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Abstract

Data compression is a technique for reducing the storage space and the cost of trans-

ferring a large amount of data, using redundancy hidden in the data. We focus on

lossless compression for text data, that is, text compression, in this thesis. To reuse

a huge amount of data stored in secondary storage, I/O speeds are bottlenecks. Such

a communication-speed problem can be relieved if we transfer only compressed data

through the communication channel and furthermore can perform every necessary pro-

cesses, such as string search, on the compressed data itself without decompression.

Therefore, a new criterion “ease of processing the compressed data” is required in the

field of data compression. Development of compression algorithms is currently in the

mainstream of data compression field but many of them are not adequate for that

criterion. The algorithms employing variable length codewords succeeded to achieve

an extremely good compression ratio, but the boundaries between codewords are not

obvious without a special processing. Such an “unclear boundary problem” prevents

us from direct accessing to the compressed data.

On the contrary, Variable-to-Fixed-length coding , which is referred to as VF coding,

is promising for our demand. VF coding is a coding scheme that segments an input

text into a consecutive sequence of substrings (called phrases) and then assigns a fixed

length codeword to each substring. Boundaries between codewords of VF coding are

obvious because all of them have the same length. Therefore, we can realize “accessible

data compression” by VF coding. Nevertheless, VF coding was not paid much attention
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so far. The author does not know the reason why development of an efficient VF coding

algorithm has not made in spite of the fact that the theoretical analysis guarantees the

same attainable compression ratio as the non-VF coding algorithms.

In this study, the author improved the performance of VF coding algorithms. We

developed high-level and well-balanced VF coding algorithms for the four criteria of

compression ratio, compression speed, decompression speed, and processing on the

compressed data. It is achieved by improving compression ratio, compression speed,

and decompression speed of VF coding algorithms beyond the level of typical ones.

The organization of this thesis as follows. In Chapter 2, we focus on basic notion

and definition. In Chapter 3, we discuss an improvement of AIVF coding proposed

by Yamamoto and Yokoo in 2001. Conventional VF coding methods originated by

Tunstall coding use tree structures called parse trees as dictionaries. Although AIVF

coding achieves better compression ratio than Tunstall coding by using multiple parse

trees, it is known that it requires large amount of time and space during compression.

We propose an improved method by constructing an integrated parse tree used in

AIVF coding and then simulate the encoding of AIVF coding on it. Moreover, we give

theoretical analysis of upper and lower bounds of the number of nodes in the integrated

parse tree and the number of nodes reduced by the integration. We experimentally show

that our proposed method runs faster than AIVF coding on natural language texts and

so on.

In Chapter 4, we discuss a method of brushing up a parse tree constructed by

existent VF coding methods. We propose a method that repeatedly deletes useless

nodes that are in the parse tree to add nodes that are expected to be useful but not in

the parse tree with reading the input text. The method constructs a parse tree that

achieves a fairly good compression ratio. We experimentally show that application of

this method to a parse tree generated by STVF coding, which is proposed by Kida in

2009, yields better compression ratios than those of gzip.
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In Chapter 5, we show how to realize a VF coding method by combining grammar-

based compression and fixed length codeword. Grammar-based compression is a com-

pression method that models the input text by a grammar that generates it to encode

the grammar. We give a VF coding method that combines Re-Pair algorithm proposed

by Larsson and Moffat in 2000 and fixed length coding. Re-Pair algorithm is a compres-

sion method based on a simple grammar, which achieves extremely good compression

ratio. We introduce a numerical formula calculating the total amount of dictionary

and compressed data in order to determine which rule in the grammar generated by

Re-Pair algorithm should be in the dictionary. This method is beyond the framework

of conventional VF coding methods with parse trees. It achieves better compression

ratio than gzip by 20% or more and faster compression than STVF coding by a factor

of 40 on natural language text. We also show that its decompression speed reaches to

the highest level of existent compression methods.

In Chapter 6, we give practical techniques to apply VF coding methods to large

texts. We propose two methods: (i) compressing large texts by block division and

dictionary sharing and (ii) faster access to arbitrary position specified in the original

text on compressed text. The former is a technique to reduce memory usage by dividing

the input text into fixed length blocks and then compress each blocks. We improve

the compression ratio by sharing a part of dictionaries for all blocks. The latter is a

problem of identifying the position on compressed data corresponding to specified one

on original text. To solve this, decompressing the compressed data from the beginning

is generally required. We propose a faster method for this problem by having a bit

sequence of n bits and its fully indexable dictionary where n denotes the length of

the input text. We experimentally show that the proposed method works faster than

FOLCA proposed by Maruyama et al. in 2013 by a factor of 10.

Finally, we conclude this thesis and discuss future works in Chapter 7. Through

this study, the author succeeded to develop coding algorithms that are accord with
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ease of processing on the compressed data, while keeping comparable performance in

compression ratio and decompression speed with the state-of-the art non-VF coding

algorithms.
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Chapter 1

Introduction

Data compression is a technique for reducing the storage space and the cost of trans-

ferring a large amount of data, using redundancy hidden in the data. There are two

categories for data compression: lossless compression and lossy compression. The for-

mer guarantees that the original data can be completely restored from the compressed

data. While in the latter category, due to distortion, the original data can not be

reconstructed precisely from the compressed data. We generally use lossless compres-

sion methods for string data, often referred to as texts, because we need to read them

without error. We therefore focus on lossless compression in this thesis.

Performance of data compression methods was classically evaluated from their com-

pression ratio, because to reduce the space was the most significant matter in an era

when hard disk drives were extremely expensive. Compressing data also allows us to

reduce transfer costs. A number of data compression algorithms are devised to gain

better compression ratio [33,34].

The significant criteria have changed into speeds for compression and decompression

because hard disk drives with large capacity and high speed data transfer have been

available in low price1. Therefore, compression methods that emphasize high speed

1From 1980s to 2010s, the cost of hard disk drives per unit capacity became 10 millionth2. In

1



2 CHAPTER 1. INTRODUCTION

processing rather than compression ratio have attracted attention. Particularly, gzip,

which is an elder compression tool based on Lempel-Ziv method [46, 47], is still used

due to its well-balancedness among the three criteria, which are compression ratio,

compression speed, and decompression speed, in spite of its milder compression ratio

compared to the state of the art compression methods.

Today, said to be the era of big data, a huge amount of data that were difficult to

manage in past is available. Such data include contents of social networking services

such as Twitter and Facebook, access logs of web servers, and sensor data generated by

global positioning system receivers. Performing fast data analysis on such massive data

is strongly required. Since such data are massive but individual data are not significant,

they are usually discarded after performing event processing or saving summarized

meta information at present. In this case, we have to determine what information is

necessary in advance. In other words, we can not perform data analysis on past data,

which is previously unexpected. To reuse past data, all the data must be preserved.

To reuse a huge amount of data stored in secondary storage, I/O speeds are bot-

tlenecks. Such a communication-speed problem can be relieved if we transfer only

compressed data through the communication channel and furthermore can perform

every necessary processes, such as string search and access to any position, on the

compressed data itself without decompression. From this viewpoint, pattern matching

and data mining on compressed data have been gathering a great deal of attention

since the late 1990s [1, 2, 12,14,16,37].

Development of compression algorithm is currently in the mainstream of data com-

pression field but many of them are not adequate for that criterion. The algorithms

employing variable length codewords succeeded to achieve an extremely good compres-

sion ratio, but the boundaries between codewords are not obvious without a special

1980s, computers were connected to the network via telephone line with 56 kbps or leased line. In

2010s, high speed data transfer with 100 Mbps is available.
2http://www.mkomo.com/cost-per-gigabyte

http://www.mkomo.com/cost-per-gigabyte
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processing. To treat such compressed data, extracting codewords with dictionary from

the beginning of them is required because all the codewords do not have the same

length.

On the contrary, Variable-to-Fixed-length coding , which is abbreviated as VF cod-

ing, is promising for our demand. VF coding is a coding scheme that segments an

input text into a consecutive sequence of substrings, called phrases, and then assigns

a fixed length codeword to each substring. Boundaries between codewords of VF cod-

ing are obvious because all of them have the same length. Therefore, we can realize

“accessible data compression” by VF coding. However, they were seldom used in prac-

tice. Although it is theoretically known that VF coding achieves the same compression

ratios as compression methods that employ variable length codes, a VF coding algo-

rithm that achieves the compression ratio did not exist so far. For example, Shibata

et al. [35] evaluated compression methods from the viewpoint of faster searching on

the compressed data, and they rediscovered Byte Pair Encoding (BPE) [10], which is

a kind of VF coding, but it has mild compression ratio about 50% on natural language

text at most, while gzip usually achieves better than 40%.

The objective of this study is to improve performances of VF coding methods.

We developed high-level and well-balanced VF coding algorithms for the four criteria

of compression ratio, compression speed, decompression speed, and processing on the

compressed data. It is achieved by improving compression ratio, compression speed,

and decompression speed of VF coding beyond the level of typical ones. As mentioned

above, gzip is a popular compression method for its well-balancedness. A goal of this

study is therefore to design a VF coding algorithm that achieves good compression

performance as gzip.

To improve the performance of VF coding is a difficult problem because they employ

fixed length codewords. The compression ratio of a data compression method generally

depends on the set of strings, called dictionary, used during compression. Therefore,



4 CHAPTER 1. INTRODUCTION

the problem of improving the compression ratio of it is the one of how to generate the

optimal dictionary. However, this problem can not be solved in practical time because

constructing the optimal dictionary is known to be an NP-Hard problem. Hence, the

disputed point is how to construct a better dictionary with a greedy method.

The organization of this thesis as follows. In Chapter 2, we focus on basic notion

and definition. In Chapter 3, we discuss an improvement of Almost Instantaneous VF

coding (AIVF coding) [44] proposed by Yamamoto and Yokoo in 2001. Conventional VF

coding methods originated by Tunstall coding [38] use tree structures called parse trees

as dictionaries. Although AIVF coding achieves better compression ratio than Tunstall

coding by using multiple parse trees, it is known that it requires large amount of time

and space during compression. We propose an improved method by constructing an

integrated parse tree used in AIVF coding and then simulate encoding of AIVF coding

on it. Moreover, we give theoretical analysis of upper and lower bounds of the number of

nodes in the integrated parse tree and the number of nodes reduced by the integration.

In Chapter 4, we discuss a method of brushing up a parse tree constructed by

existent VF coding methods. We propose a method that repeatedly deletes useless

nodes that are in the parse tree to add nodes that are expected to be useful but not in

the parse tree with reading the input text. The method constructs a parse tree that

achieves a fairly good compression ratio. We experimentally show that application of

this method to a parse tree generated by Suffix Tree-based VF coding (STVF coding) [45]

yields better compression ratios than those of gzip.

In Chapter 5, we show how to realize a VF coding method by combining grammar-

based compression [17] and fixed length codeword. Grammar-based compression is a

compression method that models the input text by a grammar that generates it to en-

code the grammar. We give a VF coding method that combines Re-Pair algorithm [21]

proposed by Larsson and Moffat in 2000 and fixed length coding. Re-Pair algorithm

is a compression method based on a simple grammar which achieves extremely good
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compression ratio. We introduce a numerical formula calculating the total amount

of dictionary and compressed data in order to determine which rule in the grammar

generated by Re-Pair algorithm should be in the dictionary. This method is beyond

the framework of conventional VF coding methods with parse trees. It achieves better

compression ratio than gzip by 20% or more and faster compression than STVF coding

by a factor of 40 on natural language text.

In Chapter 6, we give practical techniques to apply VF coding methods to large

texts. We propose two methods: (i) compressing large texts by block division and

dictionary sharing and (ii) faster access to arbitrary position specified in the original

text on compressed text. The former is a technique to reduce memory usage by dividing

the input text into fixed length blocks and then compress each blocks. We improve

the compression ratio by sharing a part of dictionaries for all blocks. The latter is a

problem of identifying the position on compressed data corresponding to specified one

on original text. To solve this, decompressing the compressed data from the beginning

is generally required. We propose a faster method for this problem by having a bit

sequence of n bits and its fully indexable dictionary where n denotes the length of

the input text. We experimentally show that the proposed method works faster than

FOLCA [22] proposed by Maruyama et al. in 2013 by a factor of 10.

Finally, we conclude this thesis and discuss future works in Chapter 7.

1.1 Related Studies

We aimed to develop a data compression scheme, which would allow us to process

compressed data with ease. This issue arose from studies of the compressed pattern

matching problem.

The compressed pattern matching problem was first defined in a study by Amir

and Benson [1] as the task of performing string matching in a compressed text without
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its decompression. Many pattern matching algorithms have been proposed for each

specific compression method [15,27,28]. However, most of them are no faster than the

decompress-then-search method.

Practical and effective methods were proposed from late 1990s until the beginning of

2000 [32,36]. These methods increased the search speed and they had an approximately

linear relationship to the compression ratio, i.e., they could perform pattern matching

in compressed texts faster than ordinary search algorithms using uncompressed texts.

After 2000, researchers began to develop a new compression method that was suit-

able for searching. Thus, Brisaboa et al. proposed a series of Dense Codes [4–7]. Dense

codes parse an input text using a morphological analysis tool before encoding it with

byte-oriented codewords. Klein and Ben-Nissan [19] devised a variation of the Dense

Code by using Fibonacci codes for text compression. Although Dense Codes work

well for natural language texts that all words are separated by spaces such as English

texts, they are not effective on texts that each word can not be easily extracted such

as Japanese texts or DNA data.

For VF coding methods, Klein and Shapira [20] and Kida [13] independently pre-

sented a VF coding method based on a suffix tree (STVF coding3). A frequency-base-

pruned suffix tree is used as a parse tree in the STVF coding. STVF coding is also

suitable for searching because it uses a static dictionary and the codeword boundaries

are obvious (see Section 2.5 for compressed pattern matching on VF coding). The

compression ratio of STVF coding is superior to that of classical VF coding methods

such as Tunstall coding, but it is still inferior to state-of-the-art compression methods.

Some experimental comparisons of Dense Codes, VF codes, and gzip were presented

in [45].

Various practical algorithms have also been developed for grammar-based compres-

3 The method of [20] is referred to as DynC in their paper, where the encoding algorithm is slightly

different from that used by [13].
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sion. Bisection [18] is a grammar-based compression algorithm where the grammar

belongs to the class of a straight-line program. Compression algorithms have also been

presented for restricted context-free grammars [17, 21, 29]. For example, Re-Pair [21]

and Sequitur [29] are particularly useful because of their good compression ratios.

Maruyama et al. [23] presented an excellent compression method based on context-

sensitive grammar, known as BPEX4. This method can be viewed as an extension of

Byte Pair Encoding (BPE) [10], which is a restricted version of the Re-Pair algorithm.

BPEX improves the compression ratio compared with BPE and its pattern matching

performance is extremely good. However, the compression speed of BPEX is slow

and it is difficult to decode or perform pattern matching directly from the middle of

the compressed data because any codeword in BPEX-compressed data depends on the

preceding codeword.

4 “BPEX” is simply the name of the program written by Maruyama but we refer to it as the name

of their method.





Chapter 2

Preliminaries

In this chapter, we introduce basic terms and notations. We also describe a brief sketch

of VF coding.

2.1 Terminology and Notation

Let Σ be a finite alphabet and Σ∗ be the set of all strings over Σ. The length of a

string x ∈ Σ∗ is denoted by |x|. The string whose length is 0 is called the empty string

and is denoted by ε. Therefore, we have |ε| = 0. The concatenation of two strings, x1

and x2 ∈ Σ∗, is denoted by x1 · x2, and is also written simply as x1x2, if no confusion

occurs.

The occurrence probability of string x ∈ Σ∗ in a text S is denoted by PrS(x). We

define PrS(a) as (the number of times that symbol a occurs in text S)/(the length

of text S) for a ∈ Σ. We also define PrS(ε) := 1 for convenience. Although PrS(x)

depends on S, we write it simply as Pr(x) when the target text is obvious from the

context or when we treat it as the statistical feature of a given information source.

A tree in which each node has at most k children is called a k-ary tree. A node that

has some children is called an internal node or an inner node, and a node that has no

9
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children is called a leaf node or a leaf. The node that has no parent, i.e., the top of a

tree, is called the root node or the root. Furthermore, in a k-ary tree, a node that has

exactly k children is called a complete internal node, and also an internal node that is

not complete is called an incomplete internal node. A tree in which all internal nodes

are complete is called a complete k-ary tree.

For a tree or a forest T , the set of all leaves, the set of all incomplete internal

nodes, and the set of all complete nodes in T are denoted by L(T ), I(T ), and C(T ),

respectively. The union of L(T ) and I(T ) is denoted by N (T ), and the size of set S by

#S. Then, for example, the number of leaves can be denoted by #L(T ). For a node

n, the number of children of n is called the degree of n, which is denoted by d(n).

2.2 Tunstall Coding

In this section, we discuss Tunstall coding. Conventional VF coding methods use

parse trees as dictionary when they encode and decode the input texts. Such VF

coding methods parses the input text into variable length strings, called phrases, using

the parse tree, and assigns a fixed length codeword to each of them. Hereafter, a node

in the parse tree is identified by its corresponding phrase.

Tunstall coding uses a complete |Σ|-ary tree as a parse tree T , called a Tunstall

tree. Each edge in the tree is labeled with a symbol in Σ. Each node corresponds to a

string over Σ, which is spelled out from the root to the node. Each codeword, which

is a binary string of length ℓ := ⌈lg #L(T )⌉, is assigned to each leaf in the Tunstall

tree, namely, there is a one-to-one correspondence between a codeword and a leaf.

A given text is parsed into a consecutive sequence of phrases by the tree, and each

phrase is encoded with the corresponding binary codeword. The encoding algorithm

is as Algorithm 2.1. Decoding for Tunstall coding is performed as follows: (i) read

codewords one by one; (ii) find the node corresponding to the codeword; and (iii)
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output the phrase corresponding to the node.

Next, we consider the algorithm that constructs the parse tree that maximizes the

average phrase length. It is assumed that the information source is memoryless. Then,

we have Pr(xa) = Pr(x) Pr(a) for x ∈ Σ+, a ∈ Σ. The algorithm that constructs the

parse tree with at most M codewords is as Algorithm 2.2. Lines 1 and 2 compute the

number of inner nodes and the number of leaves in T , respectively. Please note that

a k-ary tree with m inner nodes has m(k − 1) + 1 leaves. Therefore, a parse tree that

has at most M codewords has not more than ⌊(M − 1)/(|Σ| − 1)⌋ inner nodes. The

optimality of the parse tree created here is proved in [41].

2.3 Almost Instantaneous VF Coding

We now give a brief survey of AIVF coding [44], which is based on Tunstall coding.

In order to improve its compression ratio, Yamamoto and Yokoo employed two tech-

niques to develop AIVF coding, one of which is to assign codewords to the incomplete

internal nodes in the parse tree, and the other is to use multiple parse trees. Let

Σ := {a1, . . . , a|Σ|} and assume that all symbols in Σ are sorted in descending order

of their occurrence probabilities, for convenience of discussion. That is, i < j implies

Pr(ai) ≥ Pr(aj). It is also assumed that all the codes discussed below are binary codes.

2.3.1 Improvement by Assigning Codewords to Internal Nodes

In Tunstall tree, unused codewords of length ℓ exist if #L(T ) ̸= 2ℓ. This suggests that

the average phrase length can be increased by assigning these unused codewords to

some strings. If a leaf is added to a complete |Σ|-ary tree, an incomplete internal node

is formed. That is, this also suggests that the average phrase length can be increased

further if low-frequency leaves can be removed and the useful edges can be extended.

Figure 2.1 is an example of the parse tree for this method, where Σ = {a, b, c}, the
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Algorithm 2.1 Encoding algorithm for Tunstall coding.

Input: Parse tree T and an input text.

Output: An encoded text.

1: n← the root of T .

2: while not the end of the input text do

3: c← the next symbol of the input text.

4: n← the child of n labeled with c.

5: if n is a leaf then

6: Output a codeword assigned to n.

7: n← the root of T .

8: end if

9: end while

Algorithm 2.2 Constructing a Tunstall tree T with at most M codewords.

Input: The number of codewords M and occurrence probability Pr(a) of every char-

acter a.

Output: Tunstall tree T .

1: m← ⌊(M − 1)/(|Σ| − 1)⌋.

2: M ′ ← m(|Σ| − 1) + 1.

3: Create the root node of T .

4: i← |Σ|.

5: while i < M ′ do

6: n̂← argmaxn∈L(T ) Pr(n).

7: Create |Σ| children of n̂.

8: i← i+ |Σ| − 1.

9: end while

10: return T .
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occurrence probabilities are 0.6, 0.3, 0.1, respectively, and the codeword length ℓ is equal

to 3. All leaves and incomplete internal nodes have their own codewords, that is, for

all x ∈ N (T ), x is assigned a codeword.

2.3.2 Improvement by Using Multiple Parse Trees

In the method mentioned in the previous section, phrases are not statistically indepen-

dent, even if the information source is memoryless. Parsing with a parse tree in which

incomplete internal nodes have codewords causes contexts between phrases. Yamamoto

and Yokoo also showed that the average phrase length can be increased by using a set

of parse trees in order to catch the contexts. For example, assume that phrase aa is

currently parsed and 001 is output, while encoding is performed using the parse tree

shown in Figure 2.1. In this case, the next symbol is b or c, because the traverse had

to be continued if the next symbol was a, and thus, phrase aaa should be parsed and

000 should be output. Therefore, when 001 is output, the nodes corresponding to the

codes 000, 001, 010, and 011 are unreachable in the next traverse. This suggests that

the average phrase length can be increased by assigning these unreachable codewords

to other strings. In this example, instead of using only one tree in Figure 2.1, we also

use the tree in Figure 2.2. When the traverse fails at an internal node with a child

labeled by a, we use the tree in Figure 2.2 for the next traverse. When we reach a leaf,

we use the tree in Figure 2.1.

In the method proposed in [44], |Σ| − 1 parse trees Ti (i = 0, . . . , |Σ| − 2) are

utilized. For each i, ith parse tree Ti has the root and its children are labeled by

ai+1, . . . , a|Σ| (i = 0, . . . , |Σ| − 2) (recall that Pr(ai) ≥ Pr(aj) for i < j). A given text

is encoded and decoded by switching the parse trees according to the context.

We now discuss how to construct the optimal parse tree for each Ti. Let M be

the number of codewords. Then, our aim is to construct the optimal parse tree that

maximizes the average phrase length
∑

x∈N (T ) |x| ·Pr(x) for a memoryless information
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source. The algorithm is shown in Algorithm 2.3. It should be noted that, when

the (|Σ| − 1)th child of an incomplete node is added, the average phrase length can

be increased by adding the |Σ|th child without increasing the number of codewords,

because a codeword is not assigned to a complete internal node. Recall that it is

assumed that Pr(ai) ≥ Pr(aj) for i < j. In this case, a greedy algorithm yields the

optimal solution.

The encoding algorithm with multiple parse trees is Algorithm 2.4. First, T0 is

selected as the current parse tree. Then, the symbols are read one by one, and the

parse tree is traversed by the symbol. If the child labeled by the symbol does not exist,

the codeword assigned to the node is output. Next, it must be determined which tree is

used for the next traverse. Let n be the node that the preceding traverse finally reached,

and let n have d(n) children labeled by a1, a2, . . . , ad(n). Then, the next symbol is larger

than ad(n). Thus, the root of the next tree should have |Σ| − d(n) children labeled by

ad(n)+1, ad(n)+2, . . . , a|Σ|. The root of the tree Ti of the multiple parse trees has |Σ| − i

children labeled by ai+1, ai+2, . . . , a|Σ|. Hence, Td(n) is selected for the next parse tree

and we jump to the root of Td(n). For example, let an input text be S := aabaabaccab,

and consider encoding S with the parsing trees in Figures 2.1 and 2.2. Then, S is split

into phrases, aa · baa · bac · ca · b. Therefore, the output binary sequence of length 15

bits is obtained as 001 · 001 · 011 · 111 · 101. For the decoding, the same tree must be

used as for the encoding.

2.4 STVF Coding

In this section, after explaining suffix tree [11,24,40,43], which is an index structure for

strings, we illustrate STVF coding, which is a VF coding method based on suffix tree.

Moreover, we give a method for improving its compression ratio using a technique in

Section 2.3.1 here.
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Algorithm 2.3 Constructing multiple parse trees.

Input: Alphabet Σ and occurrence probabilities of all characters Pr(a1), . . . ,Pr(a|Σ|).

Output: Parse trees T0, . . . , T|Σ|−2.

1: for i← 0, 1, . . . , |Σ| − 2 do

2: Create initial trees T ∗ which consists of the root node and its |Σ| − i children.

3: m← |Σ| − i.

4: n̂← argmaxn∈N (T ∗) Pr(n).

5: while |Σ| − d(n̂)− 1 ≤M −m do

6: S1 ← Pr(n̂)
∑|Σ|

j=d(n̂+1) Pr(aj).

7: S2 ← 0.

8: for |Σ| − d(n̂)− 1 times do

9: ñ← argmaxn∈N (T ∗) Pr(n) Pr(ad(n)+1).

10: S2 ← S2 + Pr(ñ).

11: end for

12: if S1 ≥ S2 then

13: Make n̂ complete.

14: else

15: for |Σ| − d(n̂)− 1 times do

16: ñ← argmaxn∈N (T ∗) Pr(n) Pr(ad(n)+1).

17: Add the (d(ñ) + 1)th child of ñ.

18: end for

19: end if

20: m← m+ |Σ| − d(n̂)− 1.

21: n̂← argmaxn∈N (T ∗) Pr(n).

22: end while

23: for M −m times do

24: ñ← argmaxn∈N (T ∗) Pr(n) Pr(ad(n)+1).

25: Add the (d(ñ) + 1)th child of ñ.

26: end for

27: Ti ← T ∗.

28: end for

29: return T0, . . . , T|Σ|−2.
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Algorithm 2.4 Encoding with multiple parse trees.

Input: Parse trees T0, . . . , T|Σ|−2 and text T .

Output: An encoded text.

1: T ← T0.

2: n← the root of T0.

3: while not the end of the input text do

4: c← the next symbol of the input text.

5: if there is no child of n in which we can traverse by symbol c then

6: Output the codeword of n.

7: T ← Td(n).

8: n← the root of T .

9: else

10: n← the child of n labeled by c.

11: end if

12: end while
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2.4.1 Suffix Trees

The suffix tree of a given text T is a compacted trie which represents all the suffixes

of T . Formally, ST (T$) is defined as follows:

1. Each internal node, except the root of ST (T$), has at least two children.

2. Each edge is labeled by a non-empty substring of T . For a node v, we denote the

label of the incoming edge of v by label(v).

3. For any internal node u, any labels of outgoing edges start with different charac-

ters each other.

4. Let the representing string str(v) of a node v in ST (T$) be the string obtained

by concatenating the labels of the edges in the path from the root to v1. Then,

each leaf of ST (T$) corresponds one-to-one with each suffix of T , where $ is a

special symbol not in Σ.

For example, the suffix tree of a string BABCABABBABCBAC$ is shown in Figure 2.3.

For a node v in ST (T$) and a symbol c ∈ Σ, the function child(v, c) and f (v) return the

child of v whose label of the incoming edge starts with c and the number of occurrences

of str(v) in T , the frequency of a node v, respectively. Since the frequency of node

v is equal to the number of leaves in the subtree rooted at v, the computation of the

frequencies of all nodes is done in a post-order traversal. Note that the suffix tree for

T is constructed in linear time in the length of T .

2.4.2 VF Coding by Pruned Suffix Tree

In this section, we introduce a VF coding method that uses a pruned suffix tree for a

parse tree, which is named as STVF coding and firstly (and partially) presented in [13].

1The representing string of the root node is the empty string, that is, str(root) = ε.
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Figure 2.3: Suffix tree for string BABCABABBABCBAC$. The squares represent

leaves. The circles represent internal nodes and the numbers in the circles are their

frequencies.
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Tunstall coding does not achieve a good compression ratio for an information source

with memory because it assumes that the information source is memoryless. As stated

in the previous section, a suffix tree stores all substrings of the given text; moreover the

frequency of any substring can be easily obtained. This suggests that the suffix tree

can be a good base of the parse tree for the given text. For a given text T , the deepest

leaf, which is the leaf v such that str(v) is the longest among all leaves, represents T

itself. Therefore the whole ST (T ) can not be used as a parse tree. The idea of our new

VF coding method is to prune deeper nodes in ST (T ) and make it a compact parse

tree.

We denote by STL(T ) a pruned suffix tree such that the number of leaves equal to

L obtained by pruning nodes corresponding to infrequent substrings. An internal node

u in the parse tree is said to be complete if the parse tree contains all the children of

u in ST (T ), otherwise u is said to be incomplete here. Note that a pruned suffix tree

includes all nodes whose depth is 1 that are also included in the original ST (T ) so that

it includes any symbols which occur in T . Now we consider to encode T by codewords

of length ℓ. As the same as the Tunstall coding, the formula L ≤ 2ℓ must be satisfied.

The procedure to parse and encode T with STL(T ) is also the same way as Tunstall

coding.

The simplest strategy of pruning is to search ST (T ) by breadth-first-search from

the root, and select the shallowest nodes till the number of leaves in a pruned suffix

tree is up to L. A more sophisticated way is to select the nodes so that the frequencies

of the leaves in STL(T ) become nearly uniform. Namely, select the nodes in the

descending order of their frequencies from the root. Algorithm 2.5 is the parse tree

construction algorithm of the STVF coding, and Figure 2.4 shows the parse tree ST 8(T )

for T := BABCABABBABCBAC constructed by the algorithm. The algorithm first

constructs the suffix tree ST (T ) for an input text T . Next, for each step of the outer

loop (Lines 4–14), the most frequent node v among the leaves in the temporal parse
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tree Ti is selected, and then all the children of v in ST (T ) are added to Ti. If the child

is a leaf in ST (T ), the algorithm removes its label string of the incoming edge except

for the first character. After the above pruning steps, the algorithm assigns codewords

to all the leaves in a left-to-right manner. The first four iterations of the constructing

process for the running example is shown in Figure 2.5. This construction strategy is

similar to that of Tunstall coding.

For the parse tree STL′(T )(L′ ≤ L) obtained by the algorithm, we have the following

lemma.

Lemma 2.1. For a given text T , we can uniquely parse T by using the pruned suffix

tree STL′(T ).

Proof. Let D be a set of strings which is entered into the pruned suffix tree STL′(T ),

and call D as a dictionary. From the pruning procedure each leaf in STL′(T ) corre-

sponds one-to-one to each string entered in D. Therefore, all the strings in D satisfy

the prefix condition since only leaves are assigned the codewords, that is, for any string

s ∈ D, there exists no string t ∈ D such that t ̸= s and s is a prefix of t. Hence, we

can uniquely parse the input text T .

Once the parse tree is constructed, the encoding and decoding procedures are sim-

ple: they are shown in Algorithms 2.6 and 2.7, respectively. For the running example in

Figure 2.4, the text is parsed into seven substrings as BA ·BC ·ABA ·BB ·ABC ·BA ·C,

and encoded to 100 ·110 ·000 ·101 ·010 ·100 ·111. The parse tree must be stored together

with the sequence of encoded phrases. We divide the parse tree into two components:

the tree structure and the labels on it. The tree structure is encoded by balanced

parentheses [26]. Thus the encoded size for the tree of M nodes is 2M bits. For the

labels, we store them by a simple way: enumerate pairs of the label length and the

label string and then attach to the encoded tree structure. Assuming that each label

length is smaller than 256, which can be represented by one byte, the set of labels can
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Algorithm 2.5 Algorithm of constructing a parse tree of STVF coding.

Input: Text T and codeword length ℓ.

Output: A parse tree.

1: Construct the suffix tree ST (T ) of T .

2: Construct the initial tree T which only contains the root of ST (T ).

3: U ← {root}. ▷ Set of nodes that will be assigned codewords.

4: while |U | < 2ℓ do

5: v ← argmaxv∈Uf(v).

6: U ← U \ {v}.

7: for all child w of v do

8: U ← U ∪ {w}.

9: if w is a leaf of ST (T ) then

10: Remove lavel(w) except for the first character of it.

11: end if

12: Add w to T .

13: end for

14: end while

15: Assign codewords to the elements in U .

16: return T as ST |U |(T ).
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Figure 2.4: Parse tree of the STVF coding for string BABCABABBABCBAC. The

squares and the circles indicate leaves and internal nodes, respectively. The numbers

in squares are assigned codewords.

Figure 2.5: The first four iterations of the construction process of the parse tree. The

black circles indicate internal nodes. Only leaves are assigned codewords.
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be stored by
∑

x∈X (|x|+ 1) bytes, where X is the set of labels.

The following lemma and theorem suggest the performance of STVF coding.

Lemma 2.2. The parse tree constructed by Algorithm 2.5 is equivalent to the Tunstall

tree for a sufficiently long string of arbitrary memoryless information sources.

Proof. For a node p in the suffix tree and a character c, f(p)·Pr(c) = f(p·c) holds with

a sufficiently long string because we assume that the information source is memoryless.

Therefore, we obtain the occurrence probability of the representing string of each node

by dividing the frequency of each node by that of the root node. Both of the parse

tree construction algorithms of STVF coding and Tunstall coding select the leaf that

has the maximum probability to add all its children. Therefore, both of the algorithms

select the same node. Hence, the STVF tree and the Tunstall tree are equivalent for

arbitrary memoryless information sources.

Theorem 2.1. The number of codewords output by STVF coding is the same as the

one output by Tunstall coding for arbitrary memoryless information source.

Proof. The parse tree of STVF coding is equivalent to the Tunstall tree for memoryless

information sources from Lemma 2.2. Therefore, the number of codewords output

by STVF coding and the one output by Tunstall coding are the same for arbitrary

memoryless information sources.

2.4.3 Improving the Compression Ratio by Almost Instanta-

neous Coding

Next, we present an improved version of STVF coding stated in the above. In STVF

coding, unused codewords of length ℓ exist if there does not exist an integerm satisfying

m(|Σ| − 1) + 1 = 2ℓ. This suggests that we can encode the input text with fewer

codewords by assigning such unused codewords to some strings. If we add a leaf to a
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Algorithm 2.6 Encoding algorithm for STVF coding.

Input: Text T and parse tree T .

Output: An encoded text.

1: i← 0.

2: while i < |T | do

3: v ← root.

4: while v is a internal node of T do

5: v ← the node that represents str(v) · T [i].

6: i← i+ 1.

7: end while

8: Output the codeword assigned to v.

9: end while

Algorithm 2.7 Decoding algorithm for the STVF coding.

Input: Parse tree T and sequence of codewords C.

Output: The original text.

1: for all i ∈ {0, . . . , |C| − 1} do

2: v ← the node such that code(v) = C[i].

3: Output str(v).

4: end for
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complete |Σ|-ary tree, an incomplete internal node is made. That is, this also suggests

that we can acquire much better compression ratios if we remove low-frequency leaves

and extend useful edges.

We introduce the algorithm for constructing a parse tree as in Algorithm 2.8. The

basic idea of the algorithm is to choose the most frequent node from the suffix tree,

which has not been included into the parse tree. The algorithm extends the parse tree

on a node-by-node basis in contrast to the original STVF coding algorithm that extends

all the children of the chosen node at once. Figure 2.6 is an example of the parse tree

constructed by the algorithm of Algorithm 2.8 for T := BABCABABBABCBAC. Now

we explain the move of the algorithm. For a given text T , we first construct the suffix

tree ST (T ) and remove the labels of the leaves in ST (T ) except for the first characters

of them. Let U be the set of nodes which will be assigned codewords and V be the

set of candidate nodes for phrases which are in ST (T ) but not in the parse tree. Note

that each node in V is a child of a node in U . Initially, U is the empty set and V is the

children of the root of ST (T ). Next, to ensure the algorithm encodes the text correctly,

we add all the children of the root to U . Then, we repeat the following procedure while

|U | < 2ℓ: we select the node v whose frequency is maximal in V . Then, we add it

to U and delete it from V . If there remains just one node w ∈ V that is a sibling

of v, we add w to U and delete its parent from U . It is not necessary to assign a

codeword to a complete node because the traversals in the encoding process never fail

at any complete nodes. The node p is now complete and thus it will not be assigned a

codeword. Finally, we assign unique codewords to the elements in U in a left-to-right

manner.

Figure 2.7 shows the construction process of the parse tree for the running example

by the algorithm. The input string is parsed into five substrings by using the parse tree

in Figure 2.6, as BABC ·AB ·AB ·BABC ·BAC, and encoded to 101 ·000 ·000 ·101 ·110.

In this case, the encoded length is shorter than that of the STVF coding in the previous
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Algorithm 2.8 Improved construction algorithm for parse trees.

Input: Text T and codeword length ℓ.

Output: A parse tree.

1: Construct the suffix tree ST (T ) of T .

2: Construct the parse tree T which only contains the root of ST (T ).

3: U ← ∅;V ← {v | v is a child of the root of ST (T )}.

4: for all Child v of the root of ST (T ) do

5: Add v to T .

6: if v corresponds to a leaf in ST (T ) then

7: Remove label(v) except for the first character of it.

8: end if

9: U ← U ∪ {v}.

10: V ← (V \ {v}) ∪ {w | w is a child of v}.

11: end for

12: while |U | < 2ℓ do

13: v ← argmaxv∈V f(v).

14: Add v to T .

15: U ← U ∪ {v}.

16: V ← (V \ {v}) ∪ {w | w is a child of v}.

17: p← v’s parent.

18: if #{w ∈ V | w is a child of p} = 1 then

19: w ← p’s just one child remaining in V .

20: U ← (U \ {p}) ∪ {w}.

21: V ← (V \ {w}) ∪ {x | x is a child of w}.

22: end if

23: end while

24: Assign codewords to the elements in U .

25: return T .



28 CHAPTER 2. PRELIMINARIES

section.

We discuss the time and space complexities of Algorithm 2.8. Constructing the

suffix tree ST (T ) needs O(|T |) time and space. It is obvious that Line 2 takes O(1)

time. Since we can manage both set U and tree T just by marking nodes in ST (T ),

adding or deleting an element for them is done in O(1) time. To process Line 13

efficiently, we assume that the set V is realized by a priority queue based on a max-

heap. That is, we need O(log |V |) time for adding or deleting an element for V , while

answering the maximum element among V is done in O(1) time. Then, Line 3 needs

O(|Σ|) time. For the loop in Lines 4–11, the number of iterations is O(|Σ|). Thus, the

time complexity of the loop is O(|Σ| log |Σ|) since the size of V can increase to O(|Σ|2).

For the while loop in Lines 12–23, the number of iterations is restricted to the size of

U , but the size of V is a dominant factor for the time complexity. We can calculate in

O(1) time for each line within the loop except for Lines 16 and 212. The number of

nodes added to V is |T | at most, and the number of nodes deleted from V too. Thus,

Lines 16 and 21 take O(|T | log |T |) time totally. Finally, Line 24 takes O(|T |) time.

Therefore, the total time complexity of the algorithm is O(|Σ| log |Σ| + |T | log |T |).

The complexity will be O(|T | log |T |) when |Σ| ≤ |T |. For the space consumption,

we need only O(|T |) space since both U and T can be managed by adding O(1) size

information on each node of ST (T ), in addition to the priority queue whose maximal

size is restricted to |V |, namely, O(|T |).

Next, we show the encoding and the decoding algorithms. We need to modify the

encoding algorithm because codewords can be assigned to internal nodes. It is shown

in Algorithm 2.9. The algorithm traverses the parse tree while it can move by the

character read from the input text. If the traversal cannot be made, the algorithm

suspends to consume the current character and outputs the codeword of the current

2 For Line 19, we need an auxiliary data structure on each node to do so. For example, it is realized

by a doubly linked list between siblings.
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node, and then resumes the traversal from the root. This encoding process is not

instantaneous. Reading-ahead of just one character is needed. Therefore, we call it the

almost instantaneous encoding. The algorithms of decoding and storing the parse tree

are common to the STVF coding algorithm except for storing incomplete nodes. We

add an extra bit indicating whether the node is complete or not for each node. Then

the tree structures of a parse tree of k nodes are encoded to 3k bits.

The following lemma is important for the correctness of the encoding algorithm

using the parse trees constructed by the algorithm in Algorithm 2.8.

Lemma 2.3. Let T be a given text and T be the parse tree of T constructed by the

Algorithm 2.8. For any suffix s of T , there exist at least one node in T which represents

a nonempty prefix of s, and there exists one node which represents the longest prefix of

s in T and which is also assigned a codeword.

Proof. The former is clear because all the children of the root are contained in T .

We next prove the latter by a reduction to absurdity. Assume that the node v in

T which represents the longest prefix of s is not assigned a codeword. Then, v is a

complete internal node because all the leaves and all the incomplete nodes are assigned

codewords. However, since all the children of any complete nodes exists in T , it

contradicts our assumption that there exists a descendant of v which represents a

longer prefix of s than str(v).

2.5 Compressed Pattern Matching for VF Coding

Kida et al. [14] proposed a unified framework, known as the Collage System, for repre-

senting a dictionary compressed text and also presented an Aho-Corasick-type pattern

matching algorithm on the framework. We can derive a pattern matching algorithm

systematically using the collage system for a text compressed with any form of dictio-

nary compression if it is within the framework. Thus, all VF coding methods treated
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Figure 2.6: Parse tree of the method in Section 2.4.3 for string BABCABAB-

BABCBAC. The squares represent the nodes assigned codewords, corresponding to

the numbers in them. The circles represent the complete internal nodes.

Algorithm 2.9 Modified encoding algorithm.

Input: Text T and parse tree T .

Output: An encoded text.

1: i← 0.

2: while i < |T | do.

3: v ← root.

4: while str(v) · T [i] is represented by T do

5: v ← the node that represents str(v) · T [i].

6: i← i+ 1.

7: end while

8: Output the codeword assigned to v.

9: end while
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Figure 2.7: Iterations of constructing a parse tree with Algorithm 2.8. The black circles

represent complete internal nodes, which are not assigned codewords.
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in this thesis can be represented by the collage system.

The collage system is defined by a pair ⟨D,S⟩ where D is a sequence of definition

tokens and S is the text represented by a sequence of tokens in D. Each token Xk in

D is expressed as exprk. Each expression exprk has one of the following forms:

(I) a for a ∈ Σ ∪ {ε},

(II) XiXj for i, j < k,

(III) [j]Xi for i < k and an integer j,

(IV) X
[j]
i for i < k and an integer j, and

(V) (Xi)
j for i < k and an integer j.

The forms (I)–(V) are primitive assignment, concatenation, prefix truncation, suffix

truncation, and j times repetition, respectively. During dictionary-based compression,

each codeword corresponds to a token. Therefore, we identify a codeword using its

corresponding token below. The string represented by the token X is denoted by X.u.

When the input text is Y1.u, Y2.u, . . . , Yy.u, we have S = (Y1, Y2, . . . , Yy).

To perform pattern matching on compressed texts using a collage system, we simu-

late a deterministic finite automaton (Σ, Q, q0, F, δ), which accepts the input patterns

where Q, q0, F , and δ are a set of states, the initial state, a set of final states, and a

transition function, respectively. We need two functions to simulate the automaton:

Jump : Q × F (D) → Q and Output : Q × F (D) → ℘(N), where F (D) is a set of

codewords in D and ℘(·) is the powerset of a set.

The function Jump simulates the state transition of the automaton. This function

takes the state s and codeword X as the input, and returns the state where the state

of the automaton moves from state s when the input text is X.u. The function Jump

is defined as Jump(s,X) := δ(s,X.u).

The function Output determines the occurrences of patterns. This function takes

the state s and codeword X as input, and returns a set of nonnegative integers i so

the automaton reaches its final state when it takes the prefix of X.u with length i
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from the state s as its input. The function Output is defined as Output(s,X) := {|v| :

v is a non-empty prefix of X.u such that δ(s, v) ∈ F}.

The outline of the algorithm used to construct the functions Jump and Output is as

follows: (i) construct an automaton that accepts the pattern, (ii) perform the following

for each state s of the automaton and each codeword X, (ii-a) set Jump(s,X) :=

δ(s,X.u), (ii-b) if there exists an integer i such that δ(s,X.u[1 : i]) ∈ F , add {i}

to Output(s,X). The algorithm for pattern matching is as follows: (i) set the current

state s to 0, (ii) perform the following for each codeword X in the compressed text, (iii)

if Output(s,X) is not empty, report the pattern occurrences; (iv) set s to Jump(s,X).

Please refer to [14] for further details.

Next, we discuss the time and space complexity of the procedures used to construct

the functions Jump and Output , which perform pattern matching on compressed texts.

We present the following theorems, which are proved in [14], where D, ∥D∥, height(D),

S, m, and r denotes the dictionary, the size of the dictionary, the height of the syntax

tree for the dictionary, the compressed sequence, the length of the pattern, and the

number of pattern occurrences, respectively.

Theorem 2.2 (Theorem 1 from [14]). The function Jump(j,X) can be achieved in

O(∥D∥ · height(D) + m2) time using O(∥D∥ + m2) space, so that it replies in O(1)

time. If D contains no truncations, the time complexity becomes O(∥D∥+m2).

Theorem 2.3 (Theorem 2 from [14]). The procedure used to enumerate the set

Output(j,X) can be achieved in O(∥D∥·height(D)+m2) time using O(∥D∥+m2) space,

so that it runs in O(height(X) + ℓ) time, where ℓ is the size of the set Output(j,X).

If D contains no truncations, it can be achieved in O(∥D∥ + m2) time and space, so

that it runs in O(ℓ) time.

Theorem 2.4 (Theorem 3 from [14]). The problem of compressed pattern matching

can be solved in O((∥D∥ + |S|) · height(D) +m2 + r) time using O(∥D∥ +m2) space.

If D contains no truncation, it can be solved in O(∥D∥+ |S|+m2 + r) time.
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All VF coding methods treated in this thesis do not contain any truncations or

repetitions, because each node is represented as the concatenation of a node and a

character. According to Theorem 2.4, pattern matching on them is achieved inO(∥D∥+

|S|+m2 + r) time and O(∥D∥+m2) space.



Chapter 3

Efficient Algorithm for AIVF

Coding

In this chapter, we propose an efficient algorithm for encoding and decoding of AIVF

coding, which integrates the multiple parse trees into a compact single tree and sim-

ulates the encoding and the decoding procedure of the original AIVF coding. Our

idea originated in the observation that many nodes in the multiple parse trees of an

AIVF coding are common, and thus, they can be multiplexed (see Figure 3.1). We

refer to the integrated parse tree as the Virtual Multiple AIVF parse tree (VMA tree

for short). We prove that the upper and lower bounds of the number of nodes in

the VMA tree are M |Σ| − |Σ|2/2 + |Σ|/(|Σ| − 1) and M ln(|Σ| + 1) −M/2 + 1, re-

spectively, where M denotes the number of codewords. We also prove that the upper

and lower bounds of the number of nodes reduced from the original multiple parse

trees are [|Σ|M(|Σ| − 1/2) + (|Σ| − 6)(|Σ| + 1)/2 − |Σ|M ln(|Σ| + 1)]/(|Σ| − 1) and

|Σ|2/2 + 5|Σ|/2 − 7, respectively. We show that in fact our technique allows much

faster encoding than does the original AIVF coding for natural language texts.

35
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3.1 Virtual Multiple AIVF Tree

In this section, we explain our idea and present an efficient algorithm for AIVF coding.

In the parse trees of AIVF coding, it can be observed that many nodes in Ti are

identical to those in Ti+1. More precisely, Ti+1 completely covers the nodes in Ti, except

for the leftmost1 subtree under the node corresponding to ai+1. First, we explain this

relationship. Let S
(i)
j be the subtree of Ti that consists of all the nodes under the direct

child of the root corresponding to aj. Then, we have the following theorem.

Theorem 3.1. Subtree S
(i+1)
i+j completely covers S

(i)
i+j for any integers i (0 ≤ i ≤ |Σ|−3)

and j (2 ≤ j ≤ |Σ| − i).

Proof. We prove the theorem by contradiction. For an integer i (0 ≤ i ≤ |Σ|−2), let T∞
i

be the tree of infinite depth in which the root has children according to ai+1, . . . , a|Σ|,

and all the other internal nodes have just |Σ| children. It should be noted that the root

of the multiple parse tree Ti has children according to aj (j = i+1, . . . , |Σ|). That is, Ti

includes S
(i)
j (j = i+1, . . . , |Σ|). It should be also noted that each Ti is optimal in the

sense that it maximizes the average phrase length. That is, for any i (0 ≤ i ≤ |Σ| − 3)

and j (2 ≤ j ≤ |Σ| − i), the average phrase length cannot be further increased by

exchanging any node in S
(i)
i+j for a node included in T∞

i but not in Ti. Here, we assume

that S
(i+1)
i+j does not cover S

(i)
i+j completely. Then, there exists a node that is in S

(i)
i+j but

not in S
(i+1)
i+j . Let n be the node. Since Ti is a parse tree that maximizes the average

phrase length, it can be increased by exchanging a node in S
(i+1)
i+j but not in S

(i)
i+j for n.

However, this contradicts that Ti+1 maximizes the average phrase length. Therefore,

S
(i+1)
i+j completely covers S

(i)
i+j.

The set of trees can be multiplexed and simply integrated into a single tree according

to the above theorem. To simulate the encoding and the decoding of the original AIVF

1Each edge is arranged in descending order of the occurrence probability of its label character in

left to right manner.
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coding by using the VMA tree, it is necessary to indicate which parse tree is currently

being traversed during processing. Thus, each node in the VMA tree is marked to

indicate to which trees the node belongs. Since a node can belong to several parse

trees, the least i is saved such that n belongs to Ti for each node. Denoting this mark

by Tn(n), we have that Tn(n) := mini{i | 0 ≤ i ≤ |Σ| − 2, n belongs to Ti.}. For

example, by integrating the two parse trees shown in Figures 2.1 and 2.2, the parse

tree shown in Figure 3.2 is obtained.

To encode with a VMA tree, the previous encoding algorithm must be modified,

because even if there is a child in the VMA tree for the next traverse, the traverse

fails when there is no child in Ti. Therefore, Tn(n) and the number i of the currently

traversing tree Ti are compared. If i is less than Tn(n), there is not a proper node

in Ti, and we return to the root. The encoding algorithm is shown in Algorithm 3.1,

where the codeword assigned to n in Ti is denoted by wi(n).

The algorithm for constructing a VMA tree is shown in Algorithm 3.2. Let Si

denote the subtree that consists of all nodes under the root node corresponding to ai.

We define #N (S0) := M for convenience. We define the function cod(aj) := j, and

denote by first(n) the first symbol of the label sequence on the path from the root to n.

That is, if first(n) = aj, cod(first(n)) = j. The number of nodes having the codeword

is denoted by m in Algorithm 3.2.
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Figure 3.1: Multiplexing the parse trees of AIVF coding into a single tree.
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Figure 3.2: An example of VMA tree. This is an integrated tree obtained by multiplex-

ing the trees shown in Figures 2.1 and 2.2. The number written in each node indicates

the value of Tn(n).
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Algorithm 3.1 Encoding algorithm with a VMA tree T .

Input: A text and parse tree T .

Output: An encoded text.

1: n← the root of T .

2: i← 0.

3: while not end of the input text do

4: c← the next symbol of the input text.

5: if there exists child n′ of node n with label c and Tn(n′) ≤ i then

6: n← n′.

7: else

8: Output wi(n).

9: i← d(n).

10: n← the root of T .

11: n← the child of n labeled by c.

12: end if

13: end while
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Algorithm 3.2 Constructing a VMA tree.

Input: Alphabet Σ and occurrence probabilities of all characters Pr(a1), . . . ,Pr(a|Σ|).

Output: Parse tree T .

1: T ← The tree with root and |Σ| children of it.

2: Label the jth edge of T by aj.

3: for k ← 0 to |Σ| − 2 do

4: m← #N (Sk); n̂← argmaxn∈N (T ) Pr(n).

5: while |Σ| − d(n̂)− 1 ≤ m do

6: S1 ← The average phrase length assuming that we call Procedure Com-

plete in Algorithm 3.3.

7: S2 ← The average phrase length assuming that we call Procedure Find-

OptPos in Algorithm 3.4 |Σ| − d(n̂)− 1 times.

8: if S1 ≥ S2 then

9: Call Procedure Complete in Algorithm 3.3.

10: else

11: Call Procedure FindOptPos in Algorithm 3.4 |Σ| − d(n̂)− 1 times.

12: end if

13: n̂← argmaxn∈N (T ) Pr(n); m← m− |Σ|+ d(n̂) + 1.

14: end while

15: Call FindOptPos m times.

16: i← 0.

17: for all n ∈ N (D) do

18: wk(n)← i; i← i+ 1.

19: end for

20: S ← The subtree corresponding the node traversed from the root by a|Σ|+1.

21: R← T except for S; Add S to TV; T ← R.

22: end for

23: Label the jth edge of each node by aj (j = 1, . . . , |Σ|).
24: return T .
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Algorithm 3.3 Procedure Complete.
Input: Parse tree T .

1: n̂← argmaxn∈N (T ) Pr(n).

2: for j ← 0 to |Σ| do

3: Add |Σ| − d(n̂) children to n̂.

4: end for

5: Tn(nj)← cod(first(nj))− 1.

Algorithm 3.4 Procedure FindOptPos.
Input: Parse tree T .

1: ñ← argmaxn∈N (T ) Pr(n) Pr(ad(n)+1).

2: Add the (d(ñ) + 1)th child n of ñ.

3: Tn(n)← cod(first(n))− 1.
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3.2 Bound Analysis of VMA Tree

In this section, we discuss the upper and lower bounds of the number of nodes in VMA

tree. Let M be the number of codewords, i.e., M = 2ℓ for the codeword of length ℓ. We

prove that the upper and lower bounds of the total number of nodes in VMA tree are

respectively M |Σ|− |Σ|2/2+ |Σ|/(|Σ|−1) in Theorem 3.2 and M ln(|Σ|+1)−M/2+1

in Theorem 3.3 and that the lower and upper bounds of the number of nodes reduced

by integrating multiple parse trees into one are respectively |Σ|2/2 + 5|Σ|/2 − 7 in

Theorem 3.4 and [|Σ|M(|Σ| − 1/2) + (|Σ| − 6)(|Σ|+1)/2− |Σ|M ln(|Σ|+1)]/(|Σ| − 1)

in Theorem 3.5.

Theorem 3.2. An upper bound of the total number of nodes in the VMA tree is M |Σ|−

|Σ|2/2 + |Σ|/(|Σ| − 1) where M and |Σ| respectively denote the number of codewords

and the alphabet size.

Proof. The leftmost subtrees S
(i)
i+1 for i = 0 . . . |Σ| − 2 and tree T|Σ|−2 of the AIVF tree

are left in the VMA tree. Subtrees S
(i)
i+1 have M − (|Σ| − i − 1) codewords because

each subtree has at least one codeword. A |Σ|-ary tree with M leaves has at most

(M − 1)/(|Σ| − 1) complete internal nodes. Therefore, the upper bound of the number

of nodes in the VMA tree is

|Σ|−3∑
i=0

(
#C
(
S
(i)
i+1

)
+#N

(
S
(i)
i+1

))
+#C

(
S
(|Σ|−2)
|Σ|−1

)
+#C

(
S
(|Σ|−2)
|Σ|

)
+#N

(
S
(|Σ|−2)
|Σ|−1

)
+#N

(
S
(|Σ|−2)
|Σ|

)
+ 1

≤
|Σ|−3∑
i=0

(
M − (|Σ| − i− 1) +

M − (|Σ| − i− 1)− 1

|Σ| − 1

)
+

M − 1

|Σ| − 1
+ 1 +M

= M |Σ| − 1

2
|Σ|2 + |Σ|

|Σ| − 1
.

Theorem 3.3. A lower bound of the total number of nodes in the VMA tree is M ln(|Σ|+
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1) −M/2 + 1 where M and |Σ| respectively denote the number of codewords and the

alphabet size.

Proof. Since the symbols a1, . . . , a|Σ| are sorted in descending order of their occur-

rence probabilities, we have #N (S
(i)
j ) ≥ #N (S

(i)
j+1). Therefore, we have #N (S

(i)
i+1) ≥

M/(|Σ| − i). Hence the lower bound of the number of nodes in the VMA tree is

|Σ|−3∑
i=0

#N
(
S
(i)
i+1

)
+#N

(
S
(|Σ|−2)
|Σ|−1

)
+#N

(
S
(|Σ|−2)
|Σ|

)
+ 1

≥
|Σ|−3∑
i=0

(
M

|Σ| − i

)
+M + 1

≥ M

∫ |Σ|+1

1

1

i
di− M

2
+ 1

≥ M ln(|Σ|+ 1)− M

2
+ 1.

Theorem 3.4. An upper bound of the number of nodes reduced by the integration is

[|Σ|M(|Σ| − 1/2) + (|Σ| − 6)(|Σ|+1)/2− |Σ|M ln(|Σ|+1)]/(|Σ| − 1) where M and |Σ|

respectively denote the number of codewords and the alphabet size.

Proof. Subtrees S
(0)
2 , . . . , S

(0)
|Σ| , S

(1)
3 , . . . , S

(1)
|Σ| , . . . , S

(|Σ|−3)
|Σ|−1 , S

(|Σ|−3)
|Σ| and |Σ|−2 root nodes

are reduced by the integration. Analogous to the proof of Theorem 3.3, the upper

bound is

|Σ|−3∑
i=0

 |Σ|∑
j=i+2

(
#N

(
S
(i)
j

)
+#C

(
S
(i)
j

))+ |Σ| − 2

=

|Σ|−3∑
i=0

(
(|Σ| − 1)

M

|Σ| − i
+

M
|Σ|−i

(|Σ| − i− 1)− 1

|Σ| − 1

)
+ |Σ| − 2

≤
|Σ|M(|Σ| − 1

2
) + 1

2
(|Σ| − 6)(|Σ|+ 1)− |Σ|M ln(|Σ|+ 1)

|Σ| − 1
.
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Theorem 3.5. A lower bound of the number of nodes reduced by the integration is

|Σ|2/2 + 5|Σ|/2− 7 where |Σ| denotes the alphabet size.

Proof. Analogous to the proofs of Theorems 3.2 and 3.4, the lower bound is

|Σ|−3∑
i=0

 |Σ|∑
j=i+2

#N
(
S
(i)
j

)
+ 1


≥

|Σ|−3∑
i=0

(|Σ| − i+ 2)

=
1

2
|Σ|2 + 5

2
|Σ| − 7.

3.3 Experiments

We implemented Tunstall coding, AIVF coding, and our proposed method. We abbre-

viate these programs as Tunstall, AIVF, and VMA, respectively. All the programs we

used are written in C++ and compiled by g++ of GNU, version 4.6. We embedded the

information of structures of parse trees by balanced parentheses [26] into compressed

texts. We ran our experiments on a workstation equipped with an Intel Xeon (R)

3.00 GHz CPU with 12 GB RAM, which operated Ubuntu 12.04. We used “dna” and

english.300MB, which is the first 300 MB of “english” from “Pizza&Chili Corpus2.”

For details, please refer to Table 3.1.

First, we measured the compression ratios, compression times, and decompression

times of Tunstall, AIVF, and VMA. We measured (compressed file size)/(original file

size) as the compression ratio. Table 3.2 shows the compression ratios. The compres-

sion ratios of AIVF and VMA are better than that of Tunstall on english.300MB and

dna. Since AIVF and VMA essentially perform the same compression, their compres-

sion ratios are almost the same. However, slight differences are caused by the differences
2http://pizzachili.dcc.uchile.cl/index.html
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in the size of parse trees. The compression times are shown in Table 3.3. The compres-

sion of VMA and AIVF is slower than that of Tunstall, because VMA and AIVF create

more nodes than does Tunstall. In addition, the compression of VMA is faster than

that of AIVF where codeword length is long, because VMA creates fewer nodes than

does AIVF. The improvement in compression time is larger on english.300MB than on

dna. AIVF constructs |Σ| − 1 parse trees where |Σ| is the alphabet size. Therefore,

VMA reduces many nodes when a corpus whose alphabet size is large is compressed.

Although the number of nodes in the parse tree exponentially grows as the codeword

length increases, the compression time of Tunstall does not seem to slow down. The

reason is considered to be that the total amount of I/O time is reduced because the

total amount of compressed data is decreased as the codeword length increases. Fi-

nally, the decompression times are shown in Table 3.4. The decompression of VMA

and AIVF is slower than that of Tunstall. Since the number of nodes in the parse trees

of VMA and AIVF is larger than that of Tunstall, the reconstruction of the parse trees

of VMA and AIVF is slower than that of Tunstall. Moreover, the decompression of

VMA is slightly slower than that of AIVF, because VMA needs extra operations to

compute the degree of a node by comparing the minimum tree number of its children

and the current tree number while decoding.

We also compared seven compression algorithms: Tunstall, AIVF, VMA, v2vdc [4],

gzip, bzip2, and LZMA. We used the default options for gzip, bzip2, and LZMA. We

selected 14 for the codeword length of VF coding methods. The results are shown in

Table 3.5. It should be noted that v2vdc is a word-based compression method and it

therefore is not effective for DNA data. We represent this by “N/A” in Table 3.5. The

compression ratios of VMA, AIVF, and Tunstall are worse than those of v2vdc, gzip,

and bzip2 for the English text, because they do not assume a Markov source. On the

other hand, VMA and AIVF are rather good for the DNA text. V2vdc takes a long

time to compress English text to construct suffix arrays. Although the compression and
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decompression speeds of VMA is slower than bzip2 for the English text, those of VMA

for DNA text is faster than those of bzip2. The reason is that our implementation for

VMA, AIVF, and Tunstall takes O(|Σ|) time to traverse the parse tree for a character.

3.4 Chapter Summary

In this chapter, we presented an efficient algorithm for AIVF coding, which integrates

the multiple parse trees of an AIVF coding into one, called a VMA tree, and simulates

the encoding process and the decoding process on it. We also estimated the number of

nodes in the VMA tree. We conducted several experiments to evaluate the compression

performance of three compression methods: Tunstall coding, AIVF coding, and VMA

coding. The compression ratios of VMA/AIVF coding methods are better than those

of Tunstall coding by 20% on natural language texts. Although the decompression of

VMA coding is slower than that of AIVF, the compression of VMA coding is up to six

times faster than that of AIVF coding.

Although the methods presented in [13, 20] have better compression ratios than

AIVF coding, they need to construct suffix trees [9] in order to construct a parse

tree, and thus, they take a long time to achieve this. Therefore, from the viewpoint

of speeding up compressed pattern matching, AIVF coding with the VMA tree is a

strong candidate as well, because usually a parse tree has to be constructed in order

to conduct compressed pattern matching on compressed texts of VF coding.
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Table 3.1: Experimental text files.

Texts size (byte) |Σ| Content

english.300MB 300000000 225 English document

dna 403927746 16 DNA sequence

Table 3.2: Compression ratios of Tunstall, AIVF, and VMA in percentage.

codeword length
english.300MB dna

Tunstall AIVF VMA Tunstall AIVF VMA

8 100.00 79.52 79.52 35.22 26.29 26.29

9 94.19 63.09 63.08 34.23 26.11 26.11

10 93.18 59.98 59.96 32.74 25.91 25.91

11 83.81 59.06 59.03 32.10 25.75 25.75

12 81.24 58.99 58.95 31.09 25.70 25.71

13 78.55 58.64 58.55 30.54 25.64 25.65

14 76.76 58.56 58.38 30.09 25.57 25.59

15 74.37 58.72 58.36 29.65 25.48 25.53

16 73.82 59.20 58.49 29.26 25.52 25.61
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Table 3.3: Compression times of Tunstall, AIVF, and VMA in seconds.

codeword length
english.300MB dna

Tunstall AIVF VMA Tunstall AIVF VMA

8 19.54 20.26 28.90 18.54 18.45 20.31

9 20.49 20.23 28.26 17.21 18.36 20.42

10 19.65 22.35 29.34 16.62 18.84 21.54

11 19.63 26.31 32.33 17.19 19.22 21.01

12 17.29 34.44 33.17 17.34 20.06 21.37

13 18.50 63.16 39.61 17.21 22.31 23.27

14 19.03 160.71 60.06 16.83 32.48 30.41

15 18.19 642.42 143.83 16.52 96.45 81.04

16 17.69 5241.48 838.33 16.05 774.81 483.77

Table 3.4: Decompression times of Tunstall, AIVF, and VMA in seconds.

codeword length
english.300MB dna

Tunstall AIVF VMA Tunstall AIVF VMA

8 17.15 15.61 18.42 8.44 14.40 15.15

9 15.40 14.54 17.29 7.77 14.35 15.11

10 14.36 14.65 17.41 6.90 14.14 14.88

11 12.71 15.14 17.62 6.89 14.59 15.05

12 11.37 15.82 17.94 6.20 14.30 14.93

13 10.90 18.52 19.08 6.04 14.37 15.72

14 9.70 19.53 20.72 5.51 15.16 15.96

15 9.14 23.40 27.77 5.57 16.89 20.36

16 11.78 27.49 35.15 5.86 20.21 25.11
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Table 3.5: Experimental results compared with variable length encoding methods. The

codeword length of VF codes is fixed to 14.

comp. ratios (%) comp. times (sec) decomp. times (sec)

english.300MB dna english.300MB dna english.300MB dna

VMA 58.38 25.59 60.06 30.41 20.72 15.96

AIVF 58.56 25.57 160.71 32.48 19.53 15.16

Tunstall 76.76 30.09 19.03 16.83 9.70 5.51

v2vdc 52.61 N/A 6163.93 N/A 4.93 N/A

gzip 37.82 28.12 23.60 49.87 2.79 3.33

bzip2 28.03 25.76 38.10 52.51 13.00 20.98

LZMA 24.98 22.73 345.05 730.48 5.72 7.66





Chapter 4

Dictionary Training Algorithm for

Efficient VF Coding

In this chapter, we present a way of training the parse tree by compressing the input

text and modifying the parse tree repeatedly. We also discuss a method that uses

parts of the input text for training in order to reduce the training time. The training

method improves the compression ratio of VF coding rapidly to the level of state-of-

the-art compression methods. This work has already been partially presented in [45].

4.1 Reconstruction Algorithm

In this section, we present an algorithm of reconstructing a parse tree to improve the

compression ratio. The basic idea is to exchange useless strings in the current parse

tree for the other strings not in the parse tree which are expected to be frequently

used. Although we must evaluate each string by some measures for doing that, it is

quite hard to evaluate precisely in advance as we stated in Chapter 1. Therefore, we

employ a greedy approach; we reconstruct the parse tree with two empirical measures:

the accept count and the failure count. For any string s in the parse tree, the accept

51
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count of s, denoted by A(s), is defined as the number of the occurrences of string s in

the encoding. For any string t that is not assigned a codeword, the failure count of t,

denoted by F (t), is defined as the number of times that the prefix t[1..|t| − 1] of t was

in the parse tree and the codeword traversal failed at the last character of t. If F (t)

is sufficiently large, it is expected that we can make the average phrase length longer

by including t in the parse tree. The computations of A(s) and F (t) are embedded

in the encoding procedure. When p := T [i..j] is parsed in the encoding, A(p) and

F (p · T [j +1]) are incremented by one simultaneously. Figure 4.1 shows an example of

computing these measures.

The reconstruction algorithm is shown in Algorithm 4.1. Comparing the minimum

of A(s) and the maximum of F (t), the reconstruction algorithm repeats exchanging

s for t if the former is less than the latter, that is, it removes s from the parse tree

and enter t instead. Note that a reconstructed parse tree is not a complete tree any

longer, even if the origin is a complete tree like the Tunstall tree. Several internal

nodes might be assigned codewords; thus a coding with such a tree becomes almost

instantaneous encoding. To train a parse tree we apply the algorithm many times.

For each iteration, it first encodes the input data with the current parse tree. Next, it

evaluates the contribution of each string in the parse tree, and then exchanges some

infrequent strings for the other promising strings.

Next we discuss the time and space complexities of the algorithm in Algorithm 4.1.

We assume that the sets D and E are realized by priority queues to calculate Lines 14

and 15 efficiently. For the loop in Lines 2–11, Line 3 takes O(|T |) time totally, and all

lines except Lines 3 and 7 are done in O(1) time for each. Let E ′ be the number of

parsed phrases, namely, it is equal to |E| after processing the loop. Then, the number

of iterations of the loop is O(E ′), and Line 7 takes O(E ′ logE ′) time totally. For the

while loop in Lines 13–23, Lines 18 and 22 take O(log |D|) and O(logE ′), respectively.

For each iteration, |E| decreases exactly 1 while |D| decreases 1 at most. If |E| < |D|
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Algorithm 4.1 Reconstruction algorithm for parse trees.

Input: Text T and set of strings in the parse tree D.

Output: A set of strings.

1: i← 1, E ← ∅.

2: while i < n do

3: p← the longest prefix T [i..j] of T [i..n] which is also included in D.

4: A(p)← A(p) + 1.

5: if j < |T | then

6: q ← p · T [j + 1].

7: E ← E ∪ {q}.

8: F (q)← F (q) + 1.

9: end if

10: i← j + 1.

11: end while

12: N ← ∅.

13: while D ̸= ∅ and E ̸= ∅ do

14: s← argmins∈DA(s).

15: t← argmaxt∈EF (t).

16: if A(s) < F (t) then

17: N ← N ∪ {t}.

18: D ← D \ {s}.

19: else

20: break

21: end if

22: E ← E \ {t}.

23: end while

24: return D ∪N .
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then the number of iterations is just |E|, otherwise it is also restricted to O(|E|). Thus,

the number of iterations of the while loop is O(E ′). Therefore, the time complexity of

the algorithm is O(E ′ log |D|E ′+E ′ logE ′+ |T |). Roughly speaking, it is O(|T | log |T |)

since both E ′ and |D| are O(|T |). For the space consumption, we can prove that it is

O(|T |) space from the same discussion on Algorithm 2.8.

4.2 Speeding-up by Sampling

The reconstruction of parse trees discussed above takes much time if the input text

is large, since the algorithm scans the whole text many times. If we train with small

parts of the text, we can save the training time. Note that we must scan the whole

text once to construct the initial parse tree.

We consider training with a string that consists of several pieces randomly selected

from the text. Using only one part of the input text T , namely a substring of T , does

not work well even if we select a substring randomly for each reconstruction, since the

parse tree reconstructed by the above algorithm fits too much on the last selection.

Using a set of pieces randomly selected from the whole text works well. Let r be the

number of pieces, and p be the length of a piece. For given r ≥ 1 and p ≥ 1, we

generate a sample text S from T at every reconstruction as follows:

S := s1 · · · sr (sk := T [ik..ik + p− 1] for 1 ≤ k ≤ r),

where ik is a start position of a piece satisfying 1 ≤ ik ≤ |T | − p + 1. We select the

pieces in a uniform random manner for each k. Then, |S| = rp holds. Note that

the compression ratios and speeds depend on |S| and r in addition to the number of

training iterations.
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4.3 Experimental Results

We have implemented the Tunstall coding and the STVF coding with the training ap-

proach stated in Section 4.1, and compared them with BPEX [23], ETDC [7], SCDC [5],

gzip, and bzip2. Although ETDC/SCDC are variable-to-variable-length codes, their

codewords are byte-oriented and designed for compressed pattern matching. There-

fore, we added them in our experiments. We chose 16 as the codeword length of both

the STVF coding and the Tunstall coding. Our programs are written in C++ and

compiled by g++ of GNU, version 3.4. We ran our experiments on an Intel Xeon (R)

3 GHz and 12 GB of RAM, running Red Hat Enterprise Linux ES Release 4.

We used DNA data, XML data, English texts, and Japanese texts to be compressed

(see Table 4.1). GBHTG119 is a collection of DNA sequences with meta data in

GenBank1, from which we extracted only DNA part. DBLP2003 consists of all the

data in the year 2003 from dblp20040213.xml2. Reuters-21578 (distribution 1.0)3 is a

test collection of English texts. Mainichi19914 is from Japanese news paper, Mainichi-

Shinbun, in the year 1991.

4.3.1 Compression Ratios and Speeds

The methods in our experiments are the following nine: Tunstall (the Tunstall cod-

ing without training), STVF (the STVF coding without training), Tunstall-100 (the

Tunstall coding with 100 times training), STVF-100 (the STVF coding with 100 times

training), BPEX, ETDC, SCDC, gzip, and bzip2.

Figure 4.2 shows the results of compression ratios, where every compressed data

include the dictionary information. We indicate the compression ratios of the averages

1http://www.ncbi.nlm.nih.gov/genbank/
2http://www.informatik.uni-trier.de/~ley/db/
3http://www.daviddlewis.com/resources/testcollections/reuters21578/
4http://www.nichigai.co.jp/sales/corpus.html

http://www.ncbi.nlm.nih.gov/genbank/
http://www.informatik.uni-trier.de/~ley/db/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.nichigai.co.jp/sales/corpus.html
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C(p) 

4. Increment A (p) 
and F( p T [ j+1])

A( p) A( p) + 1

F( p T [ j+1])

F( p T [ j+1]) + 1

1. Traverse 
the parse tree

2. Failed for T [ j +1]

3. Output 
codeword C(p) 

p = T [i.. j]

C(p) 
T [ j +1]

Figure 4.1: An example of computing accept counts and failure counts.

Table 4.1: Outline of the text files used for our experiments.

Texts size(byte) |Σ| Contents

GBHTG119 87,173,787 4 DNA sequences

DBLP2003 90,510,236 97 XML data

Reuters-21578 18,805,335 103 English texts

Mainichi1991 78,911,178 256 Japanese texts (encoded by UTF-16)
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of ten executions for Tunstall-100 and STVF-100. STVF, Tunstall-100, and STVF-100

were the best in the compression ratio comparisons for GBHTG119. Since ETDC and

SCDC are word based compression methods, they did not work well for the data that

are hard to divide into words, such as DNA sequences and Japanese texts. Note that,

while Tunstall had no advantage to STVF, Tunstall-100 gave almost the same perfor-

mance with STVF-100. Moreover, those were better than gzip. Figure 4.3 shows the

results of compression times. STVF was much slower than Tunstall and ETDC/SCDC

since it takes much time for constructing a suffix tree. As Tunstall-100 and STVF-100

took extra time for training, they were the slowest among all for any dataset. Fig-

ure 4.4 shows the results of decompression times. The decompression times of ETDC,

SCDC, and gzip are the shortest, and those of bzip2 and BPEX are the longest. The

results of Tunstall and STVF were between those of BPEX and ETDC/SCDC in all

the data. The decompression procedures of Tunstall-100 and STVF-100 take more

time than that of Tunstall and STVF.

4.3.2 Effects of Training

We examined how many times we should apply the reconstruction algorithm for suffi-

cient training. We chose Reuters-21578 as the test data in the experiments. Figure 4.5

shows the result of the effect of training for STVF and Tunstall. The compression ratios

of both algorithms were improved rapidly as the number of reconstruction increases.

They seem to come close asymptotically to the same limit, which is about 32%.

We also examined how the sampling technique stated in Section 4.2 effects on

compression ratios and speeds. Figures 4.6 and 4.7 show the results for the Tunstall

codes with 20 times training. Figure 4.6 shows compression ratios and Figure 4.7 does

compression speeds. We measured the average of 100 executions for each result. We

observed that the compression ratio achieves almost the same as that of the training

method without sampling when the sample size |S| is 25% of the entire text and the
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Figure 4.2: Compression ratios.

Figure 4.3: Compression times.
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Figure 4.4: Decompression times.

Figure 4.5: The effects of training.
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Figure 4.6: Compression ratio of training method with sampling.
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Figure 4.7: Compression time of training method with sampling.
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number r of pieces is 100. The Tunstall code with training is superior to BPEX in

compression ratios when |S| is 20% and r = 40. The average compression time of the

Tunstall codes at that point was 30.97 seconds, while BPEX takes 58.77 seconds.

Although STVF are better than the Tunstall in compression ratios, it is revealed

that the Tunstall with training are also useful from the viewpoint of the compression

time.

4.4 Chapter Summary

In this chapter, we presented a method of improving VF coding by training the parse

tree and carried out some experiments for evaluating it. The experimental results

showed that our method improves compression ratios of VF coding to the level of

state-of-the-art compression methods, such as gzip and BPEX. Tunstall coding with

training are about twice faster than that of BPEX in compression speed when we

gain almost the same compression ratios. VF coding methods with training are stable

and are widely applicable to various data: not only English language texts, but also

Japanese texts, DNA data, and so on.



Chapter 5

Efficient VF Coding Algorithm

Using Re-Pair Algorithm

In this chapter, we propose a method for applying fixed-length coding to the rules ex-

tracted using the Re-Pair algorithm, which was proposed by Larsson and Moffat [21].

The Re-Pair algorithm is a simple offline grammar-based compression algorithm that

replaces the most frequent bigrams in an input text iteratively using nonterminal sym-

bols until all of the bigrams are unique. Our method encodes the rules extracted by

the Re-Pair algorithm using fixed-length codewords, whereas the original algorithm uti-

lized variable-length codewords to achieve a very good compression ratio. We exploit

a simple characteristic of the algorithm to minimize the reduction in the compression

ratio compared with the original algorithm, i.e., the minimum output size occurs fre-

quently during the process of repeated bigram replacement. All of the codewords are

equal in length in our method so we can easily estimate the final output size for each

intermediate rule set produced by the Re-Pair algorithm. Thus, we can obtain the

minimum output at a reasonable cost by preserving the best point and rewinding the

rule set back to this point.

63
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5.1 Re-Pair Algorithm

The Re-Pair algorithm is a simple offline grammar-based compression method, based

on context-free grammars (CFGs). Formally, a CFG is represented by a quadruple

(Σ, V, σ,R), where Σ := {a1, . . . , a|Σ|}, V := {a|Σ|+1, . . . , a|Σ|+|V |}, σ ∈ V , and R

are the terminal alphabet, the non-terminal alphabet, the start symbol, and a finite

relation from V to (Σ ∪ V )∗, respectively. Note that Σ and V are disjoint sets. The

CFG constructed by the Re-Pair algorithm consists of rules in which

σ ⇒ σ1σ2 · · ·σm (σ := a|Σ|+|V |,∀σi ∈ Σ ∪ V \ {a|Σ|+|V |}),

ai ⇒ ajak (|Σ|+ 1 ≤ i < |Σ|+ |V |, 1 ≤ j, k < i),

and all the right-hand sides of the rules are unique.

Algorithm 5.1 shows the Re-Pair algorithm. The algorithm replaces the most fre-

quent bigrams in the sequence with a new non-terminal symbol and adds the replace-

ment into R as a rule. The algorithm repeats this procedure until there are no repeated

bigrams, i.e., the frequencies of all bigrams are equal to one (See Figure 5.1). After

that, the algorithm adds the start symbol σ, which generates the obtained sequence,

into R. Finally, the algorithm encodes all the rules except for σ by chiastic slide

method, and encodes σ with minimum-redundancy codes [25, 39].

It is shown by Larsson and Moffat that Re-Pair runs in O(n) time for an input text

of length n. To achieve O(n) time processing, the input text is transformed to a set

of doubly-linked lists in which the same bigrams are linked. Moreover, a hash table to

access a descriptor of each bigram in O(1) time and a priority queue for the descriptors

to manage the frequencies of bigrams are also used.
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Figure 5.1: Example of Re-Pair algorithm. It repetitively replace the most frequent

bigram into a new symbol.

Algorithm 5.1 The Re-Pair algorithm.

Input: A text T = T [1..n] and an alphabet Σ = {a1, a2, · · · , a|Σ|}.

Output: The binary coded sequence of the rule set R for T .

1: s← |Σ|+ 1; R← ∅.

2: while the frequency of the most frequent bigram in T is not equal to 1 do

3: (β, γ)← the most frequent bigram in T .

4: Add (as ⇒ βγ) to R.

5: Replace all the bigrams βγ in T with as by the left-to-right manner.

6: s← s+ 1.

7: end while

8: Add (σ ⇒ T ) to R.

9: Output encoded R with an entropy encoding.
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5.2 Re-Pair-VF

We can easily encode the rule set generated by the Re-Pair algorithm using a fixed-

length code so ai is coded by a ⌈lg ξ⌉-bits integer, where ξ denotes the number of

non-terminal symbols and terminal symbols except for the start symbol σ. However,

the compression ratio would be worse than the original Re-Pair algorithm.

The concept we apply to improve the compression ratio is based on the observation

that adding a new rule does not always improve the ratio. The sequence always becomes

shorter by replacing bigrams with a new rule but the rule set becomes larger. Thus,

the codeword becomes longer so the final output eventually becomes larger. If we find

the best value of ξ, we can obtain the minimum output in this framework. Note that

ξ increases monotonically by one after each repetition.

The final output is obtained as a sum of encoded rules. For the original Re-Pair

algorithm, it is difficult to predetermine whether the output will become shorter prior

to replacing bigrams because the algorithm employs a variable-length code.

We can easily estimate the output size using a fixed-length code. Each non-terminal

symbol ai is encoded into a ⌈lg ξ⌉-bits integer. We output ξ−|Σ| bigrams in addition to

the information of Σ as the dictionary, where the dictionary size is 2(ξ−|Σ|)⌈lg ξ⌉ bits,

as well as some auxiliary bits for storing Σ and ξ. The lengths of the auxiliary bits are

fixed for the same input text, so we do not need to consider them. The right-hand side

of the start symbol σ is encoded using |σ|⌈lg ξ⌉ bits as the encoded sequence, where

|σ| is the length of the right-hand side of σ. Therefore, the estimated output size f(ξ)

is given as follows:

f(ξ) = [2(ξ − |Σ|) + |σξ|] · ⌈lg ξ⌉,

where σξ is the sequence corresponding to the initial symbol with a dictionary size of ξ

(see Figure 5.2). The term |Σ| is an invariant factor and |σξ| depends on the number of

repetitions, which correspond to the size of the rule set R. This means that f depends
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only on ξ. In other words, the value of ξ controls the final output size.

After computing f(ξ) for each intermediate rule set, we can find the best value of

ξ for f after all the repetitions are complete. We denote this value ξ as ξ̂. However,

it is not sufficient to compare only the current value of f with the next value after

replacement, because the value may fall into a local minimum. Therefore, we have to

complete all of the iterations.

There are two approaches for outputting σ with σ1, · · · , σm(ξ̂) after obtaining ξ̂.

The first approach is to rewind the rule set constructed using the Re-Pair algorithm

to produce the intermediate set for ξ̂ and replace T (see Figure 5.3). The second

approach is to preserve ξ and T while the current minimum value of f is updated

during repetitions. The first approach can reduce the memory consumption required

for encoding but we need to expand σ partially during outputting. The second approach

requires a lot of memory but the output procedure is simple. Algorithm 5.2 shows the

first approach.

The function R(i) in Algorithm 5.2 denotes the bigram of the right-hand side of

the ith rule ai. For example, for (ai ⇒ βγ) ∈ R, R(i) := (β, γ). In this algorithm, we

identify the rule ai by its subscript i while σ[i] denotes the ith non-terminal symbol on

the right-hand side of σ.
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Figure 5.2: Output sequence of our algorithm. We output the right hand side of each

entry in the dictionary followed by the sequence corresponding to the initial symbol σ.

In this figure, |Σ| = 3 and ξ = 7 hold. The output size is therefore 39 bits.

Figure 5.3: The first approach for outputting the compressed sequence and the dictio-

nary after obtaining ξ̂. Underlined entries of the dictionary and σξ̂ are output.
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Algorithm 5.2 Re-Pair-VF algorithm.

Input: A text T = T [1..n] and an alphabet Σ = {a1, a2, · · · , a|Σ|}.

Output: The binary coded sequence of the rule set R for T .

1: ξ ← |Σ|+ 1; R← ∅; b←∞; ξ̂ ← ξ.

2: while the frequency of the most frequent bigram in T is not equal to 1 do

3: (β, γ)← the most frequent bigram.

4: Add (aξ ⇒ βγ) to R.

5: Replace all of the bigrams βγ in T with aξ from left to right.

6: if f(ξ) < b then

7: b← f(ξ).

8: ξ̂ ← s.

9: end if

10: ξ ← ξ + 1.

11: end while

12: Add (σ ⇒ T ) to R.

13: Output ξ̂ and the information related to Σ.

14: for i← |Σ|+ 1 to ξ̂ do

15: Output R(i) with ⌈lg ξ̂⌉ bits for each symbol.

16: end for

17: for i← 1 to the size of the right-hand side of σ do

18: Call Procedure rewind-output(σ[i], ξ̂, R).

19: end for
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Algorithm 5.3 Procedure rewind-output.

Input: Integer ξ, the best dictionary size ξ̂, and rule set R.

1: if ξ ≤ ξ̂ then

2: Output ξ with ⌈lg ξ̂⌉ bits.

3: else

4: (β, γ)← R(ξ).

5: Call Procedure rewind-output(β, ξ̂, R).

6: Call Procedure rewind-output(γ, ξ̂, R).

7: end if
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5.3 Experiments

5.3.1 Compression Performance

We implemented our proposed algorithm, known as Re-Pair-VF, and compared it to

STVF coding (STVF) [13], the original Re-Pair algorithm1 (Re-Pair), BPEX [23],

gzip, bzip2, and LZMA. We measured the compression ratios and the compression

and decompression times. We used the default options for gzip and bzip2. Re-Pair-

VF and STVF are variable-to-fixed length encoding methods, whereas Re-Pair, gzip,

and bzip2 are variable-to-variable length encoding methods. Our program was written

in C++ and compiled using g++ version 4.6. We performed the experiments on a

workstation equipped with an Intel Xeon (R) 3 GHz CPU with 12 GB RAM, which

operated Ubuntu 12.04.

We used XML data, DNA data, English texts, and Japanese texts in our experi-

ments (see Table 5.1 for details). “Dazai.utf.txt” was the complete works of Osamu

Dazai2, which was written in Japanese and encoded by UTF-8. “DBLP2003.xml” com-

prised all of the 2003 data from dblp20040213.xml3. “GBHTG119.dna” was a collection

of DNA sequences with meta data in GenBank4, from which we extracted only DNA

part. “Reuters21578.txt” (distribution 1.0)5 was a sample collection of English texts.

Table 5.2 shows the compression ratios for each file and the compression method,

which we measured as the (compressed file size)/(original file size). As shown in the

table, Re-Pair-VF was better than STVF and gzip for natural language texts. In

particular, Re-Pair-VF was approximately 1.3 times better than gzip, whereas it was

1.2 times worse than Re-Pair.

1http://ihome.cuhk.edu.hk/~b126594/en/restore.html.
2http://j-texts.com/.
3http://www.informatik.uni-trier.de/~ley/db/.
4http://www.ncbi.nlm.nih.gov/genbank/.
5http://www.daviddlewis.com/resources/testcollections/reuters21578/.

http://ihome.cuhk.edu.hk/~b126594/en/restore.html
http://j-texts.com/
http://www.informatik.uni-trier.de/~ley/db/
http://www.ncbi.nlm.nih.gov/genbank/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Table 5.3 shows the maximum size of the dictionary max(ξ) and the best value ξ̂

defined in the previous section. We can observe that ξ̂ becomes almost half of max(ξ)

from the result.

Table 5.4 shows the compression times. The results show that Re-Pair-VF was two

times faster than Re-Pair. This means that ξ̂ can be selected with no increase in the

time requirements. Moreover, Re-Pair took longer to encode the rules with complicated

methods.

Table 5.5 shows the decompression times. Re-Pair-VF was faster than Re-Pair and

STVF, and approximately three times faster than bzip2.

5.3.2 Pattern Matching Performance

We also implemented pattern matching algorithms for Re-Pair-VF according to the

methods of Kida et al. in 2003 [14] to compare the pattern matching performance with

compressed texts using STVF, BPEX, and gzip. We used UNIX zgrep for pattern

matching on the text compressed by gzip. We omitted the original Re-Pair algorithm

from this experiment, because it needs to decode the variable length codes and thus the

compressed pattern matching of it is slower than that of Re-Pair-VF. We chose patterns

with lengths of 5–50 characters in the text. We measured the pattern matching times

for 50 patterns of each length and calculated the average.

Tables 5.6–5.9 list the results for the matching throughput performance, which was

measured as (the original text length)/(the average time for pattern matching). A

higher value was better in the tables. Each left-most column labeled m indicates the

pattern length. The tables show that the pattern matching performance of Re-Pair-VF

was the fastest except for BPEX. In particular, Re-Pair-VF was 1.1–2.8 times faster

than zgrep.
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Table 5.1: Text files used in our experiments.

Texts Size (byte) |Σ| Contents

Dazai.utf.txt 7,268,933 141 Japanese texts (encoded by UTF-8)

DBLP2003.xml 90,510,236 97 XML data

GBHTG119.dna 87,173,787 4 DNA sequences

Reuters21578.txt 18,805,335 103 English texts

Table 5.2: Compression ratios as percentages.

Re-Pair-VF Re-Pair STVF BPEX gzip bzip2 LZMA

Dazai.utf.txt 25.86 21.90 33.74 32.14 33.41 22.93 23.06

DBLP2003.xml 13.67 11.04 22.08 19.11 17.30 11.26 11.62

GBHTG119.dna 28.01 23.84 24.07 28.12 28.23 26.00 23.36

Reuters21578.txt 27.96 23.40 37.21 33.60 36.98 25.80 23.87

Table 5.3: The maximum dictionary size (denoted by max(ξ)) and the best size of

dictionary (denoted by ξ̂).

max(ξ) ξ̂

Dazai.utf.txt 247,599 123,812

DBLP2003.xml 1,560,135 780,037

GBHTG119.dna 1,928,611 964,183

Reuters21578.txt 694,245 347,098
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Table 5.4: Compression times in seconds for each dataset.

Re-Pair-VF Re-Pair STVF BPEX gzip bzip2 LZMA

Dazai.utf.txt 3.536 7.372 1240.854 22.953 0.752 0.820 7.048

DBLP2003.xml 41.339 109.287 1609.241 145.601 2.528 14.925 54.279

GBHTG119.dna 46.959 152.454 1708.855 84.489 17.513 11.561 160.690

Reuters21578.txt 10.881 25.002 1395.139 54.919 1.268 2.416 20.637

Table 5.5: Decompression times in seconds for each dataset.

Re-Pair-VF Re-Pair STVF BPEX gzip bzip2 LZMA

Dazai.utf.txt 0.064 0.160 0.680 0.248 0.064 0.312 0.132

DBLP2003.xml 0.972 1.548 2.048 3.032 0.596 2.628 0.972

GBHTG119.dna 1.008 2.168 3.444 2.832 0.744 4.128 1.676

Reuters21578.txt 0.224 0.552 1.168 0.660 0.172 0.796 0.368
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Table 5.6: Matching throughput with DBLP2003.xml (MB/s).

m Re-Pair-VF STVF BPEX gzip

5 202.315 106.427 1506.524 159.630

10 182.975 106.297 1508.410 160.875

15 200.308 106.147 1508.409 163.289

20 199.501 105.899 1508.410 154.789

25 198.872 105.811 1508.409 153.303

30 194.906 105.603 1508.409 151.162

35 196.587 105.318 1508.410 133.802

40 195.231 105.014 1508.410 133.130

45 193.363 104.385 1508.409 131.382

50 191.370 103.897 1508.410 136.392

Table 5.7: Matching throughput with dazai.utf.txt (MB/s).

m Re-Pair-VF STVF BPEX gzip

5 312.544 12.649 908.560 111.676

10 302.853 12.616 908.560 113.191

15 302.853 12.603 908.560 113.257

20 302.853 12.562 908.560 113.476

25 302.853 12.555 908.560 114.536

30 259.589 12.520 908.560 113.564

35 259.588 12.487 908.560 112.974

40 227.140 12.416 908.562 111.972

45 201.902 12.351 908.558 114.228

50 181.712 12.250 908.560 114.155
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Table 5.8: Matching throughput with GBHTG119.dna (MB/s).

m Re-Pair-VF STVF BPEX gzip

5 159.430 55.352 1083.897 86.110

10 149.633 55.268 1089.604 86.706

15 148.720 55.234 1088.566 86.533

20 153.030 55.181 1089.604 86.762

25 156.903 55.111 1089.604 86.614

30 162.581 54.989 1089.604 86.875

35 165.938 54.947 1089.604 86.646

40 169.492 54.834 1089.604 86.460

45 174.745 54.664 1087.529 86.829

50 177.953 54.524 1089.604 86.795

Table 5.9: Matching throughput with reuters21578.txt (MB/s).

m Re-Pair-VF STVF BPEX gzip

5 223.859 27.319 783.507 108.591

10 210.896 27.257 783.507 108.739

15 223.859 27.246 783.507 109.371

20 223.045 27.253 783.507 109.727

25 214.294 27.193 783.507 110.222

30 203.092 27.165 783.507 106.255

35 195.877 27.058 783.507 104.893

40 188.042 26.932 783.507 104.687

45 180.809 26.796 783.507 99.784

50 174.113 26.632 783.507 101.029
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5.4 Chapter Summary

In this chapter, we proposed a new VF coding method based on the Re-Pair algo-

rithm, which we named as Re-Pair-VF. The experimental results demonstrated that

our proposed coding method was superior to existing VF coding methods in terms of

the compression ratio and compression time. The Re-Pair-VF algorithm uses fixed-

length codewords but it delivered good compression performance, which was similar to

bzip2. We also showed that pattern matching in a text compressed using the proposed

coding method could be performed much faster than ordinary decompress-then-search

approaches such as zgrep.





Chapter 6

Application of VF Coding to Large

Texts

In this chapter, we discuss methods for applying VF coding to large texts and their effi-

ciency. We propose a large text compression method for VF coding by block separation

and a direct accessing method on a compressed text by VF coding. We additionally

give experimental results of each proposed method in this chapter.

6.1 Efficient VF Coding by Block Dividing and Shared

Dictionaries

Mainly to memory usage limitation, it is hard for compression systems to handle over

hundreds of megabytes of text at once, and thus, an ingenious device is needed. For

example, online compression methods such as Lempel-Ziv family compression meth-

ods utilize a dictionary window scheme or discard a portion of its dictionary when it

increased too much. On the other hand, offline methods such as a compression based

on the Burrows-Wheeler transform [8] divide an input text into a sequence of smaller

disjoint blocks, which are then compressed.

79
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When the input text is divided into blocks to be compressed by a dictionary-based

compression, we expect the compression performance to be improved by sharing a

part of dictionary among blocks. Wan and Moffat [42] proposed a series of methods

that merge dictionaries extracted by a Re-Pair algorithm proposed by Larsson and

Moffat [21]. The Re-Pair algorithm is a simple offline compression method based on

grammar transformation, and it has an extremely high compression ratio. In Wan and

Moffat’s methods, the memory consumption is successfully controlled in practice with

keeping high compression ratios. However, the compression speeds are considerably

sacrificed.

In this section, we take two simpler approach to this issue. The first approach

prepares a common part of dictionary in advance and share it among all blocks. We

call this Re-Use algorithm. In this approach, the compression speed and ratio depend

on three parameters: block size, dictionary size, and size of shared dictionary. We can

easily guess that the amount of dictionaries stored for every blocks (local dictionaries)

is expected to be decreased by increasing the ratio of shared dictionary, whereas the

compression ratio for each block will be depressed. The second approach adaptively

reconstructs the shared dictionary, called Adaptive Dictionary Sharing method (ADS

method). In ADS method, only useful entries of the dictionary extracted at the pre-

ceding block are reused at the next block, i.e., the entries which appear in the next

block many times over a given threshold are shared between the consecutive blocks.

Especially, we discuss here the effect of sharing a part of dictionary on compression

performances when input text is divided into disjoint blocks to be compressed by the

Re-Pair algorithm. In our method, we use a part of the set of rules as a shared

dictionary, which is extracted by the Re-Pair algorithm from the first block of text.

To examine the compression performance of our approach, we implemented Re-Use

method and ADS method and carried out several experiments using various combi-

nations of parameters. Experimental results showed that our proposed methods ran
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much faster than Re-Merge and achieved similar compression ratios to Bzip2 for sev-

eral combinations of parameters, even though they use fixed-length codewords. They

also revealed that Re-Use method was actually effective when the block size is larger,

the length of codewords (the dictionary size) is about 20, and approximately half the

dictionary is shared for English text and that ADS method yielded better compression

ratio than that of Re-Use method.

6.1.1 Re-Use Algorithm

In this section, we make a brief sketch of the block-wise compression scheme we used.

Re-Use divides the input text T of length n into blocks of fixed length b and then runs

Re-Pair for each block. Moreover, Re-Use shares a part of the dictionary among all

blocks, i.e., it seeks to reuse useful entries in the dictionary. We call the shared part as

shared dictionary. Let ℓ and s be the codeword length and the shared dictionary size.

Now we assume that b, s, and ℓ are given as input parameters. We also assume that

the input text T is represented as a sequence of nonnegative integers {0, . . . , |Σ| − 1}.

Re-Use has two phases: shared dictionary construction and block-wise compression.

In the former, Re-Use constructs a shared dictionary only from a part of the input

instead of the whole input. There are several way of choosing the representative part

from the input. For example, the most simple way is to choose the first block as the

part. Another way is to sample some pieces from the whole input and concatenate them

into one for the part. How to choose the representative part affects the compression

performance. We will present three ways at the end of this section. For the construction

algorithm, the same way of Re-Pair is used, i.e., the most frequent bigrams in the chosen

part are replaced with generating rules of a CFG.

After constructing a shared dictionary, Re-Use processes the blocks one by one. The

process is performed as follows: (1) for each entry in the shared dictionary, replace the

bigrams in the current block with a corresponding non-terminal symbol, and then
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obtain an intermediate compressed sequence, (2) apply Re-Pair onto the intermediate

sequence to obtain a fully-compressed sequence with a local dictionary, (3) output the

fully-compressed sequence and local dictionary, (4) and repeat (1)–(3) for all the blocks.

Figure 6.1 illustrates the process flow of Re-Use.

The dictionary and sequence are usually encoded separately. We output the encoded

shared dictionary at first, and then output all the encoded local dictionaries. For our

experiments in Section 6.3.1, we encode all the symbols in the dictionaries with ℓ bits.

Since each entry in the dictionaries consists of two symbols, any delimiters between

two adjacent encoded entries are not required. Moreover we have no use to encode the

left-hand side for all the entries because they are just ordered in serial number.

Now we discuss how to sample the representative part for constructing the shared

dictionary.

First-Block Sampling First-Block Sampling method is the most naive way. It ap-

plies Re-Pair to the first block t := T [0 : b) of the input to obtain a dictionary. In this

method, we reuse the first s entries of the obtained dictionary as the shared dictionary.

This method is much lightweight and works well when the type of the input does not

change.

Random Sampling Random Sampling method randomly takes samples over the

whole input, and then concatenates the sampled pieces into one to make the represen-

tative sequence (Figure 6.2). The shared dictionary is obtained by running Re-Pair

on the sampled text. Let r and p be the number of sampling pieces and the length of

each piece, respectively. We assume that these are additionally given as input param-

eters. As shown in Section 6.3.1, this method works better than First-Block Sampling

method when the type of the input changes in the middle. However, it causes the issue

of offline because we have to scan the whole input at once in order to gather the pieces.
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Block-Head Sampling Block-Head Sampling method takes samples only from the

head portions with length c of all blocks (Figure 6.3). We assume c is a given parameter.

This method is simpler than Random Sampling method, but it works as well. Of course,

this also has the offline issue as same as Random sampling for a large input.

6.1.2 Adaptive Dictionary Sharing Method

We now discuss ADS method. In ADS method only the rules which are frequently used

in the next block are reused. The rest infrequent rules are overwritten by new rules.

Let m be the minimum frequency. A rule α ∈ V is said to be frequent if it is used m

times or more when replacing the next block. The ith block of the input is denoted by

B[i](0 ≤ i < N), where N = ⌈n/b⌉ denotes the number of blocks. It should be noted

that the dictionary size |V ∪ Σ| is less than or equal to 2ℓ.

The outline of our algorithm is as follows (see also Algorithm 6.1).

1. Applying Re-Pair to the first block B[0], we gain an initial dictionary and the

compressed data of B[0].

2. We repeat the following process for the remaining blocks B[i](1 ≤ i < N).

2-1. We repeat replacing the current block B[i] by using all the bigrams in dic-

tionary D one by one with checking if it is frequent or not for the given

threshold m. If the bigram is not frequent, we leave the replacement un-

done and mark the bigram with “vacant.” We also count the number of

marked rules simultaneously.

2-2. We apply Re-Pair to the intermediate sequence (half-compressed data) ob-

tained from 2-1. In this step, new rules overwrite the “vacant” entries in

the dictionary.

2-3. We output the compressed sequence and the newly created rules with the

position information where the overwriting occurs.
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Figure 6.1: The process flow of Re-Use.

Figure 6.2: Random sampling method.

Figure 6.3: Block-Head sampling method.
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Note that the rule overwriting in this approach jumbles the dependency ordering of

the rules of Re-Pair. Recall that, for Re-Pair, we can assume that any rule αi ⇒ αjαk

satisfies j, k < i. However, the rule overwriting disrupts this ordering. Thus, an

additional effort is required to perform correct replacing at the process 2-1.

The replacement is correctly done by processing the rules in the chronological order

of generation. We manage the order with three queues N , F , and U to trace all rules

in the order. Queues N , F , and U respectively store indexes of vacant entries, frequent

entries, and used entries. At first, we set N := ⟨0, . . . , 2ℓ−|Σ|−1⟩, F := ∅, and U := ∅

because all the entries are vacant at first. Lines 4–24 process each block. Step 2-1

is performed in Lines 5–13. We dequeue an entry index from queue U and examine

whether the entry is frequent or not one by one. If the entry is frequent, we replace all

occurrences of the bigram corresponding to the entry with the entry index and enqueue

the entry index into F , otherwise we enqueue the index into N . Step 2-2 is done in

Lines 14–20. We dequeue an entry index from N to replace the most frequent bigram

in the current block with the index. After that, the index is enqueued into F . We

obtain a fact that all the elements of queue U are enqueued in the chronological order

in Line 9 from following three observations: (1) queue U is initialized by empty set; (2)

entry indexes are enqueued in the order of their generation in Line 19; and (3) queue

U is substituted by F in Line 21. Therefore, all the elements in U are arranged in the

chronological order in Line 5.

Checking whether each rule is frequent or not can be done in O(1) time by utilizing

the data structure proposed in [21]. Thus, our algorithm runs in O(n) time as well as

Re-Pair. The same information is not required when decoding, because the sequence

of terminal symbols can be restored only by the dictionary.
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Algorithm 6.1 ADS algorithm.

Input: Divided text B[0 : N − 1] into blocks.

Output: An encoded text.

1: N ← ⟨0, . . . , 2ℓ − |Σ| − 1⟩.

2: F ← ∅.

3: U ← ∅.

4: for all blocks B[j] do

5: while U ̸= ∅ do

6: i ← Dequeue(U).

7: if bigram D[i] occurs m times or more in B[j] then

8: Replace all the occurrences of D[i] in B[j] with i.

9: Enqueue(F , i).

10: else

11: Enqueue(N , i).

12: end if

13: end while

14: while all bigrams in B[j] are not unique do

15: i ← Dequeue(N ).

16: α ← the most frequent bigram in B[j].

17: D[i] ← α.

18: Replace all the occurrences of α in B[j] with i.

19: Enqueue(F , i).

20: end while

21: U ← F .

22: F ← ∅.

23: Output B[j].

24: end for
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6.2 Direct Access on Compressed Texts by VF Cod-

ing

In this section, we focus on a problem of extracting a substring from an encoded text,

i.e., the problem is to extract T [pos], . . . , T [pos+ℓ] from the encoded text E(T ) for given

position pos and length ℓ, where T is an uncompressed text. We call the problem as

the substring decompression problem. A naive approach to the problem decompresses

and scans the data from the beginning, thus requires Θ(pos + ℓ) time. Bille et al. [3]

proposed a grammar-based compression method that solves the problem in O(logN+ℓ)

time, where N denotes the length of T . Maruyama et al. [22] proposed an excellent on-

line grammar-based compression algorithm, named FOLCA, which solves the problem

in O((logN + ℓ) log n/ log log n) time, where n denotes the number of variables in the

grammar. These methods are sophisticated, but required to load the whole data on

memory.

We take a simple approach to the problem, which is to add an auxiliary index

structure to VF codes. The index structure stores the phrase boundaries on text T ,

and we represent the index as a fully indexable dictionary (FID). This enables us to

access in constant time directly to the codeword that contains T [pos] for any position

pos. Of course, we need to seek the exact position on the extracted phrase1 for the

substring decompression problem. Therefore, our method takes O(N + ℓ) time in the

worst case, but it reduces to O(N/n + ℓ) time in the average. Moreover, we need

only the auxiliary index structure to find the corresponding phrase, namely, the whole

compressed data is not required to load on memory.

We implemented our method with exploiting Re-Pair-VF, and carried out several

experiments to see the performance. The results show that our method solves the

substring decompression problem much faster than FOLCA in practice.

1Note that each codeword corresponds to a phrase.
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6.2.1 Rank/Select Dictionary

To access directly to a compressed sequence effectively, the index must be represented

by the appropriate data structure. For this problem, we focused on Rank/Select dic-

tionaries. A Rank/Select dictionary is a succinct data structure for a bit string B

supporting the following queries:

Rank(B, i, k) := |{n ∈ [0 . . . i] : B[i] = k}| and

Select(B, i, k) := min{n ∈ B : Rank(B, n, k) = i},

for k ∈ {0, 1}.

Therefore, Rank(B, i, k) is number of k’s in B[0..i] and Select(B, i, k) is ith appear-

ance position of k in B. Hereafter, Rank(B, i, k) and Select(B, i, k) are referred to

as Rankk(B, i) and Selectk(B, i) respectively. Further, in case the bit string is self-

evident from the context, Rank(B, i, k) and Select(B, i, k) are referred to as Rankk(i)

and Selectk(i) respectively.

There are number of studies aiming to reduce the storage for a bit string to theo-

retic lower bound without loss of fast Rank/Select operation. Especially among them,

there are three major implementation, DARRAY [30], SDARRAY [30], and RRR [31].

DARRAY is suitable for dense bit string. On the other hand, when the density of a

bit string is sparse, SDARRAY is suitable. RRR is suited for the bit strings where

the appearances of 1 bits and 0 bits are biased, for instance, the length of it is 2n and

all first n bits of it are 0 and all last n bits are 1. Either Rank or Select operation is

done in constant time with DARRAY and RRR. As for SDARRAY, Select operation

is performed in constant time. Meanwhile, Rank requires O(log(n/m)) time where n

is the length of the bit string and m is the number of 1’s in it. However, the average

time complexity of Rank is constant and practically fast.
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6.2.2 Fast Direct Access Method on Re-Pair-VF compressed

Text

We propose a fast direct access method over Re-Pair-VF compressed text here. First,

the index structure is generated as follows:

1. Compress the input text by Re-Pair VF algorithm and obtain dictionary R and

compressed sequence σ.

2. Generate the bit sequence B with length N as follows:

B[i] =

1 if T [i] is the last character of a phrase,

0 otherwise.

(6.1)

Figure 6.4 illustrates this index structure.

3. Construct an index data structure I in o(N) bits for bit sequence B by using

succinct data representation technique.

After generating the index structure I, dictionary D, index structure I, and sequence

σ are saved into compressed files.

Next, the direct access to the original text over the compressed sequence is per-

formed as follows:

1. Load index structure I and dictionary D from the compressed files.

2. Given the input position pos on the original text, the position of the target

codeword is determined by Rank1(I, pos). (Rank1(i) returns the number of 1’s

appear up to the position i on the bit sequence, therefore, we obtain the number

of codewords up to the position pos by performing this operation.)

3. Load the codeword σ[Rank1(pos)] from the compressed file.
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4. Decompress σ[Rank1(pos)] using dictionaryD, and then, original text from T [pos]

is obtained.

We assume that each codeword length is fixed because the text is encoded by VF

coding. This assumption enables skipping to the target codeword in constant time.

Thus, our proposed direct access method runs in O(pos) time.

6.3 Experiments

6.3.1 Evaluation of ADS method and Re-Use algorithm

We conducted computational experiments using several large datasets. The exper-

iments were performed on a workstation equipped with a 3.6 GHz Intel Xeon (R)

processor with 32 GB RAM, operating on Ubuntu 12.04. In the experiments we uti-

lized Pizza & Chili corpus2, which contains an English text (english), an XML text

(dblp.xml), a DNA sequence (dna), and a protein sequence (protein). We generated the

following large texts from the datasets as test data.

• english: an English language text whose size is 2.2 GB.

• concat: a text of 2 GB which consists of 1 GB of english, 0.5 GB of dblp.xml, and

0.5 GB of dna.

• chaos: a text of 2 GB which repeats the same block of 512 MB, where each block

consists of four 128 MB subblocks of english, dblp.xml, dna, and protein.

We implemented ADS method, in addition to Re-Use methods stated in Sec-

tion 6.1.1, which are First Block Sampling method (1stBlock), Block-Head Sampling

method (Head), and Random Sampling method (Random). All of them are written in

C language.

2Pizza & Chili corpus : http://pizzachili.dcc.uchile.cl/texts.html

http://pizzachili.dcc.uchile.cl/texts.html
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Figure 6.4: The proposed index structure for direct access on compressed text by

VF coding. In this figure, σ := αi0αi1αi3 . . . is a sequence of VF a coding method.

The triangles represents decompression process of each member of the σ. Let T and

B be the original text and the bit sequence constructed from σ and T , respectively.

The jth phrase in T is denoted by bj, which is decomposed by the compression al-

gorithm, corresponding to αij . Given the input position pos on the original text, the

position of the target codeword determined by Rank1(B, pos). In this figure, we have

Rank1(B, pos) = 2. Therefore, T [pos] lies in the second codeword of σ. And then,

decompress the codeword σ[Rank1(B, pos)], and original text from T [pos] is obtained.
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We conducted three experiments. First, we investigated a change of performance of

ADS method for the minimum frequency threshold. Next, we compared ADS method

to Re-Use methods in the compression ratio and speed for the above three texts. More-

over, we compared ADS method to Re-Merge [42]3, gzip4, bzip25, and lzma6.

We measured the compression ratio and time by varying minimum frequency thresh-

old m. Figure 6.5 shows the changes of the total compressed data size (the compressed

text plus the dictionaries), the compressed text size, and the dictionary size of ADS

method for m. From Figure 6.5, we see that the dictionary size becomes smaller when

the threshold was set smaller. This suggests that much more rules are shared between

consecutive blocks when smaller threshold is used, and thus the total dictionary size

becomes smaller. On the other hand, there is no change in compressed text size when

the threshold varied. Totally, according to the decreasing of the dictionary size, the

whole compression ratio becomes better for a smaller threshold. In this experiment,

we obtained the best in compression ratio for m = 1. Therefore, we set m := 1 for

the rest experiments. For the compression speed, the change of m does not affect in

any appreciable way. From the above observation, a smaller threshold is better in any

cases.

It is necessary to examine the effect when ADS method applies to the text, in which

the context varies greatly. In this experiment, we applied ADS and Re-Use algorithms

to concat, and measured the compression ratio and time for various parameters. This

results are shown in Tables 6.1 and 6.2. From Table 6.1, we see that ADS achieved the

best compression ratio for english and concat. From Table 6.2, it is shown that ADS is

slightly slower than Re-Use algorithms due to reconstruction of the shared dictionary.

3Re-Store software : http://ihome.cuhk.edu.hk/~b126594/ja/restore.html
4gzip : http://www.gzip.org/
5bzip2 : http://www.bzip.org/
6lzma : http://www.7-zip.org/

http://ihome.cuhk.edu.hk/~b126594/ja/restore.html
http://www.gzip.org/
http://www.bzip.org/
http://www.7-zip.org/
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Figure 6.5: Compressed data sizes for ADS on concat for various minimum frequency

threshold m. In this figure, Total, Text, and Dictionary respectively indicate the total

compressed data size, the compressed text size, and the dictionary size. Concerning

the parameters, the block size and codeword length are fixed at 128 MB and 20 bits,

respectively.
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Table 6.1: Compression ratios for ADS and Re-Use algorithms (1stBlock, Head, and

Random). In this table, the compression ratios are listed in percent. Concerning the

parameters, the block size, codeword length, shared dictionary size (only in Re-Use

algorithms), and minimum frequency threshold (only in ADS) are fixed at 128 MB,

20 bits, 37.5% of the total dictionary size, and 1, respectively.

method english concat chaos

Re-Use (1stBlock) 30.84 28.25 36.14

Re-Use (Head) 30.19 28.20 35.47

Re-Use (Random) 30.46 28.14 35.38

ADS 29.84 27.23 35.80

Table 6.2: Compression time for ADS and Re-Use algorithms (1stBlock, Head, and

Random). In this table, the compression times are listed in second. Concerning the

parameters, the block size, codeword length, shared dictionary size (only in Re-Use

algorithms), and minimum frequency threshold (only in ADS) are fixed at 128 MB,

20 bits, 37.5% of the total dictionary size, and 1, respectively.

method english concat chaos

Re-Use (1stBlock) 587.71 488.41 516.53

Re-Use (Head) 620.50 517.48 547.39

Re-Use (Random) 623.70 523.00 554.81

ADS 594.50 494.71 525.27
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In order to examine general performance of ADS, we also applied other four com-

pression methods, Re-Merge, gzip, bzip2, and lzma on concat. The results obtained

using ADS and the other methods are shown in Table 6.3. Gzip, bzip2, and lzma were

executed using both the -1 and -9 options. The former option emphasizes compres-

sion time, while the latter does compression ratio. Table 6.3 shows that there is no

method of which all three criteria (compression ratio, compression time, and decom-

pression time) are superior than ADS. For example, ADS achieved better compression

ratio than gzip and it is comparable to bzip2 -9. Lzma -9 and Re-Merge achieved

better compression ratio than ADS, however, they took a lot of time. Also we can see

that ADS runs slowly compared to other method in compression. On the other hand,

decompression is faster than bzip2 and Re-Merge.

6.3.2 Evaluation of Indexing

We conducted computational experiments using several datasets to evaluate the effi-

ciency of our proposed method. The experiments were performed on a workstation

equipped with a 3.6 GHz Intel Xeon (R) processor with 32 GB RAM, operating on

Debian GNU/Linux 6.0.8. In the experiments we utilized dna and the first 500MB of

english and proteins from Pizza & Chili Corpus7. Our proposed methods are denoted

by RVF+RRR, RVF+SDA, and RVF+DA, where RVF stands for Re-Pair-VF. RRR,

SDA, and DA respectively represent RRR [31], SDARRAY [30], and DARRAY [30],

which are methods for storing the index structure B, implemented by Claude8.

We compared compression ratios, compression times, and substring extraction times

of RVF w/o index, RVF+DA, RVF+SDA, RVF+RRR, and FOLCA [22], where RVF

w/o index is a method that scans the compressed text that encoded by Re-Pair-VF

from the beginning of it to search the given position without additional succinct in-

7http://pizzachili.dcc.uchile.cl/texts.html
8https://code.google.com/p/libcds/

http://pizzachili.dcc.uchile.cl/texts.html
https://code.google.com/p/libcds/
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dexable data structure. We chose 0.5 as load factor for FOLCA. Compression times

are calculated by the sum of compression time for Re-Pair-VF and index construc-

tion time for the proposed methods. They are shown in Table 6.4. The results show

that FOLCA is the fastest of all the methods we compared and that RVF+RRR is

the fastest and RVF+SDA is the slowest of the proposed methods. The compression

ratios are calculated by (compressed file size + index size)/(original file size) for the

proposed methods, and by (compressed file size)/(original file size) for RVF w/o index

and FOLCA. They are shown in Table 6.5. The compression ratios of the proposed

methods are worse than those of RVF w/o index due to the additional indexes. The

results show that FOLCA is the best for dna and proteins.500MB, and that RVF+RRR

is the best for english.500MB. The compression ratios of RVF+RRR is the best of pro-

posed method. Although those of RVF+SDA is the worst for dna, those of RVF+DA

is the worst for english and proteins. The reason is that the density of bit sequence

B for dna, which is 0.28, is higher than those for proteins.500MB and english.500MB,

which are respectively 0.13 and 0.11.

Next, we show the results of substring extraction. We measured the times required

for substring extraction beginning position 0–400000000 with length 10. The experi-

mental results are shown in Figures 6.6 – 6.8. They show that RVF w/o index runs

linear to the beginning position and that FOLCA and our proposed methods run con-

stant to it. They also show that all of our proposed methods are faster than FOLCA.

The reason is that our proposed methods do not require to read the whole compressed

data while FOLCA requires to do the entire one. They load rules and the bit sequence

B at first and then determine which codeword does contain the character at given

position with Rank and Select operation on B. It should be noted that we utilize

variable-to-fixed length codes, i.e., all the codewords have fixed length. Therefore the

codeword can be obtained in O(1) time by jumping codewords before it. The results

of RVF+DA and RVF+SDA are almost the same. However RVF+RRR is 2–8 times
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Table 6.3: Compression results for concat using ADS, Re-Merge, gzip, bzip2, and lzma.

Compression ratios are given in percent, and times are given in second.

method comp. ratio (%) comp. time (sec) decomp. time (sec)

ADS 27.23 494.71 33.80

Re-Merge 22.66 7907.85 51.18

gzip -1 38.91 33.22 16.47

gzip -9 32.42 360.55 13.55

bzip2 -1 28.76 156.23 60.07

bzip2 -9 25.18 169.23 65.27

lzma -1 34.68 134.20 42.81

lzma -9 21.56 1994.18 23.32

Table 6.4: Compression times for index in seconds.

Method dna english.500MB proteins.500MB

RVF w/o index 98.794 151.740 169.339

FOLCA 72.798 116.101 114.823

RVF+DA 106.262 161.824 180.002

RVF+SDA 109.864 163.493 181.687

RVF+RRR 103.541 159.260 177.435
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slower than those. The reason is creating Rank/Select dictionary with RRR requires

long time for constructing additional data structures.

6.4 Chapter Summary

In this chapter, we discussed methods for applying VF coding to large texts and their

efficiency. We propose large text compression methods for VF coding by dividing the

input text into blocks and a direct accessing method on a compressed text by VF

coding. We additionally give experimental results of each proposed method in the

chapter.

We proposed Re-Use method and ADS method that divide the input text into fixed

length blocks and encodes each block using the Re-pair algorithm. Re-Use shares a

part of the dictionary among all blocks and all blocks are encoded using codewords of

the same length. ADS method adaptively reconstructs the shared dictionary for block-

wise compression by using Re-Pair. We also empirically showed that Re-Use and ADS

method runs much faster than Re-Merge [42], and obtain similar compression ratios to

bzip2 for several combinations of the parameters. Although they have no outstanding

feature for both compression ratio and speed, none of state-of-the-art compression

tools covers for all aspects. A complicated variable-length encoding can obtain much

better compression ratio with an additional sacrifice of compression speed. Conversely

speaking, our method achieves a comparable compression ratio to bzip2 or lzma by

using fixed-length codes, which is preferable to handle the compressed text.

We also proposed a method that solves the substring decompression problem fast

in practice by adding an index structure to Re-Pair-VF code in this chapter. The

experimental results showed that a compression ratio of proposed method was better

than that of FOLCA on English text and that substring decompression of proposed

method is faster than FOLCA.
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Figure 6.6: Substring extraction times for english.500MB.
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Figure 6.7: Substring extraction times for proteins.500MB.
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Table 6.5: Compression ratios in percentage.

Method dna english.500MB proteins.500MB

RVF w/o index 28.43 30.53 46.27

FOLCA 40.69 47.25 50.34

RVF+DA 47.83 47.62 63.78

RVF+SDA 60.86 45.54 62.39

RVF+RRR 41.05 38.60 54.17



Chapter 7

Concluding Remarks

7.1 Summary of the Results

In this thesis, we addressed the problem of improving variable-length-to-fixed-length

coding (VF coding) algorithms. We proposed several coding algorithms and experi-

mentally showed their performance.

In Chapter 3, we presented an efficient algorithm for AIVF coding, which integrates

the multiple parse trees of an AIVF coding into one, called a VMA tree, and simulates

the encoding process and the decoding process on it. We also estimated the number

of nodes in the VMA tree. Roughly translated, it is larger than M ln(|Σ| + 1) and

bounded byM |Σ|, whereM and |Σ| are the number of codewords and the alphabet size,

respectively. Moreover, we conducted several experiments to evaluate the compression

performance of three compression methods: Tunstall coding, AIVF coding, and VMA

coding. The compression ratios of VMA/AIVF coding methods are better than those

of Tunstall coding by 20% on natural language texts. Although the decompression of

VMA coding is slower than that of AIVF, the compression of VMA coding is up to six

times faster than that of AIVF coding.

In Chapter 4, we presented a method of improving VF coding by training the parse

103
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tree. The experimental results showed that our method applying to the STVF coding

proposed by Kida [13] reached to the level of state of the art compression methods in

compression ratio in fact. Moreover, Tunstall coding with training runs about twice

faster than BPEX, which is an excellent VF coding method proposed by Maruyama et

al. [23], when we gain almost the same compression ratios. VF coding with training

are stable and widely applicable to various data: not only English language texts, but

also Japanese texts, DNA data, and so on.

In Chapter 5, we proposed a new VF coding method that utilizes the Re-Pair

algorithm [21], which we named as Re-Pair-VF. Although the Re-Pair-VF algorithm

uses fixed-length codewords, it delivered extremely good compression performance.

In fact, the experimental results demonstrated that the proposed method was much

superior to the existing VF coding methods, including the method we proposed at the

previous chapter, in terms of the compression ratio and compression time. We also

showed that pattern matching on compressed texts compressed by Re-Pair-VF could

be performed much faster than an ordinary decompress-then-search approach.

In Chapter 6, we discussed methods for applying VF coding to large text compres-

sion. We proposed two methods for VF coding that divides the input text into blocks

and then compresses each block. These techniques reduces memory usage for a large

text input, but deteriorates the compression ratio. Our method controls the depression

in compression ratio by sharing a part of dictionaries for all blocks. We experimen-

tally showed that compression ratio of our method reached to the level of standard

well-known compression tools such as gzip and bzip2. Moreover, we discussed in the

chapter a direct accessing method on a compressed text by VF coding. It is a method

that solves the substring decompression problem fast in practice by adding a succinct

index structure to the Re-Pair-VF coding. The experimental results showed that the

compression ratio of our method was better than that of FOLCA, which is an excel-

lent online grammar compression method with variable length codewords proposed by
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Maruyama [22], and also showed that the substring decompression of our method runs

in almost ten times faster than FOLCA.

Through this study, the author succeeded to develop coding algorithms that are

accord with ease of processing on the compressed data, while keeping comparable

performance in compression ratio and decompression speed with the state-of-the art

non-VF coding algorithms.

7.2 Future Researches

Compression methods we gave in this thesis considerably improved compression ratio,

compression speed, and decompression speed of VF coding. Their compression ratio

and decompression speed exceed to those of well-known compression tools, and their

compression speed reaches to the top of the existent compression methods. However,

compared to the fastest one, our methods are opened a lead. Therefore, to develop a

much faster VF coding algorithm is one of our future works.

We showed that dividing the input text into blocks enabled us to compress a large

text with VF coding in less memory. This method still requires offline processing for

each block. It is not sufficient for processing stream data. If processing a block takes

time more than the time that the stream comes to a system, a buffer for the next block

could overflow. Therefore, our future work includes to develop an online VF coding

algorithm that works in real time.

Massive stream data are usually discarded after extracting significant information.

In such case, we have to determine what information is to be extracted in advance.

That is, under present circumstances, we can not perform any data analysis which is

newly needed by using all the past data. We proposed a fast method for accessing

arbitrary position on compressed data in Chapter 6. We assumed there that the whole

dictionary used during compression was stored in the main memory. However, the
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dictionary can not always be stored in the main memory when operating a huge amount

of compressed data. Therefore, our another future work is to devise a fast accessing

method on compressed data with consideration of storage device hierarchy.
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