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Abstract

The synthesis of optimal controllers for vibrational protection of large-scale structures with multiple actuation devices
and partial state information is a challenging problem. In this paper, we present a design strategy that allows computing
this kind of controllers by using standard linear matrix inequality optimization tools. To illustrate the main elements of the
new approach, a five-story structure equipped with two interstory actuation devices and subjected to a seismic disturbance
is considered. For this control setup, three different controllers are designed: an ideal state-feedback H∞ controller with full
access to the complete state information and two static output-feedback H∞ controllers with restricted neighbouring state
information. To assess the performance of the proposed controllers, the corresponding frequency responses are investigated
and a proper set of numerical simulations are conducted, using the full scale North–South El Centro 1940 seismic record as
ground acceleration input. The obtained results indicate that, despite the severe information constraints, the proposed static
output-feedback controllers attain a level of seismic protection that is very similar to that achieved by the ideal state-feedback
controller with complete state information.

Keywords: structural vibration control; large-scale control; partial state information; static output-feedback control; LMI
optimization

1 Introduction

Nowadays, advanced strategies for vibration control of large mechanical structures can involve complex actuation systems,
consisting in several active or semiactive devices that work coordinately to mitigate the vibrational response of the overall
structure. Good examples of this approach are provided by feedback control systems for seismic protection of tall build-
ings [1–3]. In the most traditional designs, the large control forces required to mitigate the structural vibration response
are produced by means of a single actuation device, placed either at ground level or at the top of the structure [4–7]. In
contrast, a system of several medium-size actuation devices is frequently considered in more advanced designs [8–10]. In
this context, interstory actuation devices are of particular interest. These devices can be placed between any pair of con-
secutive stories and, in addition to exerting the corresponding structural control forces, they can also include the following
elements: (i) a sensing unit that facilitates gathering information of the local interstory drifts and interstory velocities, (ii) a
communication unit for information exchange with neighbouring devices and (iii) a local control unit that allows computing
the corresponding control action using preferably local and neighbouring state information [11, 12].

In fully instrumented designs, interstory devices are implemented at all levels of the structure. This control setup,
schematically depicted in Figure 1(a), includes a complete actuation system and, also, a complete system of sensors, which
can give access to the full state information. Using advanced control design methodologies based on linear matrix inequal-
ity (LMI) formulations, state-feedback controllers can be effectively obtained for multi-actuator control architectures with
complete state information [13]. Moreover, the LMI solvers allow defining sparsity patterns on the control gain matrices
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(a) (b)

Figure 1: (a) Fully instrumented structure with complete systems of actuators and sensors. (b) Partially instrumented struc-
ture with incomplete systems of actuators and sensors

to obtain decentralized or semidecentralized controllers that, for a given actuation device, make it possible to compute the
corresponding control actions using neighbouring state information provided by the local sensor or by sensors located in
adjacent stories [14–16].

In partially instrumented designs, as the one displayed in Figure 1(b), an incomplete system of interstory devices is
implemented, which allows exerting control forces at selected levels of the structure and acquiring partial state information.
Even for a moderate number of stories, a rich variety of control setups can be obtained in this case, and designs with different
degrees of complexity can be considered for a given control problem. The potential benefits provided by this broader
approach, however, are seriously compromised by the challenging theoretical and computational issues associated to the
design of optimal controllers with partial state information [17–20].

The objective of the present paper is to provide an advanced computational strategy to deal with the complex problem of
designing optimal static feedback controllers for vibrational protection of partially instrumented large-scale structures, which
are equipped with incomplete multi-actuator and multi-sensor systems and are naturally subject to severe restrictions on the
available state information. The proposed solution is based on recent advances in static output-feedback control [21, 22],
which facilitate designing controllers of the form

u(t) = Ky(t), (1)

where the vector u(t) contains the control actions corresponding to the incomplete actuation system, K is a constant matrix,
and y(t) is a vector that contains the partial state information provided by the incomplete system of sensors. The design
methodology comprises two successive steps. First, a satisfactory state-feedback controller

u(t) = G̃s x(t) (2)

is obtained, where x(t) is the state vector and G̃s is a constant matrix. As previously mentioned, this ideal controller with
complete state information can be effectively computed by solving a standard LMI optimization problem Ps. Next, by
introducing a suitable transformation of the LMI variables in Ps, a second LMI optimization problem Po is derived, which
allows obtaining an almost-optimal static output-feedback controller with partial state information.

From a formal point of view, controllers with neighbouring state information can be considered as a particular case of
state-feedback controllers with information constraints and, in principle, they could be obtained by setting an appropriate
sparsity pattern on the state-feedback control gain matrix. However, even in the simplest cases, these constrained LMI
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optimization problems are reported to be infeasible by the Matlab LMI solver. In contrast, using the proposed computational
strategy, a wide variety of controller designs with different neighbouring control information structures can be obtained with
no feasibility issues.

For brevity and clarity, a five-story structure model with interstory devices implemented at first and second levels has
been chosen to introduce the main ideas (see Figure 2). For this particular control setup, two different H∞ controllers with
partial state information are designed: (i) a static output-feedback controller that uses the interstory drifts and interstory
velocities of the first and second levels as measured outputs, and (ii) a static velocity-feedback controller that only uses the
interstory velocities of the first and second levels as feedback information. Moreover, an ideal state-feedback H∞ controller
with full access to the state information is computed in the first step of the design procedure.

To assess the effectiveness of the proposed output-feedback controllers with neighbouring state information, the corre-
sponding frequency responses are investigated and a proper set of numerical simulations are carried out using the full-scale
Noth–South El Centro 1940 seismic record as ground acceleration input. In all the cases, the behaviour of the ideal state-
feedback H∞ controller is taken as a reference. When convenient, the numerical details of the different controller designs are
complemented with a minimal theoretical background to provide a more self-contained presentation.

Although the discussion has been focused on the problem of building seismic protection, it is worth to be highlighted that
the proposed approach can also produce positive results in other physical applications involving large structures subjected
to environmental excitations such as wind gusts or marine waves. Examples of clear practical interest include tall antennas
and communication towers, inland and offshore wind turbines for energy generation and large marine platforms [23–25].
Moreover, control strategies with neighbouring state information require shorter communication ranges and, consequently,
they are particularly suitable for wireless implementations of the communication system [11, 12, 14].

The paper is organized as follows: In Section 2, a mathematical model of the partially instrumented five-story structure is
provided. In Section 3, the LMI optimization problem Ps is presented and a suitable state-feedback H∞ controller with full
state information is designed. In Section 4, the general form of the LMI optimization problem Po is briefly discussed and
the first output-feedback controller is computed. In Section 5, a controller with neighbouring velocity-feedback information
is synthesized. Finally, in Section 6, some conclusions and future research directions are presented.

2 Structure model

Let us consider the five-story structure schematically depicted in Figure 2, where we assume that an actuation device ai has
been implemented between the consecutive stories si−1 and si for i = 1,2. The actuation device ai exerts a control action
ui(t), which produces a pair of opposite structural forces as indicated in the figure. By defining the vector of displacements

q(t) =
[
q1(t),q2(t),q3(t),q4(t),q5(t)

]T
, (3)

where qi(t) is the lateral displacement of the story si with respect to the ground level s0, the lateral motion of the structure
can be described by the differential equation

Mq̈(t)+Cd q̇(t)+Ks q(t) = Tuu(t)+Tww(t), (4)

where the vector of control actions has the form

u(t) =
[
u1(t),u2(t)

]T (5)

and w(t) denotes the seismic ground acceleration. M, Cd and Ks are the mass, damping and stiffness matrices, respectively,
Tu is the control location matrix and Tw is the excitation location matrix. Let us now consider the interstory driftsr1(t) = q1(t)

ri(t) = qi(t)−qi−1(t) for i = 2, . . . ,5,
(6)

the interstory velocities
vi(t) = ṙi(t), i = 1, . . . ,5, (7)
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Figure 2: Partially instrumented five-story structure with interstory actuators and sensors implemented at first and second
levels

and the state vector
x(t) =

[
r1(t),v1(t),r2(t),v2(t), . . . ,r5(t),v5(t)

]T (8)

that groups together the interstory drifts and interstory velocities of a same level. Using the state vector x(t), we can derive
a first-order state-space model

ẋ(t) = Ax(t)+Bu u(t)+Bww(t), (9)

with
A = PÂP−1, Bu = PB̂u, Bw = PB̂w, (10)

Â =

[
[0]

5×5
I5

−M−1Ks −M−1Cd

]
, (11)

B̂u =

[
[0]

5×2

M−1Tu

]
, B̂w =

[
[0]

5×1

−[1]5×1

]
, (12)

where [0]n×m represents a zero-matrix of the indicated dimensions, In is the identity matrix of order n, [1]n×1 denotes a vector
of dimension n with all its entries equal to 1 and P is the change of basis matrix

P =



1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
−1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 1 0 0 0
0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1

 , (13)

corresponding to the state transformation

x(t) = P

[
q(t)
q̇(t)

]
. (14)
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The mass and stiffness matrices have the following form:

M =


m1 0 0 0 0
0 m2 0 0 0
0 0 m3 0 0
0 0 0 m4 0
0 0 0 0 m5

, (15)

Ks =


k1 + k2 −k2 0 0 0
−k2 k2 + k3 −k3 0 0

0 −k3 k3 + k4 −k4 0
0 0 −k4 k4 + k5 −k5

0 0 0 −k5 k5

, (16)

where mi, ki, i = 1, . . . ,5 denote the mass and stiffness coefficients of the i-th story, respectively. For the building model
used in this paper, the mass and stiffness values presented in Table 1 are considered [26]. To compute the damping matrix, a
Rayleigh damping matrix with a 2% damping ratio on the first and fifth modes has been used [27], resulting:

Cd = 103×


260.2 −92.4 0 0 0
−92.4 219.6 −81.0 0 0

0 −81.0 199.5 −72.8 0
0 0 −72.8 186.7 −68.7
0 0 0 −68.7 127.4

 . (17)

Finally, the control location matrix and the excitation location matrix are

Tu =


1 −1
0 1
0 0
0 0
0 0

, Tw =−M


1
1
1
1
1

. (18)

For the parameter values in Table 1 and the matrices in (17) and (18), the following system matrices result:

A =103×



0 0.0010 0 0 0 0 0 0 0 0
−0.6831 −0.0008 0.5251 0.0004 0 0 0 0 0 0

0 0 0 0.0010 0 0 0 0 0 0
0.6831 0.0006 −1.0652 −0.0011 0.4732 0.0004 0 0 0 0

0 0 0 0 0 0.0010 0 0 0 0
0 0 0.5402 0.0004 −0.9515 −0.0010 0.4300 0.0004 0 0
0 0 0 0 0 0 0 0.0010 0 0
0 0 0 0 0.4783 0.0004 −0.8645 −0.0009 0.4102 0.0003
0 0 0 0 0 0 0 0 0 0.0010
0 0 0 0 0 0 0.4346 0.0004 −0.7258 −0.0008


,

(19)

Bu =10−5×



0 0
0.4647 −0.4647

0 0
−0.4647 0.9427

0 0
0 −0.4780
0 0
0 0
0 0
0 0


, Bw =



0
−1

0
0
0
0
0
0
0
0


. (20)
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Table 1: Mass and stiffness coefficient values

story

1 2 3 4 5

Mass (×105 Kg) 2.152 2.092 2.070 2.048 2.661

Stiffness (×108 N/m) 1.470 1.130 0.990 0.890 0.840

3 State-feedback H∞ controller

In this section, we compute a state-feedback H∞ controller for the proposed five-story structure model. This ideal controller
has a complete access to the state information and will be taken as a reference in the performance assessment of the static
output-feedback controllers with partial state information designed in Sections 4 and 5. Moreover, the LMI optimization
problem Ps associated to the state-feedback design provides a matrix X̃s that facilitates a suitable definition of the LMI
variable transformations required to obtain the static output-feedback controllers. All the controllers presented in this paper
are computed with the LMI optimization tools provided by the Matlab Robust Optimization Toolbox [28].

Assuming that we are interested in minimizing the building vibrational response and the control efforts, we introduce the
vector of controlled outputs

z(t) = Cz x(t)+Dzu(t), (21)

where

Cz =

[
I10

[0]2×10

]
, Dz = α

[
[0]

10×2

I2

]
, (22)

and α > 0 is a suitable coefficient that trades-off the conflicting design objectives. Here, we aim at computing an optimal
state-feedback controller

u(t) = G̃s x(t) (23)

for the state-space system given in (9), using the controlled output z(t) to define the performance criteria. For a given
state-feedback controller

u(t) = Gx(t), (24)

we obtain the closed-loop system  ẋ(t) = AG x(t)+Bw w(t),

zG(t) = CG x(t),
(25)

where
AG = A+BuG, CG = Cz +DzG. (26)

The H∞-norm of the state-feedback controller defined by the state gain matrix G is the largest energy gain from the distur-
bance input to the controlled output

γG = sup
‖w‖2 6=0

‖zG‖2

‖w‖2

, (27)

where ‖ · ‖2 is the usual continuous 2-norm

‖g‖2 =

[∫
∞

0
{g(t)}Tg(t) dt

]1/2

. (28)

Using the closed-loop transfer function from the disturbance input w(t) to the controlled output zG(t)

TG(s) = CG(sI−AG)
−1Bw, (29)
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Figure 3: Frequency response corresponding to the optimal state-feedback H∞ controller u(t) = G̃s x(t). Maximum singular
values of the closed-loop pulse transfer function TG̃s

(2π f j) (solid blue line) and the open-loop transfer function T(2π f j)
(dashed black line)

the value γG can be obtained as the H∞-norm of TG

γG =
∥∥TG

∥∥
∞
= sup

f
σmax

[
TG(2π f j)

]
, (30)

where j =
√
−1, f is the frequency in Hertz and σmax[ · ] denotes the maximum singular value.

Broadly speaking, the controller design consists in computing a control gain matrix G̃ that produces an asymptotically
stable closed-loop matrix AG̃ and attains an optimally small H∞-norm γG̃. It is shown in [13] that these objectives can be
achieved by solving the following LMI optimization problem:

Ps :

 maximize η

subject to X > 0, η > 0 and the LMI in (32),
(31)

[
AX+XAT +BuY+YT BT

u +ηBwBT
w ∗

CzX+DzY −I

]
< 0, (32)

where the matrices X and Y are the optimization variables and ∗ represents the transpose of the element in the symmetric
position. If the optimization problem Ps attains an optimal value η̃s for the pair of matrices

(
X̃s, Ỹs

)
, then the gain matrix

G̃s = Ỹs X̃−1
s (33)

defines a state-feedback controller u(t) = G̃s x(t) with an asymptotically stable closed-loop matrix AG̃s
and an optimal H∞-

norm
γG̃s

= (η̃s)
−1/2. (34)

By solving the optimization problem Ps with the system matrices A, Bu and Bw given in (19) and (20), the matrices Cz and
Dz defined in (22), and the value

α = 10−6.3, (35)

we obtain the following state gain matrix:

G̃s=107×
[

0.2605 −0.3264 1.1815 −0.0332 −2.0277 −0.0436 0.9144 −0.0681 −0.1395 −0.0326
−1.9802 −0.2533 1.7631 −0.2319 0.9221 −0.0534 −1.1517 −0.0579 0.2949 −0.0405

]
(36)

and the optimal γ-value
γG̃s

= 1.0409. (37)
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Figure 4: Full scale North–South El Centro 1940 seismic record with an absolute acceleration peak of 3.42 m/s2

To illustrate the frequency behaviour of the state-feedback controller defined by the gain matrix G̃s, the maximum singular
values of the closed-loop pulse transfer function

TG̃s
(2π f j) = CG̃s

(
2π f jI−AG̃s

)−1
Bw (38)

and the open-loop pulse transfer function

T(2π f j) = Cz(2π f jI−A)−1Bw (39)

are presented in Figure 3. The graphic corresponding to the open-loop transfer function (dashed black line) shows the fre-
quency response characteristics of the uncontrolled structure, where it can be appreciated the structure resonant frequencies
located at 1.01, 2.82, 4.49, 5.80 and 6.77 Hz. The graphic corresponding to the closed-loop transfer function TG̃s

(2π f j)
(solid blue line) clearly shows the ability of the state-feedback H∞ controller to mitigate the structural vibration response at
the resonant frequencies. The magnitude of the largest peak in this graphic corresponds to the γ-value given in (37).

To complement the information provided by the frequency plots, we have also conducted numerical simulations of the
structural vibration response using the full scale North–South El Centro 1940 seismic record as ground acceleration input
(see Figure 4). The maximum absolute interstory drifts and maximum absolute control efforts corresponding to the ideal
state-feedback H∞ controller defined by the control gain matrix G̃s are presented in Figure 5, using a blue line with circles.
The maximum absolute interstory drifts corresponding to the uncontrolled structure are also included as a reference, using
a black line with rectangles. Looking at the graphics in Figure 5, it can be appreciated that the proposed state-feedback H∞

controller attains a good level of reduction in the interstory drift peak-values with moderate levels of control effort. In what
follows, we will assume that G̃s defines a satisfactory state-feedback controller for the structure introduced in Section 2.

Remark 1 According to the lower graphic in Figure 5, the control actions corresponding to the proposed state-feedback
controller present peak-values in the range 0.8–1.1 MN. Control forces of this magnitude are commonly used in modern
control systems for vibration control of large structures [1, 29].

Remark 2 In addition to the state gain matrix G̃s, solving the LMI optimization problem Ps given in (31) produces the
optimal X-matrix

X̃s=



0.0041 −0.0053 0.0001 −0.0090 0.0005 0.0189 0.0001 −0.0085 −0.0002 0.0035
−0.0053 2.4008 0.0207 −2.3443 −0.0200 0.1274 0.0085 −0.0904 −0.0020 −0.1572

0.0001 0.0207 0.0053 −0.0113 0.0005 −0.0404 0.0001 0.0282 0.0001 −0.0030
−0.0090 −2.3443 −0.0113 4.6285 0.0491 −1.9679 −0.0246 −0.3235 0.0025 0.0444

0.0005 −0.0200 0.0005 0.0491 0.0044 −0.0060 0.0013 −0.0320 0.0003 0.0103
0.0189 0.1274 −0.0404 −1.9679 −0.0060 3.3677 0.0345 −1.0694 −0.0083 −0.3602
0.0001 0.0085 0.0001 −0.0246 0.0013 0.0345 0.0047 −0.0042 0.0015 −0.0169
−0.0085 −0.0904 0.0282 −0.3235 −0.0320 −1.0694 −0.0042 2.8709 0.0172 −0.8863
−0.0002 −0.0020 0.0001 0.0025 0.0003 −0.0083 0.0015 0.0172 0.0049 −0.0038

0.0035 −0.1572 −0.0030 0.0444 0.0103 −0.3602 −0.0169 −0.8863 −0.0038 2.8991


. (40)

In the next sections, we will see that this matrix plays an important role in the definition of the LMI optimization problems
used to compute the proposed output-feedback controllers with partial state information.
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Figure 5: Maximum absolute interstory drifts and maximum absolute control efforts corresponding to the ideal state-feedback
H∞ controller defined by the control gain matrix G̃s (blue line with circles). The full scale North-South El Centro 1940
seismic record has been used as ground acceleration disturbance

Remark 3 In this kind of control problems, interstory drift peak-values are typically in the order of 10−2m, interstory
velocity peak-values are in the order of 10−1m/s, and the control force peak-values are in the order of 106N. Consequently
an α-value of the order 10−6 or 10−7 is naturally required to introduce a proper scaling of the magnitudes involved in the
controlled-output defined in (21) and (22). For the same reason, a scaling factor of the order 106 or 107 appears naturally in
the control gain matrices. A particular α-value can be obtained by considering the frequency response plots corresponding
to the open-loop and controlled systems and the magnitude of the elements in the control gain matrix. Specifically, the
α-value in (35) has been selected based on the frequency-response plots in Figure 3 and the magnitude of the elements in the
control matrix (36). The good behaviour of the obtained controller has been further checked by means of the time-response
peak-value plots in Figure 5. It should be noted that no additional parameter or initialization values need to be tuned in the
proposed controller design methodology.

4 H∞ controller with neighbouring state information

Now, let us assume that the information available for feedback purposes is a vector of measured outputs y(t) that can be
expressed as linear combinations of the states in the form

y(t) = Cy x(t). (41)

In this case, we are interested in designing static output-feedback controllers

u(t) = Ky(t), (42)

which can compute the control actions u(t) from the measured outputs y(t) by means of a simple matrix product. By
considering (9), (41) and (42), we obtain the closed-loop system ẋ(t) = AK x(t)+Bw w(t),

zK (t) = CK x(t),
(43)

with
AK = A+BuKCy, CK = Cz +DzKCy. (44)

The H∞-norm of the output-feedback controller defined by the output gain matrix K is the value

γK = sup
‖w‖2 6=0

‖zK‖2

‖w‖2

. (45)
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Figure 6: Frequency response corresponding to the output-feedback H∞ controller with partial state information u(t) =
K̃I yI(t). Maximum singular values of the closed-loop pulse transfer functions TK̃I

(2π f j) (dashed red line) and TG̃s
(2π f j)
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Using the closed-loop transfer function from the disturbance input w(t) to the controlled output zK (t)

TK(s) = CK(sI−AK)
−1Bw, (46)

the value γK can be obtained as the H∞-norm of TK

γK =
∥∥TK

∥∥
∞
= sup

f
σmax

[
TK(2π f j)

]
. (47)

The output-feedback H∞ design objective consists in obtaining a gain matrix K̃ that produces an asymptotically stable closed-
loop matrix AK̃ and, simultaneously, attains an optimally small γ-value γK̃ . In this case, however, it should be highlighted
that obtaining an optimal matrix K̃ can involve serious computational difficulties [17–20].

According to the design method presented in [21], a suboptimal gain matrix K̃ can be effectively computed by considering
the state-feedback LMI optimization problem Ps in (31) and the following transformations of the LMI variables X and Y:

X = QXQQT +RXRRT , Y = YRRT , (48)

which introduce, as new LMI variables, two symmetric matrices XQ and XR and a rectangular matrix YR. The transforma-
tions also involve two constant matrices: a matrix Q, whose columns contain a basis of Ker(Cy) and a matrix R with the
following form:

R = C†
y +QL, (49)

where
C†

y = CT
y
(
Cy CT

y
)−1 (50)

is the Moore-Penrose pseudoinverse of Cy, and L is an arbitrary constant matrix that allows defining LMI variables transfor-
mations with different degrees of computational effectiveness. Recently, the following advanced L-matrix choice has been
proposed in [22]:

L̃ = Q†X̃sCT
y
(
CyX̃sCT

y
)−1

, (51)

where
Q† =

(
QT Q

)−1QT (52)

is the Moore–Penrose pseudoinverse of Q and X̃s is the optimal X-matrix of the state-feedback optimization problem Ps.
By substituting the transformations given in (48) into the LMI presented in (32), we obtain the following LMI optimization
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problem:

Po :

maximize η

subject to XQ > 0, XR > 0, η > 0 and the LMI in (54),
(53)

[
AQXQQT +QXQQT AT +ARXRRT +RXRRT AT +BuYRRT +RYT

R BT
u +ηBwBT

w ∗

CzQXQQT +CzRXRRT +DzYRRT −I

]
< 0, (54)

where XQ, XR and YR are the optimization variables. If an optimal value η̃o is attained in Po for the triplet
(
X̃Q, X̃R,ỸR

)
,

then the output gain matrix K̃ can be written in the form

K̃ = ỸR
(
X̃R
)−1

, (55)

and the corresponding γ-value satisfies
γK̃ ≤

(
η̃o
)−1/2

. (56)

Now, for the structure model presented in Section 2, let us assume that the information available for feedback purposes is the
output vector

yI(t) = [r1(t),v1(t),r2(t),v2(t)]T , (57)

which contains the state variables corresponding to the instrumented levels. By taking the matrix

(Cy)I =


1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

 , (58)

the measured output vector yI(t) can be expressed in the form

yI(t) = (Cy)I x(t), (59)

where x(t) is the state vector defined in (8). In this case, we are interested in designing a static output-feedback H∞ controller

u(t) = K̃I yI(t), (60)

which allows computing the control actions u(t) from the restricted neighbouring state information provided by the measured
output vector yI(t). To this end, we consider the Q-matrix

QI =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(61)

and, by substituting (Cy)I , QI and the matrix X̃s given in (40) into the expression (51), we obtain the following L-matrix:

L̃I =



0.1606 0.0040 0.1026 0.0132
2.4151 −0.6121 −6.8346 −0.7471
−0.0059 −0.0035 0.0113 −0.0071
−3.1727 −0.3111 6.1254 −0.2187
−0.0462 −0.0013 0.0227 −0.0001

0.6361 −0.1026 −0.2637 −0.0418


, (62)
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Figure 7: Frequency response corresponding to the output-feedback H∞ controller with partial velocity information u(t) =
K̃II yII(t). Maximum singular values of the pulse transfer functions TK̃II

(2π f j) (dash-dotted red line) and TG̃s
(2π f j) (solid

blue line)

which, considering equation (49), produces the R-matrix

RI =

[
I4

L̃I

]
. (63)

Next, by solving the output-feedback LMI optimization problem Po in (53) with the matrices QI and RI given in (61) and
(63), respectively, and the same matrices A, Bu, Bw, Cz and Dz used in the state-feedback LMI optimization problem Ps,
we obtain the following output gain matrix:

K̃I = 107×
[

0.6702 −0.5603 −0.2790 −0.0308
−2.4526 −0.3939 2.4081 −0.2221

]
(64)

with an associated γ-value that satisfies
γ

K̃I
≤ 1.0410. (65)

Comparing the upper bound in (65) with the gamma value in (37), corresponding to the optimal state-feedback H∞ controller,
we can see that the H∞ controller with neighbouring state information defined by the output matrix K̃I is practically optimal.
In fact, by using the procedure indicated in Remark 6, we obtain the value γ

K̃I
= 1.0410. In Figure 6, we present the maximum

singular values of the closed-loop pulse transfer function

TK̃I
(2π f j) = CK̃I

(
2π f jI−AK̃I

)−1
Bw (66)

associated to the output-feedback controller u(t) = K̃I yI(t) (dashed red line) and the maximum singular values of the closed-
loop pulse transfer function TG̃s

(2π f j) associated to the optimal state-feedback controller u(t) = G̃s x(t) (solid blue line).
The graphics presented in Figures 3 and 6 show the notable similarity of the frequency responses produced by the proposed
static output-feedback controller and the optimal state-feedback controller.

Remark 4 In Figure 6 and Figure 7, the open-loop response has not been included to provide a more detailed view of the
controlled responses. To obtain a proper idea of the differences’ magnitude, the plots in these figures should be compared
with the open-loop frequency response displayed in Figure 3. Note that in all these figures, the solid blue line represents the
frequency response of the optimal state-feedback H∞ controller u(t) = G̃s x(t) computed in Section 3.

5 H∞ controller with neighbouring velocity information

To illustrate the flexibility of the proposed controller design methodology, we consider again the structure model presented
in Section 2 but, in this case, we assume that the information available for feedback purposes consists only in the interstory
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velocities v1(t) and v2(t). Now, we have the output vector

yII(t) = [v1(t),v2(t)]T , (67)

which can be expressed in the form
yII(t) = (Cy)II x(t) (68)

with the output matrix

(Cy)II =

[
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

]
. (69)

In this case, we are interested in designing a static output-feedback H∞ controller

u(t) = K̃II yII(t), (70)

which allows computing the control actions u(t) from the restricted neighbouring interstory velocity information provided
by the output vector yII(t). To this end, we proceed as we did in the previous section and we solve the output-feedback LMI
optimization problem Po in (53) with the same matrices A, Bu, Bw, Cz and Dz used in the state-feedback LMI optimization
problem Ps, the Q-matrix

QII =



0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(71)

and the R-matrix

RII =



−0.0081 −0.0060
1.0000 0.0000
0.0124 0.0038
0.0000 1.0000
0.0040 0.0126
−0.7164 −0.7880
−0.0033 −0.0070
−0.2095 −0.1760
−0.0006 0.0002
−0.1110 −0.0466


. (72)

As a result, we obtain the output gain matrix

K̃II = 106×

[
−5.4203 −0.2906
−3.6754 −2.8287

]
(73)

and the following upper bound for the associated γ-value:

γ
K̃II
≤ 1.0469. (74)

Comparing the bound in (74) with the optimal gamma value in (37), we can see that the γ-value increment produced by the
proposed velocity-feedback H∞ controller is inferior to 0.6%. The maximum singular values of the closed-loop pulse transfer
function

TK̃II
(2π f j) = CK̃II

(
2π f jI−AK̃II

)−1
Bw (75)
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Figure 8: Maximum absolute interstory drifts and maximum absolute control efforts corresponding to the optimal state-
feedback controller u(t) = G̃s x(t) (blue line with circles), the output-feedback controller u(t) = K̃I yI(t) (red line with
asterisks), the velocity-feedback controller u(t) = K̃II yII(t) (green line with triangles), and the uncontrolled structure (black
line with rectangles). The full scale North-South El Centro 1940 seismic record has been used as ground acceleration
disturbance

are displayed in Figure 7 using a dash-dotted red line. The solid blue line in the figure represents the maximum singular values
of the closed-loop pulse transfer function TG̃s

(2π f j) associated to the optimal state-feedback controller u(t) = G̃s x(t).
Looking at the graphics in Figure 7, it can be appreciated that the frequency response produced by the velocity-feedback
controller u(t) = K̃II yII(t) is very similar to the frequency response corresponding to the optimal state-feedback controller.
Moreover, considering the graphics in Figure 6, it can also be observed that the overall frequency response of the proposed
velocity-feedback controller is slightly better than the frequency response of the output-feedback controller with partial state
information u(t) = K̃I yI(t).

Finally, to gain a better insight into the behaviour of the proposed output-feedback controllers and to complement the
information provided by the frequency plots, numerical simulations of the structural vibration response have been conducted
using the full scale North–South El Centro 1940 seismic record as ground acceleration input. The maximum absolute
interstory drifts and maximum absolute control efforts corresponding to the different control configurations are presented in
Figure 8, using the following colours and symbols: (i) the blue line with circles corresponds to the ideal state-feedback H∞

controller u(t) = G̃s x(t) (denoted as “full state” in the legend), (ii) the red line with asterisks represents the output-feedback
controller with partial state information u(t) = K̃I yI(t) (denoted as “partial state” in the legend), (iii) the green line with
triangles displays the data of the velocity-feedback controller u(t) = K̃II yII(t) (denoted as “partial velocity” in the legend),
and (iv) the black line with rectangles presents the data corresponding to the uncontrolled structure response.

A quick look at the graphics in Figure 8 indicates that the overall behaviour exhibited by the three controllers is very
similar, attaining levels of reduction in the interstory drift peak-values of about 40%–50% with respect to the uncontrolled
response. In all the cases, the control-effort peak-values are in the range 0.8–1.1MN. In a more detailed inspection, it can
be appreciated that the most balanced behaviour corresponds to the velocity-feedback controller defined by the output gain
matrix K̃II . Despite the severe constraints on feedback information, the controller u(t) = K̃II yII(t) achieves the same levels
of reduction in the interstory drift peak-values as the ideal state-feedback controller with full state information, producing
control-effort peak-values of about 0.9–1.0MN.

Remark 5 The matrix QII presented in (71) has been computed with the Matlab command null(). Obviously, other
choices of this matrix are also possible. The particular matrix QII has been selected to improve the consistence with the
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Matlab results. The matrix RII in (72) has been obtained using the following L-matrix:

L̃II =



0.0124 0.0038
−0.0081 −0.0060

0.0040 0.0126
−0.7164 −0.7880
−0.0033 −0.0070
−0.2095 −0.1760
−0.0006 0.0002
−0.1110 −0.0466


, (76)

which has been computed by substituting (Cy)II , QII and X̃s into the expression (51).

Remark 6 It should be noted that the value provided in (74) is just an upper bound. The actual H∞-norm of the controller
u(t) = K̃II yII(t) can be obtained by solving the optimization problem

γ
K̃II

=
∥∥∥TK̃II

∥∥∥
∞

= sup
f

σmax

[
TK̃II

(2π f j)
]
, (77)

which produces the γ-value
γ

K̃II
= 1.0458, (78)

corresponding to the largest peak-value of the dash-dotted red line in Figure 7.

Remark 7 The underlying idea in the design of the controllers (60) and (70) consists in obtaining a static output-feedback
controller u(t) = K̃y(t) that satisfies γK̃ ≈ γG̃s

. It has been observed in practice that, frequently, the behaviour of static output-
feedback controllers with an almost optimal γ-value is similar to the behaviour exhibited by the optimal state-feedback
controller. Considering the γ-values given in (37), (65) and (78), the frequency plots displayed in Figures 6 and 7, and the
peak-value plots presented in Figure 8, it becomes apparent that this heuristic principle holds for the controllers with partial
state information computed in Sections 4 and 5.

Remark 8 In the H∞ approach, the optimality criterion is formulated in terms of minimizing the associated γ-value. Nev-
ertheless, it should be noted that a smaller γ-value does not necessarily imply a uniformly better performance over the
complete frequency range or uniformly higher levels of reduction in the interstory drift peak-values. Thus, for example,
from the γ-values in (65) and (78), we have the inequality γ

K̃I
< γ

K̃II
. However, looking at the graphics in Figures 6 and 7,

it can be clearly appreciated that the controller u(t) = K̃II yII(t) has a better behaviour than the controller u(t) = K̃I yI(t) in
the frequency range 5–8 Hz.

Remark 9 Design strategies for structured controllers are commonly based on iterative or metaheuristic methods, which aim
at producing an acceptable suboptimal solution by solving a sequence of optimization problems. The practical application
of such design procedures usually requires determining a suitable set of initialization values and/or algorithm parameters.
Additionally, a non-constrained controller is frequently computed to assess the degree of optimality of the obtained solutions.
Note that, in the proposed design strategy, the solution is attained after solving two standard LMI optimization problems, the
α-value of the controlled-output definition in (22) is the only parameter that needs to be adjusted, and the full-state controller
designed in the initial step constitutes a natural reference for the performance assessment of the suboptimal structured
controllers. Moreover, the α-value has a clear meaning in the problem and can be properly adjusted as indicated in Remark 3.

6 Conclusions and future directions

In this paper, a new line of solution to the problem of designing optimal static controllers for vibrational protection of large
structures with multiple actuation devices and restricted neighbouring state information has been presented. The proposed
design strategy is based on recent advances in static output-feedback control and allows obtaining effective controllers by
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using standard LMI optimization tools. To illustrate the main elements of the new approach, two different H∞ controllers
with restricted state information have been computed for the seismic protection of a five-story building with incomplete
actuation system. The behaviour of these controllers confirms the effectiveness and flexibility of the new approach and
clearly indicates that additional research efforts should be focussed on extending this design strategy to more complex
control scenarios that admit a state-feedback LMI-based formulation. Specifically, topics of particular interest are structural
vibration control with limited frequency domain [30–32], uncertain and time-delay systems [33–36], vibration control of
multi-structure systems [37–39] and networked control strategies [40–42].
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