H) is purely ab-

solutely continuous on spec( 6), but the wave operators are also complete on this 

last region (almost surely). 

3.6 Random Result Outside spec(Ho) 

In this section we apply techniques and results of the previous one for values of 

energy outside spec(Ho). Wc show that eigenfunctions associated with these values 

of energy decay exponentially. The setting and notations of the previous section (es­

pecially our convention regarding indices) are maintained in the sequel. In particular 

(without restating our hypotheses exhaustively) H = Ho + V, where Ho is the adja-

cency operator of a graph, (X, d), and V is random. AIso, m, n vary in r, z varies 

in a set {x + iy; xE la, b[ and 0 < y < 1}, where this time [a, b] cR \ spec(Ho), 

etc. 

At the highest level of generality the desired decay of eigenfunctions will be 

exprcssed in tcrms of a given weight, 'Y, on X, that is, a function 

T X x X --+ [0,00] 

15 The model considcred in this last work is the half-space model (for which the 
Laplacian is not translational invariant) with a random potential at the boundary; 
however, according to V. Jaksié the argument in the mentioned work may be slightly 
modified in order to include the above situation. 
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satisfying aIl axioms of met rie distances except positive definiteness. 16 Hence, in 

the sequel (X, ')') is a given weighted graph sharing its vertices, but not necessarily 

its edges with (X, d).17 

Our results hold under the following hypotheses: 

Assumption N For any k > 0, sup L e-k-y(N,M) < 00. 

N M 

Assumption 0 There e.'Eist constants D and (3 s7J,ch that 

T(n M)S ~ De-{3-y(n,M) ,- -..::: 

for all 71, E rand MEr R. 

Assumption P infnT'm ')'(71" m) --+ 00 'When m --+ 00, i.e., for all L > 0 there exists 

a finde set, E ç r, such that for every m ~ E 

inf ')'(71" m) ? L. 
nT'm 

16 More precisely, ')'(M, N) = 0 is allowed when M =j=. N; however, ')'(N, N) = 0 for 
aIl NE X. 

17 On concrete examples, X = Zd, d is translational invariant, and ')' is the 
Pythagorean distance: ')'(M, N) = lM - NI. Then, (X, d) is a translational invariant 
simple graph, while (X, ,) is a complete graph on Zd whose vertices, {M, N}, are 
weighted by lM - NI for any distinct M, NE Zd. 
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Assumption Q J > O. 

Notice that Assumption 0 is realistic outside spec(Ho)-which justifies the title 

of the present section. Moreover, Assumption Q is trivially verified in our applica­

tions (where Ho = .6. cornes from a translational invariant graph-see Section 2.5). 

Finally, Assllmption N extends by induction: 

Theorem 55 For any k and CI: such that 0 < CI: < k there exists a Ck,o: > 0 satishing 

L:: C- k ('"y(N,Pl)+'"Y(Pl,P2)+".+y(Pl,M» ~ Ck,o:e-O:'"Y(N,M) 

Pl,'",Pl 

for every N, M E X and l E N. 

(3.22) 

Proof: Sinee ° < CI: < k, therc cxists an s E ]0, 1[ such that CI: = sk. By Assump-

tion N, 

Bk = sup L e-k'"Y(N,M) < 00 

N M 

for any k > O. Let us show that Ck,o: = B tk satisfies the desired property, where 

t = 1 - s. 

The triangle inequality for, implies that the left-hand side in (3.22) is bounded 

above by 

~ e-tk('"y(M,Pl)+"+'"Y(Pl ,N»e-O:'"Y(M,N) 

PI, ... ,Pl 

for any fixed l ~ O. It thus suffices to show 

'" e-tk('"y(M,Pl)+'+'"Y(Pz,N» & BI 
L.J ~ '"' tk 

154 



for any [ ? 0, which we do by induction on [. 

The result is trivial for [ = 0, so suppose it holds for [ - 1. Then, 

L e-tk(-y(M,PI)+oo+y(Pl,N)) = 
PI,,,,,Pl 

L e-tk,(M,Pl) L e-tk(-y(Pl,P2)+oo+,(Pl,N)) 

Pl P2,oo"Pl 

~ B BI-l BI 
" tk tk = tk' 

as desired. 

As a final preliminary remark, 

Theorem 56 All assumptions of Section 3.5 are satisfied. 

o 

Proof: Assumption L follows from Assumptions N and O. More interestingly, As-

sumption K is satisfied, since 

min 

:S; D L e-fh(n,m) 

mf.n 

:S; D sup e-h(n,m) L e-h(n,q) 

min qf.n 

:S; (D sup L e-~,(p,q)) sup e-h(n,m), 

p qip min 

which goes to zero when n -t 00 by Assumptions N and P. Finally, Assumption M 

is satisfied by fiat. o 
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We are thus free to use results and computations of the previous section in order 

to establish our main theorem: there exists a universal constant k > 0 such that the 

following assertion holds for almost all e Ela, b[ and almost all V E 0: 

For aU n E r there e.'Eists a K > 0 such that 

for all M ErR. 

The main part of the present section is devoted to proving the above, from which 

the exponcntial decay of the eigenfunctions will be deduced using Simon-Wolff's 

theorem. 

Recall that Fer is a finiteset, chosen in such a way that (3.15) holds (where 

m,11 E r \ F). From now, by enlarging F if necessary, wc also require18 

(3.23) 

where d = infm infn#m ,(11, m), which is possible by Assumption P. 

Let m and z be fixed, 11 being thought as the only variable. Then, with the 

notation explained immediately before Theorem 50 the inequation (3.17) applies, 

namely 

x ~ (1 - A)-l B (pointwise). 

Consequently, 

18 In the following expression, {3, D, and Cfi fi refer to Assumption 0 and Theorem 
2' 3 

55. 
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Lemma X::;; Const (1 - A)-lOm (pointwise), where the constant 1;S universal. 

Proof: Since 

:~s (1 - OZ!) (m)T(l1, my 
s 

KsBb) - k~8 T(m, m)88m(11) , 
8 

it follows that B = isA8m + k)JsT(m,m)S8m. The inequation (3.17) thus becomes 

1 . T(m m)S 
X ~ -(1 - A)-l A8 + -,- (1 - A)-18 , K m k JS m 

8 s 

_.2.- 8 + (_1 + ~(m,m)S) (1 _ A)-18 
K m, K k J'~ m s s s 

s: (1 + T(m,m)S) (1 A)-Lc ( . t . ) 
"-': Ks ksT~ - um. pom WIse . 

The result follows, where Const is explicitly equal to is + ksl']s sUPE. T('!!., '!!.)S, which 

is finite by Assumption L. 

Theorem 57 There exist v,niversal constants Con8t and k sv,ch that 

for alll1,m E r\.F and z E {x+iy; xE ]a,b[,O < y < 1}. 

Proof: The lemma and the geometric series give 

00 

lE IR(l1, m, zW ::;; Const 2:(012 1 Ajom)' 
j=ü 
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Moreover, 

where le;fg abbreviates 1 - 6r.(!l)' Since by Assumption 0 

Theorem 55 yields 

le;fgT(E, ql :::; Dl
e
;fge-f3'y(e,g) 

:::; De-§j.e-~"!(e,g), 

By choice of F the eqllation (3.23) holds, so there exist constants Const and k su ch 

that 
00 L Aj (l1,m):::; Conste-k"!(Tl,m). 

j=O 

The equation (3.24) then completes the proof. D 

We now use the full strength of Assumption 0 in order to improve the previous 

result: 
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Corollary There exùJt unù;er8al con8tants C07MJt and k 8uch that 

Proof: The equation (3.18), Assumption 0, and the previous theorem yield 

~ Const e-k"!(J;Lm) + Ks L Const c-k"!(N;!!)e-k"!(!!.,m) 

!!. 

for sorne constants generically denoted by Con8t and k. It follows from Theorem 55 

that lE IR(N, m, zW ~ Const e-k"!(!:!..,m). Using this last relation and the equation 

(3.18) again, a similar computation gives 

as desired. 

lE IR(n, M, zW ~ T(n, M)S + Ks LT(n,E)slE IR(E, M, zW 
!!. 

~ Con8t e-k"!(n,M) , 

Wc now obtain the announced result for R instead of R: 

o 

Theorem 58 For all n E rand almost aU (e, V) Ela, b[ x n there exist constants, 

Con.'3t and k, the latter univer8al, satisfying 

159 



for all M ErR. 

Proof: By classical Harmonie Analysis R(n, M, e + iO) exists for almost an (e, V) E 

la, b[ x n. Thus, the prcvious corollary and Fatou's lemma give 

lE .lb IR(n, M, e + iO) 1
8 de :::; (b - a) Const e-k'Y(n,M) 

Con'3t c-k'Y(n,M). 

For a fixed n E r let us define 

AM = {(e, V) Ela, b[ x n; IR(n, M, e + iO)1 > e-';"'Y(n,M)}, 

where k is determined by the previous inequality. Then, denoting the Lebesgue 

measurc by d, 

,,; ~ lE l' eh(n,M1IR(n, M, e + iO)I' de 

~ Con8t :~::::>-h(n,M), 
M 

which is finite by Assumption N. The Cantelli lemma then implies 

( d x dlP') (n u AM) = O. 
EçrR Mf/:E 
E finite 

In other words, for an arbitrarily fixed n E r there exists a finite set E ç r R such 

that for aIl M ~ E 

IR"'( M '0) 1./ -.k.,(n,M) & n, _, e + l ":::: e 25 a.e. a.s. 
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Since E is fini te, one concludes the existence a.e. & a.s. of a constant, Const, de­

pending on e, V, and n, but not on M, satisfying 

which completes the proof. D 

The above theorem will be used in the following special form: 

Corollary Let E c r be a .finife set. For all n E rand almost ail (e, V) E Ja, b[ x [2 

there exist constants, K and k, the latter universal, satisfying 

for every M E rH and q E E. 

Proof: Sinee E is fini te, the theorem ensures for almost an (e, V) the existence of 

constants satisfying 

!R(q, M, e + iO)! :::;; Const e-k,(q,M) 

for aIl M E r R and q E E. Sinee 

one obtains 
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The result follows, letting J( = Con8t eksuPqEf ,(n,q). o 

We now prove the announccd, main result: 

Theorem 59 There exi8ts a v:niversal constant k > 0 81J,ch that the following propo-

8ition holds for almo8t all e Ela, b[ and almo8t all V E 0: 

For aU n E r there e.'Eists a J( > 0 811,ch that 

for ail M ErR' 

Proof: Dy the resolvent idcntity 

R(n, M, z) = R(n, M, z) - L R(n,p, z)V(p)R(p, M, z). 
pEF 

Moreover, for any M, NE X both R(N, M, e + iD) and R(N, M, e + iD) exist almost 

everywhere and almost surely. Thus, 

R(n,M,e+iO) = R(n,M,e+iD) - LR(n,p,e+iD)V(p)R(p,M,e+iO) a.e. & a.s. 
pEF 

In particular, for almost aIl (e, V) and for aIl n E r there exists a constant, L = 

SUPPEFIR(n,p,e+iD)V(p)l, which depends on n, e, and V, but not on M, and 

satisfies 

IR(n, M, e + iD)1 :s; IR(n, M, e + iD) 1 + L L IR(p, M, e + iD)l. (3.25) 
pEF 

The result follows from the previous corollary applied to E = Fu {n}. o 
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3.6.1 Conclusion 

We now draw a general conclusion under the following hypothesis, 

sup L T(N, M)S < 00, 

N M 

which is a reinforcement of ARsumption L with the supremum taken over rand with 

R = 00.
19 For this choice of Rand un der the previous assumptions, the last lemma 

of Theorem 53 and the definition of relative smoothness then give 

RUp II(Ho - z)-lll < 00, 
z 

where z varies in {x + iy ; x Ela, b[, Y > O}. Then, Ho - x is invertible for aIl 

x Ela, br, which justifies the title of the present scction. 20 

Moreover, under the eonditionR of Section 3.5 with R = 00 the first part of 

Simon-Wolff's theorcm and Theorem 52 yield that the spectrum of Hf J( is almost 

surely pure point on la, br. Sinee H = Ho on J(l.. and la, b[ is in the resolvent of Ho, 

and since J( and J(l.. are H-invariant, it follows that the spcctrum of H is almost 

surely pure point on la, br, whcre it is cqual to the spectrum of Hf J(. Finally, under 

the assumptions of the present section Theorem 59 holds with R = 00. Hence, by 

the second part of Simon-Wolff's theorem the eigenfunctions decay exponentially. 

In summary, 

19 Notice that for this choice of R, M may be denoted by M, sin ce r R = r. 

20 We use the fact that limsuPz->x,z~lR II(Ho - z)-lll = 00 if and only if x E 
spec(Ho), which is casily seen .using Weyl's sequences. 

163 



Theorem 60 Supp08e 

1. For any k > 0, SUPN 2:M e-k,(N,M) < 00, 

2. T(n, M)S ~ De-fJ,(n,M) for all n E rand M E X, 

3. J> 0, 

4· SUPN 2:M T(N, M)S < 00, 

5. infnT'm ')'(n, m) ~ 00. 

Then, the spectrv,m of H on la, b[ is alm08t 8urely pure point with 8imple eigenval1.les 

obeying the following e.rponential decay: for an eigenfunction, 1/J E L 2(X), a8sociated 

with an eigenvaI1J,e, e, there e.rists a fixed site, no EX, and a coefficient, Const, both 

depending on V and e, and a univers al exponent, k > 0, su ch that 

11/J(N)1 ~ Conste-k,(N,no) 

for all N E X. 

3.6.2 Application to Generalized Laplacians 

Assume Ho = 6 is a generali7:cd Laplacian on X = 'll.,d. Let 8 = ~ \ spec(Ho) 

and suppose [a, b] C 8. Let')' be the Pythagorean distance on 'll.,d: 

')'(M, N) = lM - NI. 

The condition 1 of the previous theorem is then trivially satisfied. If in addition 

there exist aD> ° and a f3 > ° such that 

(3.26) 
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for aIl N, M EX, then the condition 4 is deduced from 1, while the condition 2 

ho Ids by fiat. Since z = e + iy is bounded away from spec(Ho) and Izl is bounded, 

the condition 3 is also satisficd, for, dcnoting by /kn the spectral measure of 6n with 

respect to Ho, 

Il t - e 1 1 It - el 'J ~ inf ( )2 2 dlJn(t) = inf ( )2 2 dlJn(t) > O. 
n,z IR t - e + y n,z IR t - e + y 

Therefore, the theorem applies un der the sparseness condition 5. 

In fact, the relation (3.26) is an immediate consequence of the equation 

G(N, z) = r <Pt~·x dx, J'rd X - Z 

sinee 5 is at a positive distance of the range of <P. More precisely, since <1> (x) is 

analytic, one may replace each x(j) by x(j) + i(3 in the previous integral without 

affecting its value, where (3 > 0 is so small that <1>( x + i((3, ... ,(3) ) remains bounded 

away from 5, and deduce G(N, z) = O(e-J3IN1 ) uniformly in z E 5 when INI --+ 00. 

In other words, 

T(N, M) = sup G(M - N, z) = O(e-J3IN - M1 ) 
zES 

when IN - MI --+ 00. 

We have proven: 

Theorem 61 Consider a mndom Schrodinger opemtor acting on 12(Z,d), 

where 6 is a genemlized Laplacian and V is a mndom potential supported on r ç Zd; 

we assume that the mndom variables {V (n)} nEr are i. i. d. and absolutely continuous. 
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Suppose V is sparse in the sense that 

lim inf ln - ml = 00. 
jnj->oo rrFln 
nEr mEr 

Then, almost s1trely the spectrum of H = ~ + V outside spec(~) is pure point 

with simple, e.'Eponentially decaying eigenfunctions. More precisely, given su ch an 

eigenfunction, 'Ij; E l2(Zd), almOi'Jt surely there exist constants, Const and k, bath 

depending on 'Ij;, such that 

'Ij;(N) = Const e-kjNj 

for any N E Zd. 

Scholium Since in the present model the V(n) 's are i.i.d., it is well known that the 

essential spectrum of H= ~ + V is almost surely equal to a certain deterministic set 

(33). This last set was characterized by Molchanov and Vainberg (30, 32).21 Using 

their result, one may construct examples in which the spectrum of H covers the whole 

real line. This happens for 'instance when the random potential on a single site has 

a CQ,1J,chy or a normal di8tribl1,tion. Then, the spectnlm of H is dense pure point in 

lR \ spec(~). 

21 In their original proof Molchanov and Vainberg considered only the case where 
~ is the standard Laplacian. However, their pro of may easily be adapted in order 
to treat any generalilled Laplacian; in particular, the spectrum of ~ do es not have 
to be centered. 
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Example Consider the example following Theorem 54, in which H consists of the 

standard (or Molchanov Vainberg) Laplacian, .0., added to a random potential, V, 

lying on 

r = {(j4, 0, ... ,0) E Zd ; j E Z}. 

Assume again that {V(n)}nEr is a family of indepcndent random variables whose 

common distribution is Cauchy (alternatively, normal). As we have seen, the spec­

trum of His then purcly absolutely continuous spec(.0.), and the wave operators exist 

and are complete on this last rcgion (almost surely). Morcover, sinee r is sparse, 

the previous theorem implies that the spectrum of H on IR. \ spec(.0.) is pure point 

with exponentially decaying eigenfunctions (almost sureIy). Finally, as pointed out 

in the previous scholium, the spectrum of H in this situation covers the whole line 

(almost sureIy), which implics in particular that the eigenfunctions of H are dense 

in IR. \spec(.0.). 
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CHAPTER 4 
Appendices 

4.1 Estimate Using Bessel Function 

Let ~ be the 8tandard discrete Laplacian in dimension d ~ 4. Its Green's 

function is denoted by 

where m, n E 'l!}, Z E C+, and c5 is the Kronecker delta. By Kato's formula 

(4.1) 

Recall that the symbol of ~ is the multiplication by <I>(x) = 2 ~~=l cos x(j), where 

x = (x(1) , ... ,X(d)) E Td. Hence, 

(00 1 e
i
"" on) ~ (21f ) ~d il 1: ein{j) k e

2it 
'"' k dk 

d 

II i(nU
)) Jn(j) (2t) 

j=l 

at any n = (n(l), ... , n(d)) and z E C+, where Jm(t) = 2~ J::7r eimke-itsink dk is the 

Bessel function. 

It is well known that there exist a univcrsal constant, C, such that 
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for any m E il and t E IR (see [26]). Consequently, since d ;::: 4, for an arbitrarily 

fixed ê > 0 

where (nUI), ... , n Ud )) is a permutation of (n(1), . .. , n(d)). This last estimate, the 

equation (4.1), and the dominated convergence theorem then give 

Since ê and the permutation of (n(1), ... ,n(d)) are arbitrary, it follows a fortiori that 

1 

G(n, e + iD) = O(JnJ-s) 

in dimension at least 4. 
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4.2 Overview of Spectral Theorem and Random Perturbation Theory 

In the first part of this appendix we sketch a proof of the spectral theorem 

(following [13] and [14]),which is based on elementary harmonie analysis. The second 

part discusses the Simon-Wolff theorem, the Aizenman-Molchanov theory, and the 

Jaksié-Last theorem in random perturbation theory. Aside, the reader will find 

results, notation and terminology used in Chapter 3. 

For the purposc of spectral thcory, harmonie analysis, which studies rolationship 

between harmonie funetions and their boundary values, is better realized in the upper 

haU-plane, which we den ote C+. As an instance of a harmonie funetion on C+, whieh 

is positive, one may start from a Borel positive measure on IR satisfying IR ~~W < 00 

and constitutes its Poisson transform: 

where y > O. The relationship between P,J(z) and its boundary values is the following: 

denoting by "*(x) the Radon-Nikodym derivative of fJ with respect to the Lebesgue 

measure, 

1 (' ylO -Pl-' x + ly) dx ---t dfJ(x) vaguely, 
7r 

while 

l Almost everywhere. 
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Indeed, given a positive harmonie funetion, f (z), on C+, the Poisson represen-

tation theorem ensures the existence of a unique Borel positive measure, M, and a 

unique constant, c, sneh that f(x + iy) = cy + PI~(X + iy). In particular, there exists 

aM su eh that 

~ V(x + iy) dx 

~ V(x + iy) 

vaguely, 

a.e. 
(4.2) 

As an immediate eorollary,2 if F(z) E HOO(C+), then F(x + iO) exists almost every-

where. 

Let 'H be a separable Hilbert space and consider a selfadjoint operator, H, acting 

on 'H. By the Fredholm analytie theorem, for an arbitrarily fixed rp E 'H 

is harmonie. Moreover, this last funetion is strietly positive on C+, where it is equal 

to Imzll(H - z)-lrpI12. Hence, by the Poisson representation theorem there exists a 

positive Borel measure, M'P' satisfying 

for z E C+. Since the holomorphie funetions (rp 1 (H - Z)-lrp) and flR d~l::~t) have the 

same imaginary parts and their limits when Izi ---+ 00 are both equal to 0, they are 

indeed equal for any z E C+. It is not hard to deduce the same relation for z E C_, 

2 Reeall that the Hardy class, H 60 (C+), consists of aIl bounded analytic functions 
on C+. 
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so for aIl z ~ IR 

(4.3) 

The positive measurc P'P' which is characterized by the previous equation, is called 

the spectral measure of tp with respect ta FI. 

Let 
1 

F( z) = ---,-----,----­
i + (tp 1 (FI - Z)-ltp) ' 

where z E C+. Clearly, F(z), which never vanishes, is in the Hardy class FIOO(C+); 

1 - iF (z) is also in this last class. Sinee 

/ 1 (FI _ )-1 ) = 1 - iF(z) 
,tp z tp F(z) , 

it follows that (tp 1 (FI - e - iO)-ltp) exists for almost every e E IR. By polarization 

('ljJ 1 (FI - e - iO)-ltp) also exists a.e. for any given tp, 'ljJ E H. 

The idea is to use (4.3) in conjunction with the resolvent identity: for u, v ~ IR 

Doing so, the equation (4.3) yields that for every u, v ~ IR 

where (·1')2 denotes the scalar product on L2(IR, dp'P(t)) (which we abbreviate 

L2 (p'P))' Sinee L2
71 

; u ~ IR} is total in L2 (p'P)' this last relation suggests that 

the closed vector space generated by {(FI - Z)-ltp; Z ~ IR}, which we denote by lC'P' 
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is unitarily equivalent to L2(/--l<.p)' Moreover, sinee 

it suggests that the operator (H - Z)-l is lifted to the multiplication by (t - Z)-l 

via this last unitary cquivalence. 

lndced, not only the prcvious considerations are right, but H itself is lifted to 

the multiplication by t. More precisely, denoting by U the unitary equivalence in 

question, the following diagram commute: 3 

Ul 

H 
--+ 

The subspacc JC<.p is called the cyclic space generated by cp with respect to H; as 

one may expect, if H is bounded it corresponds to the smallest H-invariant, closed 

b t .. 4 su space con ,ammg cp. 

3 By this, we do not pretend that H and the multiplication by tare bounded, but 
that their respective domains coincide via U. 

4 Given a subset, F ç H, the cyclic 8pace generated by F with respect to H 
is then defined as the closure of the linear span of {(H - Z)-l</J ; </J E F, z ~ IR}. 
However, a closed subspacc is said to be cyclic only if it may be generated by a 
single element. 
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More generally, H decomposes into a direct sum, ŒnHn, of eyclic spaces. Hence, 

there exists cyclic generators, CPn, and a unitary equivalence between H and tBnL2(P'PJ 

sueh that H is lifted to the operator of multiplication by t on eaeh summand. Then, 

H is said to be diagonalized in the representation tBnL2(P'PJ. As we have Just 

sketehed, all selfadjoint operators on a separable Hilbert space are diagonalizable. 

This last statement constitutes the spectral theorem. 

The main application of the spectral theorem is the following: sinee H is iden­

tified with t on eaeh cyclie summand, f(t) being known, f(H) is also known! More 

precisely, suppose H is identified with tBnL2(P'PJ. Then, denoting by tBnf(t) the 

operator of multiplication by f(t) on eaeh summand of tBn L2 (P'Pn)' f(H) is defined 

as the lifting of tBnf (t) via the given identification. 

Doing this for any bounded Borel f, one obtains a functional calculus for H, 

that is, a morphism of *-àlgebras between Borel bounded functions on :IR and B(H), 

the set of aIl bounded lincar applications on H. lndeed, the calculus for H is unique, 

being characterized by sever al properties it satisfies.5 

Sinee H is identified with t on each cyclic summand, the set of values of H, say, 

on the n-th cyclic suminand, is commonly defined as the support of P'Pn; in total, 

the set of values of His thus equal 1,0 its spectrum. However, one may seek for more 

precise information and try 1,0 identify on which Borel sets values of H (identified 

with t) are relevant, 1:.e., on which Borel sets not all spectral measures, P'Pn' vanish. 

5 Among these propertics, the following is frequently used: if fn(t) ~ f(t) for 
all t E :IR, where the fn(t) are 1miformly bou~ded, then fn(H) ~ f(H) strongly. 
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In other words, from our point of view a complete knowledge of the values of H 

consists of identifying every Borel set, E, such that lE(H) =f 0, where lE denotes 

the characteristic function of E.6 

As a first step, one may wonder which parts of the spectrum of H are pure point, 

which parts are absolutely continuons, and which parts are singular continuous, with 

the following, obvious definitions: given a Borel set, E, the spectrum of H is pure. 

point on E if there exists a countable set, P ç E, such that lB\p(H) = 0; it is purely 

absolutely continuous on E if ls(H) = a for aIl S ç B of Lebesgue measure zero; 

fin aIl y, it is purely singular continuous on E if there exists a Borel set of Lebesgue 

measure zero, S ç E, such that lB\s(H) = 0 and furthermorc l{x}(H) = 0 for aIl 

xE E. 

Alternatively, one may define the above notions in the following way: For an 

arbitrary sequence of positive numbers, {an}, let us consider fJ, = :L:n anfJ,tpn and caU 

it a spectral measure of H. It is easy to soe that the spectral measures of H are 

aIl equivalent, i. e., they induce the same sets of measure zero. The spectrum of H 

is p'u,re point, pv,rely absolv,tely continv,ous, or purely singular continuous on a given 

Borel set, E, if and only if fJ, r Bis pure point, purely absolutely continuous, or purely 

singular continuo us on B, respectively. 

Remark The values of H are said ta be localized on B 'li the spectrum of H is pure 

point on E, and delocalizcd on E if the spectrum of H is purely absolutely continuous 

6 The operators lE(H) are called spectral projections of H. 
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on B. 

* * * 
The scientific community is interested in localization and delocalization of the 

operator of cncrgy, H = ~ + V, in the Anderson modcl, discussed in the introduction 

of the present thesis. Bere, the kinetic energy, ~, is a discrete Laplacian on l2(Zd), 

while the potcntial, V, is random; V is supported on a given set of sites, r ç Zd. 

A general criterion of localilmtion applying to this model was given by Simon and 

Wolff [44]. It is used in Chapter 3 of the present thesis in the following special form. 

Let {V(n)}nEf be a family of i.i.d. random variables of law v, where v is 

absolutely continuous. 7 Let {on}nEZd be the usual basis of l2(Zd), where 0 denotes 

the Kronecker delta. Given a subset of sites, r ç Zd, we focus on the subspace 

cyclically generated by {ôn ; n E r} with respect to ~, which we denote by /C. 

Theorem 62 (Simon-Wolff) Consider an arbitrary Borel set, B ç R. If with 

probability one II(H - e - iO)-lonll < 00 for all nE rand almost aU e E B, then the 

spectrum of H r /C on B is almost surely pure point with simple eigenvalues. 

7 The underlying probability space is given by Rf, i. e., by the set of functions 
from r to R, which is endowed with its Borel O"-algebra and the probability measure 
lP' = TInEf v. The random variables in question are then the projections V ~ V(n) 
for n E r, where V E Rf is the random parameter. 
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Suppose in addition that for almost all V, almost all e E B, and ail n E r, there 

eX1:sts constants, C > 0 and k > 0, such that 

uniformly in m E 'lL,d. Then, the eigenfunctions of H f J( are almost s71,rely exponen­

tially bounded, which means: if ((! is such an eigenfunction, for almost all V, there 

exists constants, D > 0 and l > 0, both depending on tp and V, satisfying 

for every n E r. 

The proof of this last theorem is basod on spectral averaging (see [43]), condi-

tional Fubini's theorem, and rank one perturbation theory (especially, the Aronszajn-

Donoghue theorem). 

In order to apply the Simon-Wolff theorem, it is convenient to estimate quanti­

ties of the form 

the Aizenman-Molchanov theory is dcsigned to this end [3]. More precisely, it is 

designed to estimate lEIR(m,n,zW, where sE ]0,1[ is a structural constant. One 

then removes the expectation by using Cantelli's lemma.8 

8 The Cantolli lemma asserts: ~f {An} nEN is a family of events satisfying 
:En lP'(An) < 00, then lP'(nN Un~N An) = O. 

'" 
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TheAizenman-Molchanov method is based on the resolvent identity, 

where u and v are appropriate numbers or operators, in conjunction with the decou-

pling lemmas, which we now statc. 

Lemma Suppose there exists an s E ]0, 1 [ such that 

. J'R lx - alslx - ,61-09 dv(x) 
ks = mf f > O. 

. o<,BEC JlR lx - ,61-8 dv(x) 

Then, for any deterministic fv:nction, F(n, m, z), 

IEIV(m) - F(m,n,zWIR(m,n,zW ~ ksIEIR(m,n,zW· 

Suppose instead there exi8ts an s E ]0, 1 [ such that 

J'R Ixl 8 1x - f31- s dv(x) 
Ko9 = sup f 1 f31- d () < 00. 

BEC J'R X - S V X 

Then, IE IV(mWIR(m, n, zW ~ KsIE IR(m, n, zW· 

Notice that both hypotheses in the previous lemma are satisfied for large classes 

of probability moasUfCS, which includo Gaussians, Cauchy distributions and uniform 

distributions [1, 2, 3, 11, 20, 28]. 

Finally, the celebrated Jaksié-Last theorem gives a criterion of delocalization 

applying to the Anderson model [16]. It involvcs the notion of essential support, 
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E (H), of the absolutely continuous spectrum of H, which is defined as follows: de­

noting by f-L a spectral measure of H and by 1;(x) its Radon-Nikodym derivative 

with respect to the Lebesgue measure, 

E(H) = {x E IR; ~~ (x) > o} . 
Notice that E(H) is defined "up to a set of Lebesgue measure zero".9 Notice also 

that by the first part of this appendix 

a.e., 
n 

where {6n } is any set generating cyclically l2('1}) ~ith respect to ~. 

Before stating the Jaksié-Last thoorem, lot us mention the following property of 

the essential support: in the present setting-where the random variables V(n) are 

independent-there cxists a deterministic set, E ç IR, such that E(H) = E almost 

surely. This last property, which is a consequence of the Kolmogorov 0-1 law and 

random perturbation arguments, is used in Chapter 3. 

In the present setting, 

Theorem 63 (Jaksié-Last) Consider an arbitrary Borel set, B ç IR. If with prob­

ability one B ç E (H), then almost surely the spectrum of H on B is purely absolutely 

continl1,ous. 

9 Rigorously, the essential support is thus defined as the equivalence class of the 
given E(H)~ where two Borel sets are said to be eqnivalent iff the Lebesgue measure 
of their symmetric difference is zero. 
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This last result is a non trivial consequence of Poltoratskii's theorem (see [18]). 
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4.3 [1, [00, and [2 Norms of Operators 

In this appendix we present a special instance of the Riesz--Thorin theorem. 

More precisely, from the [1 and the [00 norms of an operator we derive a bound on 

its [2 norm. 

Given an index set, r, let A be a linear operator acting on the vector space 

generated by {on ; n Er}, w here 0 denotes the Kronecker delta: 

{ 

1 if m = n, 
on(m) = 

o otherwise. 

We denote by A(m, n) = (om 1 Aon ) the (m, n)-th matrix element of A with respect 

to the previous basis. 

Lemma ffsup L IA(m,n)1 < 00, then A extends cantinuausly ta a bounded aper­
nEr mEr 

atar from [1 (r) ta II (r), whose norm is giv.en by 

IIAlll = sup L IA(m, n)l· 
nEr mEr 

Proof: Let tp E P (r). The incquation 

L L IA(m, n)lltp(n)1 ~ sup L IA(m,p)1 L Itp(n)1 
m 11, P m 11, 
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shows that L:11. A(m, n)<p(n) is absolutely convergent for any m E f, is in l1(r), and 

that 

IIAIII ~ sup L IA(m,p)l· 
P m 

( 4.4) 

Moreover, since for any p E f 

IIAIII = sup L L A(m, n)<p(n) 
Il'PII! =1 m 11. 

m n 

LIA(m,p)l, 
m 

the equality is attained in (4.4). o 

Lemma rt sup L IA(m, n)1 < 00, then A e.rtends continuously to a botmded oper­
mEr 11.Er 

ator from [OO(r) to [OO(f), whose norm is given by 

IIAlloo = SUp L IA(m, n)l· 
mEr 11.Er 

Proof: Let cp E [OO(f). The inequation 

sup L IA(m, n)llcp(n)1 ~ sup L IA(m, n)1 sup Icp(p) 1 
m 11. m, 11. P 
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shows that L:n A(m, n)'P(n) is absolutely convergent for any mEr, is in lOO(r), and 

that 

IIAlloo ~ sup L IA(m, n)l· 
m n 

Moreover, for a fixed mEr, let 'Pm(n) = e-iargA(m,n). Then, ll'Pmlloo 1 and 

A(m, n)'Pm(n) = IA(m, n)l, so 

IIAlloo - sup sup L A(m, n)'P(n) 
m Il'Plloo=l n 

? sup L IA(m, n)l· 
m n 

o 

Scholium One may deduce IIAlh from IIAlloo and vice versa, using 

(4.5) 

where A*(m, n) = A(n, m). The equation (4.5) follows from the Holder inequality, 
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11Jhere <p E Zl (r), 1jJ E zoo (r), and (. 1 .) denote8 the canonical pairing bet11Jeen Zl (r) 

and lOO(r). In partic1J'zar, sincc in th7:s last express7:on the equality is atfained, 

IIAl11 = sup 1 (A<p 11jJ) 1 
Il'PIII =1 
Il'Ij;lloo=l 

sup 1(<pIA*1jJ)1 
Il'PIII =1 
Il'Ij;lIoo=l 

IIA*lloo. 

The knowledge of the Zl and Zoo norms of an operator provides a bound on its 

Z2 norm: 10 

Theorem 64 IIAII~::Ç IIAIIIIIAlloo. 
Proof: 

IIAII~ sup IIA<PII~ 
Il'P112=1 

sup L I(A<p)(n)1 2 

Il'PIIFI n 

2 

sup L L A(n, k)<p(k) 
Il'P112=1 n k 

::Ç sup L L IA(n, k)<p(k)1 L IA(n, l)<p(l) 1. 
Il'P112=1 n k 1 

10 Notice that a relation similar to the following one is trivially derived for sequences 
instead of operators. 
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For any fixed cp such that IIcpl12 = 1) the triple SUffi in this last expression is equal to 

the following) which is bounded by applying twice Schwarz) inequality: 

L Icp(k)1 L Icp(l) 1 L IA(n) k)A(n)l)1 ~ 
k 1 n 

1 

,;; ~ 1\O(k)1 (~(~ IA(n, k)A(n, 1)1)2) , 

1 

,;; (~~(~ IA(n, k)A(n, 1)1)2)' 

Consequently) expanding the square in the last expression) 

1 

IIAlll ,;; (~~~ ~ IA(m, k)IIA(m,I)IIA(n, k)IIA(n,I)I)' 

1 

- (~)~ IA(m, k)IIA(m, l)I} ~ IA(n, k)IIA(n, 1)1) , 

1 

,;; ({S~P ~ IA(rn, p)IIA(m, I)I} ~ IA(n, k)IIA(n, 1)1) , 
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1 

~ (s~p '~n IA(m,plIIA(m, llIIA(n, klIIA(n, Ill) , 
1 -hp ~(~ IA(n, llIIA(n, klll ~ IA(m,PlIIA(m,lll)' 
1 

,,; hp{Sl;P ~ IA(n, qlIIA(n, klll ~ IA(m,plIIA(m, Ill) , 

= sup L: [A(n, q)[[A(n, k)[ 
q n,k 

- Sllp L: {L: [A(n, k)I}IA(n, q)1 
q n k 

~ sup{sup L: [A(p, k)[} L: [A(n, q)[ 
q P k n 

o 
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4.4 Variant of Analytic Fredholm Theorem 

In this appendix we present a natural extension of the analytic Fredholm theo-

rem, due to B, Simon, which gives us a sufficient criterion for a set to be closed and 

of Lebesgue measure 7.ero, 

Given a domain, V ç C, let us consider an analytic function ll 

f: V-+B(H), 

For later purposc, if f admits a continuous extension V -+ B(H), where B(H) is 

endowed with the uniform topology, we set E = V; otherwise, we set E = V, Henee, 

f: E -+ B(H) is continuous on E and analytic in the interior of E, 

We will use the following elementary lemmas: 

Lemma Suppose f(z) is invertible for any zEE. Then, z 1---> f(Z)-l is continuous 

on E, 

Proof: Given a fixed zEE, consider any h such that z + h E E, Then, 

f(z + h)-l - f(Z)-l = f(z + h)-l(f(Z) - f(z + h))f(z)-l. (4,6) 

11 R Il l f' l t' 'ff tl t l' 't l' f(z+h)-f(z). t It' eca t lat lS ana,y,'l,C at z l 18 S rong Iml, Imh->û h eXls s, lS 
weIl known that this last requirement is equivalent to the following, a priori weaker 
one: for aIll E B(H)*, the complex valued function lof is analytic, 
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Therefore, 

f(z + h)-l(l - (j(Z) - f(z + h))f(z)-l) = f(Z)-l, 

where 1 E J3(H) denotes the identity. Since f is continuous, given our fixed zEE, 

there exists a <5 > 0 such that, if Ihl < <5 and z + hE E, then 

1 
1I(j(z) - f(z + h))f(z)-lll < 2' 

Then, by the geometric series 1 - (j(z) - f(z + h))f(z)-l admits an inverse whose 

norm is less than 2 uniformly in h. Thus, the norm of 

f(z + h)-l = (1 - (j(z) - f(z + h))f(z)-l )-1 f(Z)-l 

is bounded for such h's. The result then follows from the continuity of f and the 

equation (4.6). D 

Lemma Suppose f(z) is invertible for any z E 'D. Then, f-1(Z) = f(Z)-l is analytic 

on 'D, where it satis.fies 

Proof: Given a fixed z E 'D, if h is sufficiently small, then 

f(z+ h)-l - f(Z)-l + f(Z)-lf/(z)f(z)-l 
h 
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is weIl defined and equal to 

(f(z + h)-l _ f(Z)-l) f(z) - f(z + h) f(Z)-l + 
h 

+ f(Z)-l (f(z) - ~(z + h) + f'(z)) f(z)-l. 

Renee, the norm of (4.7) is bounded by 

Ilf(z + h)-l _ f(Z)-lllll f(z) - ~(z + h) 1IIIf(z)-lll + 

+ Ilf(Z)-lllll f(z + h~ - f(z) _ f'(z) 1IIIf(Z)-lll, 

which clearly tends to ;t;ero wh en h -+ O. o 

We now prove the Fredholm analytic theorem. Let Zo E E be fixed. Then, there 

exists a 6 > 0 such that Ilf(z) - f(zo)11 < ~ when z E B(zo, 6) nE. Moreover, since 

f(zo) is compact, there exists a finite rank operator, F, such that 

1 
Ilf(zo) - Fil < "2' 

Thus, Ilf(z) - Fil < 1 on B(zo, 6) nE, which implies (by the geometric series) that 

1 - f(z) +F is invertible. One then studies the injectivity of 

1 - f(z) = (1 - F(l - f(z) + F)-l)(l - f(z) + F), 

which is realized iff 1 - F(l - f(z) + F)-l is injective. 

Let us denote by 7r the projection of 1-{ onto ran F. 
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Lemma In the above circumstances, 1- f (z) is not injective iff the secular equation, 

det(l - 'if F(l - f(z) + F)-l7r) = ,0, (4.8) 

is satisfied. 

Proof: Let cp be in the kernel of 1 - F(l - f(z) + F)-l, so 

cp = F(l - f(z) + F)-lcp. 

In particular, cp belongs to the range of F, so 

cp = 7r F(1 - f(z) + F)-l7rcp, 

Binee ran F is finite dimensional, the result follows. o 

Lemma In the above circum8tance8, if 1- f (z) i8 injective, then it is 0,[80 surjective. 

Proof: Again, 1 - f(z) is surjective iff 1 - F(l - f(z) + F)-l is surjective. For an 

arbitrarily fixed 'IjJ E H, one wonders if there exists a 4; E H satisfying 

(1 - F(l - f(z) + F)-l)4; = 'IjJ. 
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If so, 1/J is of the form <p - zp for a zp E ran Fi thus, one may assume <p = 1/J + zp and 

seek for a zp E ran F satisfying 

(1 - F (1 - f (z) + F) -1 ) (1/J + zp) = 1/J. 

This last equation is equivalcnt to 

which admits a solution wh en det(l-7f F(l - f(z) + F)-l7f) =1- O. The result follows 

from the previous lemma. D 

Therefore, by the Inverse Mapping Theorem: 

Corollary In the above circumstances, if 1 - f(z) is injective, then it admits a 

bounded inverse. 

Proving now the c1assical Fredholm analytic theorem, let us consider the case 

where Zo E 'D. Without loss of generality, wc assume B(zo, b) ç 'D. Then, 

. det(l - 7f F(l - f(z) + F)-l7f) 

is analytic in B(zo, b). In particular, either this last function is identically zero on 

B(zo, b), either its zeroes on B(zo, b) are isolated. In conclusion, 

Theorem 65 (Fredholm) Given a domain 'D ç C, consider an analytic function, 

f: 'D --> B('H), whose values are compact operators. Then, either the operators 
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1 - f(z) are not invertible for z E D, either they are invertible for all z E D except 

isolated points. 

Let JO) c C denote the open unit disk. Our variant of the previous theorem is 

based on the following classical result, whose proof is given, for instance, in [23]: 12 

Theorem 66 If f: JO) -* C is continuous on JO) and analytic in JO) , then either 

{z E JO); f(z) = O} is the whole JO), either it is a closed set of Lebesgue measure zero 

whose 7:ntersection wüh JO) consists of 7:solated points. 

We now consider the case where D = C+ and where f: C+ -* B(1-i) admits a 

continuous extension, 

f: C+ -* B(1-i) ; 

in this case [ = C+. 

If the secular equation, (4.8), identically holds on C+, then by continuity it ho Ids 

on C+, so 1 - f(z) is never invertible. 

Otherwise, assume Zo E lR, the case where Zo E C+ being covered by the classical 

theorem. By Riemann's ConformaI Mapping Theorem (or by an explicit construc­

tion) there exists a conformaI equivalence from B(zo, 6") n C+ to JO) , which extends to 

a homeomorphism from B(zo, 6") n C+ to JO) (since the boundary of the former region 

is reguIar). Thus, by Theorem 66 the secular equation for z E B(zo, 6) n C+ is never 

satisfied, except on a closed set of Lebesgue measure zero whose intersection with 

B(zo, 6") n C+ consists of isolated points. Thus, a connectedness argument yieIds: 

12 Indeed, the following result holds under weaker assumptions, for instance, for f 
bounded in JO) or, which is even better, for f of exponential type in JO). 
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Theorem 67 (Simon) Suppose f: C+ ---* B(H) is continuous on C+ and analytic 

in C+. Then, either 1 - f(z) is never invertible, eüher ü is invertible except on a 

closed set of Lebesg1J,e measv,re zero whose intersection with C+ consists of isolated 

points. 
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5.1 Main Results 

CHAPTER 5 
Conclusion 

After an extensive review of the stationary phase method, Chapter 2 is devoted 

to Green's functions of discrcte Laplacians on Zd. Here, genero.,lized Laplacio.,ns are 

defincd as adjaccncy opcrators of translational invariant graphs on 7ld . Explicitly, 

given such a graph, whose distance is denoted by d, the associated Laplacian is 

defined as 

6<p(n) = L <p(m), 
d(m,n)=l 

wh cre r..p E l2(Zd) and n E Zd. 

Let V = {n E 7ld 
; d(n,O) = 1}. Then, the symbol of 6 is (the multiplication 

by) <I>(x) = L eÎv
.x , so its Grcon's function is 

vEV 

for any m, n E 7ld and z E C+, where 0 denotes the Kronecker delta. We are 

interested in the decay of G(n, e) = lim G(n, z) when Inl -t 00 for spectral values 
z ....... e 

zEC+ 

of energy, e E spec( 6) = ran <I>. The stationary phase method yields: 

Theorem Consider an open set, 8 C spec(6), su ch that \7<I>(x) i= ° on <I>-1(8). 
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Notice that <p- 1 ( {e }) is then a real-analytic regular surface for any e E e; sup­

pose that for any e E e this last surface adm1:ts at least '" non vanishing prinâpal 

curvatures at any point, 'Where K, ;? 1. Then, for any compact K c e 

uniformly in (e,w) E K x Sri, 'Where n = Inlw. 

Two concrctc ex amples arc emphasized: the standard Laplaâan, whose graph 

is determined by V = {(±1, 0,'" ,0), (0, ±1,'" ,0),.·· ,(0,0,·" ,±1)}, and the 

Molchanov- Vainberg Laplacian, whose graph is determined by 

V={(lTl"" ,lTrl)E71}; lTjE{-l,l} forany j}. 

Notice that the spectrum of the former is [-2d,2d], while the spectrum of the latter 

is [-2rl , 2d]. In the former case an elementary argument shows that the previous 

theorem applies on e = [-2d, 2d] \ ({ -2d, -2d + 4,'" ,2d - 4, 2d} U {O}) for K, = 1 

(without prctending that this result is optimal). In the latter case the theorem ap­

plies on e = [_2rl, 2rl] \ {_2rl , 0, 2rl } for K, = d - 1, which is optimal. 

After a revis ion of basic scattering theory, Chapter 3 is devoted to random 

Schrodinger operators of the form H = 6 + V, where 6 is a generalized Laplacian 

and V is a random potential. Wc are intcrested in scattering and spectral properties 

of H that hold almost surely wh en the sites of the potential are sparse. Our work 

is a continuation of [17], wherc abstract criterions of existence of the wave operators 
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n±(H "') - l' itH -it~l ("') d n±( '" H) l' it~ -itHl (H) HS ,u - Imt-t±oo e e s u an HS u, = Imt-t±oo e e sare 

presented in a more genera1 framework (in which ~ is the adjacency operator of 

any simple, countable graph). Two approaches are used in our study: one, based on 

Fredholm's analytic theor'y, is deterministic, while the other, based on the Aizenman­

Molchanov theory, is probabilistic. 

Let us den ote by f ç Zd the sites of the random potential, V. 

In the dctcrministic approach {V (n)} nEf consists of independent random vari­

ables of law j.t, where j.t is a compact1y supported probability measure on lR (so V is 

almost surcly bounded). In these circumstances, 

Theorem Let 8 be a region of validity of the previo1J,s theorem with respect to a 

certain K, ;;:: 1. ri r is sparse in the sense that for a certain E > 0 

I: ln - ml-~+(' 
mEf\{n} 

is .finite for ail nEf and tends to 0 when Inl --+ 00 in f, then the wave operators 

n~(H,.6.) and n~(.6., H) cxist almost surely. 

More generally, if the sites of the potential are partitioned in clusters whose 

diameters are bounded, the previous theorem still holds if one replaces f with the 

set of cent ers of the clusters. 

In the probabilistic approach {V(n)}nEf consists of independent random vari­

ablos of law j.t, where j.t is an absolutely continuous probability measure, not nec­

essarily compactly supported, and satisfying the decoupling hypotheses for a given 
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s E ]0,1[: 

inf flR lx - al 8 1x - 131- s dp(x) > ° and flR Ixlslx - 131-s dp(x) 
Œ,(3EC flR lx - 131-8 dp(x) ~~~ flR lx - !3I-s dp(x) < 00. 

In these circumstances, 

Theorem Suppose r is sparse ?:n the sense that for e and ri, as above and for a 

L ln - ml-s::'+E 
mEr\{n} 

is finite for all n E r and tends ta ° when Inl -+ 00 in r. If the wave operators 

n~(H,~) exist almost surely, then the wave operators n~(~, H) also exist and the 

spectrum of H i8 purely absolutely continuOU8 on e, almost surely. 

Notice that the existence of n~(~, H) may come from other sparseness condi­

tions on r found in the literature; see for instance [32]. 

In the present circumstances similar calculations outside spec( ~) yield: 

Theorem The spectrum of H ?:s pure po?:nt outside spec(~) with exponentially de-

caying eigenfunct'ion8, almo8t 8urely. More prec'i8ely, for almo8t all V, if <p is such 

an eigenfv,nction, then there exist positive constants, C and a, both depending on V 

and <p, 8uch that 1<p(n)1 ::::; Ce-a1nl for all nE?f 

If ~ is the standard or the Molchanov-Vainberg Laplacian, then the spectrum 

of ~ is purely absolutely continuous, while e is equal to S = spec(~) minus a finite 
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set. Hence, O~(H, 6) = O~(H, 6) (if they exist). For the same reason, under the 

conditions of the penultimate theorem O~(6, H) = O~(6, H) almost surely, by a 

theorem of Jaksié and Last [19]. 

In summary, if r is sufficiently sparse, H = 6 + V then satisfies almost surely 

the following, remarkable properties: 

1. Outside spec(6) the spectrum of H is (possibly dense) pure point with expo­

nentially decaying eigenfunctions; 

2. Inside spec(6) the spectrum of H is purely absolutely continuous; 

3. Inside spec(6) the wave operators O±(H, 6) and O±(6, H) exist. 

The existence of a family of random Schrodinger operators satisfying these last 

properties is thus established (at our knowledge for the first time in the literature). 

* * * 
Historically, sparse potentials were introduced by Pearson [34] in or der to ex­

hibit examples of Schréidinger operators whose spectra present singular continuous 

parts. Since this time, several models of sparse potentials have been suggested in 

the literature, having in common that the number of sites of the potential included 

in a cube of length L centered at the origin decreases with L. Both continuous and 

discrete cases have been investigated. 

The idea to construct wave operators for showing that Schrodinger operators 

with sparse potentials possess an absolutely continuous part is due to Krishna [24], 

who used a deterministic model. Krishna et al. [25J then exhibited mixed spectra 

(i. e., spectra containing both an absolutely continuous part and a singular one) 
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for Schrodinger operators submitted to random, sparse potentials in high disorder 

regime. 1 

Sparsc potentia1s were a1so investigated by Kirsch et al. [5, 12, 22] and Mol­

chanoy et al. [28, 29, 30, 31, 32]. These teams established that the spectrum of a 

random Schrodinger opcrator, H = 6. + À V, with sparse potential is mixed: almost 

surely, its absollltely continuons part covers spec(6.), where in addition the wave 

operators exist; almost surely, its singular part lies outside this la..st region and is 

pure point. Using potentials almost surely bounded, they exhibited ex amples where 

the pure point spectrllm is discrete olltside spec(6.) (with accumulation points at the 

edges) if and only if the disorder is smalI. Moreover, they characterized the essential 

spectrum, which was a1ready known to be fixed almost surely. 

In summary, examples of random Schrodinger operators with sparse potentia1s 

satisfying the properties 1 and 2 in the above enumeration, whose discrete pure point 

spectrum olltside spec(6.) has dense parts (alternatively, is discrete), and for which 

wave operators exist were constrncted in the past. 2 Therefore, the main novelty of 

the present dissertation, which is a continuation of [17], is the second part of the 

property 3: the wave operators are complete on spec(6.). Our result thus provides 

a complete description of the absolutely continuons spectrum for a class of random 

Schrodinger operators with sparse potentia1s. 

1 Given a Schrodinger opcrator, H = 6. + À V, the disorder is defined as À. 

2 Notice howevor that our rosults use now techniques and yield substantially dif­
ferent sparseness criterions. 
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5.2 Perspectives 

Severallittle projects may be built from the present thesis. 

Regarding our model, the potentials of the considered Schrodinger operators are 

random, but supported on deterministic sets of sites; it may be physically relevant 

to randomize these last sets. Moreover, we studied generalized Laplacians coming 

from translational invariant. graphs only. Other discretizations of the Laplacian may 

be investigatcd, for instance, coming from non invariant, weighted graphs or, in the 

hardest case, from non invariant, weighted, oriented graphs. 

Regarding Chapt.er 2 one may wonder on which subintervals of energy the con-

stant energy surfaces of the standard Laplacian admit 2,3, ... non vanishing principal 

curvatures at every point. One may also calculate the complete asymptotic exp an-

sion of the Green's function of the standard Laplacian in concrete dimensions, say, 

2,3, ... 3 We also prescnted the Molchanov-Vainberg Laplacian, whose symbol (with 

respect to the Fourier transform over Zd) has strictly convex level surfaces. One may 

try to generalizc this rcsult using a different lattice. 

Regarding Chapter 3, in the unbounded case our sparseness condition, which 

ensures the existence of n±(6, H) inside spec(6), may be compared with sparseness 

conditions found in the literature which ensure the existence of n± (H, 6) instead. 

In particular, one may wonder if our sparseness condition indeed suffices to ensure 

3 The complete asymptotic expansion of the Molchanov-Vainberg Laplacian may 
easily be derived in dimension d using techniques shown in the present thesis. 
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the existence of an these wave operators. Finally, other forms of sparseness may be 

investigated (especially, sparse clusters in the unbounded case). 
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