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Abstract

This thesis examines the problem of load flow feasibility, in other words, the conditions
under which a power network characterized by the load flow equations has a steady-state
solution. In this thesis, we are particularly interested in load flow feasibility in the

presence of extreme contingencies such as the outage of several transmission lines.

Denoting the load flow equations by z= f(x) where z is the vector of specified

injections (the real and reactive bus demands, the specified real power bus generations
and the specified bus voltage levels), the question addressed is whether there exists a real

solution x to z= f(x) where x is the vector of unknown bus voltage magnitudes at load

buses and unknown bus voltage phase angles at all buses but the reference bus. Attacking
this problem via conventional load flow algorithms has a major drawback, principally the
fact that such algorithms do not converge when the load flow injections z define or are
close to defining an infeasible load flow. In such cases, lack of convergence may be due
to load flow infeasibility or simply to the ill-conditioning of the load flow Jacobian

matrix.

This thesis therefore makes use of the method of supporting hyperplanes to characterize

the load flow feasibility region, defined as the set the injections z for which there exists a
real solution x to the load flow equations. Supporting hyperplanes allow us to calculate

the so-called load flow feasibility margin, which determines whether a given injection is
feasible or not as well as measuring how close the injection is to the feasibility boundary.
This requires solving a generalized eigenvalue problem and a corresponding optimization

for the closest feasible boundary point to the given injection.

The effect of extreme network contingencies on the feasibility of a given injection is
examined for two main cases: those contingencies that affect the feasibility region such as
line outages and those that change the given injection itself such as an increase in VAR

demand or the loss of a generator. The results show that the hyperplane method is a



powerful tool for analyzing the effect of extreme contingencies on the feasibility of a

power network.



Résume

Ce mémoire étudie le probleme de la faisabilité de I'écoulement d'énergie, c'est-a-dire aux
conditions sous lesquelles un réseau électrique, caractérisé par les équations d'écoulement
d'énergie, a une solution stationnaire. Il analyse plus spécifiquement la faisabilité de
I'écoulement d'énergie en cas d'accident, comme par exemple la panne de plusieurs lignes

électriques.

On note z = f(x) l'équation vectorielle de I'écoulement d'énergie, ou z est l'injection

d'énergie (la demande en puissance réelle et réactive, la production de puissance réelle et
la tension a chaque bus). Existe-t-il alors une solution x réelle? Le vecteur x représente
les modules et les phases des tensions aux bus de charge. L'ensemble de ces valeurs sont
inconnues, a l'exception de la phase au bus de référence qui est nulle. Les algorithmes
traditionnels présentent un défaut majeur: ils ne convergent pas lorsque I'injection
d'énergie z définit un flux d'énergie irréalisable ou proche de I'étre. Ceci peut étre causé
par un écoulement d'énergie irréalisable ou simplement par une matrice Jacobienne de

I'écoulement d'énergie mal conditionnée.

Cette étude utilise la méthode de séparation des convexes pour définir les limites de
faisabilité de I'écoulement d'énergie, c'est-a-dire les injections z pour lesquelles il existe
une solution x réelle. La séparation des convexes permets de calculer la marge de
faisabilité¢ de 1'écoulement, qui détermine si une injection est réalisable mais qui aussi
mesure sa distance aux limites de faisabilité. Cette méthode nécessite la résolution d'un
probléme aux valeurs propres généralisé, et du probléme d'optimisation correspondant

afin trouver la limite de faisabilité la plus proche de l'injection.

Les conséquences d'un événement exceptionnel sur la faisabilité d'une injection donnée
sont analysées dans deux cas: d'une part les événements qui affectent les limites de
faisabilité, comme par exemple I’arrét de fonctionnement de lignes électriques, et d'autre

part ceux qui modifient l'injection d'énergie, par exemple une augmentation de la

i



demande en VAR (volt ampére réactif) ou la panne d'un générateur. Les résultats
montrent que la méthode de séparation des convexes est un outil puissant pour déterminer

les conséquences d'un événement extréme sur la faisabilité d'un réseau électrique
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Chapter 1: Introduction

1.1 General

Modern power systems today are comprised of hundreds of transmission lines,
substations and power plants, and are furthermore interconnected with neighbouring
utilities in the interest of reducing cost and achieving higher reliability [1]. Concern for
pollution in the environment and health hazards from radiation effects have led to siting
the thermal and nuclear plants in locations remote from the load centers [2]. There is also
the integration of numerous wind farms in the network. The difficulties in obtaining
right-of-way have caused delays in construction of transmission lines and have led to the
use of multi-circuit lines. All these factors contribute to making power systems highly

complex to design and operate, and vulnerable to disturbances or equipment failures [1].

One of the most important aspects of a power system analysis with theoretical and
practical applications in planning and operation is its steady-state behaviour as
determined by the load flow equations. These define the relationship between the injected
real and reactive power and the complex voltage at the buses of a power network. Load
flow feasibility is concerned with fundamental theoretical limitations on the load flow
equations due to the nonlinear relationship between power z and voltage x, which in
general has the form, [3]

z=F(x) (1.1)
In Equation (1.1), x is the vector of the real and imaginary parts of the complex bus
voltages while z is the bus injection vector, comprised of the specified net real and
reactive power demands at the load buses and the net real power generations and voltage

magnitudes at the generation buses.

One of the main objectives in load flow feasibility analysis is to characterize the

conditions on the load flow injections z for which a real steady-state equilibrium
solution, x, exists. Since the set of algebraic equations is nonlinear, there exist bus

injection vectors for which no real voltage solution exists. Those injection vectors, z,



which have a real voltage solution, x are defined to be feasible, otherwise the injection z

is infeasible [6].

In the space of all possible injections, z, one can define a region R, comprising all

feasible injections called the load flow feasibility region.

1.2 Load flow feasibility example

To illustrate the notion of a load flow feasibility region, consider the following example.

V.20 V,48

R+Jjo B+

Figure 1-1: 2-bus network example

In Figure 1-1, a 2-bus network is shown. The injections at bus 2 include the real and

imaginary power values P, and Q,. The load flow equations which are explained in more
detail in section 2.1.2, define P, and Q, in terms of the nodal voltage components, which

in polar form are V;, V, and the angle § .

P V.V, sin(5)
2 X,
R (1.2)
0, VE V¥, cos()
2 XI
Equations (1.2) can be rewritten as the following,
sin(8) = Xh
n,
V:i+X,0 (13)
42

The angle & can be eliminated from Equations (1.3) using the identity

sin®(8)+cos’(8) =1, resulting in,



(7Y +v2 [ +2x,0, ]+ X[ PP+ 02 ]=0 (1.4)
For a given V;, in order to have load flow feasibility, a real solution must exist for V,>.
This means that the determinant of the quadratic Equation (1.4) must be positive or zero.
A=[?+2x,0,] -4x7 [P +02]20 (1.5)
Rearranging (1.5), we conclude that the specified load flow injections P, O, and ¥}’
must satisfy the feasibility inequality.
Va2t (X,)0, -4(X,) P2 20 (1.6)

This can be shown graphically in the space of injections P, and Q, for a given V.

1
2X,

Figure 1-2: Feasibility region for the 2-bus network

In Figure 1-2, any given injection z, = [1’2,Q2] above the plot defined by inequality (1.6)

is feasible.

It is important to identify the presence of an injection close to or outside the boundary

R_, since proximity to the boundary leads to voltage collapse and being outside the

boundary leads to infeasibility [7].



Let us consider the example of Figure 1-2. Starting from a given point with zero real and
imaginary power injections, slowly decrease the imaginary power and move towards the

feasibility boundary.

V12 =1 0, R

z, =[0,-1/4X,]

Figure 1-3: Closest boundary injection

As seen in Figure 1-3, this trajectory eventually hits injection z, on the boundary of the
feasibility region with zero real power and Q, =~} . An injection with O, < -
2 4X, 4X,

will result in a negative determinant in the Equation (1.5) and is infeasible.

In addition, the value of the voltage at bus 2, V;*, drops as the imaginary power is

decreased to _% X This collapse of voltage which happens at z, on the feasibility
!/

boundary and is due to lack of imaginary power support at bus 2 is shown in Figure 1-4.



2 A
Y,

Figure 1-4: Plot of the voltage at bus 2 versus Q,

1.3 Motivation and methodology for the investigation of load flow feasibility

Significant effort has been devoted to define the boundaries of the feasibility region [8].
A simple method to do so is to repeatedly solve conventional load flows under increased
loading as shown in Figure 1-3. This method however, requires extensive load flow
calculations. Moreover, as the injection comes closer to the boundary of feasibility, the
Jacobian matrix required to solve the load flow equations becomes more ill-conditioned.
This load flow method determines the maximum possible variation of real and reactive

power injections before a Jacobian singularity condition is reached [9].

One problem with this approach is that, since the load flow might cease to converge for
an injection in the feasible region close to the boundary, one cannot conclude whether an

injection is infeasible or the problem is numerical.

In this thesis, an alternative approach is used to analyse the boundary of the feasibility

region and, more specifically, to find the closest boundary injection. This approach
characterizes the feasibility region with a set of supporting hyperplanes such that o’z >0

for z e R,, where a is the normal vector of the supporting hyperplane [6].

As shown in this thesis, there exist infinitely many supporting hyperplanes. Of particular
interest among the many supporting hyperplanes, we will show how compute the closest

one to a given injection vector, as illustrated in Figure 1-5.



0,

Figure 1-5: Supporting hyperplanes

As seen in Figure 1-5, the feasibility boundary is locally approximated by supporting

hyperplanes such as @ z=0 and a, z =0 . However the closest supporting hyperplane
is @’z =0, whose intersection with the feasibility boundary is z, , the closest boundary

Injection to Zg-

Furthermore, the hyperplane method defines a feasibility margin (FM) to measure the

degree of feasibility of a given injection [6],

FM = cos(6) =% (1.7)

Where 0 is the angle between the given injection z, and o’ the normal vector of the

closest boundary hyperplane. The FM is positive for feasible injections, becomes zero on

the feasibility boundary and is negative for infeasible injections.

Since without load flow feasibility no steady-state equilibrium is possible, the power
system becomes unstable. Thus understanding the nature of load flow feasibility is crucial

in power system planning and operation, particularly after line outages or major changes



in the injections, not uncommon occurrences [10]. Contingencies affect load flow
feasibility in different ways. Thus, line outages change the structure of a network. This
results in a change in the feasibility boundary which can affect the feasibility of a given

injection as shown in Figure 1-6.

After line
outage

<eee. Before line|
outage

Figure 1-6: Effect of line outage on the feasibility boundary

It can be seen that a line outage results in a decrease in the size of R_, which leads to

infeasibility for the shown injection z, .

Another kind of contingency can result in movement of the given injection itself. This
was shown previously in the example of Figure 1-3., where the decrease in Q, , which

can occur when a capacitor bank or SVC goes offline, drives the system towards

infeasibility. Chapter 3 discusses these examples in more detail.

1.4 Goal of the thesis
This thesis examines in detail the method of supporting hyperplanes to study power grid
load flow feasibility. This method proves to be much more powerful than conventional

load flow in finding points on the boundary of the feasibility region, R, , and specially the



closest injection on the boundary of feasibility to a given injection, z,, which is used to

measure the degree of the feasibility of that injection.

Specifically, this thesis examines the impact of extreme contingencies on power system

feasibility. Two classes of extreme contingencies are defined here. The first class is made

up of those events that modify the given injection, z,, such that it is driven towards

infeasibility. The second class of events are those that result in change to the power

network causing the feasibility region, R_, to change.

Furthermore, a contingency is categorized as gradual and sudden. Events such as an
increase in VAR demand result in a gradual movement of the injection towards
infeasibility, whereas sudden loss of lines or generators could make an injection
infeasible immediately. Moreover, the impact of a contingency can vary with system

demand level.

1.5 Outline of the thesis

Chapter 2: Characterizing Load Flow Feasibility

This chapter describes the supporting hyperplane method. It first introduces load flow in
polar and rectangular coordinates, accompanied by an example. Then, the notions of
feasibility plane and region are defined. The example is used to provide insight into these

notions.

Next, supporting hyperplanes, the eigenvalue problem and the notion of the closest

boundary injection are explained in detail using the example.

Finally the steps taken to implement the supporting hyperplane method in MATLAB are

described.



Chapter 3: Study Cases of Load Flow Feasibility

In this chapter, different types of contingencies and their analysis through in the
hyperplane method are presented. Certain examples study changes in the feasibility
region due to transmission line outage. Others look at changes in the given injection due
to loss of VAR support or generation, which may also lead to a corresponding bus type

change.

The effect of the loading of the power network on the severity of a contingency from the

load flow feasibility point of view is also examined.

Chapter 4: Conclusion
This is the conclusion chapter. It includes a summary of the work presented in the thesis

as well as recommendations for future work.



Chapter 2: Characterizing Load Flow Feasibility
2.1 Load flow

2.1.1 Polar and Rectangular Coordinate Forms

The steady state analysis of a power system is described in terms of a set of non-linear
algebraic equations known as the load flow equations. These equations have special
properties when expressed in rectangular coordinates. It is their quadratic structure that

forms the basis of load flow feasibility analysis [16].

In the standard load flow formulation, load buses are modeled as PQ buses and

generation buses as PV with one of them taken as the slack bus where the real power
injection is not specified. Therefore the nodal bus injections have the following formats.

e z =(P,0) Corresponds toload buses

e z =(P,V?) Corresponds to generation buses

e z =) Corresponds to the slack bus
It can be shown that injections z,( P, Q,or ¥;*) are of the quadratic form [11, 12],

z,=x"Jx 2.1)

where x is the vector of the nodal voltage components in rectangular coordinates

x=(ef )" and J, is a 2Nx2N constant real symmetric matrix, which is uniquely

defined by the type of injection and the network admittance matrix (see Section 2.3.2 for

a more detailed derivation of the matrices J, ).

The relation between the injections and the nodal voltages can be derived in polar or
rectangular coordinates [14]. The complex bus power injected into node i has the

following form.
i it (22)

In Equation (2.2):
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e V, and I, are the complex voltage and the current injection at node i
e P and Q, are the real and reactive power injections at node i

The current I, can be expressed as

v, Y, (2.3)

Mz

==

1=

=
Ul

1
where the ¥, s are the elements of the network bus admittance matrix ¥ . Substituting

Equation (2.3) into Equation (2.2) gives

S = ﬁﬁ (2.4)

k=1

In Equation (2.4) the voltage can be expressed in either polar, 7, =¥, -, or rectangular

coordinates, ¥, =e, + j- f,, and the real and imaginary parts can be extracted to obtain,

=7, ﬁjr/j(qj cos8, — B, sind, ) 2.5)

=1

~.

©

[
~
MZ

V,(G,sins, - B, coss,) | (2.6)

J

~.
il
—_

for polar coordinates, and

=ie,[Ge -B,f, |+ £[G,f,- B, ] 2.7)
Q,.=ﬁ:]§|:G,jej—By.fj]+e [G,f,+B,e, ] (28)

for rectangular coordinates, where G, and B, are the real and imaginary parts of the
elements of the bus admittance Y . These P and Q, formulations of Equations (2.7) and

(2.8) together with the ¥ definition from the rectangular coordinate formulation of the
nodal voltages,

V= +ff 2.9)
define the injections for PQ and PV buses. Subsequently, the slack bus injection only

includes ¥} with the given e, and f, . Furthermore, the value of f, can be set to zero

11



without loss of generality [4, 11]. This results in a reduction of the dimension of x to
2N -1, which correspondingly results in simplifying the J, matrix to (2N —1)x(2N -1).

x=[eey ey, fis foreeos ) (2.10)
Therefore in a network with N buses of which npg are PQ buses, the bus injections can

be defined as a vector of the following form.
zZ= [PI’QI”"’Pnpq9anq’})npq+19l/ni7q+l9""PN—I’VA%—l’VIg] (2.11)

This Equation (2.11) can be put into a more general form using Equations (2.7) and (2.8).

I
1]

x7J (2.12)

T
X lzN_

=L(x) x
Additionally, it can be shown that L(x) is half of the Jacobian matrix by taking the first
derivative of z = L(x) x with respect to x which gives

92 ) 1(x) 2.13)

ox -
where oz is the Jacobian of the load flow equation [6].

6x

2.1.2 Hand solved example
It is helpful to illustrate the above theory through a simple 2-bus network consisting of a

slack bus 1 and a PQ bus 2 connected through a line with impedance jX, as shown in

Figure 2-1.

12



V,£0=e, V,/5=e,+jf,

M
JX, 2

@ r+jg P+ jO,

Figure 2-1: 2-bus network example with one PQ bus

1

As discussed in the previous section, the voltage at bus 1 has only the real part e, since it
is the reference bus. According to Equation (2.2), the complex power injection into bus 2
1s,
S, = n{d,
2 2 2.) (2.14)
= B+jo,

Therefore,
r/ = — *
_ Vv, -V
P:z +jQ2 = Vz Lz__—l):I
=7, V2 +—_-VL] (2.15)

{7272 _17;171’]

=]———

X, X,
Equation (2.15) can be further expanded, using the polar and rectangular definitions of 7]
and V.
In the case of polar coordinates,
V.=V -e" (2.16)

Equation (2.15) becomes,

V! VV,cos6—j VV,sind
X[ X/

P+ jO, =J[
(2.17)

=ﬁsin5 +J
!

V-V, cosd
X[

Therefore the real and imaginary parts of the transferred power are as following.

13



"

P = siné
!
2.18
0, - V:—VV,cosd @18
2 Xl
On the other hand, using the rectangular coordinate definition for the bus voltages,
Vi=e+j-f, (2.19)
the current 7, in Equation (2.14) can be expressed as
A
2 .
X
- (2.20)
1 .
= ‘E[(ez —el)+]f2:|
Therefore the injection at bus 2 is,
P, +jO, = 1727
=)oy )[(ez &)= JIf] (2.21)
=—[e2f2 ~fe-a)]+ i [fz RACE]
from which the real and imaginary parts can be extracted.
1
P = Yl e.f
| (2.22)
0, = '/?l("elez + 622 + f22)
Therefore, if the vector of nodal voltages x is defined as,
¢
X=|e, (2.23)
S

then the vector of injections z is as follows.

14



I
Il
©

ey
X, (2.24)

(—ee, + e22 + fzz)
X

I
2
¢ +f,

2.2 Feasibility Region

2.2.1 Feasibility Region R,

Load flow feasibility is concerned with those conditions on the specified power and
voltage magnitude injections under which a steady state equilibrium is physically
possible. These limitations on the specified injections are imposed by the network
structure, that is,

e The nature of the bus types

e The bus admittance matrix
Mathematically, this problem is equivalent to those conditions characterizing the set of

nonlinear load flow equations for which a real voltage solution can exist.

The complete characterization of the load flow feasibility can be conceptually addressed

through a set R, [6]. This set is defined in the space of injections and is called the load
flow feasibility or steady state stability region. The set R_ characterizes all injections z,

for which a real solution x to the load flow problem exists,

R, ={g|g=L(1)§,xeR2N‘1} (2.25)

where the dimension of x is reduced to 2N —1, without loss of generality by setting

fv =0 as discussed in section 2.1.1.
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One can explicitly characterize the load flow feasibility region R, by exploiting the

quadratic nature of the load flow equations in rectangular coordinates [11, 12, 13]. The

following characteristics of R_, result from these quadratic properties.

Region R, is a cone stretching to infinity whose vertex is at the origin of the space of

injections. This is shown in Figure 2-2 for a simple network with 3-dimensional

injections.

A
7
4

Figure 2-2: Feasibility region R, of a 3-dimentional injection space

Region R, lies above a set of supporting hyperplanes all passing through the origin.

These hyperplanes are of the form o’z =0 and will be discussed in more detail in

section (2.3.1).
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Figure 2-3: Feasibility region lies above a set of hyperplanes

2.2.2 Feasibility Region on a Plane

z

To analyze the feasibility region R_, it is useful to consider the intersection between the
feasibility region R, and a plane z, z =k with normal vector z,. The set of z belonging

to this intersection is called the feasibility region on a plane and given the symbol P .
P =R N {_Z_lgng = k} (2.26)

Such an intersection is shown in Figures 2-4 (a) and 2-4 (b) where a plane cuts R_ in a

three dimensional setting.

17



Figure 2-4 (a): Geometrical illustration of feasibility region on a plane P, (the plane

z,' z =k does not intersect all rays in R_)

Figure 2-4 (b): Geometrical illustration of feasibility region on a plane P, (the plane

z,' z =k intersects all rays in R_)

18



In Figure 2-4 (b), the set P, cuts all the rays of R, at some finite length. This implies
that for all ze R,, z,z>0. The plane z/ z =k >0 cuts all the rays in R_ if and only if
the matrix J(z,) is positive definite [6]. The J matrix and its formulation are discussed
in section (2.3.2). From experience, a suggested value of z, that would intersect all rays

in R, is given by

z,(V'?) =1.0 the element of z, corresponding to the voltage injection

z,(P)=0.0 the element of z, corresponding to the real power injection

2,(Q) = 0.1 the element of z, corresponding to the reactive power injection

2.2.3 Hand solved example to illustrate notion of feasibility region on a plane

It is helpful to look at the example of the 2-bus network discussed in section (2.1.2). In

order to visualize the feasibility region on a plane, first consider the terms P, and Q, of

the injection vector z,. Their polar coordinates formulation as seen in Equation (2.18) is,

P, =K1—1isin6
I

_V2-V¥,cos5
Xl

2.27)
o,

In section 1.2, the exact feasibility region was defined using the following inequality,
Vi+4VX,Q, -4 XPI 20 (2.28)

The graph of (2.28) is shown in the space of P,, 0, and ¥;* in Figure 2-5.

19



A 4

O,

Figure 2-5: Load flow feasibility region R, of the network in Figure 2-1

Cutting this feasibility region with a plane z] z = k£ where,
P, 0
=0, |=|0
v |1

results in the following graph,
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Figure 2-6: Feasibility region on a plane P, (the plane z,' z =k does not intersect all

raysin R_)

As seen in Figure 2-6, the plane z,"z = k does not cut all the rays in R_, hence the

intersection is not a closed surface.

Now, if we assume an intersecting plane with z, as suggested in section 2.2.2,

0
z,=10.1
1

The intersecting plane z] z = k is therefore defined by,
V24010, =k
which combined with equation (2.28) yields the feasibility region on a plane as,
(k—0.10,)*+4 (k-0.1 0,) X,0, ~4X,P? >0 (2.29)
By rearranging Equation (2.29), we obtain,

K +(4 kX, =02 k) O, +(-0.01-0.4X,) O —4X,P?* >0 (2.30)

Further simplification of Equation (2.30) results in the following,
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2 2
d+c Q2+Q—§+£22$O

a b (2.31)
where,
1
q=—
(0.01+0.4X))
po_1
(4X,)
c=(02k-4kX)
d=-k*
a’c?

K=d-

Completing the square results in the following equation,
1 a‘c ’ | B 2
&\ &) iR
(2.32)

which is the equation of an ellipse as shown in Figure 2-7.

Oh 4
P

z0

FAYN .PZ
z —ad’c
k 2

Figure 2-7: Feasibility region on a plane P, (the plane z, z =k intersects all rays in

R,)

It can be seen that the above choice of z, results in a set P, which intersects all rays in
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2.3 Supporting Hyperplanes

2.3.1 Definition and Solution Method

As suggested in section (2.2.1), the feasibility region R, has a set of supporting
hyperplanes (SH) of the form a’z=0. Such hyperplanes are graphically shown in
Figure 2-8 (a) where the z, s are the intersection points of the feasibility region with the

hyperplanes. Figure 2-8 (b) shows the SH with respect to the feasibility region on a plane

P, where we see that given enough such SH, the set P, could be approximately

characterized.

Figure 2-8 (a): Example of supporting hyperplanes @’z =0 of the load flow feasibility

region R,
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Figure 2-8 (b): 2-dimentional feasibility surface P,

A supporting hyperplane a”z =0 can be found by searching over the feasibility region
on a plane P, in some arbitrary search direction z such that z # z, and z # —z,. This
search direction vector z defines a plane z/z=c which intersects the set P, for

different values of c¢. As shown in Figures 2-9 (a) and 2-9 (b), by varying c, the finite

minimum and maximum values of ¢ over P, can be obtained.

Figure 2-9 (a): Intersection of the plane z"z = ¢ with P, for various values of c.
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increasing value of ¢

N T

T, -
zz=c

A 4

T, _
Z 2= Chyy

Figure 2-9 (b): Intersection of the plane z"z = ¢ with P, for various values of c.

The search for the arbitrary supporting hyperplane, o’z =0, can be formulated as an
optimization
maxz z=c

ZER,

st. (2.33)

Zz=k
This optimization can be simplified using the following identities (2.34) and (2.35) to
obtain the eigenvalue problem (2.36)

Zz=x"J(z)x (2.34)
Zz2=x"J(z)x (2.35)
[J(z) -2 J(z)]x=0 (2.36)

Equation (2.36) results in a set of real eigenvalues A and their corresponding

eigenvectors. The maximum and minimum such eigenvalues then define the

corresponding hyperplanes according to the following expressions (2.37) and (2.38) [6],
o =(Anzo—2) A=A (2.37)
@ =(2~hpinZo) A=y (2.38)

This eigenvlaue problem is at the core of the supporting hyperplane method since the

maximum or minimum eigenvalues result in the a ’s which define the supporting

hyperplanes. Moreover, the corresponding eigenvectors solving equation (2.36) become
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the nodal voltages x, corresponding to the injection at the boundary of the feasibility

region where the SH is tangent to R, .

2.3.2 J-Matrix Implementation
Consider a network with the following bus information
e N Total number of buses

e npqg Number of PQ buses

e npv  Number of PV buses excluding the slack npv = N —npg -1

The injections are now written in the following format

P |« N-1
z=|0 |« npgq (2.39)
i< nmpv+l
e |« N
=" 2.40
* M«— V-1 =40

Both of these vectors have 2N —1x1 dimensions. Furthermore, if @ is a constant

injection vector of dimensions 2N —1x1,

ap
a=|a, (2.41)
QVZ
then, |
P
a'|Q |=a)/P+a, Q+a,'V’ (2.42)
V2
The @,” P element on the right hand side of Equation (2.42) can be expressed as
eT
a,P=[e" f"1J(a) [}T} (2.43)

where, recalling that z, = x" J.x, we define
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a’z=x"J(a)x (2.44)

2nb-1

with J(a)= > a,J, .
i=l

2nb-1
The specific nature of J(a)= Z a,J, can be derived as follows. We begin with

i=1
Equation (2.7) showing the relation between the real power injection at bus i and the
complex voltages in rectangular coordinates
N
P =3 e|[Gye,~B,f, |+ f[G,f ~Bye,] (2.45)
j=1
This can be expressed in matrix format as
P = diag(e)[Ge~ Bf |+ diag(f)[Gf - Be] (2.46)
where diag(e) is a diagonal matrix with elements of e on its diagonal. The right hand
side of Equation (2.46) can be separated into four terms.
diag(e) G e
diag(e) (- B) [
diag(f) G e
diag(f) (- B) f
The first term, diag(e)xG x e can be used to write Equation (2.35) as,

a,P=a,|diag(e) G e]

=" [diag(a,) G e] (47
Furthermore, one can use Equation (2.47) and the following matrix identity
Jde=¢ [ﬁ”fj e (248)
to express Equation (2.43) in terms of a symmetric J-matrix,
o [diag(gp) G ;r G diag(qp)] B (2.49)

The same technique can be used to expand the three other terms on the right hand side of

Equation (2.46) to obtain a general format for J(a,),
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B diag(a,)—-diag(a,) B

2 diag(a,) G+G diag(a,)

diag(a,) B— B diag(a,)

and similarly for J () and J (a,.)

Jeg)=1 [—diag@Q) B- B diag(a,)

G diag(a,) - diag(@,) G
diag(a,) GG diag(a,) } @0

—diag(a,) B— B diag(a,)

J(a,) =[diag(§g'V2) ° }

2.52
diag(e,.) (2:52)
Finally, J(a) can be constructed as the sum of the three components in Equations (2.50),
(2.51) and (2.52)
P r
T T T £
a'|Q |=le" fT1[J(@)+JI(a)+J(a,)] [ } (2.53)
V? Z
where

J(@)=J(a,)+J(a,)+J(a,.)

2.3.3 Hand solved example of the J-matrix and supporting hyperplanes

Consider the previous 2-bus network example depicted in Figure 2-10 with a slack bus 1

and a PQ bus 2 connected through a line with impedance jX,.

Vi=e + jf, V,=e,+ jf,
'\[\/\/ -
| ]X, I 2
@ r+jo P+ jO,

Figure 2-10: 2-Bus network example with one PQ bus

In section (2.1.2), it was shown that with the nodal voltage vector x defined as,
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1=

I

Q
()

and the injection vector z of the form,

N
]
©

then,

(2.54)

(2.55)

(2.56)

2.57)

(2.58)

(2.59)

(2.60)

2.61)

where J, , J, and J,, matrices are easily found by inspection due to simplicity of the

network. The general approach described above yields the same J-matrices as follows:

The admittance matrix of the network in Figure 2-9 is
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According to Equation (2.50),

1 0
J(@y)==| .. :
2| diag(a,) B- B diag(a,)
where,
B diag(a,) = |
iag(a,)=—
= g =P Xl _1
diag(a,) B=— | 7!
iag(a =—
8127
hence from (2.68),

=P

2X,

0
0
0
1

0

-1

0
-1
0

O O O =

0

B diag(a,)-diag(a,) B

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

2.67)

(2.68)

(2.69)

(2.70)

2.71)
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The last step is to eliminate the third row and third column which correspond to the
reference voltage component f; which is arbitrarily and without loss of generality set to
zero. The final result which accords with Equation (2.61) is

0 0 1
J,,z:—l— 0 00 (2.72)
2%, 1 00

Similarly, J, and J,, can be calculated according to Equations (2.51) and (2.52).

Having the J-matrices for all injections, we can now calculate arbitrary supporting SHs of

the feasibility region R.. First, we calculate J(a) for an arbitrary vector ¢ .

&,
J(a)=J(ay, |)
o
=Jp +J, +lV|2 (2.73)
0 01 0 -1 0 1 00
o, a,
=0 0 0|+—=|-1 2 O|+a,(0 O O
2X, 2X, £
1 00 0 0 0 0 00
. . . . Up » 2‘/YlaV2 a
Further simplification can be made by renaming —-= 4 and ———— = B.
an an
B -1 4
J@)=—2 |1 2 o0 (2.74)
2K, '
A 0 2

Now, in order to solve the eigenvalue problem (2.36), we need to calculate J(z,) and

J(z) where z is an arbitrary constant injection vector,

-1
z,=|-0.5
1

and,
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z,=|0.1
1
Therefore from (2.74),
L
20X,
1 1
Jz)=|-~— —— 0 2.75
/(2) 20X, 10X, @7
0 0o L
i 10X, |
while,
[, L 1]
4X, 2X,
1 -1
Jzy=| - =L 2.76
4(z) 4X, 2X, (270
;1._ 0 __1
2X, 2X, |

These two matrices, J(z,) and J(z,), are both symmetric Before we proceed any further

we need to make sure that J(z,) is positive definite. The eigenvalues of J(z,) are,

1
21_10)(,
2.77
1X,+iiJ—J100X,2—20X,+2 @77)
_27"720720

3T

X I
For line reactance values of X, greater than 0.025, all the eigenvalues are positive, in
which case J(z,) is positive definite. For values of X, less than 0.025, one would have

to use a different value of z; to find a positive definite J(z,).

Referring to Equation (2.36) the eigenvalue problem is as follows.

[J(z)-2 J(z)]x=0 (2.78)
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For a line reactance value of X, =0.5, the eigenvalues and their corresponding
eigenvectors are as follows.

[-5.75
A= -5
| 2.06
[032 0 0.98
x=[0.16 -2.24 0.49
1213 0 -0.69

The maximum and minimum eigenvalues, as shown in (2.37) and (2.38), define the a

vectors defining two supporting hyperplanes o’z =0.

1

a. =071 A =2.06
1.06
-1

a,. =| 08| A, =-575
6.75

Furthermore, the corresponding eigenvectors are the nodal voltages x, at the intersection

of these SHs and the feasibility region R, .

0.98
X =| 0.49
—0.69
0.32
Xoin =1 0.16
2.13

2.4 Closest Boundary Injection

2.4.1 Feasibility Margin

The degree of load flow feasibility of a given vector of injections z, can be expressed by

a quantitative measure known as the load flow feasibility or steady state feasibility

margin (FM) defined as [6],
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*T
a
*

e[z

= cos(@

2,

FM =

(2.79)

S——

where @ is the normal vector defining the closest SH to z, . This is illustrated in Figure

2-11.

Figure 2-11: Geometrical illustration of the feasibility margin FM of a given injection z,

As shown before, the normal vector @ can be found from the solution of the generalized

eigenvalue problem,

[J(2) -2 J(z)]x=0 (2.80)
and it has the form
& =(An20— 21) (2.81)
or
& =(2~minZo) (2.82)
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where

e A, and A . are the extreme eigenvalues of (2.80)

e J(z,) is positive definite.

e z isan arbitrary search direction.
As long as J(z,) is positive definite, by varying the search direction z , all o ‘s
belonging to the boundary of R, can be found. The boundary injection, z, ,

corresponding to such ¢ is,

z, = L(x,)x, (2.83)

where x, is the eigenvector associated with one of the extreme eigenvalues.

The properties of the steady state FM can be examined by considering its associated

closest boundary injection z, given by Equation (2.83).

Pre-multiplying (2.83) by a'”,

a’z=a"L(x)x, (2.84)
and using the identity
a'L(x)x =x"J(a)x (2.85)
the following is obtained,
a”'z,=xJ@)x (2.86)
Writing Equation (2.80) as,
J(@)x, =0 (2.87)
then (2.86) becomes
az,=0 (2.88)

Hence, if a given injection z, lies on the boundary of R, then by Equation (2.79) FM is
. *T . .. . .
zero. If however z, € R, then since @~ z, >0, FM is positive. Otherwise if z, ¢ R, then

since &' z, <0, FM is negative.

35



Here is list of the important characteristics of the feasibility margin of an injection:

The injection z, is feasible if an only if FM > 0. This important property can be

used independently of the numerical load flow algorithm to test the feasibility of
an injection. One can verify weather the non-convergence of a numerical load
flow algorithm is due to load flow feasibility violations or to non-convergence of
the numerical algorithm.
Since the FM is defined in terms of the cosine of the angle 6, then

-1< FM <1
Thus, the FM can be used to quantify the degree of feasibility or unfeasibility of a

given injection z, . This allows for a comparison of the load flow feasibility

limitations of different network structures.

In case of load flow feasibility violation, the closest boundary injection associated
with the FM can result in a systematic procedure to restore load flow feasibility.
This is more efficient than the trial and error method [6].

The FM can be used to characterize an explicit sufficient load flow feasibility set

R, . Any injection in R, is guaranteed to be feasible. This has potential application

in power system security [13].

2.4.2 Optimization Scheme

As discussed in section 2.4.1, the FM is a measure of the degree of feasibility of an

injection, z, , and is defined as,

where,

FM =cos (Max{@})

aeR,
N - (2.89)
aeR, "‘l""-z-g"

0 is the angle between o and z, .

R, is the set of normal vectors o defining the supporting hyperplane a’z =0.
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The optimization problem in Equation (2.89) is equivalent to the problem of selecting the
closest supporting hyperplane "z =0 as shown in Figure 2-11. This solution can be
formulated as the following.

FM =cos(8")
Q7 (2.90)

|2
where 8 is the angle between z, and a " Once this solution (2.90) is found, the closest

a

boundary injection z, to 2, can also be found, from which other measures of feasibility

such as the minimum Euclidian distance to z, , can be derived.

This optimization can be implemented using MATLAB. First, there is a program that

calculates the normal vector ¢ using the generalized eigenvalue problem,
[J(z)-2J(z)]x=0 (291)
In Equation (2.91), z, is the normal vector as defined in section 2.2.2 and z is a given
search direction. The resulting o defines the supporting hyperplane corresponding to the
direction of z , from which the boundary injection z, can be found. Subsequently, using
the calculated ¢ and the given injection z, the FM corresponding to the search direction

can be obtained. The flowchart of this program is shown in Figure 2-12.
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Figure 2-12: Flowchart of the program computing feasibility margin

The program begins with the bus and line data of the network to find the admittance

matrix Y . The vector z, is selected that makes J(z,) positive definite. The program

then computes J(z,) for an initial guess z . These two matrices are then used to form
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the eigenvalue problem, which is solved using MATLAB’s eig(4, B) function, giving

the extreme eigenvalues and their corresponding eigenvectors.

The next step is to select one of the extreme eigenvectors to find the corresponding

boundary injection z, as well as the a vector defining the boundary hyperplane and the

FM.

The steps discussed above can only find an arbitrary boundary injection z, and

corresponding FM given an arbitrary search direction. Hence another program is required
to find the best search direction which results in the closest boundary injection. This

search process is graphically shown in Figures 2-13 (a) and 2-13 (b).

Figure 2-13 (a): Illustration of the search process for the closest boundary injection z,”
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Figure 2-13 (b): 2-dimentional feasibility surface P,

The second MATLAB program described in Figure 2-14 is an optimization routine to

find the search direction which results in the closest boundary point to the given injection.

Input Bus
Data, Line
Data and Z,

A

Choose an initial

Z

5 D(a.z,) v 8’ D(a,z,)

-

Function

v

MATLAB's
Minimization

5z 6z

Gradient———p [¢— Hessian

h 4

Convergence tests

FM" and z,

Figure 2-14: Flowchart of the optimization program
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This program uses MATLAB’s optimization function fmin (F(x),x,,F (x),F (x))
which optimizes a given function F(x) when provided with an initial guess x, together
with the Gradient F'(x) and Hessian F'(x) of the function. The program starts by
collecting the bus and line data information of the network. An initial search direction z

is selected and the function to be optimized, namely the FM is formed as described in the

previous program from,

| (2.92)

The MATLAB optimization is more robust when the first derivative of the optimization

function is also provided as detailed in Appendix A.
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Chapter 3 : Study Cases of Load Flow Infeasibility

As was discussed in the previous chapter, the load flow feasibility region R, is
characterized by the structure of the power network, which involves the nature of the bus

types and the bus admittance matrix, ¥ . A network operating point which consists of the
injection vectors P, O and V? for the load and voltage controlled buses is a feasible

injection when it lies within the region R, .

Load flow infeasibility studies examines events that make a given network injection z,

to move close to the boundary of or outside R . This can occur via two different

mechanisms. In the first, a change in the size and/or shape of the feasibility region places

the feasible injection z, outside the boundary of R,. Figure 3-1 shows a contingency

resulting in such infeasibility. What events lead to this type of mechanism are discussed

in section 3.1.
L
<S>

Contingency

Figure 3-1: Feasibility boundary movement
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In the second mechanism shown in Figure 3-2, the feasibility region R, stays unchanged
but the injection vector z, moves outside R,. Depending on the nature of the event, this

repositioning of z, may occur gradually or suddenly as detailed in section 3.2.

Contingency

Figure 3-2: Injection vector movement

3.1 Feasibility boundary movement

The boundary of the feasibility region is described by the network structure, namely by
the branches connecting the power network buses and by the presence or absence of
voltage support capability at the buses. Therefore, in order for the load flow feasibility
boundary to change or move, there needs to be a change in either of these aspects. A
change in bus voltage support capability translates into a change in bus type. On the other
hand, changes in branch connectivity are those involving loss of one or more

transmission lines.

3.1.1 Bus type change

When voltage control at a generator bus is lost, this results in changing a PV into a PQ

bus. Therefore, studying bus type changes is useful in certain contingency cases, such as

the loss of a generator or the saturation of the VAR supply capability at a bus.
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These cases are better explained through examples. Consider a 5-bus network as shown

in Figure 3-3. The branch information is provided in Appendix B.

A (J) 4

1
A
l3
, L {>
2
I I
5 3

O <

Figure 3-3: 5-Bus network #1

This 5-bus network consists of 3 PQ (1,2 and 3) and 1 PV (4) bus and one slack (5). To

look at the effect of a bus type change on feasibility consider the following injection

vector.
2,=[R, P, B, P, 0, 0, O, V\, VT
where,
z, =[-0.6, —0.6, —0.4,1.0, -0.2, —0.3, 0.1, 1.0, 1.0]" (pu.)
The unspecified bus injection and voltage components for this given z, are obtained by

solving the corresponding load flow and are provided in Table 3-1.
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Table 3-1: Load flow for 5-bus network #1

Injection Voltage
Bus Type P ) 14 )
(pu.) (pu.) (pu.) (Degrees)
1 PO -0.6 -0.2 0.962 -2.018
2 PQ -0.6 -03 0.920 -4.001
3 PQ -04 -0.1 0.892 -8.408
4 PV 1.0 0.388 1.0 2.522
5 Swing 0.655 0.433 1.0 0

Let us now convert bus 4 from a PV into a PQ bus with the values of P, and Q, taken
from Table 3-1. The new injection z, is

Zgy =[h, B, B, P, O, O, O, O, Vsz]T

where,
z,=[-0.6, -0.6, -0.4, 1.0, -0.2, —-0.3, —0.1, 0.388, 1.01" (pu)

As defined in Equation (2.90), the FM values for these two different injections are shown
in Table 3-2.

Table 3-2: Feasibility margins for a change in bus type

Injection Feasibility margin
Za 0.215
Zgy 0.184

The change in the FM shows that although the network and load flow are the same, the
new bus type structure changes the feasibility region and results in a lower FM of 0.184

versus 0.215. This is reasonable since the new network has less voltage control.
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3.1.2 Change in network structure

The best example of a change in network structure is the loss of some transmission lines,
which results in a change in the network’s admittance matrix ¥ , which then redistributes
the current flows throughout the remaining network. This change in network structure
also alters the shape of the feasibility region and changes the FM. The loss of lines can

influence load flow feasibility differently; in a very severe case loss of several lines can

result in infeasibility, i.e. a negative FM.

Consider now the 14-bus network of Figure 3-4. The branch data of the network is

provided in Appendix B.

0 s~ O
_
N

[S—
I

—_—
S

S~
o
[\
fum—
[

Figure 3-4: 14-bus Network
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Let us consider the following given feasible injection,

Table 3-3: Bus injections for 14-bus network

Injection
Bus Type P 0 V2
(pu.) (pau.) (pu.)
1 PO 0.154 -0.069
2 PO 0.627 -0.184
3 PO 0.149 -0.054
4 PO 0.219 -0.098
5 PO 0.052 -0.017
6 PO 0.016 0.102
7 PQ -0.248 0.005
8 PO -0.033 0.003
9 PO -0.674 0.374
10 PQ 0.440 -0.182
11 PO -0.259 -0.025
12 PO -0.200 -0.032
13 PV -0.132 1
14 Swing 1

The lines are removed one by one (except line 11, since this line is connected directly to a

generator) and the FM is calculated. The results are gathered in the following Table 3-4.
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Table 3-4: Line removal

results
Line F easibility 018 +———r— o —— -
d .
remove margin Ll o o ol
Base case 0.164 © : 00 o
° © o o o
1 . 0.151 0.14 1 o o | 4
: O : €]
2 0.107 _ 012} : : i
3 0.164 g ol 9 o ]
: ,
4 0.100 | o |
5 0.142 § CoE
' * 0.0} - 1
6 0.151
0.04} ]
7 0.159
8 0.127 0021 1
o 0.133 2 34 5678 9011121314 15 16 17 16 19 20
10 0.151 Line Outage
12 0.130 Figure 3-5: Feasibility margin for different line removals
13 0.077
14 0.166
15 0.147
16 0.158
17 0.159
18 0.147
19 0.158
20 0.165

It can be seen from Figure 3-5 that line 13 has the biggest effect on the FM. This is
reasonable from the position of line 13 in the network as an important connection
between its upper mostly generating sub-network and the lower part which is primarily

consuming.
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In the next step, let us start with a network without line 13 and observe the effect of

further line losses. These results are shown in Table 3-5.

Table 3-5: Line removal

results with line 13
already out

Line Feasibility
removed margin

Base Case 0.077
1 0.052

2 0.030

3 0.076

4 0.039

5 0.064

6 0.040

7 0.029

8 0.033

9 0.036
10 0.059
12 0.036
14 0.140
15 0.073
16 0.110
17 0.074
18 0.069
19 0.074
20 0.077

0.14

0.12 -

0.08r

0.06

Feasibility Margin

0.04F-

0.02}

i I T R IR L { L5 L A RS S
12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Line Outage

Figure 3-6: Feasibility margin for different line removals with line

13 already out

Hence the loss of line 7 yields the most severe effect. This process can be repeated again,

this time with lines 7 and 13 out. The results are shown in Table 3-7. It is observed that

the further loss of lines 1, 2, 4 and 6 result in infeasibility. Furthermore, the removal of

49



line 4 results in the lowest FM and hence has the worst effect. These observations are

shown in Figure 3-7.

Table 3-6: Line removal
results with lines 13 and 7

already out

Line Feasibility
removed margin

Base Case 0.029
1 -0.048
2 -0.047

3 0.027

4 -0.063

5 | 0.013
6 -0.049

8 0.201

9 0.013

10 0.023

12 0.013

14 0.131

15 0.028

16 0.158

17 0.028

18 0.026

19 0.028

20 0.029

025 T T T T T T T T T T T T T T T T T T T T

0.2 0o _

0.1+ : i

0.05 : 7

Feasibility Margin

wsl0 0 i o :
o

_01 | | | 1 | | 1 | i | L | ! | L | [ | It Il
12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Line Outage
Figure 3-7: Feasibility margin for different line removals with lines
13 and 7 already out

To complete the test, let us consider a different injection vector, z, , one that loads the

network more heavily, 2.39 p.u. compared to 1.546 p.u., as listed in Table 3-7.
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Table 3-7: New bus injections

Injection
Bus Type P o v’
(pu.) (pu.) (pu.)
1 PQ -0.15 -0.05
2 PO -0.14 -0.06
3 PQ -0.06 -0.02
4 PQ -0.04 -0.02
5 PQ -0.09 -0.06
6 PO -0.3 -0.17
7 PQ 0 0
8 PO 0 0
9 PQ -0.11 -0.08
10 PQ -0.08 -0.02
11 PO -0.48 0.039
12 PO -0.94 -0.19
13 PV 0.18 1
14 Swing 1

We repeat the same procedure of line removal (except line 11), and summarize the effects

in Table 3-8.

51




Table 3-8: Line removal

results
Line Feasibility 02— P
removed margin o1l |
Base Case 0.093 o @ 0o o o )
1 0.090 0.08r o : : I
2 0.042 g0 o o @ o ]
3 0.093 2 o i @
= 0.04¢ A : : ‘ -
4 0.056 = L o g i
5 0'079 § 0.02 : x : : : i : : H 7
6 0.091 NIEEEEEENE N -
7 0.090 :
8 0.059 -0.02 (0) 1
9 0'030 -0.04 I I L | L 1 1 It L ( L 1 1. 1 ] L 1 1 1 L
"1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2
10 0.065 Line Outage
12 0.028 o _ _ .
B 0.023 Figure 3-8: Feasibility margin for different line removals
14 0.087
15 0.059
16 0.113
17 0.088
18 0.052
19 0.007
20 0.003

As can be observed in Figure 3-8, line 13 again plays a big role on feasibility. Only this
time, since the network is more heavily loaded the removal of line 13 results in

infeasibility.

A possible future study would be to find a combination of a given number of lines whose
outage would result in the most negative possible FM in a way that does not involve full
enumeration as done above, but which would involve nonlinear mixed integer

programming.
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3.2 Movement of the nodal injection vector

Here, we examine the effect on feasibility of the nodal injection movement due to a

change in the P, Q or V? values, either gradually or suddenly.

3.2.1 Gradual change
An example of a gradual change in the injection is that due to an increase in VAR

demand at a PQ bus.

Let us start with the 3-bus network shown in Figure 3-9 as an example.

VAN AN

1 0.065  j0.650 2

Figure 3-9: 3-bus network

The given injection and nodal voltage values are listed in Table 3-9.
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Table 3-9: Load flow

Injection Voltage
Bus Type P 0 V )
(pu.) (pu.) (pu.) (Degrees)
1 PO 0 -0.1 0.927 0.412
2 PQ 0 -0.2 0.909 0.525
3 Swing 0.003 0.328 1.0 0

Consider the effect of a gradual change in the injection Q at bus 2. The resulting change

in FM is listed in Table 3-10 and plotted in Figure 3-10.

Table 3-10: Change in feasibility margin due to the change in Q

o,

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

FM

0.379

0.300

0.221

0.145

0.074

0.008

-0.052
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Figure 3-10: Graph of the change in feasibility margin as Q, decreases

It can be seen that an increase in reactive demand at bus 2 results in a lower FM and
eventually in infeasibility. This is expected, since VAR support is very important to

voltage support. Figure 3-11 shows the value of the nodal voltages as Q, is decreased.
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Figure 3-11: Change in the magnitude of the nodal voltages

It is observed that the voltage at bus 2, where the loss of Q support happens, drops more
rapidly than the ones of the other two buses. When Q, =—0.6 pu., the value of the

voltage at bus 2 is lower than 0.7 p.u. which is an unacceptably low voltage even though

the FM is still bigger than zero.

Note that the voltage curves in Figure 3-11 go all the way to the boundary of R, at

0, ==0.713 p.u.. This is not possible with methods based on load flow calculations.

It is also useful to look at the effect of this increase in the reactive demand at bus 2 on the
angle of the voltages and the total transmission loss of the network. Figure 3-12 shows

the change in angle difference for each line as Q, decreases and Figure 3-13 shows the

change in the total transmission loss of the network.
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Figure 3-12: Change in the angle difference for each line
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Figure 3-13: Change in the total transmission loss in the network
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A decrease in (,, results in a bigger angle difference for the lines. This in turn increases

the power flow in each line and therefore the transmission loss.

In addition when the network gets closer to infeasibility, the Jacobian matrix comes
closer to singularity. This can be shown by observing the eigenvalues of the Jacobian

matrix in Figure 3-14.
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Figure 3-14: Change in the eigenvalues of the Jacobian

All eigenvalues including the complete conjugates (A, and A, ) decrease as O, decreases

and the network is brought closer to infeasibility. A, however, is the eigenvalue the most

effected. As this eigenvalue becomes zero the Jacobian becomes singular and the system

infeasible.

Let us now consider a 5-bus network shown in Figures 3.15. Its line data is provided in

Appendix B.
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The injections and nodal voltages are as follows.

Figure 3-15: 5-Bus network #2

Table 3-11: Load flow for 5-bus network #2

Injection Voltage
Bus Type P 0 14 )
(pu.) (pu.) (pu.) (Degrees)
1 PQ -0.489 0.2 1.004 -3.663
2 PO -0.566 0.176 1.001 -3.281
3 PO -0.244 0.1 1.001 -2.691
4 PV 0.830 -0.281 1.0 1.687
5 Swing 0.502 0.211 1.0 0

As shown in the previous 3-bus example, a decrease in the imaginary power Q at a PQ

bus will result in the loss of voltage support and moves the given injection towards

infeasibility. However, it is useful to know which PQ bus has the most important Q
support role in the network, i.e. a decrease of Q at which bus would affect the FM most

significantly. This is realized by looking at the a vector calculated for the given injection

gg .
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Table 3-12: o values for the given injection z,

ve2

0.417 0.096 0.076 2.566

As it was discussed in section 2.3.2, the o vector is a measure of sensitivity of the FM

with respect to changes in the given injection, z, . Thus the bus with the higher value of

a, would have the biggest impact on the F.M.

Table 3-13 shows the change in the value of the FM as O, and Q, decrease.

Table 3-13: Feasibility margin due to imaginary power decrease at bus 1 and 3

9 FM. o, FM.
0.2 0.485 0.1 0.485
0.0 0.473 0.0 0.485
0.3 0.432 0.4 0.469
-0.6 0.372 0.8 0.433
-0.9 0.305 12 0.363
12 0.239 -1.6 0.287
-1.5 0.179 2.0 0217
-1.8 0.124 2.4 0.157
2.1 0.077 2.8 0.106
2.4 0.036 32 0.064
2.7 0.0 3.6 0.028
3.0 -0.030 -4.0 -0.002

\ -4.4 -0.028

The results in Table 3-13 show that the FM is more sensitive to the changes in the value

of O than Q;. This agrees with the values of a,, and a,, and is better illustrated in

Figure 3-16.
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Feasibility Margin

Figure 3-16: Feasibility margin due to imaginary power decrease at bus 1 and 3

3.2.2 Sudden change
Loss of a generator is one of the contingencies which can affect a power network

severely. This is due to a sudden loss in both P and Q at the bus connected to the
generator. It is important to note that a generator bus is a PV bus where the values of P
and V? can be set, however a loss in generator requires the values of P and Q in the

bus to both be set to zero. Therefore in simulation, generator loss translates into a type

conversion from PV to PQ in that specific bus.

As an example, let us consider the 5-bus example in Figure 3-17.
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The injection and voltage values are listed in Table 3-14.

Figure 3-17: 5-bus network #1
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Table 3-14: Original load flow for 5-bus network #1

Injection Voltage
Bus Type P o vV )
(pu.) (pu.) (pu.) (Degrees)

1 PO -0.6 -0.2 0.962 -2.018
2 PO -0.6 -0.3 0.920 -4.001
3 PO -0.4 -0.1 0.892 -8.408
4 PV 1.0 0.388 1.0 2.522
5 Swing 0.655 0.433 1.0 0

First, we look at the effect of the loss of the generator at bus 4. As explained before, this

is done by changing bus 4 from a PV into a PQ and then setting the P and Q values to

zero. The new injection and nodal values are as following.
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Table 3-15: Load flow for 5-bus network #1 after loss of the generator at bus 4

Injection Voltage
Bus Type P o V 6
(pu.) (pu.). (pu.) (Degrees)
1 PQ -0.6 -0.2 0.877 -8.794
2 PQ -0.6 -0.3 0.816 -12.651
3 PO -0.4 -0.1 0.819 -14.106
5 Swing 1722 1.087 1.0 0

The same thing can be done for the loss of the generator at bus 5. In this case, the swing

bus is bus 4. These results are as follows.

Table 3-16: Load flow for 5-bus network #1 after loss of the generator at bus 5

Injection Voltage
Bus Type P 0 14 )
(pu.) (pu.) (pu.) (Degrees)
1 PQ -0.6 -0.2 0.877 -8.938
2 PQ -0.6 -0.3 0.841 -10.527
3 PO -04 -0.1 0.773 -18.632
4 Swing 1.725 1.1 1.0 0

The FMs of the networks corresponding to the loss of generator in bus 4 or 5 are

summarized in Table 3-17.

Table 3-17: Change in feasibility margin for the loss of each generator

Generator loss None 4 5

Feasibility margin 0.2154 0.1559 0.0618
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It is observed that a generation outage causes a drop in FM. This drop is bigger in case of
the generator in bus 5. This is because bus 5 is connected to more buses in the network
than bus 4. Therefore, in an event of outage in bus 4, the generator at bus 5 can support
most of the network directly. In contrast, if the outage is at bus 5, the generator at bus 4
does not have as good access to the rest of the network. However, in both cases the

contingency is not severe enough to bring the system to infeasibility.

Now let us consider the same network as in Figure 3-17 but more heavily loaded. The

total load is increased from 1.6 p.u. to 2 p.u.. The injection and the nodal voltage values

are listed in the Table 3-18.

Table 3-18: Original load flow for 5-bus network #1 (Higher Load)

Injection Voltage
Bus Type P 0 |4 )
(pu.) (pu.) (pu.) (Degrees)

1 PO -0.75 -0.2 0.957 -4.412
2 PQ -0.75 -0.3 0.908 -7.394
3 PO -0.5 -0.1 0.872 -12.241
4 PV 1.0 0.473 1.0 -0.435
5 Swing 1.082 0.456 1.0 0

If the generator at bus 4 is out, the new injection values are:
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Table 3-19: Load flow for 5-bus network #1 (Higher Load) after loss of the generator at

bus 4
Injection Voltage
Bus Type P Q V )
(pu.) (pu.) (pu.) (Degrees)

1 PQ -0.75 -0.2 0.848 -11.662
2 PO -0.75 -0.3 0.773 -17.169
3 PO -0.5 -0.1 0.771 -19.194
5 Swing ) :2.2(51 1403 1.0 0

And in the case where, the generator at bus 5 is out, the injection values are:

Table 3-20: Load flow for 5-bus network #1 (Higher Load) after loss of the generator at

bus 5
Injection Voltage
Bus Type P 9 14 é
(pu.) (pu.) (pu.) (Degrees)

1 PO -0.75 -0.2 0.845 -11.893
2 PQ -0.75 0.3 0.798 -14.217
3 PO -0.5 -0.1 0.7073 -26.065
4 Swing 2.212 1.448 1.0 0

The FMs, corresponding to these new situations are listed in Table 3-21.

Table 3-21: Change in feasibility margin for the loss of each generator

Generator loss None 4 5

Feasibility margin 0.174 0.088 -0.011
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As before, the effect of the outage in bus 5 is more severe than that in bus 4. However,

due to the heavy load in the network, an outage in bus 5 is effective enough to cause

infeasibility.
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Chapter 4: Conclusions

4.1 Summary

We have studied the feasibility of power flows through the notion of the power flow
feasibility region. To characterize such a region, we have made use of the supporting
hyperplane method and the notion of feasibility region on a plane. We showed in detail
how supporting hyperplanes are calculated and used to find the closest boundary injection

to a specified vector of load flow injections.

The supporting hyperplane method proved to be much more powerful than using the
conventional load flow in finding points on the boundary of the feasibility region. The
load flow equations were difficult to solve when the specified injections were in the
proximity of the feasibility boundary, as the load flow Jacobian became ill-conditioned.
In contrast, the supporting hyperplane method was able to find the closest injection on the
boundary of feasibility to the injection through systematic steps that did not give rise to
the numerical difficulties associated with the near singularity of the load flow Jacobian
matrix. Furthermore, the hyperplane method provided the feasibility margin (FM), which

measures the degree of the feasibility of the specified injections.

The method of supporting hyperplanes presented an effective way of finding the failure
path with the highest impact on the feasibility of an injection. Different mechanisms were
used to characterize this path, some were based on changing the feasibility region

whereas others involved altering the injection itself.

Changes to the feasibility region were achieved by bus type change and line outages. It
was shown that changing the type of a bus affects the FM. Converting a PV bustoa PQ
bus reduced the FM as it resulted in the loss of voltage support at the bus. Line outages
also decreased the FM. Thus, it was shown that the severity of line outages on the FM
depends on the location of the removed lines as well as on the loading of the network.

The loss of a combination of lines, which were part of the main power flow path between
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generation sites and demand points, resulted in infeasibility. For higher loading levels,

fewer such outages were however required to drive an injection to infeasibility

Other mechanisms deforming the feasibility region included gradual and sudden changes
in the given injection. Thus, a gradual increase in VAR demand at a bus was shown to
reduce voltage support and drive the injection towards the boundary of feasibility and

reduce the FM. Moreover, the a vector was shown to provide a measure of sensitivity,

identifying the bus at which a demand increase makes the network more vulnerable to
infeasibility. Additionally, the effect of generation loss on the FM was studied. For a
heavily loaded system, it was shown that, in most cases, a severe case of this type can

readily be found leading to immediate infeasibility.

These results further supported the claim that the hyperplane method is a powerful tool

for analyzing the impact of extreme contingencies on the feasibility of power flows.

4.2 Suggestions for Further Research

The feasibility margin as an indicator of the vulnerability of power networks to extreme
contingencies could be examined for large networks over extended periods of time. In
choosing alternatives for expanding a transmission network, the level of increase in the
network FM could be an additional selection criterion. However, the prerequisite for
enforcing such a criterion is the ability to establish an acceptable minimum FM of a given
power system. Developing a methodology to determine this minimum would be an

interesting area of research.
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Appendix A

The Gradient

The function whose derivative we seek with respect to the search direction z is,

IR
dN

Ple2) o] .
where,
a=2AnZy— 2 (A.2)
o
a=2z -4z A3)
Using the chain rule, the first order expansion of the function gives,
a z 1
PRl €= Tfé(uzﬂ A
But since,
sez)=0(e’)z (AS5)
and,

o) wo

Substituting (A.5) and (A.6) into Equation (A.4), after some rearrangement, yields,

5D 1 a’z Z
= e (A.7)
s Ilall[ aa}llﬁll

which is the gradient of the objective function (A.1) with respect to the vector « .
However, since the optimization is searching over the direction vector z , we must
express the gradient with respect to z . This can be done by expressing éa in (A.7) in
terms of 8z, . When the extreme eigenvalue is 4, , this can be done from,

a=Arz-z (A8)

Differentiating (A.8) with respect to z results in,
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oot =0A z,—-02z

(A.9)
Upon pre-multiplying by z,”, (A.9) becomes,
z,8a=6A z,2,- 2,8z (A.10)
But since it has been shown in (2.88) that a” z, = 0, we can also show that,
2 8a.=0 (A.11)
To prove (A.11), consider the relation (2.87),
J(a)x, =0 (A.12)
For small deviations,
J(6a)x, +J(a) 6x, =0 (A.13)
Pre-multiplying by x,” gives,
x, J(6a)x, +x,' J(@)8x, =0 (A.14)
However from (A.12), the second term of (A.14) is zero and it beomes,
x,J(6a)x, =0 (A.15)
using the identity in (2.86), Equation (A.15) becomes,
2,02 =0 (A.16)
which is the desired result. Thus, incorporating this result into (A.10) gives,
82z, 2,~ 2,62 =0 (A.17)
which implies that, |
5= -Z*TT‘S = (A.18)
Z, Z

The expression for da in terms of dz can now be obtained by substituting (A.18) into

(A.9)

T_T
Zy %

T
5gx_={£"£” —455 (A.19)

Using this expression for da , the original gradient function (A.7) can be written with

respectto z,
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which can be written in the following form,

oD

A.21
o (A21)

Tz +T,
e +he ]

where the scalars 7, and 7, are respectively

- {zoz ET@)(@T%)} (A22)

{(QTT )} (A23)

. . . . . . 6D

At the minimum of the function D, the gradient vanishes, that is — =0, and therefore
Z,
ot |

(A.21) becomes

(A.24)

which implies that the vectors z,, z, and a are linearly dependent.

Equation (A.21) is the gradient function corresponding to 4 = 4_,_ , the other candidate of
o which must also be considered is the one corresponding to the minimum eigenvalue,

thatis A =4

‘min °

which has the form,
a=z-2z (A.25)

Using a similar analysis, it can be shown that the gradient of the objective function under

this condition has the form,

z,~ Tz, +Ta ] (A.26)

where the scalars 7, and 7, are those defined in (A.22) and (A.23).
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Appendix B

Table B-1: Line data of 5-bus example #1

Line From To Shunt Admittance | Series Impedance
1 1 4 0.0+j0.0 0.05+;0.2
2 1 5 0.0+3j0.0 0.05+;0.2
3 2 4 0.0+30.0 0.05+;0.2
4 2 3 0.0+;0.0 0.1+j04
5 2 5 0.0+j0.0 0.1+j04
6 3 5 0.0+30.0 0.15+j0.6
Table B-2: Line data of 5-bus example #2
Line From To Shunt Admittance | Series Impedance
1 1 2 0.0 +j 0.025 0.08 +j 0.24
2 1 5 0.0 +j 0.015 0.04+)0.12
3 2 3 0.0 +j0.010 0.01+30.03
4 2 5 0.0 +30.020 0.06+j0.18
5 3 5 0.0 +30.020 0.06 +j0.18
6 3 4 0.0 +j 0.025 0.08 +j 0.24
7 4 5 0.0 +30.030 0.02 +;0.06
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Table B-3: Line data of 14-bus example

Line From To Shunt Series
Admittance Impedance

1 1 2 0.0+;0.0 0.171 +;0.348
2 1 6 0.0+j0.0 0.127 +j 0.270
3 2 3 0.0+30.0 0.221 +3 0.200
4 2 9 0.0+30.0 0.066 +30.130
5 3 9 0.0+;0.0 0.123 +30.256
6 4 5 0.0+j0.0 0.082 +30.192
7 4 9 0.0+30.0 0.095 +;0.199
8 5 6 0.0+;0.0 0.032+;0.085
9 6 8 0.0+;0.0 0.0+30.110
10 6 11 0.0+;0.0 0.0+30.556
11 7 8 0.0+j0.0 0.0+;0.176
12 8 11 0.0+;0.0 0.0+j0.209
13 9 10 0.0+j0.0 0.0 +;0.252
14 10 11 0.0+;0.013 0.013 +;0.042
15 10 13 0.0+ 0.034 0.057+;0.174
16 10 14 0.0 +j 0.049 0.054 +j0.223
17 11 12 0.0+ 0.035 0.067 +j 0.171
18 11 13 0.0 +j 0.037 0.058 +;0.176
19 12 13 0.0 +j 0.044 0.047 +30.198
20 13 14 0.0+;0.053 0.019 +;0.059
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