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ABSTRACT 

The modelling of contaminant transport in porous media is an important topic to 

geosciences and geo-environmental engineering. An accurate assessment of the spatial 

and temporal distribution of a contaminant is an important step in the environmental 

decision-making process. Contaminant transport in porous media usually involves 

complex non-linear processes that result from the interaction of the migrating chemical 

species with the geological medium. The study of practical problems in contaminant 

transport therefore usually requires the development of computational procedures that can 

accurately examine the non-linear coupling processes involved. However, the 

computational modelling of the advection-dominated transport process is particularly 

sensitive to situations where the concentration profiles can exhibit high gradients and/or 

discontinuities. This thesis focuses on the development of an accurate computational 

methodology that can examine the contaminant transport problem in porous media where 

the advective process dominates. 

The development of the computational method for the advection-dominated transport 

problem is based on a Fourier analysis on stabilized semi-discrete Eulerian finite element 

methods for the advection equation. The Fourier analysis shows that under the Courant 

number condition of Cr = 1, certain stabilized finite element scheme can give an 

oscillation-free and non-diffusive solution for the advection equation. Based on this 

observation, a time-adaptive scheme is developed for the accurate solution of the one

dimensional advection-dominated transport problem with the transient flow velocity. The 

time-adaptive scheme is validated with an experimental modelling of the advection

dominated transport problem involving the migration of a chemical solution in a porous 

column. A colour visualization-based image processing method is developed in the 

experimental modelling to quantitatively determinate the chemical concentration on the 

porous column in a non-invasive way. A mesh-refining adaptive scheme is developed for 

the optimal solution of the multi-dimensional advective transport problem with a time

and space-dependent flow field. Such mesh-refining adaptive procedure is quantitative in 

the sense that the size of the refined mesh is determined by the Courant number criterion. 



Finally, the thesis also presents a brief study of a numerical model that is capable to 

capture coupling Hydro-Mechanical-Chemical processes during the advection-dominated 

transport of a contaminant in a porous medium. 
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RÉSUMÉ 

La modélisation du transport de contaminant dans des milieux poreux est une matière 

importante des géosciences et de la technologie géoenvironnementale. Une évaluation 

précise de la distribution spatiale et temporelle d'un contaminant est une étape importante 

dans le processus décisionnel environnemental. Le transport de contaminant dans des 

milieux poreux comporte habituellement des processus non linéaires complexes qui 

résultent de l'interaction des espèces chimiques migrante avec le milieu géologique. 

L'étude des problèmes pratiques dans le transport de contaminant exige donc 

habituellement le développement des procédures informatiques qui peuvent examiner 

avec exactitude les processus de couplage non linéaires impliqués. Cependant, la 

modélisation informatique du procédé de transport advection-dominé est particulièrement 

sensible aux situations où les profils de concentration peuvent montrer des gradients et/ou 

des discontinuités élevés. Cette thèse se concentre sur l'élaboration d'une méthodologie 

informatique précise qui peut examiner le problème de transport de contaminant dans des 

milieux poreux où le processus convectif domine. 

L'élaboration de la méthode informatique pour le problème de transport advection

dominé est basée sur une analyse de Fourier des méthodes eulériennes, semi-discrète et 

stabilisées d'éléments finis pour l'équation d'advection. L'analyse de Fourier montre que 

sous la condition du nombre de Courant Cr = l, certains schémas stabilisés d'éléments 

finis peuvent donner une solution d'oscillation libre et non-diffus ive pour l'équation 

d'advection. Basé sur cette observation, un schéma de temps adaptatif est développé pour 

la solution précise du problème de transport advection-dominé unidimensionnel avec une 

vitesse d'écoulement transitoire. Le schéma de temps adaptatif est validé avec une 

modélisation expérimentale du problème de transport advection-dominé comportant la 

migration d'une solution chimique dans une colonne poreuse. Une méthode de traitement 

d'image basée sur la couleur est développée quantitativement dans la modélisation 

expérimentale, pour déterminer de manière non envahissante, la concentration chimique 

dans la colonne poreuse. Un schéma adaptatif de raffinement de maillage est développé 

pour la solution optimale du problème de transport convectif multidimensionnel avec un 
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champ d'écoulement dépendant du temps et de l'espace. Un tel procédé adaptatif de 

raffinement de maillage est quantitatif dans le sens où la taille du maillage raffiné est 

déterminée par le critère du nombre de Courant. La thèse présente également une brève 

étude d'un modèle numérique qui est capable de capturer des processus de couplage 

Hydraulique-Mécanique-Chimique pendant le transport advection-dominé d'un 

contaminant dans un milieu poreux. 
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CHAPTERI 

INTRODUCTION 

1.1 Contaminant Transport in Porous Media 

Groundwater is an important resource for human activities related to municipalities, 

agriculture and industry, and it makes up one-third of the drinking water supply on the 

earth. The rapid development of human economic activities in recent decades not only 

demands large quantities of water but also generates significant amounts and varieties of 

contaminants that ultimately find their way to the subsurface water resources. Sources of 

contaminants to the groundwater may come from agricultural, industrial and residential 

activity, as well as natural sources, and include the spillage of fertilizers and pesticides 

from agricultural practices, the leakage from both aboveground and underground fuel 

storage tanks and septic tanks, the leachate from waste disposaI (i.e. municipallandfill, 

industrial radioactive deep waste repositories), chemical discharge from mine tailings 

impoundments and accidentaI spills, geothermal energy development, acid rain, de-icing 

salts, seawater intrusion in coastal aquifers, and groundwater-surface water interaction 

(Bedient et al., 1999; Vulliet et al., 2002). These chemicals may contaminate the 

groundwater, but can also migrate through geological media. Contamination of 

groundwater can make it unsuitable for use in the short term, and can render the 

contaminated aquifer unusable for decades. Furthermore, as the groundwater participates 

in the hydrologic cycle, contaminants can also move from disposaI or spill sites to nearby 

lakes and rivers, polluting the surface water resources. The geo-environmental problems 

associated with the migration of contaminants with the groundwater (or contaminated 

groundwater) in the geosphere have received considerable attention over the past three 

decades. The study of the time- and space- dependent migration of a contaminant in 

porous media is a topic of current importance to environmental engineering (Bear and 

Verruijt, 1990; Bear and Bachmat, 1992; Banks, 1994). 

Generally, groundwater constitutes the main agent for the transport of contaminants in 
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geologic media (e.g. in saturated or aquifer zones). In this case, the transport process is 

composed oftwo basic processes: advection, due to the movement of the fluid in the pore 

space, and hydrodynamic dispersion that can consist of both molecular diffusion, due to 

concentration gradients based on Fick's law, and mechanical dispersion due to irregular 

movement of the pore fluids in the interstices of porous media. These irregularities can 

result from the pore scale tortuosity of the flow paths or the heterogeneity and anisotropy 

of the porous medium, due to the stratification characteristics and the presence of 

microcracks or fractures. Such inhomogeneous or anisotropic properties of porous media 

can also influence the time- and space-dependent distribution of the advective flow 

velocities. Besides these basic processes, the transport of a contaminant within 

groundwater can also occur by the natural convection due to the differences in density 

between the fresh and contaminated groundwater (Simmons et al., 2001). 

Geologic media are generally composed of three phases: solid partic1es, pore fluids and 

gases (e.g. vapor and dry air) (Bishop, 1973; Bear and Verruijt, 1990; Thomas and He, 

1995; 1997; Lewis and Schrefler, 1998), and therefore, apart from the movement of 

groundwater, the transport of contaminants is also influenced by the mechanical 

behaviour of solid partic1es and gas transfer inside the porous medium. The mechanical 

deformation of the solid skeleton of the porous medium can influence the contaminant 

transport through the soil by influencing the dissipation of the pore water pressure (Biot, 

1941), which affects the seepage flow velo city based on Darcy's law. If the solid skeleton 

deforms, the force convection due to the mechanical movement of the solid partic1e 

should also be considered in any contaminant transport process in porous media. 

Contaminant transport in unsaturated or vadose zones is much more complex than in a 

saturated zone due to the effect of capillary forces and nonlinear soil characteristics with 

respect to the moisture content, and is usually influenced by the combined movement of 

multiphase gases (Bear, 1972; Philips, 1991; Charbeneau, 2000). 

Two other important factors should be considered in the transport of contaminants in 

porous media: thermal effects and geochemical reactions, since both of them may have a 

significant impact on the chemical and physical behaviour of the fluids and the soil 

(saturated or unsaturated). The thermal expansion of the pore fluids and the porous 

skeleton due to temperature variations may become detectable, and thus can have a 
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considerable influence on the contaminant transport, especially for the frost-related and 

heat generating reactive waste repository problems. On the other hand, organic and 

inorganic compounds in groundwater may react with their surrounding compounds and/or 

geological media during their transport, by means of sorption, aqueous complexation, ion 

exchange, mineraI precipitation/dissolution, oxidation, biodegradation of the chemical 

species, etc. (Rubin, 1983). These geochemical reactions can not only modify the 

chemical composition of the transported contaminant dissolved in the groundwater, but 

also alter the chemical and physical properties of the soil skeleton, and consequently 

influence the contaminant transport process in the porous medium. One well-known 

example of such influences is the retardation of the contaminant transport process of due 

to the sorption process or the natural attenuation. Other examples of influences of 

chemical reactions on the contaminant transport may include the reduction of the elastic 

stitfness (Gerard et al., 1995; 1998; Le Bellégo et al., 2003; Li et al., 2003) and alteration 

of the permeability ofthe porous medium (Bear, 1972; Bourbie and Zinszner, 1985; Katz 

and Thompson, 1986; Doyen, 1988; Fredrich et al., 1993; 1995; Fredrich, 1999; Kieffer 

et al., 1999) due to the variation of the porosity caused by mineraI precipitation and 

dissolution. In summary, the transport of contaminants in porous media is a complex 

coupling process and usually it should consider the mechanics, hydraulics, temperature, 

geochemistry and even air in the unsaturated zone (Figure 1.1). 

Hydraulics Mechanics 

Temperature ~----!--~, Geochemistry 

Saturated 
,\ " 

ft 

Unsaturated Air 

Figure 1.1 Coupling in contaminant transport in porous media 
(Following Vulliet et al., 2002) 
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1.2 Mathematical Modelling 

A contaminant transported in porous media can render a large number of geologic sites 

and groundwater unsuitable for use. Therefore, the movement of contaminated 

groundwater is one of the most important environmental concems, not only because it is 

a threat to human health but also because it may reduce the quality of the ground water 

resources, which are already in short supply because of the increased demand from 

human activities. The prediction of the time- and space-dependent movement of 

contaminants in porous media is important for contaminant management, groundwater 

remediation and soil cleanup. Generally, the contaminant transport in a porous medium 

can be described by the classical advection-dispersion equation, and two basic 

approaches can be used for its solution: an analytical approach and a computational 

approach. The study of the classical advection-dispersion-type equation through 

analytical means can be attempted only in a limited number of cases involving either a 

single spatial dimension or a high degree of spatial symmetry, usually requiring an 

assumption of linearity. Analytical solutions for one-, two- and three-dimensional 

advection-dispersion equation, containing a first order decay, a source term and certain 

forms of time- and space-dependent flow velocity, have been investigated and are 

available in the literature (Ogata and Banks, 1961; Sauty, 1980; Van Genuchten, 1981; 

Domenico, 1987; Leij and Dane, 1990; Wexler, 1992; Batu, 1993; Leij et al., 1993; 

Kocabas and Islam, 2000; Park and Zhan, 2001; Selvadurai, 2002a; 2003; 2004a,b). 

However, it should again be noted that, although the contaminant transport in porous 

media can basically be govemed by the advection-dispersion equation, it is a complex 

nonlinear process that may include the deformation of the porous skeleton and pore 

fluids, gas and heat transfers, and geochemical reactions (Lewis and Schrefler, 1998; 

Smith, 2000; Peters and Smith, 2002). For such coupling transport problems, finding the 

analytical solutions is a challenge and these are not readily available in the literature; 

consequently computational modelling has become the preferred approach. 

The mathematical modelling of the movement of fluids in a fluid saturated deformable 

porous medium can be described by the theory ofporoelasticity (Biot,1941; 1955; 1956), 

which originates with the introduction of the concept of the effective stress by Terzaghi 

(1923). In a saturated porous medium, the effective stress is the inter-granular actual 
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stress within the soil fabric and is defined as the difference between the total stress and 

pore water pressure. Applying this concept in the constitutive stress-strain relationship, 

Terzaghi (1923; 1943) proposed a consolidation theory to interpret the one-dimensional 

time-dependent deformation of the soil skeleton with pore pressure dissipation. Such 

consolidation theory can be considered as a one-dimensional counterpart of the theory of 

poroelasticity. For the partially saturated porous medium, the effective stress is 

determined not only by the total stress and pore fluid pressure but also by the air pressure 

(Alonso et al., 1990). With the constitutive stress-strain behaviour of the unsaturated soil 

(Bishop and Blight, 1963; Fredlund, 1979; Thomas and Cleall, 1999), the classical theory 

of poroelasticity can be extended to describe the moisture and gas transfers in deformable 

unsaturated porous medium (Thomas and He, 1995; 1997; Lewis and Schrefler, 1998). 

Temperature gradient-induced thermal effects on the deformation of the porous medium 

and the moi sture transfer have attracted a great deal attentions in the field of 

geomechanics in recent years, particularly for the performance assessment of the 

geological nuclear waste repositories. In such waste disposaI systems, the mechanical 

deformation of the clay buffer (such as bentonite) is influenced by the thermal stress and 

the moisture movement (diffusion) caused by the temperature gradient. During the last 

decade, there have been many efforts to develop finite element models to simulate the 

strongly coupled Thermo-Hydro-Mechanical (THM) behaviours of the unsaturated buffer 

material. Such modelling should involve the solutions of the mass balance equations for 

water and air phases, the energy balance equation for heat transfer, and the momentum 

equilibrium equation for the porous medium (Nguyen et al., 2005). Recently, Hudson et 

al. (2001) reviewed the application of the THM model in the investigation of the long

term behaviour of bentonite-based buffers in a radioactive nuclear waste repository. 

Rutqvist et al. (2001) compared four element models for the thermohydromechanics of 

partially saturated geological media. The details of the formulation of the THM 

behaviour of an unsaturated soil have been well documented (e.g. Selvadurai and 

Nguyen, 1995; Thomas and He, 1995; 1997; Thomas et al., 1998; Lewis and Schrefler, 

1998). 

Geochemical reactions usually occur during the contaminant transport in porous media in 

the form of mass transfer, either between liquid phases or between liquid phases and solid 
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phases of the contaminant. These geochemical reactions can generally be described by 

the chemical kinetics, which can be expressed by the Ordinary DifferentiaI Equation 

(ODE). If the reaction rate is sufficiently fast with respect to the local variation of the 

chemical concentration or the flow velo city, and the local equilibrium conditions are 

achieved, then the geochemical reaction can be described by the chemical reaction 

equilibrium, which can be expressed by a set of algebraic equations (Rubin, 1983). 

Nordstrom et al. (1976) reviewed more than 30 computational packages that are currently 

in use for the description of the chemical reaction equilibrium in porous media. Two 

approaches can be used to couple the chemical reaction equilibrium with the contaminant 

transport in porous media (Lewis et al., 1987). One approach is to incorporate the 

algebraic reaction equations directly into the transport equation and therefore both 

transport and chemical interaction can be described by a single reaction transport 

equation (Jennings et al., 1982; Kirkner et al., 1984). However, the computational models 

developed through this approach will vary with the different chemical reaction forms of 

the transported species. An alternative approach to simulating the reactive transport 

process is to separate the algebraic equation governing the chemical reaction equilibrium 

from the advection-diffusion equation. In this case, the iterative algorithm should be used 

for the solution of the chemical reactive transport process described by coupling the 

differential transport equation and algebraic reaction equation (Grove and Wood, 1979; 

Cederberg et al., 1985). 

The advantage of the second approach is the possibility of using existing computer codes 

for the transport equation and the equilibrium ca1culation for large chemical systems 

(Lewis et al., 1987). Xu and Pruess (2001) used this approach to develop a Thermo

Hydro-Chemical (THC) model to investigate non-isothermal reactive geochemical 

transport in partially saturated fractured rocks. Both THM and THC models have been 

applied extensively for various engineering applications, including geothermal, nuclear 

waste repository, landfill, etc. However, the accurate analysis of the soil hehaviour 

(saturated or unsaturated), in which the contaminant moves with the fluid flow, requires 

that hoth the thermal effect and the geochemical reaction he considered in the 

computational model (Cleall et al., 2004). In order to take this into consideration, a 

Thermo-Hydro-Mechanical-Chemical (THMC) model is necessary for the accurate 
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simulation of the contaminant transport process in a deformable porous medium with 

thermal and chemical effects. 

The above discussions indicate that the study of the contaminant transport in porous 

media usually needs to consider a set of completely coupled Partial DifferentiaI 

Equations (PDEs) goveming the chemical migration, the mechanical behaviour of the 

porous skeleton, the moisture and gas movement, heat transfer and geochemical 

reactions. In order to obtain an accurate solution for such a coupled nonlinear transport 

problem by means of mathematical modelling, proper numerical schemes should be 

chosen for solving different PDEs. Due to the mathematical characteristic of the 

equations goveming poroelastic behaviour of porous media and heat transfer, the 

conventional numerical method can be used to solve these equations without difficulty 

(Bathe, 1996; Lewis and Schrefler, 1998). Until now, many effective computational 

models have been developed for examining the poroelastic and THM behaviours of the 

unsaturated porous medium and sorne programming codes have been embedded into 

commercial software (ABAQUS, COSMOS, FEMLAB, FLAC, and PLAXIS, etc.). 

However, the conventional numerical methods encounter severe difficulty in modelling 

the linear transport equation with strong advection and the solution containing either high 

gradients or discontinuities; they introduce either numerical oscillations or artificial 

diffusion into the solution near its high gradients. Developing a high-order accurate 

stabilized numerical scheme for the advection or advection-dominated transport equation 

is an important topic in science and engineering, and it is an extremely important step in 

modelling the complex nonlinear coupled advection-dominated transport problem of a 

contaminant in a porous medium. 

1.3 Numerical Difficulties for the Transport Equation 

The c1assical advection-diffusion (or dispersion) equation is the basic form of many types 

of equations in solid and fluid mechanics, dynamics, heat transfer and water resources. 

Therefore its numerical modelling plays a very important role in science and engineering, 

for example, oil reservoir flow, transport of solutes in subsurface and surface water, the 

movement of aerosols and trace gases in the atmosphere. However, the presence of the 
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first order spatial derivative (advective tenn) in the advection-diffusion equation usually 

causes great difficulty for the numerical modelling. The advection-diffusion equation can 

be classified as a mathematically hyperbolic-parabolic PDE. The dominance of either the 

hyperbolic or the parabolic character of the PDE depends on the magnitude of the Péclet 

number Pe (= vh ,where v is the advective velocity or the characteristic speed of the 
2D 

equation, D is the diffusion coefficient, and h is the spatial discretization length). For 

the dominantly hyperbolic equation, conventional numerical schemes will encounter 

computational difficulties: higher-order methods, e.g. central method, second-order, Lax

Wendroff, Beam-Wanning, etc., give rise to non-physical numerical oscillations near the 

leading edge of a sharp front in the solution, although they are less dissipative in the 

smooth regions of the solution. On the other hand, first-order methods, e.g. the upstream 

Lax-Friedrich schemes, can give oscillation-free solutions, but they usuallY posses a 

strong numerical diffusion that smears out the solution with a steep advective front, 

leading to inaccuracies. The above numerical phenomena can be demonstrated by the 

solutions for the one-dimensionallinear steady and transient transport equations obtained 

from two basic finite difference methods, the central method and backward upwind 

method, expressed in tenns of Péclet number and Fourier mode. 

1.3.1 Péclet Number for the Steady Advection-Diffusion Equation 

For the steady advection-diffusion equation, vCx - DCxx = 0, the numerical solutions 

given by the central and upwind finite difference schemes corresponding to the boundary 

conditions C(O) = 0 and C(1) = 1 applied on the domain [0,1] can be written, 

respectively, in the following fonns (Quarteroni and Valli, 1997) 

and 

(l+pe)i -1 
êc = -..:-l_-_p_e....:....-_ 

1 (l+pe)n_l 
I-Pe 

i=I,2"",n-l (l.la) 
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êu = (1 + 2Pe y -1 
, (1 + 2PeY -1' 

i = 1,2,. .. , n -1 (l.lb) 

where ê;c and êt are the numerical solutions at the no de i given by the central and 

upwind schemes respectively. It is evident from equation (1.1) that ê;c will exhibit an 

oscillatory behaviour since 1 + Pe < 0 when Pe > 1 and such oscillations can be 
I-Pe 

eliminated when Pe ~ 1 ; in contrast, êt does not possess oscillations for any value of the 

Péclet number. The one-sided upwind scheme has a strong physical meaning due to the 

fact that the flux by advection can only come from the upstream direction at any spatial 

point. However, using simple truncation error analysis, it can be shown that the upwind 

scheme introduces an artificial numerical diffusion to the central scheme for the 

advective term 

ê'+1 - ê. ê'+1 - ê. 1 vh ê'+1 - 2ê. + ê. 1 v' , = v' ,- _ -' ,,-
h 2h 2 h2 

(1.2) 

The addition of artificial diffusion ensures that the corresponding artificial Péclet number 

is always smaller than unit y, but it reduces the accuracy of the scheme. Therefore, the 

stability of the upwind scheme for the advection-dominated equation is obtained at the 

expense of accuracy, and this aspect can also be illustrated using a Fourier analysis. 

1.3.2 Fourier Mode for the Transient Advection Equation 

The exact solution of the transient purely advection equation, CI + vCx = 0, can be 

expressed as a sinusoidal function C OJ = ê OJ (O)e;OJ(X-III). The sinusoidal solution of the 

transient advection equation with the central and upwind spatial discretizations on a 

regular grid can be written as (Vichnevetsky and Bowles, 1982) 

and 

.j IISin(aiI) ) 

C = ê (O)e'''\ Xn-a;;-I 
QI,n OJ 

(1.3a) 

9 



v .j vsin(aiI) ) 
A -[I-cos(aiI)~ ''1. X.---/ 

C OJ,n = C OJ (O)eh e ail (1.3b) 

where (J) is the spatial wave number, and êOJ(O) is the Fourier transform of the initial 

condition of the dependent variable C. From sinusoidal solutions in (1.3), it is shown 

that the central finite difference scheme is conservative for the transient advection 

equation, i.e. the algorithmic amplitudes of the wave components in the solution remain 

constant. Therefore the central scheme is stable and consequently convergent based on 

the Lax Equivalence theorem, that the stability is necessary and sufficient to the 

convergence of a finite difference system of a well-posed linear Initial Boundary Value 

Problem (IBVP) or Initial Value Problem (NP) if it is consistent with it. However, the 

phase velocities of high frequency wave components present in the sinusoidal solution of 

the central scheme are different from the characteristic speed v of the goveming 

equation, and such a deviation in the traveling speeds will lead to an oscillatory wave 

train trailing or leading the "front" of the true solution. Although the upwind scheme has 

the same phase velocity distribution as the central difference scheme, the added artificial 

diffusion term resulting from the damping factor contained in the sinusoidal solution will 

smooth out the solution. 

1.4 Development of Stabilized Numerical Methods 

It is implied from (1.1) that the wiggles (or oscillations) ln ê c can be avoided 

theoretically by adopting a mesh refinement such that Pe:5; 1. However, such a process 

can be costly in terms of the storage and the computation time associated with this type of 

mesh refinement, especially when the Péclet number is initially large. It is also 

impossible to implement a mesh refinement for the purely advection equation in which 

D = O. From this point of view, an improvement in the numerical scheme being used 

should be considered instead. Development of an accurate computational model of the 

transport equation in the presence of a strong advective term, especially when the 

solution contains discontinuities or steep gradients, has been a challenge in computational 

fluid dynamics. Courant et al. (1952) introduced the upwind technique in the Finite 
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Difference Method (FDM) according to the characteristic direction determined by the 

coefficient of the advective term in the equation. Since then, many stabilized FDMs have 

been developed for the advection- (or convection) dominated problem, inc1uding the 

High-Order Upwind Scheme (Fromm, 1968), the Flux-Corrected Transport scheme 

(Boris and Book, 1973; Book et al., 1975, 1981), the Quadratic Upstream Interpolation 

method (QUICK) (Leonard,1979; Steffler, 1989) and the Total Variation Diminishing 

scheme (Harten, 1983). As the upwind scheme, the basic concept of these high-order 

stabilized FDMs is to add an artificial numerical diffusion to the high-order scheme for 

the advective term by me ans of either a flux limiter, a slope limiter or a total variation 

diminishing property, etc. (Le Veque, 1992; Morton, 1996), while maintaining the amount 

of such additional numerical diffusion "corrected". Therefore, these stabilized 

computational schemes can be considered as combinations of high-order and first-order 

schemes; the weighting of the first-order scheme should be increased in the vicinity of the 

discontinuities or high gradients of the dependent variable while their weighting should 

be reduced elsewhere. This method is referred to as an "optimaf' or "smart" upwind 

scheme (Figure 1.2). Purely finite difference approaches for the solution of the advection 

equation are relatively well established (Ganzha and Vorozhtsov, 1998). Although the 

smart upwind schemes provide much more stable solutions than conventional numerical 

scheme, particularly in treating the advective transport of discontinuous fronts, they are 

less well adapted to the treatment of three-dimensional problems with complex 

geometrical features. From this point of view, finite element methods have the 
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Figure 1.2 The demonstration of numerical simulations of the advection of a 
discontinuity obtained from (a) central scheme, (b) upwind scheme 
and (c) optimal upwind scheme 
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convenience and flexibility in discretizing the physical domain of the problem with an 

unstructured mesh, and therefore they have been widely applied for the solution of 

engineering problems. 

1.4.1 Classification 

Finite element modelling of the advection equation has been the subject of extensive 

research over the past four decades and there is no universal agreement on the most 

judicious choice of a computational scheme that will yield reliable results for aIl 

situations. Among the Finite Element Methods (FEMs) for the advection-diffusion 

equation, there are two basic strategies to deal with the temporal and spatial terms of the 

governing equation. The first methodology is referred to as the Jully dis crete 

approximation, in which the governing PDE is discretized in the space-time domain 

Vx[O,t*] (where t* is the time duration). The Space-Time Galerkin (ST-G) method is 

one such example (Varoglu and Liam Finn, 1982; Nguyen and Reynen, 1984; Ofiate and 

Manzan, 1999). In the ST -G method, the integral form of the problem is discretized in the 

space-time slab V n = V e 
X r (where V e is a elemental partition of V and r = [tn ,tn

+
l

] 

is a time interval) by using the discontinuous Galerkin method, which weakly enforces 

the continuity of the unknown variable at the time interval r. The second methodology 

can be termed a semi-discrete approximation, in which the transient PDE is discretized 

spatiaIly, first by a numerical method (e.g. the FDM, FEM, or Boundary Element Method 

(BEM)), and then transformed into a corresponding Ordinary DifferentiaI Equation 

(ODE), which is solved later using a time-integration scheme (e.g. Crank-Nicholson, 

Runge-Kutta methods etc.) (Zienkiewicz and Taylor, 2000). Fully discrete methods 

usually increase the dimension of the problem by one and hence introduce greater 

complexity to the computational procedure, especially for three-dimensional problems. 

From this point ofview, the semi-discrete methods are more convenient and effective. 

Numerical techniques used with the semi-discrete methods for solving the advection

diffusion equation can be classified into three types: Eulerian, Lagrangian and Eulerian

Lagrangian methods (Quarteroni and Valli, 1997). In Eulerian methods, the 
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discretization in space is performed over a fixed spatial grid system, whereas in 

Lagrangian methods, such as the Method of Characteristics (MOC) (Garder et al., 1964; 

Douglas and Russell, 1982), the spatial discretization is performed either in a deforming 

grid or in the deforming coordinate in a fixed grid system. The MOC method can provide 

an efficient and accurate solution to the advective transport problem once the trajectory 

of the particle is determined, based on the theory of characteristics, which specifies that 

the material derivative of the unknown function along the characteristic curve is equal to 

zero. When the MOC techique is combined with the finite element method for the spatial 

discretization of the advective term, the consequent scheme is referred to as the 

Characteristic Galerkin method. However, the use of a moving grid in the Lagrangian 

method introduces further difficulties, such as mesh tangling, especially for 

inhomogeneous media with multiple sinks or sources and complex boundary conditions. 

From this viewpoint, the Eulerian method offers the advantage and convenience of a 

fixed grid or coordinate system. 

UsuaIly, most Eulerian methods work weIl with diffusion-dominated problems, but for 

advection-dominated transport problems, they either suffer from excessive numerical 

dispersion or give rise to non-physical oscillations as discussed in the previous section. 

The mixed Eulerian-Lagrangian methods (Neuman, 1981; 1984) attempt to combine the 

advantages of these two methodologies, in which the Operator Splitting techniques 

(Douglas and Rachfold, 1956; Yanenko, 1971; Marchuk, 1975; 1995; Khan and Liu, 

1998a, b) are applied to the goveming equation; the advective term is then solved using 

the Lagrangian approach, and the diffusive term, as weIl as the others, are solved using an 

Eulerian approach. Again, the accurate determination of the trajectory or the 

characteristic curve is a major challenge in the finite element modelling with elements of 

arbitrary shape. It should be noted that the contribution of the expansion of the unknown 

variable along the characteristic curve is equivalent to the addition of an artificial 

diffusion term to the goveming equation, which leads to the same expression derived 

from the Taylor-Galerkin method (Zienkiewicz et al., 1985). A classification of the 

stabilized methods for the advection-diffusion equation is shown in Figure 1.3, and a 

brief summary table of selected stabilized methods is given in the Appendix. In the 

Eulerian finite element method, the conventional Galerkin discretization for the advective 
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tenn in the goveming advection-diffusion equation is equivalent to the central difference 

scheme; therefore, the conventional Galerkin method will introduce oscillations into the 

solution for the advective transport of a steep front. It can be noted from the discussions 

in the previous section that the Galerkin scheme for the advection equation can be 

stabilized by introducing the upwind scheme for the advective tenn in the goveming 

equation. Based on this concept, there have been many so-called Stabilized Eulerian 

Finite Element Methods developed to date (Onate, 1998; Codina, 1998). 

In the late of 1970s, the upwind scheme was introduced into the finite element methods 

by using an asymmetric weighting function (Christie et al., 1976; Heinrich et al., 1977; 

Hughes, 1978; Griffiths and Mithchell, 1979; Heinrich and Zienkiewicz, 1979; Heinrich, 

1980). In order to distinguish them from the conventional Galerkin method, such upwind 

finite element methods are referred to as a Petrov Galerkin scheme, in which the 

weighting function is different from the interpolating function. In this asymmetric 

weighting function, a perturbation in the fonn of the gradient of the weighting function is 

Numerical Methods for 
Advection-Diffusion Equation 

1 
1 1 

Semi-Discrete Fully Discrete 
Approximation Approximation 

1 1 

1 Eulerian 1 1 Lagrangian 1 Eulerian-

~ 
Lagrangian 

1 
Stabilized Finite Method of Operator 
Element Methods Characteristic Splitting 

(MOC) 

1 1 
1 Least Squares 1 Streamline Upwind 1 Taylor-Galerkin 1 

Petrov-Galerkin 

Figure 1.3 Stabilized methods for the advection-diffusion equation 
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introduced into the traditional Galerkin weighting function to take the upwind effect. The 

addition of such a perturbation is equivalent to the addition of an artificial diffusion to the 

advection-diffusion equation in the steady state condition. For multi-dimensional 

problems, the perturbation should also be added along the flow direction to avoid the 

crosswind diffusion (Hughes and Brooks, 1979; 1982). Using such a concept, Hughes 

and Brooks (1982) proposed a so-called Streamline Upwind Petrov Galerkin (SUPG) 

method, which is considered a milestone in the development of stabilized finite element 

methods for the advection equation. The importance of the SUPG scheme rests on the 

fact that the common form of the perturbation is given, which can be expressed as the 

scalar term 1" v . V w, where v is the characteristic velo city vector, w is the weighting 

function, V is the gradient and 1" is the upwind parameter. The upwind parameter 1" is 

also called the intrinsic time of the stabilized methods (Ofiate et al., 1997) since it has a 

unit of time, and the different forms of 1" can lead to different stabilized methods 

(Codina, 1998). 

The perturbation added in the asymmetric weighting function will not only introduce an 

"artificial diffusion" term but also an "artificial convection" term in the discrete 

difference form of the advection equation, and both terms will influence the numerical 

behaviour of the corresponding stabilized finite element schemes. The perturbation 

parameter, 1", can be chosen such that the artificial convection term has the adjoint form 

of the convection (or advection) term of the equation and, consequently, the numerical 

scheme becomes symmetric (Wendland and Schmid, 2000), such as in the Least Squares 

method (Carey and Jiang, 1987a, b; 1988; Jiang, 1998). Here, the residual integral form 

of the equation is created by applying a variation on the integral square residual 

functional of the advection-diffusion equation, and 1" is related to the time step !1t and 

flow velocity v. On the other hand, 1" can be chosen based on a Fourier analysis to 

ensure that numerical modelling can give an "optimal" solution of the transient 

advection-diffusion equation (Raymond and Garder, 1976; Kelly et al., 1980), such as in 

the SUPG method (Hughes and Brooks, 1982; Hughes and Mallet, 1986a) in which 1" is 

related to the characteristic length of the element. The perturbation parameter can also 

take different values to generate different stabilized methods, such as the Talylor

Galerkin method corresponding to the Lax -W endroff finite difference scheme (Lax and 
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Wendroff, 1960), in which the Taylor series expansion in time of the unknown variables 

is substituted into the original PDE to obtain the second-order or the third-order 

correction in time (Donea, 1984; Donea et al., 1984; 1987), where T is defined with 

different formations for the temporal and spatial terms of the equation. 

1.4.2 Theoretical Basis ofStabilized Methods 

Using stabilized finite element methods for advection-dominated problems has existed 

for almost 30 years. The theoretical basis of stabilized methods was not investigated until 

the concepts of the Bubble function and the variational multiscale model were introduced 

in 1990s (Brezzi et al., 1992; Hughes, 1995). The mathematical basis relies on the 

physical explanation ofthe Péclet number. The Péclet number, which is interpreted as the 

Reynolds number for the fluid dynamics problem, can be considered as the ratio of the 

advective flux and the diffusive flux in a computational element. Originally, it reflects the 

relationship between the domain length and the mass diffusion length, L D = ~ Dt r , 

where t r = LI v is the residence time in the domain. Therefore, using the following 

derivations, it can be seen that the Péclet number reflects the ratio of the system length 

and the mass diffusion length (Figure l.4(a)) 

Pe _ 1 (_L )2 _ L
2 

_ L
2 = vL 

2 LD 2Dtr 2DL/v 2D 

c 

x x+h 

(a) 

• 
--.~ C 
-+ 

:::::::115 

(b) 

Figure 1.4 The demonstration of (a) the mass diffusion length and (b) the 
boundary layer of the mass transport problem 
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Here, similarly to the boundary layer theory in fluid dynamics, there is also a boundary 

layer near the boundary plane encountered in a boundary value problem (Figure 1.4(b)). 

Therefore, if LD »L (i.e. Pe« 1), the diffusion process is dominant over the element, 

and consequently the variation in the dependent variable C is smoothly varying from the 

upstream boundary to the downstream boundary of the element, without sudden change 

in amplitude (e.g. high gradient). If LD « L (i.e. Pe» 1), and condition on the 

upstream and downstream boundaries change rapidly, the dependent variable C will vary 

drastically in the element. It should be noted that even with Pe» 1, but if the boundary 

conditions change gradually, then the dependent variable C will vary smoothly over the 

element as in the first case. Since the diffusion length LD is related to the residence time 

t" which is inversely proportional to the flow velocity v, then the greater the flow 

velocity, the thinner will be the diffusion boundary layer. For the advection-dominated 

transport problem with a high gradient in the dependent variable, the magnitude of the 

flow velo city is much higher with respect to the diffusivity coefficient and the diffusion 

length will be reduced within the domain. Therefore, in order to make the dependent 

variable vary "smoothly" within an element, the element length should be kept smaller 

than the diffusion length in the locations of high gradients or discontinuities of the 

dependent variable. For this case, more discretization elements would be necessary to 

ensure that there is at least one element within the boundary layer where the diffusive 

process will dominate (i.e. the mesh should be refined in the vicinity of the steep front of 

the solution). 

The need for the mesh refinement at the steep front of the solution can be illustrated by 

the Fourier analysis in the frequency domain. It should be noted from the above 

discussions that if the dependent variable varies drastically over the element, where the 

elemental length is much longer than the diffusion length (i.e. Pe» 1), the overall 

behaviour of the unknown variable over the element can be considered discontinuous 

from the viewpoint of the discretization. This discontinuity is equivalent to the step wave 

(in the continuity sense). In the frequency domain, the step wave is composed of wave 

components of different frequencies and should include high frequency wave components 

(see Figure 1.5). In the conventional finite element space, a polynomial is used to 
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construct the shape function and to interpolate the unknown variable over the 

computational domain. Such polynomial space can interpret low frequency wave 

components involved in the solution, which can be referred to as the large scales of the 

solution. The polynomial space is, however, inadequate for the high frequency wave 

components involved in a solution containing a discontinuity, which can be considered as 

the fine sca/es of the solution. Therefore, the polynomial finite element space with a 

coarse mesh cannot interpolate the fine sc ales (or high frequency wave components) 

included in the solution, and the mesh should be further refined to take into consideration 

the fine scale effects. As mentioned previously, such mesh refinement cannot guarantee 

that the polynomial finite element space will approach the solution space for the 

advection of a discontinuity (without diffusion), and recourse must be made for the 

advective transport of a discontinuity by the improvement of the finite element space. 
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Figure 1.5 A step wave and its Fourier series expansion with (a) 10 terms and 
(b) 50 terms 
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Since the normal low-order polynomial space cannot interpolate the discontinuities 

contained in the solution, the standard finite element space should be augmented by a 

high-order function space. The space of bubble functions is one choice that takes into 

consideration such fine scale effects included in the solution. The bubble functions are 

typically high-order polynomial functions which vanish on the elemental boundaries 

(Hughes, 1995), and they can be especially constructed via the solution of an element

level homogeneous Dirichlet boundary value problem (Franc a and Macedo, 1998; Franca 

et al., 1998; Franca and Hwang, 2002), in which case they are referred to as the residual-
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free bubbles (Brezzi et al., 1992; Brezzi and Russo, 1994; Franca and Farhat, 1995; 

Brezzi et al., 1997; 1998a, b). Another approach is to consider the effect of the 

unresolvable fine scales of the solution (or subgrid scales) on its resolvable coarse scales 

in the normal polynomial space by means of the elemental Green's function. This is the 

basic concept underlying the variational multiscale model (Hughes, 1995). Brezzi et al. 

(1997) showed the equivalence of the residual-free bubbles approach and the variational 

multiscale model for the advection-dominated transport problem. Both approaches add a 

stabilization term to the weighted residual integral form of the advection-diffusion 

equation (Codina, 1998). A detailed discussion about residual-free bubbles, the 

variational multiscale model and stabilized methods will be given in Chapter 2 and their 

inter-relationships are shown in Figure 1.6. 

BVP including aU 
scales 

Galerkin 
FEM 

Conventional 
numerical method 

Variational multiscale method 
(Eliminating fine sc ales ) 

Stabilized 
method 

Residual-free bubbles 
(Incorporatmg effects of 
fine scales on coarse scales) 

BVP for coarse 
sc ales 

Galerkin 
FEM 

Stabilized 
numerical method 

Figure 1.6 The relationship between residual-free bubbles, variational 
multiscale model and stabilized methods for the advection
diffusion equation (Following Brezzi et al., 1997) 

1.5 Fourier Analysis of Stabilized Methods 

Two mathematical analyses can be performed to evaluate and assess the numerical 

schemes developed for the solution of the advection-diffusion equation. Error analysis 

can provide insight into the error bounds of numerical schemes caused by the numerical 
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truncation, and many stabilized methods can be derived from such error analysis 

(LeVeque, 1992; Morton, 1996; Wang and Hutter, 2001 and the references therein). 

Fourier analysis, on the other hand, can provide insight into the numerical properties of 

numerical schemes in the frequency domain, based on the fact that a step wave is 

composed of wave components of different frequencies and their amplitudes and phase 

velocities can be altered by the numerical scheme. If the numerical modelling is required 

to generate an accurate solution for the advective transport of a step wave, aIl the wave 

components involved in modelling such a step wave, should travel at the same speed 

without shape distortion. Because of this fact, Fourier analysis becomes one of the 

powerful methodologies for the investigation of the numerical behaviour of the 

computational methods for the advection-diffusion equation (Morton, 1980; Pereira and 

Pereira, 2001). Raymond and Garder (1976) conducted a Fourier analysis on the spatial 

discretization of the Petrov-Galerkin method for the advection equation to determine the 

optimum value of the upwind function of the scheme. Yu and Heinrich (1986) 

investigated the stability of the space-time Petrov-Galerkin method by means of the 

amplitude ratio (see also Richtmeyer and Morton, 1967). Sharkib and Hughes (1991) 

presented the Fourier stability and accuracy analysis of the space-time Galerkinlleast

squares method applied to the time-dependent advection-diffusion transport problem. 

Tezduyar and Ganjoo (1986) used the algorithmic damping ratio (ADR) and algorithmic 

frequency ratio (AFR) procedures to develop and test the weighting functions, which 

were used in an improved Petrov-Galerkin method. Codina (1993a) used ADR and AFR 

to examine the stability of the forward Euler scheme in the SUPG method for the 

convection-diffusion equation. Cardle (1995) used a similar idea to determine the 

temporal weighting function that differs from the spatial weighting function in the 

Petrov-Galerkin method. AlI these investigations suggest that a Fourier analysis can be 

used to gain insight into the numerical behaviour of the stabilized numerical methods for 

the advection-dominated transport problem. 

Most Fourier analyses in the literature have focused on the spatial discretization of the 

advection-diffusion equation. However, the temporal discretization of the goveming 

equation also has an influence on the numerical behaviour of the schemes. For example, 

as shown in the section 1.3, the upwind method satisfies the von-Neumann stabilization 
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condition for the steady advection equation (i.e. the amplitude of the sinusoidal solution 

is no greater than unit y). For the transient advection equation, however, with the 

application of an explicit Euler time integration scheme, such stability is conditional and 

the Courant-Friedrichs-Lewy (CFL) condition should be satisfied (i.e. the Courant 

number Cr = uM ~ 1). The CFL condition represents a strong physical meaning in 
h 

relation to the characteristics theory, wherein the dependence do main of the numerical 

scheme should include the domain of the associated governing partial differential 

equation (Figure 1.7). Otherwise, certain initial conditions determining the solution of the 

equation will not be included in the numerical model, leading to a diverging numerical 

solution of the equation. 

x-h x x+h 

t+dt ----+-----------~~----------~----

t 

the domain of the PDE the dependence do main of 
the numerical scheme 

Figure 1.7 The dependence domain of the numerical scheme and the domain of 
the equation 

Thus, the numerical performance of the computational method for the transport problem 

depends not only on spatial discretization but also on the time integration scheme of the 

goveming equation. It should be noted that, besides the temporal and spatial 

discretizations, the overall behaviour of the stabilized numerical method for the 

advection-dominated transport problem is also influenced by the forms of the artificial 

diffusion and the artificial convection terms introduced by the stabilized scheme. 

Therefore, in order to assess the overall numerical performance of the stabilized 

numerical methods for the advection-dominated transport problem, all these factors 

should be included in the Fourier analysis. Based on the results of such a Fourier 
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analysis, the conditions under which the stabilized numerical scheme can give an optimal 

solution for the advective transport problem, can be ascertained. Such Fourier analysis 

can also be used to develop a new numerical scheme that can give an accurate solution 

for the advection-dominated transport problem in porous media. 

1.6 Rationale of Experimental Modelling 

A mathematical model of a contaminant transport problem usually consists of three 

components: the model definition, the model parameters and the model approximation. 

The model definition describes basic processes involved in the transport problem, usually 

in terms of the mathematical equation as weIl as constraints such as initial and boundary 

conditions. The model parameters inc1ude the physical parameters goveming the 

transport process, such as hydraulic conductivity, diffusivity and reaction rate or even the 

mechanical properties of the porous medium. The model approximation refers to the 

solution of the mathematical model for the prediction of the contaminant transport 

process with transport parameters and conditions. Two approaches, the analytical and the 

numerical, can be used for the model approximation, but generally only the numerical 

method can be used to solve complex coupling transport models. The quality of the 

mathematical mode1 of the transport problem depends on the errors introduced by its 

three components. The error may already be embedded in the transport model when the 

model is created. This model definition error may result from the assumptions made by 

the modeller (e.g. small deformation of porous skeleton, local equilibrium of chemical 

reaction etc.), or from a lack of knowledge of the transport problem (e.g. constitutive 

stress-strain re1ationship of unsaturated soil, thermal and/or chemical induced alterations 

of the hydraulic and mechanical properties of the porous medium, and chemical reaction 

kinetics etc.). Such definition errors can be reduced by obtaining more knowledge about 

the contaminant and the porous medium. 

The quality of the mathematical mode1 cannot be improved if the model parameters are 

not weIl defined. Ill-defined model parameters result in errors in the mathematical model, 

and therefore the identification of the model parameters is an important aspect of any 

mathematical modelling process. The prediction process of unknown system states (e.g. 
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contaminant concentration) of the transport problem is referred to as the forward 

problem, while the determination of the transport parameters is referred to as the inverse 

problem, in which the parameters are taken as dependent variables and determined by 

fitting the observed system states (from laboratory experiments or field measurements). 

Besides the model definition and the model parameters, the model approximation may 

also introduce errors into the mathematical modelling of the contaminant transport 

problem in porous media, particularly for the advection-dominated transport problem due 

to the numerical difficulties discussed previously. The model approximation error may 

influence not only the accuracy of the model but also the identification of the transport 

parameters. Therefore, it is important to develop an accurate stabilized numerical scheme 

for the advection-dominated transport problem and validate it with experimental 

modelling, which should inc1ude the dominant transport characteristics associated with 

the numerical modelling. The results of the experimental modelling can also be used for 

the inverse problem of the mathematical modelling of the transport problem, to identify 

certain physical parameters that can be considered for the calibration procedures of the 

mathematical model. In this respect, this thesis will also study the experimental 

modelling of the advection-dominated transport processes in the porous medium. 

1.7. Objectives and Scopes of the Research 

The objective of this thesis is to develop accurate computational modelling of advection

dominated transport problems related to fluid saturated porous media. Such development 

is based on the assessment of the stabilized semi-discrete Eulerian FEMs proposed for the 

advection-dominated transport problem by means of a Fourier analysis. The result from 

the Fourier analysis can be used to derive the criterion for the optimal performance of the 

stabilized FEMs for the advection equation. Based on this criterion, not only a time

adaptive scheme can be developed for the accurate solution of one-dimensional 

advection-dominated transport problem, but also a mesh-refining adaptive scheme can be 

developed for optimal solution of multi-dimensional advective transport problems. As a 

complementary aspect of the mathematical modelling, an inverse analysis of transport 

problem is conducted in the study of an experimental modelling, which is set up for the 
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validation of the proposed time-adaptive scheme. In this experimental modelling, a 

colour visualization-based image processing method will be developed to determine the 

transport process of a chemical solution on the cylindrical surface of a porous column in 

a non-invasive and quantitative way. Finally, the thesis will present a study on the time

adaptive mathematical modelling of the advection-dominated transport problem coupled 

with the Hydro-Mechanical-Chemical (HMC) processes involved in the porous medium. 

The thesis research work addresses the following aspects: 

(i) Assessment of the stabilized semi-discrete Eulerian finite element methods, and 

derivation of the conditions for these methods to have optimum numerical 

performances for the advection equation, using a Fourier analysis conducted on 

both temporal and spatial discretizations of the goveming transport equation. 

(ii) Development of a time-adaptive scheme on the basis of Courant number criterion 

derived from the Fourier analysis, which can generate an oscillation-free and non

diffusive numerical solution for the advection-dominated transport problem with 

time- and space-dependent flow velocity. 

(iii) Development of a colour visualization-based image processing method, which can 

used in the experimental modelling to determinate the advection-dominated 

transport processes of a chemical dye solution in an idealized porous column in a 

quantitative, economical and non-invasive way. 

(iv) Identification of the hydrodynamic dispersion coefficient of the transport process 

in the porous column, which can be used in the validation procedure of the 

proposed time-adaptive scheme with the experimental results. 

(v) Development of a mesh-adaptive scheme for modelling the linear and nonlinear 

three-dimensional axisymmetric advective transport in the porous medium, with 

time- and space-dependent flow fields due to the pore fluid pressure transients 

described by the piezo-conduction equation. 

(vi) Development of a computational model for the advection-dominated contaminant 

transport problem coupled with Hydro-Mechanical-Chemical processes in the 

porous medium. 
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CHAPTER2 

COMPUTATIONAL MODELLING OF THE ADVECTIVE
DISPERSIVE TRANSPORT 

In the first chapter, it was shown that although the contaminant transport in porous media 

can be described by the c1assical advection-diffusion equation, it is a complex nonlinear 

coupling process involving mechanics, hydraulics, heat transfer and geochemical 

reactions. For such coupled transport processes, it is necessary to use numerical 

modelling for the prediction of the migration of the contaminant in porous media. 

However, as mentioned in the previous chapter, the numerical model encounters major 

difficulties in simulating the first-order spatial derivative (or the advective term) in the 

c1assical linear advection-diffusion equation; the conventional numerical schemes 

introduce either non-physical oscillations or artificial diffusion into the solution, 

influencing the reliability and accuracy of the computational modelling. In order to 

overcome these numerical difficulties, many so-called stabilized computational schemes 

have been developed for the solution of the advection equation. The investigation of the 

numerical behaviour of stabilized schemes and the development of a higher-order 

accurate scheme for the advection-dominated transport problem is a necessary and 

important step in developing the complete coupling modelling of the nonlinear 

contaminant transport in porous media. In this chapter, the fundamental basis and 

structure of the stabilized finite element methods for the advection equation will be 

reviewed. Firstly, however, the basic Partial DifferentiaI Equation (PDE) goveming the 

processes involved in a single component, the isothermal transport process of the 

contaminant in fully saturated homogenous porous media with small volume changes, 

which is the main objective throughout the thesis, will be described. A detailed derivation 

of the goveming equations of the transport processes coupled with the elastic deformation 

of the porous medium will be given in Chapter 7. 
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2.1 Governing Equations 

The basic equation goveming the advective-dispersive transport of the contaminant 

through a non-deformable porous medium can be derived from the consideration of mass 

balance (Philips, 1991; Charbeneau, 2000; Selvadurai, 2000a,b). For the advective

dispersive transport of a contaminant through a control volume V , the conservation law 

requires the fluxes through the control volume to be equal to the accumulation of the 

contaminant in the void space of the control volume, i.e. 

J * ac J ac LFluxes= n -dV+ Pb-sdV 
v at v at (2.1) 

where C(x,t) is the concentration of dissolved contaminant per unit volume of the fluid 

contained in the pore space of the porous region V; Cs (x,t) is the sorbed mass of 

contaminant per dry unit weight of solid skeleton (mg/kg) due to chemical reactions; x is 

a position vector; t is time; Pb is the bulk density of the solid phase (kg/L); n * is the 

porosity of the porous medium, which is defined as the ratio of the volume of the voids 

Vv to that of the total volume of V . For a homogeneous non-deforming medium, the 

porosity can be assumed to be a constant. The first integral term in the Right Hand Side 

(RHS) of (2.1) represents the change rate of the contaminant in the void space of the 

control volume, the second integral term in the RHS of (2.1) represents the production or 

loss of the chemical species due to the sorption, chemical reaction, biological 

transformation and radioactive decay, which can act as a source-sink term. For the 

advective-dispersive transport process, the fluxes in (2.1) should include advective and 

dispersive fluxes through the surface S of the control volume V , i.e. 

LFluxes =-f(vn*C-n*DVC).ndS (2.2) 
s 

where v is the flow velocity vector, D is the coefficient of hydrodynamic dispersion, 

which should include the molecular diffusion and the mechanical dispersion in the porous 

space, and n is the normal direction outward to the surface S . Using the Green's 

theorem and the Dubois-Reymond Lemma (see Selvadurai, 2002a), the advection

dispersion equation can be derived from (2.1) and (2.2) as 
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ac Pb acs n n n -+-. -+ V ·(vC)- V .(DvC)=O at n at (2.3) 

The essential (Dirichlet), natural (Neumann) boundary conditions and the initial 

conditions for the transport problem through the control volume V are described as 

C(x,t) = C(x,t) xeSD,te [O,t·] (2.4a) 

nT vC - nT DV C = qn xeSN,te [O,!"] (2.4b) 

C(x,O) = Co (x) XEV (2.4c) 

Cs (x,O) = Cso(x) xeV (2.4d) 

where t" is the total time duration and the control volume V is bounded by the surface 

S = Sn U SN with Sn (') SN = O. In general, for the groundwater movement in the 

porous medium, the flow velocities are determined by excess pore pressure p(x,t) based 

on Darcy's law, i.e. 

v' k 
v=-. =--.-Vp (2.5) 

n n Yw 

where k is the hydraulic conductivity of the porous medium and rw is the unity weight of 

pore water. With compressible fluids and deformable porous media, the dissipation of 

excess pore pressure is influenced by the compressibilities of pore fluids and porous 

skeleton and therefore should be determined by either poroelasticity or poroplasticity 

(Biot, 1941; 1956; Selvadurai, 1996; Lewis and Schrefler, 1998). For the theory of 

poroelasticity (Biot, 1941; 1956), a set of partial differential equations describing the 

coupled elastic behaviour of saturated porous media and the dissipation of the excess 

pore pressure can be written as follows: 

GV 2u + ~ V(V . u) - aVp = 0 
1-2v 

k 2 a n· ap -v p=-(V·u)+-rw at Kj at 

(2.6) 

(2.7) 

where u = {u x' U y , u z } T is the deformation vector of the soil skeleton; G( = E /2(1 + v» is 

the shear modulus; E and v are, respectively, the elastic modulus and the Poisson ratio; 
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K f is the bulk modulus of pore water; and a is the poroelastic parameter introduced by 

Biot and Willis (1957) to reflect the compressibility of pore fluid. For small volume 

changes of the porous medium, a suitable simplification for determining the dissipation 

of the excess pore pressure can be considered using the piezo-conduction or elastic drive 

equation (see e.g. Barenblatt et at., 1990; Selvadurai, 2000a, b; 2002a), which takes the 

following form for an isotropic porous medium with isotropic hydraulic conductivity 

characteristics 

(2.8) 

where 1(f is the compressibility of the pore fluid and 1(s is the compressibility of the 

porous fabric. Furthermore, when the fluid is incompressible (i.e. V· v = 0), the 

distribution of the excess pore pressure is govemed by Laplace's equation, i.e. 

k 
V·(-Vp)=O 

rw 
(2.9) 

The mechanism of the geochemical reactions between the species can be described by the 

kinetic rate laws via a set of ordinary differential equations for each species (Lichtner et 

al., 1996). For a single component geochemical system, this kinetic model for the 

reaction can be written as a general ordinary differential equation 

(2.10) 

where Âj (i = 1,2,3) are reaction constants. If the local equilibrium condition is achieved 

very quickly in comparison with the variation of the concentration, then the mass transfer 

between the dissolved phase C and solid phase Cs of the contaminant during the 

chemical reaction can be described by the algebraic equations. For this case, À, ~ 00, 

and the isotherm, which is the graphical relationship determined by laboratory 

experiments of the mass sorbed per unit mass of dry solids ( Cs) and the concentration of 

the contaminant (C), can be used to determine ~ and Â:3. Two isotherms, namely the 

Langmuir and the Freundlich, are used widely (Bedient, 1999) and have the following 

forms 
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C = a'f3'C 
s l+a'C 

(2.11a) 

(2. lIb) 

where a' is an absorption constant related to the binding energy (L/mg), p' is the 

maximum amount of the solute that can be absorbed by the solid (mg/kg), N>O is the 

Freundlich exponent, K d is the Freundlich adsorption constant (Bedient, 1999). In this 

thesis, only the Langmuir isotherm sorption is used for representing the mass transfer 

between the liquid and solid phases of the contaminant in the nonlinear computations. 

The differential form (2.10) can be used for expressing the first-order irreversible 

reaction such as decay, attenuation and degradation, and in this type of reaction, Â, = 1, 

~ = 0 and ~ is the reaction rate. 

Generally, the study of the reactive transport problem in an elastically deformable and 

fully saturated porous medium should involve the advective-dispersive-reactive process 

govemed by (2.3), pore pressure dissipation determined by poroelasticity, i.e. (2.6) and 

(2.7), and geochemical reaction described by kinetic model, i.e. by (2.9). For the small 

volume change of the porous medium, which is mainly considered in the thesis, the 

dissipation of the pore pressure can be plausibly determined using the piezo-conduction 

equation (2.8). For this case, the system of PDEs (2.3), (2.5), (2.8) and (2.10) are either 

linear and weakly cou pIed (i.e. the dissipation of the excess pore pressure can be solved 

independently of the transport problem), or nonlinear and fully coupled (i.e. the 

dissipation of the excess pore pressure is influenced by the chemical reaction). These 

PDEs can be classified as hyperbolic-parabolic for C(x,t) (e.g. (2.3)), and either 

parabolic (e.g. (2.8)) or elliptic (e.g. (2.9)) for p(x,t) , depending upon the 

compressibility characteristics of the pore fluid and the porous skeleton. 

2.2 Stabilized Computational Modelling 

2.2.1 The Numerical Modelling 

The basic concept underlying the numerical modelling of an Initial Boundary Value 
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Problem (IBVP), described by a set of Partial DifferentiaI Equations (PDE) and 

constraints (initial and boundary conditions etc.) applicable to a physical domain (finite 

or infinite), is that the domain is discretized by a set of the nodes, and the unknown field 

variables describing the physical phenomena are expressed by means of the interpolation 

function of their nodal values. Therefore, the infinite dimensional space of the solution of 

PDEs is approximated by a finite dimensional space containing computational nodal 

values. The objective of the numerical modelling is to seek the approximate nodal values 

of unknown variables by discretizing goveming PDEs at the computational nodes. The 

nodal values of the unknown variable are determined by discrete difference equations 

which can be generally obtained from the weighted residual integral fonn of goveming 

PDEs. 

With the following definition of the advection-dispersion operator 

ac 
Lt(C) = - + V . (vC) - V . (DVC) al (2.12) 

and the denotation of f = - p! acs 
, the advection-dispersion equation (2.3) can be 

n at 
written in the following abbreviated fonn 

(2.13) 

The general weighted residual integral fonn for the goveming equation (2.13) with the 

initial and boundary conditions defined in (2.4) can be written as 

Jw(Lt(C)- f)dV = 0 (2.14) 
v 

where w is a suitable weighting function. Usually the integral in (2.14) is calculated over 

a computational domain, which is decomposed into a union of subdomains. Different 

fonns of the weighting function can lead to different numerical methods that result from 

the basic integral fonn (2.14). 

In the Finite Element Method (FEM), the polynomial interpolation function is used as the 

weighting function, and therefore the finite element solution of (2.14) represents the 

orthogonal projection of the true solution of the problem into the finite element space 
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(Zienkiewicz and Taylor, 2000). When the weighting function is taken as unity, the 

integral (2.14) represents the mass balance over the element (or volume) and it leads to 

the Finite Volume Method (FVM) (Morton, 1996; Le Veque, 2002). By taking the 

weighting function as the Dirac delta function, the integral form (2.14) implies that the 

goveming PDE (2.3) is satisfied at points, and thus leads to the Collocation method 

(Quarteroni and Valli, 1997). Replacing the differential derivatives with deference 

derivatives on the regular grid in the Collocation method leads to the Finite Difference 

Method (FDM). By defining the weighting function as the Fundamental solution of (2.13) 

and applying Green's theorem, the domain integral form (2.14) can be transformed into 

the Boundary Integral Equation, which is the basis of the Boundary Element Method 

(BEM) (Brebbia et al., 1984; Brebbia and Dominguez, 1992; Partridge et al., 1992). With 

the boundary integral equation, the BEM can be used for the modelling of the advective 

dispersive transport problem in a region of infinite extent (Zienkiewicz et al., 1977; 

Okamoto,1988; Okamoto and Kawahara, 1991; Bokota and Iskierka, 1995; Young et al., 

2000; Driessen and Dohner, 2001). The primary difficulty associated with applying the 

BEM to the solution of the advection-dispersion equation is that it is usually difficult to 

obtain the fundamental solution for the transport problem. 

The domain integration is usually required in numerical modelling to obtain algebraic 

equations for the nodal values of unknown variables of the system. This domain 

integration can be easily calculated over the predefined mesh, which provides the 

connectivity of nodes, via either an analytical formulation or quadrature mIe. However, 

the mesh generation or mesh regeneration is generally a difficult task during the 

computation, especially for three-dimensional problems. Recently, a great deal of 

attention has been focused on meshfree (Liu, 2003; Atluri, 2004) or meshless particle 

approximations of the domain integration, in which the integral form in (2.14) is 

calculated over the local cell (or support domain) rather than the global mesh. Many 

methodologies have been developed based on such concepts, such as the Element Free 

Method (Belytschko et al., 1994), Moving Least Squares, Meshless Petrov-Galerkin 

(Atluri and Zhu, 1998; Lin and Atluri, 2000; Atluri et al., 2004), Smoothed 

Hydrodynamic Particle method (Liu et al., 1995), etc (see also Liu, 2003; Li and Liu, 

2004; and references therein). The main advantage of meshfree methods is that they 
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avoid the difficulties associated with the mesh generation and mesh regeneration 

especially for three-dimensional problems. However, there are difficulties in obtaining 

the exact (to machine accuracy) numerical integration of (2.11) in meshfree methods 

(Atluri et al., 1999; Liu and Yan, 1999). 

2.2.2 The Galerkin Method 

For the fini te element solution of (2.13), the computational domain needs to be 

discretized with elements of arbitrary shape (such as two-dimensional triangles, 

quadrilaterals and three-dimensional bricks, trihedral elements, etc.) and the dependent 

field variable is represented with the shape function for each element. Denoting Vh and 

Wh as the spaces of the trial solution and the weighting function, respectively, i.e. 

Vh = {ê 1 ê E Hl (V),ê(x,) = C(x,)onSD } 

Wh = {wl WE H1(V), w(x) = OonSD } 

(2.15a) 

(2.15b) 

the variational form of the finite element approximation of the advection-dispersion 

equation (2.13) can be written as follows: 

where ê is the finite element solution of (2.13); a(C, w) = (LI (C), w) is a bilinear 

mapping from V x V to R corresponding to the differential operator LI (C), defined as 

the inner product on V , i.e. 

J ac 
a(C, w) = (LI (C), w) = (-w+ V ·(vC)w- Vw·(DVC))dV 

v at (2.17) 

The equation in (2.16) is obtained by applying Green's theorem and is usually called the 

weak form of (2.13). If Vh == Wh' then the variational form (2.16) is called Galerkin 

method. Usually Vh cV is defined as the finite space of continuous polynomial 

functions with a prescribed degree, which are defined on each non-overlapping 

subdomain K E Th' and Th = {K} is a partition of the domain V . Therefore, for the 
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advection-dispersion equation (2.13) with only the Dirichlet boundary condition, the 

weak fonn of the semi-discrete Galerkin method can be written as 

Find ê E Vh such that a(ê, w) = (f, w) for \tWE Vh (2.18) 

The approximate solution ê can be expressed by the nodal values C;h (t) and the 

interpolation function N;(x), i.e. 

np 

ê(x,t) = LN;(x)Ct(t) (2.19a) 
;=1 

and 

ne ni 

N;{x)= LLN;{x~~ (2.19b) 
e=l a=l 

where np and ne are the total numbers of points and elements in the computational 

domain respectively, ni is the number ofnodes in an element, Ae
œ is the Boolean matrix, 

and N; (x) is the local shape function. Because the shape function employed by FEM is 

expressed as an elemental polynomial, the continuity of the variable on each element is 

preserved. FEMs usually generate a large sparse algebraic matrix. But since they can use 

arbitrary-shaped elements, FEMs have the flexibility to examine domains with complex 

geometry. 

2.2.3 The Stabilized Weighted Residual Integral 

As discussed in Chapter 1, the standard Galerkin method that uses the simple polynomial 

space is inadequate to model the advection-dominated transport problem, especially with 

a solution that has a sharp gradient or discontinuity in the dependent variable. Therefore, 

the space Vh should be augmented and can be decomposed into two parts: Vh = Vp œ Vb , 

where Vp is the usual polynomial space and Vb is a c10sed subspace of the Hilbert space 

H~ (V) . Any weighting function W in Wh can be split in the following unique way 

(2.20) 

and consequently, the variational problem (2.18) can be posed as follows: find 
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C = Cp + Cb E Vp œ Vb such that 

a(Cp + Cb' W p ) = (f, W p ) "i/wp E Vp (2.21a) 

(2.21b) 

If the space Vb in the variational problem (2.21) is sufficiently large, such that 

Vh = Vp œ Vb = H~ (V) , then Cp + Cb should represent the exact solution C . Here 

Cp E Vp can be regarded as the resolvable large scale part of C which is the projection 

of the exact solution on Vp ' while Cb E Vb can be regarded as the unresolvable subgrid

scale part of C (Hughes, 1995), which can be represented with bubble functions (Brezzi 

et al., 1992). 

In the stabilized finite element modelling, the computation is still performed in the 

conventional polynomial finite element space Vp ' but the effect of the bubble Cb on the 

large scale Cp should be taken into the consideration. It should be noted from (2.21a) 

that if the definition of the bubble function Cb is known, then the stabilized finite 

element solution can be obtained in Vp ' From the computational point of view, however, 

Cb is unresolvable in Vp ' but it can be determined from the weak form shown in (2.21 b), 

which leads to the following element-Ievel homogeneous Dirichlet boundary value 

problem 

(2.22) 

The Euler-Lagrange equation of the problem (2.22) is 

{
Lt(Cb ) = -(Lt(Cp ) - f) in V: 

Cb =0 onS 
(2.23) 

M M 

where V' = U V e is the element interiors and S' = Use is the element boundaries. Since 
e=l e=l 

Cb vamishes on the elemental boundaries, it is also called the residual-free bubble 

(Franca and Russo, 1997). Brezzi et al. (1997) showed the equivalence of the variational 
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multi-scale approach and the residual-free bubble approach. The solution of (2.23) for the 

subgrid-scale Ch can be expressed in terms of the elemental Green's function g, which 

satisfies 

{

L/(g) = 0 inV e 

g =0 onSe 

and 0 is the Dirac delta function. Therefore 

Cb(x,t) = - Jg(x,x')(L/(Cp )- f)(x')dx' 
v' 

If the Green's function g(x,x') is approximated by 

g(x, x') = r(x')o(x - x') 

then it is implied from (2.25) and (2.26) that 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

Substituting (2.27) into (2.2Ia) gives the stabilized variational form for (2.13) on Vp as 

follows: 

(2.28) 

or in the weighted residual integral weak form as 

ne 

a(Cp' W p) + L Jr L;(wp)[L/(Cp) - f]dV = (f, W p ) (2.29) 
e=l v' 

where L;(C)=_ac_V.(vC)-V.(DVC) is the adjoint operator of L/ defined by at 
(2.12). It can be seen from (2.28) or (2.29) that the effect of Ch on Cp has been 

projected into the space Vp by adding a stabilized term to the conventional weak form of 

(2.13). Such stabilized term is also a weighted residual of (2.13) with a weighting 

function of l' L; (w p) • For the semi-discrete Eulerian FEMs, the weighting function W p is 

independent of time, and then the temporal derivative of the weighting function w p 
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vamishes in L; (w p). If linear elements are used in the formulation, then the second-order 

derivative of the weighting function is equal to zero, i.e. V 2wp = 0 , in L;(wp ) • 

Consequently, only the first-order spatial derivative of w p ,i.e. v· V w p , is left in L; (w p) , 

leading to a general weighted residual integral form of stabilized semi-discrete Eulerian 

FEMs for the reactive transport equation (2.13) 

ne 

JWp[Lt(Cp)- !]dV + ~ J'l'v. VWp[Lt(Cp)- !]dV = 0 (2.30) 
v' e=I v' 

With the bubble functions, Hughes (1995) proved that mappmg 1"(x) in (2.30) is 

equiva1ent to the intrinsic time 1" in the SUPG method for the steady advection-diffusion 

equation. Different definitions of 1" can a1so 1ead to different stabi1ized Eulerian FEMs, 

such as Taylor-Galerkin and Least Squares methods. The formulations of these stabilized 

semi-discrete Eulerian FEMs for the advection equation will be given in Section 2.4. 

2.3 The Operator Splitting and the Method of Characteristics 

Basically, the linear advective-dispersive transport process can be split into the advective 

contribution Ca and the dispersive contribution Cd; this means that the solution of the 

advection-dispersion equation can be considered as a combination or superposition of 

two parts, i.e. C = Ca + e d • Therefore, the advection-dispersion equation can be 

separated into the advection part and the dispersion part based on Operator Splitting (OS) 

techniques (Marchuk, 1975; 1995) and they can be treated by different numerical 

schemes that favour their mathematica1 characters. The idea of an operator-sp1itting 

technique for the advective-dispersive transport can be described as follow: assuming that 

an approximation of the unknown variable of the prob1em at the time 1eve1 t = nM , i.e. 

en, is computed, the approximation of e at t = (n + l)M, i.e. Cn
+

l
, can be solved in the 

following two parts: the dispersion part govemed by 

(2.31) 
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and the advection part govemed by 

{
ac +v.VC=O 
at 

Cn = ct l 

(2.32) 

where p = V . v . Different numerical schemes can be used for these two kinds of 

problems. Mathematically, the diffusion (or dispersion) equation has a parabolic 

character and can be conveniently solved by the conventional Galerkin method. The 

advection equation has a hyperbolic character and usually gives rise to numerical 

difficulties (i.e. numerical oscillations) when the standard Galerkin method is applied. 

Theoretically, the Method of Characteristics (MÛC) (Garder et al.,1964; Douglas and 

Russell, 1982) can be used to give an exact solution for the advection equation using the 

concept of the characteristic curve (line), which can be determined by 

Dx 
v=-

Dt 

where D/Dt is the material or convected derivative defined by 

D a 
-=-+v·V 
Dt at 

(2.33) 

(2.34) 

With the material derivative (2.34), the advection-dispersion equation (2.3) is reduced to 

DC -V.(DVC)+pC=j 
Dt 

(2.35) 

It can be deduced from the mass conservation law that the mass transport by the 

advective process along the characteristic curve should be constant, i.e. 

DC ac 
-=-+v·VC=O 
Dt at (2.36) 

Substituting (2.36) into (2.35) implies that only the diffusion equation needs to be solved 

along the characteristic curve. The suppression of the advective term in the equation is an 

interesting feature from a computational point of view, since this is often the source of 

numerical difficulties. 
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In multi-dimensional problems, however, the most difficult part of the MûC is to 

determine the characteristic curve in the Eulerian coordinate system. If the trajectory of a 

partic1e, located at the spatial point xref = x at time t = trel = t n
+

1 
, is denoted by 

i(Xrel,trel;t) , then the trajectory (or the characteristic curve) will be the solution of (2.33) 

with the initial condition of i(tn+l) = x, which can be approximated by the second-order 

Taylor series expansion (Zienkiewicz and Codina, 1995) 

(2.37) 

Using a similar procedure, an approximation of the advective part of e on the 

characteristic curve can be expressed as 

(2.38) 

As will be seen in the following section, (2.38) is equivalent to the formulation derived 

from the second-order Taylor-Galerkin method, one of the stabilized semi-discrete 

Eulerian methods for the advection equation. 

2.4 Stabilized Semi-Discrete Eulerian Finite Element Methods 

Since the advective term is the main source of difficulty associated with numerical 

modelling and only linear elements will be used throughout the thesis in modelling 

exercises, for the sake of completeness, this description will focus on the homogeneous 

advection equation with the application of the Euler time-integration scheme and the 

trapezoidal role, i.e. 

cn+1 en 
__ -__ +v·Ven+8 =0 

M 
(2.39) 

where C n+8 = (1- (})Cn + (} en+l and (} E [0,1] is time weighting. 

2.4.1 The Streamline Upwind Petrov-Galerkin Method 

As mentioned in Chapter l, the smart upwind FEM can be introduced into the finite 

element method by using an asymmetric weighting function. Such asymmetric weighting 
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functions can be constructed by adding a perturbation to the standard Galerkin weighting 

function (Christie et al., 1976; Heinrich et al., 1977). Since such a perturbation should 

only be added in the vicinity of the discontinuity or the high spatial gradient of the 

dependent variable, it should be related to the gradient of the weighting function w. 

Furthermore, in order to avoid the "crosswind-diffusion" in multi-dimensional problems, 

this perturbation should also be added in the flow direction (Hughes and Brooks, 1979). 

Therefore, the additional perturbation should include the form of V· Vw. Based on these 

considerations, Hughes and Brooks (1982) developed the Streamline Upwind Petrov

Galerkin (SUPG) method for the advection equation, the weighted residual integral form 

of which can be written as 

(2.40) 

where {(ap h/21Ivll)v, Vw} is the perturbation added to the classical weighting function w, 

h is a characteristic length of an element and apis a non-dimensional upwind parameter. 

It should be noted that the formulation (2.40) follows the general stabilized weighted 

residual integral form (2.30) with a definition of 1" = a p h/21Ivll. For the steady state one

dimensional advection-diffusion equation, the SUPG scheme will be nodally exact on the 

piecewise element with the definition of a p = coth(Pe) - (Perl (Christie et al., 1976). 

For the transient situation, the scheme can give an "optimal" solution for the advection 

equation when a p = 2/ J15 , based on a Fourier analysis conducted on the spatial 

discretization of the goveming equation (Raymond and Garder, 1976). A discontinuity

capturing term can also be added to the weighting function to improve the performance of 

the SUPG scheme (Hughes and Mallet, 1986b). This discontinuity-capturing term 

involves a form of a'v ii • Vw (where a' is a parameter and VII = (v· VC)VC/IIVClI
2 

); 

therefore, it is a function of the gradient of the unknown variable which makes the 

scheme nonlinear even though the original goveming PDE is linear. For simplicity, only 

the integral form (2.40) is considered in the ensuing discussions. 
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2.4.2 The Taylor-Galerkin Method 

A further approach to developing a stabilized fonn for the advection equation is to 

substitute a Taylor series expansion in time of the unknown variable into the original 

advection equation to obtain a higher-order correction in time (Lax and Wendroff, 1960), 

and then use the Galerkin procedure to discretize the corresponding stabilized equation to 

generate a Taylor-Galerkin weighted integral fonn (Donea, 1984). For example, the 

Taylor expansion ofthe unknown variable C at the time step n + 1 can be expressed as 

(2.41) 

If only the tenns up to the second-order are considered in the above Taylor expansion and 

the pure advection equation is substituted into the expansion, a stabilized equation can be 

obtained as follows 

(2.42) 

Applying the standard Galerkin procedure to the above stabilized equation gives a weak 

fonn of the second-order Taylor-Galerkin method for the advection equation expressed as 

J - dV+ w+-v·Vw (v.Ven+fJ}iV=O en+! en ~ Il.! ] 

v Ôt v 2 
(2.43) 

Similarly, if the tenns up to the third order in the Taylor expansion (2.41) are considered 

and substituted into the advection equation, the corresponding stabilized equation can be 

expressed as 

(2.44) 

and the corresponding weak fonn of the third-order Taylor-Galerkin method for the 

advection equation can be written as 

w+-llvI12vw.v - dV+ w+-v·Vw (v.Ven+fJ}iV=O (2.45) A 
ôt2 ] e n

+
1 

en ~ Ôt ] 

v 6 Il.! v 2 

It is noted, from the RHS of (2.42), that an artificial diffusion tenn is added to the 
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original advection equation due to the Taylor series expansion. Furthermore, it can be 

seen from (2.44) that an artificial convection term also arises in the residual integral 

equation due to the consideration of more terms in the Taylor series expansion in (2.41). 

It can be also noted from the integral equations (2.43) and (2.45) that both second- and 

third-order Taylor Galerkin formulations for the advection equation follow the general 

stabilized weighted residual integral form (2.30), but with different definitions of T for 

the temporal and spatial derivative terms of the goveming equation. 

2.4.3 The Least Squares Method 

A different approach for deriving a weighted residual integral similar to (2.40) is to 

consider the variation on the least squares residual integral of the advection equation 

(Carey and Jiang, 1987a, b; 1988; Jiang, 1998) 

J(en+l) =.!. J[e
n
+

1 
- en + v. V en+8]2 dV 

2 v !lt 
(2.46) 

By assigning a stationary condition t5J = 0 with respect to en
+

1 
, and replacing the 

variation of the dependent variable t5 en
+

1 by the weighting function w, a weighted 

residual integral form of the advection equation can be written as 

[
en

+
1 en ] nw+B!ltvoVw] - +v o ven+8 dV=O 

v !lt 
(2.47) 

Compared to the classical Galerkin method, a perturbation with the form of {B!ltv 0 Vw} 

is added to the classical weighting function and the corresponding scheme can give rise to 

a symmetric matrix form for the advection equation. Like SUPG method, the formulation 

of least squares method also follows the general stabilized weighted residual integral 

form (2.30) with a definition of T = B !lt 

2.4.4 The Modified Least Squares Method 

Since the Least Squares method can generate a matrix in symmetric form for the non-
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adjoint advection equation, it presents a great advantage in examing the nonlinear 

problem, which usually contains iterative algorithm. Wendland and Schmid (2000) 

proposed a so-called 3S scheme (Symmetrical Streamline Stabilization) for the 

advection-dominated transport process, in which a parameter was introduced into the 

upwind term of the Least Squares (LS) scheme for improved performance for the 

advection-dominated transport problem. This is equivalent to using different perturbation 

parameters in the LS method for the temporal and the spatial terms of the advection 

equation, i.e. 

en+1 en 
nw+ Odtv· Vw] - dV + J[w+aOdtv. Vw]v· V en

+
9dV = 0 

v ât v 
(2.48) 

Therefore this scheme can be cataloged as the Modified Least Squares (MLS) method. In 

(2.48), a is the upwind parameter, which can be determined by Fourier analysis to 

achieve the optimum numerical performance of the MLS scheme for the advection 

equation. 

2.5 The Stabilized Equation and the Artificial Péclet Numbers 

2.5.1 The Stabilized Equation 

It should be noted that in the derivation of the classical advection-dispersion equation 

(2.3) from (2.1) and (2.2), only the first-order Taylor expansions in space for the 

advective flux and the dispersive flux are used. However, if the advective transport 

process has a significant variation over the control volume, the first-order Taylor 

expansion in space is not sufficient and the second-order expansion should be considered, 

I.e. 

AxT 

[vC](x + Ax) = [vC](x) + V[ vC]Ax + - V2 [VC]X+7JdI âx 
2 

(2.49) 

where 17 E [0,1]. The last term in (2.49) represents the residual of Taylor expansion and 

can be expressed by 

(2.50) 
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where he = (hx, hy, hz} T is referred to as the characteristic length vector of the control 

volume, which can be written as he = 2'ZV, and l' is the so-called intrinsic time scale. 

Considering (2.49) and (2.50) in (2.1) and (2.2), a stabilized form of the advection

dispersion equation (2.3) is obtained as follows (Ofiate et al., 1997; Ofiate, 1998): 

ac 
-+ V ·(vC)- V .(DVC)-1'VTV2 [VC] = f 
at 

(2.51 ) 

If both advective and dispersive fluxes vary dramatically over the control volume, 

following the same procedure as in (2.49) gives 

[vC - DVC](x + ill) = [vC - DVC](x) +.::lx TV[VC - DVC] 

+ 'ZV TV 2[VC - DVC].::lx 
(2.52) 

In addition, in the derivation of equation (2.3), the accumulation and reaction over the 

control volume are assumed to be constant. For the rapid transport flux, a more accurate 

consideration of the determination of the accumulation and reaction is to use a Taylor 

expansion in space, inc1uding a linear residual, i.e. 

ac ac ac [al + rC] = [at + rC](x) + ill TV[ at + rC]X+'7'Llx 

ac 'Tn ac 
= [ dt + rC](x) + he V [ dt + rC]X+'7'Llx (2.53) 

= [ac + rC](x) + TV TV[aC + rC](x) 
at at 

where rl' E [0,1], h: and 1" are quantities same as 11, he and l' . Considering (2.52) and 

(2.53) in (2.1) and (2.2) and keeping l' = 1" , a generalized form of the stabilized 

advection-dispersion equation can be expressed as 

r-1'vTVr=O, XEV,tE[O,to],tO >0 (2.54) 

where 

(2.55) 

The corresponding stabilized Dirichlet and Neumann boundary conditions can be 

obtained using the similar procedure and can be written as follows: 
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C(x,t)-C(x,t)=O xeSo,te [O,t'] (2.56a) 

(2.56b) 

The weighted residual form of (2.54) can be obtained by applying the Galerkin procedure 

Jw(r-rvTVr)dV + Jw(ê-C)dS 
v SD 

+ Jw(-nTvC+nTDVC+qn -rvTnr)dS=O 
(2.57) 

SN 

where w, w and w are weighting functions. Assuming w = w = 0 on S D and choosing 

w = -w in (2.57) as well as applying the integration by parts leads to the following 

results: 

(2.58) 

Equation (2.58) is identical to the weak form of the SUPG method for the advection

dispersion equation (2.3). Therefore, the standard Galerkin form for the stabilized 

equation (2.54) is equivalent to the SUPG formulation for the classical advection

dispersion equation (2.3). 

2.5.2 The Artificial Péclet Numbers 

Mathematically, the advection-dispersion equation (2.3) has either a parabolic or a 

hyperbolic dominance, depending on the Péclet number 

Pe = Ilvllh 
2D 

(2.59) 

When the Péclet number is small (in comparison to unity), the advection-dispersion 

equation (2.3) is dominantly parabolic with the result that most currently available 

numerical techniques can be used to solve the resulting PDE without difficulty. As the 

Péclet number increases (i.e. much greater than unit y), the advection-dispersion equation 

(2.3) becomes dominantly hyperbolic with the result that the conventional numerical 

schemes break down in the vicinity of either a discontinuity or a location with a high 
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gradient of the dependent variable. It can be seen from equations (2.40), (2.42), (2.45) 

and (2.47) that the Streamline Upwind Petrov-Galerkin (SUPG), the Taylor-Galerkin 

(TG), the Least Squares (LS) and Modified Least Squares (MLS) methods use 

asymmetric weighting functions to generate the stabilized form of the advection equation. 

As observed previously, for steady situations, the use of such asymmetric weighting 

functions is equivalent to the addition of an artificial diffusion term in the advection

dispersion equation as shown in (2.51) and (2.54). Since the Péclet number, by definition, 

reflects the ratio of the advective flux to the dispersive flux in the computational element, 

it Can be used to indicate the amount of artificial diffusion introduced by the stabilized 

methods to the steady state equation. Table 2.1 presents the perturbations, the 

corresponding artificial diffusion coefficients and the Péclet numbers of SUPG, TG, LS 

and MLS schemes for the steady state situation. It can be seen from this Table that PeTG , 

Pe LS and Pe MLS are influenced by the magnitude of the flow velocity; they become 

greater as Ilvll approaches zero, with the assumption of a constant time step and 

characteristic length. Consequently, the stability of the TG, LS and MLS schemes can be 

Table 2.1 Artificial diffusion coefficients and Péclet numbers 

Schemes Diffusion coefficient Péclet number 

SUPG kSUPG =.!.. a p hllvll Ilvllh 1 
Pe sUPG = - =-

2 2ksUPG a p 

TG kTG =! Mllv l1 2 Ilvllh h 1 Pe =--=--=-
2 TG 2k

LS 
Ilvll.1t Cr 

LS kLS ;;;; 8~tllvl12 Ilvllh h 1 Pe
LS 

;;;;--;;;; ---
2kLS 2811vll~t 20Cr 

kLS = a8Mllvl12 Ilvllh h 1 
MLS Pe LS =--= ;;;; 

2kLS 2811vll~t 2aOCr 
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influenced by a variation in the flow velo city within the domain, which can often be 

encountered in transport problems in geoenviromental engineering applications. On the 

other hand, PeSUPG is not influenced by the magnitude of the flow velocity, therefore 

better computational performance is associated with the SUPG scheme for advective 

transport problems with space-dependent flow velocity. 

2.6 Discussion 

In this chapter, the basic concept and general weighted residual integral form of the 

stabilized finite element method for the advection equation are reviewed and presented 

with the residual-free bubble functions and variational multi-scale approach. Four 

representations of the stabilized semi-discrete Eulerian fini te element method for the 

advection equation, SUPG, TG, LS and MLS schemes, are also briefly described. Using 

the concept of the stabilized equation, the stabilities of these four semi-discrete stabilized 

finite element methods for the advection-dominated equation are assessed through the 

artificial Péclet numbers. However, such assessments are based on the assumption that 

the temporal derivative in the goveming equation is computed accurately, or that the 

transport process is steady state. In the numerical formulation of the transient advection

dispersion equation by the semi-discrete method, the temporal derivative is usually 

discretized by the time integration scheme and therefore the temporal truncation has an 

influence on the corresponding numerical schemes for the advection-dispersion equation. 

The influence of the discretization of both temporal and spatial terms of the transient 

advection-dispersion equation on the numerical behaviour of stabilized semi-discrete 

Eulerian methods can be investigated through Fourier analysis, which will be the main 

focus of the next chapter. 
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CHAPTER3 

FOURIER ANAL YSIS OF STABILIZED SEMI-DISCRETE 

EULERIAN METHODS 

Fourier analysis is one mathematical tool that can be used to assess numerical methods 

for the solution of the transport equation. This is done by illustrating the alterations, 

introduced by the numerical schemes, of the algorithmic amplitude and phase velocity of 

wave components involved in the solution. Therefore, Fourier analysis can be used to 

reveal the mathematical nature, in a frequency domain, of the numerical difficulties 

involved in a specific numerical scheme for the advection equation. In this chapter, 

Fourier analysis is carried out to investigate the numerical performance of the stabilized 

semi-discrete Eulerian methods described in the previous chapter for the advection 

equation with the application of the Euler time integration scheme and the trapezoidal 

time mIe. Such Fourier analysis is performed on the Modified Least Squares method 

(MLS) for the one-dimensional purely advection equation, but the corresponding 

analytical results for Petrov-Galerkin, Taylor-Galerkin and Least Squares methods are 

also presented. The variations of the algorithmic amplitudes and phase velocities of these 

stabilized schemes for the advection equation, with the dimensionless wave number vs. 

Courant number, are illustrated in this chapter. These illustrations show that the Courant 

number has a significant influence on the numerical behaviour of these stabilized 

schemes for the advection equation. Based on this observation, a Courant number 

criterion can be derived, under which the MLS scheme can generate an oscillation-free 

and non-diffus ive numerical solution for the advection equation, particularly for the case 

involving a discontinuity. 

3.1 Finite Difference Stencils 

In this chapter, the following one-dimensional advection equation is considered for the 

purpose of assessing the stabilized semi-discrete Eulerian methods 
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ac ac 
-+v-=O al ax (3.1) 

where C(x,t) is the scalar property of the species that is being transported (e.g. 

concentration of chemical or contaminant); x is the spatial coordinate; t is time; v is the 

field velocity or the characteristic speed of the equation. The general weak forms of the 

advection equation derived by several semi-discrete Eulerian stabilized FEMs have been 

given in Chapter 2. For completeness of the discussion in this chapter, the generalized 

residual integral form of the semi-discrete Eulerian FEM for the one-dimensional 

advection equation (3.1) with the application of the trapezoidal time mIe is given as 

follows 

R dw] ac R dw] acn
+

9 

w+'r,sigr(v)- --dx+ w+'r2 sigr(v)- (v--)dx=O 
o dx at 0 dx ax 

(3.2) 

where C n
+

9 = (1- 8)C n + OC n
+' ; 8 E (0,1] is the time weighting; W is the standard 

Galerkin weighting function and [0,/] is the interval of the computational domain. Aiso 

'ri (i=1,2) in (3.2) are the perturbation parameters referred to as the upwind functions or 

the intrinsic times of the stabilized methods (Oftate et al., 1997). They should be chosen 

based on either the Least Squares method (LS) (Carey and Jiang, 1987a) such that the 

artificial convection term has the adjoint form of the convection term of the equation 

giving rise to symmetric computational schemes (Wendland and Schmid, 2000), or be 

based on a Fourier analysis to ensure that the numerical modelling can give an "optimal" 

solution of the advection-diffusion equation (Raymond and Garder, 1976), such as the 

Petrov-Galerkin (PG) Method (Hughes and Brooks, 1982). They can also take on 

different values to generate different stabilized methods, such as the second-and the third

arder Taylor-Galerkin methods (TG2 and TG3) (Donea et al., 1984) or the MLS method. 

The expressions of upwind functions, 'ri (i= 1,2), for several stabilized finite element 

methods, PG, TG2, TG3, LS and MLS methods, are listed in the Table 3.1, where h is 

the elemental length, M is the time step and a p and a are the upwind parameters 

introduced respectively in the SUPG and MLS schemes. The integral form (3.2) with the 

piecewise linear elements Can lead to the nodal difference equation of the advection 
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Table 3.1 Definitions ofupwind functions for different methods 

Schemes TI T2 

1 1 
PG -a h -a h 2 p 2 p 

1 
TG2 0 -Ivl~t 

2 

1
11

2 ~ 2 d 1 
TG3 -v t- -Ivl~t 

6 dx 2 

LS ~vlM ~vl~t 

MLS ~vl~t aBlvl~t 

Table 3.2 Finite difference stencils of stabilized semi-discrete methods 

Schemes Equivalent Finite Difference Stencils 

1· .. a p ' . 

PG 
"6(Cj-1 +4Cj + Cj+l ) + 4 (Cj_1 -Cj+I)+ 

~(C~+9 _C~+9)_ apv (C~+9 -2C~+9 +C~+9)=O 
2h J+l J-I 2h J-I JI J+I 

1· .. 

TG2 
"6(Cj-1 + 4Cj + Cj+l) + 

~(C~+9 _C~+9)_ Mv
2 
(C~+9 -2C~+9 +C~+9)=O 

2h J+l J-I 2h 2 J-I J J+I 

1. .. ~t2V2. .. 

TG3 
"6(Cj -1 +4Cj +Cj+I)-6J;"2(Cj-1 -2Cj +Cj+I)+ 

~(C~+9 _ C~+8) _ ~tv2 (C n+9 _ 2C~+9 + C n+9) = 0 
2h J+I J-I 2h2 J-I J J+I 

1· .. 8v~t· . "6 (C j-I + 4C j + C j+1 ) + ---v;- (C j_1 - C j+1 ) + 

LS 
~ (C~+(J _ C~+(J) _ 8 ~t v

2 
(C~+(J _ 2C~+(J + C~+(J) = 0 

2h J+I J-I h2 J-I J J+I 

1· .. Bv~t· . 
"6(Cj -1 +4Cj +Cj+I)+---v;-(Cj-1 -Cj+l) + 

MLS 
~ (C~+9 _ C~+9) _ aB ~t v

2 
(C~+(J _ 2C~+(J + C~+9) = 0 

2h J+I J-I h2 J-I J J+I 
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equation. The finite difference stencils of these stabilized semi-discrete methods for the 

advection equation (3.1) are given in Table 3.2. 

The finite difference stencils listed in Table 3.2 can be expressed in the operator form 

(Vichnevetsky and Bowles, 1982) as follows: 

(3.3) 

where the discrete operator Ai is of the form 

(3.4) 

and E(k) is the space shift operator, E(k) . Cj == Cj +k • For the implicit semi-discretization, 

(3.3) can be expressed as 

(3.5) 

where A = A~l . A 2 • The discrete operators Al and A 2 corresponding to the MLS 

scheme are defined by 

(3.6a) 

(3.6b) 

3.2 Spectral Functions 

Retuming to the advection-diffusion equation, an exact solution can be written as 

C(x,t) = exp(itm-vt) (3.7) 

In (3.7), m is the spatial wave number, V determines the temporal evolution of the 

solution and can be written as 

(3.8) 

where q is the damping coefficient and il is the wavefrequency. Substituting (3.7) into 

(3.1) gives the following relationship 
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ç=Doi 

Q=vm 

(3.9a) 

(3.9b) 

where D is the coefficient of diffusion included in the transport equation. For the purely 

advection equation, i.e. D = 0 , the damping coefficient ç = 0, and therefore the solution 

of the advection equation (3.1) should not decay in amplitude. 

Similarly, the solution of the finite difference stencils (3.5) corresponding to the MLS 

scheme for the advection equation (3.1) can be written as 

(3.10) 

Substituting (3.10) into (3.5) gives 

(3.11 ) 

where Â(m) is the spectral function of the operator A in (3.5), which is defined as the 

function of m, i.e. 

(3.12) 

Substituting the discrete operator A defined by (3.6) into (3.12) gives the spectral 

function of the MLS scheme for the advection equation (3.1) as follows 

Â(m) = - v[6aCrB(I- cos(a»z)) + i3sin(a»z)] 
h[(2 + cos(oiz)) - i3CrBsin(oiz)] 

(3.13) 

where h = x j +1 -xj is a spatial increment and Cr = vÔ.t/h is the Courant number. 

Following the same procedure, the spectral functions of other stabilized semi-discrete 

Eulerian FEMs for the advection equation can aiso be obtained and they are listed in 

Table 3.3. 

From equation (3.11), the following relationships can be obtained, 

çh = _ Re(Â(m)) (3.14a) 

nh = -Im(Â(m)) (3.14b) 
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Table 3.3 Expressions of spectral function Â( (i) 

Schemes Â((i) 

~[ap(cos(oiz) -1)- isin(oiz)] 
PG h 

.!(cos(oiz) + 2)- i a p 
sin(oiz) 

3 2 

TG2 
i[ v~ (COS(aitl-l)-iSiD(aitl] 

1 
- (cos( oiz) + 2) 
3 

TG3 

i[ v ~t (cos(oiz) -1)- iSin(oiz)] 

1 [ v' ~t' ] "3 (cos( oiz) + 2) - h 2 (cos( oiz ) -1) 

i[ 28; Ilt (cos(oiz) -1)- iSin(oiz)] 

LS 
.! (cos(oiz) + 2)- i 8v Ilt sin(oiz) 
3 h 

Suhstituting (3.14) into (3.10) gives 

nh 

C(xj,t) = exp[-qht]exp[i(i)(xj --t)] 
(i) 

A - Im(Â((i)) 
= exp[Re(A((i))t]exp[i(i)(xj - t)] 

(i) 

(3.15) 

If the variation of the unknown variable is considered only in the time interval [t,t + Ml. 

then, from the equation (3.15), the algorithmic amplitude of the numerical operator A 

can he written as 

e n+1 

rh = _j_ = exp[-qh M] = exp[Re(Â((i))M] 
~ en 

] 

(3.16) 

and the relative phase velo city v· of the numerical operator A has the form 
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A 

- Im(A(m» 
-=-= 
v vm vm 

(3.17) 

Substituting the definition of Â(m) ln (3.13) into (3.16) and (3.17) leads to the 

algorithmic amplitude and the relative phase velocity of the MLS scheme for the 

advection equation (without applying the time integration), which are expressed as 

follows: 

Çh = exp(- Cr[6aCr8(1- cos(ail»(2 + cos(ail» + -9Cr8sin
2 
(ail)] J 

[(2 + coS(ail»]2 +[3Cr8sin(ail)]2 (3.18) 

v 3sin(ail)[6aCr 28 2 (1- cos(ail» + (2 + cos(ail»] 
--
v ail[(2+coS(ail»]2 +[3Cr8sin(ail)]2 

(3.19) 

where 0Jh is the dimensionless wave number. Expanding Çh and v*jv in terms of 0Jh 

glves 

Çh =1+Cr2(1-a)(ail)2 

• 

+ Cr
2
8 (-a+6Cr 28(1-a)2 -12Cr28 2(1-a»(ail)4 +O(ail)6) 

12 

~ = 1- Cr 28 2 (1- a)(ail) 2 

v 

(3.20) 

(3.21) 

Tables 3.4 and 3.5 show the expansions, in terms of 0Jh, of Çh and v· Iv of four other 

stabilized semi-discrete Eulerian FEMs for the advection equation without 

implementation of time integration. 

It is shown from (3.20) and (3.21) that Çh and v*jv for the MLS scheme should have 

higher accuracy in terms of 0Jh when a = 1, which corresponds to the LS scheme. If 

8 = 0, the algorithmic amplitude and the relative phase velo city defined by (3.20) and 

(3.21) correspond to the conventional Galerkin method. It is indicated from the expansion 

shown in Table 3.5 that the relative phase velo city of the PG scheme for the advection 

equation, obtained without applying the time integration, can reach the sixth order 
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Table 3.4 Expansions of Çh in terms of wh (without time integration) 

Schemes Çh = exp[Re(Â«(j)).M] 

a PG 1- --..L Cr«(j)h)4 + 0«(j)h)6) 
24 

1 1 
TG2 l--Cr2«(j)h)2 +-Cr2(3Cr 2 -1)«(j)h)4 +0«(j)h)6) 

2 24 

TG3 1-!Cr2«(j)h)2 +_1 Cr2(5Cr2 -1)«(j)h)4 +0«(j)h)6) 
2 24 

LS 1 - .!!.- Cr 2 ( (j) h) 4 + 0« (j) h) 6 
) 

12 

Table 3.5 Expansions of v· Iv in terms of wh (without time integration) 

Schemes 
~ = - Im(Â«(j)) 

v (j)V 

PG a; 1 4 6 1 - (- - -)( (j) h) + 0« (j) h) ) 
48 180 

TG2 1- _1_«(j)h)4 + 0«(j)h)6) 
180 

TG3 1-!Cr2«(j)h)2 +-I-Cr2(10Cr 4 -5Cr2 -2)«(j)h)4 +0«(j)h)6) 
6 360 

LS 1- (Cr
2
8

2 
_ _ 1_)«(j)h)4 + 0«(j)h)6) 

12 180 

accuracy in wh when the upwind function a p = 2/ J15 . This result was also obtained by 

Raymond and Garder (1976). Figures 3.1 to 3.5 show the variation of the algorithmic 

amplitude and the relative phase velo city of the Galerkin, PG, LS, TG2 and TG3 methods, 

with wh within the time interval [t,t + .11]. 
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0.8 
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(a) 

3 0 3 0 

(b) 

Figure 3.1 Distributions of (a) the algorithmic amplitude and (b) the relative 
phase velocity of the Galerkin method 

l 

0.75 

(a) 

3 0 3 0 

(b) 

Figure 3.2 Distributions of (a) the algorithmic amplitude and (b) the relative 
phase velo city of the Petrov-Galerkin method 
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0.8 
0.6 

,"0.4 
0.2 

l 

wh 2 

3 0 

(a) (b) 

Figure 3.3 Distributions of (a) the algorithmic amplitude and (b) the relative 
phase velocity of the Least Squares method 
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3 0 

Ca) Cb) 
Figure 3.4 Distributions of (a) the algorithmic amplitude and (b) the relative 

phase velo city of the second-order Taylor-Galerkin method 
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wh 
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0.4 Cr 

(a) 

l 
0.8 

0.6 
:::'0.4 

l v 0.2 
0.8 0 

wh 2 

Cr 

3 0 

(b) 

Figure 3.5 Distributions of (a) the algorithmic amplitude and (b) the relative phase 
velocity of the third-order Taylor-Galerkin method 

It should be noted that Çh and vïv discussed until now correspond to the spatial 

discretization of the advection equation using the stabilized FEMs concemed. This is 

based on the assumption that the temporal derivative in the advection equation is 

accurately computed in the time interval [t,t + .::1t]. In the semi-discrete methods, 

however, the temporal derivative of the advection equation is also discretized by certain 

time integration schemes, such as forward Euler, backward Euler, Crank-Nicolson or 

Runge-Kutta methods, etc. Therefore the numerical behaviour of the stabilized semi

discrete methods for the advection equation is also influenced by the temporal 

discretization. In the following section, the influence of the temporal discretization 
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together with the spatial discretization on the numerical performance of the stabilized 

semi-discrete Eulerian FEMs for the advection equation will be discussed using the 

Fourier analysis. 

3.3 Fourier Analysis on Temporal and Spatial Discretizations 

With the application of the trapezoidal time rule, the finite difference stencil of the MLS 

scheme for the advection equation (3.1) with the Euler time integration scheme can be 

written as follows: 

ct = e; + Llt[BAC;+1 +(1-B)AC;]. (3.22) 

Following (3.10), it can be assumed that the solution of(3.22) is ofthe following form 

(3.23) 

where vh = qh + iO,h, and x j+l - X j = h, t n+l - t n = Llt. With these notations, the above 

equation can be written as 

(3.24) 

Substituting the discrete solution C; in (3.24) into (3.22) gives 

(3.25) 

where Çh is the algorithmic amplitude of the numerical operator described by (3.22), 

which is defined as 

en+! 
rh = _J_' = exp[ _qh Llt] . 
~ en 

J 

(3.26) 

and z(m) is the spectralfunction of the numerical operator described by (3.22), which is 

defined as 

z( m) = 1 + Llt(1- ~)Â( m) 
1- LltB A(m) 

57 

(3.27) 



It is evident from (3.25) that the algorithmic amplitude Çh is equal to Iz(m)1 of the 

scheme, and therefore the von Neumann stabilization condition (von Neumann, 1944) is 

(3.28) 

Substituting the spectral function defined by (3.13) into (3.27) leads to the spectral 

function z(m) of the MLS scheme for the advection equation (3.1) as follows 

z(m) = [2 + cos(tdl)]-6aCr
2
B(I-B) [1-cos(tdl)]-i3Crsin(tdl) (3.29) 

[2 + cos(tdl)] + 6aCr 2
B2 [1- cos(tdl)] 

Similarly, the spectral function z(m) of other stahilized semi-discrete Eulerian FEMs for 

the advection equation (3.1) can also he ohtained and they are listed in Table 3.6. 

Table 3.6 Expressions for the spectral function z(m) 

Schemes z(m) 

PG 
2[2 + cos(tdl)] - 6apCr(1- B)[I- cos(tdl)] - i 3[2Cr(1- B) + a p ]sin(tdl) 

2[2 + cos(tdl)] + 6apCr8[1- cos(tdl)] + i3(2Cr8 - ap)sin(tdl) 

TG2 
[2 + cos(tdl)] - 3Cr 2 (1- 8) [1- cos(tdl)] - i3Cr(1- 8)sin(tdl) 

[2 + cos(tdl)] + 3Cr 28 [1- cos(tdl)] + i3Cr8sin(tdl) 

TG3 
- [2 + cos(tdl)] + Cr 2 (2 - 38) [1- cos(tdl)] + i3Cr(1- 8)sin(tdl) 

-[2 + cos(tdl)] - Cr 2 (1 + 38) [1- cos(tdl)] - i3Cr8sin(tdl) 

LS 
[2 + cos(ai1)] - 6Cr 28(1- 8) [1- cos(ai1)] - i3Crsin(ai1) 

[2 + cos(tdl)] + 6Cr 28 2 [1- cos(ai1)] 

3.4 Algorithmic Amplitudes and Relative Phase Velocities 

From (3.25), the following relationship can be derived 

(3.30) 

which implies that the algorithmic amplitude and the wave frequency can he defined as 

follows: 

(3.31) 
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Oh = arg(z(m)) 
llt 

(3.32) 

The phase velocity of the numerical scheme in (3.22) can be obtained from (3.32) as 

• Oh arg(z(m)) 
v =-= 

m ml!!.t 
(3.33) 

With the consideration of z(m) defined by (3.29), the algorithmic amplitude and the 

relative phase velocity of the MLS scheme can be expressed as 

rh 1 )1 ~[2 + cos(ail) - 6aCr 28(1- 8)(1- coS(ail))]2 + 9Cr2 sin 2 (ail) 
~ = z(m = (3.34a) 

2 + cos(ail) + 6aCr 28 2 (1- cos(ail)) 

v· arg(z( m)) 1 ( 3Cr sine ail) J 
-;=- (ùVl!!.t = Cr ail arctan 2+cos(ail)-6aCr28(1-8)(1-cos(ail)) (3.34b) 

Expanding (3.34) in terms of 0Jh gives 

ç h = 1 + .!. Cr 2 (1- 2a8)( ail) 2 

2 

__ 1 Cr 2 [2a8 +3Cr2 (1- 4a8(1- 28) -8a28 3 )](ail)4 + O((ail) 6 
) 

24 

v· 1 2 2 1 2 
-=I--Cr [1-3a8(1-8)](ail) +-[-1+15aCr 8(1-8) 
v 3 180 

+ 36Cr4 (1- 5a8(1- 8) + 5a28 2 (1- 8)2)](ail)4 + O((ail) 6 
) 

(3.35a) 

(3.35b) 

Following the same procedure, the expressions for the algorithmic amplitudes and the 

relative phase velocities of the PG, TG2, TG3 and LS schemes for the advection equation 

(3.1) with the application of the trapezoidal mIe can be obtained, and their expansions in 

terms of the dimensionless wave number 0Jh are given in Table 3.7 and Table 3.8, 

respectively. From these expansions and equation (3.35), it is noted that the accuracy 

(compared to unity) of the algorithmic amplitudes and the phase velocities of the PG, 

TG2, TG3, LS and MLS schemes depends on the Courant number Cr and the time 

weighting 8. The upwind parameters a p and a can also influence the numerical 

performance of PG and MLS schemes, and theoretically they can be determined such that 
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the numerical schemes have a higher accuracy in the algorithmic amplitude and the phase 

velocity. 

Table 3.7 Expansions of Çh in terms of mh (with trapezoidal mIe) 

Schemes Çh =lz(m)1 

1 0 1 a Cr 
PG 1+-Cr2(1-20)(mh)2 + [Cr4(03 _02 +---)--P_](mh)4 +O«mh)6) 

2 2 8 ~ 

TG2 l-Cr20(mh)2 +_1 Cr 2[-1+3Cr 2(1-20+40 2 +803)](mh)4 +O«mh)6) 
24 

TG3 
1 

1- Cr 20(mh)2 + -Cr2[-1 + Cr 2(1 + 20+ 1202 + 2403)](mh)4 + O«mh)6) 
24 

LS 
1 0 1 1 

1+-Cr2(1-20)(mh)2 +[Cr4(03 _02 +---)--Cr2 0](mh)4 +O«mh)6) 
2 2 8 12 

Table 3.8 Expansions of v*jv in terms of mh (with trapezoidal mIe) 

• arg(z(m)) v 
Schemes -=-

v mvM 

1 1 a~ 
l--Cr 2 (1-30+302)(mh)2 + [-(15a; -4)+-P-(1-20) 

PG 3 720 24 

+Cr4(.!.-0+20 2 -202 +04))(mh)4 +O«mh)6) 
5 

1 2 2 2 1 1 2 l--Cr (-1+60 )(mh) +[--+-Cr (1-20) 

TG2 6 180 24 

+_1 Cr4(-1+50-502 +2004))(mh)4 +O«mh)6) 
20 

1 
l-Cr 20 2(mh)2 +-[-1+5Cr2(1-30) 

TG3 180 
+ Cr4 (-4 + 150 + 4502 + 18004))(mht + O«mh)6) 

1 2 2 2 1 1 2 l--Cr (1-30+30 )(mh) +[--+-Cr 0(1-0) 

LS 3 180 12 
1 

+Cr4(--0+20 2 -202 +04))(mh)4 +O«mh)6) 
5 
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Figure 3.6 Distributions of the algorithmic amplitudes of the stabilized semi
discrete Eulerian FEMs with different time weightings 
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Figure 3.7 Distributions of the relative phase velocities of the stabilized semi
discrete Eulerian FEMs with different time weightings 
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Figures 3.6 and 3.7 shows, respectively, the distributions of the algorithmic amplitudes 

and relative phase velocities of PG (with a p = 1/.Jï5), TG2, TG3 and LS (or MLS with 

a = 1) schemes for the advection equation (3.1) with different time weighting over the 

plane of Courant numbers vs. dimensionless wave number. It is implied from the Figures 

3.6 and 3.7 that these four stabilized semi-discrete schemes will have different numerical 

performances for the advection equation using different time integrations. AU the 

schemes satisfy the von Neumann stabilization condition (i.e. Iz(m)1 < 1) when 8 ~ 0.5 ; 

but when 8 = 0, the corresponding explicit PG, TG2 and LS schemes become unstable 

since Iz( m)1 ~ 1 for certain values of the dimensionless wave numbers ail. 

3.5 a and 8 in the MLS Scheme 

The introduction of the upwind parameter a in the MLS scheme provides an opportunity 

to improve the numerical behaviour of the scheme for the advection equation (3.1). It is 

shown from (3.35) that the accuracy of the algorithmic amplitude Çh and the relative 

phase velo city v· Iv can reach at least the 4th order in terms of ail if a and 8 satisfy the 

following criteria 

{
1-2a8 = 0 

1- 3a8(1- 8) = 0 

which implies that 

{
a=3/2 

8=113 

(3.36) 

(3.37) 

Figure 3.8 shows the distribution, over the plane of ail vs. Cr, of Çh and vïv of the 

MLS scheme with the values of a and 8 defined by (3.37). 

It is noted from Figure 3.8 that when Cr = 1, both the algorithmic amplitude and the 

relative phase velocity of the MLS scheme are equal to unit y for all the dimensionless 

wave numbers. In fact, keeping Cr = 1 and substituting (3.37) into (3.34) results in 
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Figure 3.8 Distributions of (a) the algorithmic amplitude and (b) the relative 
phase velo city of the MLS scheme with a = 3/2 and (} = 1/3 for the 
advection equation over the plane of 0Jh vs. Cr 

• v 

V a=~ 9=.!. Cr=l 
2' 3' 

(3.38a) 

=1 (3.38b) 

It should also be noted from (3.34b) that, even under the condition of Cr = 1/2 and with 

the values of a and (} defined by (3.37), v· = v, i.e. 

v 
=1 (3.39) 

It follows from (3.38) that for Cr = 1 and a and (} determined by (3.37), there are no 

errors in the algorithmic amplitude and the phase velocity of the MLS scheme for aIl 0Jh, 

and therefore aIl wave components included in the solution obtained from the MLS 

scheme will travel at the same speed without shape distortion. Consequently, the MLS 

scheme with a and (J determined by (3.37) can generate an accurate solution for the 

advection equation when Cr is kept equal to unity. This conclusion is confirmed by the 

numerical computation presented in the ensuing section. 
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3.6 Numerical Analyses 

In this section, an advective transport problem with a constant flow velocity 

v = 0.5m/ s in a one-dimensional region of V = [0,30m] is considered. The 

computational domain is discretized into 60 elements with identical element size of 

h = 0.5m. The initial condition for the concentration is set equal to zero everywhere in 

the domain, and the transport problem is subject to boundary conditions C(O, t) = 1 and 

C x (30, t) = 0 at the left and right sides of the domain respectively. The PG scheme with 

a p = 1/ J15 and () = 1/2, and the MLS scheme with a = 3/2 and () = 1/3 are used to 

simulate the above one-dimensional transport problem. Two time steps are chosen such 

that the Courant number is equal to Y2 and 1, corresponding to the mesh size and the 

magnitude of the flow velo city. Figures 3.9 and 3.10 illustrate the computational results 

over the plane of the space vs. time obtained from the PG and MLS schemes respectively, 

corresponding to two different Courant number conditions, i.e. Cr = 1/2 and Cr = 1. It is 

evident that the PG method introduces oscillations in the vicinity of the discontinuity 

involved in the solution for both Courant number conditions. Although the MLS scheme 

introduces oscillations in the vicinity of the discontinuity of the solution for Cr = 1/2, it 

can generate an accurate solution for the advective transport or a step wave under the 

condition of Cr = 1 because of (3.38). Based on this observation, it can be conc1uded that 

either a time-adaptive or mesh-adaptive procedure should be coupled with the MLS 

scheme for the accurate solution of the advective transport problem with the transient 

flow velo city, in which the time step or the mesh size is automatically selected in terms 

of the Courant number criterion of Cr = 1. This will be discussed in the chapter that 

follows. 

65 



· .",' ...... 
, 5 
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Figure 3.9 Computational results for the one-dimensional advective transport 

problem obtained from the PG method with a p = 2/.J15 and 8 = 1/2 
under different Courant number conditions, (a) /::"t = 0.5s, Cr = 0.5 
and (b) /::"t = l.Os, Cr = 1.0 

1.5 ............. . 
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Figure 3.10 Computational results for the one-dimensional advective transport 
problem obtained from the MLS method with a = 3/2 and 8 = 1/3 
under different Courant number conditions, (a) /::,.t = 0.5s, Cr = 0.5 
and (b) /::"t = l.Os, Cr = 1.0 
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3.7 Discussion 

In this chapter, a Fourier analysis was used to assess several stabilized semi-discrete 

Eulerian FEMs for the advection equation. From these assessments it is shown that the 

Modified Least Squares scheme with time weighting and upwind parameters defined by 

(3.37) can generate an accurate numerical solution for the advection equation, with the 

solution containing a discontinuity, under the Courant number condition of Cr = 1. This 

conclusion is substantiated through a numerical computation conducted at the end of this 

chapter. The numerical advantage of the MLS scheme can be extended with the 

application of a time-adaptive procedure for the accurate solution of the transport process 

with a transient flow velocity, which will be discussed in the ensuing chapter. Several 

issues related to the Fourier analysis carried out in this chapter, however, need to be 

discussed: 

(i) Although the error of the phase velocity of the MLS scheme with a and (} defined by 

(3.37) is zero for all dimensionless wave numbers when Cr = 1/2, the deviation of 

the algorithmic amplitude from unit y will also lead to oscillations in the numerical 

solution for the advection equation, especially in the vicinity of a discontinuity in the 

solution. This phenomenon was observed through the numerical computation. 

(ii) It should be noted that the expression of the spectral function z(m) in the MLS 

scheme given in (3.29) with a and (} defined by (3.37) is identical to the expression 

of z(m) for the TG3 method shown in Table 3.6 with (} = 0, and both have the 

following expression 

z(m) = [2 + cos(oil)]-2Cr
2 

[1-cos(oil)]-i3Crsin(oil) 

[2 + cos(liil)] + Cr 2 [1- cos(oil)] 
(3.40) 

1t implies that the MLS scheme with a and () defined by (3.37) and the explicit TG3 

scheme have the same distributions of the algorithmic amplitude and the phase 

velo city over the plane of Courant number and dimensionless wave number. 

Therefore, both schemes can generate an accurate solution for the advection equation. 
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(iii) Although an upwind parameter is also introduced in the PG scheme, it is shown, 

from the expansion expression shown in Table 3.8, that the phase ve10city of the PG 

method can only reach 2nd order accuracy in terms of the dimensionless wave number 

for aH possible values of a and 8, and the same result can be obtained with the LS 

scheme. 

(iv) Comparing the integral form (3.2) and the upwind functions given in Table 3.1, it 

should be noted that the different numerical performances between the PG and LS 

schemes and the TG3 and MLS schemes might result from their different formations 

for the advection equation. The former two schemes use the same weighting function 

for the temporal and spatial derivatives of the advection equation, while the latter two 

schemes use different weighting functions for temporal and spatial derivatives of the 

advection equation. More effort should be done in the future to discover a general 

conclusion or structure for the stabilized methods that can generate accurate solutions 

for the advection equation. 
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CHAPTER4 

TIME-ADAPTIVE SCHEME FOR THE TRANSPORT WITH 

PRESSURE TRANSIENTS 

It has been shown from the Fourier analysis conducted in Chapter 3 that the Courant 

number has a significant influence on the numerical performance of stabilized semi

discrete Eulerian schemes for the advection equation. With a Courant number criterion of 

Cr = 1, the Modified Least Squares (MLS) scheme with a specific upwind function and 

time weighting, i.e. a = 3/2 and (} = 1/3, can generate an oscillation-free and non

diffusive numerical solution for the advection equation. This indicates that a time

adaptive procedure can be used in conjunction with the MLS scheme for the accurate 

solution of the advection-dominated transport process involving transient flow velocities. 

In this chapter, such a time-adaptive MLS scheme is proposed and will be used for 

accurately modelling the advective transport in a one-dimensional porous do main; here, 

the time-dependent flow velocity is induced by the pore pressure transient described by 

the piezo-conduction equation that accounts for the compressibility characteristics of the 

system. However, a Fourier analysis conducted in this chapter will show that this 

numerical advantage of the MLS scheme for the advection equation does not hold true for 

the advection-dispersion equation. In this case, it is necessary to use the operator-splitting 

technique with the MLS scheme for advection-dominated transport problems. Therefore, 

we develop a time-adaptive operator-splitting computational scheme in this chapter to 

simulate an advection-dominated transport process of the contaminant from a cavity in a 

spherically symmetric, fully saturated porous medium. In this numerical modelling, an 

infinite element is used for solving the piezo-conduction equation to obtain the accurate 

distribution of pressure potential, which is govemed by the potential condition on the 

cavity boundary and the regularity condition at infinity of the porous region. 
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4.1 The Courant Number and the Time-Adaptive Scheme 

The numerical demonstration at the end of the previous chapter showed that the MLS 

scheme, with a = 3/2 and (J = 1/3, can give an accurate numerical solution (in the sense 

that there is no artiticial diffusion or oscillation in the solution) of the one-dimensional 

advective transport process with a constant flow velocity under the Courant number 

condition Cr = 1. Combining this with a time-adaptive and/or a mesh adaptive procedure, 

the numerical advantage can be extended to model advective transport with a transient 

flow velocity. In such adaptive procedures, the time step or the elemental size, in a 

location with a high gradient or the discontinuity of the solution, should be determined 

using the following Courant number criterion, based on the magnitude of the flow 

velocity and characteristic length of the element: 

Ivl. At 
(Cr). =_,e -=1 

le h. 
le 

(4.1) 

where /).t is the time step; ie indicates the elements where the high gradient or the 

discontinuity of the solution is located; hie and IvLe are, respectively, the characteristic 

length and the magnitude of the flow velocity of the element. 

For the purpose of validation, the time-adaptive MLS scheme is tirst used to model the 

advective transport process with the following time decaying flow velocity 

k 
v = Vo exp{--t) 

1 
(4.2) 

where k is the Dupuit-Forchheimer hydraulic conductivity related to the conventional 

area averaged hydraulic conductivity k by the relation k = k / n· and n· is the porosity, 1 

is the length parameter corresponding to the size of the domain. The decaying flow 

velocity (4.2) can be induced by the exponential decay in the flow potential boundary 

condition. Figure 4.1 shows the computational results for such an advective transport 

problem with k = 0.03m / day , 1 = 30m and Vo = 0.5m / S obtained using the MLS 

scheme both with and without the time-adaptive procedure. The initial time step is chosen 

as At = 1.0s such that Cr = 1 at the start of the transport process. By introducing a time

adaptive procedure, which satisties the Courant number criterion (4.1) in the element near 
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the location of the steep front of the solution during the computations, the MLS scheme 

generates an accurate solution to advective transport process with the decaying flow 

velo city given in (4.2). Without a time-adaptive feature, the MLS scheme gradually 

introduces oscillations in the vicinity of the discontinuity of the solution, due to the 

deviation of the Courant number from unit y, resulting from the decay of the flow 

velocity. 

(a) (b) 

Figure 4.1 Computational results for the one-dimensional advective transport 
problem with the exponential decaying flow velocity obtained using 
the MLS scheme, (a) with the time-adaptive procedure and (b) without 
the time-adaptive procedure 

4.2 The One-Dimension al Advective Transport 

4.2.1 Governing Equations 

30 

In this section, the time-adaptive MLS scheme is used to model the one-dimensional 

advective transport problem of a chemical species in a fluid-saturated porous medium. 

The advective flow velocity in the porous medium is govemed by Darcy's law, which for 

an isotropie porous medium is expressed by 

afjJ 
v=-kax (4.3) 

where k is the Dupuit-Forchheimer hydraulic conductivity, fjJ is the hydraulic potential 
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inducing flow, which consists of the datum potential f/lD and the pressure potential f/lp' 

i.e. fjJ = fjJD + fjJp. For a constant datum potential, the temporal and spatial distribution of 

the hydraulic pressure potential in the linear elastic deformable porous medium can be 

determined by the theory ofporoelasticity developed by Biot (1941) (see also Lewis and 

Schrefler, 1998). However, with the small volumetric deformation of the porous skeleton, 

the coupled behaviour between the deformation of the porous medium and the pore fluid 

can be simplified by the piezo-conduction equation (Barenblatt et al., 1990; Selvadurai, 

2000a, b; 2002b). Considering the compressibilities of the pore fluid and the porous 

skeleton, as well as the mass conservation during the flow, the PDE goveming the one

dimensional advective flow potential can be reduced to the following c1assical piezo

conduction equation for f/lp 

(4.4) 

subject, respectively, to the boundary condition and the regularity condition 

(4.5) 

as well as the initial condition 

f/lp(X,O)=O; XE [0,00) (4.6) 

In (4.5), H(t) is the Heaviside step function, fjJo is a constant. This reduction is equivalent 

to assuming that the pressure head is much higher than the datum head. It also should be 

noted that for the purpose of examining the pressure transient, the domain is assumed to 

be semi-infinite. The pressure diffusion coefficient Dp in (4.4) is given by 

(4.7) 

where Ss is referred to as the specific storage of the porous system, 1(1 is the 

compressibility of the pore fluid and 1($ is the compressibility of the porous skeleton. 

72 



AIso, consideration of mass conservation of the chemical within a control volume gives 

the following continuity equation for the advective transport process: 

ac ac av -+v-+c-=o al ax ax (4.8) 

The third term on the LHS of (4.8) is non-zero if the fluid is considered to be 

compressible. It is evident that the goveming PDEs (4.4) and (4.8) are weakly coupled, in 

the sense that the velocity field is assumed to be uninfluenced by the chemical transport 

process. The appropriate solution applicable to the diffusion problem (4.4) can be 

obtained in exact closed form through the consideration of Laplace transform techniques 

(Selvadurai, 2000a). The resulting solution takes the form 

where erfc(x) is the complimentary error function defined by 

2 x 2 

erfc(x) = 1- c Je-ç dÇ ,,1[ 0 

(4.9) 

(4.10) 

From (4.3) and (4.9), the fluid velocity in the porous medium of semi-infinite extent can 

be expressed in the form 

at/Jp (1 (x2 )J v(x, t) = -k - = kt/Jo r:;;:n; exp ---ax v1[D/ 4D/ 
(4.11) 

Substituting (4.11) into (4.8) gives the PDE goveming the advective transport process 

with the transient flow velocity as follows 

ae _ kA. 
ax '1'0 

which is subject to the initial condition 
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C(x,O) = 0 XE [0,00) (4.13) 

and the boundary condition 

C(O, t) = CoH(t) (4.14) 

as well as the regularity condition 

C(x,t) ~ 0 as X ~ 00 (4.15) 

For the flow process to be transient, the compressibility of the pore fluid and/or the 

compressibility of the porous skeleton should be non-zero. In the absence of these 

compressibilities, the flow process is steady state and is govemed by the Laplace's 

equation with the consequence that, for a solution to exist, the domain should be finite. 

4.2.2 Numerical Computations 

For the purpose of computation, an advective transport process in a semi-infinite region 

(0,00) is considered in this section, which is subject to the flow potential boundary 

conditions of ;(0) =;0 and ;(00) = O. The Dupuit-Forchheimer hydraulic conductivity 

of the porous medium is taken as k = 0.03m / day. The porous aquifer material and the 

fluid are assumed to be compressible with the typical compressibility values of 

!Cs = 1.0xIQ-8 m 2 
/ N and !Cf = 4.4xIQ-10 m2 

/ N (Freeze and Cherry, 1979) 

.;.." ..... 

(a) (b) 

Figure 4.2 Distributions of (a) the flow potential and (b) the flow velocity in the 
time-space region during a period of 10 days 
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respectively, and the porosity is taken as n· = 0.3. Using these values, the specific 

storage of the porous system is approximately equal to Ss = 1.0xl0-8 m 2 
/ N. We first 

assume that the advective transport is initiated by a constant flow potential (Jo = 100 m 

applied at the boundary x = O. Figure 4.2 shows the distributions of the flow potential 

and the flow velocity over a finite region V = [0,30m] obtained from analytical solutions 

(4.9) and (4.11) respectively, during a period of 10 days. It is noted from Figure 4.2 that 

the flow velocity varies to a large extent over the domain at the beginning of the transport 

process due to the large variations of the potential. 

A finite domain of V = [0,30m] is used for the finite element modelling of the advective 

transport process with the flow velo city shown in Figure 4.1, and the regularity condition 

at an infinite location is replaced with a Neumann boundary condition applied 

downstream of the domain. The finite domain is discretized into 300 elements and the 

MLS scheme, both with and without the time-adaptive procedure, is used to obtain 

computational estimates for the advective transport process. The corresponding numerical 

solutions are shown in Figure 4.3, and they indicate that without the time-adaptive 

procedure, the MLS scheme introduces oscillations into the solution due to the variations 

in the magnitude of the flow velocity. The time-adaptive MLS scheme, however, gives an 

1.5 

0' 
:;§.05 ........ . 

-!i 
\.) a ..' 

.0.5 
4(J() 

la 

(a) (b) 

Figure 4.3 Computational results during a period of 400 days for the advective 
transport with the transient advective flow velocity obtained from the 
MLS scheme (a) with the time-adaptive procedure and (b) without the 
time-adaptive procedure 
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oscillation-free and non-diffusive computational solution for the advective transport with 

time-dependent flow velocity. Using the time-adaptive scheme, the initial time step of 

!1t = 0.2 days increases to !1t = 33 days at the end of the computation, in order to satisfy 

the constraint (4.1) imposed by the Courant number criterion. 

In the remainder of this section, further transient characteristics of the flow potential, 

caused by the time-dependent boundary condition, are considered for above advective 

transport problem. Firstly, the flow potential boundary condition with an exponential 

100 

o x 

0.25 

0.2 

0.15 

l' 01 
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.. ' ~. . . . . .. . .... 
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(a) (b) 

Figure 4.4 Distributions of (a) the flow potential and (b) the flow velocity in the 
time-space region during a period of 1000 days corresponding to the 
decaying boundary potential 

Figure 4.5 Computational results during a period of 1000 days for the advective 
transport with the transient flow velocity, obtained using the time
adaptive MLS scheme 
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decay in time is considered in the numerical computation using the time-adaptive scheme 

• k fJo = fJ exp( - - t) 
1 

(4.16) 

where fJ' = 100 m. This variation can approximate the chemical entry under a gravit y 

flow. Figure 4.4 illustrates the distribution of the flow potential and the flow velocity 

over the domain during a 1000-day period. It should be noted that the flow velo city 

decays to almost zero after 500 days. Figure 4.5 illustrates the numerical results within a 

finite region of [0,1 Om] obtained from the time-adaptive MLS method using 100 

elements. The initial time step of At = 5 days increases to At = 647 days due to the 

variation of the flow velocity at the location of the steep front of the solution, which 

implies that the chemical will migrate only O.1m (element length) within 647 days. It 

should also be noted that the advective transport process of the contaminant a1most stops 

due to low flow velocity. 

N ext, a decaying boundary flow potential with a pulse is considered in the numerical 

computation, which is defined by the following time-dependent potential history: 

1

* k fJ exp(-T t ), t ~ 500days 

fJo = • k fJ exp[-T(t-500)], t > 500days 

(4.17) 

Figure 4.6 illustrates the distribution of the flow potential and the flow velo city over the 

finite domain V for a duration of 1000 days. Figure 4.7 shows the corresponding 

numerical results within the finite region of [O,lOm], obtained using the time-adaptive 

MLS scheme with 100 elements. Again, with the time-adaptive procedure that satisfies 

the Courant number criterion (4.1), the initial time step of At = 5 days increases to 

At = 142 days at the end of the computation due to the decay of the flow velocity. It 

should be noted from the numerical results shown in Figure 4.7 that the advective 

transport process of a contaminant in the porous medium is accelerated at t=500days 

resulting from the application of a pulse in the flow boundary potential. 
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Figure 4.6 Distributions of (a) the flow potential and (b) the flow velocity in the 
time-space region during a period of 1000 days corresponding to the 
decaying boundary potential with a pulse 

10 

Figure 4.7 Computational results during a period of 1000 days for the advective 
transport with the transient flow velocity determined by the decaying 
boundary potential with a pulse, obtained using the time-adaptive MLS 
scheme 

4.3 Rationale for the Operator Splitting Technique 

It is shown from the numerical computations in the previous section that the time

adaptive MLS scheme with a = 3/2 and 8 = 1/3 can give an accurate solution for the 

advective transport with transient flow velocities. As indicated in Chapter 1, however, the 

transport of contaminants in porous media involves complex processes, which usually 

inc1ude advection, hydrodynamic dispersion and chemical reaction etc. For such 
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situations, the classical one-dimensional advection-dispersion equation (4.8) takes on the 

form including advection, dispersion and reaction terms, i.e. 

dC + d(VC) -D d
2
C +rC = 0 

dt dX dX2 
(4.18) 

where D is the hydrodynamic dispersion coefficient and r is a first-order decay 

coefficient. Applying the MLS scheme to the advection-dispersion-reaction equation 

(4.18) leads to the following weighted residual integral form over a one-dimensional 

region [0,/] 

The introduction of the upwind parameter a in (4.19) ensures consistency with the MLS 

formulation for the purely advection equation. When a = l, the integral form (4.19) will 

correspond to the LS scheme. The finite difference stencil corresponding to the integral 

form (4.19), with a piecewise linear element, can be written as 

1· .. 8vô.t· . 
(1 + 8ô.tr)6(Cj_1 +4Cj +Cj+I)+--u;-(Cj-1 -Cj+l ) = 

_.2:... (C~+8 - C~+8) + r(l + 8 ô.t r)D + a8 ô.t v2 ]_1 (C~+8 - 2C~+8 + C~+8) (4.20) 2h J+I J-I ~ h2 J-I J J+I 

-(1+8ô.tr)r!(C~+8 +4C~+8 +C~+8) 6 J-I J J+I 

Following the procedure presented in Chapter 3, the spectral function z(m) of the MLS 

scheme for the advection-dispersion-reaction equation (4.18), with the application of the 

forward Euler time integration scheme and the trapezoidal time mIe, can be expressed in 

the following form 

1 + (1- 8)M A(m) - (1- 8)(Cr)al + [1- (1- 8)(Cr)(Da)]a2 - i(Cr)bl (4.21) z(m) = =~--~~~~~--~~~~~~~ 
1-8 ô.t A(m) 8(Cr)al + (1 + 8 (Cr)(Da))a2 

where A(m) is a spectral function of the finite spatial difference stencil described by 

(4.20) which can be expressed as 
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and 

{

al =6[(l+BCrDa)Pe-1 +aBCr][l-cos(ait)] 

a2 = (1 + BCr Da) [2 + cos(ait)] 

hl = 3 sine ait ) 

(4.22) 

(4.23) 

In (4.21) and (4.22), Cr = v~t/ h is the Courant number, Pe = vh/ D is the Péclet number 

and Da = rh/v is the Damkohler number. The algorithmic amplitude and the relative 

phase velocity of the MLS scheme for the advection-dispersion-reaction equation (4.18) 

can be written in the expansion form in terms of the dimensionless wave number ait as 

where 

Çh = IZ(aJ)1 = ~ + Cr(Cr - 2CrBci ~- 2c1c2Pe-
1

) (aiz)2 + O«ait)4) 
c2 2ClC2 

v· =_1 __ Cr(Cr-3aclc2CrB(l-3B)3-3pe-lcIC/(l-B)) (aiz)2 

v C1C 2 3c1 c2 

{

Cl = l-(l-B)Cr Da 

c2 =l+BCrDa 

(4.24a) 

(4.24b) 

(4.25) 

It is evident from (4.24) and (4.25) that the algorithmic amplitude and phase velocity (and 

hence the numerical performance) of the MLS scheme for (4.18) are influenced by the 

Courant Number Cr, the Péclet number Pe and the Damkohler Number Da. In this 

case, it is impossible to choose the upwind function a and the time weighting 8 such 

that ç h == 1 and v· == v for aIl values of the dimensionless wave number ait. Even for the 

advection-dispersion equation (i.e. r = 0 in (4.18)), the non-zero Péclet number will have 

an influence on the distribution of the algorithmic amplitude and the phase velo city of the 

MLS scheme. Such an influence will make it difficu1t to determine the optimal values of 

the upwind function and the time weighting involved in the semi-discrete MLS scheme. 

For example, with Da = 0 in (4.21), the spectral function z(m) of the MLS scheme for 

the advection-dispersion equation becomes 
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z(m) = - 6(1- 8)Cr(Pe-
i + a8Cr)(1- cos(ail» + (2 + cos(ail» - i3Cr3sin(ail) (4.26) 

68Cr(Pe- i +a8Cr)(1- cos(ail» + (2 + cos(ail» 

The corresponding algorithmic amplitude and relative phase velocity determined by 

(4.26) can be expressed as follows: 

Çh = ~[2+cos(ail)-6Cr(I-8)(Pe-I +aCr8)(I-cos(ail»f +9Cr2 sin 2 (ail) (4.27a) 

2 + cos(ail) + 6aCr 28 2(l- cos(ail» 

v· 1 ( 3Cr sin(ail) ) 
-; = Cr ail arctan 2 + cos(ail) - 6Cr(l- 8)(Pe-I + acr8)(l- cos(ail» 

(4.27b) 

Figure 4.8 shows the distributions of the algorithmic amplitude and the relative phase 

velocity of the MLS scheme with a = 3/2 and 8 = 1/3 for the advection-dispersion 

equation with Pe = 50 corresponding to Cr=1 in the region of 0Jh E [O,Jr]. It is shown 

from Figure 4.8 that Çh == 1 and v*jv == 1 are no longer satisfied for all aJh E [O,Jr] under 

the condition of Cr = 1. The fact that Çh is greater than unity for sorne 0Jh makes the 

numerical scheme unstable in the vicinity of the discontinuity or high gradient of the 

solution. 
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Figure 4.8 Distributions of (a) the algorithmic amplitude and (b) the relative 
phase velocity of the MLS scheme for the advection equation 
corresponding to Cr= 1 

This phenomenon can be observed during the numerical computation of the advective

dispersive transport problem with a sharp front moving at a constant flow velocity 

v=O.5m/s and with a dispersion coefficient D = O.005m 2 
/ s . The time step is set at 
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M = 1.0s, and consequently the Courant number is equa1 to unit y everywhere in the 

domain. The computationa1 domain is discretized with piecewise 1inear elements with 

length of h = O.5m, resulting in Pe = 50. Figure 4.9 shows the numerical results of 

above advective-dispersive transport problem obtained from the MLS method. As 

expected, severe oscillations were introduced into the numerica1 solution near the sharp 

gradient of the dependent variable, and such oscillations increase as D increases. Figure 

4.10 shows the distributions of the algorithmic amplitude of the MLS scheme for the 

advection-dispersion equation over the plane of mil vs. Cr corresponding to the cases 

where Pe = 50 and Pe = 5. It can be seen from these distributions that the Courant 

number should be kept less than unity in order that the algorithmic amplitude is no 

greater than the value of unity required to ensure the stability of the numerical scheme. 

However, the fact that the algorithmic amplitude is smaller than uuity implies that the 

artificial diffusion will be introduced by the numerical scheme. 

Figure 4.9 Numerical results for the advection-dispersion equation with a 
constant flow velo city v=0.5m1s and the dispersion coefficient 
D = 0.005m 2 

/ s, obtained from the MLS scheme corresponding to 
Courant number Cr= 1 

82 



1.25 

1 

0.75 
,hO.5 

0.25 

(a) 

3 0 3 0 

(b) 

Figure 4.10 Distributions ofthe algorithmic amplitude ofthe MLS scheme for the 
advection-dispersion equation over the plane of mh vs. Cr 
corresponding to (a) Pe=50 and (b) Pe=5 

In order to obtain an accurate solution for the advection-dominated transport problem, the 

operator splitting technique should be applied to separate the advection-dispersion 

equation into advection and dispersion parts based on the separate physical processes. In 

such operator splitting procedure, the approximation C n
+

1 of dependent variable C at 

t = (n + l)~t is solved in two sequent steps. First, an intermediate diffusive contribution 

Cd to the known approximation C n of C at the time level t = nM is determined by the 

following diffusion part 

(4.28) 

where p = av + r. Then such intermediate state C;+l is used as the initial condition to ax 
determine the solution Cn

+
1 containing the advective contribution, using the following 

advection part 

(4.29) 

The diffusion and advection parts are discretized with different numerical schemes based 
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on their different mathematical natures (i.e. either parabolic or hyperbolic). The 

conventional Galerkin method is used to solve the diffusion part directly, and the time

adaptive semi-discrete MLS scheme is used to solve the advection part. In the section that 

follows, this operator splitting scheme will be used to compute the spherically symmetric 

advective dispersive transport in an infinite region. 

4.4 Spherically Symmetric Transport in a Semi-Infinite Region 

4.4.1 Governing Equations 

In this section, we restrict attention to a practical adveetive-dispersive-reactive transport 

problem of a ehemieal speeies in an isotropie fluid-saturated porous region from a 

spherieal eavity of radius of a(a > 0) due to pressurization. Sueh transport problems ean 

be eneountered during deep geological disposaI of ehemical wastes in pressurized 

eavities terminating in small diameter boreholes (Figure 4.11). The PDE goveming the 

spherically symmetrie advection-dispersion-reaction in the fluid saturated porous medium 

is govemed by 

ac ac aVR 2 2 
-+v -+C(-+-v )=DV C-rC at R aR aR R R R 

(4.30) 

Figure 4.11 A sehematie drawing of the contaminant transport from a spherical 
cavity for deep geological disposaI ofhazardous chemicals 
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with the initial condition 

C(R,O) = ° Re [a, 00) (4.31) 

and subject to the boundary condition 

C(a,t) = CoH(t) (4.32) 

as weIl as the regularity condition 

C(R,t) ~ ° as R~oo (4.33) 

In (4.30), V~ = a
2

2 
+~~, R is the radial coordinate and V R is the radial flow 

aR RaR 

velocity. The radial fluid flow is detennined by the temporal and spatial distribution of 

the pressure potential (Jp govemed by the spherically symmetric fonn of the piezo-

conduction equation 

D {a
2

(Jp + ~ a(Jp} = a(Jp 
p aR2 R aR at 

(4.34) 

subject, respectively, to the boundary condition and the regularity condition 

(4.35) 

and the initial condition 

(J/R,O) = 0; Re [a, 00) (4.36) 

4.4.2 The Coordinate Transformation 

The integrals inc1uded in the stabilized weighted residual fonn of the advection

dispersion-reaction equation (4.30) are constructed in the spherical coordinate system 

(R, (J, 8) . Due to the spherical symmetry of (4.30), these integrals are actually perfonned 

over the volume V; this in turn can be reduced to a line integral as follows: 

!F(R)dV = 2jjjF(R)R2 sin (JdRdf/Kl8 = 47rjF(R)d(~3 ) 
V 00 a a 

(4.37) 
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where F(R) represents the integral functions involved in the stabilized weak fonn of 

(4.30). These integrals over the three-dimensional space can be converted to integrals 

involving a linear space x using the following coordinate transfonnation 

(4.38) 

With the coordinate transfonn (4.38), the spherically radial advection-dispersion-reaction 

equation (4.30) in the radial space R can be converted into its one-dimensional 

counterpart in the linear space x. Equation (4.39) presents a transfonned fonn of the 

spherically symmetric purely advection equation in the new coordinate system 

ac ac 
-+v -=0 at y ay (4.39) 

where v y is the transfonned advective flow velocity defined as 

(4.40) 

4.4.3 The Advective Transport with the Steady Flow 

As a numerical example, an advective transport problem from the spherical cavity in a 

fully saturated porous medium with a Dupuit-Forchheimer hydraulic conductivity 

k = 0.03m / day is first examined analytically and numerically. The cavity has a radius of 

a = 3m and is subject to the boundary conditions of the flow potential (Op (a, t) = 100 m 

and the concentration C(a,t) = 1 (see Figure 4.11). The porous system is assumed to be 

incompressible, and consequently D p becomes infinity. For this case, the diffusion-type 

piezo-condution equation (4.34) reduces to a Laplace's equation, i.e. 

(4.41) 

The analytical solution of (4.41) subject to the boundary condition (Op (a) =(00 can be 

expressed as 
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f/J = af/Jo 
P R 

and the flow velocity can be evaluated in the fonn 

(4.42) 

(4.43) 

Selvadurai (2002a) presented an analytical solution for the spherically symmetric 

advective transport with the established steady-state flow velocity field obtained by 

(4.43) in a porous medium ofinfinite extent. The solution takes the fonn 

where 

C(R,t) = H[I- ;tep)] 
Co 

., a
2 r _3] R A(P) =-tp -1 ; P =-

3f/Jok a 

(4.44) 

(4.45) 

Figure 4. 12(a) shows the analytical solution to the advective transport processes given by 

(4.44) for a period of 100 days. 

(a) 
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o 

(b) 

Figure 4.12 Profiles of (a) an analytical solution (Selvadurai, 2002a) and (b) the 
numerical results for spherically symmetric advective transport in a 
porous medium during a period of 100 days 
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For the purpose of the numerical computation, a finite region a ~ R ~ band b = 30m 

is taken as a computational domain. A homogeneous Neumann boundary condition is 

applied on the outer boundary, i.e. CR (b,t) = 0, to replace the regularity condition. 

With the coordinate transform (4.38), the MLS scheme with a = 3/2 and () = 1/3 is 

used to model this spherically symmetric advective transport problem in the 

spherically symmetric one-dimensional space. It should be noted that the radial flow 

velo city (4.43) has a strong spatial dependency, but such space dependency can be 

eliminated in the linear space through the use of the coordinate transformation (4.38), 

which makes the transformed flow velo city constant, i.e. v y = kafJo. Therefore, the 

time step for the computation of the advective transport in linear space can be chosen 

to satisfy the Courant number criterion Cr = 1 . Figure 4.12(b) shows the 

corresponding computational results obtained from the MLS scheme with the aid of 

the coordinate transformation. The results are almost identical to the analytical 

solution shown in Figure 4.l2(a). The numerical advantage of the MLS scheme 

provides the possibility for the numerical modelling to capture little physical 

diffusion (or dispersion) involved in the advection-dominated transport process 

without the introduction of oscillations or artificial diffusion. Figure 4.13 shows the 

computational results of the advective-dispersive transport problem with 

1.5 . .. . .' 

sJ 
~05 ..... . 

~o 
-C.S 
100 

(a) (b) 

Figure 4.13 Numerical results during a period of 100 days for (a) the spherically 
symmetric advective-dispersive transport with D = 0.05m 2 

/ day and 
(b) the advective-reactive transport with r = 0.002/ day 
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D = 0.05m 2 
/ day, and advective-reactive transport problem with r = 0.002/ day, for 

a discontinuous spherically syrnrnetric front migrating from the cavity, obtained using 

the time-adaptive OS-MLS scheme. 

4.5 An Infinite Element Approach for the Piezo-Conduction Equation 

In the above numerical modelling of the transport problem from the cavity, the porous 

system is assumed to be incompressible, and consequently the distribution of the 

stationary advective flow velocity in the semi-infinite region can be determined 

analytically. As mentioned previously, if the pore fluid and solid skeleton are 

compressible, the pore pressure potential has a transient nature, which can be described 

by a piezo-conduction equation (4.34). The analytical solution of the piezo-conduction 

equation (4.34) subject to the boundary, regularity and initial conditions defined by (4.35) 

and (4.36) can be obtained using a Laplace transform technique, and it has the following 

form 

at/Jo R-a 
t/Jp (R,t) = -erfc( JD:i) 

R 2 Dt p 

(4.46) 

With this analytical distribution of the pressure potential, the Darcy flow velocity can be 

determined based on Darcy's law as follows 

exp(- (R - a) 2 ) ( ) 

4D/ 1 R-a 
---'::==---'- + - erfc -== 

~1r Dpt R R
2 2~Dpt 

(4.47) 

In practical situations, the potential boundary conditions may vary with time, and the 

diffusion coefficient may vary spatially due to the inhomogeneity of the porous medium 

or the geochemical reactions. For these cases, a numerical approach has to be used for the 

solution of the piezo-conduction equation. In addition, the boundary and regularity 

conditions of the pressure potential in (4.35) imply that the pressure potential, and 

consequently the Darcy flow field, should be determined in such a way that the infini te 
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extent of the porous region should be taken into consideration. In Vlew of these 

considerations, an infinite element is developed for the analysis of the piezo-conduction 

equation (4.34). Figure 4.14 illustrates the finite computational domain and the infini te 

element for the pressure distribution and the contaminant transport. 

o a 

R 
~ v 

b 

Figure 4.14 One dimensional finite computational domain .Q and infinite 
element e~ 

The key issue in the construction of an infinite element for the mass transfer problem in 

an infinite medium relates to the choice of a so-called mass transfer function (Zhao and 

Valliappan, 1994). A general form of the mass transfer function for the transient infinite 

element can be derived from the analytical solution of a representative problem. With the 

analytical solution of the piezo-conduction equation (4.46), the flow potential at the 

intersection (R = b) of the finite domain and infinite element can be expressed as 

follows: 

arA b-a 
(J(b,t) = _0 erfc( .[D;i) 

R 2 Dt p 

(4.48) 

Therefore, the flow potential at any point, say b + q , within the infinite element can be 

expressed as 

(J(b+q,t) = (J(b,t)F(q,t) (4.49) 

where ç ~ 0, and F(ç,t) is the mass transfer function for the infinite element, which 

takes the following form: 

(4.50) 
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where À = )i;;. The mass transfer function can be considered as the shape funetion 
2 D/ 

in the infinite e1ement (i.e. Nb = F(q, t)). With such a shape function and its derivative 

the piezo-conduction equation (4.34) can be reduced to the matrix equation 

where 

atjJ 
[Kl, {tjJ} + [Ml, {-} = 0 at 

and Kb and Mb in (4.53) are defined by 

(4.51) 

(4.52) 

(4.53a) 

(4.53b) 

(4.54a) 

(4.54b) 

The infinite integrals in (4.54) can be evaluated using the adaptive Simpson quadrature 

(Gander and Gautschi, 2000). The matrix equation of the infinite element formulation, 

(4.52), is combined with the finite element formulation of (4.34) to obtain the accurate 

pressure distribution over the finite element domain. Figure 4.15 shows the pressure 

distributions over the spherically symmetric finite region within a 100-day period, 

obtained from the analytical solution (4.46) and the infinite element model. During the 

computations, the values for the compressibilities for the porous aquifer material and the 

fluid are assumed to be !Cs = 1.0xlO-8 m 2 
/ N and !Cf = 4.4xlO-lo m 2 

/ N respectively 
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(Freeze and Cherry, 1979), the porosity is taken as n· = 0.3 and the Dupuit-Forchheimer 

hydraulic conductivity for the porous medium is taken as k = 0.03m 1 day. It can be 

observed from the Figure 4.15 that the infinite element model generates an accurate flow 

potential distribution in the finite region that is very close to the analytical solution. 

Figure 4.16 illustrates the distribution of radial flow velocity over the finite domain for a 

IOO-day period as determined from the analytical solution (4.47) and the numerical 

pressure potential shown in Figure 4.15(b). 

(a) (b) 
Figure 4.15 Distributions of the pressure potential during a IOO-day period 

obtained by (a) the analytical solution and (b) the infinite element model 

(a) (b) 

Figure 4.16 Distributions of the radial flow velocity during a 100-day period 
obtained by (a) the analytical solution and (b) the infinite element model 
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With the flow velo city field detennined using an infinite element model, the spherically 

symmetric contaminant transport problem from the spherical cavity in a porous medium 

of infinite extent is examined computationally with the time-adaptive OS-MLS scheme. 

Figure 4.17 shows the corresponding computational results for both the purely advective 

and the advective-dispersive-reactive transport problem with D = 0.05m 2 
/ day and 

r = 0.002/ day, in an infinite porous region obtained from the time-adaptive scheme with 

an initial time step of I1.t = 2.34days . 
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(a) (b) 
Figure 4.17 Computational results during a 100-day period for (a) an advective 

transport and (b) an advective-dispersive-reactive transport in the 
spherically symmetric region 

In section 4.2, the influence of the variation of the flow potential boundary condition on 

the transport processes was considered in the numerical computation via an analytical 

solution of the pressure potential, by changing the corresponding boundary parameter in 

the solution. However, any change in the analytical solution will lead to a simultaneous 

alteration in the distribution of the pressure potential over the domain. As shown 

previously, the transient distribution of the pressure potential in the compressible porous 

medium can be govemed by the piezo-conduction equation and the regularity condition at 

a remote (infinite) location. Therefore, the realistic redistribution of the pressure potential 

considered in the practical transport problem, due to the variation of the boundary 

condition, should be detennined by the diffusion problem, and the infinite element model 
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can be used for the consideration of the effect of the regularity condition. 

In the following section, the infinite element model is used to compute the influence of a 

decaying potential boundary, with a pulse, on the spherically symmetric advective

dispersive transport process. The variation in the boundary potential is given by 

1

. k 
t/> exp(-/I), 1 ~ 200days 

t/>o = k 
t/>. exp[-/(t-200)], t > 200days 

(4.55) 

Figure 4.18 shows the distributions of the pressure potential and the flow velo city over 

the domain corresponding to the potential boundary condition (4.55) as obtained from the 

infinite element model. The influence of the pulse on the distribution of the flow potential 

and flow velocity at the downstream boundary of the computational domain can be 

clearly seen in Figure 4.18.The time-adaptive OS-MLS scheme with the initial time step 

of M = O.ldays is used to model such a transport problem from the cavity, driven by the 

transient flow velocity shown in Figure 4.18(b). The corresponding numerical results for 

a duration of 400 days are shown in Figure 4.19. 
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(a) (b) 

Figure 4.18 Distributions of (a) the flow potential and (b) the radial velocity in 
the spherically symmetric region corresponding to the decaying 
boundary flow potential with a pulse 
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Figure 4.19 Numerical results of the transport process from the cavity with 
decaying boundary flow potential during a period of 400 days 

4.6 Discussion 

In conventional modelling of the advective transport problem, it is often assumed that the 

migration of the contaminant or chemical species within a fluid-saturated medium is 

initiated by steady Darcy flow applicable to an incompressible fluid. For most soils, this 

is a useful approximation, particularly when considering the incompressible nature of the 

pore fluid in comparison to that of the porous soil fabric. When the compressibilities of 

the porous skeleton the pore fluid are comparable, the pore pressure dissipation in porous 

media will have a transient nature, which can introduce the time-dependent Darcy flow 

velocity to the transport problem. A further class of time-dependent velo city fields can be 

introduced to the transport problem as a result of the time-dependent variation in the 

boundary potential. In this chapter, a simplified approach was utilized for the treatment of 

the coupled behaviour between the deformations of the pore fluid and the porous medium 

that is restricted to predominantly volumetric deformations of the materials. In such 

cases, the fluid pressure responsible for the Darcy flow in the porous medium is govemed 

by the piezo-conduction equation, which leads to not only a space-dependent but also a 

time-dependent flow field. 
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A time-adaptive scheme was proposed in this chapter to examme the contaminant 

transport in a fluid-saturated porous medium with the time-dependent flow velocities 

determined by a transient pore pressure, due to the compressibility characteristics of the 

pore fluid and that of the porous medium. Such a time-adaptive scheme is developed 

based on the Fourier analysis conducted in Chapter 3, and it is sufficient for the accurate 

solution of the spatially one-dimensional transport problem. Chapter 6 will develop a 

mesh-adaptive scheme for the optimum solution of the multi-dimensional transport 

problem, in which a time- and space-dependent flow field is usually not uniformly 

distributed along the steep front of the solution. In this chapter, it was implicitly assumed 

in the computations that the chemical being transported induces no changes to either the 

compressibility characteristics of the pore fluid or the hydraulic characteristics of the 

porous medium. For those cases with chemically-induced alterations of the hydraulic 

conductivity and compressibility of the porous medium, the flow velocities will be 

govemed by the solution of fully coupled PDEs of deformations of the porous skeleton 

and the pore pressure dissipation in the porous medium. 
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CHAPTER5 

EXPERIMENTAL MODELLING OF THE TRANSPORT IN A 

POROUS COLUMN 

In the previous chapters, several stabilized numerical methods for the advection equation 

were investigated via a Fourier analysis, and based on this investigation, a time-adaptive 

operator-splitting numerical scheme was developed for modelling the advection

dominated transport with transient flow velocity. Such a numerical scheme was 

successfully used in the previous chapter to give the accurate solution of the advective

dispersive-reactive transport problem in the mathematically one-dimensional region 

where the time-dependent flow field is govemed by the transient pore pressure. In this 

chapter, the time-adaptive scheme will be validated with an experimental modelling of 

the advection-dominated transport process in a porous medium. The experimental 

modelling is stimulated by considering the migration of a non-reactive red chemical dye 

solution through an idealized porous column consisting of glass beads, in which the 

advective flow is induced by the potential gradient that may have a variation in time. The 

transient transport phenomenon of the chemical dye solution on the cylindrical surface of 

the glass bead column is recorded by digital camera. A colour visualization-based image 

processing model is developed, using the "Image Processing Toolbox" in the MATLAB 

software package, to determine the distribution of the concentration of the dye solution 

along the surface of the porous column in a non-invasive way. The experimental results 

together with an inverse analysis are used to identify the coefficient of hydrodynamic 

dispersion involved in the transport process in the experimental modelling. The 

corresponding identified parameters are then used in the validation process of the time

adaptive operator-splitting scheme for the advection-dominated transport problem 

developed in Chapter 4. Finally, a comparison of experimental, analytical and numerical 

results of the transport process of a dye plug driven by a transient flow in the porous 

column is presented at the end of the chapter. 
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5.1 Image Visualization-Based Techniques 

Experimental work is an important aspect ln modelling the transport processes of 

contaminants in porous media, both for the validation of theoretical and numerical 

models as weIl as for the identification of parameters governing physical phenomena. AlI 

these aspects require that the experimental model give an accurate simulation of the 

physical transport process of the chemical in the pore space within the porous medium. A 

key aspect of any experimentation associated with the advective-dispersive transport of a 

chemical through a porous medium involves the measurement of the concentration of the 

chemical within the pore space. An important constraint on such measurements is that the 

procedure should be non-invasive. The presence of any measuring device or probe within 

the porous medium (Bear, 1961; Robbins, 1989) would represent an anomaly that could 

influence the flow pattern and in turn affect the advective transport processes within the 

porous medium. With the advent of efficient technologies for the visualization and the 

processing of digital information, digital imaging techniques have been successfuIly 

applied in a number of areas in the pure and applied sciences and they have become 

powerful tools in the field of geomechanics and geo-environmental engineering 

(Garbocai et al, 1999; Asundi, 2002; Gonzalesz and Woods, 2002). 

Recent technological advancements in image analysis offer great potential for the 

accurate and effective quantification of the solute transport process in porous media. 

Several image-based techniques have been developed to visualize the transport pattern of 

contaminants in porous media to overcome the difficulties encountered due to the random 

structure of the soil skeleton, and they can be classified into two categories. The first 

category is referred to as computed tomography techniques, such as X-ray tomography 

(Wamer et al, 1989; Coles, 1999), Nuclear Magnetic Resonance Imaging (NMRI) 

(Majors et al, 1991; Shattuck et al, 1997; Grenier et al, 1997), Positron Emisson 

Tomography (Park and McNeil, 1996; Khalili et al, 1998). In such methods, a three

dimensional tomographic imaging technology, which was originally applied in the 

medical field, is used for the measurement of a radioactive tracer in the fluid to obtain 

information about multi-phase porous medium systems in a non-invasive way. The 

disadvantages of computed tomography methods include the low resolution of the image, 

the smaIllength scale of the sample and the large time interval of the measurement. 
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The second category of imaging methods is referred as optica/ visua/ization techniques, 

such as Photo luminescent Volumetric Imaging (PVI) (Montemagno and Gray, 1995). In 

such methods, the illuminable fluoropores, excited by electromagnetic energy such as 

laser or ultra-violet light, are used as the tracer to simulate the solute transport processes; 

a Charged Coupled Device (CCD) digital camera is used to record the movement of the 

tracer in the porous medium. More recently a dye visualization-based technique has been 

employed to determine the solute transport pattern in a porous medium (Corapcioglu and 

Fedirchuk, 1999; Huang et al, 2002). In the study by Corapcioglu and Fedirchuk (1999), 

the dye solution was used as the tracer to simulate the solute transport processes in an 

idealized porous medium consisting of glass beads. In a similar study by Huang et al 

(2002), an ultra-violet light source located behind the sample was used to excite the 

fluorescent dye tracer and to minimize the image noise introduced by the reflected and 

diffusive ambient light. This particular methodology, however, introduces light 

dispersion effects that can influence the accuracy of the quantitative evaluations of 

experimental results and should be avoided in experimental modelling. 

Due to its efficiency and simple implementation, dye visualization-based lmagmg 

technologies have been applied to many problems encountered in civil engineering, such 

as the evolution of heterogeneities in porous media (Dawe et al 1992; Caruana and Dawe, 

1996), the measurement of deformations of geomaterials (AlIersma, 1990; Macari et al, 

1997), microbubble behaviour in porous media (Burns and Zhang, 1999), determination 

of diffusivity in porous media (Meyerhoff and Hesse, 1997), non-aqueous phase liquid 

solubilization in pore networks (Ji a et al, 1999), the movement ofbed-load (Papanicolaou 

et al, 1999), partic1e shape analysis (Shin and Hryciw, 2004; Chandan et al, 2004). AlI 

these applications indicate that dye visualization-based imaging methods can be used to 

determine the transport processes of chemicals in porous media in an economical and 

quantitative way during laboratory experimental studies. 

5.2 The Advective-Dispersive Transport in a Porous Column 

Photographic and schematic views of the experimental configuration used for modelling 

the movement of the chemical dye solution in the idealized porous column are shown in 
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Figures 5.1 and 5.2 respectively. The apparatus consists of a senes of precision 

manufactured glass cylinders of internai diameter 15cm, length 61 cm and wall thickness 

0.50cm that are connected to form a one-dimensional column 102cm length. The use of 

the smooth walled glass cylinders both minimizes damage due to the abrasion of the 

interior surface by the porous material and provides a relatively distortion free transparent 

surface for the observation of the chemical dye migration pattern. The porous medium 

consists of a packed bed of glass spheres (of specific gravity approximately 2.5) with 

sizes ranging from 150,um -212,um. The glass beads are placed in the column with water 

to a height of 61 cm and to a porosity roughly corresponding to 38.5%. The Dupuit

Forchheimer hydraulic conductivity of the porous column is determined by conducting 

conventional falling he ad tests and it was measured as k = 2.05 X 10-4 m / s. A water 

soluble sodium ch/oride acid red dye is mixed with water to make a dye solution at a 

concentration of Ig/L. This dye solution is placed above the porous column under the 

condition of no flow (valve c1osed) and used as the tracer to illustrate the transport 

Figure 5.1 A photographic view of the 
column apparatus 
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Figure 5.2 A schematic view of the 
experimental column 



process In the porous column. Careful placement of the chemical dye solution is 

necessary for eliminating the premature migration of the chemical dye solution into the 

porous region with the result that the porous medium section of the column can be 

regarded as free of any chemical dye. Furthermore, since the preparation time for the 

experiment is sufficiently short, the initial diffusion from the column of the dye solution 

to the water-saturated porous medium can be neglected. The transport of the dye solution 

through the porous column is caused by a gradient of the hydraulic potentials applied at 

the inlet and outlet boundaries of the porous column. The hydraulic potential at the outlet 

boundary of the porous column is kept fixed but the hydraulic potential at the inlet 

boundary is kept either constant or decaying with time, resulting in an advective flow 

velocity that is uniform in space but either constant or exponentially varying in time. 

5.3 The Governing Equation and an Analytical Solution 

The non-reactive advective-dispersive transport of the chemical dye solution in the fluid

saturated and non-deformable porous column can be described by in the following Initial 

Boundary Value Problem (IBVP) (Philips, 1991; Charbeneau, 2000; Selvadurai, 2000a), 

ac ac a ac 
-+vo exp(-k)---(D-) = 0, XE [O,/],tE [O,t'] at ax ax ax 
C(x,O) = 0, XE [0, /] 

C(x,tt=o = CoH(t), aCI = 0 ax x=/ 

(5.1) 

where C(x,t) is the concentration of the chemical dye solution measured per unit volume 

of the fluid; X is the spatial coordinate; t is time; t· is total time duration; D is the 

coefficient of the hydrodynamic dispersion including the molecular diffusion (D·) and 

the mechanical dispersion (DL) (Bear, 1972); Vo is the advective flow velo city which is 

defined as Vo = k(Ho - H D)1l based on Darcy's law; k is the Dupuit-Forchheimer 

measure of the hydraulic conductivity of the porous medium and / is the length of the 

porous column. The parameter Â. occurring in (5.1) is defined as Â. = kil which can be 

interpreted by appeal to Darcy flow in the porous column. In the boundary conditions of 
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(5.1), Co is a constant concentration and H(t) is the Heaviside step function. For constant 

flow velo city and dispersion coefficient, an analytical solution of the initial boundary 

value problem defined by (5.1) was given by Ogata and Banks (1961) and takes the form 

C(x,t) = .!..[erfc( x-vt )+exp(_XV)erfc(--=X+vt) ] 
Co 2 2~Dt D 2~Dt 

(5.2) 

where erfc(a) is the complimentary error function which is defined by (4.10). 

5.4 Image Processing Model 

The transport of the dye solution in the porous column is physically a three-dimensional 

process, and a key aspect of experimental modelling of such a transport process involves 

the measurement of the concentration of the chemical dye solution within the glass bead 

column. An essential constraint on the measurement of the chemical dye concentration in 

the porous column is that the procedure should be non-invasive, and the presence of a 

measuring device within the porous medium would influence the flow pattern and 

consequently the transport processes. One effective non-invasive way to measure the dye 

concentration is to use computed tomographic imaging technology to measure a 

radioactive tracer introduced into the pore fluid to illustrate the flow transport pattern 

inside the porous medium. But this methodology usually encounters difficulties in 

obtaining a high resolution for the image, the need for a large scale sample and the fast 

acquisition of image samples. Since the experimental modelling of the transport process 

in a porous column performed in this chapter is carried out to validate the numerical 

scheme developed in the previous chapter for the advection-dominated transport problem, 

only the transport pro cess of the dye solution at the interface between the glass tube and 

cylindrical surface needs to be measured for validation purposes. Due to this 

consideration and the physical arrangement of the test column, an easily implemented 

colour visualization-based image processing technique can be used to determine the 

chemical dye concentration along the surface of the porous column. In this image 

processing method, the dye solution is used as the tracer and a digital camera is used to 

record the colour images of the migration of the chemical dye solution along the 

cylindrical surface of the glass bead column. Based on the fact that different 
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concentrations of the dye solution in the glass bead column can be illustrated by different 

colors or grey intensities, the quantitative distribution of the concentration of the dye 

solution along the surface of the porous column can be determined by colour image 

means. In this section, the basic steps involved in the image processing procedure will be 

described, inc1uding 

• image acquisition 

• image enhancement 

• image calibration 

• image quantification. 

5.4.1 Image Acquisition 

Since the colour representation will be used as an indication of the concentration of the 

chemical dye solution along the column, the acquisition of the colour image is an 

important stage in the image processing procedure. The transport of the dye solution 

along the cylindrical interface between the glass container and the porous column is 

recorded at specific time intervals using a CCD (Charge Coupled Device) digital camera 

with a digital sensor capacity of 5 Mega pixels. A strong diffus ive light placed in front of 

the column was used to eliminate any influence of ambient lighting. The camera was 

positioned in front of the porous column and at the mid-point level of the spatial range of 

interest, and its settings, such as the shutter speed, aperture and white balance, 

determined under the conditions of the diffus ive lighting, were maintained the same for 

an experiments, inc1uding the calibration exercises. An image strip of 915 x 20 pixels, 

which is approximately 60cm long and 1.5cm wide, is extracted from the photographic 

image along the cylindrical surface of the porous column for the purpose of determining 

the concentration of the dye solution along the visible cylindrical surface of the test 

column. Since the diameter of the glass tube is much greater than the width of the image 

strip, any light distortion due to the curvature of the glass tube can be neglected in the 

analysis of the extracted image strip. A typical record of the migration of the chemical 

dye solution through the porous column is shown in Figure 5.3. 
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Figure 5.3 A typical photographie record 

5.4.2 Image Enhancement 

It should be noted from Figure 5.3 that the visual image of the migration of the dye 

solution through the porous column, recorded by the digital camera, contains not only the 

colour of the fluids in the pore space (i.e. either the chemical dye solution in the dye

dosed zone or water in the water-saturated zone) but also the colour of the glass beads 

adjacent to the cylindrical surface of the column. Only the colour distribution of fluids in 

the pore space should be considered for the purpose of the image analysis. In order to 

obtain the colour distribution of the dye solution of different concentrations in the pore 

space, the image can be enhanced by interpreting the colour of the glass beads as noise 

imposed on the colour representation of the dye solution and by removing it from the 

image. The photographie records captured by the digital camera are truec%ur images in 

the form of two dimensional digital arrays of pixels. The realistic area porosity on the 

surface between the glass tube and the glass bead column is larger than the volumetrie 

porosity of the column that is 38.5% (Garbocai et al., 1999). For glass spheres, the 

theoretical estimates for the area porosity on the surface of glass beads range from 47.5% 

for a cubic packing to 26% for a hexagonal packing (Corapcioglu and Fedirchuk, 1999). 

Therefore, it can be assumed that area porosity over a section at the interface between the 

glass tube and the porous column is close to 40%. Consequently, it can be concluded that 

approximately 40 percent of the pixels in an image of the sample contains the colour 

representing the pore fluids in pore space and 60 percent of pixels contains the colour 
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contribution from glass beads. Furthermore, since an image strip of a physically 60-

centimeter long porous column contains 915 pixels in length, a 5 x 5 pixel neighborhood 

in the image strip should correspond to a lx 1 cm 2 area on the cylindrical surface of the 

glass bead column, the size of which is about 50 to 70 times of the diameter of the glass 

bead. Such Ixl cm2 area can be considered as a REV (Representative Elementary 

Volume) on the surface of the glass bead column. Therefore it can be concluded that for a 

5x5 pixel neighborhood in the image strip, on average, 10 out of 25 pixels (i.e. 40%) 

contain the colour representing the dye solution in the pore space and the remaining 15 

pixels contain the colour representative of the glass beads. 

The truecolour image at each pixel is composed of the three primary colours, red, green 

and blue, i.e. (r,g,b) (Russ, 1994), and it can be transformed from the ROB colour space 

into an HSI colour space expressed in terms of the Hue, Saturation and Intensity. The 

intensity 1 is defined as 1 = (r + g + b) / 3 and it can reflect the colour variation in the 

grey scale. For example, for a typical image shown in Figure 5.4(a), the variation in the r, 

g, b colour components along a vertical line at the centre of the column are shown in 

Figure 5.4(b) and the corresponding intensity profile along this verticalline is shown in 

Figure 5.4(c). It should be noted from Figure 5.4(b) that the red colour component of the 

image in both dye-dosed and water-saturated zones in the image is almost uniformly 

distributed. The green and blue colour components, however, vary significantly in these 
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Figure 5.4 The distribution of the r, g, b colour components and the intensity 
along the vertical profile line, (a) an original image, (b) r, g, b colour 
components, (c) intensity 
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zones, resulting in a low intensity in the dye-dosed zone and a high intensity in the water

saturated zone, which can be observed in Figure 5.4(c). The oscillations in the intensity 

profile correspond to the colour noise due to the light reflection resulting from the glass 

spheres adjacent to the surface of the column. In general, because of the light reflection, 

the intensity of the glass spheres is lower than that of the ambient solutions in both the 

dye-dosed zone and the water-saturated zone. Since large glass bead particles introduce 

the worst noise into the image, the larger glass beads, with the size ranging from and 

650).lm -850).lm, were used as the porous medium in the illustration shown in Figure 5.4 

for a more clear demonstration of the colour and intensity variation phenomenon. 

In conclusion, if 25 pixels in the above 5 x 5 neighbourhood taken from the dye-dosed 

zone are sorted in terms of the intensity increment, then the top 10 elements in the 

ordered set will contain the colour representing the dye solution in the pore space and the 

remaining 15 elements will contain the colour related to the glass spheres. A similar 

result can be obtained for the 5 x 5 pixel neighbourhood taken from the water-saturated 

zone in the image since the intensity of the water in the pore space is also higher than that 

of the glass spheres in the contact region. A median of the top 10 elements of the ordered 

colour set is chosen to replace the colour at the central pixel of the 5 x 5 neighbourhood. 

Therefore, if the colour at this central pixel corresponds to a glass sphere, then it will be 

replaced by the colour of its ambient fluids using the order-statistics filtering procedure 

just described (Gonzalesz and Woods, 2002). The colour representation of the glass beads 

can be removed from the image by applying the order-statistics filtering to each pixel in 

the image. After the order-statistics filtering process, a linear spatial filtering procedure 

is then applied to smooth the image by means of a weighted averaging of a pixel with its 

neighboring 24 pixels. In this procedure, the value at the central pixel in the 5 x 5 

neighborhood is replaced by the weighted average of the 25 elements of the 5 x 5 array. 

Figure 5.5 shows an example of the image enhancement procedure. The image strip 

shown in Figure 5.5(a) is extracted from the photographie record contained in Figure 

5.4(a). Some white spots can be observed in both the dye-dosed and water-saturated 

zones in the image due to the light reflection from certain glass spheres adjacent to the 

surface of the porous column. These reflection spots correspond to large oscillations in 
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the intensity profile shown in Figure 5.4(b), and they can be removed by using the image 

filtering procedure described above. A schematic diagram of the 5 x 5 pixel image 

neighbourhood isolated from the original image is shown in Figure 5.5(b). This 5x5 

image array is sorted in terms of the intensity increment (Figure 5.5(c». The colour 

median of the top 10 elements in the ordered set is then selected for the replacement of 

the colour of the central pixel in the 5 x 5 pixel neighbourhood. Then, a linear smoothing 

filter is applied to the image with a weighted kemel shown in Figure 5.5(d). The final 

enhanced image, shown in Figure 5.5(e), contains a noise-free colour distribution. 

(a) (b) (c) (d) (e) 

Figure 5.5 The image enhancement procedure, (a) an original image, (b) a 
schematic view of the 5 x 5 pixel neighborhood taken from the original 
image, (c) the ordered colour set of the neighbourhood in the intensity 
increment, (d) the colour redistribution of the 5 x 5 pixel array and the 
weighting kemel and (e) the consequent enhanced image 

5.4.3 Image Calibration 

The colour distribution in the enhanced images, which are also the truecolour images, can 

be expressed in terms of the pixel position (i,j) in the following form 

(5.3) 
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If the relationship between the primary colour coordinates (r, g, b) and the concentration 

of the chemical solution, C, is known, i.e. 

C = C(r,g,b) (5.4) 

then the quantitative concentration of the dye solution at each pixel in the image can be 

determined from the colour representation. This process is called the image quantification. 

In order to determine this mapping from the colour to the concentration level, preliminary 

tests should be performed to calibrate the concentration level of the chemical dye solution 

in its in situ condition within the porous column. In the preliminary calibration tests, the 

glass beads were placed to the reference porosity in seven dye solutions of known 

concentrations, 0, 0.05, 0.1, 0.25, 0.5, 0.75 and 1.0 g/L, to develop a relationship between 

the concentrations of the dye solution and their colour counterparts within the porous 

column. Figure 5.6 presents the photographie records of the seven columns saturated with 

the dye solution at different concentrations. 

The narrow image strips are extracted from these photographie records along the porous 

column to make seven colour image samples. These image samples were enhanced to 

extract the colour representation of the dye solution in the pore space by using the image 

filtering procedure described previously. The corresponding enhanced images shown in 

Figure 5.7(a) indicate that the colour image varies with the concentration of the chemical 

dye solution in the porous medium. These colour images can therefore be used as the 

database for interpreting the concentration of the dye solution on the cylindrical surface 

of the porous column, and they represent seven points in the planes of the concentration 

of the dye solution vs. the primary red, green and blue colour components shown in 

Figure 5.7(h). A cubic spline interpolation is applied to the se sample points to generate 

smooth piecewise polynomial curves for each colour component (Figure 5.7(b)). These 

interpolating curves represent a mapping (i.e. (5.4)) between the concentration of the dye 

solution and its colour counterpart in the pore space, and they can he used as the 

reference in the image quantification procedure to convert the colour representation to the 

quantitative estimate of the dye concentration in the pore space on the cylindrical surface 

of the porous column. 
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(a) (b) (c) (d) (e) (f) (g) 

Figure 5.6 The photographie records of seven calibration samples in fine glass 
bead columns with the dye solution concentration of (a) 0.0, (b) 0.05, 
(c) 0.1, (d) 0.25, (e) 0.5, (f) 0.75, (g) 1.0 g/L 
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Figure 5.7 (a) Enhanced images of seven calibration samples and (b) their 
corresponding cubic spline fittings for 3 colour components 

5.4.4 Image Quantification 

The colour-concentration mapping (5.4) used to quantify the images is defined on a 

colour set B created by the interpolating curves of seven calibration samples shown in 

Figure 5.7(b). However, the observed colour (r;b ,g;b ,b;b) at a pixel (i,j) in the image 
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of the transport process of the dye solution in the porous column, captured by a digital 

camera and enhanced through the image filtering procedure, may not necessarily belong 

to the colour set B, i.e. (r;h ,g~h ,b~h) e B, due to either experimental errors or the 

filtering process. Therefore, the projection (r;, g~, b~) of the observed colour 

(rt ,g~b ,b;b) in B should be used for the purpose of colour quantification at the pixel 

(i, j) of the image. The projected colour (r;, g~, b;) in B can be determined by means of 

a shortest distance concept: i.e. 

P(r:',g~.,b~.) = min P(r,g,b) 
y y y (r,g,b)eB 

(5.5) 

where P represents a Euclidean norm of (rt ,g~b ,b;b) to the colour set B, i.e. 

(5.6) 

By substituting (r; ,g~ ,b~) into the mapping (5.4) determined from the interpolating 

curves shown in Figure 5.7(b), the quantitative concentration of the chemical dye solution 

at the pixel Ci, j) can be determined as 

(5.7) 

Figure 5.8 shows the image quantification procedure used to digitize the colour 

distribution of the concentration of the dye solution in the visible pore space during its 

transport in the porous column. A photographic record of the transport of the dye solution 

along the porous column captured by the digital camera at a specified time is shown in 

Figure 5.8(a). The corresponding enhanced image strip extracted from the central part of 

the column in the photograph is shown in Figure 5.8(b). The colour equivalent of the 

concentration profile determined using the image quantification procedure is shown in 

Figure 5.7(c) and a colourbar shown in Figure 5.7(d) reflects the colour-concentration 

mapping. Finally, the numerical values for the normalized concentration are shown in 

Figure 5.7(e). 
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Figure 5.8 The quantification of the concentration distribution of the dye solution 
at the cylindrical surface of the porous column, (a) a photographic 
record, (b) an image strip, (c) the colour quantification, (d) the 
colourbar and (e) the quantitative distribution of the dye concentration 

5.5 Experimental Results 

By applying the image enhancement and image quantification procedures shown in 

Figure 5.8 to a sequence of images obtained at specified time intervals, the transport 

process of the dye solution at the visible cylindrical surface of the glass bead column can 

be quantified. Figure 5.9 shows the quantitative estimates of the transport processes, over 

the plane of dimensionless variables X(= x Il) vs. T(= kt Il), of the dye solution with 

the concentration of 1.0 g/L on the cylindrical surface of the glass bead column. The 

migration of the dye solution takes place with a constant Darcy flow velocity v (= 

k(Ho -HD)/no/)= 2.18 x IQ-4m/s, initiated by the initial boundary hydraulic potentials 

Ho = 0.70m and H D = 0.45m applied, respectively, at the inlet and outlet boundaries of 

the porous column. The constant movement of the breakthrough front of the dye solution 

can be clearly seen in Figure 5.9. The fact that the Reynolds number 

Re(= pvd / Ji = 0.033 - 0.046) associated with the flow in the column is much lower 

than unity points to the applicability of Darcy's law. 
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Figure 5.9 Experimental results of the transport process of the chemical dye 
solution in the porous column 

5.6 Inverse analysis 

5.6.1 Parameter Identification 

The transport process of the dye solution in the hydraulically homogeneous column of 

glass beads is govemed by the hydraulic conductivity of the porous medium and the 

hydrodynamic dispersion coefficient of the chemical dye solution in the column of glass 

beads. The hydraulic conductivity of the porous column can be measured by conducting 

conventional constant or falling head tests, but the measurement of the hydrodynamic 

dispersion coefficient is less straightforward and usually requires a formaI parameter 

identification application. Compared with the initial boundary value problem stated by 

(5.1), which is usually called the forward problem, the parameter identification process 

can be referred to as the inverse problem (Sun, 1994). In the forward problem, the 

temporal and spatial distribution of the chemical concentration over the domain is 

determined by the goveming equation and system parameters via analytical or 

mathematical approaches; while in the inverse problem, the system parameters (such as 

the hydrodynamic dispersion coefficient) are determined by the observation of the 

temporal and spatial distribution of the chemical concentration. A widely used approach 

for the determination of the physical parameters in the field of geological sciences is the 
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lime lag method (Grathwohl, 1998). Here, however, an indirect method will be used for 

the identification of the coefficient of the hydrodynamic dispersion of the dye solution in 

the column of glass beads, since this method provides a general approach which can be 

used to identify physical parameters in other fields such as hydrology, geology, ecology 

etc. (Gottlieb and DuChateau, 1996). The basic concept underlying the indirect method 

for parameter identification is to transfer the inverse problem into an optimization 

problem by means of the Output Least Squares (OLS) criteria of the difference between 

the observation and the calculation of system states (e.g. the concentration of the 

contaminant) (Sun, 1994). Such methods usually require the adjoint state equation of the 

system, and the different derivations of the adjoint state equation will lead to different 

indirect methods. Isakov (1998) has addressed the issues of the convergence, uniqueness 

and stability of the inverse problem. 

The optimization problem used in this section for identifying the hydrodynamic 

dispersion coefficient D was created by using the OLS criterion relating the observed and 

estimated distributions of the chemical dye concentration, which is expressed as 

t' 1 

J(D) = IIC(-,.,D) - C:b (-,·)11: = J J(C(x,t ,D) - C;Ob (x,t)Y dxdt ~ minp (5.8) 
00 

where J(D) is the objective function of the optimization problem; C:b (x, t) is the 

experimentally observed chemical dye concentration along the column obtained from the 

image processing technique; C(x,t,D) is the estimated chemical dye concentration 

obtained from either an analytical solution or a computational modelling; and the dot in 

the expression refers to the independent variable. The optimal problem (5.8) can be 

solved by means of Newton-type methods (Modified-Newton, Quasi-Newton, etc), in 

which the descent orientation of J(D) is required. In general, it is difficult to directly 

calculate the orientation of the descent direction of J(D) , since the objective function of 

the optimization problem (5.8) has a complex form, and cannot be expressed as a 

straightforward mathematical function. It is, however, shown from the Fréchet derivative 

that the descent direction of J(D) can be determined by the adjoint state of the dye 

concentration. 
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5.6.2 The Fréchet Derivative and the Steepest Descent Direction 

It can he assumed that the concentration of the chemical dye solution C is a function of 

the spatial coordinate x, the time t and the hydrodynamic dispersion coefficient D, i.e. 

C = CCx, t; D) . The hydrodynamic dispersion coefficient D can also he a function of the 

distance x and the time t, and it can admit a small increment of the form t5 D = e Tl( x, t) , 

where e is a scalar parameter, Tl(x,t) is a given function in the space L2(Q) and 

Q = [O,I]x[O,t·]. The Fréchet derivative of C with respect to D along the direction Tl 

can he defined as 

C· = l' C(x,t;D+eTl)-C(x,t;D) = C' ( 'D) ( ) lm D x,t, Tl x,t 
e~O+ e 

(5.9) 

Assuming that D' E L 2 (Q) is the optimal parameter of the equation (5.7), 'Tf D E U ad 

(where Uad is an admissible set of D) and 'TfeE [0,1] such that (l-e)D· +eD = 

D· + e( D - D·) E U ad , the following relationship can be made 

J(D*)~J«(1-e)D* +eD)=J(D* +e(D-D*)) (5.10) 

with the result 

1 r. . • ] -LJ(D +e(D-D ))-J(D ) ~ O. 
e 

(5.11) 

From the definition of the Fréchet derivative, the following inequality can be obtained as 

e approaches zero 

(5.12) 

It is implied from (5.12) that the descent direction of J(D) should be equal to - J'(D·). 

For the purpose of determining the derivation of J(C) , the adjoint state 'f/ of the 

concentration is introduced, which satisfies the following adjoint problem of the original 

IBVP defined by (5.1) 
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alf/ +valf/ +~(Dalf/)=2(C_COb) 
al ax ax ax 

* 1 a lf/I * lf/(x,t) =0,- =0, XE [O,l],tE[O,t ] 
x=o ax 

x=/ 

(5.13) 

where Cob is the observed value of C. App1ying the Fréchet derivative to the IBVP 

defined by (5.1) gives 

aë aë a aë a ac 
af+v ax -ax(D ax)-ax(17 ax)=o, xE[O,/],tE[O,t*] 

ë(x,o) = 0, XE [0,/] (5.14) 

Cl •. o= 0, (D~: +'1~~L =0, tE [of] 

Multip1ying the first equation in (5.13) by ë, then integrating the result over the domain 

il and taking into consideration the first equation in (5.14) 1eads to the following 

re1ationship 

(5.15) 

Altemative1y, with the definition of J(D) and taking the inner product of J'(D) and 17, 
the following re1ationship can be obtained 

J'(D)17 = lim J(D + E17) - J(D) 
&-->0+ E 

= !~~: ~IC(."D+ê1])-ctb(·,)II: -IICc-,.,D)-ctbC-,)II:} (5.16) 

= 2(Cc-,.;D) - C:b ,ë(.,;D))n 

Comparing (5.15) and (5.16) gives 

(5.17) 

Since 17 is an arbitrary function, the direction of the steepest descent of J(D) can be 
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expressed as follows 

, t' 1 ac a 
-VJ(D)=-J(D)=- J J-1 dxdt 

o oax ax 
(5.18) 

5.6.3 The Hydrodynamic Dispersion 

With the descent direction of the objective function J(D) defined by (5.18), a Quasi

Newton iterative algorithm (Murray, 1972; Engelman et al, 1981; Soria and Pegon, 1990; 

Gottlieb and DuChateau, 1996) can be used to solve the optimization problem stated by 

(5.8) to identify the hydrodynamic dispersion coefficient D based on the experimental 

observations. In order to ensure that the estimated parameter is physically admissible, a 

constraint, i.e. DJ S D S Du (where DJ and Du represent the lower and upper limits of 

the hydrodynamic dispersion coefficient D, respectively), needs to be applied to the 

optimization problem. For the purpose of the inverse analysis exercise, the experimental 

results for the transport of the chemical dye solution in the porous column shown in 

Figure 5.9 are used for the identification of D. Figure 5.10 shows the flowchart for a 

quasi-Newton iterative procedure for the optimization problem (5.8). Table 5.1 gives the 

iterative results of the quasi-Newton algorithm for the hydrodynamic dispersion 

coefficient of the transport of the dye solution in the porous column with the initial 

estimate Do = 5 x 10-9 m2 
/ s . Finally, the hydrodynamic dispersion coefficient is 

identified as 

D = 1.361xlO-8 m2 
/ s. (5.20) 

Figure 5.11 shows the comparison of experimental results taken at time t=360s for the 

transport of the dye solution in the porous column with the results given by the analytical 

solution (5.2) and the operator splitting MLS scheme using the hydrodynamic dispersion 

coefficient D defined by (5.20). In the numerical computation, the spatial domain is 

discretized into 200 elements with the element length of h = 0.003m . With such 

elemental size, the Péclet number has a value as Pe = v h / D = 48 over the computational 

domain, and therefore the transport process of the dye solution is advection dominant. 
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.------tI For given Do, calculate C with (5.2) 

and lf/ with (5.13). 

Detennine d n = Bo / go; 

D, = Do + Podn E Uad such that 

J(D,)=min{J(Do +pdn)IP~O}, 

g, =-VJ(D,); 

B 
- g, -go ,- . 

D,-Do 

Figure 5.10 The flowchart of the quasi-Newton iterative procedure for the 
optimization problem of the inverse analysis, where Â, and ~ are 
two tolerance criteria 

Table 5.1 Iterative results for identification of D 

Do (m2/s) Iteration J -VJ D (m2/s) lI/(n) 

1 8.694xIQ-2 4.686xlO2 1.147xIQ-8 1.464xIQI 
5x 10-9 2 2.317x 10-2 1.155xIQ2 1.314xIQ-8 4.626xIQI 

3 2.025xIQ-2 7.230xIQI 1.361 x 10-8 3.414xIQO 
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Figure 5.11 Experimental, analytical and numerical results at t=360s for the 
transport process of the chemical dye solution in the porous column 

As mentioned previously, the process of hydrodynamic dispersion in the porous medium 

generally includes both a molecular diffusion component characterized by D' and a 

mechanical dispersion component characterized by DL' i.e. D = DL + D' . The diffusion 

of the contaminant in natural porous media is influenced by the tortuosity, constrictivity 

and effective transport-through porosity of the porous medium, and therefore its value 

should be lower than that applicable to the diffusion of the chemical species in water. The 

molecular diffusion of a chemical in liquid depends on the interactive forces between the 

molecules which account for a frictional drag and therefore they are mainly affected by 

the dynamic viscosity of the fluid. Several empirical correlations have been developed to 

determine the effective diffusion coefficient D' of a chemical in porous media 

(Grathwohl, 1998). The largest estimated value of D' should be lower than 

2.0xlO-9 m2 
/ s (Freeze and Cherry, 1979). Based on the physical properties of the 

porous column and the basic chemical components of the dye used in this experiment, the 

value for the molecular diffusion in the transport processes of the dye solution in the 

porous column can be estimated at D' = 1.0xlO-1om2 
/ s. According to the identified 

hydrodynamic dispersion coefficient (5.20), the dominant dispersive process during the 

transport of the dye solution in the porous column is through mechanical dispersion. The 
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mechanical dispersion coefficient, DL' is generally assumed to be directly proportional to 

the magnitude of the flow velocity (Taylor, 1953; Bear and Bachmat, 1992), and for one

dimensional problems it has a form DL = aL Ivl ' where aL is referred to as the 

longitudinal dispersivity and Ivl is a velocity norm. Using the values of D and D· thus 

obtained, the longitudinal dispersivity, aL' of the dye solution in the glass bead column 

can be evaluated as 

(5.21) 

The determined dispersivity can be used in an analytical solution or numerical modelling 

to simulate an advective-dispersive transport process in the porous column with a 

transient flow field. 

5.7 The Comparison of Analytical, Numerical and Experimental Results 

In this section, the transport of a plug of the chemical dye in the glass bead column with a 

time-dependent flow velo city is considered. The chemical plug is located in the region 

[0.155m, 0.305m] within the porous column, and is allowed to migrate through the 

column driven by a falling upper boundary hydraulic potential. The reducing hydraulic 

potential gives rise to a spatially uniform advective flow velocity in the porous column 

but with a time-dependent variation of a negative exponential form. The initial inlet and 

outlet boundary potentials applied to the porous column are set as Ho = O.96m and 

H D = O.26m respectively. Figure 5.12(a) shows a photographic record of the movement 

of the plug of chemical dye solution during its transport in the porous column at a 

specifie time 7 = 21 Os . Figure 5 . 12(b) shows the experimental results for the normalized 

concentration over the plane of the dimensionless variables X and T , obtained by using 

the image processing technique. 

Selvadurai (2004b) gave an analytical solution for the transport problem of a chemical 

plug in an infinite region with an exponential decaying flow velo city and constant 

dispersion coefficient, which can be written as follows 

119 



1 0 

(a) (b) 

Figure 5.12 A typical photographie record (a) and experimental results (b) of the 
transport processes of the chemical dye plug with the time dependent 
flow velocity in the glass bead column 

[ 

{l-eXP(-Ât)}] [ b {l-exp(-Ât)}] C(x,t) 1 -x-a+vo Â. 1 -x- +vo Â. 
--=-erf --erf , x<vot 
~ 2 2fJDt 2 2fJDt 

(5.22a) 

C(x,t) =.!..erfi 0 Â. -.!..erfi 0 Â. , x~vot 
{

X-b-V {l-exp(-Ât)}] {x-a-v {l-eXP(-Ât)}] 

Co 2 2fJDt 2 2fJDt 
(5.22b) 

where a:::;: b, and [a, b] represents a finite or infinite interval region which is initially 

occupied by the chemical. The analytical solution (5.22) can give an approximation to the 

transport of the dye plug in the porous column considered in this section. Figure 5.13(a) 

shows this analytical approximation with [a,b] = [0.155,0.305] and the approximated 

dispersion coefficient is determined by 

~. kt 8 2 
D = D +aLvO exp(--) = 3.16xlO- m / s 

1 
(5.23) 

The other transport parameters, such as k and Â, take the same values as defined before. 

Figure 5.13(b) shows the corresponding numerical results obtained from the time

adaptive operator-splitting MLS scheme developed in Chapter 4. In the numerical 
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computation, the hydrodynamic dispersion coefficient depends on the transient flow 

velocity and is defined as D = D· + aL Ivl ' where the longitudinal dispersion aL is 

determined from (5.21). 
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Figure 5.13 The results of (a) the analytical solution and (b) the numerical 
simulation obtained using the time-adaptive operator splitting MLS 
scheme for the transport process of the chemical dye plug with the 
time-dependent flow velocity in the glass bead column 

Figure 5.14 shows the comparison of the experimental results evaluated at the specific 

time 7 obtained from the image processing method, the analytical solution given by 

(5.22) with D determined by (5.23) and the computational estimates derived from the 

five stabilized schemes discussed in Chapter 2. In the numerical computations, the time

adaptive procedure and operator splitting technique discussed in Chapter 4 are used. The 

Crank-Nicolson time integration scheme is used with the PG, TG2 and LS schemes, and 

the Euler forward time integral scheme is used with TG3 scheme. In the MLS scheme, 

the upwind parameter and time weighting are determined by (3.37). It is shown from 

Figure 5.14 that the MLS and TG3 schemes give oscillation-free and non-diffusive 

numerical solutions for the advection-dominated transport of the dye plug, which are very 

close to the analytical solution. The difference between them is due to the values of the 

hydrodynamic dispersion coefficients used in the analytical solution and the numerical 

modellings. The PG and LS schemes give similar numerical results due to their similar 

distributions of the algorithmic amplitude and the phase velocity (see Chapter 3), and 
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both of these introduce oscillations into the numerical solution near its steep gradient. 

Finally, the TG2 scheme generates an overdiffusive solution to the transport problem of 

the dye plug. The close resemblance between the experimental results, analytical 

solutions and numerical simulations obtained from the time-adaptive operator-splitting 

MLS and TG3 schemes shown in Figure 5.11 indicates the effectiveness of the image 

processing technique in determining the quantitative distribution of the dye concentration 

in the visible pore space of the porous glass bead medium, as well as the accuracy of the 

time-adaptive operator-splitting scheme for the advection-dominated transport problems 

developed in the previous chapter. 
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Figure 5.14 A comparison of experimental, analytical and numerical results at 
t=210s for the transport of the dye plug in the glass bead column 
with the decaying flow velo city 

5.8 Discussion 

In this chapter, an effective and economical colour visualization-based image processing 

model is developed to accurately estimate the distribution of the concentration of a 
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chemical dye solution in the visible pore space as it migrates through an idealized porous 

column consisting of glass beads. A limitation of the application of the imaging technique 

to the transport process in the porous medium is that the visualization is restricted to the 

two-dimensional surface of a region of interest. Consequently, the transport phenomena 

of a dye solution obtained from image processing techniques are restricted to the 

transport characteristics of the dye solution occurring between the wall of the glass tube 

and the cylindrical surface of the column of glass beads. The image processing model 

presented in this chapter can be used to determine the flow transport process of the 

contaminant on the two-dimensional surface in a quantitative and non-invasive way. 

However, the basic concepts underlying the image enhancement and the image 

calibration can be extended to Computerized Tomography (CT) techniques to determine 

the transport process of contaminants in the three-dimensional porous space of the porous 

medium. 

The inverse analysis for the parameter identification is the complementary aspect of the 

mathematical modelling of the transport problem in the porous medium. In the second 

part of this chapter, an inverse problem is created to identify the hydrodynamic 

dispersivity applicable to the advection-dominated transport of the dye solution in (or on 

the cylindrical surface of) the column of glass beads, by using the experimental results 

obtained from the image processing technique. The Fréchet derivative is used to 

determine the descent direction of the objective function employed in the optimization 

problem. The accuracy of the identified dispersivity coefficient, determined through the 

combined application of an image analysis and an inverse analysis, has been verified 

through numerical and experimental modelling of the movement of a plug of the dye 

solution in the porous column where the flow velo city is time-dependent. The close 

correlation between the experimental results and the numerical solutions also indicates 

the effectiveness of the image processing model for determining the concentration 

distribution of the chemical dye solution via colour visualization, and the accuracy of the 

time-adaptive operator splitting scheme for the advection-dominated transport problem. 
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CHAPTER6 

THREE-DIMENSIONAL AXISYMMETRIC ADVECTIVE 

TRANSPORTS 

The Fourier analysis conducted in Chapter 3 indicates that the Courant number has a 

significant influence on the numerical behaviour of the stabilized semi-discrete Eulerian 

Finite Element Methods (FEMs) for the advection equation, and certain stabilized 

schemes can give accurate solutions for the advection equation with the Courant number 

criterion of Cr = 1. Based on this analysis, a time-adaptive operator splitting scheme was 

deve10ped in Chapter 4 and successfully applied to the spherically symmetric advection

dominated transport problems for an infinite domain. In Chapter 5, the time-adaptive 

scheme was validated with experimental modelling of the advection-dominated transport 

of a chemical dye solution in a porous column. However, it should be noted that the time

adaptive scheme may not be efficient for the multi-dimensional transport problem due to 

the non-uniform distribution of the advective flow velocity along the steep front of the 

solution. On the other hand, it is implied from the definition of the Courant number (Le. 

Cr = v!l.tJ h ) that, not only the time step M, but also the mesh size h can be adaptively 

modified based on the magnitude of the flow velocity and the Courant number criterion 

of Cr = 1. The coordinate transformation and corresponding computational results for the 

spherically symmetric advective transport problem in Chapter 4, indicated that the mesh 

in the regions remote from the cavity should also be refined due to the low magnitude of 

the flow velocity. In this Chapter, therefore, a mesh refining adaptive scheme will be 

developed for the multi-dimensional transport problem, and it will be used for modelling 

both linear and nonlinear transport problems related to a spherical or disc-shaped cavity 

in a three-dimensional axisymmetric fluid saturated porous region. Only the advective 

transport process will be considered in this chapter for the sake of simplicity. 
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6.1 The Mesh Refining Adaptive Scheme 

Before developing the mesh adaptive scheme, we will first review the upwind function a 

and the time weighting (} in the MLS scheme, which are determined by (3.37) (i.e. 

a = 3/2 and (} = 1/3). It has been shown that with these values of a and (}, the MLS 

scheme can generate an accurate solution for the purely advection equation with the 

additional Courant number constraint Cr = 1. When these constraints are satisfied it is 

found that no errors occur in the algorithmic amplitude and the phase velo city of the 

MLS scheme for the advection equation. It should be noted that this numerical advantage 

of the MLS scheme for the advection equation is sensitive to the Courant number. For 

one-dimensional problems, the conditions in (3.38) can be easily satisfied by selecting the 

time step via a time-adaptive procedure based on the Courant number criterion. With the 

multi-dimensional transport problems, however, especiaUy with finite element 

discretizations that use arbitrary-shaped elements, it is difficult or ev en impossible to 

select a single time step to satisfy the Courant number criterion Cr = 1 at aU locations of 

a three-dimensional contaminant migration front that has either high gradients or 

discontinuities. For example, if the Courant number exceeds unit y in certain elements in 

the location of the steep front ofthe solution, the MLS scheme with a = 3/2 and (} = 1/3 

becomes unstable in these subdomains because Çh > 1. Therefore, conservative values of 

a, (} and Cr should be used to ensure that Çh ~ 1, which would render the 

computations stable. This implies that the condition of Çh = 1 may not be satisfied. The 

determination of conservative values of a, (} and Cr should be based on a consideration 

of the following aspects: (i) if Çh = 1 is not satisfied, then the condition v· Iv = 1 should 

be satisfied; (ii) since there is only one equation available, one of two parameters a and 

(} can be determined beforehand, and usuaUy the time weighting (} is taken as (} = 1/2 

such that the scheme has higher accuracy in time (i.e. Crank-Nicolson integral scheme). 

Substituting (} = 1/2 into (3.36) gives the foUowing results for the phase velocity of the 

MLS scheme for the advection equation 

v 
=1 (6.1a) 

125 



• v 
=1 (6.1b) 

Equations (6.1) imply that there is no error in the phase velocity of the Crank-Nicolson 

MLS (CN-MLS) scheme for Cr = 1/2 or Cr = 1 if a = 4/3. Figure 6.1 shows the 

distribution of the algorithmic amplitude Çh and the relative phase velocity v· Iv of the 

CN-MLS scheme over the plane of the Courant number Cr E [0,3] vs. dimensionless 

wave number 0Jh E [0, Jr]. It should be noted from Figure 6.1 that, although (6.1) is 

satisfied, Çh will decay much faster for Cr = 1/2 than for Cr = 1. It implies that the CN

MLS scheme is more diffusive for Cr = 1/2 than for Cr = 1. 

1 

0.8 
0.6 

(a) 

3 0 3 

(b) 

Figure 6.1 Distributions of (a) the algorithmic amplitude and (b) the relative 
phase velocity of the MLS scheme with a = 4/3 and () = 1/2 for the 
advection equation over the plane of 0Jh vs. Cr 

Based on the above observations, the time-adaptive procedure should be coupled with the 

CN-MLS scheme to obtain a better numerical performance for the advection equation by 

using the following Courant number criterion: 

(Cr). = Ilvlliedt = 1 
le h. 

le 

(6.2) 

where ie indicates the element where the steep front of the solution is located, hie and 
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IIVllje are, respectively, the characteristic length and the magnitude of the flow velocity 

within the element ie. The location of the steep front of the solution in the multi

dimensional domain is determined through an error indicator E(e) , based on the first 

derivative of the solution for each element (Eriksson and Johnson, 1991) 

(6.3) 

where n j is the unit normal to the edge j of the element with the characteristic length 

hj and de is the boundary ofthe element. The term in square brackets in (6.3) represents 

the jump in the flux across the element edge. The locations (or elements) of the 

discontinuity or high gradient of the solution are determined by satisfying E(e) > fJ, and 

fJ is an error limiter which can be defined by fJ = 0.5· max(E(e)). 

For the transport problem of a steep front with a symmetric flow field in the 

computational domain discretized by the almost uniform triangle elements, the Courant 

number criterion can be approximately satisfied during the computation in the vicinity of 

the high gradient of the solution by choosing one time step tll as follows: 

(6.4) 

where N je is the total number of elements ie selected by (6.3). However, for the general 

transport problem with the arbitrary flow field, the h-refinement of a mesh-adaptive 

algorithm (Carey, 1979; George, 1991) should be used to modify the mesh size to satisfy 

the Courant number criterion (6.2). In such a mesh-refining adaptive scheme, the Courant 

number criterion (6.2) is used to refine the mesh in a quantitative way. Since the size of 

the element will be decreased in the mesh refinement, the elemental Courant number will 

increase. Therefore, in order to avoid high elemental Courant numbers, the criterion 

(Cr)je :;; 0.5 should be used in the mesh-adaptive algorithm, such that the Courant 

number in the refined elements is not greater than unity. In this approach, only the 

elements where the high gradient of the solution is present need be refined. The mesh 

refining algorithm within each time step can be summarized as follows: 
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1. Select the initial set of elements for refinement based on 

E(e) > f3 and (Cr)ie = Ilvt~t ~ 0.5; 
hie 

(6.5) 

2. Reduce the dimensions of aIl the edges or the longest edge of the selected 

triangles into half their originallength; 

3. Introduce new nodes at aIl divided edges and construct the new elements; 

4. Interpolate the variables of the unrefined mesh onto the refined mesh; 

5. Retum to Step 1 and repeat the procedure until no further edge division IS 

required. 

In the ensuing section, this mesh-adaptive scheme will be used to model the advective 

transport process of contaminants from a spherical cavity in a three-dimensional 

axisymmetric region. 

6.2 The Advective Transport from a Spherical Cavity 

In section 4.4, a time-adaptive MLS model was applied to the one-dimensional advective

dispersive transport problem in a sphericaIly symmetric region. Here, the sphericaIly 

symmetric transport problem from the cavity is recomputed using a three-dimensional 

axisymmetric computational mode!. Again, only the advective transport process will be 

considered in the computations. A quarter region of the three-dimensional axisymmetric 

computational domain of finite extent with an irregular mesh discretization is shown in 

Figure 6.2. Appropriate Neumann boundary conditions are prescribed on the plane 

surfaces to achieve the required symmetry. The parameters associated with the 

computations are specified as follows: the radius of the cavity a = 3 m, the external radius 

of the domain b = 30m , the potential head applied on the cavity boundary f/Jo = 100m and 

the Dupuit-Forchheimer measure of the hydraulic conductivity k = 0.03m/day. If the 

fluid is assumed to be incompressible with respect to the porous medium, the Darcy flow 

velocity determined by the potential at the cavity boundary and the far-field, theoretically 

prescribed at R ~ 00, is steady and can be expressed in the spherical polar coordinate 

system (R,e,<I» as 
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V
R 
(R) = (Joka 

R2 (6.6) 

Figure 6.2 The finite element discretization (consisting of 4192 elements) of the 
computational domain and the associated boundary conditions for the 
three-dimensional axisymmetric advective transport problem from the 
spherical cavity 
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Figure 6.3 Distributions of (a) the steady flow velocity pattern in the 
computational domain and (b) its magnitude along the radial direction 
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Figure 6.3 shows the pattern of velocity vectors during steady flow over the domain and 

its distribution along the radial direction. The radial flow velo city distribution in the 

computational domain (Figure 6.3(b)) indicates that the flow velo city is 1.0 m/day at the 

inner boundary R = a and less than 0.01 m/day at the outer boundary R = b. The 

analytical solution for the advective transport of a steep front from the cavity, with the 

steady radial velocity (6.6), was given in Chapter 4. Figures 6.4(a) and 6.4(b) show the 

analytical solutions, given by (4.41) and (4.42), for the locations of the chemical 

concentration profile in the porous medium at t=20 days and t=500 days, respectively. 
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(a) (b) 

Figure 6.4 Analytical solutions of the advective transport from a spherical cavity 
at (a) t=20 days and (b) t=500 days (Selvadurai, 2002a) 

6_2_1 Computations without Adaptive Schemes 

Before the application of the adaptive computational schemes, the numerical results for 

the above advective transport problem from the cavity, obtained using the MLS and 

SUPG methods with the Crank-Nicolson time-integration scheme, are presented. Figure 

6.5 shows the numerical solutions, at time t=20 days and t=500 days respectively, 

obtained using from CN-MLS scheme with a time step of dt = 2days. It is noted that 

when the steep front of the solution is located in the vicinity of the cavity, numerical 

oscillations are introduced into the solution due to the high magnitude of the flow 

velo city, giving rise to a high Courant number. When the steep front of the solution 
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migrates to a location remote from the cavity, oscillations are introduced again into the 

solution due to the small magnitude of the flow velocity, resulting from the low elemental 

Courant number in the location of the steep front. It has already been shown from Figure 

6.1 that the algorithmic amplitude Çh will approach unity at low values (approaching 

zero) and high values (greater than unit y) of the Courant number, but the deviations of 

the phase velocities of the high frequency wave components inc1uded in the solution at 
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Figure 6.5 Numerical results of the advective transport from a spherical cavity 
obtained using the CN-MLS scheme with Il! = 2.0days at (a) t=20 
days and (b) t=500 days 
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Figure 6.6 Nnumerical results of the advective transport from a spherical cavity 
obtained using the SUPG scheme with Ilt = 2.0 days at (a) t=20 days 

and (b) t=500 days 
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low or high values of Courant number will lead to the oscillations (also referred to in the 

literature as 'wiggles ') that either lead or trail the steep front. Similar numerical 

phenomena can be observed in the computational results obtained from the SUPG 

method for the advective transport from the cavity, which are shown in Figure 6.6. Here, 

the time step is also taken as Il.t = 2 days. Again, oscillations appear in the numerical 

solution at the start of the transport process; reasons for such oscillations were indicated 

previously in connection with the MLS scheme. 

6.2.2 Computations with the Mesh-Adaptive Scheme 

In order to remove the oscillations introduced by the numerical schemes, time- and/or 

mesh-adaptive procedures should be used during the computation based on the Courant 

number criterion of (6.2). This conclusion can be proved from the numerical 

computations obtained using the time-adaptive scheme, based on the observation that the 

advective flow field from the cavity is spherically symmetric and the elemental sizes are 

approximately uniform (see Figure 6.2). Figure 6.7 shows the numerical results obtained 

using the time-adaptive CN-MLS scheme in which the time step is determined by (6.4). 

Here the severe oscillations introduced by the CN-MLS (without the time-adaptive 

procedure) are removed. The initial time step of !:lt = 1 day increases to !:lt = 22 days at 

the end of the computation . 
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Figure 6.7 Numerical results of the advective transport from a spherical cavity 
obtained using the time-adaptive CN-MLS scheme with Cr = 1.0 at (a) 
t=20 days and (b) t=500 days 
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Since arbitrary trianglar elements are used in the finite element computation and the time 

step determined by (6.4) is an averaged value, the Courant number in certain elements 

where the steep front of the solution is located may not be exactly equal to unity. This 

discrepancy will lead to minor oscillations which can be observed in Figure 6.7(a). In 

addition, since the algorithmic amplitude of the CN-MLS scheme corresponding to 

Cr = 1 decays as the dimensionless wave number increases (see Figure 4.11), the 

solution is also smoothed near the steep front due to numerically-induced dispersion. One 

way to overcome this over-diffusion of the numerical results, as the magnitude of the 

flow velocity decreases, is to reduce the element size based on (6.3), rather than 

increasing the time step. The reduction of the elemental size has an effect equivalent to 

that of lowering the dimensionless wave number r.oh, thereby compensating for the decay 

in the algorithmic amplitude for the high r.oh. 

In order to illustrate the efficiency of the mesh-refining adaptive scheme, the 

computational domain is discretized with a coarse mesh consisting of 1048 elements, as 

shown in Figure 6.8. The corresponding computational results of advective transport 

from the spherical cavity at times 1=20 days and 1=200 days, obtained using the mesh

refining adaptive CN-MLS scheme, are shown in Figure 6.9. At these specifie times, the 

Figure 6.8 The discretization of the computational domain with a coarse mesh 
consisting of 1048 elements 
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corresponding mesh refinements yield 2035 elements and 28904 elements, respectively. 

Figure 6.10 shows the computational results at 1=20 days and 1=200 days, obtained using 

the mesh-adaptive SUPG scheme, where the refined meshes contain 1888 elements and 

10768 elements, respectively. Judging from the flow pattern in the region shown in 

Figure 6.2(a) and the criterion (6.2), it should be noted that the elements located remote 

from the cavity region should be subject to greater refinement than those located in the 

vicinity of the cavity. This mesh-refining character is reflected in Figures 6.9 and 6.10. It 

can also be illustrated from results shown in Figure 6.10 that the time-adaptive SUPG 

method exhibits oscillations in the vicinity of the steep front of the solution. These 

rJ ..... -;::-
~ 
0.: cr 

1.5 

-û5 
o 

1.5 

0.5 

0 

-Û.5 
0 

'-"". ", 
Timeo=20 dayt!< .' .. ' ..... ; 

," ...... " 

.... 

. ,,0';'" ...... 

30 

r 

(a) (b) 
r 

(c) (d) 

Figure 6.9 Numerical results and refined meshes obtained using the mesh-adaptive 
CN-MLS scheme, (a) 3D plot and (b) refined mesh at t=20 days, (c) 3D 
plot and (d) refined mesh at t=200 days 
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oscillations are greater than those introduced by the CN-MLS scheme due to errors in 

both the algorithmic amplitude and phase velocity of the SUPG method as discussed in 

Chapter 3. The computational results illustrated in Figure 6.9 show that the mesh-refining 

adaptive CN-MLS scheme can generate satisfactory numerical estimates for the linear 

advective transport in a multi-dimensional domain. 
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Figure 6.10 Numerical results and refined meshes obtained using the mesh
adaptive SUPG scheme, (a) 3D plot and (b) refined mesh at t=20 
days, (c) 3D plot and (d) refined mesh at t=200 days 

Incorporating the mesh-refining adaptive procedure, the MLS scheme with a = 3/2 and 

() = 1/3 is now used for the solution of the advective transport problem from the spherical 
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cavity, and the corresponding numerical results are shown in Figure 6.11. It can be noted 

from this figure that severe oscillations are introduced into the solution by this scheme 

even with the application of the mesh-adaptive scheme. This is because the MLS scheme 

with such defined alpha and theta is sensitive to the Courant number. During the mesh

refining adaptive procedure, the courant numbers in certain refined elements may be 

greater than unity, resulting to large algorithmic amplitudes greater than one and making 

the scheme unstable in these elements. 
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Figure 6.11 Numerical results obtained using the mesh-adaptive MLS scheme 
with a = 3/2 and 8 = 1/3 at t=20days for the advective transport 
from a spherical cavity 

6.2.3 The Advective Transport with Pressure Transients 

In the modelling of the advective transport problems presented in Section 6.2.2, the pore 

fluid was assumed to be incompressible and the soil was considered to be rigid. Aiso the 

contaminants are released from the cavity after attainment of steady flow. In certain 

situations, the pore fluids and the soil skeleton are compressible, and contaminants are 

usually released with the establishment of the flow due to the pressurization of the 

contaminated pore fluids. The one-dimensional case corresponding to this situation has 

been already considered in Chapter 4. In this section, the three-dimensional axisymmetric 

advective transport from the spherical cavity, in which the flow velocities are governed 
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by the piezo-conduction equation, is examined using the mesh-refining adaptive scheme. 

The numerical values of the compressibilites of the pore fluid and the soil skeleton, the 

porosity of the porous medium and the specifie storage are taken as follows: 

Ks = 1.0 X 10-8 m2 IN, Kf =4.4xlO-10 m2 IN and n' =0.3. The flow field in the 

computational domain is derived from the potential boundary conditions shown in Figure 

6.2. The mesh-refining adaptive CN-MLS scheme is used to simulate such advective 

transport with pressure transients. The corresponding numerical results obtained using the 

mesh-adaptive CN-MLS scheme with a time step 111 = 1 days are shown in Figure 6.12 . 
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Figure 6.12 The numerical result and refined mesh at t=20days obtained using the 
adaptive CN-MLS scheme for the advective transport with the pore 
transient, (a) 3D plot and (b) refined mesh with 2824 elements 

As already mentioned, the time-dependence of the advective flow field can be caused not 

only by the compressibilites of the fluid-saturated porous system but also by boundary 

flow potentials that can vary with time. The following boundary flow potential with a 

pulse is considered in the computation of this cavity transport problem 

{
100 0 < 1 ~ 20days 

rp(a,l) = 
200, 20days < 1 < 00 

(6.7) 

The computational result and the consequent refined mesh obtained using the mesh

refining adaptive CN-MLS scheme with the time step l1t = 1 day are shown in Figure 
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6.13. An adaptive mesh zonmg can be clearly seen m the refined mesh, which 

corresponds to the time-dependent discontinuity in the flow velocity due to the 

discontinuous potential pulse applied on the cavity boundary. This increment of the flow 

velo city will accelerate the transport process from the spherical cavity (comparing the 

results shown in Figure 6.12 and Figure 6.13). Since the time- and/or the mesh-refining 

adaptive MLS scheme generates the symmetric matrix form and the satisfactory solutions 

for the advection equation, this numerical method can be confidently used with the 

iterative algorithm for the nonlinear transport problem in porous media. 

" , ............... . 

(a) (b) 

Figure 6.13 The numerical result and the refined mesh at t=40days obtained from 
the adaptive CN-MLS scheme for the advective transport with the 
pore transient and pulsed potential boundary, (a) 3D plot and (b) 
refined mesh with 5672 elements 

6.3 Chemically Induced Alterations of Physical Properties of Porous Media 

The transport of contaminants in porous media involves complex geochemical processes 

that are usually influenced by nonlinear mass transfer processes between the liquid and 

solid phases. These geochemical reactions include sorption, complexation, ion exchange, 

biodegradation, etc (Von Kooten, 1996; Serrano, 2001). Compared with the magnitude of 

the flow velo city, such mass transfer processes can be classified into two fractions, ones 

that achieve equilibrium quickly and others that achieve equilibrium slowly (Kanney et 

al, 2003). Both fast and slow mass transfer processes can be described by a general 
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kinetic model expressed by (2.10) that can be coupled into the transport equation as a 

source/sink term, but for the fast mass transfer process, the differential equation 

goveming the kinetic model can be reduced to the algebraic equation. The geochemical 

reactions not only change the composition of the contaminant being transported with the 

groundwater but also alter the mechanical and hydrological properties of the soil 

skeleton, such as the deformability, compressibility, fluid transport characteristics, etc., 

which also have a significant influence on contaminant transport in porous media. In this 

section, the chemically-induced alterations of the mechanical properties of the porous 

medium will be briefly discussed, and these factors will be considered in the ensuing 

computations of the nonlinear advective transport from a disc-shaped cavity in a three

dimensional axisymmetric porous region. 

6.3.1 The Alteration of the Hydraulic Conductivity 

The permeability or the hydraulic conductivity of porous media is a key parameter in the 

modelling of fluid flow and the transport of contaminants through porous media. The 

assumed uniform and time-independent permeability of porous media (soil or rock) is 

clearly a simplification of most geological situations. The permeability is influenced by 

the interconnected pore structure of the soil or rock (Bear, 1972; Katz and Thompson, 

1986; Doyen, 1988) and therefore any process that affects the pore structure influences 

the permeability. The reaction between the transporting chemical and the solid skeleton 

of the porous medium may alter the pore structure, and consequently lead to a variation 

of the permeability, which is important for quantifying the chemical mass transport in 

natural systems (Saripalli et al., 2001). The accurate understanding of the temporal 

evolution of the porosity and the permeability due to the dissolution and precipitation of 

the porous material can be obtained by mapping the micron scale characterization. Such 

mapping of pore morphologies can be revealed by techniques such as Laser Scanning 

Confocal Microscopy and X-ray tomography in the laboratory (Fredrich et al., 1993; 

1995; Fredrich, 1999), which can be used for the direct estimation ofpermeability due to 

the alteration of the porosity of the porous medium. The photomicrographs of two 

representative full cross sections of Fontainebleau sandstone core samples, before and 

after dissolution experiments with the NaOH solution, are illustrated in Figure 6.14 (Jové 
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Colon et al., 2004), from which an alteration of the porosity of the sandstone sample can 

be clearly observed after the dissolution process. Many formulae for estimating the 

phenomenological permeability evolution of porous materials were developed based on 

(a) (b) 

Figure 6.14 Photomicrographs of core samples of sandstone ( a) before and (b) 
after its dissolution ofNaOH (Following Jové Colon et al., 2004) 
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Figure 6.15 In situ permeability and air permeability, as a function of porosity, of 
the Fontainebleau sandstone reported by Bourbie and Zinszner 
(1985) (Following Kieffer et al., 1999) 
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the macroscopic penneability-porosity correlation and experimental observation. One 

simple and commonly used fonnula has the power law of the fonn (David et al., 1994) 

k = k,(:J (6.8) 
where ko is the penneability of the untreated porous media corresponding to the initial 

porosity n~, and j is the constant and is usually greater than 2. The commonly used cubic 

law is consistent withj=3 (Bear, 1972). Doyen (1988) suggested that the best fit of data is 

obtained using j=3.8. Recently, Kieffer et al. (1999) perfonned short-tenn dissolution 

experiments on Fontainebleau sandstone to obtain a relationship between the k and n·, 

which is consistent with the values reported by the Bourbie and Zinzsner (1985) (see 

Figure 6.15). 

6.3.2 The Degradation of the Elastic Stiffness 

Since the precipitation and dissolution processes of the geomaterial constituents due to 

the chemical reaction alter the porosity of porous media, the elastic stiffness and the 

strength of the geomaterial can also be influenced by the alteration in the porosity. The 

influence of the chemical reactions, precipitation and dissolution of material constituents 

can be introduced in the constitutive relation in the degradation mechanisms by adding a 

new ageing state variable (Gerard et al., 1995) based on the continuum damage 

mechanics concept (Kachanov, 1958). The continuum damage mechanics assumes that 

the mechanically and chemically altered material still behaves as a continuum before the 

fonnation of macro-cracks that can lead to fractures. In general, the evolution of micro

defects of porous media due to mechanical loading and chemical flows are direction 

dependent, and therefore the internaI variable that describes both mechanically- and 

chemically-induced damage should be expressed in a tensorial fonn. If the degradation of 

material properties due to chemical reactions is isotropic, i.e. no dominant directional 

dependency (Le Bellego et al., 2003), a more simple scalar damage variable D can be 

introduced into the linear stress-strain relation of the porous skeleton, 

(6.9) 
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where Aijkl is a 4th order elasticity tensor, de(C) is the scalar chemical damage variable 

and takes a value between zero (for unreacted or chemically unaltered material) and unit y 

(for totally dissolved material). The scalar damage variable can be defined either 

according to the effective load bearing area or the effective volume of a porous medium 

and should be determined experimentally. Figure 6.16 shows the chemical damage 

variable of leached cement paste samples with the calcium concentration obtained from 

micro-hardness experiments (Gerard et al., 1998). The solid line in the figure is a 

analytical relationship proposed by Fagerlund (1973). 
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Figure 6.16 The ageing variable evolution dc(C) in concrete as a function of the 

calcium concentration C (Following Gerard et al, 1998) 

Li et al. (2003) performed chemical acidic corrosion tests on sandstone samples to 

investigate the chemically-induced damage mechanism and the determination of the 

proper chemical-mechanical model on the rock's strength and stiffness. By dividing the 

rock sample into the three parts: soluble phase, insoluble phase and porosity, Li et al. 

(2003) expressed the chemical damage mechanism of the rock eroded by chemical 

solutes in a following quantitative way 

E = Ed(1-de) + Es (6.10) 

where E d is the deformation modulus of the soluble cementing material, and Es is the 

deformation modulus of the sample with the equivalent area when the soluble cementing 
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material dissolves completely. They also proposed a chemical damage model to describe 

the process of the corrosion of sandstone and the degradation of the deformation and 

strength of the rock that varied with the corrosion time and the corrosion intensity. In the 

following section, the chemically induced alterations in the deformability and fluid

transport characteristic of the porous medium that occurs according to the prescribed 

relationships (6.8) and (6.10) respectively, will be considered in the numerical 

computation of the advective transport problem from a disc-shaped crack. Since these 

alterations are dependent on the chemical concentration, the resulting computational 

problem is non-linear, requiring an incremental iterative approach to account for the non

linearity and an adaptive approach to account for the advective transport process. 

6.4 The Nonlinear Advective Transport from a Disc-Shaped Cavity 

6.4.1 The Computational Modelling 

A disc-shaped crack with a radius of a = 8m and thickness of 2b = 2m is located in a 

fluid saturated three-dimensional axisymmetric porous medium (Figure 6.17). The 

contaminated fluid in the crack is pressurized and migrates into the porous medium with 

a Dupuit-Forchheimer hydraulic conductivity of k = O.03m/day and a porosity of 

Figure 6.17 A schematic drawing of the advective transport from a disc
shaped crack 
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n' = 0.33. The bulk density of the solid particle is assumed to be Pb = 2.6kg / L . The 

elastic modulus and the Poisson's ratio of the porous medium are taken as Eo = 1.0x108 

N / m 2 and v = 0.38, respectively, and therefore the compressibility of the porous 

skeleton is determined as ICs = 1/ K = 3(1- 2v) / E = 1.0 x 10-8 m 2 / N (where K is the bulk 

modulus). The compressibility of the fluid is assumed to be equal to 

IC/ = 4.4xlO-10 m 2 
/ N. 

The finite dimensional computational domain is located within a spherical region with a 

radius of R = 30 m. Figure 6.18 illustrates the initial finite element discretization with 301 

elements of the computational domain for a quarter section of the axisymmetric region. 

The contaminant is released from the cavity region and is transported with the fluid 

movement driven by a hydraulic potential f/Jo = 100 m applied at the cavity boundary and 

with zero potential at the outer boundary of the computational domain (Figure 6.18). This 

problem is used to examine the feasibility of the time- and mesh-adaptive scheme for 

modelling the nonlinear transport problem with sharp gradients and referred to a multi

dimensional region. 

Figure 6.18 The initial mesh discretization including 301 elements and boundary 
conditions applicable to the advective transport problem from a disc
shaped cavity 
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The PDE goveming the nonlinear advective transport of the contaminant in the cavity 

region, coupled with the mass transfer between the liquid phase and the solid phase of the 

contaminant, can be written in the following form 

ac a~ 
-+v· VC+(V· v)C+Â- = 0 at at (6.11) 

where C is the concentration of dissolved contaminant per unit volume of the fluid; Cs 

is the sorbed mass of contaminant per dry unit weight of the solid; Â = pj n· and v is 

the flow velocity vector. The flow velo city is assumed to be relevant to the contaminant 

concentration, i.e. v = v(C) , during the transport process due to the chemically-induced 

alterations of the hydraulic conductivity and compressibility of the porous medium. The 

third term on the LHS of (6.11) is non-zero if the fluid is considered to be compressible 

and the 4th term on the LHS of (6.11) can be used to express the Langmuir isotherm 

sorption that will be considered in the following computations (see the discussion in 

Chapter 2). The advective flow velo city is determined by the gradient of the pore 

pressure based on Darcy's law. The influence of the compressibility of the porous system 

on the pore fluid movement is considered using the piezo-conduction equation based on 

the assumption of small deformations of the soil skeleton. During the transport process, 

the hydraulic conductivity and elastic modulus of the porous skeleton can be altered due 

to the chemical reactions. 

The CN-MLS scheme, introduced for the multi-dimensional transport problem in the 

previous section, is used to discretize the nonlinear advective transport equation (6.11), 

and its final stabilized weighted residual integral form can be written as follows 

(6.12) 

where ca = (C n + Cn
+

1 )/2, J( w) is the perturbation term introduced in the weighting 

function due to the consideration of the nonlinear geochemical reaction and can be 

neglected in the formulation. The coefficient 2/3 in the second integral in (6.12) results 
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from the consideration of values of the upwind parameter a and the time weighting (} in 

the CN-MLS scheme (i.e. a = 4/3 and (} = 1/2). Considering linear elements, the 

weighted residual integral form (6.12) Can be reduced to the following non-linear matrix 

form 

(6.13) 

where 

oC 1 
S = (1 + Â _s )M + - !:ltA 

oC 2 
(6. 14a) 

A=v;· Jw;VwjdV+v j . JwjVw;dV 
v v (6.14b) 

F = [(1 + Â oCs )M _.!. !:ltA]{C} ~ 
oC 2 

(6.14c) 

The matrix equation (6.13) is nonlinear about ca since the coefficient matrix of (6.13) is 

assumed to be a function of Ca, and the iterative algorithm should be used for the 

solution of such nonlinear equations. 

6.4.2 A Time- and Mesh-Adaptive Quasi-Newton Iterative Algori/hm 

The Newton-Raphson (N-R) iterative algorithm is regarded as an efficient iterative 

approach for the solution of the nonlinear algebraic equations (6.13), since it has a fast 

convergence rate for strongly nonlinear processes. However, the N-R method usually 

produces non-symmetric tangent stiffness (or Jacobian) matrices, and the updating or 

factorizing of such tangent matrices at each iteration results in additional computational 

effort, which is an impediment to the use of this procedure for the solution of large scale 

practical problems. The approximation of either the Jacobian matrix of the system or its 

inverse form leads to the quasi-Newton method (Engelman et al., 1981; Soria and Pegon, 

1990). Such a procedure belongs to a c1ass of methods known as least-change secant 

updates. There are several kinds of approximation formulae involved in quasi-Newton 
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methods, and the scheme used here is the BFGS (Broyden-Fletcher-Goldfarb-Shanno) 

algorithm (Dennis and More, 1977), where the approximation involves the inverse of the 

Jacobian matrix. The N-R and/or quasi-Newton method possesses high (second-order) 

but local convergence, and therefore a line-search procedure is necessary to obtain the 

global convergence. In addition, the time- and mesh-refining adaptive procedure should 

be coupled with the iterative algorithm for examining the nonlinear advective transport 

problem. Figure 6.19 shows the flowchart of time- and/or mesh-adaptive quasi-Newton 

iterative algorithm for the weakly coupled piezo-conduction equation (2.8) and the 

nonlinear advective equation (6.11). 

6.4.3 Computationsfor the Linear Transport 

The proposed time- and mesh- adaptive quasi-Newton iterative algorithm is first applied 

to the linear advective transport from the disc-shaped cavity, with the consideration of a 

first-order reaction term, purely for the development of a reference solution. For this case, 

the mass transfer term in (6.11) has the form Â acs = rC , where r is the coefficient for 
dt 

either chemical generation (+) or chemical decay (-). In the following computations, r is 

taken as r = -0.01. A computational flow velocity field corresponding to t=30days is 

shown in Figure 6.20, which indicates that the flow pattern is inhomogeneous with high 

velocities occurring at the boundary of the disc-shaped cavity. 

Figure 6.21 shows the analytical solution, given by Selvadurai (2003, 2004a), for the 

advective transport from an oblate spheroidal cavity with a long axis of a = 8m and short 

axis of b = lm, in the region shown in the Figure 6.17. This analytical solution can be 

considered as an approximation for the linear advective transport problem from the disc

shaped crack considered in this section. Figure 6.22 shows the computational results, 

obtained using the mesh-refining adaptive quasi-Newton iterative scheme, for the 

advective transport driven by the flow pattern shown in Figure 6.20. The time step is 

taken as !J.t = 0.5 days, and the initial mesh of 301 elements is refined into 5543 

elements. 
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Figure 6.19 The flowchart of the time- and mesh- adaptive quasi-Newton iterative 
algorithm, where El and E2 are tolerance criteria 

148 



, 
00 5 10 15 20 25 30 

1 ". . ", 

-5, '>. , 

.1Ql 

·15~ 

·20' 

./ 
/ , 

·25, / 
/ 

: 
::.,~, ...... ,// 

-30 . _ .....• -] 

Figure 6.20 The steady flow velocity pattern in the computational domain for the 
axisymmetric advective transport from a disc-shaped cavity 

1.5 

Tune=30 day~ .... :········ 
..... . 

.. ,;,.-

: . " ....... ~. 

·30 0 

..... : .... 

.. ; .... 
'. 

30 

Figure 6.21 The analytical solution of the linear advective transport with decay 
from an oblate spheroidal cavity (a/b=8) (Selvadurai, 2004a) 
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Figure 6.22 The numerical result and the refined mesh at t=30days ohtained using 
the mesh-adaptive iterative algorithm for the linear advective 
transport with decay, (a) 3D plot and (b) refined mesh with 5543 
elements 

Although the time-adaptive procedure can not be used on its own for such an advective 

transport problem for a multi-dimensional domain, it can be coupled with the mesh

refining adaptive scheme to improve the efficiency of the latter. In such a time- and 

mesh-refining adaptive scheme, the time step is selected first by the following equation 

(6.15) 

and then the mesh-adaptive scheme is applied with the new time step. The minimum in 

(6.15) ensures that the elemental Courant number is not greater than unity. Figure 6.23 

shows the computational results obtained using the time- and mesh-refining adaptive 

quasi-Newton iterative scheme. The time step is chosen as !l.t = 0.25 days initially and 

increases to !l.t = 5.28 days at the end of the computation (t = 30 days); the initial mesh of 

301 elements is refined into 733 elements. The results shown in Figures 6.22 and 6.23 

indicate that the time- and mesh-adaptive method can give economical numerical results, 

but the mesh-adaptive method can generate a more accurate numerical solution for the 

advective transport because of the use of a finer mesh in the vicinity of the high gradient 

of the solution due to the application of the smaller time step. 
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Figure 6.23 The numerical result and the refined mesh at t=30days obtained using 
the time- and mesh-adaptive iterative algorithm for the linear 
advective transport with decay, (a) 3D plot and (b) refined mesh with 
733 elements 

6.4.4 Computationsfor the Nonlinear Transport 

In this section, the time- and mesh-adaptive quasi-Newton iterative algorithm is used to 

model a nonlinear advective transport process from the disc-shaped cavity, in which 

Langmuir isotherm sorption is used to represent the relevant term in (6.11). For this case, 

the mass concentration of the solid phase of the contaminant in (6.11) is determined by 

(2.11a). The elastic modulus, porosity and hydraulic conductivity of the porous medium 

are assumed to be functions of the contaminant concentration, in order to consider the 

influence of the geochemical reaction. It is assumed in this computation that the chemical 

degradation of the porous skeleton during the computation is always isotopie. The 

definition of the constitutive relations and parameters involved in the nonlinear 

computation are listed as follows 

n •• ( .)3 
k = ko n~ ,n = no + 0.15C (6.16a) 

E {I- 6.0C, C ::; 0.1 
Eo = 0.42 - O.2C, 0.1 < C::; 1 

(6.16b) 
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TC =~=_3(.;....1-_2V....;...) 
s K E 

(6.l6c) 

a'fJ' C 1 P' CS = l' a = 0.01, = 1 
l+a C 

(6.16d) 

These estimates are considered for purposes of illustration only and duplicate trends 

observed in the limited experimental data. First, the nonlinear advective transport of the 

contaminant from the disc-shaped cavity, without considering the Langmuir sorption 

isotherm, is examined numerically using the time- and mesh-adaptive quasi-Newton 

iterative scheme. In this computation, only nonlinear variations of the porosity, hydraulic 

conductivity and elastic modulus of the porous medium (i.e. (6.16a)-(6.16c» are 

included. The numerical results and the corresponding refined mesh obtained at 

t = 30 days are shown in the Figure 6.24. The initial time step of dt = 0.25 days increases 

to flt = 7.23 days and the initial mesh of 301 elements is refined into 648 elements at the 

end of the computation. It is noted that the advective transport from the disc-shaped 

cavity is accelerated due to the nonlinearities involved, especially the nonlinear alteration 

in the hydraulic conductivity of the porous medium. Figure 6.25 shows the numerical 

results and the corresponding refined mesh obtained using the time- and mesh-adaptive 

quasi-Newton iterative scheme at t = 30 days for the nonlinear advective transport from a 

disc-shaped cavity with consideration of the Langmuir sorption isotherm. The initial time 

step of flt = 0.25 days increases to dt = 3.57 days finally and the initial mesh of 301 

elements is refined to 692 elements at the end of the computation. The effect of 

retardation of the transport process due to the Langmuir sorption process can be observed 

in the numerical results shown in Figures 6.24 and 6.25. Finally, the numerical results, 

obtained using the mesh-adaptive quasi-Newton iterative scheme at t = 30 days for the 

nonlinear advective transport from the disc-shaped cavity, are presented in the Figure 

6.26. During the computation, the time step is chosen as dt = 0.25 days and the final 

refined mesh includes 4705 elements. 
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Figure 6.24 The numerical result and the refined mesh at t=30days obtained using 
the time- and mesh-adaptive quasi-Newton iterative algorithm for 
the nonlinear advective transport without the Langmuir isotherm, (a) 
3D plot and (b) refined mesh with 648 elements 
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Figure 6.25 The numerical result and the refined mesh at t=30days obtained using 
the time- and mesh-adaptive quasi-Newton iterative algorithm for 
the nonlinear advective transport with the Langmuir isotherm, (a) 3D 
plot and (b) refined mesh with 692 elements 
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Figure 6.26 The numerical result and the refined mesh at t=30days obtained from 
the mesh-adaptive quasi-Newton iterative algorithm for the nonlinear 
advective transport for the disc-shaped cavity, (a) 3D plot and (b) 
refined mesh 

6.5 Discussion 

Using the Fourier analysis outlined in Chapter 3, it is shown that the numerical 

performance of the stabilized semi-discrete methods for the advection equation is 

influenced by the Courant number. For one-dimensional modelling, the elemental 

Courant number criterion in the location ofthe high gradient of the solution can be easily 

satisfied by selecting a time step. However, for a multi-dimensional finite element 

computation, such an elemental Courant number criteria is hardly satisfied by simply 

selecting a single time step, since the flow velocities and the characteristic lengths of the 

elements in the locations of the high gradient of the solution may differ to a large extent. 

For this case, a mesh-adaptive procedure should be considered to satisfy the Courant 

number criteria in the vicinity of the steep front of the solution. Based on these 

considerations, an h-refinement mesh-refining adaptive scheme is developed and is 

successfully applied to study the linear and nonlinear three-dimensional axisymmetric 

advective transport problems from spherical and disc-shaped cavities in a porous region 

of finite extent. In comparison to the conventional mesh-adaptive schemes, which are 

controlled through an energy functional or a residual error of the finite element scheme 
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and can only qualitatively identify the region to be refined, the proposed mesh-refinement 

strategy is quantitative. 

The mesh-refining adaptive scheme proposed in this chapter can become more efficient if 

the mesh coarsening technique is applied, with which the mesh in the locations of the 

smooth part of the solution can be coarsened (or the original mesh restored). This aspect 

can be one focus for future work. An attempt has been made to improve the efficiency of 

the mesh-refining adaptive scheme by coupling it with the time-adaptive procedure. As 

illustrated from the computational results of the nonlinear advective transport of a steep 

front from the disc-shaped cavity, the time- and mesh-refining adaptive scheme can 

generate an oscillation-free solution for the advection equation, but the solution is 

relatively diffusive due to the fact that a large time step, and consequently large mesh 

size, was used. 
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CHAPTER7 

THE CONTAMINANT TRANSPORT IN A POROUS MEDIUM 
WITH HYDRO-MECHANICAL-CHEMICAL BEHAVIOUR 

The presentations in Chapters 4 and 6 account for the influence of the deformations of the 

porous skeleton and the compressibility of the pore fluid on the contaminant transport 

process in a restricted fashion, which enables the application of the piezo-conduction 

equation (Barenblatt et al., 1990; Selvadurai, 2002). In certain situations, the porous 

geologic medium can exhibit characteristics that make the applicability of the piezo

conduction equation less accurate, and thus the complete coupling of the deformations of 

the porous skeleton and the pore fluid should be involved. In this case, the movement of 

the pore fluid that transports the contaminant needs to be described by a more accurate 

theory similar to that proposed by Biot (1941) (see also Lewis and Schrefler, 1998). The 

advection-dominated transport of the contaminant through a porous medium can be seen 

in geo-environmental situations, including acid drainage in mining activities, movement 

of chemicals retained by tailing dams, salt migration in estuaries, etc. In these situations, 

the movement of a chemical through the porous medium can in tum influence its 

deformability and fluid transport characteristics. The resulting equations goveming the 

coupling of mechanical, hydraulic and chemical processes in the porous medium can 

therefore exhibit significant non-linear effects. The objective of this chapter is to present 

a brief introduction to the modelling of the coupled processes of the Hydro(H)

Mechanical(M)-Chemical(C) effects that can materialize as a chemical moves through a 

porous medium. The chapter will present a one-dimensional model of the advection

dominated transport of a reactive chemical through a deformable porous medium of the 

Biot-type. Although the presentation in this chapter is restricted to one-dimensional 

considerations, the general approach can be adopted in a three-dimensional treatment of 

the analogous problem. 
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7.1 Governing Equations 

In this section, the partial differential equations goveming the coupled processes of fluid 

movement, mechanical deformation and chemical transport are derived for completeness. 

The formulation is restricted to one-dimensional considerations and these goveming 

equations are implemented in the computational approach. Attention is restricted to the 

quasi-static deformations of the porous medium and aH inertia effects and body forces are 

neglected. 

7.1.1 Consolidation 

The development of the general equations goveming both hydro-mechanical (Biot, 1941; 

1955; 1956) and thermo-hydro-mechanical (Selvadurai and Nguyen, 1995; Thomas et al., 

1998; Nguyen and Selvadurai, 1998; Lewis and Schrefler, 1998; Rutqvist et al., 2001; 

Nguyen et al., 2005) behaviour of a fluid-saturated porous medium has been extensively 

discussed in the literature. The mass balance equations for the fluid and solid phases of 

the porous medium can be written as 

(7.1) 

a((1-n*)pJ + a«(1-n*)vs pJ =0 
at ax (7.2) 

where x is the spatial coordinate; t is time; p f and Ps are the densities of the pore fluid 

and the solid material composing the porous medium; n * is the porosity of the porous 

medium; v f is the average true fluid velocity in the porous medium relative to the spatial 

coordinate system; Vs is the velo city of the solid particle. Considering the definition of 

the material derivative (Spencer, 2004) 

D a a 
-=-+v -
Dt at s ax 

the equations (7.1) and (7.2) can now be written as 
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Dn' n' DPI 1 a . . avs -+---+--[n P (v -v )]+n -=0 
Dt PI Dt PI ax 1 1· ax (7.4) 

D(l-n') (l-n') DP. (1 .)av. 0 ----'----'- + + - n - = 
Dt Ps Dt ax (7.5) 

In (7.4), n'(vi -v,) represents the seepage velo city of the quasi-static fluid flow through 

the defonnable porous medium. Assuming the applicability ofDarcy's law gives 

• k ap 
n(v -v)=---

1 s rw ax (7.6) 

where k is the hydraulic conductivity of the porous medium; rw = Pig is the unit 

weight of the pore fluid; p is the pore fluid pressure. Assuming that the densities of the 

fluid and the solid material in (7.6) are the functions of the pressure (Bear, 1972; Philips, 

1991; Selvadurai, 2000a), i.e. PI = PI(P) and Ps = Ps(p) , the following relationship 

for the compressibilities of the pore fluid and the solid material ean be shown 

1 apI 1 
---=-
PI ap KI 

(7.7) 

where KI and Ks (e.g. units of stress) are, respectively, the bulk modulus of the pore 

fluid and the solid grain. Combining (7.4) and (7.5) and eonsidering (7.6) and (7.7) 

results in the following equation 

(7.8) 

The last tenn in the LHS of (7.8) is the total volumetrie strain of the soil skeleton in the 

material derivative sense, i.e. 

av. De 
-=--ax Dt 

(7.9) 

where ê is the one-dimensional skeletal strain. The skeletal strain is detennined by the 

effective stress (J' applied to an element of the porous skeleton 
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De 1 Du' 

Dt Eoed Dt 
(7.10) --=-----

E(I-v) 
where E = is the oedometric modulus; E is elastic modulus; V is 

oed (1 + v)(1- 2v) 

Poisson's ratio of the skeletal fabric. The negative sign is indicative of the sign 

convention where compressive stresses are negative. For the porous medium saturated 

with an incompressible pore fluid (i.e. K 1 ~ 00), the effective stress is defined as the 

difference between the total vertical stress u and the pore pressure p (Terzaghi, 1923), 

1.e. 

1 u=(J-P (7.11) 

where (J is total vertical stress. Substituting (7.10) and (7.11) into (7.9) gives 

dVs = De =_I_(Dp _ DU) 
dX Dt E ode Dt Dt 

(7.12) 

Identifying the displacement of the one-dimensional region, u(x,t) , as the displacement 

of the porous skeleton, (7.12) gives 

dU 1 
-=--(u-p) 
dX Eoed 

(7.13) 

Substituting (7.12) into (7.8) and considering KI ~ 00 in (7.8) give 

(7.14) 

In instances where the total vertical load (J is constant, Du/Dt = O. For small 

deformation of the soil skeleton, it is also assumed that the convective rate of change in 

pore pressure with the solid particle in (7.14) is negligible, i.e. D / Dt = d / dt. This 

reduces (7.14) to 

(7.15) 
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When the solid material of the porous skeleton is non-deformable, K s ~ 00, and (7.15) 

reduces to the classical diffusion equation of the distribution of the pore pressure p in 

the porous medium fully saturated with the incompressible pore fluid 

(7.16) 

where Cv is the coefficient of consolidation applicable to the one-dimensional 

consolidation of a poroelastic solid 

kE(1-V) 
C = ---'---'---

v Yw(1+v)(1-2v) 
(7.17) 

Implicit in the development presented here is the assumption of the absence of the 

chemical influences on both the deformability and flow properties of the porous medium. 

This is recognized as a limitation of the development. An indirect form of coupling can, 

however, be introduced by assuming that E, V and k are dependent on the chemical 

concentration. 

7.1.2 The Contaminant Transport 

The conservation of the contaminant mass in a fixed Representative Element Volume 

(REV) or control volume for its liquid phase leads to (Bear and Verruijt, 1990; Lewis and 

Schrefler, 1998; Smith, 2000; Peters and Smith, 2002) 

a(n'C) a (. C) a ('D ac ) -0 
--'--~+- n v -- n - +s-

at ax fax ax 
(7.18) 

where C(x,t) is the concentration of the contaminant in the pore fluid (mg/L), D is the 

diffusion or dispersion coefficient and s is the attenuation rate of the contaminant mass 

per unit volume. The conservation of the contaminant mass for its solid phase without the 

consideration of the diffusion within solid particles leads to 

a((1-n·)psC.) a «1 .) C) -0 -----'--''----'-- + - - n v p - s -
at ax s s s (7.19) 

where Cs(x,t) is the mass of the contaminant sorbed per dry unit weight of the solid 
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partic1e (mg/kg), and s is the rate of absorption/adsorption of the contaminant mass. The 

rate of contaminant loss from the liquid phase onto the solid phase is assumed to be equal 

to the rate of contaminant gain by the solid phase from the liquid phase. Mass 

conservation within a fixed control volume requires that the source and sink terms in 

(7.18) and (7.19) are the same. Therefore, the transport equation for a contaminant in a 

deforming porous medium is given by combining (7.18) and (7.19), i.e. 

(7.20) 

Considering the mass balance equations (7.1) and (7.2) for the pore fluid and the solid 

material of the porous skeleton, the equation (7.20) can be written as 

* a * a n * ac + n * v ac _ [~ P f + n v f P f ]C _ ~ (n * D ac) 
at fax P f at p f ax ax ax 

(1 *) apscs (1 .) apscs + -n + -n v ~~ 
at s ax (7.21) 

[(l-n·)aps (l-n*)vs dPs ] C-O 
- + -P-

Ps at Ps dX b s 

Substituting (7.7) into (7.21) gives 

* ac (1 *) apscs * ac (1 *) acs a ( *D ac) n -+ -n +n v -+ -n v --- n -
dt dt f dx s dX dX dx 

n * 1 - n * ap n • 1 - n • ap 
-[(-c+--P c )-+(-v C+--V P C )-]=0 K K s s dt K f K s s s a 

f s f s X 

(7.22) 

If the pore fluid is incompressible, then K f ~ 00 in (7.22). If the soil skeleton is also in 

small deformation, i.e. Vs :::: 0, the effects of convection resulting from the movement of 

the solid partic1es can be neglected, then (7.22) can be written as 

(7.23) 

If the solid phases of the porous medium are further assumed to be incompressible, i.e. 

Ps = const , the contaminant transport equation (7.23) can be simplified to the standard 

advection-dispersion equation for a rigid porous medium (Bear, 1972; Loroy et al., 1996) 
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· ac acs ac a . ac 
n -+P -+v---(nD-)=O al b al ax ax ax (7.24) 

where v = n" v / is the seepage velo city and Pb = (1- n ")Ps is the bulk density of the 

solid skeleton ofthe porous medium (kg/L). 

The second term on the LHS of (7.23) or (7.24) represents the mass transfer between the 

liquid phase of the contaminant dissolved in the groundwater and the solid phase sorbed 

by the solid particles. For the single-component system, this mass transfer can be 

described by the kinetic model expressed as (Kanney et al., 2003) 

(7.25) 

where Âj (i = 1,2,3) are constants, and further details about determination of Âj can be 

found in Chapter 2. 

7.2 The Computation al Modelling 

The partial differential equations goveming the HMC processes in a porous medium 

through which a contaminant migrates include (7.13), (7.15) (7.23) and (7.25). The 

dependency of the physical, mechanical and transport parameters on the chemical 

concentration makes the problem non-linear and amenable only to computational 

treatment. In this section, the computational modelling of the coupled transport problem 

govemed by (7.13), (7.15) (7.23) and (7.25) is developed via an iterative non-linear finite 

element approach. In this computational modelling, the physical and transport parameters 

of the porous medium that are susceptible to chemical influences can be altered using the 

experimental investigations available in the literature. The conventional Galerkin finite 

element technique is used to computationally solve the partial differential equations 

goveming the hydro-mechanical coupling of the porous medium and the stabilized semi

discrete MLS scheme is used to solve the partial differential equation goveming the 

contaminant transport process. The corresponding discretization equations of the HMC 

transport model can be expressed as follows: 
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Suu Sup 0 0 
n+1 

u 
0 SpM + MO'SpK 0 0 p 

= 
0 Scp SCM + 1110S pK Ses C 
0 0 -MO~2SsC [1/ Â, + 111 O~ ]S ss Cs 

0 0 0 
0 S pM - M(1- 8') S pK 0 

0 

0 

where 

Scp S CM - I1t(1- 8)S pK 

0 I1t(1- 0')Â.2S sC 

1 dw~ 
Suu = Jw; _J dx 

o dx 
1 

Sup = _1_ Jw;w;dx 
Eoed 0 

1 

fu = Jw;w;dx{p-Uo}; 
o 

• 1 

S _(I-n l)J p Pdx pM - --+-- W; wj 
Ks Eoed 0 

k 'JdW~ dw; 
S K =- --'---dx 

p Yw 0 dx dx 
• 1 

_ I-n 1 n J C P 
Scp ---.---Cs; w; wjdx 

n Ks 0 

1 

SCM = Jw;wfdx 
o 

• 1 

S I-n J C Sdx Cs = -.-Pb W; W j 
n 0 

1 

ssc = Jw:wfdx 
o 

163 
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0 

SCs 

[1/ Â, - M(1- O')Â, ]S ss 

fu 

0 
+ 

0 

0 
(7.26) 

n 
U 

p 

C 

Cs 

(7.27a) 

(7.27b) 

(7.27c) 

(7.27d) 

(7.27e) 

(7.27f) 

(7.27g) 

(7.27h) 

(7.27i) 

(7.27j) 



1 

Sss = Jw:w~dx (7.27k) 
o 

In (7.27), 1 is the length of the one-dimensional computational domain, wm 

(m =u,p,C,s) are the weighting functions and they are all taken as the linear 

interpolation function in the modelling, 8' e [0,1] and 8e [0,1] are two time weightings, 

a is the upwind parameter introduced by the MLS scheme. The time weighting 8' for 

the equations goveming the dissipation of the pore fluid pressure and the kinetics of the 

chemical reaction is taken as unity for better numerical stability; however, the time 

weighting 8 for the contaminant transport equation should be determined in order for the 

MLS scheme to have the optimal performance. The fact that the operator splitting 

technique is not used for solving the advection-dispersion-reaction transport equation 

(7.23) implies that the optimal value of 8 and a determined by (3.37) (i.e. 8 = 1/3 and 

a = 3/2), cannot be used in the MLS formulation. For this case, the conservative values 

of 8 and a have to be adopted in the modelling (see the relevant discussions in Section 

4.3). A conservative optimal value of the time weighting and the upwind parameter can 

be 8 = 1/2 and a = 4/3 (see the relevant discussion in Section 6.1). This corresponds to 

the use of the Crank-Nicolson time integration strategy for the temporal term of the 

transport equation (7.23). In Chapter 6, it was shown from a Fourier analysis that for a 

better numerical performance of the MLS scheme with 8 = 1/2 and a = 4/3 for the 

transport equation, the Courant number should be kept equal to unity. Therefore, the 

time-adaptive procedure should be used during the HMC modelling of the advection

dominated contaminant transport process. Figure 7.1 shows a flowchart of the time

adaptive quasi-Newton iterative algorithm for modelling the HMC coupling transport 

processes defined by (7.26) and (7.27). In Figure 7.1, S represents the stiffness matrix of 

the system shown in (7.26), X represents the unknown nodal variables of u, p, C and 

Cs at the time level tn+l, and F represents the RHS vector of (7.26). 
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t=O Xl =X , 0 

Store old !l.t; 
Find new !l.t by time adaptive scheme 
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R(Xl+ât) = B X I +ât - F(X I +ât ) . 
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dk_1 = -Bk_IR(X~~~) 

= S(X I
) 

No 

Aline search along d k-l : 
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XIMI = Xl+ât + ad and k k-I k-I 

d . R(X 1+.11) ~ E [d . R(X 1+.11)] 
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'Y k = R(X~+ât) - R(X~~~) 
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t=t+!l.t; 
k =1 

Figure 7.1 The flowchart of the time-adaptive quasi-Newton iterative 
algorithm, where El and E2 are tolerance criteria 
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7.3 Numerical Examples 

As a numerical example, we examine the nonlinear advective-dispersive-reactive 

contaminant transport problem in a one-dimensional column of the porous medium of 

length H that is saturated with an incompressible pore fluid (i.e. K f ---7 00 ). The skeleton 

of the porous medium is assumed to be linearly elastic, and the solid material of the 

porous skeleton is assumed to be compressible. The soil column rests on a permeable 

rigid base, and is subjected to a surface injection of the chemical solution with a 

concentration of Co. After such chemical solution penetrates into the upper 5 meters of 

the soil column, the soil column is subjected to an external total vertical stress (J'o at the 

surface. The strict one-dimensional conditions imply that the deformation in the z

direction is suppressed by specifying a plane strain condition. The geometry of the region 

and associated boundary conditions for the skeletal displacement u, the pore fluid 

pressure p and the contaminant concentration C are shown in Figure 7.2. The physical 

and mechanical parameters of the pore fluid and the poroelastic medium are given as 

croH(t) 

H 

x 

.~ 

y 

.,.-+- saturated 
porous medium 

ap ......... =0 
an 

p=o 

Figure 7.2 One-dimensional computational domain of the transport and 
consolidation problem 
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H = 30m' (1 = 100kPa' C = 1 . h = 5m . , 0 '0' 0 , 

Pb = 2.6kg / L; Pw = 1.0kg/ L; Ks = 0.14xlO10 Pa 

E = 8000kPa; V = 0.4; n* = 0.36 

7.3.1 Elastic Consolidation 

(7.28a) 

(7.28b) 

(7.28c) 

(7.28d) 

The first example deals with a comparison of the analytical and computational results for 

the one-dimensional consolidation of the porous elastic soil column subjected to a 

constant total stress (J'o' The chemical load, intrusion and transport are not considered 

during this computation. Initially, the total stress (J'o is completely carried by the pore 

fluid, and the excess pore pressure will dissipate in accordance with the Dirichlet 

boundary condition applied at the base and the Neumann boundary condition applied at 

the surface of one-dimensional domain. The analytical solution for the time-dependent 

variation in the pore fluid pressure for a porous medium consisting of an incompressible 

pore fluid and non-deformable grains (i.e. Ks = K f = 00) was given by Terzaghi (1943), 

and takes the following form 

4 ~ 1 . ((2m+l)Ir(H -X)) ((2m+l)27r
2
Tv J p = (J'o - L...J sm exp -----'----'-

Ir m=O 2m + 1 2H 4 
(7.29) 

where Tv = Cil H 2 is a dimensionless time factor. Figure 7.3 gives the variation in the 

excess pore pressure p (kPa) in the soi! column ([0,30m]) given by (7.29) over a 150-day 

period. 
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Figure 7.3 The analytical solution for the dissipation of the excess pore fluid 
pressure in the soil column during a IS0-day period 

In the numerical computations, the computational domain is discretized into 60 elements 

with an elemental length of h = O.Sm, and the time step tJ.t is taken as 10 days. The 

corresponding computational results for the dissipation of the excess pore fluid pressure 

p (kPa) and time-dependent deformation u (m) of the soil column during a IS0-day 

period are shown in Figure 7.4. It should be noted that the numerical results for the 

dissipation of the excess pore fluid pressure shown in Figure 7.4(a) are close to its 

analytical solution shown in Figure 7.3. 

~. .,.,." 

0.15 
... ( ...... ; .. , ....... ,. .~ . 

(a) (b) 

Figure 7.4 Computational results during a IS0-day period of (a) the dissipation of 
the excess pore fluid pressure and (b) the consolidation of the soil 
column 
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7.3.2 The Chemical Transport Driven by Consolidation 

The second example deals with the problem of the contaminant transport in the soil 

column induced by the poroelastic response of the porous medium. The problem 

formulation with respect to the hydro-mechanical aspects, is identical to that described in 

section 7.3.1. In this case, however, the surface of the soil column is subjected to a 

chemical solution of concentration Co, and such chemical solution already penetrates 

into the upper 5 meters of the soil column before the application of the surcharge Cfo ' 

The diffusion or dispersion of the contaminant is considered during the contaminant 

transport process with the dispersion coefficient defined in (7.28d). The transport process 

is assumed to be influenced by the nonlinear Langmuir isotherm sorption, which can be 

described by the kinetic model described by the equation (7.25) with the following model 

parameters and sorption coefficients 

Â, =108
; ~ =a'P'; ~ =1+a'C; a'=O.OI; P'=1 (7.30) 

Figure 7.5 shows the computational results of the advective-dispersive-reactive 

contaminant transport processes during a 150-day period obtained from the HMC model, 

with and without the time-adaptive scheme. During computations, the initial time step is 

taken as .M = 10 days. It can be seen from Figure 7.5 that the dissipation of the excess 

pore fluid pressure drives the migration of the contaminated solution trapped in upper 

part soil column, and such a contaminant transport process is accelerated after 60 days, 

when the flow velo city increases at the interface between the contaminated and 

uncontaminated region. Due to this dissipation of the pore water pressure, the advective 

flow velocity presents a transient character, and therefore it is necessary to use the time

adaptive procedure in the computation to obtain the optimal solution of the transport 

process. Without the time-adaptive scheme, oscillations are introduced into the solution 

in the vicinity ofits steep front (Figure 7.5(a)); these oscillations are avoided by using the 

time-adaptive procedure. It should be noted that in order to avoid the too large time 

increment, a constraint of !:1t ~ 20 days is applied to the time step during the time

adaptive procedure, which results in small oscillations in the solution at the beginning of 

the transport process (Figure 7.5(b)).The variation of the time step during the 
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computation detennined by the time adaptive procedure is clearly illustrated by the grid 

line distribution of the time shown in the Figure 7.5(b). 

0.5 .... 

c 
o 

'().5 .... 
150 . 

(a) (b) 

Figure 7.5 Computational results during a 150-day period of the contaminant 
transport processes in the soil column, (a) without and (b) with the 
time-adaptive procedure 

7.3.3 The Chemical Transport with Material Property Alterations 

In this section, attention is focused on the influences of chemically-induced alterations in 

the defonnability and fluid transport characteristics of the poroelastic medium. In 

general, the geochemical reaction between the contaminant solution and the porous solid 

is a complex, time and space dependent process (Saripalli et al., 2001). But it is assumed 

in this section that a space-independent leaching of the porous material is caused by the 

reactive interaction between the contaminant and the porous solid, resulting in the 

alteration of the porosity of the poroelastic medium. This is regarded as an approximation 

of a much more complex process where dominant flow paths, particularly in three

dimensional problems, can results in the development of chemically-induced anisotropy 

in the poroelastic medium. This approximation is retained in view of the fact that only the 

one-dimensional problem is examined. The parameters that can be influenced by the 

porosity, which in turn can be influenced by the chemical concentration, inc1ude the 

hydraulic conductivity k and elasticity parameters E and v. The results presented by 

Bourbie and Zinszner (1985) (see Figure 6.15) for Fontainebleau sandstone indicate that 
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the hydraulic conductivity of porous media subjected to chemical reaction changes 

according to the relationship 

(7.31) 

where ko = 6 xl 0-4 m / day and n~ = 0.36 are, respectively, the initial porosity and 

hydraulic conductivity; n * is the chemically altered porosity, which is assumed to relate 

to the chemical concentration according to 

n* = n~ + 0.15C (7.32) 

Similarly, from experimental results given by Gerard et al. (1998) on leached cement 

paste, the elastic modulus of the porous medium is assumed to vary with the chemical 

concentration according to 

E {1-6.0C, C:50.1 

Eo = 0.42-0.2C, 0.1 < C:51 ' 
(7.33) 

where Eo = 8000kPa is the elastic modulus of the porous medium in the chemically 

unreacted state. The Poisson's ratio V of the porous medium is assumed to be invariant 

during the contaminant transport process. 

Figure 7.6 shows computational results for the reactive transport process of the 

contaminant and the consolidating process of the soil column with the chemical-induced 

alteration of the hydraulic conductivity k of the porous medium defined by (7.31) and 

(7.32). In this and following computations, the other system parameters are those defined 

in (7.28) and (7.30). The initial time step is taken as dt = 20 days and a time adaptive 

procedure with the constraint of dt :5 20 days is used. Comparing the results shown in 

Figure 7.6(a) with those shown in Figure 7.5(b), it is evident that the increase in the 

hydraulic conductivity of the soil material, caused by the chemical reaction, accelerates 

the contaminant transport processes. 
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(a) (b) 

Figure 7.6 Computational results during a 150-day period of (a) the contaminant 
transport process and (b) the consolidation of the soil column, 
corresponding to the altered hydraulic conductivity 
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Figure 7.7 Computational results during a 150-day period of (a) the contaminant 
transport process and (b) the consolidation of the soil column, 
corresponding to the altered elastic modulus 

Figure 7.7 shows the computational results of the contaminant transport process and the 

consolidating process of the soil column with an alteration of the elastic modulus defined 

by (7.33). It should be noted from this figure that the chemically-induced reduction ofthe 

elastic modulus of the porous material contributes more to the consolidation of the soil 

skeleton and therefore accelerates the dissipation of the excess pore fluid pressure in the 
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soi! column. Such an enhancement in the dissipation of the pore fluid pressure will 

accelerate the contaminant transport processes, which will in turn influence the 

consolidation of the porous skeleton and the dissipation of the pore fluid pressure. 

Finally, the chemically-induced alterations of both the hydraulic conductivity and the 

e1astic modulus are considered in the contaminant transport driven by the consolidation 

of the soil column. The corresponding computational results obtained from the HMC 

transport mode1 are shown in Figure 7.8. The influence of the chemically-induced 

alterations of the transport and mechanical properties of the soil column on the 

contaminant transport process can be clearly observed in Figure 7.8(a). The acce1erated 

contaminant transport process enhances the consolidating process of the soi! column due 

to the reduction ofthe elastic modulus (see Figure 7.8(b)). 

(a) (b) 

Figure 7.8 Computational results during a I50-day period of (a) the contaminant 
transport process and (b) the consolidation of the soil column, 
corresponding to the altered hydraulic conductivity and the elastic 
modulus 

7.4 Discussion 

This chapter considered a HMC transport model that can be used to simulate the 

advection-dominated transport process of a contaminant in a deforming porous medium. 

The influences of the chemically-induced alterations of the mechanical and transport 
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properties of the porous medium on the contaminant transport process were considered in 

the HMC transport model, using experimental results found in the published literature. 

The time-adaptive scheme is coupled in the HMC model to obtain the optimal solution of 

the advective-dispersive-reactive transport process. However, since conservative values 

of the time-weighting and the upwind function were adopted in the MLS formulation of 

the transport equation, an artificial diffusion is embedded in the model solution for the 

transport process. Such artificial diffusion can be observed in the numerical results of the 

contaminant transport processes shown in Figures 7.5-7.8, and it is enhanced by the 

dissipation of the excess pore fluid pressure. Further effort should be made to improve 

the accuracy of the HMC transport model by using an operator-splitting technique with 

an iterative algorithm for the accurate solution of the advection-dominated transport 

problem. 
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CHAPTER8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Summary and Conclusions 

Contaminant transport in porous media is one of the most important geo-environmental 

problems related to the human life and activities, since the transported chemicals or 

hazardous materials may contaminate the groundwater and aquifers making them 

unusable for a long time. The prediction of the time- and space-dependent movement of 

contaminants in porous media is important for contaminant management and 

environmental decision-making processes III such endeavours as groundwater 

remediation and soil cleanup. In general, the factors contributing the migrations of 

contaminants in porous media are complex and include the processes of advective

dispersive transport, dissipation of the pore fluid pressure, deformation of the porous 

medium, geochemical reactions and heat transfer. These coupled nonlinear processes, 

when applied to practical problems, can only be investigated through a numerical 

modelling. 

However, numerical models currently in use encounter difficulties in obtaining the 

accurate solution for the advection-dominated transport equation with a solution 

containing high gradients or discontinuities: they introduce either mathematical 

oscillations or artificial diffusion into the solution in the vicinity of the high gradients in 

the contaminant concentration. Developing high-order accurate stabilized numerical 

methods for solving the advection-dominated transport equation has become an important 

topic in the field of science and engineering, since the classical advection-dispersion 

equation can be used to describe a variety of physical processes associated with a wide 

range of problems, such as waves in shallow water, heat transfer in fluids, salt movement 

in the oceans, the flow of vehicular traffic, movement of charged particles like electrons, 

gas dynamics, biological processes and sediment contamination of aquifers, etc. To date, 

many attempts have been made to develop stabilized numerical methods for the solution 
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the advection-dominated equation. A review and classification of the research on the 

development of stabilized Finite Element Methods (FEMs) for the advection equation 

were given in Chapter 1 and a summary table is given in the Appendix. 

Stabilized FEMs for the advection equation have undergone development for four 

decades since the upwind scheme was first introduced into the Galerkin method in the 

late of 1970s, by using the asymmetric weighting function. However, the theoretical 

fundamentals of the stabilized FEMs were not realized until almost 20 years later when 

the concepts of the Multiscale and the Bubble function were proposed. The origins of 

stabilized FEMs for the advection equation with a solution containing a discontinuity 

were reviewed in Chapter 1 by means of the Péclet number and the Fourier mode. When 

the Péclet number is greater than unit y, the variation of the unknown variable over the 

element can be considered to be discontinuous in the discretization sense. Fourier 

expansion shows that a step wave (which contains a discontinuity) consists of the wave 

components of high frequency that are referred to as the fine scales of the solution. The 

conventional finite element space with the lower-order polynomial is not appropriate for 

these fine scales, and need to be augmented with certain high-order polynomials (or 

bubble functions). However, effects of the fine scales can also be considered in the 

normal finite polynomial space, and this is equivalent to adding a stabilizing term to the 

weak form of the conventional Galerkin method for the advection equation. This leads to 

a general weighted residual integral form of stabilized FEMs for the advection equation, 

details of which were given in Chapter 2. 

The assessment of numerical methods for the advection-dispersion equation has kept 

pace with their development, using mathematical tools such as maximum principles, 

hyperbolic conservation law, error analysis, Fourier analysis, etc. In particular, the 

Fourier analysis can illustrate the mathematical properties of numerical methods in the 

frequency domain by means of the alterations, caused by the numerical scheme, of the 

algorithmic amplitudes and the phase velocities of different wave components involved 

in the solution. From this view of point, Fourier analysis can be used to investigate the 

mathematical nature underlying the difficulties embedded in the numerical schemes for 

the hyperbolic equation, such as oscillations and artificial diffusion. Such an investigation 

can be used to derive the conditions for the optimal numerical performance of stabilized 
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schemes for the hyperbolic equation, which contains a discontinuous solution. Due to 

these considerations, the Fourier analysis has become a powerful tool for the stability 

analysis of numerical schemes and the determination of stabilized parameters. 

It is evident that besides the spatial discretization, the time integration strategy also has 

an influence on the performance of the numerical scheme for the advection-dispersion 

equation, and this influence should be included in the assessment. Based on this 

consideration, this thesis performs a Fourier analysis on stabilized semi-discrete FEMs 

using different time integration schemes to investigate their overall numerical behaviour 

for the advection equation. The Fourier analysis is performed on several representations 

of stabilized semi-discrete Eulerian FEMs, such as Petrov-Galerkin, Taylor-Galerkin, 

Least Squares and Modified Least Squares (MLS) methods, since they can be easily 

implemented for the solution of practical problems. The formulations of these stabilized 

methods for the advection equation are briefly described in Chapter 2. 

The analytical expressions of the algorithmic amplitudes and phase velocities of these 

semi-discrete Eulerian stabilized FEMs for the advection equation with forward-Euler, 

backward-Euler and Crank-Nicolson time integration schemes are given in Chapter 3. 

Using these analytical expressions, the numerical performance of the semi-discrete 

stabilized FEMs for the advection equation can be easily and accurately investigated by 

illustrating the variations of their algorithmic amplitudes and phase velocities with the 

Courant number and the dimensionless wave number. These variations show that the time 

integration scheme and the Courant number have a significant influence on the behaviour 

of these stabilized FEMs for the advection equation, and their optimal performances can 

be obtained by properly choosing the time-weighting or the stabilized parameter under 

certain Courant number criteria. In particular, it was found that the MLS scheme with a 

specified upwind parameter a = 3/2 and the time-weighting () = 1/3 could generate an 

oscillation-free and non-diffusive numerical solution to the advection equation under a 

Courant number condition of Cr = 1. This conclusion is confirmed by the numerical 

computation of a one-dimensional advective transport problem given at the end of 

Chapter 3. 
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The numerical advantage of the MLS scheme allows the development of an accurate 

numerical modelling of the practical advective transport process in a porous medium. In 

Chapter 4, a one-dimensional advective transport problem of a contaminant in the 

poroelastic geological material is examined numerically. A simplified treatment of the 

fully coupled behaviour of the volumetric deformation of the porous medium (i.e. the 

compressibilities ofboth the pore fluid and the porous skeleton) and the dissipation ofthe 

pore fluid pressure is utilized in the numerical examination of this advective transport 

problem. In this case, a piezo-conduction equation was used to describe the transient 

nature of the pore fluid pressure, which is responsible for Darcy flow in the porous 

medium. Based on the Courant number criterion developed by Fourier analysis discussed 

in Chapter 3, a time-adaptive procedure is proposed, coupled with the MLS scheme, to 

generate an accurate solution of above one-dimensional advective transport process 

induced by a time- and space-dependent flow associated with a pore fluid pressure 

transient. In such a time-adaptive scheme, the time step is determined, based on the 

Courant number criterion Cr = l , by the magnitude of the flow ve10city and the 

elementallength at the locations where the discontinuity of the solution presents. 

In Chapter 4, the time-adaptive scheme was also used to examine an advection

dominated transport process of a contaminant from a spherical cavity in a fluid-saturated 

isotropic porous region. Such a transport problem can be encountered in the geo

environmental problem associated with the deep disposaI of hazardous waste material. A 

Fourier analysis was carried out to show the need to use an operator splitting approach 

with the MLS scheme for solving the advection-dispersion equation. Therefore, a time

adaptive operator splitting numerical model was developed for the spherically symmetric 

advection-dominated transport problem. In this numerical modelling, a coordinate 

transformation was applied, transforming the spherically radial advection equation to the 

c1assical advection equation in order to utilize the numerical advantages of the MLS 

scheme. In addition to the compressibility of the porous system, the infinite extent of the 

porous region, usually encountered in the contaminant transport processes in the geo

environmental field, was considered in this model: an infinite e1ement was used to solve 

the piezo-conduction equation to obtain an accurate approximation of the flow field. The 

computational results showed that small physical dispersions can be captured by the time-
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adaptive operator splitting scheme without introducing numerical oscillations and 

artificial diffusion. 

Experimental research work is important when modelling transport problems in 

environmental geosciences, both for the verification of the theoretical or numerical model 

and for the identification of the parameters goveming the physical phenomenon. In 

Chapter 5, the advection-dominated transport process is experimentally simulated by 

considering the migration of a chemical dye solution in the idealized porous medium 

consisting of glass beads. A colour visualization-based image processing method was 

developed for quantitatively determining the transport process of the dye solution on the 

cylindrical surface of the porous column without any physical disturbance. Using the 

experimental results determined from this image processing method, an inverse analysis 

of the transport problem was carried out, by means of the Output Least Squares 

Criterion, to identify the dispersivity of the transport process in the porous column. The 

identified transport parameter was used for the validation of the numerical modelling. 

The close correlation between the experimental results, the analytical solution and the 

numerical estimation of the advection-dominated transport process of a dye plug 

indicates the effectiveness and the accuracy of the colour visualization-based image 

processing method and the time-adaptive operator splitting scheme for the one

dimensional advection-dominated transport problem with a time-dependent flow velocity. 

The numerical computations and the experimental validation presented respectively in 

Chapters 4 and 5 indicate that the time-adaptive scheme is sufficient to give an accurate 

solution for the one-dimensional advection-dominated transport problem. However, for 

the multi-dimensional advection-dominated transport problem, the flow velocity in the 

vicinity of high gradients or discontinuities of the solution is usually not uniformly 

distributed; in such cases, it is not possible to select a single time step to satisfy the 

Courant number criterion at the locations of the high gradients of the solution, which is 

discretized with a set of arbitrary-shaped elements. Due to this observation, a mesh

refining adaptive scheme is developed in Chapter 6 for modelling a three-dimensional 

axisymmetric advective transport problem from a spherical cavity in a fluid saturated 

porous region. This advective transport problem was computed with a one-dimensional 

time-adaptive model in Chapter 4, but it was recomputed in Chapter 6 using a mesh-
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refining adaptive three-dimensional axisymmetric model. Compared with conventional 

mesh-adaptive methods, the mesh-refining adaptive scheme developed in Chapter 6 is 

quantitative in the sense that the size of the refined element can be determined by the 

Courant number criterion. The time-adaptive procedure can be coupled with mesh

refining adaptive scheme to improve the efficiency of the later, and this time- and mesh

refining adaptive scheme was successfully used with a quasi-Newton iterative algorithm 

to model a nonlinear three-dimensional axisymmetric advective transport problem from a 

disc-shaped cavity. In this computation, the influence of nonlinear sorption and 

chemically-induced alterations of the stiffness and transport properties of the porous 

medium are considered, by weakly coupling the advection-dispersion equation and the 

piezo-conduction equation. Computational results show the feasibility of applying the 

time- and mesh-adaptive iterative schemes to model practical nonlinear contaminant 

transport problems in porous media. 

Finally, a numerical HMC model was developed in Chapter 7 to couple processes of the 

advection-dominated transport of a contaminant, the mechanical deformation of the 

porous skeleton, the dissipation of the pore fluid pressure, and the geochemical reactions, 

applicable to the one-dimensional behaviour of a fully-saturated soil column. In this 

numerical modelling, the mechanical and transport properties of the porous medium are 

assumed to be altered by a simplified space-independent leaching of the porous material 

due to the reaction between the contaminant and the solid particles of the porous medium. 

8.2 Recommendations for Future Work 

In this thesis, Fourier analysis was used to investigate the numerical performance of 

several stabilized semi-discrete Eulerian FEMs for the advection equation. Based on this 

investigation, the time- and/or mesh-adaptive numerical schemes were developed for 

modelling the one- and multi-dimensional advection-dominated contaminant transport 

problems with the time- and space-dependent flow field. An image processing method 

was developed in the experimental modelling to determine the transport process of a 

chemical solution on the cylindrical surface of the porous column. With respect to these 

aspects, future research work can be extended in the follow ways: 
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• Application of the Fourier analysis to a wider range of the stabilized finite element 

methods to investigate a general stabilized weighted residual integral form for the 

accurate solution of the advection equation. 

• Coupling of the mesh coarsening technique with the mesh-refining adaptive scheme 

to develop a more efficient truly mesh-adaptive scheme, in which the mesh near the 

locations of high gradients of the solution can be refined based on the Courant 

number criterion; while the mesh in the locations of smooth parts of the solution can 

be coarsened (or the original mesh restored). Using such a technique, the refined 

region in the computational domain would alter with the migration of the steep front 

of the solution. 

• Application of a colour visualization-based image processing method to determine the 

transport process of the chemical solution in practical geomaterials, such as sand, clay 

and aggregate, etc., by using a coloured chemical solution which contrasts the colour 

composition of the geomaterial. 

• Application of the imaging processing method developed in this thesis to the 

laboratory study of the flow transport pattern of a chemical solution on a two

dimensional homogeneous or inhomogeneous porous region in a quantitative, 

economical and non-invasive way. 

• Extending the one-dimensional HMC transport model developed in this thesis to 

mode1 multi-dimensional advection-dominated contaminant transport processes 

coupled with Hydro-Mechanical-Chemical behaviour of the porous medium. This is 

important topic in the field of geo-environmental engineering for accurate assessment 

of subsurface flow transport, contaminant migration and deformation of the porous 

medium. 
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ApPENDIX. 

A SUMMARY OF STABILIZED SCHEMES FOR THE ADVECTION EQUATION 

Authors Year Characteristics 

Upwind 

Courant 1952 Sided spatial difference in characteristic direction for the 

upwind direction (the first one in Upwind techneque) 

Spalding 1972 Discussion ofUDS and CDS FDM 

Bori & Book 1973 Flux Corrected Transport (FCT) FDM with SHAST A 

algorithm 

Raymond & Garder 1976 Asymmetric test functions and optimal value for upwind 

function for PG scheme 

Christie et al. 1976 1 D Asymmetric linear and quadratic basis functions 

Heinrich et al. 1977 2D Upwind finite element scheme 

Hughes 1978 Unsymmetrical weighting function for the advective term 

Griffiths & Mithehell 1979 Biased weighting functions 

Heinrich & 1979 Biased weighting functions 

Zienkiewicz 

Belytschko & Eldib 1979 Analysis ofupwind method based on amplifying transport term 

Carey 1979 Analysis of stability and oscillations using the Gershgorin 

circle theory and oscillation matrices 

Gresho and Lee 1979 Analysis of oscillations 

Heinrich 1980 PG with 1 D quadratic and 2D biquadratic element 

Morton & Parrott 1980 Modified weighting functions satisfying unit CFL property for 

an upwind effect 

Kelly et al. 1980 Anisotropie balancing dissipation 

Huyakom et al. 1983 Upwind application to practical problems 

Yu & Heinrich 1986 PG method for ID time dependent AD equation 

Yu & Heinrich 1987 PG method for multi dimensional time dependent AD equation 

Galeao & Dutra do 1988 A consistent approximation Upwind PG method 

Carmo 

Steffler 1989 QUICK: Quadratic Upwind Interpolation for Convective 

Kinematics 

Leismann & Frind 1989 Optimal upwind through an error analysis with implieit 

dispersion and explicit advection 

Idelsohn 1989 Upwind technique via variational princip les 

Dutra do Carmo 1991 CAU: Consistent Approximate Upwind Method 
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Codina et al. 1992 Optimal intrinsic time for ID and Characteristic length for 2D 

Khelifa et al. 1993 Douglas-Wang (DW) approach for AD equation. 

Codina 1993a Discontinuity-capturing crosswind-dissipation 

Harari & Hughe 1994 Stabilized FEM for steady ADE 

Carrano & Yeh 1994 Optimization of spectrally weighted average phase error 

method based on a Fourier ana1ysis 

Paillere et al. 1996 Upwind Resedual distribution schemes 

Ofiate 1998 Artificia1 or balancing diffusion in the stabilized equation 

Bradford et al. 2000 Discussion of monotonicity of PG method 

Hendriana 2000 Various upwind techniques for imcompressible high Reynolds 

flow 

Petrov-Galerkin 

Hughes & Brooks 1979 Streamline diffusion method, Upwind only in flow direction 

Hughes & Brooks 1982 SUPG: Streamline Upwind Petrov-Galerkin. 

Brooks & Hughes 1982 SUPG for incompressible Navier-Stokes equation 

Johnson et al. 1984 Mathematical analysis of SUPG 

Mizukami & Hughes 1985 A new PG method satisfying the maximum princip le 

Hughes & Mallet 1986a Errors estimates for SUPG with linear element 

Hughes et al. 1986 SUPG with discontinuity capturing 

Hughes & Mallet 1986b Discontinuity Capturing (DC) operator 

Tezduyar & Ganjoo 1986 Aigorithmic Courant number 

Tezduyar & Park 1986 DC for convection and reaction dominated problem 

Hughes et al. 1987 Convergence analysis of the generalized SUPG 

Hughes 1987 Convergence (stability and consistency) of SUPG for ADE 

Tezduyar et al. 1987 SUPG for the convection and reaction dominated problem 

Franca et al. 1992 Analysis of Stabilized FEM, i.e., SUPG, GLS, DW 

Codina 1993b Stability analysis of scheme with Forward Euler in time and 

SUPG in space 

Cardle 1995 Modified PG method for the transient problem 

Ganesan & Salamon 1996 Multilevel PG method: the virtual mesh refinement technique. 

Idelsohn et al. 1996 (SU-C)PG: Streamline Upwind-Centred Petrov-Galerkin 

Ofiate et al. 1997 Derivation of the stabilization parameter, i.e., intrinsic time, 

characteristic length 

Codina 1998 Comparisons ofSUPG, ST-GLS, SGS, CG, TG in terms of 

Sheu & Fortin 2001 SUPG for 1 and 2D problem with quadratic element 

Taylor-Galerkin 

Lax-Wendroff 1960 Taylor series expansion in temporal derivative term (FDM) 
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Donea et al. 1984 Taylor Galerkin (TG) method for advection diffusion equation 

Donea 1984 Euler-Taylor/Galerkin method: Taylor series expansions in 

time and Bubnov-Galerkin FEM in space, first one in FEM 

Lëhner et al. 1984 Nonlinear hyperbolic equation 

Selmin et al. 1985 TG method for nonlinear advection diffusion equation 

Donea et al. 1987 Lax-WendroffTG and Crank-Nicolson TG 

Choe & Hoisapple 1992 TG-DFEM: Taylor-Galerkin Discontinuous FEM 

N oorishad et al. 1992 Review of CNG, SUPG and CNTG throughout Pe-Cr space 

Comini 1995 Analysis of diffusion, dispersion errors and stability of TG and 

BG schemes 

Least-Squares FEM 

Carey & Jiang 1987a Least-Squares FEM and Parallel Conjugate Gradient Solution 

Carey & Jiang 1987b LS FEM and Preconditioned CG (PCG) for nonlinear problems 

Carey & Jiang 1988 Comparison of Least-Squares FEM with PG and TG method 

Bensabat 1990 Optimal control problem for PDE, created by Least square 

procedure and solved by conjugate gradient method 

Park & Liggett 1990 TLS, Taylor-Least-Square FEM for ID 

Park & Liggett 1991 Application ofTLS to 3D problem with operator splitting 

Franca & Hughes 1993 Convergence analyses of GLS 

Idelsohn 1996 Generalization of GLS method for the 2D transient problem 

Carey et al. 1998 Least-Squares Mixed FEM 

Carey et al. 1998 ParaUel Conjugate Gradient for Least-Squares Mixed FEM 

Characteristic Galerkin method (Euler-lagrange) 

Garder et al. 1964 Particle tracking method for Method of characteristics (MûC) 

Neuman 1981 A review of Eulerian-Lagrangian method 

Douglas & Russell 1982 Characteristics method with FEM or FDM 

Varoglu & Liam Finn 1982 Eulerian-Lagrangian method in 2D problem 

Zienkiewicz et al. 1984 Lagrange and Euler method 

Neuman 1984 Basic discussions of the Eulerian-Lagrangian approach and 

applications of article tracking 

Lëhner et al. 1984 ECG: Euler Characteristic Galerkin 

Morton 1985 Nonlinear problem 

Demkowitz & Oden 1986 Adaptive PG method for multidimensional problem 

Celia et al 1990 ELLAM: Eulerian-Lagrangian Localized Adjoint Methods 

Szymkirewicz 1993 Spline functions for determination of the characteristics 

Ij iri & Karasaki 1994 Time-dependent adaptive mesh generation for dispersion using 

the finite element method 

184 



Celia 1994 Solute mass conservation for finite volumes using ELLAM 

Binning & Celia 1994 Finite volume ELLAM for contaminant transport in saturated 

and unsaturated zone 

Ewing et al. 1994 Coupled simulation of fluid, heat and radioactive transport 

usingELLAM 

Hinkelmann & Zielke 1995 Flow and salt transport on shadow systems 

Dahle et al. 1995 EL localized adjoint method. 

Oliveira & Baptista 1995 comparison of integration and interpolation EL methods 

Allievi et al. 1997 Generalized partic1e search-Iocate algorithm 

Le Roux et al. 1997 Semi-Iagrangian method 

LeRoux & Lin 1999 Semi-implicit semi-Iagrangian finite-element 

Allievi & Bermejo 2000 FEMMC: Finite Element Modified Method of Characteristics 

Zoppou et al. 2000 Exponebtial spline interpolation in characteristic based scheme 

Sheng & Smith 2000 TEPG: Transport-Equilibrium Petrov-Galerkin methods with 

nonlinear adsorption isotherm 

Li et al. 2000 CG with implicit scheme for non-equilibrium sorption 

Li et al. 2000 Implicit characteristic Galerkin method, with 2N exponential 

algorithm for convective term 

Space-time Galerkin 

Varoglu & Liam Finn 1980 ID Space-Time Galerkin method 

Nguyen & Reynen 1984 Space-time least-squares FEM 

Yu & Heinrich 1986 PG method for transient problem in space-time FE mesh 

Hughes et al. 1989 GLS/ST: The GalerkiniLeast-Squares Space-Time 

Sharkib & Hughes 1991 Space-Time GalerkiniLeast-Squares Aigorithms 

Hansbo 1992 CSD: Characteristic Streamline Diffusion method in space-

time space 

Pironneau et al. 1992 Analysis of CG and GLS/ST 

Onate & Manzan 1999 Stabilized space-time FEM 

N'dri et al. 2001 Space-time Galerkin for 2D and 3D incompressible viscous 

flow 

Operator split 

Douglas & Rachford 1956 Heat transport using the Altemating Direction Implicit (ADI) 

scheme 

Marchuk 1975 Mathematical description of the operator split technique 

LeVeque & Oliger 1983 Additive Operator Splitting for hyperbolic equation 

Morshed& 1995 Operator splitting procedure applied to the advection-

Kaluarachchi dispersion-reaction equation 
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Marchuk 1995 Overview of different splitting-up techniques 

Zienkiewicz &Codina 1995 CBS: The Character Based Split scheme 

Siegel et al. 1997 Discontinuous FEM on advection and mixed hybrid FEM on 

diffusion 

Khan & Liu 1998a Numerical analysis of operator Splitting for 2D equation 

Khan & Liu 1998b Operator Splitting for 3D equation 

Karlsen et al. 1998 COS:Corrected Operator Splitting methods 

Zienkiewicz et al. 1999 Semi-implicit and implicit scheme for CBS 

Wendland & Schmid 2000 S3: Symmetrical Streamline Stabilization OS scheme 

Residual-Free Bubbles 

Brezzi et al. 1992 Relationship between stabilized FEM and Galerkin method 

using bubble 

Baiocchi et al. 1993 Virtual bubbles and GLS method 

Brezzi & Russo 1994 bubbles for advection-diffusion problems 

Hughes 1995 DtN (Dirichlet-to Neumann) formulation, Subgrid scale 

models, Bubbles, and Intrinsic time 

Franca & Farhat 1995 Stabilized FEM with bubble functions 

Franca & Russo 1997 RFB and mass lumping 

Brezzi et al. 1997 Equivalence ofvariational multiscale and residual-free bubbles 

approach 

Brezzi et al. 1998 RFB for 2D ADE 

Franca & Macedo 1998 RFB for ADE and approximation of TLFEM 

Brezzi et al. 1998 Intrinsic time in SUPG and pseudo REB functions 

Franca et al. 1998 RFB and TLFEM for Helmholtz equation 

Franca & Valentin 2000 USFEM (Unusual Stabilized FEM) with large zero-order term 

Franca & Hwang 2002 TLFEM (Two-Level FEM) for ADE with bubbles function 

Recently work on Finite Difference Methods 

Bruneau et al. 1997 Back characteristics and Flux limiter scheme 

Keppens et al. 1999 Implicit and semi-implicit TVD and CG-type iterative schemes 

Balzano 1999 2D QUICKEST scheme 

Pereira & Pereira 2001 Fourier analysis ofseveral FD schemes for ID problem 

Wang & Hutter 2001 Comparisons of ID FDM numerical methods 

Kalita et al. 2002 HOC: higher Order Compact schemes 
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