Parallel Regularized Multiple-Criteria Linear Programming

Zhiquan Qia, Vassil Alexandrovb,*, Yong Shia, Yingjie Tiana

aResearch Center on Fictitious Economy & Data Science, Chinese Academy of Sciences, Beijing 100190, China
bICREA and Barcelona Supercomputing Center, C/Jordi Girona, 29, Edifici Nexus II, E-08034 Barcelona, Spain

Abstract

In this paper, we proposed a new parallel algorithm: Parallel Regularized Multiple-Criteria Linear Programming (PRMCLP) to overcome the computing and storage requirements increased rapidly with the number of training samples. Firstly, we convert RMCLP model into a unconstrained optimization problem, and then split it into several parts, and each part is computed by a single processor. After that, we analyze each part’s result for next cycle going. By doing this, we are be able to obtain the final optimization solution of the whole classification problem. All experiments in public datasets show that our method greatly increases the training speed of RMCLP in the help of multiple processors.

Keywords: PRMCLP, parallel algorithm, data mining;

1. Introduction

Nowadays, the coming of Big Data bring us unprecedented opportunities and challenges. On the one hand, Data is becoming the larger and more complex, which causes us to be puzzled facing the vast ocean of information. However, on the other hand, in order to solve the important management problem, I usually do not gain enough knowledge to support our decision. One of the most important reason is that we still do not have the capabilities to extract useful knowledge from Big Data. As a result, more and more people begin to research new data mining methods and technology to deal with the increasing complex data. In this paper, we focuss on the the research of parallel algorithm based on Regularized Multiple-Criteria Linear Programming (RMCLP)1 to further accelerate the training speed, which will provide a possible way in order to the big data problem.

Classification is one of the most basic and key problem in machine learning and data mining field, and various classification algorithm have been developed in the last few years2,3,4,5,6. Support Vector Machine(SVM)7,8,9 is one of the most popular methods. However, the idea of applying optimization techniques to solve classification problem can be dated back to more than 70 years ago when linear discriminant analysis (LDA)10 was first proposed in 1936.11 has proposed a similar model with SVM using the large margin idea in 1960’s. From 1980s to 1990s, Glover proposed

*Corresponding author. Tel.: +34(0)934137576 ; fax: +34(0)934137721.

E-mail address: vassil.alexandrov@bsc.es
a number of linear programming models to solve discriminant problems with a small sample size of data. Other classification models also can found in [14,15,16,17,18]. Recently, Shi and his colleagues extend Glover’s method into classification via multiple criteria linear programming (MCLP), and then various improved algorithms were proposed one after the other. These mathematical programming approaches to classification have been applied to handle many real world data mining problems, such as credit card portfolio management, bioinformatics, information intrusion and detection, firm bankruptcy, and etc.

In order to realize the classification algorithm parallelization, there are usually two strategies as follows: 1) the parallel algorithm is designed by the divide-and-rule tactics. For a large scale problem, we can divide it into several sub-problems, which is mutually independent and have same form with the primal problem. And then, these sub-problems are solved by the recursion way. At last, combining these results, we can obtain the solution of primal problem. We can find typical methods in [30,31,32]. 2) parallelling the serial algorithm. This strategy tries to find the parallel nature of the algorithm itself, and finally finish the classification’s parallelization. several typical methods include [33,34,35,36].

In this paper, we focus on the research of RMCLP, and propose a Parallel version of RMCLP algorithm (PRMCLP) in order to overcome the compute and storage requirements increase rapidly with the number of training sample. Inspire by [37], we adopt the second strategy to parallelize our algorithm.

Firstly, we convert RMCLP model into a unconstrained optimization problem, and then split it into several parts, which is performed in p processors at the same time. After that, we summarize and analyze the results obtained by each processors, and take them as the parameter input of each sub-problem in next step. Keeping the cycle going, we will obtain the optimization solution of the whole classification problem until satisfying the terminal condition. Experiments in public datasets show that our method greatly increases the training speed of RMCLP in the help of p processors.

The remaining parts of the paper are organized as follows. Section 2 introduces the basic formulation of MCLP and RMCLP; Section 3 describes in detail our proposed Algorithms PRMCLP; All experiment results are shown in the section 4; Last section gives the conclusions.

2. Regularized MCLP for Machine Learning

We give a brief introduction of MCLP in the following. For classification about the training data

$$T = \{(x_1, y_1), \ldots, (x_l, y_l)\} \in (\mathbb{R}^n \times \mathcal{Y})^l,$$

where $x_i \in \mathbb{R}^n, y_i \in \mathcal{Y} = \{1, -1\}, i = 1, \ldots, l$, data separation can be achieved by two opposite objectives. The first objective separates the observations by minimizing the sum of the deviations (MSD) among the observations. The second maximizes the minimum distances (MMD) of observations from the critical value. The overlapping of data $\xi^{(1)}$ should be minimized while the distance $\xi^{(2)}$ has to be maximized. However, it is difficult for traditional linear programming to optimize MMD and MSD simultaneously. According to the concept of Pareto optimality, we can seek the best trade-off of the two measurements. So MCLP model can be described as follows:

$$\min_{\xi^{(1)}, \xi^{(2)}} \quad e^T \xi^{(1)} \quad \& \quad \max \quad e^T \xi^{(2)}$$

s.t. $(w \cdot x_i) + (\xi^{(1)} - \xi^{(2)})) = b$, for $\{i|y_i = 1\}$,

$(w \cdot x_i) - (\xi^{(1)} - \xi^{(2)}) = b$, for $\{i|y_i = -1\}$,

$\xi^{(1)}, \xi^{(2)} \geq 0,$

where $e \in \mathbb{R}^n$ be vector whose all elements are 1, w and b are unrestricted, $\xi^{(1)}_i$ is the overlapping and $\xi^{(2)}_i$ the distance from the training sample x_i to the discriminator $(w \cdot x_i) = b$ (classification separating hyperplane). By introducing penalty parameter C, $D > 0$, MCLP has the following version

$$\min_{\xi^{(1)}, \xi^{(2)}} \quad Ce^T \xi^{(1)} - D e^T \xi^{(2)},$$

s.t. $(w \cdot x_i) + (\xi^{(1)}_i - \xi^{(2)}_i) = b$, for $\{i|y_i = 1\}$,

$(w \cdot x_i) - (\xi^{(1)}_i - \xi^{(2)}_i) = b$, for $\{i|y_i = -1\}$,

$\xi^{(1)}, \xi^{(2)} \geq 0,$

A lot of empirical studies have shown that MCLP is a powerful tool for classification. However, we cannot ensure this model always has a solution under different kinds of training samples. To ensure the existence of solution,
recently, Shi et al. proposed a RMCLP model by adding two regularized items \(\frac{1}{2}w^T Hw \) and \(\frac{1}{2} \xi^{(1)T} Q \xi^{(1)} \) on MCLP as follows (more theoretical explanation of this model can be found in \(^1 \)):

\[
\begin{align*}
\min_{z} & \quad \frac{1}{2}w^T Hw + \frac{1}{2} \xi^{(1)T} Q \xi^{(1)} + \frac{1}{2} \xi^2 + C e^T \xi^{(1)} - D e^T \xi^{(2)}, \\
\text{s.t.} & \quad (w \cdot x_i) + (\xi^{(1)}_i - \xi^{(2)}_i) = b, \quad \text{for } |i| y_i = 1, \\
& \quad (w \cdot x_i) - (\xi^{(1)}_i - \xi^{(2)}_i) = b, \quad \text{for } |i| y_i = -1, \\
& \quad \xi^{(1)}_i, \xi^{(2)}_i \geq 0,
\end{align*}
\]

where \(z = (w^T, \xi^{(1)T}, \xi^{(2)T}, b)^T \in \mathbb{R}^{n+l+1}, H \in \mathbb{R}^{n \times n}, \) is symmetric positive definite matrices. Obviously, the regularized MCLP is a convex quadratic programming. According to dual theorem, (4)~(4) can be turned into

\[
\begin{align*}
\min_{\alpha, \xi^{(1)}} & \quad \frac{1}{2} \alpha^T (K(A, A^T) + ee^T) \alpha + \frac{1}{2} \xi^{(1)T} Q \xi^{(1)}, \\
\text{s.t.} & \quad -Q \xi^{(1)} - Ce \leq E \alpha \leq -De,
\end{align*}
\]

where \(A = [x_1^T, \cdots, x_l^T]^T \in \mathbb{R}^{n \times l}, E = \text{diag} \{y_1, \cdots, y_l\}, \) and \(K(A, A^T) = \Phi(A) \Phi(A)^T = (\Phi(A) \cdot \Phi(A))_{bd}, \) and \(\Phi \) is a mapping from the input space \(\mathbb{R}^n \) to some Hilbert space \(\mathcal{H}^{38}. \)

Compared with traditional SVM, we can find that the RMCLP model is similar to the Support Vector Machine SVM model in terms of the formation by considering minimization of overlapping of the data. However, RMCLP tries to measure all possible distances \(\xi^{(2)} \) from the training samples \(x_i \) to the separating hyperplane, while SVM fixes the distance as 1 (through bounding planes \((w \cdot x) - b = \pm 1 \)) from the support vectors. Although the interpretation can vary, RMCLP addresses more control parameters than the SVM, which may provide more flexibility for better separation of data under the framework of the mathematical programming. In addition, different from the traditional SVM, the RMCLP considers all the samples to solve the classification problem and thus is insensitive to outliers.

3. Parallel RMCLP

3.1. Algorithm Structure

In order to realize the parallelization of RMCLP, we firstly translate RMCLP into an unconstrained optimization problem. To simplify, (5) can be rewritten as

\[
\begin{align*}
\min_{\pi} & \quad \frac{1}{2} \pi^T \Lambda \pi, \\
\text{s.t.} & \quad G \pi - Ce \leq 0, \\
& \quad H \pi + De \leq 0,
\end{align*}
\]

where \(\pi = [\alpha^T, \xi^{(1)T}]^T, \) and \(G = [-Q, \ -E], \ H = [E, \ O], \ O \in \mathbb{R}^{bd} \) is a null matrix, \(\Lambda \) is written as

\[
\begin{pmatrix}
K(A, A^T) + ee^T & 0 \\
0 & Q
\end{pmatrix}.
\]

Next, we turn the objective (5) into the following unconstrained optimization problem

\[
\min_{\pi} f(\pi) = \frac{1}{2} \pi^T \Lambda \pi + \lambda^T \max \{G \pi - Ce, 0\}^2 + \mu^T \max \{H \pi + De, 0\}^2,
\]

where \(C, D \in \mathbb{R} \) are the artificial parameters, and \(\lambda = \{\lambda_1, \cdots, \lambda_l\}, \ \mu = \{\mu_1, \cdots, \mu_l\}. \) Define \(d \) is the search direction of the optimization problem (8), here, we choose the negative gradient direction as the feasible direction:

\[
d = -\nabla f(\pi) / ||\nabla f(\pi)||,
\]

where

\[
\nabla f(\pi) = \Lambda \pi + 2 \lambda^T \text{diag} \{G \pi - Ce, 0\} + 2 \mu^T \text{diag} \{H \pi + De, 0\}.
\]

Now, we use PVD idea to split our model\(^7\). Suppose we can use \(p \) processor, the variable \(\pi \) of the unconstrained optimization problem (8) can be divided into \(p \) chunks: \(\{\pi_1, \cdots, \pi_p\}, \) where the dimension of the \(i \)th chunk is \(m_i, \) i.e.,

\[
\pi = [\pi_1, \cdots, \pi_m], \ \pi_i \in \mathbb{R}^{m_i}, \ i = 1, \cdots, p, \ \sum_{i=1}^p m_i = 2l.
\]
In the next step, we allocate the p variable to p processor, and decompose the problem (8) into the subproblem with m_i dimension. Each processor solves one corresponding subproblem, which update other variables on the basis of some rules except for computing the m_i variables itself. After each processor finishes updating, we will perform a quick synchronous step: searching the results obtained by each computing unit and compute the current solution. Repeating the course, our algorithm can be described as

Algorithm 1 Parallel RMCLP

Step 1: Given the initial point π^0, and penalty factors $\lambda, \mu > 0$, $k = 0$, and let $\pi^0 = [\pi^0_1, \ldots, \pi^0_p]$, $\lambda = [\lambda_1, \ldots, \lambda_p]$, $\mu = [\mu_1, \ldots, \mu_p]$, kernel matrix Λ is divided into $[\Lambda_1, \ldots, \Lambda_p]$, similarly $G = [G_1, \ldots, G_p]$, $H = [H_1, \ldots, H_p]$, and storage $\pi^k_1, \lambda_i, \mu_i$ in the ith processor, $i = 1, \ldots, p$.

Step 2: Computing for each processor, $i = 1, \ldots, p$:

$p^k_i = \Lambda_i \pi^k_i$,

$p^k_i = \Lambda_i^{\top} \text{diag}(G_i^\top \max(G_i \pi^k_i - C_e, 0))$,

$p^k_i = \mu^k_i \text{diag}(H_i^\top \max(H_i \pi^k_i + D_e, 0))$.

Step 3: Computing:

$d^k_i = \sum_{j=1}^p p^k_j + 2 \sum_{j=1}^p p^k_j + 2 \sum_{j=1}^p p^k_j$.

If $d^k_i = 0$, the optimization solution is π^k, go to Step 5, else $d^k = d^k / \|d^k\|$.

Step 4: Computing for each processor, $i = 1, \ldots, p$:

\[
\min \omega_i^k(\tau_i, v_i) = f(\pi_i^k, \tau_i, v_i + \text{diag}(d^k_i v_i)), \quad \text{where} \ i \ \text{is the complementary set of} \ i, \ \text{and the approximate solution} \\
(\bar{\pi}_i^k, \bar{v}_i^k) = R^{m_i} \times R^{p_i-1}, \ \text{let} \ \bar{\pi}_i^k = [\bar{\pi}_i^k, \bar{v}_i^k + \text{diag}(d^k_i^k)].
\]

Step 5: Compute $\tau_0, \tau_1, \ldots, \tau_p$, and solve

\[
\min_{\tau_0, \tau_1, \ldots, \tau_p} f(\tau_0 \pi^k + \sum_{i=1}^p \tau_i \bar{\pi}_i^k), \ s.t. \ \sum_{i=1}^p \tau_i = 1,
\]

\[
\text{let} \ \pi^{k+1} = \tau_0 \pi^k + \sum_{i=1}^p \tau_i \bar{\pi}_i^k, \ k = k + 1, \ \text{if} \ \nabla f(\pi^{k+1}) < \varepsilon, \ \text{terminate the algorithm, else go} \ \text{to Step 2}, \ \text{where} \ \varepsilon \ \text{is small enough positive number}.
\]

3.2. Convergence Analysis

Theorem 3.1. The sequence generated by π^k of **Algorithm 1** either terminates at a stationary point $\bar{\pi}$, or is an infinite sequence, whose accumulation point is stationary and $\lim_{k \to \infty} \nabla f(\pi^k) = 0$.

Proof. For $\forall \pi, \pi' \in R^{2l}$, we have

\[
\nabla f(\pi) = \Lambda \pi + 2 \lambda^\top \text{diag}(G^\top \max(G \pi - C_e, 0)) \nonumber \\
+ 2 \mu^\top \text{diag}(H^\top \max(H \pi + D_e, 0)).
\]

(12)

So

\[
\|\nabla f(\pi) - \nabla f(\pi')\|
\]

\[
= \|\Lambda(\pi - \pi') + 2 \lambda^\top \text{diag}(G^\top(\max(G \pi - C_e, 0) - \max(G \pi' - C_e, 0))) \nonumber \\
+ 2 \mu^\top \text{diag}(H^\top(\max(H \pi + D_e, 0) - \max(H \pi' + D_e, 0)))\|
\nonumber \\
\leq \|\Lambda\|\|\pi - \pi'\| + 2 \|\lambda^\top\|\|\text{diag}(G^\top(\max(G \pi - C_e, 0) - \max(G \pi' - C_e, 0)))\|
\nonumber \\
+ 2 \|\mu^\top\|\|\text{diag}(H^\top(\max(H \pi + D_e, 0) - \max(H \pi' + D_e, 0)))\|.
\]

(13)

We can prove easily

\[
\text{diag}(G^\top(\max(G \pi - C_e, 0) - \max(G \pi' - C_e, 0))) \leq G^\top(\pi - \pi')
\]

\[
\text{diag}(H^\top(\max(H \pi + D_e, 0) - \max(H \pi' + D_e, 0))) \leq H^\top(\pi - \pi').
\]

(14)
Let \(\|A\| + 2\|\Lambda\||G^\top|| + 2\|\mu^\top||H^\top|| = K \), we obtain
\[
\|\nabla f(\pi) - \nabla f(\pi^*)\| \leq K(\pi - \pi^*).
\] (15)

As the result, according to the Theorem 2.2 in39, \(\{\pi^k\} \) either terminates at a stationary point \(\pi^k \), or is an infinite sequence, whose accumulation point is stationary and \(\lim_{k \to \infty} \nabla f(\pi^k) = 0 \).

Theorem 3.2. If \(\Lambda \) of Algorithm 1 is positive definite, then the sequence of iterates \(\{\pi^k\} \) generated by the subproblem of (8) converges linearly to the unique solution \(\bar{\pi} \), and the rate of convergence is
\[
\|\pi^k - \bar{\pi}\| \leq \left(\frac{2}{\gamma} (f(\pi^k) - f(\bar{\pi})) \right)^{\frac{1}{2}} (1 - \frac{1}{p} (\frac{\gamma}{K})^2)^{\frac{1}{2}},
\] (16)
where \(\gamma, K > 0 \) are the constants.

Proof. For \(\forall \pi, \bar{\pi} \in \mathbb{R}^d \), we have
\[
(\nabla f(\pi) - \nabla f(\bar{\pi}))(\pi - \bar{\pi}) = (\pi - \bar{\pi})^\top \Lambda (\pi - \bar{\pi}) + 2\alpha \lambda \text{diag}(G^\top (\max\{G\pi - Ce, 0\} - \max\{G\bar{\pi} - Ce, 0\}))
\]
\[
+ 2\alpha \mu \text{diag}(H^\top (\max\{H\pi + De, 0\} - \max\{H\bar{\pi} + De, 0\})) \geq 0.
\]
We easily know that
\[
\text{diag}(G^\top (\max\{G\pi - Ce, 0\} - \max\{G\bar{\pi} - Ce, 0\})) \geq 0,
\]
\[
\text{diag}(H^\top (\max\{H\pi + De, 0\} - \max\{H\bar{\pi} + De, 0\})) \geq 0.
\] (18)

Since \(\Lambda \) is a positive definite matrix, we have
\[
(\nabla f(\pi) - \nabla f(\bar{\pi}))(\pi - \bar{\pi}) \geq (\pi - \bar{\pi})^\top \Lambda (\pi - \bar{\pi}) \geq \frac{\gamma}{2} \|\pi - \bar{\pi}\|^2, \forall \pi \in \mathbb{R}^d,
\] (19)
where \(\gamma \) is a constant. As the result, subproblem of (8) converges linearly to the unique solution \(\bar{\pi} \), and the rate of convergence is
\[
\|\pi^k - \bar{\pi}\| \leq \left(\frac{2}{\gamma} (f(\pi^k) - f(\bar{\pi})) \right)^{\frac{1}{2}} (1 - \frac{1}{p} (\frac{\gamma}{K})^2)^{\frac{1}{2}},
\] (20)

\[\square \]

4. Numerical Experiment

Our algorithm code was programmed in MATLAB 2010. The experiment environment: Intel Core I5 CPU, 2 GB memory. The "fminbnd" and "quadprog" function with MATLAB is employed to solve quadratic programming problem related to this paper.

To demonstrate the capabilities of our algorithm, we report results on MNIST data sets and UCI data sets, respectively. In all experiments, our method is compared under different CPU processors.

The testing accuracies are computed using standard 10-fold cross validation (8). The parameter \(C \) and the RBF kernel parameter \(\sigma \) are selected from the set \(\{2^i | i = -7, \ldots, 7\}\)((C, D) cross validation on the tuning set comprising of random 10\% of the training data. Once the parameters are selected, the tuning set was returned to the training set to learn the final decision function.

4.1. MNIST Dataset

MNIST Dataset is a handwritten digit dataset with samples from ‘0’ to ‘9’. The size of each sample is 16 × 16 pixels. The same as the literature40, we test on the ‘5’ vs ‘8’ classification problem in the case of linear kernel. The results are showed in Table 1.

From Table 1, we can find that the accuracy about handwritten digit dataset is the same in the case of different processors, and the training time is greatly deduced with the increase of processors. This shows that our parallel algorithm is very effective.
Table 1. PRMCLP’s Training time for ‘5’ and ‘8’ datasets on different sample numbers and processors.

<table>
<thead>
<tr>
<th>Method</th>
<th>Training subset size</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>accuracy</td>
<td>96.17±1.27</td>
<td>400 96.28±1.02</td>
<td>97.13 ± 1.34</td>
<td>97.56±1.69</td>
<td>98.24±0.89</td>
<td></td>
</tr>
<tr>
<td>1 procs(second)</td>
<td>8.21</td>
<td>28.49</td>
<td>43.20</td>
<td>67.21</td>
<td>76.38</td>
<td></td>
</tr>
<tr>
<td>2 procs</td>
<td>4.39</td>
<td>14.58</td>
<td>22.12</td>
<td>34.65</td>
<td>40.45</td>
<td></td>
</tr>
<tr>
<td>4 procs</td>
<td>2.14</td>
<td>7.24</td>
<td>13.33</td>
<td>18.89</td>
<td>22.43</td>
<td></td>
</tr>
<tr>
<td>6 procs</td>
<td>1.44</td>
<td>4.92</td>
<td>6.90</td>
<td>11.32</td>
<td>14.17</td>
<td></td>
</tr>
</tbody>
</table>

4.2. UCI Datasets

In the section, we use respectively Sonar, Ionosphere, Australian, Pima-Indian, CMC, Votes, WPBC to estimate our methods (Table 2 give the description about these data sets).

Table 2. Description of UCI data sets

<table>
<thead>
<tr>
<th>datasets</th>
<th># examples (L)</th>
<th># dimension (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonar</td>
<td>208</td>
<td>60</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>351</td>
<td>34</td>
</tr>
<tr>
<td>Australian</td>
<td>690</td>
<td>14</td>
</tr>
<tr>
<td>Pima-Indian</td>
<td>768</td>
<td>8</td>
</tr>
<tr>
<td>CMC</td>
<td>1473</td>
<td>9</td>
</tr>
<tr>
<td>Votes</td>
<td>435</td>
<td>16</td>
</tr>
<tr>
<td>WPBC</td>
<td>110</td>
<td>32</td>
</tr>
</tbody>
</table>

The Table 3 give the experiments results in the case of RBF kernel.

Table 3. PRMCLP’s training time on UCI data sets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>accuracy</th>
<th>1 procs</th>
<th>2 procs</th>
<th>4 procs</th>
<th>6 procs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonar</td>
<td>78.21±4.46</td>
<td>46.35</td>
<td>24.18</td>
<td>13.62</td>
<td>14.12</td>
</tr>
<tr>
<td>Ionosphere</td>
<td>87.22±6.45</td>
<td>148.12</td>
<td>76.54</td>
<td>38.75</td>
<td>25.34</td>
</tr>
<tr>
<td>Australian</td>
<td>86.34±4.23</td>
<td>284.76</td>
<td>143.52</td>
<td>72.32</td>
<td>49.77</td>
</tr>
<tr>
<td>Pima-Indian</td>
<td>78.12±5.45</td>
<td>331.34</td>
<td>169.31</td>
<td>87.62</td>
<td>56.61</td>
</tr>
<tr>
<td>CMC</td>
<td>70.18±3.69</td>
<td>605.17</td>
<td>310.28</td>
<td>160.23</td>
<td>108.12</td>
</tr>
<tr>
<td>Votes</td>
<td>95.54±3.48</td>
<td>198.23</td>
<td>101.01</td>
<td>54.29</td>
<td>34.52</td>
</tr>
<tr>
<td>WPBC</td>
<td>82.75±2.92</td>
<td>22.25</td>
<td>11.57</td>
<td>5.76</td>
<td>3.43</td>
</tr>
</tbody>
</table>

From Table 3, we can find that PRMCLP’s the training time in the condition of 10-fold cross validation consumed based on multiple processors is much less than ones based on single processor while their accuracy are in the same level. with the increase of processors, the computing speed has a great improvement, which fully shows our algorithm has a good parallelism.

5. Conclusion

In this paper, a new parallel algorithm: Parallel Regularized Multiple-Criteria Linear Programming (PRMCLP) was proposed. With the help of multiple processors, the performance of PRMCLP in public datasets has a great improvement. All experiments show our method’s effectiveness, In the future work, in order to deal with big data, how to further accelerate our algorithm is under our consideration. In addition, the extension to semi-supervised learning and multi-class classification is also interesting.
Acknowledgements

This work has been partially supported by China Postdoctoral Science Foundation under Grant No.2013M530702, and grants from National Natural Science Foundation of China(NO.11271361), key project of National Natural Science Foundation of China(NO.71331005), Major International (Regional) Joint Research Project(NO.71110107026), and the Ministry of water resources’ special funds for scientific research on public causes (No. 201301094).

References

