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Abstract 

This thesis examines the problem of load flow feasibility, in other words, the conditions 

under which a power network characterized by the load flow equations has a steady-state 

solution. In this thesis, we are particularly interested in load flow feasibility in the 

presence of extreme contingencies such as the outage of several transmission lines. 

Denoting the load flow equations by ~ = 1 (.!) where ~ is the vector of specified 

injections (the real and reactive bus demands, the specified real power bus generations 

and the specified bus voltage levels), the question addressed is whether there exists a real 

solution.! to ~ = I(.!) where .! is the vector ofunknown bus voltage magnitudes at load 

buses and unknown bus voltage phase angles at aIl buses but the reference bus. Attacking 

this problem via conventionalload flow algorithms has a major drawback, principally the 

fact that such algorithms do not converge when the load flow injections ~ define or are 

close to defining an infeasible load flow. In such cases, lack of convergence may be due 

to load flow infeasibility or simply to the ill-conditioning of the load flow Jacobian 

matrix. 

This thesis therefore makes use of the method of supporting hyperplanes to characterize 

the load flow feasibility region, defined as the set the injections ~ for which there exists a 

real solution .! to the load flow equations. Supporting hyperplanes allow us to ca1culate 

the so-called load flow feasibility margin, which determines whether a given injection is 

feasible or not as weIl as measuring how close the injection is to the feasibility boundary. 

This requires solving a generalized eigenvalue problem and a corresponding optimization 

for the closest feasible boundary point to the given injection. 

The effect of extreme network contingencies on the feasibility of a given injection is 

examined for two main cases: those contingencies that affect the feasibility region such as 

line outages and those that change the given injection itself such as an increase in V AR 

demand or the 10ss of a generator. The results show that the hyperplane method is a 

i 



powerful tool for analyzing the effect of extreme contingencies on the feasibility of a 

power network. 
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Résume 

Ce mémoire étudie le problème de la faisabilité de l'écoulement d'énergie, c'est-à-dire aux 

conditions sous lesquelles un réseau électrique, caractérisé par les équations d'écoulement 

d'énergie, a une solution stationnaire. Il analyse plus spécifiquement la faisabilité de 

l'écoulement d'énergie en cas d'accident, comme par exemple la panne de plusieurs lignes 

électriques. 

On note ~ = f(~) l'équation vectorielle de l'écoulement d'énergie, où ~ est l'injection 

d'énergie (la demande en puissance réelle et réactive, la production de puissance réelle et 

la tension à chaque bus). Existe-t-il alors une solution ~ réelle? Le vecteur ~ représente 

les modules et les phases des tensions aux bus de charge. L'ensemble de ces valeurs sont 

inconnues, a l'exception de la phase au bus de référence qui est nulle. Les algorithmes 

traditionnels présentent un défaut majeur: ils ne convergent pas lorsque l'injection 

d'énergie ~ définit un flux d'énergie irréalisable ou proche de l'être. Ceci peut être causé 

par un écoulement d'énergie irréalisable ou simplement par une matrice Jacobienne de 

l'écoulement d'énergie mal conditionnée. 

Cette étude utilise la méthode de séparation des convexes pour définir les limites de 

faisabilité de l'écoulement d'énergie, c'est-à-dire les injections ~ pour lesquelles il existe 

une solution ~ réelle. La séparation des convexes permets de calculer la marge de 

faisabilité de l'écoulement, qui détermine si une injection est réalisable mais qui aussi 

mesure sa distance aux limites de faisabilité. Cette méthode nécessite la résolution d'un 

problème aux valeurs propres généralisé, et du problème d'optimisation correspondant 

afin trouver la limite de faisabilité la plus proche de l'injection. 

Les conséquences d'un évènement exceptionnel sur la faisabilité d'une injection donnée 

sont analysées dans deux cas: d'une part les événements qui affectent les limites de 

faisabilité, comme par exemple l'arrêt de fonctionnement de lignes électriques, et d'autre 

part ceux qui modifient l'injection d'énergie, par exemple une augmentation de la 
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demande en VAR (volt ampère réactif) ou la panne d'un générateur. Les résultats 

montrent que la méthode de séparation des convexes est un outil puissant pour déterminer 

les conséquences d'un événement extrême sur la faisabilité d'un réseau électrique 

iv 



Acknowledgments 

1 would like to gratefully thank my supervisor Professor Frank D. Galiana for his support, 

guidance, thorough discussion and supervision during my entire graduate studies. 1 would 

like to extend my gratitude to Dr. Hadi Banakar for his insightful suggestions and 

expertise through this work. My warm and sincere thank goes to the graduate students in 

the power research group, especially, Mr. Jose Restrepo, Mr. Changling Luo, Mr. Saadat 

Qadri and Mr. Hassan Ebrahim A.Rahman for their support, kindness and help to allow 

the completion of this thesis. 

v 



Table of Contents 

Table of Contents .................................................................................................................. vi 

List of Tables ..................... : ................................................................................................ viii 

List of Figures ....................................................................................................................... ix 

List of Symbols ..................................................................................................................... xi 

Chapter 1: Introduction .......................................................................................................... 1 

1.1 General ....................................................................................................................... 1 

1.2 Load flow feasibility example ....................................................................................... 2 

1.3 Motivation and methodology for the investigation of load flow feasibility ........................ 5 

lA Goal of the thesis ......................................................................................................... 7 

1.5 Outline of the thesis ..................................................................................................... 8 

Chapter 2: Characterizing Load Flow Feasibility ............................................................. 8 

Chapter 3: Study Cases of Load Flow Feasibility ............................................................. 9 

Chapter 4: Conclusion ................................................................................................... 9 

Chapter 2: Characterizing Load Flow Feasibility .................................................................... 10 

2.1 Load flow ................................................................................................................. 10 

2.1.1 Polar and Rectangular Coordinate Forms .............................................................. 10 

2.1.2 Hand solved eXaIllple .......................................................................................... 12 

2.2 F easibility Region ...................................................................................................... 15 

2.2.1 Feasibility Region Rz ......................................................................................... 15 

2.2.2 Feasibility Region on a Plane ............................................................................... 17 

2.2.3 Hand solved example to illustrate notion of feasibility region on a plane ................. 19 

2.3 Supporting Hyperplanes ............................................................................................. 23 

2.3.1 Defmition and Solution Method ........................................................................... 23 

2.3.2 J-Matrix Implementation ..................................................................................... 26 

2.3.3 Hand solved example of the J-matrix and supporting hyperplanes ........................... 28 

204 Closest Boundary Injection ......................................................................................... 33 

204.1 Feasibility Margin ............................................................................................... 33 

204.2 Optimization Scheme .......................................................................................... 36 

Chapter 3 : Study Cases of Load Flow Infeasibility ................................................................ 42 

3.1 Feasibility boundary movement .................................................................................. 43 

3.1.1 Bus type change .................................................................................................. 43 

3.1.2 Change in network structure ................................................................................ 46 

3.2 Movement of the nodal injection vector ....................................................................... 53 

3.2.1 Graduai change ................................................................................................... 53 

3.2.2 Sudden change .................................................................................................... 61 

vi 



Chapter 4: Conclusions ........................................................................................................ 67 

4.1 Summary .................................................................................................................. 67 

4.2 Suggestions for Further Research ................................................................................ 68 

Bibliography ....................................................................................................................... 69 

Appendix A ........................................................................................................................ 71 

The Gradient ................................................................................................................... 71 

Appendix B ......................................................................................................................... 74 

vii 



List of Tables 

Table 3-1: Load flow for 5-bus network #1 ........................................................................................ 45 

Table 3-2: Feasibility margins for a change in bus type ....................................................................... 45 

Table 3-3: Bus injections for 14-bus network ..................................................................................... 47 

Table 3-4: Line removal results ......................................................................................................... 48 

Table 3-5: Line removal results with line 13 aIready out ..................................................................... 49 

Table 3-6: Line removal results with lines 13 and 7 aIready out ........................................................... 50 

Table 3-7: New bus injections ........................................................................................................... 51 

Table 3-8: Line removal results ......................................................................................................... 52 

Table 3-9: Load flow ........................................................................................................................ 54 

Table 3-10: Change in feasibility margin due to the change in Q ....................................................... 54 

Table 3-11: Load flow for 5-bus network #2 ...................................................................................... 59 

Table 3-12: ~ values for the given injection ~ ............................................................................... 60 

Table 3-13: Feasibility margin due to imaginary power decrease at bus 1 and 3 .................................... 60 

Table 3-14: Originalload flow for 5-bus network #1.. ......................................................................... 62 

Table 3-15: Load flow for 5-bus network #1 after loss of the generator at bus 4 ................................... 63 

Table 3-16: Load flow for 5-bus network #1 after loss of the generator at bus 5 .................................... 63 

Table 3-17: Change in feasibility margin for the loss of each generator ................................................ 63 

Table 3-18: Originalload flow for 5-bus network #1 (Higher Load) ..................................................... 64 

Table 3-19: Load flow for 5-bus network #1 (Higher Load) after loss of the generator at bus 4 ............... 65 

Table 3-20: Load flow for 5-bus network #1 (Higher Load) after loss of the generator at bus 5 ............... 65 

Table 3-21: Change in feasibility margin for the loss of each generator ................................................ 65 

Table B-l: Line data of5-bus example #1 .......................................................................................... 74 

Table B-2: Line data of5-bus example #2 .......................................................................................... 74 

Table B-3: Line data of 14-bus example ............................................................................................. 75 

viii 



List of Figures 

Figure 1-1: 2-bus network example ..................................................................................................... 2 

Figure 1-2: Feasibility region for the 2-bus network. ............................................................................. 3 

Figure 1-3: Closest boundary injection ................................................................................................ 4 

Figure 1-4: Plot of the voltage at bus 2 versus Q2 ................................................................................. 5 

Figure 1-5: Supporting hyperplanes ..................................................................................................... 6 

Figure 1-6: Effect ofline outage on the feasibility boundary .................................................................. 7 

Figure 2-1: 2-bus network example with one PQ bus ........................................................................ 13 

Figure 2-2: Feasibility region Rz of a 3-dimentional injection space ................................................... 16 

Figure 2-3: Feasibility region lies above a set ofhyperplanes .............................................................. 17 

Figure 2-4 (a): Geometrical illustration of feasibility region on a plane ~o (the plane kT ~ = k does not 

intersect aU rays in Rz) .................................................................................................................... 18 

Figure 2-4 (b): Geometrical illustration offeasibility region on a plane ~o (the plane kT ~ = k intersects 

aU rays in Rz ) ................................................................................................................................. 18 

Figure 2-5: Load flow feasibility region Rz of the network in Figure 2-1 ............................................ 20 

Figure 2-6: Feasibility region on a plane Pzo (the plane kT l... = k does not intersect aU rays in Rz ) .... 21 

Figure 2-7: Feasibility region on a plane Pzo (the plane kT ~ = k intersects aU rays in Rz ) ................ 22 

Figure 2-8 (a): Example of supporting hyperplanes fI:. T l... = 0 of the load flow feasibility region Rz .... 23 

Figure 2-8 (b): 2-dimentional feasibility surface P .......................................................................... 24 
Zo 

Figure 2-9 (a): Intersection of the plane ~/ ~ = c with Pzo for various values of c ............................ 24 

Figure 2-9 (b): Intersection of the plane ~/ ~ = c with ~o for various values of c ............................ 25 

Figure 2-10: 2-Bus network example with one PQ bus ..................................................................... 28 

Figure 2-11: Geometrical illustration of the feasibility margin FM ofa given injection ~ .................... 34 

Figure 2-12: Flowchart of the program computing feasibility margin ................................................... 38 

Figure 2-13 (a): Illustration of the search process for the closest boundary injection b' ....................... 39 

Figure 2-13 (b): 2-dimentional feasibility surface P ........................................................................ 40 
Zo 

Figure 2-14: Flowchart of the optimization program ........................................................................... 40 

Figure 3-1: Feasibility boundary movement ....................................................................................... 42 

Figure 3-2: Injection vector movement .............................................................................................. 43 

Figure 3-3: 5-Bus network #1 ........................................................................................................... 44 

Figure 3-4: 14-bus Network .............................................................................................................. 46 

Figure 3-5: Feasibility margin for different line removals .................................................................... 48 

Figure 3-6: Feasibility margin for different line removals with line 13 alreadyout ................................ 49 

ix 



Figure 3-7: Feasibility margin for different line removals with lines 13 and 7 already out ...................... 50 

Figure 3-8: Feasibility margin for different line removals .................................................................... 52 

Figure 3-9: 3-bus network ................................................................................................................ 53 

Figure 3-10: Graph of the change in feasibility margin as Qz decreases ............................................... 55 

Figure 3-11: Change in the magnitude of the nodal voltages ................................................................ 56 

Figure 3-12: Change in the angle difference for each line .................................................................... 57 

Figure 3-13: Change in the total transmission loss in the network ........................................................ 57 

Figure 3-14: Change in the eigenvalues of the Jacobian ...................................................................... 58 

Figure 3-15: 5-Bus network #2 ......................................................................................................... 59 

Figure 3-16: Feasibility margin due to imaginary power decrease at bus 1 and 3 ................................... 61 

Figure 3-17: 5-bus network # 1 .......................................................................................................... 62 

x 



N 

npq 

e 

[ 

x 

y 

G 

B 

z 

8~ 

8x 

L(x) 

List of Symbols 

Number ofbuses in the network, including the slack bus. 

Number ofPQ buses. 

Net complex power injected into bus i. 

Net real power injected into bus i. 

Net reactive power injected into bus i. 

Complex voltage at bus i. 

Complex current at bus i. 

Voltage magnitude at bus i. 

Phase angle of V; . 

Real part of V; . 

Imaginary part of V; . 

(~,[) . 

Complex bus admittance matrix. 

Real part of r . 
Imaginary part of r . 
Net injection at bus i. 

Load flow equations. 

Load flow feasibility region E R2N
-

1 
• 

Jacobian of the load flow equations. 

Half of the Jacobian of the load flow equations. 

xi 



J 
-1 

f!:.T~=O 

~T~=O 

• a 

• 
k 

FM 

() 

Real symmetric matrix. 

Eigenvalue. 

Injection ~ on the boundary of Rz . 

Supporting hyperplane of Rz . 

Set of supporting hyperplanes 

Reactance of a transmission line. 

Constant vector. 

Plane intersecting Rz . 

Feasibility region on a plane. 

Search vector. 

Given injection . 

Set of supporting hyperplanes 

Closest boundary injection to the given injection ~ . 

Steady state feasibility margin. 

Angle between f!:. and ~ . 

Feasibility measure forming the objective function of FM 

xii 



Chapter 1: Introduction 

1.1 General 

Modem power systems today are comprised of hundreds of transmission lines, 

substations and power plants, and are furthermore interconnected with neighbouring 

utilities in the interest of reducing cost and achieving higher reliability [1]. Concem for 

pollution in the environment and health hazards from radiation effects have led to siting 

the thermal and nuclear plants in locations remote from the load centers [2]. There is also 

the integration of numerous wind farms in the network. The difficulties in obtaining 

right-of-way have caused delays in construction of transmission lines and have led to the 

use of multi-circuit lines. AlI these factors contribute to making power systems highly 

complex to design and operate, and vulnerable to disturbances or equipment failures [1]. 

One of the most important aspects of a power system analysis with theoretical and 

practical applications in planning and operation is its steady-state behaviour as 

determined by the load flow equations. These define the relationship between the injected 

real and reactive power and the complex voltage at the buses of a power network. Load 

flow feasibility is concemed with fundamental theoretical limitations on the load flow 

equations due to the nonlinear relationship between power ~ and voltage ~, which in 

general has the form, [3] 

(1.1) 

In Equation (1.1), ~ is the vector of the real and imaginary parts of the complex bus 

voltages while ~ is the bus injection vector, comprised of the specified net real and 

reactive power demands at the load buses and the net real power generations and voltage 

magnitudes at the generation buses. 

One of the main objectives in load flow feasibility analysis is to characterize the 

conditions on the load flow injections ~ for which a real steady-state equilibrium 

solution, ~, exists. Since the set of algebraic equations is nonlinear, there exist bus 

injection vectors for which no real voltage solution exists. Those injection vectors, ~, 
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which have a real voltage solution, :! are defined to be feasible, otherwise the injection ;. 

is infeasible [6]. 

In the space of aIl possible injections, ;., one can define a region Rz comprising aIl 

feasible injections called the load flow feasibility region. 

1.2 Load flow feasibility example 

To illustrate the notion of a load flow feasibility region, consider the following example. 

1I;LO ~L8 

C9+-----'VVV......--I~L. 1 
jX[ r 

P2 + jQ2 

Figure 1-1: 2-bus network example 

In Figure 1-1, a 2-bus network is shown. The injections at bus 2 include the real and 

imaginary power values ~ and Q2. The load flow equations which are explained in more 

detail in section 2.1.2, define ~ and Q2 in terms of the nodal voltage components, which 

in polar form are 11;, ~ and the angle 8 . 

(1.2) 

Equations (1.2) can be rewritten as the following, 

. (~) X[~ smu =--
11;~ 

( ~) ~2+X,Q2 cos U = --=------'-== 
11;~ 

(1.3) 

The angle 8 can be eliminated from Equations (1.3) using the identity 

sin2 (8) + cos2 (8) = 1, resulting in, 
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(lA) 

For a given ~, in order to have load flow feasibility, a real solution must exist for ~ 2 • 

This means that the determinant of the quadratic Equation (lA) must be positive or zero. 

(1.5) 

Rearranging (1.5), we conclude that the specified load flow injections ~, Q2 and ~2 

must satisfy the feasibility inequality. 

(1.6) 

This can be shown graphically in the space of injections ~ and Q2 for a given ~2 . 

R" 

---~----+-----r---j.. 

p, 

1 

Figure 1-2: Feasibility region for the 2-bus network 

In Figure 1-2, any given injection ~ = [~, Q2] above the plot defined by inequality (1.6) 

is feasible. 

It is important to identify the presence of an injection close to or outside the boundary 

K, since proximity to the boundary leads to voltage collapse and being outside the 

boundary leads to infeasibility [7]. 
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Let us consider the example of Figure 1-2. Starting from a given point with zero real and 

imaginary power injections, slowly decrease the imaginary power and move towards the 

feasibility boundary. 

v. 2 -1 1 -

Figure 1-3: Closest boundary injection 

As seen in Figure 1-3, this trajectory eventually hits injection k on the boundary of the 

feasibility region with zero real power and Q2 = -XXI· An injection with Q2 < -XXI 
will result in a negative determinant in the Equation (l.5) and is infeasible. 

In addition, the value of the voltage at bus 2, ~2, drops as the imaginary power is 

decreased to -XXI. This collapse of voltage which happens at k on the feasibility 

boundary and is due to lack of imaginary power support at bus 2 is shown in Figure 1-4. 
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o 

Figure 1-4: Plot of the voltage at bus 2 versus Q2 

1.3 Motivation and methodology for the investigation of load flow feasibility 

Significant effort has been devoted to define the boundaries of the feasibility region [8]. 

A simple method to do so is to repeatedly solve conventional load flows under increased 

loading as shown in Figure 1-3. This method however, requires extensive load flow 

calculations. Moreover, as the injection cornes closer to the boundary of feasibility, the 

Jacobian matrix required to solve the load flow equations becomes more ill-conditioned. 

This load flow method determines the maximum possible variation of real and reactive 

power injections before a Jacobian singularity condition is reached [9]. 

One problem with this approach is that, since the load flow might cease to converge for 

an injection in the feasible region close to the boundary, one cannot conclude whether an 

injection is infeasible or the problem is numerical. 

In this thesis, an alternative approach is used to analyse the boundary of the feasibility 

region and, more specifically, to find the closest boundary injection. This approach 

characterizes the feasibility region with a set of supporting hyperplanes such that g/ ~ ~ 0 

for ~ E Rz , where ~ is the normal vector of the supporting hyperplane [6]. 

As shown in this thesis, there exist infinitely many supporting hyperplanes. Of particular 

interest among the many supporting hyperplanes, we will show how compute the closest 

one to a given injection vector, as illustrated in Figure 1-5. 
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!!2.f = Q 

k a*T z = 0 

, 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 a T z = 0 
-1- -

Figure 1-5: Supporting hyperplanes 

As seen in Figure 1-5, the feasibility boundary is locally approximated by supporting 

hyperplanes such as !!{ .f = Q and !!J.f = Q. However the closest supporting hyperplane 

is !! *T .f = Q, whose intersection with the feasibility boundary is k , the closest boundary 

injection to ~ . 

Furthermore, the hyperplane method defines a feasibility margin (FM) to measure the 

degree of feasibility of a given injection [6], 

z Ta 

FM = cos (e) = IIZIII~11 (1.7) 

Where e is the angle between the given injection ~ and !! * the normal vector of the 

closest boundary hyperplane. The FM is positive for feasible injections, becomes zero on 

the feasibility boundary and is negative for infeasible injections. 

Since without load flow feasibility no steady-state equilibrium is possible, the power 

system becomes unstable. Thus understanding the nature of load flow feasibility is crucial 

in power system planning and operation, particularly after line outages or major changes 
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III the injections, not uncommon occurrences [10]. Contingencies affect load flow 

feasibility in different ways. Thus, line outages change the structure of a network. This 

results in a change in the feasibility boundary which can affect the feasibility of a given 

injection as shown in Figure 1-6. 

. 
Q2 : . . 

! : . . 
~ : . : 
~ . 
~ : . . . V 
\~ : 
\ : 

"\ ,/ . . . , . . , . 

After line 
outage 

..... Before line 
outage 

Figure 1-6: Effect ofline outage on the feasibility boundary 

It can be seen that a line outage results in a decrease in the size of Rz' which leads to 

infeasibility for the shown injection ~ . 

Another kind of contingency can result in movement of the given injection itself. This 

was shown previously in the example of Figure 1-3., where the decrease in Q2 ' which 

can occur when a capacitor bank or SVC goes offline, drives the system towards 

infeasibility. Chapter 3 discusses these examples in more detail. 

1.4 Goal of the thesis 

This thesis examines in detail the method of supporting hyperplanes to study power grid 

load flow feasibility. This method proves to be much more powerful than conventional 

load flow in finding points on the boundary of the feasibility region, Rz' and specially the 
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closest injection on the boundary of feasibility to a given injection, ~, which is used to 

measure the degree of the feasibility ofthat injection. 

Specifically, this thesis examines the impact of extreme contingencies on power system 

feasibility. Two classes of extreme contingencies are defined here. The first class is made 

up of those events that modify the given injection, ~, such that it is driven towards 

infeasibility. The second class of events are those that result in change to the power 

network causing the feasibility region, Rz' to change. 

Furthermore, a contingency is categorized as graduaI and sudden. Events such as an 

increase in V AR demand result in a graduaI movement of the injection towards 

infeasibility, whereas sudden loss of lines or generators could make an injection 

infeasible immediately. Moreover, the impact of a contingency can vary with system 

demand level. 

1.5 Outline of the thesis 

Chapter 2: Characterizing Load Flow Feasibility 

This chapter describes the supporting hyperplane method. It first introduces load flow in 

polar and rectangular coordinates, accompanied by an example. Then, the notions of 

feasibility plane and region are defined. The example is used to provide insight into these 

notions. 

Next, supporting hyperplanes, the eigenvalue problem and the notion of the closest 

boundary injection are explained in detail using the example. 

Finally the steps taken to implement the supporting hyperplane method in MA TLAB are 

described. 
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Chapter 3: Study Cases of Load Flow Feasibility 

In this chapter, different types of contingencies and their analysis through in the 

hyperplane method are presented. Certain examples study changes in the feasibility 

region due to transmission line outage. Others look at changes in the given injection due 

to loss of VAR support or generation, which may also lead to a corresponding bus type 

change. 

The effect of the loading of the power network on the severity of a contingency from the 

load flow feasibility point of view is also examined. 

Chapter 4: Conclusion 

This is the conclusion chapter. It includes a summary of the work presented in the thesis 

as well as recommendations for future work. 
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Chapter 2: Characterizing Load Flow F easibility 

2.1 Load flow 

2.1.1 Polar and Rectangular Coordinate Forms 

The steady state analysis of a power system is described in terms of a set of non-linear 

algebraic equations known as the load flow equations. These equations have special 

properties when expressed in rectangular coordinates. It is their quadratic structure that 

forms the basis ofload flow feasibility analysis [16]. 

In the standard load flow formulation, load buses are modeled as PQ buses and 

generation buses as P V with one of them taken as the slack bus where the real power 

injection is not specified. Therefore the nodal bus injections have the following formats. 

• Zi = (P;, Qi ) Corresponds to load buses 

• Zi = (P;, v,2) Corresponds to generation buses 

Corresponds to the slack bus 

It can be shown that injections zJP;, Qi or v,2) are of the quadratic form [11, 12], 

z = x T Jx 
1 - -1-

(2.1) 

where x is the vector of the nodal voltage components In rectangular coordinates 

.:! = (Sl..,[f and -L is a 2N x 2N constant real symmetric matrix, which is unique1y 

defined by the type of injection and the network admittance matrix (see Section 2.3.2 for 

a more detailed derivation of the matrices -L). 

The relation between the injections and the nodal voltages can be derived in polar or 

rectangular coordinates [14]. The complex bus power injected into no de i has the 

following form. 

=P; + jQ 
(2.2) 

In Equation (2.2): 
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• V i and 1 i are the complex voltage and the current injection at node i 

• Pi and Qi are the real and reactive power injections at node i 

The CUITent Ji can be expressed as 

N 

~ = I~ J:k (2.3) 
k=1 

where the J:k s are the elements of the network bus admittance matrix r. Substituting 

Equation (2.3) into Equation (2.2) gives 

N 

S; =~ l fT: y: (2.4) 
k=1 

In Equation (2.4) the voltage can be expressed in either polar, ~ = f'; . e}O, , or rectangular 

coordinates, V; = ei + j. f, and the real and imaginary parts can be extracted to obtain, 

N 

P; = f'; IV} (Gij COSDij - Bij sinDij) (2.5) 
j=1 

N 

Q = V; IV} (Gij sinDij -Bij COSDij) (2.6) 
j=1 

for polar coordinates, and 

N 

p; = l ei [ Gijej - Bij~ ] + f [ Gij~ - Bijej ] (2.7) 
j=1 

N 

Q = If [Gije j -Bij~J+ei [Gij~ + Bijej ] (2.8) 
}=1 

for rectangular coordinates, where Gij and Bij are the real and imaginary parts of the 

elements of the bus admittance r . These P; and Q formulations of Equations (2.7) and 

(2.8) together with the f';2 definition from the rectangular coordinate formulation of the 

nodal voltages, 

(2.9) 

define the injections for PQ and PV buses. Subsequently, the slack bus injection only 

inc1udes V~ with the given eN and IN. Furthermore, the value of IN can be set to zero 

11 



without loss of generality [4, Il]. This results in a reduction of the dimension of ~ to 

2N -1 , which correspondingly results in simplifying the -L matrix to (2N -1) x (2N -1) . 

(2.10) 

Therefore in a network with N buses ofwhich npq are PQ buses, the bus injections can 

be defined as a vector of the following form. 

(2.11) 

This Equation (2.11) can be put into a more general form using Equations (2.7) and (2.8). 

xTJ 
- _1 

x T J - -2 

z= 

~T .J...2N 

= ~(~)~ 

(2.12) 

Additionally, it can be shown that ~(~) is half of the Jacobian matrix by taking the first 

derivative of ~ = ~(~) ~ with respect to ~ which gives 

where 8~ is the Jacobian of the load flow equation [6]. 
8x 

2.1.2 Hand solved example 

(2.13) 

It is helpful to illustrate the above theory through a simple 2-bus network consisting of a 

slack bus 1 and a PQ bus 2 connected through a line with impedance jX, as shown in 

Figure 2-1. 
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1 ~r--P.-l-+-jQ-l--'VX:'------t-' p,2 + jQ, 

Figure 2-1: 2-bus network example with one PQ bus 

As discussed in the previous section, the voltage at bus 1 has only the real part el since it 

is the reference bus. According to Equation (2.2), the complex power injection into bus 2 

IS, 

Therefore, 

S2 = ~ (7;*) 

= Pz + jQ2 
(2.14) 

(2.15) 

Equation (2.15) can be further expanded, using the polar and rectangular definitions of ~ 

and ~. 

In the case of polar coordinates, 

(2.16) 

Equation (2.15) becomes, 

P .Q _ .[ V2
2 

V;V; cosc5 - j V;V; sinc5] 
2+12-1

X
- X 

1 1 
(2.17) 

Therefore the real and imaginary parts of the transferred power are as following. 
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On the other hand, using the rectangular coordinate definition for the bus voltages, 

V; = e; + j. 1; 

the CUITent ~ in Equation (2.14) can be expressed as 

Therefore the injection at bus 2 is, 

~ + jQ2 =~Y* 

= (e2 + jJ;)( - j~) [ (e2 - el) - jJ;] 

= _1_[ e2J; - J;(e2 -el)] + j_l_[J;2 + e2(e2 -el)] 
XI XI 

from which the real and imaginary parts can be extracted. 

1 
~ =-elJ; 

XI 

1 2 2 Q2 =-(-ele2 +e2 + J;) 
XI 

Therefore, if the vector of nodal voltages ~ is defined as, 

then the vector of injections ~ is as follows. 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 
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2.2 Feasibility Region 

2.2.1 Feasibility Region Rz 

e)h 
XI 

(-e)e2 +e; + h2
) 

XI 
2 {'2 

e) + J) 

(2.24) 

Load flow feasibility is concemed with those conditions on the specified power and 

voltage magnitude injections under which a steady state equilibrium is physically 

possible. These limitations on the specified injections are imposed by the network 

structure, that is, 

• The nature of the bus types 

• The bus admittance matrix 

MathematicaIly, this problem is equivalent to those conditions characterizing the set of 

nonlinear load flow equations for which a real voltage solution can exist. 

The complete characterization of the load flow feasibility can be conceptually addressed 

through a set Rz [6]. This set is defined in the space of injections and is called the load 

flow feasibility or steady state stability region. The set Rz characterizes aIl injections ~, 

for which a real solution ~ to the load flow problem exists, 

(2.25) 

where the dimension of ~ is reduced to 2N -1, without loss of generality by setting 

IN = 0 as discussed in section 2.1.1. 
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One can explicitly characterize the load flow feasibility region Rz by exploiting the 

quadratic nature of the load flow equations in rectangular coordinates [11, 12, 13]. The 

foIlowing characteristics of Rz' result from these quadratic properties. 

Region Rz is a cone stretching to infinity whose vertex is at the origin of the space of 

injections. This is shown in Figure 2-2 for a simple network with 3-dimensional 

injections. 

Figure 2-2: Feasibility region Rz of a 3-dimentional injection space 

Region Rz lies above a set of supporting hyperplanes aIl passing through the origin. 

These hyperplanes are of the form a T z = 0 and will be discussed in more detail in 

section (2.3.1). 

16 



Figure 2-3: Feasibility region lies above a set ofhyperplanes 

2.2.2 Feasibility Region on a Plane 

To analyze the feasibility region Rz' it is useful to consider the intersection between the 

feasibility region Rz and a plane i: ~ = k with normal vector ~. The set of ~ belonging 

to this intersection is called the feasibility region on a plane and given the symbol ~o • 

(2.26) 

Such an intersection is shown in Figures 2-4 (a) and 2-4 (b) where a plane cuts Rz in a 

three dimensional setting. 
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Figure 2-4 (a): Geometrical illustration offeasibility region on a plane ~ (the plane 
o 

k T ~ = k does not intersect aU rays in Rz) 

Figure 2-4 (b): Geometrical illustration offeasibility region on a plane ~ (the plane 
o 

k T ~ = k intersects aU rays in Rz) 
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In Figure 2-4 (b), the set PZo cuts aH the rays of Rz at sorne finite length. This implies 

that for aH .f. E Rz , i:.f. ~ O. The plane i:.f. = k ~ 0 cuts aIl the rays in Rz if and only if 

the matrix .J..(~) is positive definite [6]. The .J.. matrix and its formulation are discussed 

in section (2.3.2). From experience, a suggested value of ~ that would intersect aIl rays 

in Rz is given by 

• zo(V2
) = 1.0 the element of ~ corresponding to the voltage injection 

• zo(P) = 0.0 the element of ~ corresponding to the real power injection 

• zo(Q) = 0.1 the element of ~ corresponding to the reactive power injection 

2.2.3 Hand solved example to illustrate notion of feasibility region on a plane 

It is helpful to look at the example of the 2-bus network discussed in section (2.1.2). In 

order to visualize the feasibility region on a plane, first consider the terms Pz and Q2 of 

the injection vector ~. Their polar coordinates formulation as seen in Equation (2.18) is, 

p = V;Vz sin8 
2 X 

1 

Q 
_ Vz2 - V;Vz cos8 

2 -

XI 

(2.27) 

In section 1.2, the exact feasibility region was defined using the following inequality, 

(2.28) 

The graph of (2.28) is shown in the space of Pz, Q2 and V;2 in Figure 2-5. 
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Figure 2-5: Load flow feasibility region Rz of the network in Figure 2-1 

Cutting this feasibility region with a plane i: ~ = k where, 

results in the following graph, 
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~o 

Figure 2-6: Feasibility region on a plane ~o (the plane ~T ~ = k does not intersect aU 

rays in Rz) 

As seen in Figure 2-6, the plane ~ T ~ = k does not cut aU the rays in Rz , hence the 

intersection is not a c10sed surface. 

Now, ifwe assume an intersecting plane with ~ as suggested in section 2.2.2, 

The intersecting plane ~ ~ = k is therefore defined by, 

V;2 + 0.lQ2 = k 

which combined with equation (2.28) yields the feasibility region on a plane as, 

(k-O.l Q2)2 +4 (k-O.l Q2) X[Q2 -4X[P22 ~ 0 

By rearranging Equation (2.29), we obtain, 

k 2 +(4 kX[ -0.2 k) Q2 + (-O.Ol-O.4X[) Q; -4X[~2 ~ 0 

Further simplification of Equation (2.30) results in the foUowing, 

(2.29) 

(2.30) 
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where, 

Q2 p2 
d +c Q2 +-++-t ~ 0 

a b 

1 
a=-----

(0.01 + O.4X[) 

b=_I_ 
(4X[) 

c = (0.2 k-4 kX[) 

d=-k 2 

Completing the square results in the following equation, 

_1 (Q a
2
cJ2 _1 p2 = K 2 

2 2+ + 2 2 
a 2 b 

which is the equation of an ellipse as shown in Figure 2-7. 

~o 

(2.31) 

(2.32) 

Figure 2-7: Feasihility region on a plane ~o (the plane ~T ~ = k intersects aIl rays in 

It can he se en that the ahove choice of ~ results in a set ~o which intersects aIl rays in 
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2.3 Supporting Hyperplanes 

2.3.1 Definition and Solution Method 

As suggested in section (2.2.1), the feasibility region Rz has a set of supporting 

hyperplanes (SH) of the form CJ:.T ~ = O. Such hyperplanes are graphically shown in 

Figure 2-8 (a) where the k s are the intersection points of the feasibility region with the 

hyperplanes. Figure 2-8 (b) shows the SH with respect to the feasibility region on a plane 

~o where we see that given enough such SH, the set ~o could be approximately 

characterized. 

Figure 2-8 (a): Example ofsupporting hyperplanes CJ:.T ~ = 0 of the load flow feasibility 

region Rz 
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Figure 2-8 (h): 2-dimentional feasibility surface ~ 
o 

A supporting hyperplane ~ T .f = 0 can be found by searching over the feasibility region 

on a plane ~o in sorne arbitrary search direction .; such that .; * ~ and .; * -k. This 

search direction vector .; defines a plane .;T.f = C which intersects the set ~o for 

different values of c. As shown in Figures 2-9 (a) and 2-9 (b), by varying c, the finite 

minimum and maximum values of c over P can be obtained. Zo 

T T 
';.f=~ ';.f=S 

~~ ~------------~ r-----------~ 

~ o 

Figure 2-9 (a): Intersection of the plane .;T ~ = c with PZo for various values of c. 
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increasing value of c 

Figure 2-9 (h): Intersection of the plane ~T ~ = c with ~o for various values of c. 

The search for the arbitrary supporting hyperplane, ~T ~ = 0, can be formulated as an 

optimization 

s.t. 

ZT z =k 
.=:0 -

(2.33) 

This optimization can be simplified using the following identities (2.34) and (2.35) to 

obtain the eigenvalue problem (2.36) 

(2.34) 

(2.35) 

(2.36) 

Equation (2.36) results in a set of real eigenvalues Â and their corresponding 

eigenvectors. The maximum and minimum such eigenvalues then define the 

corresponding hyperplanes according to the following expressions (2.37) and (2.38) [6], 

(2.37) 

(2.38) 

This eigenvlaue problem is at the core of the supporting hyperplane method since the 

maximum or minimum eigenvalues result in the a 's which define the supporting 

hyperplanes. Moreover, the corresponding eigenvectors solving equation (2.36) become 
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the nodal voltages ~ corresponding to the injection at the boundary of the feasibility 

region where the SH is tangent to Rz . 

2.3.2 J-Matrix Implementation 

Consider a network with the following bus information 

• N Total number of buses 

• npq Number of PQ buses 

• npv Number of PV buses excluding the slack npv = N - npq -1 

The injections are now written in the following format 

F[~]: 
N-l 

npq 

V2 ~ npv+l 

F[~]: N 

N-l 

(2.39) 

(2.40) 

Both of these vectors have 2N - 1 x 1 dimensions. Furthermore, if a is a constant 

injection vector of dimensions 2N -1 xl, 

(2.41 ) 

then, 

(2.42) 

The '1:./ f. element on the right hand side of Equation (2.42) can be expressed as 

(2.43) 

where, recalling that Zi = liT Lli, we define 
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(2.44) 

2nb-l 

with J(a) = L aiJi . 
i=1 

2nb-l 

The specific nature of J ( a) = L aiJ; can be derived as follows. We begin with 
i=1 

Equation (2.7) showing the relation between the real power injection at bus i and the 

complex voltages in rectangular coordinates 

N 

Pi = Lei [ G ije j - B ij f j ] + fi [ G ij f j - B ije j ] 
j=1 

This can be expressed in matrix format as 

(2.45) 

(2.46) 

where diag(5:..) is a diagonal matrix with elements of 5:.. on its diagonal. The right hand 

side of Equation (2.46) can be separated into four terms. 

diag (5:....) G 5:.... 

dia g (5:....) (- B) f 

diag(f) G 5:.... 

diag(f) (- B) f 

The first term, diagC5!..) x Q x 5:.. can be used to write Equation (2.35) as, 

{!;r = {!; [diag(5:..) Q 5:..] 

= 5:..T [diag({!p) Q 5:..] 

Furthermore, one can use Equation (2.47) and the following matrix identity 

(
A+ATJ eT A e = eT - - e 

- -- - 2 -

to express Equation (2.43) in terms of a symmetric J-matrix, 

T [diag(a p) G+G diag(ap)] e - e - 2 -

(2.47) 

(2.48) 

(2.49) 

The same technique can be used to expand the three other terms on the right hand si de of 

Equation (2.46) to obtain a general format for .f..({!p) , 
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J (a ) = .!.[diag(C!:.p) Q + Q diag(C!:.p) Il diag(C!:.p) - diag(C!:.p) Il] (2.50) 
- -p 2 diag(C!:.p) 11- Il diag(C!:.p) diag(C!:.p) Q + Q diag(C!:.p) 

and similarly for l(fk:J) and l(C!:.v2) 

J(a ) =.!.[-diag(C!:.Q) Il-Il diag(C!:.Q) Q diag(C!:.Q)-diag(C!:.Q) Q] 
- -Q 2 diag(C!:.Q) Q - Q diag(C!:.Q) -diag(C!:.Q) 11- Il diag(C!:.Q) 

(2.51) 

[
diag (C!:.v2 ) 0] 

J(a 2 )= . 
- -v 0 dzag(C!:.v 2 ) 

(2.52) 

Finally, l(a) can be constructed as the sum of the three components in Equations (2.50), 

(2.51) and (2.52) 

(2.53) 

where 

2.3.3 Hand solved example of the J-matrix and supporting hyperplanes 

Consider the previous 2-bus network example depicted in Figure 2-10 with a slack bus 1 

and a PQ bus 2 connected through a line with impedance jX,. 

Figure 2-10: 2-Bus network example with one PQ bus 

In section (2.1.2), it was shown that with the nodal voltage vector .! defined as, 
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and the injection vector ;.. of the form, 

then, 

TT2 2 
"1 = el 

In the quadratic format these become, 

r
o 0 1] 

p2=_1_xT 0 0 0 x 
2X - -

1 1 0 0 
~ 

JP:l 

r
I 0 0] 

V;2 = ~T 0 0 0 ~ 

000 
~ 

J 2 
Vi 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

where ~D2' -k2 and lv.? matrices are easily found by inspection due to simplicity of the 

network. The general approach described above yields the same J-matrices as follows: 

The admittance matrix of the network in Figure 2-9 is 
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1 1 

y= 
jX[ jX[ 

1 1 

jXj jX[ 

with real and imaginary components 

Q=[~ ~] 
B=_1 [-1 1] 
- X 1 -1 

[ 

(2.62) 

(2.63) 

(2.64) 

To find Ip2' J42 and Iv? ' the corresponding vectors as discussed in Equation (2.41) are, 
1 

f!p=[~] 

f!Q =[~] 

~v' =[~] 
According to Equation (2.50), 

1 [ 0 1(CJ:.p)=-. -. 
2 dzag(CJ:.p) Il- Il dzag(CJ:.p) 

where, 

1 [-1 11 diag(CJ:.p) = X[ 1 

1 [-1 
diag(CJ:.p) 11 = X[ 1 

~1] [~ ~]= ~, [~ ~1] 

~1] [~ ~]= ~, [~ ~1] 
hence from (2.68), 

0 0 0 1 

J =_1_ 0 0 -1 0 
-P2 2X 0 -1 0 0 [ 

1 0 0 0 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 
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The last step is to eliminate the third row and third column which correspond to the 

reference voltage component h which is arbitrarily and without loss of generality set to 

zero. The final result which accords with Equation (2.61) is 

lp, ~ 2~, [~ ~ ~] (2.72) 

Similarly, ~2 and .f..v.,2 can be calculated according to Equations (2.51) and (2.52). 

Having the J-matrices for aIl injections, we can now calculate arbitrary supporting SHs of 

the feasibility region Rz. First, we calculate .f..(gJ for an arbitrary vector ~ . 

(2.73) 

[
0 0 1] [0 = a p2 0 0 0 + aQ2 -1 

2Xj 1 0 0 2Xj 0 
-1 0] [1 0 0] 2 0 +av.,2 0 0 0 
o 0 0 0 0 

(2.74) 

Now, in order to solve the eigenvalue problem (2.36), we need to calculate J(hJ) and 

J(~) where ~ is an arbitrary constant injection vector, 

and, 
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Therefore from (2.74), 

1 
1 

0 ---
20XI 

l(kJ= 
1 1 

0 ---
20XI 10XI 

(2.75) 

0 0 
1 

lOXI 

while, 

1 
1 -1 

4XI 2XI 

l(~)= 
1 -1 

0 
4XI 2XI 

(2.76) 

-1 
0 

-1 
2XI 2XI 

These two matrices, l(kJ) and l(~), are both symmetric Before we proceed any further 

we need to make sure that l(kJ) is positive definite. The eigenvalues of l(kJ) are, 

1 
~ =10X 

1 

1 1 1 ~ 2 -X +-±- 100X -20X +2 
2 1 20 20 1 1 

~,3= X 
1 

(2.77) 

For line reactance values of XI greater than 0.025, aIl the eigenvalues are positive, in 

which case lCk!) is positive definite. For values of XI less than 0.025, one would have 

to use a different value of kJ to find a positive definite l(kJ) . 

Referring to Equation (2.36) the eigenvalue problem is as follows. 

[J(~) - il J(kJ)]~ = Q (2.78) 
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For a line reactance value of XI = 0.5 , the eigenvalues and their corresponding 

eigenvectors are as follows. 

r
-5

.
751 À= -5 

2.06 

r

O.32 ° 
~ = 0.16 -2.24 

2.13 ° 
0.

98 1 0.49 

-0.69 

The maximum and minimum eigenvalues, as shown in (2.37) and (2.38), define the ~ 

vectors defining two supporting hyperplanes ~T 1. = O. 

~max = rO.~11 Àmax = 2.06 
1.06 

~min = r ~~ 1 Àmin = -5.75 
6.75 

Furthermore, the corresponding eigenvectors are the nodal voltages b, at the intersection 

of the se SHs and the feasibility region Rz . 

r 

0.981 
~ax = 0.49 

-0.69 

r

°.321 
~in = 0.16 

2.13 

2.4 Closest Boundary Injection 

2.4.1 Feasibility Margin 

The degree of load flow feasibility of a given vector of injections ~ can be expressed by 

a quantitative measure known as the load flow feasibility or steady state feasibility 

margin (FM) defined as [6], 
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a*T z 

FM=II~ïll~11 (2.79) 

= cos(r1*) 

where ~ * is the normal vector defining the closest SH to ~. This is illustrated in Figure 

2-11. 

a T z =0 -2-

Figure 2-11: Geometrical illustration of the feasibility margin FM of a given injection ~ 

As shown before, the normal vector ~ can be found from the solution of the generalized 

eigenvalue problem, 

(2.80) 

and it has the form 

(2.81) 

or 

(2.82) 
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where 

• Âmax and Â min are the extreme eigenvalues of (2.80) 

• .f.~) is positive definite. 

• k is an arbitrary search direction. 

As long as .f.(~) is positive definite, by varymg the search direction k ' aU a 's 

belonging to the boundary of Rz can be found. The boundary injection, ~ , 

corresponding to such ~ is, 

(2.83) 

where b is the eigenvector associated with one of the extreme eigenvalues. 

The properties of the steady state FM can be examined by considering its associated 

closest boundary injection i, given by Equation (2.83). 

Pre-multiplying (2.83) by ~ *T , 

and using the identity 

the following is obtained, 

Writing Equation (2.80) as, 

then (2.86) becomes 

a*T z = 0 - ~ 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

Rence, if a given injection ~ lies on the boundary of Rz then by Equation (2.79) FM is 

zero. If however ~ E Rz then since g *T ~ > 0, FM is positive. Otherwise if ~ ~ Rz then 

since ~ *T ~ < 0 , FM is negative. 
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Here is list of the important characteristics of the feasibility margin of an injection: 

• The injection ~ is feasible if an only if FM ~ O. This important property can be 

used independently of the numerical load flow algorithm to test the feasibility of 

an injection. One can verify weather the non-convergence of a numerical load 

flow algorithm is due to load flow feasibility violations or to non-convergence of 

the numerical algorithm. 

• Since the FM is defined in terms of the co sine of the angle (), then 

-1 ~ FM ~ 1 

Thus, the FM can be used to quantify the degree of feasibility or unfeasibility of a 

given injection ~. This allows for a comparison of the load flow feasibility 

limitations of different network structures. 

• In case of load flow feasibility violation, the closest boundary injection associated 

with the FM can result in a systematic procedure to restore load flow feasibility. 

This is more efficient than the trial and error method [6]. 

• The FM can be used to characterize an explicit sufficient load flow feasibility set 

Rs' Any injection in Rs is guaranteed to be feasible. This has potential application 

in power system security [13]. 

2.4.2 Optimization Scheme 

As discussed in section 2.4.1, the FM is a measure of the degree of feasibility of an 

injection, ~, and is defined as, 

where, 

FM = cos (~~; { () } ) 

aTz 
-Min --g 

- gERa IIÇ!IIII~II 

• () is the angle between Ç! and ~ . 

(2.89) 

• Ra is the set of normal vectors Ç! defining the supporting hyperplane Ç! T ~ = 0 . 
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The optimization problem in Equation (2.89) is equivalent to the problem of selecting the 

closest supporting hyperplane ~ *T ~ = 0 as shown in Figure 2-11. This solution can be 

fonnulated as the following. 

FM = cos( ft) 

(2.90) 

where (/ is the angle between l.g and ~ * • Once this solution (2.90) is found, the closest 

boundary injection i, to l.g can also be found, from which other measures of feasibility 

such as the minimum Euclidian distance to ~, can be derived. 

This optimization can be implemented using MATLAB. First, there is a pro gram that 

ca1culates the nonnal vector ~ using the generalized eigenvalue problem, 

(2.91) 

In Equation (2.91), k is the nonnal vector as defined in section 2.2.2 and k is a given 

search direction. The resulting ~ defines the supporting hyperplane corresponding to the 

direction of k ' from which the boundary injection k can be found. Subsequently, using 

the ca1culated ~ and the given injection ~ the FM corresponding to the search direction 

can be obtained. The flowchart ofthis pro gram is shown in Figure 2-12. 
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Input 
Bus Data 

Select 

k 

Compute 

Ensure 

solve 

[J(k)-A J(k)]~ = Q 

~ = (Amaxk - k) 
k = ~axl.!max 

Choose 
Max or Min 

~ =(k -Amink) 

k =~inl.!min 

Figure 2-12: Flowchart of the pro gram computing feasibility margin 

The pro gram begins with the bus and line data of the network to find the admittance 

matrix r. The vector k is selected that makes l(k) positive definite. The pro gram 

then computes l (k) for an initial guess ~. These two matrices are then used to form 
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the eigenvalue problem, which is solved using MATLAB' s eig( A, B) function, giving 

the extreme eigenvalues and their corresponding eigenvectors. 

The next step is to select one of the extreme eigenvectors to find the corresponding 

boundary injectionk as weIl as the ~ vector defining the boundary hyperplane and the 

FM. 

The steps discussed above can only find an arbitrary boundary injection k and 

corresponding FM given an arbitrary search direction. Hence another pro gram is required 

to find the best search direction which results in the closest boundary injection. This 

search process is graphically shown in Figures 2-13 (a) and 2-13 (b) . 

••••• T 
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Figure 2-13 (a): Illustration of the search process for the closest boundary injection k* 
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Figure 2-13 (b): 2-dimentional feasibility surface ~ 
o 

The second MA TLAB pro gram described in Figure 2-14 is an optimization routine to 

find the search direction which results in the closest boundary point to the given injection. 

Gradient---~ 

Choose an initial 

~ 

Function 

MATLAB's 
Minimization 

14----Hessian 

Figure 2-14: Flowchart of the optimization program 
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This program uses MATLAB's optimization function fmin (F(x),xo,F'(x),F"(x)) 

which optimizes a given function F(x) when provided with an initial guess Xo together 

with the Gradient F' (x) and Hessian F" (x) of the function. The pro gram starts by 

collecting the bus and line data information of the network. An initial search direction k 

is selected and the function to be optimized, namely the FM is formed as described in the 

previous program from, 

(2.92) 

The MA TLAB optimization is more robust when the first derivative of the optimization 

function is also provided as detailed in Appendix A. 
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Chapter 3 : Study Cases ofLoad Flow Infeasibility 

As was discussed in the prevlOUS chapter, the load flow feasibility reglOn Rz is 

characterized by the structure of the power network, which involves the nature of the bus 

types and the bus admittance matrix, r . A network operating point which consists of the 

injection vectors r., Q and [2 for the load and voltage controlled buses is a feasible 

injection when it lies within the region Rz. 

Load flow infeasibility studies examines events that make a given network injection ~ 

to move close to the boundary of or outside Rz. This can occur via two different 

mechanisms. In the first, a change in the size and/or shape of the feasibility region places 

the feasible injection ~ outside the boundary of Rz. Figure 3-1 shows a contingency 

resulting in such infeasibility. What events lead to this type of mechanism are discussed 

in section 3.1. 

1 
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1 
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1 
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1 
1 

1 
1 

1 

Contingency 

Figure 3-1: Feasibility boundary movement 
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In the second mechanism shown in Figure 3-2, the feasibility region Rz stays unchanged 

but the injection vector ~ moves outside Rz . Depending on the nature of the event, this 

repositioning of ~ may occur gradually or suddenly as detailed in section 3.2. 

Contingency 

Figure 3-2: Injection vector movement 

3.1 Feasibility boundary movement 

The boundary of the feasibility region is described by the network structure, namely by 

the branches connecting the power network buses and by the presence or absence of 

voltage support capability at the buses. Therefore, in order for the load flow feasibility 

boundary to change or move, there needs to be a change in either of these aspects. A 

change in bus voltage support capability translates into a change in bus type. On the other 

hand, changes in branch connectivity are those involving loss of one or more 

transmission lines. 

3.1.1 Bus type change 

When voltage control at a generator bus is lost, this results in changing a PV into a PQ 

bus. Therefore, studying bus type changes is useful in certain contingency cases, such as 

the loss of a generator or the saturation of the VAR supply capability at a bus. 
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These cases are better explained through examples. Consider a 5-bus network as shown 

in Figure 3-3. The branch infonnation is provided in Appendix B. 

1 4 
l, 

13 

12 
15 

16 
2 

5 3 

Figure 3-3: 5-Bus network #1 

This 5-bus network consists of3 PQ (1,2 and 3) and 1 PV (4) bus and one slack (5). To 

look at the effect of a bus type change on feasibility consider the following injection 

vector. 

where, 

~, = [-0.6, - 0.6, - 004, 1.0, - 0.2, - 0.3, - 0.1, 1.0, 1.oy (p.u.) 

The unspecified bus injection and voltage components for this given ~ are obtained by 

solving the corresponding load flow and are provided in Table 3-1. 
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Table 3-1: Load flow for 5-bus network # 1 

Injection Voltage 

Bus Type P Q V 0 

(p.u.) (p.u.) (p.u.) (Degrees) 

1 PQ -0.6 -0.2 0.962 -2.018 

2 PQ -0.6 -0.3 0.920 -4.001 

3 PQ -0.4 -0.1 0.892 -8.408 

4 PV 1.0 0.388 1.0 2.522 

5 Swing 0.655 0.433 1.0 0 

Let us now convert bus 4 from a PV into a PQ bus with the values of ~ and Q4 taken 

from Table 3-1. The new injection ~2 is 

~2=~,~,~,~,Q,~,~,~,~f 

where, 

~2 = [-0.6, -0.6, -0.4, l.0, -0.2, -0.3, -0.1, 0.388, l.Of (p.u.) 

As defined in Equation (2.90), the FM values for these two different injections are shown 

in Table 3-2. 

Table 3-2: Feasibility margins for a change in bus type 

Injection Feasibility margin 

~l 0.215 

~2 0.184 

The change in the FM shows that although the network and load flow are the same, the 

new bus type structure changes the feasibility region and results in a lower FM of 0.184 

versus 0.215. This is reasonable since the new network has less voltage control. 

45 



3.1.2 Change in network structure 

The best example of a change in network structure is the 10ss of sorne transmission lines, 

which results in a change in the network' s admittance matrix [ , which then redistributes 

the CUITent flows throughout the remaining network. This change in network structure 

also alters the shape of the feasibility region and changes the FM. The 10ss of lines can 

influence 10ad flow feasibility differently; in a very severe case 10ss of several lines can 

result in infeasibility, i.e. a negative FM. 

Consider now the 14-bus network of Figure 3-4. The branch data of the network is 

provided in Appendix B. 

3....,.-+_ 

Figure 3-4: 14-bus Network 
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Let us consider the following given feasible injection, 

Table 3-3: Bus injections for 14-bus network 

Injection 

Bus Type P Q V2 

(p.u.) (p.u.) (p.u.) 

1 PQ 0.154 -0.069 

2 PQ 0.627 -0.184 

3 PQ 0.149 -0.054 

4 PQ 0.219 -0.098 

5 PQ 0.052 -0.017 

6 PQ 0.016 0.102 

7 PQ -0.248 0.005 

8 PQ -0.033 0.003 

9 PQ -0.674 0.374 

10 PQ 0.440 -0.182 

11 PQ -0.259 -0.025 

12 PQ -0.200 -0.032 

13 PV -0.132 1 

14 Swing 1 

The lines are removed one by one (except line Il, since this line is connected directly to a 

generator) and the FM is calculated. The results are gathered in the following Table 3-4. 
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Table 3-4: Line removal 
results 

Line Feasibility 
removed margin 

Base case 0.164 

1 0.151 

2 0.107 

3 0.164 

4 0.100 

5 0.142 

6 0.151 

7 0.159 

8 0.127 

9 0.133 

10 0.151 

12 0.130 

13 0.077 

14 0.166 

15 0.147 

16 0.158 

17 0.159 

18 0.147 

19 0.158 

20 0.165 

c: 
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Figure 3-5: Feasibility margin for different line removals 

It can be seen from Figure 3-5 that line 13 has the biggest effect on the FM. This is 

reasonable from the position of line 13 in the network as an important connection 

between its upper mostly generating sub-network and the lower part which is primarily 

consummg. 

48 



In the next step, let us start with a network without line 13 and observe the effeet of 

further line losses. These results are shown in Table 3-5. 

Table 3-5: Line removal 
results with line 13 

aIreadyout 

Line Feasibility 
removed margin 

Base Case 0.077 

1 0.052 

2 0.030 

3 0.076 

4 0.039 

5 0.064 

6 0.040 

7 0.029 

8 0.033 

9 0.036 

10 0.059 

12 0.036 

14 0.140 

15 0.073 

16 0.110 

17 0.074 

18 0.069 

19 0.074 

20 0.077 

c: 
ï5, 

0.12 

0.1 

la 0.08 
::2 

~ 
;ë 
UJ 0.06 
ni 

o o 
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Figure 3-6: Feasibility margin for different line removals with line 
13 already out 

Renee the loss of line 7 yields the most severe effeet. This proeess ean be repeated again, 

this time with lines 7 and 13 out. The results are shown in Table 3-7. It is observed that 

the further loss of lines 1, 2, 4 and 6 result in infeasibility. Furthermore, the removal of 
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line 4 results in the lowest FM and hence has the worst effect. These observations are 

shown in Figure 3-7. 

Table 3-6: Line removal 
results with lines 13 and 7 

alreadyout 

Line Feasibility 
removed margin 

Base Case 0.029 

1 -0.048 

2 -0.047 

3 0.027 

4 -0.063 

5 0.013 

6 -0.049 

8 0.201 

9 0.013 

10 0.023 

12 0.013 

14 0.131 

15 0.028 

16 0.158 

17 0.028 

18 0.026 

19 0.028 

20 0.029 

0.25 

0.2 

0.15 

c: 
.~ 

0.1 CIl 
:2: 

~ ;e 
0.05 '" CIl 

<Il 
u-

0 

-0.05 

0 

o 
0 

0 0 0 0 0 
o 0000 

.00 
6 0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Une Outage 

Figure 3-7: Feasibility margin for different line removals with lines 
13 and 7 already out 

To complete the test, let us consider a different injection vector, ~, one that loads the 

network more heavily, 2.39 p.u. compared to 1.546 p.u., as listed in Table 3-7. 

50 



Table 3-7: New bus injections 

Injection 

Bus Type P Q V2 

(p.u.) (p.u.) (p.u.) 

1 PQ -0.15 -0.05 

2 PQ -0.14 -0.06 

3 PQ -0.06 -0.02 

4 PQ -0.04 -0.02 

5 PQ -0.09 -0.06 

6 PQ -0.3 -0.17 

7 PQ 0 0 

8 PQ 0 0 

9 PQ -0.11 -0.08 

10 PQ -0.08 -0.02 

11 PQ -0.48 0.039 

12 PQ -0.94 -0.19 

13 PV 0.18 1 

14 Swing 1 

We repeat the same procedure of line removal (except line Il), and summarize the effects 

in Table 3-8. 
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Table 3-8: Line removal 
results 

Line Feasibility 
removed margin 

Base Case 0.093 

1 0.090 

2 0.042 

3 0.093 

4 0.056 

5 0.079 

6 0.091 

7 0.090 

8 0.059 

0.12 

0.1 

0.08 
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12 0.028 

13 -0.022 
Figure 3-8: Feasibility margin for different line removals 

14 0.087 

15 0.059 

16 0.113 

17 0.088 

18 0.052 

19 0.007 

20 0.003 

As can be observed in Figure 3-8, line 13 again plays a big role on feasibility. Only this 

time, since the network is more heavily loaded the removal of line 13 results in 

infeasibility. 

A possible future study would be to find a combination of a given number of lines whose 

outage would result in the most negative possible FM in a way that does not involve full 

enumeration as done above, but which would involve nonlinear mixed integer 

programmmg. 
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3.2 Movement of the nodal injection vector 

Here, we examine the effect on feasibility of the nodal injection movement due to a 

change in the E., Q or t::2 values, either gradually or suddenly. 

3.2.1 GraduaI change 

An example of a graduaI change in the injection is that due to an increase in VAR 

demand at a PQ bus. 

Let us start with the 3-bus network shown in Figure 3-9 as an example. 

1 ....... ..-,- ....,..~-2 

Figure 3-9: 3-bus network 

The given injection and nodal voltage values are listed in Table 3-9. 
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Table 3-9: Load flow 

Injection Voltage 

Bus Type P Q V 8 
(p.u.) (p.u.) (p.u.) (Degrees) 

1 PQ 0 -0.1 0.927 0.412 

2 PQ 0 -0.2 0.909 0.525 

3 Swing 0.003 0.328 1.0 0 

Consider the effect of a graduaI change in the injection Q at bus 2. The resulting change 

in FM is listed in Table 3-10 and plotted in Figure 3-10. 

Table 3-10: Change in feasibility margin due to the change in Q 

Q2 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 

FM 0.379 0.300 0.221 0.145 0.074 0.008 -0.052 
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Figure 3-10: Graph of the change in feasibility margin as Q2 decreases 

It can be seen that an increase in reactive demand at bus 2 results in a lower FM and 

eventually in infeasibility. This is expected, since VAR support is very important to 

voltage support. Figure 3-11 shows the value of the nodal voltages as Q2 is decreased. 
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Figure 3-11: Change in the magnitude of the nodal voltages 

It is observed that the voltage at bus 2, where the loss of Q support happens, drops more 

rapidly than the ones of the other two buses. When Q2 = - 0.6 p.U., the value of the 

voltage at bus 2 is lower than 0.7 p.U. which is an unacceptably low voltage even though 

the FM is still bigger than zero. 

Note that the voltage curves in Figure 3-11 go aU the way to the boundary of Rz at 

Q2 = -0.713 p.U .. This is not possible with methods based on load flow calculations. 

It is also useful to look at the effect of this increase in the reactive demand at bus 2 on the 

angle of the voltages and the total transmission loss of the network. Figure 3 -12 shows 

the change in angle difference for each line as Q2 decreases and Figure 3-13 shows the 

change in the total transmission loss of the network. 
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Figure 3-12: Change in the angle difference for each line 
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Figure 3-13: Change in the total transmission loss in the network 
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A decrease in Q2' results in a bigger angle difference for the lines. This in turn increases 

the power flow in each line and therefore the transmission loss. 

In addition when the network gets closer to infeasibility, the Jacobian matrix cornes 

closer to singularity. This can be shown by observing the eigenvalues of the Jacobian 

matrix in Figure 3-14. 

c 
ct! 

:g 4 
u 
ct! 
"") 

Q) 

-= '0 3 
fi) 
Q) 
:::l 
(ij 
> 
ffi 2 
.~ 
w 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 
-Q2 

Figure 3-14: Change in the eigenvalues ofthe Jacobian 

AU eigenvalues including the complete conjugates (~ and Â2) decrease as Q2 decreases 

and the network is brought closer to infeasibility. Â4 however, is the eigenvalue the most 

effected. As this eigenvalue becomes zero the Jacobian becomes singular and the system 

infeasible. 

Let us now consider a 5-bus network shown in Figures 3.15. Hs line data is provided in 

Appendix B. 
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-.,..+-t- 2 

Figure 3-15: 5-Bus network #2 

The injections and nodal voltages are as follows. 

Table 3-11: Load flow for 5-bus network #2 

Injection Voltage 

Bus Type P Q V 8 
(p.u.) (p.u.) (p.u.) (Degrees) 

1 PQ -0.489 0.2 1.004 -3.663 

2 PQ -0.566 0.176 1.001 -3.281 

3 PQ -0.244 0.1 1.001 -2.691 

4 PV 0.830 -0.281 1.0 1.687 

5 Swing 0.502 0.211 1.0 0 

As shown in the previous 3-bus example, a decrease in the imaginary power Q at a PQ 

bus will result in the loss of voltage support and moves the given injection towards 

infeasibility. However, it is useful to know which PQ bus has the most important Q 

support role in the network, i.e. a decrease of Q at which bus would affect the FM most 

significantly. This is realized by looking at the Çf vector calculated for the given injection 

~. 
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Table 3-12: G values for the given injection ~ 

0.417 0.096 0.076 0.033 -0.004 2.566 

As it was discussed in section 2.3.2, the G vector is a measure of sensitivity of the FM 

with respect to changes in the given injection, ~. Thus the bus with the higher value of 

a Q would have the biggest impact on the F.M. 

Table 3-13 shows the change in the value of the FM as Q and Q3 decrease. 

Table 3-13: Feasibility margin due to imaginary power decrease at bus 1 and 3 

QI F.M. Q3 F.M. 

0.2 0.485 0.1 0.485 

0.0 0.473 0.0 0.485 

-0.3 0.432 -0.4 0.469 

-0.6 0.372 -0.8 0.433 

-0.9 0.305 -1.2 0.363 

-1.2 0.239 -1.6 0.287 

-1.5 0.179 -2.0 0.217 

-1.8 0.124 -2.4 0.157 

-2.1 0.077 -2.8 0.106 

-2.4 0.036 -3.2 0.064 

-2.7 0.0 -3.6 0.028 

-3.0 -0.030 -4.0 -0.002 

l'::;!,:'~~;:; ··~'t~~.\;:· 
. . . ··.Y ':;,),. . '< 

-4.4 -0.028 
,;",:::"!,.::'",, """: " . "':'., «"t. d': .. ::, ..... 

i't . 'v. , 

The results in Table 3-13 show that the FM is more sensitive to the changes in the value 

of QI than Q3' This agrees with the values of a QI and a Q2 and is better illustrated in 

Figure 3-16. 
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Figure 3-16: Feasibility margin due to imaginary power decrease at bus 1 and 3 

3.2.2 Sudden change 

Loss of a generator is one of the contingencies which can affect a power network 

severely. This is due to a sudden loss in both P and Q at the bus connected to the 

generator. It is important to note that a generator bus is a PV bus where the values of P 

and V 2 can be set, however a loss in generator requires the values of P and Q in the 

bus to both be set to zero. Therefore in simulation, generator loss translates into a type 

conversion from PV to PQ in that specifie bus. 

As an example, let us consider the 5-bus example in Figure 3-17. 
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Figure 3-17: 5-bus network #1 

The injection and voltage values are listed in Table 3-14. 

Table 3-14: Originalload flow for 5-bus network #1 

Injection Voltage 

Bus Type P Q V 8 

(p.u.) (p.u.) (p.u.) (Degrees) 

1 PQ -0.6 -0.2 0.962 -2.018 

2 PQ -0.6 -0.3 0.920 -4.001 

3 PQ -0.4 -0.1 0.892 -8.408 

4 PV 1.0 0.388 1.0 2.522 

5 Swing 0.655 0.433 1.0 0 

First, we look at the effect of the loss of the generator at bus 4. As explained before, this 

is done by changing bus 4 from a PV into a PQ and then setting the P and Q values to 

zero. The new injection and nodal values are as following. 
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Table 3-15: Load flow for 5-bus network # 1 after 10ss of the generator at bus 4 

Injection Voltage 

Bus Type P Q V 8 

(p.u.) (p.u·L (p.u.) (Degrees) 

1 PQ -0.6 -0.2 0.877 -8.794 

2 PQ -0.6 -0.3 0.816 -12.651 

3 PQ -0.4 -0.1 0.819 -14.106 

The same thing can be done for the 10ss of the generator at bus 5. In this case, the swing 

bus is bus 4. These results are as follows. 

Table 3-16: Load flow for 5-bus network #1 after 10ss ofthe generator at bus 5 

Injection Voltage 

Bus Type P Q V 8 
(p.u.) (p.u.) (p.u.) (Degrees) 

1 PQ -0.6 -0.2 0.877 -8.938 

2 PQ -0.6 -0.3 0.841 -10.527 

3 PQ -0.4 -0.1 0.773 -18.632 

4 Swing 1.725 1.1 1.0 0 

The FMs of the networks corresponding to the 10ss of generator in bus 4 or 5 are 

summarized in Table 3-17. 

Table 3-17: Change in feasibility margin for the 10ss of each generator 

Generator loss None 4 5 

Feasibility margin 0.2154 0.1559 0.0618 
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It is observed that a generation outage causes a drop in FM. This drop is bigger in case of 

the generator in bus 5. This is because bus 5 is connected to more buses in the network 

than bus 4. Therefore, in an event of outage in bus 4, the generator at bus 5 can support 

most of the network directly. In contrast, if the outage is at bus 5, the generator at bus 4 

does not have as good access to the rest of the network. However, in both cases the 

contingency is not severe enough to bring the system to infeasibility. 

Now let us consider the same network as in Figure 3-17 but more heavily loaded. The 

total load is increased from 1.6 p.u. to 2 p.u .. The injection and the nodal voltage values 

are listed in the Table 3-18. 

Table 3-18: Originalload flow for 5-bus network # 1 (Higher Load) 

Injection Voltage 

Bus Type P Q V 8 
(p.u.) (p.u.) (p.u.) (Degrees) 

1 PQ -0.75 -0.2 0.957 -4.412 

2 PQ -0.75 -0.3 0.908 -7.394 

3 PQ -0.5 -0.1 0.872 -12.241 

4 PV 1.0 0.473 1.0 -0.435 

5 Swing 1.082 0.456 1.0 0 

If the generator at bus 4 is out, the new injection values are: 
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Table 3-19: Load flow for 5-bus network #1 (Higher Load) after 10ss of the generator at 

bus 4 

Injection Voltage 

Bus Type P Q V 8 
(p.u.) (p.u.) (p.u.) (Degrees) 

1 PQ -0.75 -0.2 0.848 -11.662 

2 PQ -0.75 -0.3 0.773 -17.169 

3 PQ -0.5 -0.1 0.771 -19.194 

And in the case where, the generator at bus 5 is out, the injection values are: 

Table 3-20: Load flow for 5-bus network #1 (Higher Load) after loss of the generator at 

bus 5 

Injection Voltage 

Bus Type P Q V 8 
(p.u.) (p.u.) (p.u.) (Degrees) 

PQ -0.75 -0.2 0.845 -11.893 

2 PQ -0.75 -0.3 0.798 -14.217 

3 PQ -0.5 -0.1 0.7073 -26.065 

4 Swing 2.212 1.448 1.0 0 
.;1.,_, 

{)~804t' "A~· 

"': :~:d~~:: 

The FMs, corresponding to these new situations are listed in Table 3-21. 

Table 3-21: Change in feasibility margin for the loss of each generator 

Generator loss None 4 5 

Feasibility margin 0.174 0.088 -0.011 
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As before, the effect of the outage in bus 5 is more severe than that in bus 4. However, 

due to the heavy load in the network, an outage in bus 5 is effective enough to cause 

infeasi bili ty. 
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Chapter 4: Conclusions 

4.1 Summary 

We have studied the feasibility of power flows through the notion of the power flow 

feasibility region. To characterize such a region, we have made use of the supporting 

hyperplane method and the notion of feasibility region on a plane. We showed in detail 

how supporting hyperplanes are calculated and used to find the closest boundary injection 

to a specified vector of load flow injections. 

The supporting hyperplane method proved to be much more powerful than using the 

conventional load flow in finding points on the boundary of the feasibility region. The 

load flow equations were difficult to solve when the specified injections were in the 

proximity of the feasibility boundary, as the load flow Jacobian became ill-conditioned. 

In contrast, the supporting hyperplane method was able to find the closest injection on the 

boundary of feasibility to the injection through systematic steps that did not give rise to 

the numerical difficulties associated with the near singularity of the load flow Jacobian 

matrix. Furthermore, the hyperplane method provided the feasibility margin (FM), which 

measures the degree of the feasibility ofthe specified injections. 

The method of supporting hyperplanes presented an effective way of finding the failure 

path with the highest impact on the feasibility of an injection. Different mechanisms were 

used to characterize this path; sorne were based on changing the feasibility region 

whereas others involved altering the injection itself. 

Changes to the feasibility region were achieved by bus type change and line outages. It 

was shown that changing the type ofa bus affects the FM. Converting a PV bus to a PQ 

bus reduced the FM as it resulted in the loss of voltage support at the bus. Line outages 

also decreased the FM. Thus, it was shown that the severity of line outages on the FM 

depends on the location of the removed lines as weIl as on the loading of the network. 

The loss of a combination of lines, which were part of the main power flow path between 
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generation sites and demand points, resulted in infeasibility. For higher loading levels, 

fewer such outages were however required to drive an injection to infeasibility 

Other mechanisms deforming the feasibility region induded graduaI and sudden changes 

in the given injection. Thus, a graduaI increase in VAR demand at a bus was shown to 

reduce voltage support and drive the injection towards the boundary of feasibility and 

reduce the FM. Moreover, the ~ vector was shown to provide a measure of sensitivity, 

identifying the bus at which a demand increase makes the network more vulnerable to 

infeasibility. Additionally, the effect of generation loss on the FM was studied. For a 

heavily loaded system, it was shown that, in most cases, a severe case of this type can 

readily be found leading to immediate infeasibility. 

These results further supported the daim that the hyperplane method is a powerful tool 

for analyzing the impact of extreme contingencies on the feasibility of power flows. 

4.2 Suggestions for Further Research 

The feasibility margin as an indicator of the vulnerability of power networks to extreme 

contingencies could be examined for large networks over extended periods of time. In 

choosing alternatives for expanding a transmission network, the level of increase in the 

network FM could be an additional selection criterion. However, the prerequisite for 

enforcing such a criterion is the ability to establish an acceptable minimum FM of a given 

power system. Developing a methodology to determine this minimum would be an 

interesting area of research. 

68 



Bibliography 

[1] P. Kundur, Power Systems Stability and Control, McGraw-Hill, New York, 1994. 

[2] H.D. Chiang. 1. Dobson, R.J. Thomas, J.S. Thorp, L. Fekih-Ahmed, "On Voltage 
Collapse in Electric Power Systems," IEEE Transactions on Power Systems, Vol. 5, 
Issue 2, May 1990. 

[3] 1.0. Eigerd, An Introduction to Electric Energy Systems. Second Edition, McGraw
Hill Book Company, New York, 1982. 

[4] G.W. Stagg and A.H. EI-Abiad, Computer Methods in Power System Analysis, 
McGraw-Hill, New York, 1968. 

[5] J.S. Throp, S.A. Nagavi, "Load-flow Fractals draw Clues to Erratic Behavior," IEEE 
Computer Applications in Power, Vol. 10, Issue 1, pp. 59-62, Jan. 1997. 

[6] J. Jarjis, "Analysis and Characterization of Security Regions in Power Systems," 
ph.D. thesis, Dept. Comp. & Elec. Eng., McGill Univ., Montreal, Quebec, March 
1980. 

[7] R.B.L. Guedes, L.F.C. Alberto, N.G. Bretas, "The electrical coupling effect on the 
behaviour of the load flow solutions for voltage collapse purposes," in IEEE Power 
Engineering Society General Meeting, Vol. 2, June 2004, pp. 1820-1825. 

[8] N. Yorino, S. Harada, C. Haozhong, "A method to approximate a closest loadability 
limit using multiple load flow solutions," IEEE Transactions on Power Systems, Vol. 
12, Issue 1, pp. 424 - 429, Feb. 1997. 

[9] Z.C. Zeng, F.D. Galiana, B.T. Ooi, N. Yorino, "A simplified approach to estimate 
maximum loading conditions in the load flow problem," IEEE Trans. on Power 
Systems, Vol. 8, Issue 2, pp. 646 - 654, May 1993. 

[10] N. Yorino, S. Harada, H.Q. Li, A.Ohta, H. Sasaki, "A method ofvoltage stability 
evaluation for branch and generator outage contingencies," IEEE Transactions on 
Power Systems, Vol. 19, Issue 1, pp. 252 - 259, Feb. 2004. 

[11] F.D. Galiana, K. Lee, "Power Voltage Limitation imposed by the Network Structure 
of a Power System," Proc. of the Power Industry and Computer Applications, pp. 
356-365, 1975. 

69 



[12] F.D. Galiana, K. Lee, "On the steady State Stability of Power Systems," Proc. Of the 
Power Industry and Computer Applications, pp. 201-210, Toronto, May 1977. 

[13] J. Jarjis, F.D. Galiana, "Quantitative Analysis of Steady State Stability in Power 
networks," Paper F79 753-5, IEEE Summer Power Meeting, Vancouver, July 1979. 

[14] A.G. Exp6sito, ANALISIS y OPERACION DE SISTEMAS DE ENERGiA 
ELÉCTRICA. First Edition, McGraw-Hill, 2002 

[15] F.D. Galiana, z.e. Zeng, "Analysis of the load flow behavior near a Jacobian 
singularity," in 1991 Power Industry Computer Application Conf Proc., pp. 149-
155. 

[16] F.D. Galiana, M. Banakar, "Realizability inequalities for security constrained load 
flow variables," IEEE Trans. on Circuits and Systems, Vol. 29, Issue Il, pp.767 -
772, Nov. 1982. 

70 



AppendixA 

The Gradient 

The function whose derivative we seek with respect to the search direction ~ is, 

aTz 

D({!,~) = II~II~II (A.I) 

where, 

{! = Àmaxk - ~ (A.2) 

or 

{! = ~ - Àmink (A.3) 

Using the chain mIe, the first order expansion of the function gives, 

(A.4) 

But since, 

(A.5) 

and, 

(A.6) 

Substituting (A.5) and (A.6) into Equation (A.4), after sorne rearrangement, yields, 

[ 
T] 8D l {! ~ ~ 

-=- 1-----8{! II{!II - {! T {! II~ Il (A.7) 

which is the gradient of the objective function (A. 1 ) with respect to the vector {! . 
However, since the optimization is searching over the direction vector ~ , we must 

express the gradient with respect to k. This can be done by expressing 8{! in (A.7) in 

terms of 8 ~. When the extreme eigenvalue is Àmax' this can be done from, 

(A.8) 

Differentiating (A.8) with respect to ~ results in, 
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Upon pre-multiplying by ~T , (A.9) becomes, 

But since it has been shown in (2.88) that fl:..T ~ = 0, we can also show that, 

To prove (A.1l), consider the relation (2.87), 

l(fl:..)~ = 0 

For small deviations, 

Pre-multiplying by ~ T gives, 

However from (A.12), the second term of(A.14) is zero and it beomes, 

~T l(/5fl:..)~ =0 

using the identity in (2.86), Equation (A.15) becomes, 

~T/5fl:.. =0 

which is the desired result. Thus, incorporating this result into (A. 1 0) gives, 

/5À~T k - ~T /5 k = 0 

which implies that, 

(A.9) 

(A. 10) 

(A.ll) 

(A. 12) 

(A. 13) 

(A. 14) 

(A.15) 

(A. 16) 

(A.17) 

(A.18) 

The expression for /5fl:.. in terms of /5 k can now be obtained by substituting (A.18) into 

(A. 9) 

(A. 19) 

Using this expression for /5fl:.. , the original gradient function (A.7) can be written with 

respect to k , 

72 



(A.20) 

which can be writlen in the following form, 

8D 1 [ ] 
8~ = 1I~1I11~1I 1;~ +1;~ - ~ (A.2I) 

where the scalars 1; and 1; are respectively 

(A.22) 

(A.23) 

At the minimum of the function D, the gradient vanishes, that is 8D = 0, and therefore 
8~ 

(A.2I) becomes 

(A.24) 

which implies that the vectors ~, ~ and ~ are linearly dependent. 

Equation (A.2I) is the gradient function corresponding to A = Amax ' the other candidate of 

~ which must also be considered is the one corresponding to the minimum eigenvalue, 

that is A = Amin , which has the form, 

(A.25) 

Using a similar analysis, it can be shown that the gradient of the objective function under 

this condition has the form, 

(A.26) 

where the scalars 1; and 1; are those defined in (A.22) and (A.23). 
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AppendixB 

Table B-l: Line data of 5-bus example #1 

Line From To Shunt Admittance Series Impedance 

1 1 4 0.0 + j 0.0 0.05 + j 0.2 

2 1 5 0.0 + j 0.0 0.05 + j 0.2 

3 2 4 0.0 + j 0.0 0.05 + j 0.2 

4 2 3 0.0 + j 0.0 0.1 + j 0.4 

5 2 5 0.0 + j 0.0 0.1 + j 0.4 

6 3 5 0.0 + j 0.0 0.15 + j 0.6 

Table B-2: Line data of 5-bus example #2 

Line From To Shunt Admittance Series Impedance 

1 1 2 0.0 + j 0.025 0.08 + j 0.24 

2 1 5 0.0 + j 0.015 0.04 + j 0.12 

3 2 3 0.0 + j 0.010 0.01 + j 0.03 

4 2 5 0.0 + j 0.020 0.06 + j 0.18 

5 3 5 0.0 + j 0.020 0.06 + j 0.18 

6 3 4 0.0 + j 0.025 0.08 + j 0.24 

7 4 5 0.0 + j 0.030 0.02 + j 0.06 
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Table B-3: Line data of 14-bus example 

Line From To Shunt Series 
Admittance Impedance 

1 1 2 0.0 + j 0.0 0.171 + j 0.348 

2 1 6 0.0 + j 0.0 0.127 + j 0.270 

3 2 3 0.0 + j 0.0 0.221 + j 0.200 

4 2 9 0.0 + j 0.0 0.066 + j 0.130 

5 3 9 0.0 + j 0.0 0.123 + j 0.256 

6 4 5 0.0 + j 0.0 0.082 + j 0.192 

7 4 9 0.0 + j 0.0 0.095 + j 0.199 

8 5 6 0.0 + j 0.0 0.032 + j 0.085 

9 6 8 0.0 + j 0.0 0.0 + j 0.110 

10 6 11 0.0 + j 0.0 0.0 + j 0.556 

11 7 8 0.0 + j 0.0 0.0 + j 0.176 

12 8 11 0.0 + j 0.0 0.0 + j 0.209 

13 9 10 0.0 + j 0.0 0.0 + j 0.252 

14 10 11 0.0 + j 0.013 0.013 + j 0.042 

15 10 13 0.0 + j 0.034 0.057 + j 0.174 

16 10 14 0.0 + j 0.049 0.054 + j 0.223 

17 11 12 0.0 + j 0.035 0.067 + j 0.171 

18 11 13 0.0 + j 0.037 0.058 + j 0.176 

19 12 13 0.0 + j 0.044 0.047 + j 0.198 

20 13 14 0.0 + j 0.053 0.019 + j 0.059 
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