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ABSTRACT 

When subjects are recruited through a cross-sectional survey they have already 

experienced the initiation of the event of interest, say the onset of a disease. This 

method of recruitment results in the fact that subjects with longer duration of the 

disease have a higher chance of being selected. It follows that censoring in such 

a case is not non-informative. The application of standard techniques for right­

censored data thus introduces a bias to the analysis; this is referred to as length­

bias. This paper examines the case where the subjects are assumed to enter the 

study at a uniform rate, allowing for the analysis in a more efficient unconditional 

manner. In particular, a new method for unconditional analysis is developed based 

on the framework of a conditional estimator. This new method is then applied to 

the several data sets and compared with the conditional technique of Tsai [23]. 
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ABRÉGÉ 

Lorsque plusieurs sujets d'étude sont identifiés et recrutés auprès d'une étude 

transversale, ils ont pour la plupart déjà subi l'amorce de l'événement d'intérêt, c'est­

à-dire la contraction de la maladie. Conséquemment, par l'application d'une telle 

méthode de recrutement, les sujets qui survivent durant une période plus longue ont 

à la fois plus de chances d'être sélectionnés. Il s'en suit que la troncature, dans 

un tel cas, n'est point non-informative. L'application des techniques généralement 

utilisées afin d'obtenir des données bien tronquées introduit ainsi une source de bi­

ais dans l'analyse; nous y référrerons comme biais de durée. Cette thèse a pour 

but d'examiner la situation générale où les sujets entreraient dans l'étude à un taux 

constant, permettant ainsi à l'analyse de se montrer plus fiable en étant incondi­

tionnelle. Plus particulièrement, une méthode nouvelle en rapport avec l'analyse 

inconditionnelle et basée sur un estimateur conditionnel sera développée. Cette nou­

velle méthode sera appliquée à maints ensembles de données et les résultats seront 

ensuite comparée avec ceux obtenus pas la méthode conditionnelle de Tsai[23]. 
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CHAPTER 1 
Survival Analysis and the Classical Setting 

1.1 Introduction 

The purpose of survival analysis is to examine the behavior of a population 

that experiences 'failures' over time. This failure could be a part in an automobile 

wearing out or a subject in a clinical trial dying. Let Xl, ... ,Xn denote the failure 

times of these 'individuals'. We assume that the Xi are independent and we denote 

the distribution function F(x) = P[Xi ::; x] for any i. We further define the sur'vival 

function S(x) = 1 - F(x) = P[Xi > x]. The focus of a survival analysis to estimate 

S(x) (or equivalently, F(x)). At this point, it is convenient to consider separately the 

cases of discrete and continuous failure times; that is, whether the failures can only 

occur at a fixed finite (or countable) number of points or they occur continuously 

though time. In either case, the hazard function can be defined as: 

À(x) = lim P[x ::; Xi < X + hlXi ~ x] 
h-+O h 

(1.1) 

From here, it can be noted that for a continuous failure time distribution, the fol-

lowing identities hold: 

'( ) = f(x) = _ dln[S(x)] d 
/\ x S(x) dx an (1.2) 

S(x) = exp[-A(x)] = exp [-lX À(U)dU] (1.3) 
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where f(x) = d~~x) is the density corresponding to F(x) and A(x) = J; À(u)du is 

the cumulative hazard function as implicitly defined above. 

1.2 Right Censoring 

Oftentimes, the failure process cannot be observed entirely. How would one 

treat an individu al in a study who leaves the study for an unrelated reason? The 

only observed information in this case would be the fact that the individualleft the 

study and the time at which he did. To remove such individu aIs , who are deemed 

censored, could bias the analysis drastically. Consider a subject who lives unusually 

long in a study; he is far more likely to be lost to follow up due to administrative 

problems than a subject who dies towards the beginning of the study. In fact, the 

censored case contains a significant amount of information about the failure distri­

bution. Removing the censored cases would hence result in an underestimation of 

survival. 

The question thus arises of how to deal with censored data. There is a fun­

dament al difference between a failure and a censoring, yet one cannot discard cen­

sored cases. We shall introduce standard counting process methodologies to deal 

with such a case as in [16], but first let us establish a more rigorous notation for the 

right censored case. Let Xi be the failure times as above and Ci be the censoring 

times. Further, let Yi = min(Xi , Ci) and ~i = I[Xi :S Ci]' It is assumed that the 

Xl, X 2 , •.. , X n are independent of Cl, C2 , ..• , Cn and the Ci are independent of each 
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other. N ow, let 

(1.4) 
n 

N(t) = L Ni(t) = L 8i (1.5) 
i=l ti9 

We note that both of these proeesses are counting processes in that they are non-zero 

right-continuous stochastic proeesses with constant jumps of size 1, N(O) = 0, and 

N (t) < 00 almost surely. Let us further define Ft to be the history of the proeesses 

up to and induding time t. Under the independenee of the Xi and Ci, we have that: 

P[t ::; Yi ::; t + dt, !:li = 1IFt_] 

= P[t ::; Xi ::; t + dt, Ci > t + dtlXi 2 t, Ci 2 t] (1.6) 

= [À(t)dt]I[Ti 2 t] (1.7) 

where Ft- denotes the history up to t. Let dN(t) = N[(t + dt)-] - N(t-) be the 

change in the proeess N(t) over the interval [t, t + dt). Then: 

E[dN(t)IFt-J = E[#{i: t::; Xi::; t+dt,Ci > t+dtIFt-}J = R(t)À(t)dt (1.8) 

where R(t) is the number of subjects such that Yi 2 t. The intensity and cumu­

lative intensity processes are defined as i(t) = R(t)À(t) and I(t) = J; i(s)ds. Sinee 

E[N(t)IFt_] = E[I(t)IFt-] = I(t), it follows that M(t) = N(t) -I(t) is a martingale; 

it is thus dubbed the counting process martingale. Note that N(t) is a non-decreasing 

step function and I(t) is a predictable smooth proeess (the compensator process). 

3 



Henee, in the expression: 

dN(t) = '( )d dM(t) 
R(t) /\ t t + R(t) (1.9) 

dM (t) / R( t) can be considered noise (sinee M (t) can be considered the differenee of 

the counting proeess and its compensator), and henee integrating yields the Nelson­

Aalen estimator of cumulative hazard (defining % = a for convenienee): 

Â(t) = t I[R(u) > O]dN(u) 
Jo R(u) 

(1.10) 

t ft I[R(u) > 0] 
= Jo I[R(u) > O]À(u)du + Jo R(u) dM(u) (1.11) 

Note that J~ I[R~~rOl dM (u) is also a martingale, as it is the integral of a predictable 

proeess. Finally, an estimate of survival can be written down: 

t 

S(t) = n[l - dÂ(t)] (1.12) 
j=O 

= nt (1 _ dN(t)) 
j=O R(t) 

(1.13) 

is known as the Kaplan-Meier estimator of survival. Many important properties are 

available about this estimator (see [16]), including the fact that it is the nonpara­

metric maximum likelihood estimator. Although this counting proeess approach is 

effective and concise, it is not available when the assumption of independent censor-

ing fails to hold which is often the case in prevalent cohort studies. 

4 



CHAPTER 2 
Left Truncation, Right Censoring, and Biased Sampling 

2.1 Introduction and Preliminaries 

When subjects are recruited through a cross-sectional survey with follow-up 

they have already experienced the initiation of the event of interest, say the onset of 

a disease. These subjects are termed prevalent cases as opposed to incident cases, 

those who have yet to develop the disease. Subjects who experience a shorter dura-

tion of the disease are less likely to be recruited into the study (see Wicksell (1925) 

[29], Goldsmith (1976) [11], and Cox (1969) [8]), and thus this method of recruit-

ment favours subjects with longer duration of the disease. In other words, a sample 

taken in this fashion is not a representative sample from the population of interest. 

The complexity of the analysis of these data is furthered by the loss to follow-up of 

sorne subjects. This censoring in prevalent cohort data is informative in that the 

censoring time (the time when a subject is dropped from the study) and the survival 

time in the study are positively correlated. The application of standard techniques 

for right-censored data thus introduces a bias to the analysis (see Asgharian, M'Lan, 

and Wolfson (2002) [3]). 

The framework of the problem is a random triple (T, X, C) for each subject. T 

is referred to as the truncation time; the time from disease onset until a subject is 

admitted to the study and under observation. X and C are the times until death (or 
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another failure) and censoring (loss to follow-up) from onset of the disease. It is as­

sumed that (T, C) is independent of the failure times X. Further, let Y = min (X, C) 

be the observed failure time and ~ be the censoring indicator (1 if X :::; C and 0 

otherwise). The observed data is thus (T, Y, ~). In the past, such data has been 

analyzed either conditionally or unconditionally on T < C. This conditioning re-

sults in the loss of information. This paper examines the case where the subjects 

are assumed to enter the study at a uniform rate, allowing for the analysis in a more 

efficient unconditional manner. 

The most obvious method of estimating survival in the left truncated and right 

censored case stems from the Kaplan-Meier estimator (1.13). As studied first by 

Lynden-Bell (1971) [18], then Woodroofe (1985) [31], and finally by Tsai, Jewell, 

and Wang (1987) [24], the modified Kaplan-Meier estimator becomes: 

for x < X(l) 

elsewhere 
(2.1) 

where X(l) is the smallest of the failure times, and R(xj) and dj are the number 

of subjects in the risk set and the number of failures at Xj. See Wang [28] for a 

comparison of this product limit estimator to other methods described below. 

In the context of likelihood-based estimation of hazard, a natural simplification 

involves the assumption of non-decreasingness of hazard. This is often the case such 

as in the investigation of mortality resulting from a disease that affects primarily 

elderly patients. Theory relating to the case of non-decreasingness can also easily 

6 
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be converted to the case of non-increasingness and these two situations can be fused 

to address so-called U-shaped hazards. We thus assume, for the remainder of this 

paper, the hazard to be non-decreasing (herein, we use "increasing" for convenience). 

2.2 Left truncated and Right Censored Data 

The conditional approach introduced by Lynden-Bell [18], studied further by 

Woodroofe [31], Tsai, Jewell, and Wang [24] in the 1980's, and completed by Wang 

[28] in the early 1990's is a modified version of Gill's martingale approach. It is 

most efficient only when the left truncation induced by a cross-sectional sampling is 

assumed to have a completely unknown distribution. In many interesting cases, how­

ever, the truncation distribution is known at least up to sorne unknown parameters 

such as in Wicksell [29], Fisher [10], Patil and Rao [21], Asgharian et al. [3], and de 

Una-Alvarez [9]. It has been shown that under such circumstances the conditional 

approach is not most efficient. Following an unconditional approach, Asgharian et 

al. [3] found the most efficient estimator of the survival function. 

Finding the most efficient estimator becomes considerably more complicated 

when, in addition to the information about the truncation distribution, a priori in­

formation about the form of the hazard of failure is also available. 

The seminal work of Grenander [12] (1956) is the first to address this prob­

lem. Marshall and Proschan [19] and Rao [22] systematically studied distributional 
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properties of Grenander's estimator. Barlow et al. [7] presents a comprehensive 

study of estimation under monotone restrictions. Padgett and Wei [20] were the first 

to address estimation under monotone restriction when observations are subject to 

right censoring. Huang and Wellner [14], Wellner [13], and Banerjee [6] have studied 

the distributional properties of Padgett and Wei's estimator. Tsai [23] considered 

estimation under monotone constraints when observations are subject to both left 

truncation and right censoring. Inspired by the previous work on the subject, Tsai 

used a conditional approach essentially conditioning away the left truncation and 

therefore circumventing complexities due to informative censoring. Tsai thus found 

the condition al nonparametric maximum likelihood estimator (NPMLE) of the sur­

vival function. 

In many interesting applications, induding the Channing House data analyzed 

in Tsai [23], there are reasons to believe that the left truncation distribution follows 

sorne specifie form. The uniform distribution which corresponds to the problem of 

length-biased sampling, also known as stock sampling in labour force studies, plays 

a pivotaI role among these forms. This is the form that Wicksell [29] originally in­

troduced and justified using the sampling mechanism. It is also the limiting case 

of Fisher's model [10]. The uniform distribution also seems a reasonable model in 

labour force studies when we use a cross-sectional survey to determine the distribu­

tion of spell times when the society is in economic equilibrium (see Lancaster (1990) 

[17] and de Una-Alvanez [9]). 
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In medical applications studying disease duration when subjects are recruited 

through a cross-sectional survey, the uniform truncation model might be feasible if 

the incidence of the disease is stationary. The assumption of uniform truncation is 

also referred to as the "stationarity assumption". There are many diseases for which 

such an assumption is reasonable (see Asgharian et al. [5], Addona and Wolfson [2], 

and Addona et al. [1] (2007)). 

2.3 Length-Biased Sampling 

Length-biased sampling is not confined to our particular setup nor even biomed-

ical problems. It has arisen in the past in fields ranging from applied physics to in­

dustrial statistics. Wicksell [29] was one of the first to note this phenomenon in 1925 

in the study of Germ Centers (small spherical bodies or foUicles) in a spleen. The 

spleen is eut cross-sectionally and the images of these bodies are observed. Wicksell 

notes that: 

"a random section will contain a relatively greater number of actually 

large foUicles, than of small ones, because the former more frequently 

will come within reach of the section plain." 

Goldsmith [11] observed the length-bias problem in a similar scenario in 1967. His 

observations consisted of thin slices of matter containing observable particles. The 

quantity of interest was the distribution of the sizes of these particles. It is clear that 

this problem is similar to that of Wicksell [29]. 

Yet another important mile stone in the recognition of length-bias was in Cox's 

1969 [8] discussion of issues in sampling theory. It was addressed in the context 
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of sampling textile fibers. Consider a group of fibers of differing lengths assembled 

parallel to each other. If a cut were to be made perpendicularly to the axis of 

orientation, a naive estimate from this information would be subject to bias. In the 

problem of cross-sectional sampling of a prevalent cohort, the cohort is cut in time 

rather than space, but statistically these problems are identical. 

The above discussion is by no means an exhaustive list. The problem of length 

bias has also been recognized by Zelen and Feinleib [32] in the context of disease 

screening. Further investigation was also conducted by Vardi [25] [26] [27] and by 

Asgharian et al. [3] and Asgharian and Wolfson [4]. 

In this thesis, we study the nonparametric maximum likelihood estimator of the 

survival function under the stationarity assumption and under monotone restrictions 

on the hazard of failure when observations are subject to right censoring. We derive 

,~ the nonparametric maximum likelihood estimator for left truncated and right cen­

sored data under monotone constraints and the stationarity assumption in the next 

chapter. 

10 



CHAPTER 3 
Estimation under Monotone Constraint 

3.1 Background and Preliminaries 

The first likelihood-based estimate of non-decreasing hazard was described in 

Grenander (1956) [12]. The case examined was that of a continuous failure time dis­

tribution on (a, (0) with neither censoring nor truncation. Letting À(x) = f(x)j(l­

F(x)) denote the hazard (where f and F denote the density and cumulative distribu­

tion functions for X respectively), the likelihood lx thus must be maximized subject 

to 

log lx = log la - lX À(X )dx and (3.1) 

d2loglx dÀ 
------:- = - - < 0 

dx2 dx -
(3.2) 

Now, fixing the points Xl, X2, . .. ,Xn and the hazard at these points Ài = À(Xi) the 

likelihood can be seen to be: 

It can thus easily be seen that the likelihood is maximized whenever 

l

xn 
lx1 l

x2 

l
xn 

a l~À(x)dx = a À(x)dx + a À(x)dx + ... + a À(x)dx 

11 
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is minimized un der the condition of non-decreasingness of >. (x). Grenander suggests 

that this can be be achieved with respect to choice of >.(x) as the step function: 

>.(x) =0 

>.(x) = >'1 

>.(x) = >'n-1 

for 0 :::; x < Xl 

(3.6) 

for X n -1 :::; X < X n 

This can also be se en as estimating the likelihood by a polygonal figure with expo­

nential arcs as sides joined at the points Xi. Grenander then fixed J:n l~>.(x)dx and 

maximized the product of the >'i using his previously established scheme to complete 

the specification of his estimator. 

Marshall and Proschan (1964) [19] examined this case in more detail. They 

formalized the increasing failure rate (IFR) assumption of (3.2); they defined F to 

be IFR if the support of F is a (possibly infinite) closed interval (a, (3) and (3.2) 

holds on [a, (3). Furthermore, Marshall and Proschan [19] showed that if F is IFR 

and F(xo) < 00, then F is absolutely continuous on (-00, xo). The likelihood (from 

(3.4), setting a = -00) to be considered was: 

(3.7) 

Another interesting discussion in [19] relates to the definition of maximum likelihood 

itself. Let F denote the class of failure distributions with IFR. The trouble with 
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maximizing the likelihood (3.7) directly in :F is that f(xn) can be chosen to be arbi-

trarily large. It is thus natural to consider the subclass :FM of distributions whose 

corresponding failure rate À is bounded above by M. The maximum likelihood esti­

mator is then defined to be the limiting estimator as M tends to infinity. 

Let À* denote the estimator from (3.6) (clearly a member of :FM). It is clear 

that by IFR, À*(x) ::; À(x) and fr:i À(x)dx ~ f:Oi À*(x)dx and thus L(F) ::; L(F*) 

where F* denotes the failure distribution corresponding to À *. Renee, in order to 

maximize (3.7) it suffiees to maximize: 

n n-l 

log(L(F*)) = I)og À(Xi) - I)n - i)(Xi+l - Xi)À(Xi) (3.8) 
1 

under the assumption of non-decreasing bounded (by M) hazard. By appealing to an 

optimization scheme in [12] and letting M ----+ 00 , the maximum likelihood estimator 

was determined to be: 

for i = 1, ... , n - 1 

Marshall and Proschan [19] further established the consistency of their estimate 

and investigated the cases of decreasing hazard and discrete versions of the prob­

lem. Details of the derivation and proof of consistency are also presented carefully 

in Barlow et al. [7]. Rao (1970) [22] studied the asymptotic weak behavior of the 

estimator. 

13 



3.2 Estimation under Monotone Constraints with Right Censored Data 

The first modification of Grenander's estimator was produced by Padgett and 

Wei in 1980 [20] to allow for right censorship. That is, the observable quantities are 

y = min(X, C) and .6. = I[X ::; C] where X denotes the true failure time and C 

denotes a censoring time. It is assumed that the Xl, X 2 , ••. ,Xn are independent 

of Cl, C2 , ... ,Cn and the Ci are independent of each other. For convenience, a was 

chosen to be 0 in (3.1) (that is, failure times are non-negative). The log-likelihood 

then becomes: 

log(L(F)) = t bi log >'(Xi) + t lxi 

>.(x)dx 
1 1 0 

(3.10) 

n n-1 

::; L bdog >'(Xi) - L(n - i)(Xi+1 - Xi)>'(Xi) = log(L(F*)) (3.11) 
1 1 

following a similar argument to that of Marshall and Proschan [19]. This can also be 

maximized in a similar fashion yielding an estimator with a similar minimax form. 

Furthermore, Padgett and Wei [20] suggested an estimator of survival based on the 

increasing hazard estimate: 

where W1, ... ,Wm are the distinct exactly observed (uncensored) failure times. Note 

the smoothness of this estimate. 
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3.3 Estimation under Monotone Constraints with Right Censored and 
Left Truncated Data: Conditional Approach 

The advancement that is most pertinent to the current investigation was that 

of Tsai (1988) [23]. The left-truncated and right censored problem described in the 

setup section was exactly addressed, conditionally on T < C. At the time, the 

product-limit estimator for right censored and left truncated data of Tsai, Jewell, 

and Wang [24] was the most widely accepted estimator for survival: defining d(y) = 

L~ I[Yi = y,8i = 1] and R(y) = L~ I[ti ~ Y ~ Yi] as the risk set, the product-limit 

estimator is: 

(3.13) 

Tsai thus suggested yet another modification to Grenander's estimator to exploit 

IFR in such a case. 

The log likelihood of the le ft truncated right censored case can easily be written 

down as: 

log(L) = t8i lOgÀ(Yi) - t l Yi 

À(x)dx 
i=l i=l 4 

(3.14) 

n n 

~ L 8dog À(Yi) - L {(Zli+! - zzJÀ(ZzJ+ 
i=l i=l 

(3.15) 
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where li and /-li are defined such that Zli = t i and ZJ1i = Yi. By the argument of 

Marshall and Proschan [19], it remains to maximize 

n k-l 

log(L*) = L8dogÀ(Yi) - LR(zj+)(Zj+1 - Zj)À(Zj) (3.16) 
i=l j=l 
k-l 

= L d(Zi) log À(Zi) - R(Zi+ ) (Zi+l - Zi)À(Zi) (3.17) 
i=l 

where Zl, Z2, ... ,Zk are the distinct order statistics of tl , . .. ,tn, YI, ... ,Yn. From 

Barlow et al. [7], the estimator maximizing (3.14) is: 

k-l 

)..(y) = L )..j 1 [Zj ~ Y < Zj+l] + )..k(y)l[y 2:: Zk] (3.18) 
j=l 

A. r}- d(ZI) where À· = mm max _.,------=::..!lc::::--"-s ---'----'-----
J s:::,j t?j L~=s R(ZI+ ) (Zl+l - Zl) 

(3.19) 

where, )..k is either infinite if d(Zk) > 0 or set to )..k-l for convenience. The survival 

estimate (3.12) was then suggested for a smooth estimated survival under IFR. To 

the best of our knowledge, no distributional results are yet available about Tsai's 

estimator. 

3.4 Unconditional Approach 

Unconditional methodologies for estimating survival were pioneered by Vardi 

(1989) [27] in the context of multiplicative censoring. Given a sample of data 

the Xi are observed where the Ui are independent uniform (0,1) random variables. 

For the Yi, this is equivalent to the so-called stationarity in truncation assumption; 
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patients enter the study uniformly through time. 

The likelihood for this problem is: 

m n 1 1 
L(G) = II dG(Xi) II -dG(z) 

i=l i=l Z?:'Yi Z 

(3.20) 

Directly from here, one can argue that a maximizing distribution G puts an of its 

mass on the points X = {Xl'" . ,Xm, YI, ... ,Yn}: let there be a point outside of X 

that has positive mass, x. Moving that mass to the point in X which is closest but 

less than X would result in an increase in the likelihood. It can also easily be seen 

that any mass to the left of min X could be shifted to min X. Hence, the problem 

of maximizing (3.20) is a discrete problem. Vardi also allowed for ties in his discrete 

likelihood: 

(3.21) 

where t l , ... , th are the discrete failure times, Ç,j = L:lI(Xi = tj), and (j = 

L~=l I(Yi = tj). It thus remains to maximize (3.21) with respect to P = (Pl,'" ,Ph) 

subject to Pi 2: 0 and LPi = 1. This can be achieved through the EM algorithm, 

with Zl, Z2, ... ,Zn, Xl, X2,· .. ,Xn as the 'complete data' and Xl, ... ,Xm, YI, . .. ,Yn as 

the 'incomplete data'. Further details can be found in [27], and a comparison of 

Vardi's estimator to the product-limit estimator can be found in Wang (1991) [28]. 

It is important to note that Vardi's estimator approximates the length-biased 

survival function BLB . It is thus necessary to consider the problem of estimating the 
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unbiased survival function Bu given BLE. Fortunately, from Cox [8] and Asgharian, 

M'Lan and Wolfson (2002) [3]: 

(3.22) 

and hence by the invariance property of maximum likelihood estimators 

(3.23) 

as suggested by Asgharian et al. [3]. Asymptotic properties of the estimator are also 

discussed in [3]. 

A doser investigation of the length-biased version of Vardi's estimator can be 

found in Asgharian and Wolfson (2005) [4]. The development of the likelihood re-

quires several preparations. The first is a reparametrization of the observed data. 

Let Ai, Ri, and Ci denote the current-age, residuallifetime, and residual censoring 

times of the the i-th subject. More concretely, Ai can be thought of as time from 

onset of a disease until recruitment into a study, Ri be the time from recruitment to 

death, and so on. The observed information is thus (Ai, min(Ri , Ci), Oi). The first 

thing to note in this setup is that censoring is in fact informative. lndeed, since for 

an observed subject X = A + R, Y = A + C, and AIX is uniform (0, X) we have 

that Cov(X, Y) > 0 except in trivial cases. This further supports the need for a new 

estimator since it disqualifies the Kaplan-Mayer estimator as a maximum likelihood 

estimator. 
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At this point, it is informative to note that there is a strong connection be­

tween the setup described in the previous paragraph and renewal theory. The joint 

density of (A, R) can thus easily be seen to be: 

ix,(a + r) 
iA,R(a, r) = I[a > 0, r > 0] 

Mx' 
(3.24) 

and from Cox [8] (or directly from renewal theory), the length-biased density of the 

failure time is: 

g(x) = xiu(x) 
Mu 

(3.25) 

where the subscript U indicates the unbiased version, namely those corresponding 

to X. 

The likelihood can thus be written down as: 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

The estimator from (3.23) can thus be seen as the maximization of (3.29). As­

gharian and Wolfson [4] show strong uniform consistency, convergence in distribution 

to a Gaussian process, and asymptotic efficiency of this estimator. 
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3.5 Maximum Likelihood Derivation 

There is a striking similarity of the likelihood of Asgharian and Wolfson [4] to 

that of Tsai [23]. With the hope of finding an analytical form for the maximum 

likelihood estimator in this case, consider the likelihood (3.29): 

(3.30) 

(3.31 ) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

but, /Lu = Jooo 
Su (t)dt and Àu(Y) = ~:i~~, so 

(3.36) 

(3.37) 

Now, Jooo Su(t)dt can only be contributed to at {zi,i = l...k} = {tj, j = 1, ... ,n} U 

{Yj, j = 1, ... , n} (without loss of generality, we assume that the z/s are ordered and 
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let Zo = 0), so: 

(3.38) 

(3.39) 

We recognize this as the likelihood from Tsai [23], except multiplied by ai: 

(3.40) 

log(L) ~ t,0dOgÀ(Yi) - t, l" À (u)du + t,lOg(ai ) (3.41) 

Letting R(y) = L~=ll[ti ~ y ~ Yi] and d(y) = L~=ll[Yi = y,Oi = 1], by an 

argument in Tsai [23] and Marshall and Proschan [19], it remains to maximize 

n k-l n 

log(L*) = LOdogÀ(Yi) - LR(Zj+)(Zj+1 - Zj)À(Zj) + Llog(ai) (3.42) 
i=l j=l i=l 
k-l 

= L d(Zi) log À(Zi) - R(Zi+) (Zi+l - Zi)À(Zi) + a;(zi) 
i=l 

(3.43) 

where a*(zj) = L~=llog(ai)I[zj = ti]' Setting ni = d(Zi), Ti = R(Zi+ ) (Zi+l - Zi), 

and Ài = À(Zj), we recognize this resembling the application at the end of Example 

1.8 in Barlow et al [7]. However, if we choose 1i = R(Zi+)(Zi+l - Zi) - a*(zi)jÀ(Zi) 
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and ni and Ài as ab ove , then we get 

k-1 
5.(y) = 2:: 5.j 1 [Zj :::; y < zj+1l + 5.k(y)l[y 2: zkl (3.44) 

j=l 
A. ~t_ d(zz) 

whereÀ-=mmmax Z-s (3.45) 
J s-:;'j t?j 2:~=s R(zz+ ) (ZI+1 - Zl) - a*(zl)j À(ZI) 

where, as in Tsai, 5.k is either infinite if d(Zk) > 0 or set to 5.k- 1 for convenience. 

There is one more complication that must be dealt with, however, before we can 

find a closed form for the nonparametric maximum likelihood estimator for lambda. 

This is that the aï's depend on the unknown underlying survival function, S. In order 

to de al with this, we use an estimate of S(Zi) at each step iteration. The algorithm 

thus becomes: 

1. Choose an increasing failure rate starting vector, say 5.(0). We suggest a uniform 

distribution of mass on each of the Zi'S (an increasing hazard). 

2. For i = 1, ... , k - 1 do 

(a) Let 

(b) Then, let 

k-1 
5.(i)(y) = 2::5.y)[Zj:::; y < zj+1l +5.k(y)l[y 2: zkl 

j=l 
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3.6 Numerical Complications 

The difficulty with the proposed estimator is its sensitivity to numerical error. 

To start with, the results of the method are extremely sensitive to the scale of the 

problem. The term from where this phenomenon originates is the denominator of the 

minimax in (3.49). Any error in .À (i-1), especially when .À (i-1) is small, propagates to 

the next iteration. This results in the estimator having difficulties jumping and the 

estimate being near zero for most of the study. In fact, for scenarios in which hazard is 

increasing, it is common for the hazard to be negligible at the beginning of the study. 

In order to deal with the problem of division by zero, a simple truncation of 

the hazard from below was applied (namely, .À(z) = 0 was not allowed). Although 

this avoided division by zero, this did not completely solve the issues brought about 

by numerical error. For .À(zz) small, the term aCi_1)(ZZ)/.À(i-1)(zz) can be very large. 

On the other hand, the scale of the problem or the size of the risk set can result in 

the term R(zz+) (ZZ+l - zz) being large, hence giving rise to the addition of a small 

number to a large number. The opposite case is also possible; either of these scenar-

ios are detrimental to the performance of the estimate. 

The solution proposed is to add a fixed quantity to the likelihood (3.41). The 

likelihood becomes 

log(L) = tOi log '\(Yi) - t l Yi 

'\(u)du + t[lOg(ai) + b] 
i=l i=l ti i=l 

(3.48) 
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~ ... 

------/ 

where b is a fixed scaling parameter. The derivation, if followed directly from ab ove , 

leads to the modified estimator: 

1. Choose an increasing failure rate starting vector, say ~(O). We suggest a uniform 

distribution of mass on each of the zï's (an increasing hazard). 

2. For i = 1, ... , k - 1 do 

(a) Let 

~(i)=minmax L:~=sd(zz) A (3.49) 
J s~j t~j 2::f=s R(zz+ ) (ZZ+1 - zz) - (b(i_1) (zz))/;\(i-1) (zz) 

where b(i-1) (zz) = 2::7=1 (1og(a;i-1)) +b)I[zz = tj], and a;i-1) is our estimate 

of aj at the i - 1 st iteration. 

(b) Then, let 

k-1 
~(i)(y) = L ~;i)[Zj :::; y < zj+1l + ~k(y)l[y ?: zkl 

j=l 

(3.50) 

This method was then further modified to allow for the scaling of the likelihood 

at each iteration according to the last iteration completed. Furthermore, the first 

iteration is run twice: first to find a scaling scheme and then to find an estimate of 

hazard. During both of these steps, the original stab at the hazard is used in the 

iteration as the previous estimate. 
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CHAPTER 4 
Simulations and Applications 

4.1 Application: Simulated Weibull Data 

The first application of the method was to simulated Weibull data (n = 30) with 

a variety of parameters. The method was coded in C++ using the Gnu Scientific 

Library and was determined to converge in each of the cases after 10 iterations. The 

truncation time was set after the failure time simulation according to multiplicative 

censoring requirements. A fixed time after truncation censoring was applied; that 

is C = T + c where c is deterministic and was set to ensure a reasonable amount 

of censoring in the sample. See figures 4-1 to 4-9 for the results. Legends are the 

same throughout. As can be noted from these plots, although the hazard seems to 

be estimated better in sorne cases by Tsai's estimator, the proposed estimator do es 

better when estimating survival, often the true quantity of interest. It is important 

to note that due to numerical instabilities, it is not always immediately evident that 

our estimate of survival is closer to the true value. It is sometimes necessary to re-

scale the method many times before satisfactory results are yielded. An alternative 

method for analyzing this so-called type 1 censoring scenario is described by de Una-

Alvarez (2004) [9]. 
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4.2 Application: Channing House Data 

The method was also applied to data given in Hyde [15J concerning survival 

times (in months) of elderly men in the Channing House retirement home situated 

in Palo Alto, California. Of these 97 men, 46 died and 55 le ft the study. The 

remaining 46 were alive at the end of the study. The risk set of the data is very 

small around the first two failures, and hence these individu ais were not included in 

the analysis. A comparison of results of the proposed method, Tsai's method, and 

the product-limit estimator can be seen in figure 4-10. 

30 



Comparison of Hazard Estimates Comparison of Survival Estimates 

-
w 
0 

"' 0 

i 
en 

~ 

N 
0 

a 
0 

800 900 1000 1100 850 900 950 1000 1050 1100 1150 

Time Time 
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4.3 Application: The Canadian Study of Health and Aging 

Data concerning dementia was collected in the Canadian Study of Health and 

~... Aging (CSHA). In 1991, 10 263 Canadians over sixty-five were accepted into the 

study. 821 of these were determined to have one of possible Alzheimer's disease, 

probable Alzheimer's disease, or vascular dementia. This screening phase was deemed 

CSHA-l. The second phase, CSHA-2, took place approximately five years later when 

the 821 cases were re-examined and survival and censoring times were recorded. The 

purpose of the analysis was to examine the effects of dementia on survival, as in 

[30]. Subsets of various sizes and the full data set were selected and were analyzed 

using Tsai's and the proposed method. From the results, figures 4-11 to 4-14, it can 

be seen that the proposed estimator converges to a reasonable estimate at sm aller 

sample sizes than Tsai's. This is attributed to the added efficiency resulting from the 

incorporation of the assumption of stationarity in truncation. It is also clear that for 
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large sample sizes (see 4-16), the estimates are very close supporting a conjecture of 

consistency of the proposed estimate. 

Camparison of Hazard Estimates Comparison of Survlval Estlmates 

0 0 
d 

~ ~ 

:g .., d 

~ 
l 

~ 
d 

"' d 
~ 
.~ 

<fi ... 
d 

~ 
d ~ 

~ 
o 2000 4000 6000 8000 7500 8000 8500 9000 

Time Time 

Figure 4-11: comparison of results from a subset of the CS HA data set (n=50) 

,/--

Comparlson of Hazard Estimates Comparlson of Surviva. Estimates 

0 

;; ~ 

:g 
d "' .,; 

~ .., 
~ 

~ 
.,; 

ID 
.,; 

! 
<fi ... 

.,; 

~ 

..... ~ .. J ~ .... ............ . ......... . 0 
d 

o 2000 4000 6000 8000 10000 9500 10000 10500 11000 

Time Time 

Figure 4-12: comparison of results from a subset of the CSHA data set (n=100) 

32 



Comparlaon of Hazard Eatlmatea Comparlaon of Survlvel Eatlmatea 

;; r 

!l ~ 

1! ~ 

" ~ 
, .. 
!il 

g cl 

* ~ 

~ :;: 

Figure 4-13: comparison of results from a subset of the CSHA data set (n=200) 

Comparlson of Hazard Estimates Comparison of Survival Estimates 

0 

:; :" 

13 
<> ~ 

8 
<> ~ 

J 1i! 
.~ 

al 
~ ;; 

l'l ~ 

~ 
2000 4000 6000 8000 10000 9500 10000 10500 11000 

Timo Timo 

Figure 4-14: comparison of results from a subset of the CSHA data set (n=300) 

33 



Comparison of Hazard Estimates Comparison of Survival Estlmates 

'" '" 0; 

~ ro 
0; 

~ <0 
0; 

1;; 
t;j 

l 
C!; 
0; 

~ 
.~ 

'" ;; 

g ~ 

8 '" 0; 

o 2000 4000 6000 8000 1 0000 9000 9500 1 0000 10500 11 000 

Time Time 

Figure 4-15: comparison of results from a subset of the CSHA data set (n=500) 

Comparison of Hazard Estimates Comparlson Of Survival Estimates 

'" ;; ;3 

1'l 
0; ~ 

~ 

1;; 
0; 

t;j 
l 

C!; 
0; 

<0 
0; 

~ 
.~ 

'" " 0; 

g: 
0; '" 0; 

8 

a 2000 4000 6000 8000 12000 11000 11500 12000 12500 13000 

Time Time 

Figure 4-16: comparison of results from full CSHA data set 

34 



CHAPTER 5 
Conclusion and Future Directions 

5.1 Conclusion 

The method proposed, although it clearly has many advantages including im-

proved effciency, does have several disadvantages when compared to Tsai's estimator. 

The first and foremost is the robustness of Tsai's estimator to deviations from the 

stationarity assumption. When stationarity is a reasonable assumption, such as those 

mentioned in previous chapters, one gains more efficienct by taking the estimator in-

troduced in this thesis. 

The second disadvantage of this method is its sensitivity to numerical error. 

If there are two observations that are very close or a large gap in the data, the 

method may fail. There is also an inherent problem with the scaling scheme pro­

posed above. We suggest scaling ai in order for R(zz+)(zZ+1 - zz) to be on the same 

sc ale as a(i_l)(ZZ)/~(i-l)(Zl). Unfortunately, as À is often far from constant, it is some­

times not possible to make the above quantities comparable throughout the entire 

data set. Although these challenges are not theoretically relevant, they can have a 

quite a big impact on the estimator. 

The final limitation to note is the relative computational inefficiency of the 

suggested algorithm when compared to past methods. Tsai's method required only 
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one 'iteration'; the suggested method requires many more. The calculation of the a; 
is also cumbersome at each iteration. 

5.2 Future Directions 

In order to deal with the problems with numerical error, one might have tried 

two suggestions if not for time considerations. The first is to set observations very 

close to each other as ties. Although this would result in a loss of information, con­

trolling the tolerance could prevent the numerical problems while minimizing the 

loss of information. The second suggestion involves the substitution of b = L~=l bi 

where each bi can be controlled to allow for the scaling of a(i_l)(ZI)/~(i-l)(ZI) at each 

point independently or in sections, thus alleviating the local nature of scaling. 

The main goal of future studies should be to establish the consistency of the 

estimator. Tsai [23] was able to show the consistency of his estimator without trou­

ble; however, the implicit definition of our case adds a new level of complexity. A 

bootstrap would also be use fuI for comparing the efficiency of the proposed method 

with that of past methods. Distributional results would also clearly be of interest. 

Wellner and Groeneboom [13] have written extensively on this kind of estimation 

and a careful study of their literature could prove fruit fuI. 
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A ppendix: Code 

#include<gsl/gsl_vector.h> 

#include<gsl/gsl_matrix.h> 

#include<gsl/gsl_rng.h> 

#include<gsl/gsl_randist.h> 

#include<gsl/gsl_sort_vector.h> 

#include<gsl/gsl_permutation.h> 

#include<gsl/gsl_permute_vector.h> 

/~ #include<stdio. h> 

#include<math.h> 

#include <iostream> 

using namespace std; 

const double epsilon = 1E-50; 

const double toI = 1E-5; 

//find the signum of a double, with signum(0):=1 

double signum(double x) { 

if ex < 0) 
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return (-1) ; 

else 

return(1); 

} 

//use logs to multiply two numbers 

double logmult(double x, double y) { 

if ((x<epsilon) 1 1 (y<epsilon» 

return(x*y); 

else { 

double sign = signum(x)*signum(y); 

return(sign*exp(log(fabs(x»+log(fabs(y»»; 

} 

} 

//use logs to divide two numbers 

double logdiv(double x, double y) { 

if ((x<epsilon) 1 1 (y<epsilon» 

return(x/y); 

else { 

double sign = signum(x)*signum(y); 

return(sign*exp(log(fabs(x»-log(fabs(y»»; 

} 
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} 

//the number of exactly observed failures at this point 

int d(double y,gsl_vector *yy,gsl_vector *ddelta, int n, int k) { 

int temp = 0; 

for (int i=O;i<n;i++) { 

if ( (fabs(gsl_vector_get(yy,i)-y)<epsilon) 

&& (fabs(gsl_vector_get(ddelta,i)-1.0)<epsilon) ) 

temp++; 

} 

return(temp); 

} 

//the number of subjects in the risk set at this time 

int R(double y,gsl_vector *tt,gsl_vector *yy, int n, int k) { 

int temp = 0; 

for (int i=O;i<n;i++) { 

if ( ((gsl_vector_get(tt,i)<=y) && (y<=gsl_vector_get(yy,i))) 

1 1 (fabs(y-gsl_vector_get(yy,i))<epsilon) 

1 1 (fabs(y-gsl_vector_get(tt,i))<epsilon) ) { 

temp++; 

} 

} 
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return(temp); 

} 

//estimation of survival for the a_i's using 

the estimator from Padgett & Wei (1980) 

double S(double z,gsl_vector *llambdac,gsl_vector *ddelta, gsl_vector *yy, 

gsl_vector *tt, gsl_vector *zz,gsl_vector *ztemp, gsl_vector *tinz, 

gsl_vector *dd, int n, int k,gsl_vector *exactfails,int numexactfails) { 

double temp = 0.0; 

int i=O; 

while ((i«numexactfails-1)) 

&(gsl_vector_get(zz,(int)gsl_vector_get(exactfails,i))<=z)) { 

temp += gsl_vector_get(dd,(int)gsl_vector_get(exactfails,i)) 

*gsl_vector_get(llambdac,(int)gsl_vector_get(exactfails,i)) 

*(min(z,gsl_vector_get(zz,(int)gsl_vector_get(exactfails,i+1))) 

-gsl_vector_get(zz,(int)gsl_vector_get(exactfails,i))); 

i++; 

} 

return(exp(-temp)); 

} 
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//create vectors of the d's, and R's at the z_i's 

void makedrvec(gsl_vector *yy,gsl_vector *tt,gsl_vector *ddelta, 

gsl_vector *zz,gsl_vector *ztemp, gsl_vector *tinz, gsl_vector *dd, 

gsl_vector *RR,FILE *f, int n, int k) { 

for (int i=O;i<k;i++) { 

gsl_vector_set(dd,i,(double)d(gsl_vector_get(zz,i),yy,ddelta,n,k)); 

gsl_vector_set(RR,i,(double)R(gsl_vector_get(zz,i)+10*epsilon,tt,yy,n,k)); 

} 

} 

//create vectors of the S's at the z_i's 

void makesvec(gsl_vector *llambdac,gsl_vector *ddelta,gsl_vector *zz, 

gsl_vector *ztemp, gsl_vector *tinz,gsl_vector *yy,gsl_vector *tt, 

gsl_vector *SS, gsl_vector *dd, int n, int k, 

gsl_vector *exactfails,int numexactfails) { 

for (int i=O;i<k;i++) 

gsl_vector_set(SS,i,S(gsl_vector_get(zz,i),llambdac,ddelta, 

yy,tt,zz,ztemp,tinz,dd,n,k,exactfails,numexactfails)); 

} 

//calculate a-star (including the log) 
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double astar(double z,gsl_vector *zz,gsl_vector *ztemp, 

gsl_vector *tinz, gsl_vector *tt, gsl_vector *yy, gsl_vector *ddelta, 

gsl_vector *llambdac, gsl_vector *dd,gsl_vector *RR,gsl_vector *SS, 

gsl_permutation *p,gsl_vector *pp,FILE *f, int n, int k, double astarscale, 

gsl_vector *exactfails,int numexactfails) { 

//find the t corresponding to z 

int place = -999; 

for (int i=O;i<n;i++) 

if (fabs(gsl_vector_get(tt,i)-z)<epsilon) place=i; 

//output the quotient 

if (place == -999) 

return 1E-300; 

else { 

//make the numerator 

double numer = 0; 

numer = logmult(S(z,llambdac,ddelta,yy,tt,zz,ztemp,tinz, 

dd,n,k,exactfails,numexactfails),exp(astarscale)); 

//make the denominator 
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double denom = l*gsl_vector_get(zz,O); Il the zero-th term 

for (int i=l;i<k;i++) 

denom = denom + logmult(gsl_vector_get(SS,i), 

(gsl_vector_get(zz,i)-gsl_vector_get(zz,i-l))); 

double retval; 

if (fabs(denom»(l/tol)*fabs(numer)) 

retval=epsilon; 

else 

if (fabs(denom)«tol)*fabs(numer)) 

retval=l/epsilon; 

else 

retval=logdiv(numer,denom); 

if (retval <= epsilon) { 

retval = epsilon; 

return(-l/epsilon); 

} else { 

return(log(retval)); 

} 

} 
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} 

//make a-star terms (including the log) 

double makeastarvec(gsl_vector *astarvec,gsl_vector *zz,gsl_vector *ztemp, 

gsl_vector *tinz, gsl_vector *tt, gsl_vector *yy, gsl_vector *ddelta, 

gsl_vector *llambdac, gsl_vector *dd,gsl_vector *RR,gsl_vector *SS, 

gsl_permutation *p,gsl_vector *pp,FILE *f, int n, int k, double astarscale, 

gsl_vector *exactfails,int numexactfails) { 

for (int i=O;i<n;i++) 

gsl_vector_set(astarvec,i,astar(gsl_vector_get(tt,i),zz, 

ztemp,tinz,tt,yy,ddelta,llambdac,dd,RR,SS,p,pp,f,n,k, 

astarscale,exactfails,numexactfails)); 

} 

//make the terms to minimax 

double terms(gsl_vector *zz,gsl_vector *ztemp, gsl_vector *tinz, 

int ss, int qq, gsl_vector *yy, gsl_vector *tt, gsl_vector *ddelta, 

gsl_vector *llambdac, gsl_vector *dd,gsl_vector *RR, 

gsl_vector *SS,gsl_permutation *p,gsl_vector *pp, 

FILE *f, int n, int k, double astarscale,gsl_vector *exactfails, 

int numexactfails, gsl_vector *astarvec) { 
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double numer = 0; 

double denom O· , 

double astartemp = 0; 

for (int l=ss;l<=qq;l++) { 

numer += (double)gsl_vector_get(dd,l); 

double Rtemp = ((double)gsl_vector_get(RR,l)); 

if (gsl_vector_get(tinz,l»O) { 

astartemp = gsl_vector_get(astarvec,(int)gsl_vector_get(tinz,l)); 

} else 

astartemp = lE-300; 

if ((fabs(astartemp) > tol*epsilon) 

&& (fabs(gsl_vector_get(llambdac,l)) > tol*epsilon)) { 

de nom += logmult(Rtemp,(gsl_vector_get(zz,l+l)-gsl_vector_get(zz,1))) 

-logdiv(astartemp,gsl_vector_get(llambdac,l)); 

-log(gsl_vector_get(llambdac,l)))); 

} else { 

if ((fabs(gsl_vector_get(llambdac,l)) <= tol*epsilon) 

&& (fabs(astartemp) > epsilon)) { 

de nom = 999/epsilon; 

break; 

} else { 
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if ((fabs(gsl_vector_get(llarnbdac,l)) > epsilon) 

&& (fabs(astartemp) <= tol*epsilon)) { 

de nom += logmult(Rtemp,(gsl_vector_get(zz,1+1)-gsl_vector_get(zz,1))); 

} else { 

denom += logmult(Rtemp,(gsl_vector_get(zz,1+1)-gsl_vector_get(zz,1))) 

-logdiv(astartemp,gsl_vector_get(llarnbdac,l)); 

} 

} 

} 

} 

double retval; 

if (fabs(denom»(1/tol)*fabs(numer)) { 

retval=epsilon; 

} else { 

if (fabs(denom)«tol)*fabs(numer)) { 

retval=1/epsilon; 

} else { 

retval=logdiv(numer,denom); 

} 

} 
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return(retval); 

} 

//make the matrix of terms to minimax 

void makemat(gsl_vector *zz,gsl_vector *ztemp, gsl_vector *tinz, 

gsl_vector *yy, gsl_vector *tt, gsl_vector *ddelta, gsl_vector *llambdac, 

gsl_matrix *tmat, gsl_vector *dd,gsl_vector *RR,gsl_vector *SS, 

gsl_permutation *p,gsl_vector *pp,FILE *f, int n, int k, double astarscale, 

gsl_vector *exactfails, int numexactfails, gsl_vector *astarvec) { 

for (int i=O;i«k-1);i++) 

for (int j=O;j«k-1);j++) 

gsl_matrix_set(tmat,i,j,99999.0); 

for (int s=O;s«k-1);s++) 

for (int q=s;q«k-1);q++) { 

gsl_matrix_set(tmat,s,q,terms(zz,ztemp,tinz,s,q,yy,tt, 

ddelta,llambdac,dd,RR,SS,p,pp,f,n,k,astarscale, 

exactfails,numexactfails,astarvec)); 

if «gsl_matrix_get(tmat,s,q))<=O) 

gsl_matrix_set(tmat,s,q,epsilon); 

} 
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} 

void maximin(gsl_vector *zz,gsl_vector *ztemp, gsl_vector *tinz, 

gsl_vector *yy, gsl_vector *tt, gsl_vector *ddelta, gsl_matrix *llambda, 

gsl_vector *dd,gsl_vector *RR,gsl_vector *SS,gsl_permutation *p, 

gsl_vector *pp,FILE *f,int n, int k, int maxiter, double astarscale, 

gsl_vector *exactfails, int numexactfails) { 

//make the original stab at the hazard 

for (int i=O;i«k);i++) 

gsl_matrix_set(11ambda,i,O,(1.0/(k-i»); 

gsl_vector *llambdac = gsl_vector_alloc(k); 

gsl_matrix *tmat = gsl_matrix_calloc(k-1,k-1); 

gsl_vector *mins = gsl_vector_calloc(k); 

gsl_vector *tomin gsl_vector_calloc(k); 

gsl_vector *tomax gsl_vector_calloc(k); 

gsl_vector *temp = gsl_vector_calloc(k); 

gsl_vector *astarvals = gsl_vector_calloc(k); 

gsl_vector *astarvalsc = gsl_vector_calloc(k); 

gsl_vector *astarcomp = gsl_vector_calloc(k); 
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short initial = 0; 

int startscale = 0; 

int endscale = 15; 

double scalefrom = 0.0; 

double hazscale = 10*tol; 

double scaleto = 0.0; 

for (int i=1;i«maxiter);i++) { 

cout «"Iteration: i = Il « i « endl; 

gsl_matrix_get_col(llambdac,llambda,i-1); 

makesvec(llambdac,ddelta,zz,ztemp,tinz,yy,tt,SS, 

dd,n,k,exactfails,numexactfails); 

makeastarvec(astarvec,zz,ztemp,tinz,tt,yy,ddelta, 

llambdac,dd,RR,SS,p,pp,f,n,k,astarscale, 

exactfails,numexactfails); 

makemat(zz,ztemp,tinz,yy,tt,ddelta,llambdac,tmat,dd,RR, 

SS,p,pp,f,n,k,astarscale,exactfails,numexactfails,astarvec); 

for (int j=O;j«k-1);j++) { 

gsl_vector_set_all(mins,-99999.9); 
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gsl_vector_set_allCtomax,-99999.9); 

gsl_vector_set_allCtomin,99999.9); 

for Cint r=O;r<=j;r++) { 

gsl_vector_set_allCtomin,99999.9); 

for Cint s=j;s<Ck-1);s++) 

gsl_vector_setCtomin,s,gsl_matrix_getCtmat,r,s»; 

gsl_vector_setCmins,r,gsl_vector_minCtomin»; 

} 

gsl_matrix_setCllambda,j,i,gsl_vector_maxCmins»; 

} 

Il adjust scaling 

scaleto = 0.0; 

for Cint j=0;j<Ck-1);j++) { 

gsl_vector_setCastarcomp,j,logmultCgsl_vector_getCRR,j), 

Cgsl_vector_getCzz,j+1)-gsl_vector_getCzz,j»»; 

if CCj>=startscale)&&Cj<=endscale» 

scaleto+=gsl_vector_getCastarcomp,j); 

} 

scalefrom 0.0; 
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hazsca1e = 0.0; 

int 1 = 0; 

for (int j=O;j<k;j++) { 

gsl_vector_set(astarva1sc,j,logdiv(astar(gsl_vector_get(zz,j), 

zz,ztemp,tinz,tt,yy,dde1ta,11ambdac,dd,RR,SS,p,pp,f,n,k, 

astarsca1e,exactfai1s,numexactfai1s),gsl_matrix_get(11ambda,j,i-l))); 

gsl_vector_set(astarva1s,j,astar(gsl_vector_get(zz,j), zz,ztemp,tinz,tt, 

yy,dde1ta,11ambdac,dd,RR,SS,p,pp,f,n,k,astarsca1e,exactfai1s,numexactfai1s)); 

if (((fabs(gsl_vector_get(astarva1sc,j))>epsi1on) 

&&(fabs(gsl_vector_get(astarva1sc,j))<1/epsi1on)) 

&&(fabs(gsl_matrix_get(11ambda,j,i-l))>epsi1on)) { 

if ((j>=startsca1e)&&(j<=endsca1e)) { 

sca1efrom+=gsl_vector_get(astarva1sc,j); 

hazsca1e+=gsl_matrix_get(11ambda,j,i-l); 

1++; 

} 

} 

} 

sca1eto *= 1; 

if (1)0) { 

cout « "sca1efrom " « sca1efrom « "; 
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scaleto = Il « scaleto « Il; hazscale = Il 

« hazscale « Il; l = Il « l« endl; 

astarscale += (scaleto-scalefrom)/l*(hazscale/l); 

cout « lI astarscale set to Il « astarscale « endl; 

} else cout « IIS caling scheme continued ... 11 « endl; 

if (i==3) { 

FILE *ffastar = fopen (II astar. txt Il, lIyll) ; 

gsl_vector_fprintf(ffastar,astarvals,lI%f ll ); 

fclose(ffastar); 

FILE *ff astarc = fopen (II astarc. txt Il, lIyll) ; 

gsl_vector_fprintf(ffastarc,astarvalsc,lI%f ll ); 

fclose(ffastarc); 

FILE *ffother = fopen(lI other.txt ll ,lIy ll); 

gsL vector _fprintf Cffother, astarcomp, lI%f Il) ; 

fclose(ffother); 

} 

if «i==1)&&(initial==O)) { 

initial = 1; 

i--· , 

cout « IIPre-run complete ll « endl; 
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} 

} 

Ilclean up 

gsl_vector_free(astarcomp); 

gsl_vector_free(astarvals); 

gsl_vector_free(astarvalsc); 

gsl_vector_free(astarvec); 

gsl_vector_free(mins); 

gsl_vector_free(tomin); 

gsl_vector_free(tomax); 

gsl_vector_free(llambdac); 

gsl_matrix_free(tmat); 

gsl_vector_free(temp); 

} 

Il Weibull hazard 

double wbhaz(double z, double a, double b) { 

return(b/a*pow((z/a),(b-1»); 

} 

int main(int argc, char *argv[J) { 
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const int n = atoi (argv [1] ) ; 

const int k = atoiCargv [2J) ; 

const double a = atof(argv[3J); 

const double b atof (argv [4J ) ; 

const double datascale = atof(argv[5J); 

double astarscale atof(argv[6J); 

const int maxiter = atoi(argv[7J); 

const int seed = atoi(argv[8J)+2; 

FILE *f = fopen (1'out.txt", "wt"); 

gsl_matrix *lambda = gsl_matrix_calloc(k,maxiter); 

gsl_vector *x gsl_vector_calloc(n); 

gsl_vector *y gsl_vector_calloc(n); 

gsl_vector *u gsl_vector_calloc(n); 

gsl_vector *z gsl_vector_calloc(k); 

gsl_vector *c = gsl_vector_calloc(n); 

gsl_vector *t gsl_vector_calloc(n); 

gsl_vector *tind = gsl_vector_calloc(n); 

gsl_vector *dd = gsl_vector_calloc(k); 

gsl_vector *RR = gsl_vector_calloc(k); 

gsl_vector *SS = gsl_vector_calloc(k); 

gsl_vector *delta = gsl_vector_calloc(n); 

gsl_vector *finalhaz = gsl_vector_calloc(k); 
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gsl_vector *truehaz = gsl_vector_calloc(k); 

gsl_vector *ztemp = gsl_vector_calloc(2*n); 

gsl_vector *dtemp gsl_vector_calloc(2*n); 

gsl_vector *tinz = gsl_vector_calloc(k); 

const gsl_rng_type * T; 

gsl_rng_env_setup(); 

T = gsl_rng_default; 

gsl_rng *r = new gsl_rng; 

r = gsl_rng_alloc(T); 

gsl_rng_set(r,seed); 

//read y,t, and delta from file 

FILE *h = fopen("t.txt"," r "); 

gsl_vector_fscanf(h,t); 

fclose(h); 

FILE *g = fopen(" y . txt", "r"); 

gsl_vector_fscanf(g,y); 

fclose(g); 

FILE *ff = fopen("delta.txt"," r "); 

gsl_vector_fscanf(ff,delta); 
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fc1ose(ff); 

//combine the t's and y's to make the z's 

for (int i=O;i<n;i++) { 

gsl_vector_set(ztemp,i,gsl_vector_get(t,i)); 

gsl_vector_set(ztemp,i+n,gsl_vector_get(y,i)); 

gsl_vector_set(dtemp,i+n,gsl_vector_get(de1ta,i)); 

} 

gsl_permutation *p = gsl_permutation_ca11oc(2*n); 

gsl_vector *pp = gsl_vector_ca11oc(2*n); 

gsl_sort_vector_index(p,ztemp); 

gsl_sort_vector(ztemp); 

gsl_permute_vector(p,dtemp); 

int 1=1; 

gsl_vector_set(pp,O,O); 

gsl_vector_set(z,O,gsl_vector_get(ztemp,O)); 

gsl_vector_set(dd,O,gsl_vector_get(dd,O)); 

for (int i=1;i<2*n;i++) { 

if (fabs(gsl_vector_get(ztemp, i)-gsl_vector_get (ztemp , i-1 ))>epsi1on) { 

gsl_vector_set(z,l,gsl_vector_get(ztemp,i)); 

gsl_vector_set(dd,l,gsl_vector_get(dtemp,i)); 

gsl_vector_set(pp,l,i); 
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1++; 

} else { 

gsl_vector_set(dd,1-1,gsl_vector_get(dtemp,i)+gsl_vector_get(dd,1-1)); 

} 

} 

//make the vector tinz 

int i=O; 

int j=O; 

while (j«2*n)) { 

if (fabs(gsl_vector_get(z,i)-gsl_vector_get(ztemp,j))>tol) 

i++; 

if (gsl_permutation_get(p,j)<n) 

gsl_vector_set(tinz,i,gsl_permutation_get(p,j)); 

j++; 

} 

cout « "tinz= "; 

for (int i=O;i<k;i++) 

cout « gsl_vector_get(tinz,i) « " "; 

cout « endl; 
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cout « IIZ= Il; 

for (int i=O;i<k;i++) 

cout « gsl_vector_get(z,i) « Il Il; 

cout « endl; 

cout « II pp= Il; 

for (int i=0;i«2*n);i++) 

cout « gsl_vector_get(pp,i) « " Il; 

cout « endl; 

cout « "dd= Il; 

int 11=0; 

for (int i=O;i<k;i++){ 

cout « gsl_vector_get(dd,i) « Il Il; 

if (gsl_vector_get(dd,i»epsilon) 11++; 

} 

cout « endl; 

cout « IInumexactfails = Il « Il « endl; 

int numexactfails = Il; 

Iifor the weibull case: 

FILE *fft = fopen(lI wbhaz.txt","w ll
); 
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for (int i=O;i<k;i++) 

gsl_vector_set(truehaz,i,wbhaz(gsl_vector_get(z,i),a,b)); 

gsl_vector_fprintf(fft,truehaz,"%f"); 

fclose(fft); 

Iiscale the data 

gsl_vector_scale(z,datascale); 

gsl_vector_scale(t,datascale); 

gsl_vector_scale(y,datascale); 

lido the algorithm 

makedrvec(y,t,delta,z,ztemp,tinz,dd,RR,f,n,k); 

gsl_vector *exactfails = gsl_vector_calloc(numexactfails); 

j=O; 

for (int i=O;i<k;i++) { 

if (gsl_vector_get(dd,i»epsilon) { 

gsl_vector_set(exactfails,j,i); 

j++; 

} 

} 
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cout « "exactfails= "; 

for (int i=O;i<numexactfails;i++) 

cout « gsl_vector_get(exactfails,i) « Il "; 

cout « endl; 

maximin(z,ztemp,tinz,y,t,delta,lambda,dd,RR,SS, 

p,pp,f,n,k,maxiter,astarscale,exactfails,numexactfails); 

FILE *ffmat = fopen("lambda_mat.txt", "W"); 

gsl_matrix_fprintf(ffmat,lambda,"%f"); 

fclose(ffmat); 

FILE *fd = fopenC'd. txt", "W"); 

gsl_vector_fprintf(fd,dd,"%f"); 

fclose(fd); 

FILE *ffhaz = fopen("final.txt", "W"); 

gsl_matrix_get_col(finalhaz,lambda,maxiter-1); 

gsl_vector_fprintf(ffhaz,finalhaz,"%f"); 

fclose(ffhaz); 

FILE *ffr = fopen("R. txt", "W"); 

gsLvector_fprintf(ffr,RR,"%f"); 
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fclose(ffr); 

FILE *ffs = fopen("S.txt"," w"); 

gsl_vector_fprintfCffs,SS, "%f"); 

fclose(ffs); 

gsl_vector_free(tinz); 

gsl_vector_free(ztemp); 

gsl_vector_free(dtemp); 

gsl_vector_free(exactfails); 

gsl_matrix_free(lambda); 

gsl_vector_free(finalhaz); 

gsl_vector_freeCtruehaz); 

gsl_vector_free(x); 

gsl_vector_freeCy); 

gsl_vector_free(u); 

gsl_vector_free(z); 

gsl_vector_free(c); 

gsl_vector_free(t); 

gsl_vector_free(tind); 

gsl_vector_free(dd); 

gsl_vector_free(RR); 

gsl_vector_free(SS); 
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gsl_vector_free(delta); 

gsl_permutation_free(p); 

gsl_vector_free(pp); 

gsl_rng_free(r); 

fclose(f); 

return(1); 

} 
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