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iv   Summary 

Prestin is the protein being responsible for electromotility in mammals. It is a member of 

the SLC26 (Solute Carrier) family, which function as anion transporters. In contrast to the 

other members, mammalian prestin does not function as an anion transporter but produces 

electromotility. Non-mammalian prestin orthologues such as zebrafish prestin are anion-

exchangers with a stoichiometry of 1:1, where a chloride anion is transported in exchange 

for a divalent anion. Based on the bacterial uracil transporter UraA, a structural homology 

model of prestin with a 7+7 inverted repeat architecture was predicted. 

The mechanism of the SLC26-mediated transport is not fully understood. A potential role of 

this transport mechanism in the electromotile properties of prestin is elusive, but based on 

the high sequence similarity of transport-capable and electromotile prestin orthologues the 

idea arose that both are related and electromotility evolved from transport. This is further 

supported by the finding that the motor protein prestin interacts with and only undergoes 

conformational rearrangements in the presence of intracellular monovalent anions. 

Furthermore, it is not completely understood whether electromotile prestin undergoes 

structural dynamics that are similar to those of transport-capable members of the SLC26 

family. 

The aim of the present study is to elucidate whether the function of the SCL26 transporters 

and voltage-driven motors follows common structural principles. To achieve this aim, two 

members of the SLC26 family were chosen as model systems: the non-mammalian zebrafish 

prestin and the mammalian rat prestin. The method mainly used in this study is a cysteine 

accessibility study. It allows insights into structures that should change their accessibility 

to the aqueous medium according to their movement during a transport cycle. 

The membrane-impermeable MTS reagents were either applied from the intracellular or 

extracellular side. In rat and zebrafish prestin positions were identified which were 

sensitive to MTS applications and in consequence accessible. 

The presumptive anion-binding site and the anion translocation pathway are mainly located 

in the transmembrane domains 3 and 10. The data here presented are consistent with the 

structural models derived from experimental structures. Positions within transmembrane 

domain 10 are mainly accessibly from the intracellular side and positions within 

transmembrane domain 3 from the extracellular side. 

Furthermore, there are central positions in zebrafish prestin, which are accessible from 

both sides. This indicates an alternating-access transport consistent with elevator 

movement of the core domain.  The lack of extracellular access of the homologous positions 



 

 x 

in rat prestin shows that the extracellular-exposed conformation is not obtained in 

mammalian prestin. This points towards an incomplete transport mechanism performed by 

mammalian prestin.  

The rat prestin mutant V139C is accessible from both sides. This two-sided accessibility 

suggests an outward movement of the core domain within an incomplete transport 

transition. This mutant shows that V139 faces the translocation pathway in the inward-

open as well as in the occluded conformation and thus stays rigid and does not undergo a 

conformational rearrangement. An alternating-access transport in elevator mode is 

characterised by a relatively rigid immobile gate domain, a mobile core domain, which 

contains the anion-binding site, and a vertical displacement of the bound substrate. The 

results of the scanning support this mode of transport that was also proposed for a 

prokaryotic SLC26 family member. While crystal structures record a protein in a certain 

conformation cysteine labelling provides the opportunity to study the full conformational 

changes. 

The model derived from the scanning results present alternate conformations determined 

by the extracellular accessibilities of positions of the respective prestin orthologue. To what 

extent the core domain opens to the extracellular side can be deduced by the positions V139 

within transmembrane domain 3 in rat prestin and M400 and S400 within transmembrane 

domain 10 in zebrafish prestin. There is an obvious difference between the alternate 

conformation of rat and zebrafish prestin. Zebrafish prestin undergoes a full transport cycle 

from an inward-open to an outward-open conformation, whereas rat prestin alternates 

between the inward-open and the intermediate (occluded) conformation. The results of the 

scanning show that the elevator mode of transport is mainly realised by zebrafish prestin. 

Rat prestin fails to reach the outward-open conformation, thus it performs an incomplete 

transport mechanism in an elevator-like manner. 

Additionally, rat prestin V139C shows a combination of mechano- and redox-sensitivity. 

The activity of rat prestin V139C is dependent on the application of fluid-flow. This flow-

dependency of activity seems to be correlated with the microenvironment of the mutant - 

the more inflexible the side chain the more distinct the flow-sensitivity of activity. On the 

basis of the presented data the applied fluid-flow does not cause membrane tension in 

V139C. The mechanosensitivity of V139C seems to be provoked by pure shear stress. 

Furthermore, it is different from the intrinsic tension-sensitivity of prestin wild type. 

Finally, the phenomenon of the mechano- and redoxsensitivity could not yet be clarified.
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v    Zusammenfassung 

Prestin ist als das Protein identifiziert worden, welches für die Elektromotilität in 

Säugetieren verantwortlich ist. Es ist ein Mitglied der SLC26 (Solute Carrier) Familie, 

dessen Mitglieder als Anionentransporter fungieren. Im Gegensatz zu den anderen 

Mitgliedern ist das Säugetier-Prestin kein Anionentransporter und generiert stattdessen 

Elektromotilität. Nichtsäugetier-Prestin Orthologe wie das Prestin des Zebrabärblings sind 

Anionenaustauscher mit einer Stöchiometrie von 1:1, wobei ein Chloridanion im Austausch 

gegen ein zweiwertiges Anion transportiert wird. Basierend auf dem bakteriellen Uracil 

Transporter UraA wurde ein strukturelles Homologiemodell von Prestin mit einer 7+7 

„inverted repeat“ Architektur entworfen. 

Der Mechanismus des SLC26-vermittelten Transports ist noch nicht vollständig aufgeklärt. 

Welche Rolle dieser Transportmechanismus für die elektromotilen Eigenschaften von 

Prestin spielt, ist unklar. Basierend auf der hohen Sequenzhomologie transportfähiger und 

elektromotiler Prestin Orthologe entstand die Idee, dass beide Mechanismen verwandt sind 

und Elektromotilität aus einem Transportmechanismus entstanden ist. Dies wird ebenfalls 

dadurch belegt, dass das Motorprotein Prestin mit intrazellulären monovalenten Anionen 

interagiert und Konformationsänderungen nur in Anwesenheit dieser Anionen durchführt. 

Dennoch ist es nicht komplett verstanden, ob elektromotiles Prestin strukturelle 

Dynamiken durchläuft, welche denen transportfähiger Mitglieder der SLC26 Familie 

ähneln. 

Das Ziel der vorgelegten Studie war es aufzuklären, ob die Funktion der SCL26 Transporter 

und spannungsgetriebener Motorproteine gemeinsamen strukturellen Prinzipien folgt. Um 

dies zu erreichen, wurden zwei Mitglieder der SLC26 Familie als Modellsysteme 

ausgewählt: das Nichtsäugetier-Prestin des Zebrabärblings und das Säugetier-Prestin der 

Ratte. Die hauptsächlich angewandte Methode in dieser Studie war eine Cystein 

Zugänglichkeitsstudie. Dadurch können Strukturen identifiziert werden, welche ihre 

Zugänglichkeit zum wässrigen Medium entsprechend ihrer Bewegung während eines 

Transportzyklus ändern. 

Die membranundurchlässigen MTS Reagenzien wurden entweder von der intrazellulären 

oder der extrazellulären Seite appliziert. Im Prestin der Ratte und des Zebrabärblings 

wurden Positionen identifiziert, welche sensitiv auf Applikationen mit MTS reagierten und 

folglich zugänglich sind. 

Die mutmaßliche Anionenbindungsstelle und der Anionentranslokationsweg sind 

größtenteils in den Transmembrandomänen 3 und 10 lokalisiert. Die hier vorgestellten 
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Daten stimmen mit den aus experimentellen Strukturen abgeleiteten Strukturmodellen 

überein. Positionen innerhalb der Transmembrandomäne 10 sind hauptsächlich von der 

intrazellulären Seite zugänglich und Positionen innerhalb der Transmembrandomäne 3 von 

der extrazellulären Seite. 

Darüber hinaus gibt es zentrale Positionen im Zebrabärblingprestin, die von beiden Seiten 

zugänglich sind. Dies deutet auf einen alternierenden Zugang während des Transports 

(‚alternating-access transport‘) mit einer Aufzugsbewegung (‚elevator movement‘) der 

Kerndomäne hin.  Das Fehlen des extrazellulären Zugangs der homologen Positionen im 

Rattenprestin zeigt, dass die extrazellulär exponierte Konformation im Säugetierprestin 

nicht erreicht wird. Dies spricht für einen unvollständigen Transportmechanismus, 

welchen das Säugetierprestin durchläuft.  

Die Mutante Rattenprestin V139C ist von beiden Membranseiten zugänglich. Diese 

zweiseitige Zugänglichkeit spricht für eine Bewegung der Kerndomäne nach außen 

innerhalb eines unvollständigen Transports. Diese Mutante demonstriert, dass V139 

sowohl in der nach innen geöffneten als auch der intermediären (‚occluded‘) Konformation 

rigide zum Translokationsweg zeigt und keine konformative Umordnung widerfährt. 

Ein Transport mit abwechselndem Zugang in einer Elevator Weise ist charakterisiert durch 

eine relative rigide immobile Tordomäne (‚gate domain‘), eine mobile Kerndomäne (‚core 

domain‘), welche die Anionenbindungsstelle beinhaltet, und eine vertikale Verschiebung 

des gebundenen Substrates. Das Ergebnis des Scannings unterstützt diese Weise des 

Transportes, welche ebenfalls für ein prokaryotisches SLC26 Familienmitglied 

vorgeschlagen wurde. Während Kristallstrukturen ein Protein in einer bestimmten 

Konformation erfassen, bietet die Cysteinmarkierung die Möglichkeit komplette 

Konformationsänderungen zu studieren. 

Das Modell, welches aus den Scanningdaten resultiert, präsentiert alternierende 

Konformationen, welche durch die extrazelluläre Zugänglichkeit von Positionen des 

jeweiligen Prestin Orthologs ermittelt wurden. Bis zu welchem Grad sich die Kerndomäne 

zur extrazellulären Seite öffnet, kann durch die Zugänglichkeit der Positionen V139 

innerhalb der Transmembrandomäne 3 des Rattenprestins sowie M400 und S400 

innerhalb der Transmembrandomäne 10 des Zebrabärblingprestins hergeleitet werden. Es 

gibt einen offensichtlichen Unterschied zwischen den alternierenden Konformationen des 

Prestins der Ratte und des Zebrabärblings. Das Prestin des Zebrabärblings durchläuft einen 

kompletten Transportzyklus von der nach innen geöffneten bis zur nach außen geöffneten 

Konformation, wohingegen das Rattenprestin zwischen der innen geöffneten und der 
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intermediären (‚occluded‘) Konformation alterniert. Die Scanningergebnisse zeigen, dass 

der Elevatortransport primär vom Prestinortholog des Zebrabärblings durchgeführt wird. 

Das Prestin der Ratte nimmt die nach außen geöffnete Konformation nicht ein und führt 

dementsprechend einen unvollständigen Transportmechanismus in einer Elevator-

ähnlichen Weise durch. 

Zusätzlich zeigt die Mutante V139C des Rattenprestins eine Kombination aus Mechano- und 

Redoxsensitivität. Die Aktivität des Rattenprestins V139 ist abhängig von der Applikation 

eines Fluidstroms. Die Fluss- (‚flow‘-) abhängkeit der Aktivität dieser Mutante scheint mit 

ihrer Mikroumgebung zu korrelieren – je unflexibler die Seitenkette desto ausgeprägter die 

Fluss-Abhängigkeit der Aktivität. Basierend auf den hier vorgestellten Daten verursacht der 

applizierte Fluidstrom keine Membranspannung, sondern Scherspannungen in V139C. 

Darüber hinaus unterscheidet sich diese Sensitivität von der intrinsischen 

Spannungssensitivität des Prestin Wildtyps. Letztlich konnte das Phänomen der Mechano- 

und Redoxsensitivität nicht aufgeklärt werden. 
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1 Introduction 

Hearing is an invention of evolution. The sense of sound has evolved gradually and is 

therefore not found in every animal species. Furthermore, the ear is the vertebrate hearing 

organ, but it is not the only acoustic sensory organ, e.g. the tympanal organ is the hearing 

organ of many insects and its hearing membrane is located differently, at the front legs in 

crickets or at the abdomen in cicadas. This study will focus on two species as 

representatives of vertebrates, zebrafish (Danio rerio) and rat (Rattus norvegicus). 

Principles of hearing in vertebrates and particularly the two abovementioned 

representatives will be explained below. While a variety of different hearing organs evolved 

across invertebrate phyla, the perception and conduction of acoustic signals is always 

connected to the inner ear in vertebrates. Accordingly, the inner ear is very similar 

regarding structure and function throughout vertebrates. The range of frequencies, in 

which perception of sound takes place, is called audible sound and varies substantially 

between species. A healthy person can detect sound in the frequency range of 16 Hz to 20 

kHz. In rats, e.g., the hearing is most sensitive in the range of 200 Hz to 16 kHz and has its 

upper frequency limit at 90 kHz, which corresponds to ultrasound (Du et al., 2007). In 

contrast, sound detection in ‘lower’ vertebrates such as zebrafish is mostly best in the low 

frequency range. Equipped with air bladder and Weberian apparatus, their range extends 

up to only 4 kHz (Higgs et al., 2003; Wang et al., 2015). 

Besides the anatomical differentiations that underlie the different hearing ranges, the 

specialisations of the ears of, e.g., mammals and fishes are likewise based on features at the 

molecular and cellular level, which enable the respective sound sensation. The focus of this 

study is the molecular mechanism of one unique and pivotal specialisation in mammals, the 

so-called electromotility of sensory hair cells. 

1.1 The ear 

The ear is the sensory organ, which receives acoustic stimuli, processes them mechanically, 

and finally codes them into neuronal signals. In mammalian vertebrates it consists of three 

parts: the outer, the middle and the inner ear. The equilibrium (vestibular) organ is also 

part of the inner ear and evolutionarily and functionally closely related to hearing. 

On the other hand, bony fishes feature an air bladder, with which they detect sound waves 

and convey them to the inner ear. Zebrafishes belong to the minnow family of Cypriniformes, 

a member of the superorder of Ostariophysi, in which the Weberian apparatus mediates 

transmissions of sound from the air bladder to the inner ear (Dudel et al., 2001; Grande & 
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Young, 2004). Furthermore, the inner ear of zebrafishes has specialised hair cells, though 

there is no differentiation between inner and outer hair cells (Riley et al., 1997). 

Rats represent the order of Rodentia of the class of Mammalia. In mammals, the inner ear 

developed into the snail-shaped cochlea with the sensory epithelium (‘organ of Corti’) 

sitting on top of the elastic basilar membrane and containing two specialised types of 

sensory hair cells, inner and outer hair cells. 

1.2 The principles of hearing 

The hearing process is coupled to multiple requirements, e.g. frequency coding and analysis 

(Dudel et al., 2001). The otolith organ functions as the hearing organ in fish. In contrast, the 

organ of Corti within the cochlea is the sensing organ for hearing in mammals. The sensory 

epithelium has evolved from the otolith organ in fish to the basilar papilla in reptiles and 

birds. The basilar papilla is strongly elongated and rolled up into a spiral in mammalian 

vertebrates, yielding a structure called cochlea. The human cochlea in its uncoiled form has 

a length of about 34 mm. 

In mammals, an incoming sound wave reaches through the outer ear canal to the eardrum, 

which in turn starts to vibrate and thereby mobilises the three ossicles (malleus, incus and 

stapes) of the middle ear (Figure 1.1). The last in the chain transfers the mechanical 

pressure to the oval window as the entrance to the cochlea. The cochlea is fluid-filled and 

acoustic vibration spreads along the cochlea as a travelling wave (Robles & Ruggero, 2001; 

Olson et al., 2012), moving from the oval window up to the apex of the cochlea. In doing so, 

the wave reaches a place of maximum amplitude on the basilar membrane that is specific 

for the frequency of the sound (Gundersen et al., 1978) (Figure 1.2). Sound waves with high 

frequencies lead to maximum vibration near the oval window. With decreasing frequency, 

the maximum of the displacement occurs at more apical positions along the cochlea. The 

consequence of this vibration pattern is a mechanical spatial dispersion of sound 

frequencies. The subsequent assignment to a distinct sensory cell population at each 

cochlear position and downstream the associated nerve fibre establishes a neuronal 

tonotopy. Together with the basilar membrane all associated structures experience 

vibration. This applies in particular to the organ of Corti and the cochlear sensory hair cells. 

The hair cells transduce the sound stimulus into neural signals. Mammals possess two 

different types of those cells, the inner hair cells and the outer hair cells (Figure 1.3). In 

humans about 3.500 inner hair cells form one row along the cochlea, while about 11.000 

outer hair cells are arranged in three rows. 
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Figure 1.1: Structure of the human ear. The focus is on the middle ear with the three ossicles (malleus, incus 
and stapes) and the inner ear, which is coloured in blue. The inner ear consists of the cochlea and is connected 
to the vestibular system with its three semi-circular canals. Image source: Hall, 2010. 

The inner hair cells possess a much denser afferent innervation than the outer hair cells. 

The hair cells transmit all acoustic information to the brain by transducing the vibrations of 

the basilar membrane into electrical signals. The apical pole of the hair cells contains hair 

bundles, several rows of stereocilia that are connected via tip links. Mechanical deflection 

of the hair bundle towards the tallest stereocilium opens mechanosensitive transduction 

channels, which are nonspecific cation channels (Beurg et al., 2009; Beurg & Fettiplace, 

2017). The hair cells are surrounded by the endolymph at the apical end and by the 

perilymph at the basal end. These two fluids vary in their composition. The endolymph is 

rich in K+-ions and poor in Na+-ions. Whereas it is vice versa at the basal pole, the perilymph 

has a very low content in K+-ions but is rich in Na+-ions. A considerable difference in the 

concentration of K+-ions is also present between the endolymph (rich in K+-ions) and the 

cytosol of the hair cells (poor in K+-ions). These differences in the concentration of K+-ions 

are the reason for the endocochlear potential. This electrical gradient across the membrane 

of the stereocilia is the driving force that facilitates K+-ions to flow into the hair cell after 

deflection of the hair bundle. The K+-current causes a depolarisation of the cell. The 

depolarisation subsequently induces the opening of voltage-dependent calcium channels. 

Ca2+-ions again are essential for the release of vesicles. This leads to a release of the 

neurotransmitter glutamate at the basal pole of the hair cell. The released glutamate 

diffuses across the synaptic cleft and initiates postsynaptic potentials in the next afferent 

neurone, which in turn causes the generation of action potentials. Through this process the 

transduction of an initial mechanical stimulus into a neuronal signal is completed. The 
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subsequent processing in the brain is not the subject of this work and, therefore, not further 

discussed in this introduction. 

Like inner hair cells, outer hair cells generate oscillating receptor potentials in response to 

cochlear vibrations. However, in contrast to inner hair cells, outer hair cells respond to 

depolarisation with a cell contraction, whereas hyperpolarisation causes a lengthening of 

the cell. These changes in cell length in response to alterations in the membrane potential 

are called electromotility and are an exclusive feature of outer hair cells. The importance of 

this process lies in the generation of the so-called cochlear amplification, which is essential 

for auditory acuity in mammals (cf. 1.3). 

 

Figure 1.2: Tonotopy in the inner ear of mammals. On the left side: the wound cochlea. On the right side: the 
uncoiled basilar membrane with its displacement as a function of frequency of the incoming sound wave. The 
upper graph illustrates the deflection with a maximum at a defined position along the length of the basilar 
membrane. The lower graph: High frequencies produce maximum displacements near the oval window (base), 
with decreasing frequencies the maximum displacement of the travelling wave moves up to the apex of the 
cochlea. This is caused by the mechanical properties of the basilar membrane, which is stiff and narrow near the 
oval window and becomes wider and more compliant toward its apical end. 

Zebrafishes do not have a tympanic membrane. The Weberian apparatus connects air 

bladder and inner ear (Bang et al., 2001). The Weberian ossicles transmit the vibrations as 

part of the Weberian apparatus. In the case of zebrafish, a sound wave hits the lateral 

window of the bony capsule, in which the air bladder is embedded. Thus, the air bladder 

starts to vibrate and as a consequence the sound wave is transferred via the Weberian 

ossicles to the unpaired perilymphatic sac. From the perilymphatic sac it travels to the 

unpaired endolymphatic sac and finally to the inner ear. Because of the unpaired sound 

conductions, the transferred sound is missing the component of sound direction. The inner 

ear of zebrafish is equipped with only one type of hair cells. The stereocilia of the hair cells 

are attached to the otolith membrane (Nicolson, 2005). The forwarded sound wave causes 

deflection of the stereocilia. Deflection of the hair bundle towards the tallest stereocilium 

opens mechanosensitive channels and results in a depolarisation of the hair cell, which 
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causes the opening of calcium channels and the release of neurotransmitter at the basal end 

of the hair cell. This mechanotransduction is mechanically essentially identical to those 

processes in mammalian vertebrates. Each frequency triggers stereocilia deflection with a 

local stimulation maximum, even though this kind of tonotopy is less precise as in the 

mammalian ear (Popper & Fay, 1993; Weiss et al., 2009). 

There is no hair cell electromotility in non-mammalian vertebrates. Nevertheless, 

amplification has been described but is thought to be based on a fundamentally different 

mechanism, i.e. the reciprocal operation of mechanotransducer channels in their non-motile 

hair cells (Hudspeth, 1997; Hudspeth, 2005). 

1.3 Cochlear amplification 

Cochlear amplification is a positive feedback mechanism by which the energy of the 

travelling wave is locally amplified within the inner ear. It is essential for the exquisite 

sensitivity of mammalian hearing. The cochlear amplification is most efficient at low sound 

levels, but levels off towards increasing sound levels. 

The outer hair cells play an important role for this process. Their contraction and elongation 

in response to voltage stimulation locally enhances the vibration energy of the travelling 

wave along the basilar membrane. The molecular motor behind this cell motion is the 

protein prestin, which is exclusively expressed in the basolateral membrane of outer hair 

cells. It bears unique properties providing the molecular basis of cochlear amplification. 

Besides prestin, another pre-requisite of cochlear amplification is the attachment of the 

stereocilia of outer hair cells to the tectorial membrane. This linkage is a specialised feature 

of outer hair cells, but not of inner hair cells (Figure 1.3). It allows the basilar membrane to 

move relative to the tectorial membrane, where this movement is further amplified through 

the electromotile response of the outer hair cells upon voltage stimulation (Figure 1.4). 

The cochlear amplification by the outer hair cells amplifies the mechanical stimulus into an 

adequate signal that the inner hair cells transduce into a neural response. This mechanism 

is most important at low sound levels. Moreover, cochlear amplification is limited to a 

particular locus within the cochlea. Thus, it strongly contributes to the excellent frequency 

resolution of the auditory system in mammals (Dong & Olson, 2013; Rhode, 2007). 

Consequently, a loss of outer hair cells results in hearing impairment and is in fact one of 

the major causes of human hearing loss (Liberman et al., 2002; Chen et al., 2008). 
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Figure 1.3: Organ of Corti. The figure shows three outer hair cells (OHCs) and one inner hair cell (IHC) 
representing three rows of OHCs and a single row of IHCs, which are found in the organ of Corti in mammals. 
These sensory cells are located between the basilar membrane at the bottom and covered by the tectorial 
membrane at the top. Note that the stereocilia of the OHCs are attached to the tectorial membrane but not those 
of the IHC. Both types of hair cells are connected to afferent and efferent nerve fibres. Image modified from 
Silverthorn, 2009. 

The outer hair cell motility can be described as a piezoelectrical phenomenon. Brownell et 

al. (1985) first observed the electromotility of outer hair cells. Changes in the electrical 

membrane potential cause changes in the cell length; and vice versa, stretching and 

compressing of the basolateral membrane of outer hair cells results in changes in the 

membrane potential (Gale & Ashmore, 1994; S Kakehata & Santos-Sacchi, 1995). Cells 

contract in response to depolarisation and cells elongate in response to hyperpolarisation 

(Figure 1.4). 

During patch-clamp measurements in outer hair cells, capacitive currents are detectable 

that show a nonlinear behaviour with respect to voltage. These currents are caused by 

charge movements within the membrane and can be measured electrophysiologically using 

voltage step protocols. The integral of these currents corresponds to the moved charge Q, 

where Q shows a sigmoidal voltage dependence. The relation between the voltage V and the 

charge Q can be described by a two-state model. The slope of the Q-V curve corresponds to 

membrane capacitance and is referred to - because of its nonlinear dependence on the 

voltage of the membrane - as nonlinear capacitance (NLC). Earlier studies demonstrated the 

maximal charge transfer correlates with the maximal change in cell length in outer hair cells, 

thus the NLC is often used as an experimental proxy of electromotility (Figure 1.7). The 

Boltzmann function describes the fractional population of the two states or, equiventally, 

the probability for each elementary motor unit to occupy either of these two states (cf. 

1.4.3.1 and 2.6.1). 
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1.4 Prestin 

1.4.1 Mammalian prestin 

In 2000, Zheng and co-workers succeeded in identifying prestin as the protein being 

responsible for electromotility in mammals (Zheng et al., 2000a). They isolated mRNA from 

microdissected gerbil cochleas and identified transcription products that were only found 

in outer but not in inner hair cells. After cloning of cDNA of these sequences and transfection 

of TSA 201 cells with it, led to the identification of one sequence that produced NLC signals 

and conferred electromotility in heterologous systems. 

In addition to capacitive responses of mammalian cells that heterologously express prestin, 

transfected cells also respond to salicylate, a known blocker of the NLC in outer hair cells 

(Zheng et al., 2000b). Furthermore, outer hair cells of prestin knock-out mice and of prestin 

(V499G/Y501H) knock-in mice show a lack of electromotility and cochlear amplification 

(Liberman et al., 2002; Dallos et al., 2008). These studies confirmed that prestin is the 

essential molecule for electromotility in outer hair cells. 

The gene SLC26A5 (Solute Carrier) codes for prestin. Human prestin is located on 

chromosome 7q22.1 and consists of twenty exons (Liu et al., 2003). The gene encodes a 

protein of 81.4 kDa with 744 amino acids. Prestin is a transmembrane protein that is 

exclusively localised in the basolateral membrane of outer hair cells, where it is densely 

packed and particularly accumulated in cholesterol-rich microdomains (Sturm et al., 2007). 

Prestin is a member of the SLC26 (Solute Carrier) family, which is part of the SulP (Sulfate 

Permease) superfamily. All known members of the SLC26 family, except prestin, transport 

Figure 1.4: An outer hair cell in its elongated 
and contracted state. Outer hair cells change 
their length in response to changes in the 
membrane potential. Depolarisation results in a 
contraction of the cell, hyperpolarisation causes 
an elongation. The squares (dark blue) 
represent prestin proteins in the basolateral 
membrane of an outer hair cell that change their 
conformation in dependence of the electrical 
field across the membrane. 



 

 1-8 

anions across the cell membrane. Non-mammalian prestin orthologues are anion-

exchangers with a stoichiometry of 1:1, where a chloride anion is transported in exchange 

for a divalent anion, e.g. oxalate or sulphate (Schaechinger & Oliver, 2007a). This anion 

exchange is reversible dependent on driving forces. Remarkably, prestin is the only member 

of the SLC26 family, which does not function as transporter but produces electromotility 

(Mount & Romero, 2004). 

Ten functional members of the SLC26 family were identified in vertebrates, but homologs 

were also found in many other organisms such as invertebrates, plants and bacteria 

(Dorwart et al., 2008). Prestin itself is highly conserved among different species. In 

mammals prestin is exclusively expressed in outer hair cells (Zheng et al., 2000b). The 

prestin orthologues of zebrafish and flies are also expressed in auditory organs even though 

they do not seem to cause electromotility (Weber et al., 2003). 

Prestin has fourteen transmembrane domains (Gorbunov et al., 2014) and a STAS (Sulfate 

Transporter and Anti-Sigma factor antagonist) domain at its C-terminal end (Figure 1.5). 

Gorbunov and co-workers used homology modelling, MD simulations as well as 

experimental data to predict a 7+7 inverted repeat architecture of prestin. The model is 

based on the bacterial uracil transporter UraA and compared the sequences of UraA and rat 

prestin. The transporter UraA belongs to the nucleobase/cation symporter 2 (NCS2) 

proteins. The NCS2 proteins have an evolutionary proximity with the SLC26/SulP family, 

which made the UraA an appropriate template for homology modelling (Schlessinger et al., 

2010; Höglund et al., 2011; Gorbunov et al., 2014). Furthermore, a high-resolution crystal 

structure of UraA was published in 2011 (Lu et al., 2011). The predicted fourteen 

transmembrane domains are α-helical except for two short β-sheets in the transmembrane 

domains 3 and 10. The N- and C-terminal ends are placed intracellular. It has been assumed 

that prestin molecules form oligomers. Homomultimers of two or four subunits have been 

hypothesised (Zheng et al., 2006; Detro-Dassen et al., 2008; Hallworth & Nichols, 2012). 

New structural information on bacterial SLC26 homologs and on prestin was revealed 

recently and supports dimerisation for SLC26 transporters in general (Chang et al., 2019). 

Based on the structure of UraA, prestin is predicted to form a highly hydrophobic anion 

translocation pathway with a central cavity that mainly consists of the transmembrane 

domains 1, 3, 8 and 10 (Gorbunov et al., 2014) (cf. Figure 1.9). Furthermore, there are two 

crystallographic structures of members of the SLC26 protein family. The first one was 

resolved for SLC26Dg, a prokaryotic fumarate transporter, and the second one was recently 

published based on crystallography of the murine SLC26A9 (Geertsma et al., 2015; Walter 
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et al., 2019) . These two experimental structures fully support the previous homology model 

based on UraA. 

 

 

Figure 1.5: Structural model of prestin. A: SLC26A5 has fourteen transmembrane domains with a 7+7 
inverted repeat architecture. Both ends of the protein are cytosolic. At the C-terminus a STAS (Sulfate 
Transporter and Anti-Sigma factor antagonist) domain is present, which all members of the SulP family share. 
Image modified from (Gorbunov et al., 2014). B: A dimer of prestin with one monomer in blue and the other one 
in orange. The model is based on the SLC26A9 (Walter, Sawicka & Dutzler, 2019) aligned with the model of rat 
prestin. The domains are shown as cylindrical helices. The transmembrane domains (TM) 14 and the STAS 
domains of the monomers are in close contact (additionally highlighted in pink and dark blue) and especially 
TM 14 was recently identified as the interface of prestin dimers by Chang et al., 2019. 
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1.4.2 Non-mammalian prestin orthologues 

In contrast to mammalian prestin, non-mammalian prestin orthologues are transport-

capable proteins, which work as electrogenic anion-exchangers (Schaechinger & Oliver, 

2007b). They are found across vertebrates, although only few have been studied in detail, 

e.g. chicken (Gallus gallus domesticus) and zebrafish (Danio rerio) (Albert et al., 2007). Since 

these prestin orthologues are already well characterised in their function, they serve as 

ideal model systems to identify common molecular features of the transport mechanism in 

the SLC26 protein family. 

Chicken and zebrafish prestin orthologues generate NLC, but, according to current 

knowledge, do not produce electromotile changes in cell length. In addition, the NLC 

characteristics vary from chicken and zebrafish prestin to mammalian prestin (Albert et al., 

2007). 

The distinct functional properties while sharing a high sequence similarity make zebrafish 

prestin an attractive model to investigate the transport mechanism of SLC26 transporters. 

Rat and zebrafish prestin share a high degree of sequence homology; it is about 54 % 

identity at the protein level. All this indicates structural and mechanistic similarities to 

mammalian prestin. For this study mainly zebrafish prestin as representative of non-

mammalian prestin was investigated. 

1.4.3 Mechanistic models of electromotility 

The mechanism of the SLC26-mediated transport is not fully understood. A potential role of 

this transport mechanism in the electromotile properties of prestin is elusive, but based on 

the high sequence similarity of transport-capable and electromotile prestin orthologues the 

idea arose that both are related and electromotility evolved from transport. This is further 

supported by the finding that the motor protein prestin interacts with and only undergoes 

conformational rearrangements in the presence of intracellular monovalent anions 

(Schaechinger et al., 2011). Based on previous studies several mechanistic models of anion 

transport and electromotility were suggested and will be described in the following 

sections. Some of these models are complementary, others are competing. 

1.4.3.1 Model of incomplete transport cycle and allosteric modulation of mammalian prestin 

The hypothesis of an incomplete transport cycle has been proposed as the mechanistic basis 

for the generation of electromotility. In this model prestin binds an anion on its intracellular 

side that moves along a transport pathway in response to changes in the membrane 

potential. In turn, this movement will initiate conformational changes of prestin resulting 
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in changes in the cell length of the outer hair cell and in the NLC in outer hair cells and 

heterologously expressing CHO cells (Schaechinger et al., 2011; Gorbunov et al., 2014). 

Additionally, removal of intracellular chloride resulted in an abolishment of the NLC in 

outer hair cells of rats (Oliver et al., 2001). Thus, intracellular anions, e.g. chloride, are 

necessary for the electromechanical function of prestin. This finding paired with the lack of 

anion release on the extracellular side led to the assumption that prestin undergoes an 

incomplete transport cycle. 

Furthermore, the findings that the non-mammalian prestin orthologues can generate 

voltage-dependent charge movement and NLC (Albert et al., 2007) has led to the idea that 

electromotility mechanistically results from an incomplete transport (Schaechinger et al., 

2011). This incomplete transport of prestin might have evolved from an ancestral anion 

transport mechanism conserved in the SLC26 transporter family (Figure 1.6). This 

incomplete transport excludes an outward-open conformation; the protein binds an anion 

from the cytosolic side in the inward-open conformation and rearranges into an 

intermediate/occluded state, but fails to unload the bound anion at the extracellular side of 

the cell. 

 

Figure 1.6: Schematic depiction of elevator-like conformational transitions during a transport cycle of 
prestin, which allow for alternating-access of the anion-binding site. Two prestin proteins form a dimer. 
The gate domain (teal) is the scaffolding along which the core domain (blue) moves during a transport cycle. 
The anion (orange circle) is bound to the core domain. With a rigid movement of the core domain the anion gets 
access to the other side of the membrane. An incomplete transport cycle is suggested for mammalian prestin, in 
which the outward-open conformation is never reached. 

This model was attractive because it involved the charge movement as being associated 

with electromotility and the relationship of prestin to other SLC26 transporters. However, 

it failed to explain one aspect: the slope of the NLC signals changes only slightly when 

intracellular monovalent anions (e.g. chloride) are exchanged by multivalent anions such as 

sulphate (Rybalchenko & Santos-Sacchi, 2008). Since the slope of the Q-V-curve reflects the 

amount of net charges that are moved across the membrane, the transport of a polyvalent 

anion – if mechanistically identical to the transport of the monovalent anion – should affect 

the slope. Therefore, the model had to be refined, which was done by including an 
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alternative allosteric modulation mechanism. In this mechanism the binding of an anion to 

a site distinct from the anion translocation pathway is assumed to initiate an allosteric 

change in the protein structure, which facilitates the anion in the central cavity to move as 

voltage sensor across the membrane (Rybalchenko & Santos-Sacchi, 2008). 

1.4.3.2 Area motor model 

In the early 1990s, the idea of the area motor model was first published to describe the 

observed changes in cell length in outer hair cells (Dallos et al., 1993; Iwasa, 1994). As area 

motor, prestin’s 3D-structure changes its spatial expansion in the membrane plane in 

response to voltage stimulations. The area motor model proposes that the sum of size 

changes of all prestin proteins finally causes the contraction or elongation of the outer hair 

cells (Kalinec et al., 1992; Santos-Sacchi & Song, 2014b). The most simple biophysical model 

is based on the assumption that prestin can switch only between two states, a compact and 

an extended state (Dallos et al., 1991). 

The probability of the state depends on the membrane potential and can be described by a 

Boltzmann distribution (cf. 2.7). The first derivate of the Boltzmann function reflects the 

NLC depending on the voltage and delivers the three important parameters: peak 

capacitance, V1/2 and slope. 

 

Figure 1.7: The connection between 
changes in the cell length, charge 
movement and the nonlinear capacitance 
(NLC). The technical read-out of the 
electromotility is the bell-shaped NLC, the first 
derivative of the Q-V curve. The NLC peaks at 
the V1/2, which is the point where the charge is 
equally distributed on either side of the 
membrane. The change in cell length is also 
voltage-dependent, the cell contracts in 
response to depolarisation. A typical value of 
the V1/2 in outer hair cells is additionally 
marked on the voltage axis. Image modified 
from Ashmore, 2008.  

 

The peak capacitance is influenced by the expression level of prestin and the number of 

proteins targeted to the membrane. Mutations in prestin can have an impact on the size of 

the NLC. Furthermore, outer hair cells deliver large NLC signals due to the high expression 

levels of prestin and its dense arrangement in the cell membrane. Rat prestin 

heterologously expressed in CHO cells provides cells with piezoelectrical properties similar 

to those in outer hair cells, but the signal amplitude of outer hair cells has not been achieved 

so far in heterologous expression systems (Ludwig et al., 2002). 
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V1/2 is the membrane voltage, where the charge movement within the membrane is half 

maximal. This value corresponds to the peak of the NLC signal. In outer hair cells, the V1/2 is 

at about -70 mV (Santos-Sacchi, 1991) that is close to the resting membrane potential of 

these cells. It is determined by many factors such as ionic conditions, membrane pressure 

and stiffness (Ludwig et al., 2002; Rajagopalan et al., 2010). 

The slope of the NLC is the voltage dependence of the capacitance and is less variable than 

the V1/2 with a value between 30 and 40 mV (Oliver & Fakler, 1999; Ludwig et al., 2002). 

However, the slope can also be affected by ionic condition (Oliver et al., 2001). It is defined 

as the amount of charge that moves through the membrane per functional unit, which 

correlates with the change in cell length per voltage unit (Figure 1.7). 

Furthermore, prestin differs fundamentally in structure and function from other known 

motor proteins like myosin, kinesin or dynein (Frank et al., 1999). Its electromotile 

response is independent of ATP and Ca2+-ions, and yet extremely fast (at microsecond 

rates). In addition, its function is directly coupled to the membrane potential making it an 

ultrafast voltage-dependent motor protein (Dallos et al., 1991). 

1.4.3.3 Anion translocation extends the area motor model 

The area motor model is a pure biophysical description of the observed changes in cell 

length of outer hair cells. With knowledge of prestin’s belonging to the transporter family 

SLC26, a connection between electromotility and anion translocation was investigated. 

The changes in the protein structure require the interaction of prestin with an anion. NLC 

was proposed to result from binding chloride to a cytosolic binding site and its movement 

across the membrane electrical field without releasing it at the extracellular side of the cell 

(Oliver et al., 2001). Non-mammalian prestin orthologues are anion transporters, which 

mediate a 1:1 electrogenic exchange of chloride with oxalate or sulphate (Schaechinger & 

Oliver, 2007b). Bai and colleagues discovered transport of oxalate and formate by gerbil 

prestin heterologously expressed in CHO cells (Bai et al., 2009). This transport is 

independent of prestin’s voltage-sensitive electromotile properties and its significance to 

outer hair cells is not known. 

Combined with the early model of the area motor, prestin is elongated when the anion is 

positioned near the entrance of the anion translocation pathway and it is contracted when 

the anion moves deeper into the protein towards the extracellular side. Here, the hypothesis 

is that NLC is produced by the passage of the anion within the protein. 
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1.4.3.4 Model of alternating-access to the anion-binding site 

The increasing number of crystallographic structures of transporters provides information 

about multiple functional states (cf. Figure 1.8), in which transporters were crystallised. 

These different functional states help to understand the molecular mechanism of substrate 

transport. Crystal structures of the distantly related SLC4 and SLC23 family were published 

in recent years. The SLC4 family includes several classical bicarbonate transporters. Its 

most prominent member is the anion-exchanger AE1 of which a crystal structure in the 

outward-open conformation is available (Arakawa et al., 2015). One year later, Thurtle-

Schmidt and Stroud presented the crystal structure of Bor1 (also SLC4 family) in an 

occluded state (Thurtle-Schmidt & Stroud, 2016). By comparing both structures, the 

authors conclude structural transitions with alternating-access in an elevator transport 

mechanism. Crystal structures of two SLC23 family members were published, of UapA in 

the inward-open conformation (Alguel et al., 2016) and of UraA in an occluded state (Yu et 

al., 2017). In conclusion, comparison of these two structures also suggests an elevator 

transport in the SLC23 family. This information instructed a basic model for transport of 

members of the SLC26 family. 

The substrate-binding site is accessible form either the intracellular or extracellular site of 

the cell membrane resulting in an alternating accessibility (Figure 1.8). There are three 

different alternating-access mechanisms identified across many transporter families so far: 

rocker switch, rocking bundle and elevator (Drew & Boudker, 2016). These mechanisms 

distinguish between a moving and a fixed barrier. Mitchell introduced the term of a moving-

barrier mechanism (Mitchell, 1957 & 1990). Here, a substrate binds at the interface of two 

domains and a barrier hinders the passage across the membrane. Binding of the substrate 

causes conformational rearrangements and the movement of the barrier to allow for 

alternate access. A moving-barrier mechanism is described for the rocker switch and 

rocking bundle model. The main difference between these two mechanisms is that rocker 

switch transporters have two structurally symmetric main domains, whereas in rocking 

bundle transporters two structurally dissimilar domains realise alternating-access (Drew 

& Boudker, 2016). In contrast, the elevator principle has a fixed barrier at the interface of 

two distinct domains. In this mechanism, the substrate binds to one domain which 

subsequently moves along the other rigid domain to surmount the barrier. The rigid domain 

is referred to as scaffold or gate domain, whereas the substrate-binding mobile domain is 

referred to as core domain. 
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Figure 1.8: Three mechanisms of alternating-access in transporters. The three mechanisms of alternating-
access differ between a moving (A+B) or fixed (C) barrier (yellow rectangle), which is at the interface of the two 
domains of a transporter protein. There are illustrations of the inward-open and of the outward-open 
conformations but the intermediate (occluded) state is not shown for a better overview. A: There is a moving 
barrier in the rocker switch mode. The substrate (orange circle) binds between two similar domains and thereby 
introduces a rearrangement of the domains, which leads to an alternating-access of the central cavity. B: The 
rocking bundle mechanism is similar to A but has two dissimilar domains. C: There is a fixed barrier in the 
elevator alternating-access. Furthermore, the substrate only binds to one of the dissimilar domains. The 
substrate-binding domain moves along a relatively immobile domain to transport the substrate across the cell 
membrane. Image modified from Drew & Boudker, 2016.  

A recent study published a crystallographic structure of the prokaryotic fumarate 

transporter SLC26Dg (Geertsma et al., 2015). The authors suggest the translocation of the 

substrate-binding site by movement of the entire core domain against the gate domain 
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allows for an alternating-access to the anion-binding site. This leads to the assumption that 

this SLC26 family member transports substrates in an elevator-like manner across the 

membrane. Furthermore, the cryo-EM structure of the murine SLC26A9 provided the first 

high-resolution structure of a eukaryotic SLC26 family member and supported an 

alternating-access mechanism by SLC26 (Walter et al., 2019). If the whole SLC26 family also 

translocates anions in an elevator-like manner and, especially, if prestin-mediated voltage-

dependent changes in cell length are based on this mechanism needs to be clarified. 

1.4.3.5 Model of a multistate mechanism in the anion transport of prestin 

Another approach suggests a kinetic model, the so-called meno presto model, where a 

multistate mechanism underlies electromotility (Santos-Sacchi & Song, 2014a & 2014b). 

After the initial binding of chloride to prestin, the protein undergoes a slow transition into 

an intermediate state that allows the voltage-dependent charge movement. 

1.4.4 Common principles describing prestin’s function 

Concerning all models described above, there is the general agreement that intracellular 

chloride is required for electromotility regardless of its function as extrinsic voltage sensor 

(Oliver et al., 2001), as allosteric-like modulator (Rybalchenko & Santos-Sacchi, 2003) or 

regulator of prestin’s kinetics in the transition between multiple states (Santos-Sacchi & 

Song, 2016). It is conceivable that there is an electrostatic barrier, which has to be overcome 

to translocate the anion. Whether this happens through the binding of chloride to prestin 

remains an open question. Furthermore, there are new data about a rat prestin mutant with 

a mutation in the region of the putative anion-binding site. The mutant S396E mimics a 

bound anion by the mutation of serine to glutamate. This mutant functions independently 

of intracellular anions, which demonstrates that the fixed negative charge at the putative 

anion-binding site is sufficient for the voltage-dependent function of prestin. Thus, the 

S396E mutant will allow for detailed kinetic studies that may explain the electromotile 

activity of prestin. 

1.5 Cysteine accessibility scan to elucidate prestin’s protein dynamics 

The previous sections addressed potential model scenarios of the molecular dynamics, 

which may be underlying prestin’s electromotile mechanism. An experimental approach to 

work out these molecular dynamics is to identify structures that change their accessibility 

to the aqueous medium along a transport cycle or with the electromotile conformational 

changes is a cysteine accessibility scan (SCAM: cf. 2.4). Single positions can be studied for 

their accessibility to thiol-specific reagents, i.e. in consequence to the aqueous medium. 

These reagents are either applied from the extra- or the intracellular side of the membrane 

and the accessibility of an amino acid verifies its orientation within the protein. The 
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investigation of the accessibility of certain amino acids is, therefore, a useful approach to 

test the different model concepts. Two transmembrane domains are of special interest in 

this context, namely transmembrane domain 3 and 10 (Figure 1.9). These transmembrane 

domains are predicted to be part of the central cavity. Furthermore, the putative anion-

binding site is also located in transmembrane domain 10 (Gorbunov et al., 2014). 

 

Figure 1.9: Structural homology model of rat prestin based on UraA. A: This part provides an overview on 
a single monomer of rat prestin without STAS domain. The transmembrane domains (TM) of the gate domain 
(TM 5-7 and 12-14) are coloured in teal, of the core domain (TM 1-4 and 8-11) in blue and the domains in the 
front are numbered. In addition, the domains of interest to be studied in this thesis are coloured in green (TM 
10) and yellow (TM 3). On the right side, the molecule is tilted and the view direction into prestin is from the 
intracellular side. B and C: Only parts of the core domain are shown. These TMs are predicted to be part of the 
central cavity of prestin. The focus is on TM 3 and 10. The putative anion-binding site is in rat prestin within TM 
10 around position S396 (shown in stick representation). The anion bound to S396 is indicated as orange circle. 
C: The model highlights positions in TM 10 in red, which are known to be accessible from the intracellular side 
by MTS reagents (Gorbunov et al., 2014). The model is based on the results of Gorbunov et al., 2014. 
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1.6 Aim of this study 

Molecular dynamics that underlie the transport mechanism of the SLC26 protein family 

have remained largely elusive. Furthermore, it has been suggested but remains to be tested 

whether electromotile prestin undergoes structural dynamics that are similar to those of 

transport-capable members of the SLC26 family. Therefore, this study aims to elucidate 

whether the function of the SCL26 transporters and voltage-driven motors follow common 

structural principles. To achieve this aim, two members of the SLC26 family were used as 

model systems: the non-mammalian zebrafish prestin as a prototypical and highly active 

transporter and the mammalian rat prestin as a motor with a putatively underlying 

incomplete anion transport mechanism. 

Recent studies of other SLC family members show crystal structures in different 

conformational states, which suggest a shared alternating-access mechanism for this 

membrane transporter family (Geertsma et al., 2015; Walter et al., 2019). Furthermore, the 

results of Geertsma et al. (2015) propose an elevator-like movement for a prokaryotic 

SLC26 family member (cf. 1.4.3). However, it still remains to be shown whether prestin uses 

the same mechanisms and, in particular, whether it is the anion transport which underlies 

electromotility. 

The strategy to shed light on this issue is to perform a cysteine accessibility study (cf. 1.5 

and 2.4). Therefore, single amino acids within these proteins were studied for their 

importance in the transport function. Here, amino acids of interest were chosen based on 

previous structural modelling data by Gorbunov et al., 2014. The work presented here 

focused on the transmembrane domains 3 and 10, because both domains are proposed to 

be part of the pathway for the anion to bind to prestin. Furthermore, the central positions 

within these amino acid stretches are thought to contribute to forming the anion-binding 

site. Importantly, these positions may undergo translational movements in the hypothetical 

elevator movements of the core domain and their accessibility can thus inform about the 

occurance and the travel of such – as yet hypothetical – molecular dynamics. 

Single residues in transmembrane domain 3 and 10 (cf. Figure 1.9) of rat and zebrafish 

prestin were individually substituted towards cysteines, and their accessibility to the 

aqueous medium was tested by the application of thiol-specific reagents. The scanning of 

transmembrane 10 of rat prestin was already performed (Gorbunov et al., 2014). As read-

out for chemical modification and hence accessibility, activity of the SLC26 variants before 

and after the application was tested by patch-clamp recordings in transiently transfected 

cells. Protein expression and cellular localisation were investigated via confocal 

microscopy.
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2 Materials and methods 

2.1 Chemicals 

The chemicals used are listed with information of the manufacturer and the CAS-number in 

Table 2.1. 

Table 2.1: Used chemicals. 

Chemicals Manufacturer CAS-number 

Calcium chloride (CaCl2) Fluka 10043-52-4 
Caesium chloride (CsCl) Sigma-Aldrich 7647-17-8 
Caesium hydroxide monohydrate (HCsO) Sigma-Aldrich 35103-79-8 
Caesium iodide (CsI) Sigma-Aldrich 7789-17-5 
D-(+)-Glucose Sigma-Aldrich 50-99-7 
DTT (Dithiothreitol) Sigma-Aldrich 34-83-12-3 
EGTA  
(Ethylene glycol-bis(2-aminoethylether) -
N,N,N′,N′-tetraacetic acid) 

Fluka 67-42-5 

HEPES (4-(2-hydroxyethyl)-1piperazine  
ethane sulfonic acid) 

Sigma-Aldrich 7365-45-9 

Hydrogen peroxide (H2O2) Sigma-Aldrich 7722-84-1 
Latrunculin A Adipo Gen 76343-93-6 
Magnesium chloride (MgCl2) Fluka 7786-30-3 
Methyl-ß-Cyclodextrin (MßCD) Sigma-Aldrich 128446-36-6 
MTSES 
(C3H7O5S3*Na) 

Toronto Research 
Chemicals 

184644-83-5 

MTSET 
(C3H16BrNO2S2) 

Toronto Research 
Chemicals 

91774-25-3 

Oxalate dihydrate ((COOH)2*2H2O) Fluka 6153-56-6 
Phenol sulfonic acid (C6H6O4S) Sigma-Aldrich 1333-39-7 
Potassium chloride (KCl) Roth 7447-40-7 
Sodium-L-Aspartate (C4H8NNaO5) Sigma-Aldrich 323194-76-9 
Sodium chloride (NaCl) Sigma-Aldrich 7647-14-5 
Sodium hydrogen phosphate (NaH2PO4) Roth 10049-21-5 
Sodium hydroxide (NaOH) Fluka 1310-73-2 
Sodium salicylate (C7H5O3*Na) Fluka 54-21-7 

 

The chemicals used for the cell culture are separately listed in section 2.2. 

2.2 Cell lines and cell culture 

2.2.1 CHO cells 

The experiments for this work were mainly done with the cell line CHO dhFr-, which is a 

subclone of the CHO cell line (Chinese Hamster Ovary). CHO cells are epithelial cells from the 

ovary of an adult Chinese hamster (Cricetulus griseus), which were established as a cell line 

in 1957. The variant CHO dhFr- is negative for the enzyme dihydrofolate reductase. This 
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enzyme is necessary for the synthesis of purine and, therefore, CHO dhFr- are not able to 

grow without the exogenous addition of purines. These cells build adherent monolayers and 

have a doubling time of about 20-24 hours. 

 

Media composition:  MEM Alpha Medium (1x) (Minimum Essential Medium, (+) 

Ribonuclesosides, (+) Deoxyribonucleosides; Lot. 1880330, 

Gibco by Life Technologies)  

+ 10 % FBS (Fetal Bovine Serum Advanced; Lot. CP15-1440, 

Capricorn Scientific) 

+ 1 % Pen Strep (Penicillin Streptomycin, (+) 10,000 Units/ml 

Penicillin, (+) 10,000 g/ml Streptomycin; Lot. 1509763, 

Gibco by Life Technologies) 

2.2.2 HEK 293 cells 

For comparison, some experiments were also performed in HEK 293 cells. This is a cell line, 

which was established from primary human embryonic kidney cells (Human Embryonic 

Kidney). 

 

Media composition:  DMEM + GlutaMAX (Dulbecco´s Modified Eagle Medium, (+) 

4,5g/l D-Glucose, (-) Pyruvate; Lot. 1906060, Gibco by Life 

Technologies) 

+ 10 % FBS (Fetal Bovine Serum Advanced; Lot. CP15-1440, 

Capricorn Scientific) 

+ 1 % Pen Strep (Penicillin Streptomycin, (+) 10,000 Units/ml 

Penicillin, (+) 10,000 g/ml Streptomycin; Lot. 1509763, 

Gibco by Life Technologies) 

+ 1 % MEM NEAA (MEM Nonessential Amino Acids (100x); 

Lot. CP13-1014, Capricorn Scientific) 

+ 1 % Sodium pyruvate (Sodium Pyruvate 100mM (100x); 

Lot. 1553622, Gibco by Life Technologies) 

 

2.2.3 Passaging and seeding of cells 

With slight variations the passaging and seeding of CHO dhFr- and HEK 293 cells were 

carried out similarly. 

Cells were seeded in culture flasks (TC-Flasche T75, Sarstedt) containing the specified media 

(cf. 2.2.1 and 2.2.2) and stored in an incubator (Heracell 150i) at 37°C and 5 % CO2 up to the 
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required confluence. A light microscope was used for optical control of the cell growth 

(Olympus KX41). The intended confluence for CHO dhFr- cells was 80 %, for HEK 293 cells 

90 %, at which cells were passaged and seeded again. This work was done under an aseptic, 

sterile bench with laminar flow (Thermo Scientific Clean Air DLF/REC 4 Kl 2A). The bench 

itself as well as other work material were solely used in a sterile condition. Besides sterile 

purchased articles, pipette tips, Pasteur pipettes and Eppendorf reaction tubes were used 

after autoclave sterilisation (Tuttnauer 3150 ELV). In addition, the sterile bench itself as well 

as every article that was used at the bench were treated with 70 % w/v ethanol (96 % w/v 

ethanol denaturated by 1 % w/v MEK; obtained by the chemical storage of the chemistry 

department of Philipps-University Marburg). Cells were passaged when they reached the 

required confluence. Therefore, the medium was drained via a suction pump and cells were 

washed with PBS (Dulbecco´s PBS (1x); Lot. CP15-1316, Capricorn Scientific). The cells were 

detached by adding trypsin (0,5 % Trypsin-EDTA (10x); Lot. 1881866, Gibco by Life 

Technologies) in PBS (1:10). Subsequent addition of medium laced with FBS stopped tryptic 

activity. Via centrifugation (1200 rpm, 2min; Megafuge 2.0R, Heraeus Instruments) cells 

were separated from cell debris and media. The supernatant was discarded and the cell 

pellet resuspended in 1 ml media. The desired amount of this suspension was added to 

culture flasks and petri dishes (35mm, Cellstar; Greiner Bio-One) with cover slips (12mm; 

Art.Nr. P231.2, Roth) that were prepared with media. In the case of HEK 293 cells these cover 

slips had to be coated with PDL (Poly-D-Lysine; Lot. SLBT0548, Sigma Aldrich). 

2.2.4 Transfection of cells 

For cells to express the desired protein they had to be transfected with a plasmid carrying 

the appropriate gene. CHO dhFr- cells were transfected with JetPei (JetPei DNA Transfection 

Reagent; Product No. 101-40N, Polyplus transfection), whereas HEK 293 cells were 

transfected with Lipofectamine (Lipofectamine 2000 Reagent; Lot. 1445150, Invitrogen by 

Life Technologies). 

JetPei mainly consists of linear polyethylenimines, which cover the intrinsic charge of DNA. 

Thereby a complex of DNA and JetPei can bind to anionic proteoglycans on the cell surface 

and can be absorbed into the cell via endocytosis. The DNA dissolves from the complex in 

the cytoplasm and can be transported to the cell nucleus where its transcription takes place. 

CHO dhFr- cells were transfected at a confluence of about 50 % with 4 g DNA and used for 

experiments about 48 hours later. The transfection was performed using the 

manufacturer’s protocol. 

Lipofectamine consists of cationic and neutral lipids, which are also capable of covering 

negatively charged DNA by enclosing it in a liposome. The neutral lipids chaperon the fusion 
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of positively charged liposomes with the negatively charged plasma membrane. HEK 293 

cells were transfected at a higher confluence (70-80 %) with 4 g DNA following the 

manufacturer’s protocol. Isolated cells were needed for patch-clamp measurements. 

Therefore, medium was drained 16-24 hours after transfection and cells were trypsinated 

and seeded on coated cover slips again. Measurements were performed after 24-48 hours. 

The so transfected cells should express prestin and could be further investigated. The 

sequences of the wild type variants of rat and zebrafish prestin can be found in supplement 

7.1. Because all prestin constructs were tagged with a green fluorescent protein (GFP), the 

expression and localisation of prestin could be checked by fluorescence of GFP. Besides wild 

type prestin, many mutants were investigated that were made via mutagenesis (cf. 2.3.1). 

2.3 Molecular biology 

2.3.1 Mutagenesis 

Site-directed mutagenesis is a method to manipulate a certain DNA. Single or multiple 

nucleotides can be inserted, deleted or exchanged. Thereby, intended changes in the amino 

acid sequence of a gene product can be made. In case of the cysteine scanning single amino 

acids were mutated to alanines or cysteines. 

The necessary primer pairs were complementary to the template DNA and designed with a 

length of about 20 to 35 base pairs, the requested mutation centrally located and if possible, 

with a content of  40 % CG and one or two C or G nucleotides at its end. The melting 

temperature should ideally be between 60-75°C. These properties as well as the exclusion 

of mismatches were checked with Vector NTI. 

The subsequent polymerase chain reaction (PCR) was performed with the following 

reaction batch: 

Pfu Ultra II Hotstart PCR Master Mix 2x (Aligent) 25 l 

H2O (Sigma)      22 l 

Template DNA (10-100 ng)    1 l 

Forward primer (10 mol/l)    1 l 

Reverse primer (10 mol/l)    1 l 

             50 l 
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The single PCR steps are indicated below: 

Initial denaturation  95°C, 2 min 

 Denaturation  95°C, 20 sec 

 Annealing  60°C, 40 sec * 

 Elongation  72°C, 4 min 

Final elongation  72°C, 3 min 

Storage   16°C,   

* The annealing time was variable and adjusted consistent with the melting temperature of 

the designed mutagenesis primer pair. The melting temperature of the primer pair minus 

5°C resulted in the annealing temperature. The three steps (denaturation, annealing and 

elongation) were performed for 16 cycles. 

The newly developed PCR products were digested with Dpn I at 37°C for one hour. The 

enzyme Dpn I only cleaves methylated DNA. The template DNA but not the PCR product is 

methylated and therefore only the template DNA will be restricted. 

The PCR efficiency was checked via an electrophoresis gel. If the expected band was seen 

on the gel, the final product was transformed into competent cells; mostly E. coli XL10-Gold 

ultra competent cells were used or, alternatively, E. coli 5-alpha or 10-beta competent cells. 

Both the LB media and the agar plates, in and on which the cells and colonies grew, were 

laced with kanamycin (30 g/ml) to select cells containing the plasmid, which contains the 

gene for kanamycin resistance. Four colonies were chosen and inoculated in LB media laced 

with kanamycin (30 g/ml) again. A mini plasmid preparation of each batch was conducted 

using the GeneAll Exprep Plasmid SV mini Kit following the guides’ manual. Afterwards the 

constructs were sent for sequencing (performed by Mycrosynth via Sanger sequencing). If 

the sequencing provided proof that the construct contained the required mutation, this 

construct was inoculated in LB media laced with kanamycin (30 g/ml) and a plasmid midi 

preparation was made also following the guides’ manual (ZymoPure II Plasmid Midi prep 

Kit). Finally, this plasmid was checked via sequencing again and the purity as well as 

concentration was measured via a spectral photometer (NanoDrop OneC, Thermo Scientific). 

The plasmids were diluted to a concentration of 1 g/l and stored at -20°C until use. 
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2.4 Substituted cysteine accessibility method 

The substituted cysteine accessibility method (SCAM) is a common method to investigate 

membrane-spanning proteins. Especially amino acids that line the pore of a transport-

capable protein can be tested for their accessibility to the aqueous medium. And 

furthermore, alterations in the protein associated with conformational changes during a 

transport cycle can be identified. 

In a first step, a cysteine-free variant of the investigated protein has to be generated. The 

cysteines were mutated to alanines via site-directed mutagenesis as described in 2.3.1. Next 

the amino acid, that is to be tested for its accessibility, is mutated to cysteine resulting in a 

protein variant with a single cysteine. After successful expression, assembly in the plasma 

membrane and functionality test of the protein variant, the actual SCAM experiments could 

be performed. These experiments are patch-clamp measurements (cf. 2.6) with MTS 

reagents. MTS reagents are thiol-specific and membrane-impermeable. This allows their 

application from either the extracellular or intracellular side of the cell. If the cysteine 

residue faces the aqueous medium and is accessible to MTS compounds, it forms a 

disulphide bridge with the cysteine. This bond probably influences the measured signal by 

blocking the pore or hindering the conformational change associated with substrate 

transport. For this study two differently charged MTS reagents were used, the positively 

charged MTSET and the negatively charged MTSES. Because of their relatively short half-

life, aliquots (c(MTS)=1 mM in DMSO) were frozen and freshly thawed before every 

measurement. 

DTT is a reagent that reduces disulphide bridges. For some measurements DTT was applied 

after the application of the MTS reagent as it removes the formed bond between MTS and 

the cysteine. Thus, DTT can be used to prove the specific effect by MTSES or MTSET, 

respectively, as this effect is reversible. 

All cysteines of the rat prestin wild type were mutated to alanines (cf. 7.1.1). Unlike rat 

prestin, the generation of a cysteine-free construct of zebrafish prestin was not possible. 

The mutation of C726 to alanine results in a dysfunctional mutant. For this reason, the 

zebrafish prestin base construct (WT_△Cys) still contains the cysteine at position 726 (cf. 

7.1.2). This position is located in the STAS domain and, therefore, far away from the 

investigated parts of the protein. Furthermore, this mutant was not affected by application 

of MTS neither from the intracellular nor the extracellular side of the cell (cf. Figure 3.23 

and Figure 3.30). 
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2.5 Confocal microscopy 

Confocal microscopy is also called Confocal Laser Scanning Microscopy (CLSM). One of the 

problems with regular fluorescence microscopy is that the whole sample is illuminated by 

excitation light. On the one hand, this results in a faster bleaching of the fluophores and they 

become non-fluorescent. On the other hand, it causes scattered light. Confocal microscopy 

has the advantage that only a small area of the sample is illuminated at a time which 

minimises the scattered light. The focal points of the objective lens of the microscope 

generate an image where a pinhole is set and scans through the sample. Thus, the pinhole 

conjugates to the focal point of the lens (confocal pinhole). 

The confocal microscope that was used in combination with Zen software (2009) was of the 

type LSM 710 AX10 Examiner Z1 (Zeiss). The software ImageJ was used to analyse the 

images, especially to adjust contrast and intensity as well as to insert scaling bars. 

Confocal microscopy was used to determine the cellular localisation of the fluorescently 

tagged prestin molecules. Images were recorded from 24 to 48 hours after transfection of 

the cells. The fluorophore in all recordings was GFP which was excited by an argon multiline 

laser at 488 nm. The objective WPlan Apochromat 63x/1.0 M27 was used for the images. If 

the prestin molecules were located in the plasma membrane, a plane at the bottom of the 

cell was imaged. 

2.6 Electrophysiology 

Patch-clamp is a common technique in electrophysiology, which enables the measurement 

of ionic currents of an entire tissue, separated cells or single channels in membrane patches. 

After voltage-clamp measurements of the squid giant axon by Hodgkin and Huxley in 1952 

(Hodgkin and Huxley 1952, 1952a, 1952b & 1952c), the technique was further refined by 

Bert Sakmann and Erwin Neher in 1976, who performed single channel recordings in frog 

muscle fibres (Sakmann & Neher, 1976). Performing a gigaseal was an additional 

innovation, which improved the signal to noise ratio and facilitated the measurement of 

even small currents. The principles have not changed since then and are widely the same 

nowadays. 

A glass pipette is filled with an appropriate electrolyte solution. By placing this pipette very 

tight to the cell membrane, this membrane patch will be electrically isolated and the patch 

pipette can record currents of channels within this patch. This is possible because of an 

electrode within the patch pipette, which is connected to a highly sensitive differential 

amplifier. 
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There are two different techniques: voltage-clamp and current-clamp. In this study 

measurements were performed solely in voltage-clamp mode. In voltage-clamp 

configuration the voltage is kept constant at a predefined value during the whole 

measurement. Therefore, the membrane potential is permanently checked via a negative 

feedback mechanism and, if necessary, a current is injected into the cell to compensate for 

possible changes in membrane potential. 

There are also different configurations, which can be chosen depending on the question to 

be answered, namely cell-attached, whole cell, inside-out and outside-out configuration. For 

this study measurements were mainly performed in whole cell configuration and only a few 

additional measurements were performed in outside-out configuration. 

2.6.1 Nonlinear capacitance and transport currents 

An inverted microscope (Leica DMI 3000B) was used for the scanning of the cells and a 

fluorescence light source (Leica EL6000) enabled the identification of cells with prestin 

localised in the membrane. Furthermore, an amplifier (HEKA EPC-10) and two 

micromanipulators (Luigs & Neumann) were part of the setup. Borosilicate capillaries 

(GB100T-8P or GB100TF-8P, Science Products) with a pipette resistance of 2-4 MΩ were 

filled with intracellular solution and put on a chlorinated silver wire, which connects the 

intracellular part of the cell and the amplifier. After forming a gigaseal (≥1 GΩ) and rupture 

of the cell membrane, measurements were only performed with a serial resistance under 

10 MΩ. Measurements were recorded using the Patchmaster Software v2x32 (HEKA) and 

performed using the voltage-clamp mode and at room temperature (∼22°C). 

A sinusoidal stimulus was superimposed on a voltage ramp and in the case of the 

mammalian rat prestin the membrane capacitance was measured. As the capacitance is not 

a constant function of voltage, it is referred to as nonlinear capacitance (NLC). The standard 

protocol was a sinusoidal stimulus of 2 kHz on a voltage ramp from -120 to +120 mV 

achieved by the lock-in function of Patchmaster. The stimulus was applied every 3 s for 

300 ms with a holding potential of -20 mV in between. When the voltage ramp was adjusted 

to more positive or negative values, it is mentioned separately. 

The non-mammalian prestin orthologues produce electrogenic anion transport currents. 

These currents were measured in response to voltage ramps from -120 mV to +120 mV 

(every 3 s with a duration of 300 ms). Depending on whether the divalent anions were 

applied from the intra- or extracellular side of the cell, the holding potential between the 

voltage ramps was -60 or +60 mV, respectively, to minimise background currents. 
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Extracellular solutions 

The same extracellular solution was used for the measurements of NLC and transport 

currents. All extracellular solutions were adjusted to pH 7.4 using NaOH (1M) solution. The 

osmolarity was between 305 and 310 mOsm/kg. 

Table 2.2: Ingredients and composition of the standard extracellular solution. 

Substance Molecular weight 
(g/mol) 

Applied amount of substance 
(mM) 

KCl 74.55 5.8 
NaCl 58.44 144 
MgCl2 1 0.9 
CaCl2 1 1.3 
NaH2PO4 137.99 0.7 
D-(+)-Glucose 198.17 5.6 
HEPES 238.30 10 

 

In case of oxalate offered from the extracellular side, the following solutions were used. 

Table 2.3: Ingredients and composition of the extracellular solution for transport measurements with 
low chloride concentration and without oxalate. 

Substance Molecular weight 
(g/mol) 

Applied amount of substance 
(mM) 

NaCl 58.44 10 
HEPES 238.30 10 
Sodium-L-
Aspartate 

173.10 150 

 

Table 2.4: Ingredients and composition of the extracellular solution for transport measurements with 
low chloride concentration and with oxalate (10 mM). 

Substance Molecular weight 
(g/mol) 

Applied amount of substance 
(mM) 

NaCl 58.44 10 
HEPES 238.30 10 
Sodium-L-
Aspartate 

173.10                                  140 

Oxalate dihydrate 126.07 10 
 

If transport currents delivered only small signals the solution was adjusted to 50 mM 

oxalate dihydrate and 90 mM sodium-L-aspartate. 

Intracellular solutions 

The standard intracellular solution was used for measurements of NLC and transport 

measurements with extracellularly applied oxalate. All intracellular solutions were 
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adjusted to pH 7.4 with CsOH (1M) solution. The osmolarity was between 285 and 295 

mOsm/kg. 

Table 2.5: Ingredients and composition of the standard intracellular solution. 

Substance Molecular weight 
(g/mol) 

Applied amount of substance  
(mM) 

CsCl 168.36 160 
K2EGTA 380.35 1 
HEPES 238.30 1 

 

Table 2.6: Ingredients and composition of the intracellular solution for measurements of transport 
currents with intracellularly applied oxalate and low chloride concentration. 

Substance Molecular weight 
(g/mol) 

Applied amount of substance  
(mM) 

CsCl 168.36 10 
K2EGTA 380.35 1 
HEPES 238.30 1 
Sodium-L-
Aspartate 

173.10 140 

Oxalate 
dihydrate 

126.07 10 

 

Some of the zebrafish mutants produced only small transport currents. To ensure that 

transport currents were comparable for SCAM measurements, the intracellular solution 

was adjusted to the maximum amount of oxalate with standard osmolarity, so that the 

composition was 106 mM oxalate dihydrate and 10 mM Hepes. The intracellular solution 

with high concentration of oxalate was used for most transport measurements except of the 

measurement of zebrafish prestin wild type. 

2.7 Data analysis 

Data were analysed using Igor Pro (6.03A2) as well as Excel (Microsoft Office 2008). The 

recorded data of NLC and transport current measurements, respectively, were imported 

into Igor Pro. The evaluation of transport currents was performed using the procedure files 

provided by WaveMetrics. The simplest model of prestin is a two-state model where the 

charge can be switched between two conditions. The data points collected for the nonlinear 

capacitance were fitted in a two-state Boltzmann function of a first-order derivative: 

CM (VM) = Clin + Qmax / (α e (V-V1/2) /α (1 + e- (V-V1/2) /α)2) 

CM:  membrane capacitance 

VM:  membrane potential 
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Clin:  linear (passive) membrane capacitance 

Qmax:  maximum voltage-sensor charge moved through the membrane electric field 

α:  slope factor of the voltage dependence 

V1/2:  voltage at half-maximal charge transfer 

The amplitude of the NLC was quantified as peak NLC at half-maximal charge transfer as 

follows: 

NLCmax = CM (V1/2) - Clin 

In the figures, graphs with normalised NLC measurements will be shown where the linear 

capacitance is subtracted from the membrane capacitance at the V1/2. These normalised NLC 

traces were plotted as a function of membrane potential. 

The mean value of either the NLC, the V1/2 or the transport current was calculated in Igor 

Pro but tests of significances of the obtained data were done using Excel. First, the mean 

value (a1) of five to ten traces from one measurement at a single condition (e.g. before 

application of MTS reagents) were determined, and, second, compared with the mean value 

(a2) of another condition (e.g. during application of MTS reagents) within the same 

measurement. To quantify changes in the amplitude of the NLC or the transport current, the 

ratio between a1 and a2 was calculated. Thus, changes in the NLC were stated as percentage 

values. In terms of the V1/2, the difference (a2-a1) was determined as a parameter to describe 

changes in the voltage-dependent behaviour. Unless stated otherwise, there were five 

independent measurements analysed for each condition. Again, an average value of these 

five calculated changes as well as the variation of the values via the standard error of the 

mean (SEM) were determined. The comparison of different conditions was made via the 

Student`s t-test. Statistical significance was defined as follows: p>0.05 as n.s.; p≤0.05 as *; 

p≤0.01 as **; p≤0.001 as ***. 
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3 Results 

3.1 Functional characterisation of cysteine substitution mutants 

The prestin constructs investigated for the cysteine accessibility study are based on a 

cysteine-free background where the cysteines were mutated to alanines (cf. 7.1). These rat 

and zebrafish constructs served as the control for MTS background activity. In the regions 

predicted to be part of the anion translocation pathway and the anion-binding site single 

cysteines were introduced on the cysteine-free background via site-directed mutagenesis 

(cf. 2.3.1). In a first step, the constructs generated for the cysteine accessibility scanning 

were studied for retained functionality. To allow for functional investigation, each prestin 

mutant needs to be expressed and targeted to the plasma membrane. All constructs were 

cloned into the pEGFP-N1 vector. The prestin proteins were C-terminal GFP-tagged, so that 

GFP served as the reporter for a successful expression and localisation of prestin. These two 

aspects were tested via confocal microscopy. To check for membrane localisation the 

bottom layer of the cells was focused. The controls (WT_△Cys) were targeted to the plasma 

membrane and showed a characteristic clustered pattern like rat and zebrafish prestin wild 

type proteins. The following figures (Figure 3.1 - Figure 3.3) show representative confocal 

images of each mutant to be investigated in the SCAM experiments. 

 

Figure 3.1: Confocal images of CHO cells transiently transfected with rat prestin constructs used for 
SCAM experiments in TM 3. WT_△Cys was the control of rat prestin with all cysteines mutated to alanines. All 
other constructs were based on the control and contain the named mutation in addition. All prestin constructs 
were GFP-tagged at the C-terminus. Scale bars: 10 m. 
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Figure 3.2: Confocal images of CHO cells transiently transfected with zebrafish prestin constructs used 
for SCAM experiments in TM 3. WT_△Cys was the control of zebrafish prestin with nearly all cysteines 
mutated to alanines (cf. 7.1.2). All other constructs were based on the control and contain the named mutation 
in addition. All prestin constructs were GFP-tagged at the C-terminus. Scale bars: 10 m. 

 

 

Figure 3.3: Confocal images of CHO cells transiently transfected with zebrafish prestin constructs used 
for SCAM experiments in TM 10. WT_△Cys was the control of zebrafish prestin with nearly all cysteines 
mutated to alanines (cf. 7.1.2). All other constructs were based on the control and contain the named mutation 
in addition. All prestin constructs were GFP-tagged at the C-terminus. Scale bars: 10 m. 
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Even though the expression levels of the individual mutants differed considerably in terms 

of intensity and the formation of clustered structures, only those mutants that displayed a 

clear cytosolic localisation while lacking detectable (i.e. strong) membrane localisation 

were excluded from further experiments. The localisation patterns of these mutants were 

checked for at least two independent transfections, which revealed consistent cytosolic 

localisation in each replicate. According to these specifications all constructs of zebrafish 

prestin with mutations within transmembrane domain 10 in a cysteine-free background 

featured membrane targeted prestin, but the following mutants could not be examined by 

the accessibility experiments: 

• Rat prestin with the following mutations within transmembrane domain 3 in a 

cysteine-free background: G135C, F137C and M143C. 

 

• Zebrafish prestin with the following mutations within transmembrane domain 3 in 

a cysteine-free background: I135C, G136C and I141C. 

 

 

Figure 3.4: Percentage of CHO cells with prestin located in the cell membrane. WT_△Cys was the control 
of rat with all cysteines mutated to alanines or zebrafish prestin with nearly all cysteines mutated to alanines 
(cf. 7.1.2). A: Rat prestin constructs with cysteine mutations within TM 3. B: Zebrafish prestin constructs with 
cysteine mutations within TM 3. C: Zebrafish prestin constructs with cysteine mutations within TM 10. 

In addition, transfected cells were counted and the percentage of cells with fluorescence in 

the plasma membrane was quantified. The counting was performed with two independent 

transfections for each mutant at the patch setup (cf. 2.6). Each construct was transfected 
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onto cells seeded into a petri dish with four coverslips. Five spots on each coverslip were 

chosen randomly and the number of fluorescent cells as well as the number of cells with 

prestin in the membrane was determined. The results are shown in Figure 3.4. There is a 

relatively wide range in the percentage of cells with membrane localisation. The exact 

values for constructs of rat prestin with mutations within transmembrane domain 3 and 

missing membrane localisation were G135C: 0 %, F137C: 4.9  0.0 % and M143C: 0 %. The 

values for constructs of zebrafish prestin with mutations within transmembrane domain 3 

without prestin targeted to the membrane were I135C: 2.1  0.0 %, G136C: 0 % and I141C: 

3.2  0.0 %. 

Next, all mutants that targeted properly were examined for retained function by 

electrophysiology. In the case of rat prestin mutants, NLC was recorded, and in the case of 

zebrafish prestin mutants, transport currents in the presence of the divalent transport 

substrate oxalate were measured. 

Figure 3.5 shows representative measurements of the NLC of the rat prestin constructs with 

mutations within transmembrane domain 3. It displays single representative traces of a 

standard measurement with standard solutions and without the application of MTS 

reagents. 

Rat prestin WT_△Cys delivered a reliable signal (peak NLC: 617.04  153.08 fF; V1/2: -43.47 

 7.00 mV; n=5). Even though the NLC peak amplitude was moderately smaller and the V1/2 

was shifted to more positive values the signal was comparable to the signal of rat prestin 

wild type (peak NLC: 878.16  64.01 fF; V1/2: -81.39  10.35 mV; n=5; not shown). 

The NLC peak amplitude and the position of the V1/2 varied between the individual mutants 

(cf. Table 3.1). Despite this fact, eight of the ten mutants produced robust signals, sufficient 

for subsequent SCAM experiments. In the case of the mutant A138C, a slight increase of the 

NLC trace in direction of depolarisation was observed, but also the extension of the voltage 

ramps up to +200 mV (not shown) did not result in a reliable NLC signal. Therefore, this 

mutant was classified as dysfunctional. Furthermore, the mutant G164C was also 

dysfunctional. 
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Figure 3.5: Basal function of the rat prestin constructs with mutations within TM 3. Shown are 
representative NLC signals of the basic construct (WT_△Cys) and all mutants with predominant membrane 
localisation of prestin. The traces were measured under standard conditions.  
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The following Table 3.1 shows mean values of NLC signals and V1/2 of the rat prestin 

constructs with mutations within transmembrane domain 3, which had a strong membrane 

localisation and showed proper signals. 

Table 3.1: Average values of the NLC and V1/2 of the rat prestin constructs with mutations within TM 3. 
The table shows mean values with SEM for five measurements (n=5) under standard conditions. 

 NLC amplitude size (fF) V1/2 (mV) 

 mean SEM mean SEM 

WT_△Cys 617.04 153.08 -43.47 7.00 

I134C 301.37 18.48 0.64 8.31 

P136C 363.83 67.36 -27.03 10.13 

V139C 363.42 60.53 -111.78 2.41 

I140C 302.81 24.66 11.46 7.75 

S141C 722.17 168.48 -94.90 2.95 

L142C 522.07 132.13 -77.94 7.00 

I144C 351.91 70.75 -8.47 5.24 

G145C 325.00 36.36 -13.09 10.66 

 

The basal functionality of the zebrafish prestin constructs was also tested. The transport 

function of those mutants with retained wild type-like strong membrane localisation was 

examined. Figure 3.6 shows representative traces of transport currents measured in 

zebrafish prestin constructs with mutations within transmembrane domain 3 under 

standard conditions. Oxalate (106 mM) was provided from the inside of the cell via the patch 

pipette, whereas the extracellular bath solution contained chloride (cf. Table 2.2). Under 

these conditions, zebrafish prestin mediates 1:1 chloride/oxalate exchange, which is 

electrogenic and can thus be measured as an ionic current in voltage-clamp experiments. 

The transport currents were measured in response to voltage ramps from -120 mV to 

+120 mV. Thus, the holding potential between the voltage ramps was set to -60 mV to 

minimise background currents and initiate a transport current only during the voltage 

ramps. 
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Figure 3.6: Basal function of the zebrafish prestin constructs with mutations within TM 3. Shown are 
representative transport currents of the basic construct (WT_△Cys) and all mutants with predominant 
membrane localisation of prestin. The traces were measured under standard conditions.  

Despite the high concentration of oxalate, three mutants did not display detectable 

transport currents: F138C, A139C and G146C. The small currents reflect leakage currents 

also observed in non-transfected cells. This is also confirmed by the slightly negatively 
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shifted reversal potential (to -20 mV), which is incompatible with anion exchange 

(Cl:oxalate) under the chosen substrate gradients. Since endogenous leak currents are 

minimal at 0 mV, for quantification of transport currents, the (inward) currents at 0 mV 

were analysed. Therefore, no leakage correction was necessary. In contrast to the 

dysfunctional constructs, the mutants S142C and T137C exhibited particularly large 

currents. Notwithstanding the differences in the transport current, seven of the ten mutants 

with a single cysteine in transmembrane domain 3 were found suitable for subsequent 

accessibility measurements with the MTS reagents, as their transport currents were large 

enough to be identified unequivocally (cf. Figure 3.6 and Table 3.2). 

Table 3.2: Average values of the transport currents of the zebrafish prestin constructs with mutations 
within TM 3. The table shows mean values with SEM for five measurements (n=5) under standard conditions.  

 transport current (pA) at 0 mV 

 mean SEM 

WT_△Cys -50.57 20.90 

T137C -238.52 39.15 

V140C -52.42 8.84 

S142C -293.79 77.88 

L143C -74.58 28.01 

M144C -235.83 73.54 

I145C -123.54 20.28 

G147C -126.96 35.15 

 

Comparable to the previous graphs, Figure 3.7 shows representative transport currents of 

zebrafish prestin mutants with an exchange of an amino acid to cysteine in transmembrane 

domain 10. Moreover, these mutants differ with respect to their transport currents (cf. 

Table 3.3). Although the mutants T393C, F394C and V395C showed appropriate membrane 

targeting, they were not further examined because they are predicted to be located in the 

bulk of the protein and are therefore very unlikely to be accessible to the MTS compounds. 

In addition, the position H392 was analysed because the structurally homologous position 

of rat prestin (Q389) was previously shown to be extracellularly accessible (Gorbunov et 

al., 2014). No transport currents were detectable in two of the eleven remaining mutants: 

S399C and R402C (Figure 3.7). 
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Table 3.3 shows mean values of transport currents of the zebrafish prestin constructs with 

a mutation within transmembrane domain 10, which had a strong membrane localisation 

and showed proper signals. 

Table 3.3: Average values of the transport currents of the zebrafish prestin constructs with mutations 
within TM 10. The table shows mean values with SEM for five measurements (n=5) under standard conditions. 

 transport current (pA) at 0 mV 

 mean SEM 

WT_△Cys -50.57 20.90 

H392C -147.09 66.91 

V396C -99.25 62.59 

T397C -274.39 45.23 

A398C -228.30 86.21 

M400C -136.43 39.48 

S401C -39.64 7.64 

S403C -109.96 19.28 

L404C -198.64 6.69 

V405C -48.21 14.10 
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Figure 3.7: Basal function of the zebrafish prestin constructs with mutations within TM 10. Shown are 
representative transport currents of the basic construct (WT_△Cys) and all mutants with predominant 
membrane localisation of prestin. The traces were measured under standard conditions. 
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3.2 SCAM of rat prestin 

3.2.1 Extracellular accessibility of positions within TM 3 in rat prestin 

The following figures show representative measurements for each condition, i.e. a control 

measurement without application of MTS reagents (black), as well as measurements with 

extracellularly applied MTSES (red) or MTET (blue), respectively. The final concentration 

of the MTS reagents was 1 mM or less. Covalent modification by the MTS reagents can be 

deduced from any irreversible effect of application on the functional readout, either a 

decrease in the NLC peak amplitude and/or a shift of the V1/2. Such changes induced by the 

application of MTS reagents thus indicate solute accessibility of the introduced cysteine and 

in consequence of this amino acid position. 

Figure 3.8 shows two exemplary constructs of rat prestin. As expected, the mutant 

WT_△Cys was entirely insensitive to the application of MTS reagents. The mutant R236C 

was not part of the scanning of positions within transmembrane domain 3, but served as 

positive control that was sensitive to the application of MTSES as well as MTSET as can be 

seen by shifts of the V1/2 upon MTS application (cf. Gorbunov et al., 2014). 

In Figure 3.9 changes in the NLC peak amplitude can be seen, whereas Figure 3.10 shows 

shifts of the V1/2 in response to the application of MTS reagents. All constructs of rat prestin 

with mutations within transmembrane 3 are shown, that exhibited predominant membrane 

localisation and strong NLC signals. 
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Figure 3.8: The effects of extracellular MTS application on rat prestin constructs. A+B: WT_△Cys. A: 
Normalised NLC traces and shifts of the V1/2. B: Shown are single traces from the upper graphs: the initial trace 
(black) is a trace before the application of the MTS reagent was started and the red (MTSES) and blue (MTSET) 
traces are single representative traces from a time point during the MTS application. C+D: The mutant R236C is 
shown as example for an extracellularly accessible position (cf. Gorbunov et al., 2014). C: The two graphs are 
representative normalised traces of the NLC and the V1/2 of the mutant R236C. D: Shown are single traces from 
the upper graphs: the initial trace (black) is a trace before the application of the MTS reagent was started and 
the red (MTSES) and blue (MTSET) traces are single representative traces from a time point during the MTS 
application with a fully established effect. A+C: The grey bars indicate the start and end points of the application 
of the MTS reagents. 
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Figure 3.9: The effects of extracellularly applied MTS reagents on the NLC peak amplitude of rat prestin 
constructs with mutations within TM 3. WT_△Cys was the basic construct with all cysteines mutated to 
alanines. All traces show a representative capacitance measurement and were normalised. In black: a control 
measurement without application of MTS reagents. In red: a measurement with extracellularly applied MTSES. 
In blue: a measurement with extracellularly applied MTSET. The grey bars indicate the start and end points of 
the application of the MTS reagents. 
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Figure 3.10: The effects of extracellularly applied MTS reagents on the V1/2 of the rat prestin constructs 
with mutations within TM 3. WT_△Cys was the basic construct with all cysteines mutated to alanines. All 
traces show the V1/2 of a representative measurement and were normalised. In black: a control measurement 
without application of MTS reagents. In red: a measurement with extracellularly applied MTSES. In blue: a 
measurement with extracellularly applied MTSET. The grey bars indicate the start and end points of the 
application of the MTS reagents. 
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Figure 3.11: Summary of the effects of extracellularly applied MTS on rat prestin constructs with 
mutations within TM 3. Bars represent the mean of five measurements (n=5)  SEM. Black bars are the control 
measurements without MTS application, red bars are measurements with MTSES application and blue bars are 
measurements with MTSET application. A: The bar diagram shows the changes of the normalised NLC peak 
amplitude upon extracellular MTS application. B: The bar diagram shows the changes of the V1/2 upon 
extracellular MTS application. Absolute values of the changes of the V1/2 are shown. 

Among all eight functional cysteine mutants, only three (V139C, L142C and G145C) were 

sensitive to extracellular MTS application as indicated by changes in NLC amplitude and/or 

by shifts of V1/2 (cf. Figure 3.11) and were thus classified as accessible to extracellular 

solutes. Detailed effects of MTS reagents on these three mutants are given below. 

V139C was modified by application of MTSES and MTSET as can be seen by a decrease in 

the NLC peak amplitude combined with a shift of the V1/2 to more negative values. The effect 

was significant for both applied MTS reagents. The following Figure 3.12 depicts cysteine 

accessibility of the mutant V139C expanded for statistics and representative traces before 

and after application of the MTS reagents. The NLC decreased upon application of MTS, to 

67.3  4.6 % for MTSES and 54.4  7.8 % for MTSET. Shifts of the V1/2 were found in the 

hyperpolarised direction, on average -10.6  2.2 mV in response to MTSES and -12.8  

5.5 mV in response to MTSET. The statistics were performed for five measurements under 



 

 3-45 

each condition. The effects on the NLC amplitude peak size and shifts of the V1/2 were 

significant for both reagents. 

 

Figure 3.12: The effects of extracellular MTS application on rat prestin V139C. A: The upper two graphs of 
the normalised NLC and shifts of the V1/2 are taken from Figure 3.9 and Figure 3.10. B: The lower two graphs 
are single traces from the upper graphs: the initial trace (black) is a trace before the application of the MTS 
reagent was started and the red (MTSES) and blue (MTSET) traces are single representative traces from a time 
point during the MTS application with a fully established effect. C: The bar diagram shows the average effect 
based on five measurements (n=5) with SEM for changes in the NLC peak amplitude as normalised values and 
changes in the V1/2 are presented as absolute values. 

Another mutant in rat prestin that was accessible to MTS reagents from the extracellular 

side was L142C (cf. Figure 3.13). The effect was more pronounced for MTSET as shown by 

a decrease in the NLC peak amplitude (36.4  4.7 %) combined with a slight shift of the V1/2 

to more positive values (+13.4  2.1 mV). The effect of MTSES application was more 

moderate and can mainly be seen as a decrease in the NLC peak amplitude (61.6  7.7 %). 

The V1/2 shifted to more negative values in response to the application of MTSES (-16.7  

3.8 mV). 

The third extracellularly accessible mutant in rat prestin was G145C. The effect was only 

observed with MTSES, whereas there was no significant effect of MTSET. There was a strong 

shift of the V1/2 of 61.7  14.5 mV combined with a decrease in the NLC amplitude to 60.4  

5.7 % upon MTSES application. Representative traces and bar diagrams with the statistics 

are shown in Figure 3.14. 
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Figure 3.13: The effects of extracellular MTS application on rat prestin L142C. A: The upper two graphs of 
the normalised NLC and shifts of the V1/2 are taken from Figure 3.9 and Figure 3.10. B: The lower two graphs 
are single traces from the upper graphs: the initial trace (black) is a trace before the application of the MTS 
reagent was started and the red (MTSES) and blue (MTSET) traces are single representative traces from a time 
point during the MTS application with a fully established effect. C The bar diagram shows the average effect 
based on five measurements (n=5) with SEM for changes in the NLC peak amplitude as normalised values and 
changes in the V1/2 are presented as absolute values. 

 

 

Figure 3.14: The effects of extracellular MTS application on rat prestin G145C. A: The upper two graphs of 
the normalised NLC and shifts of the V1/2 are taken from Figure 3.9 and Figure 3.10. B: The lower two graphs 
are single traces from the upper graphs: the initial trace (black) is a trace before the application of the MTS 
reagent was started and the red (MTSES) and blue (MTSET) traces are single representative traces from a time 
point during the MTS application with a fully established effect. C: The bar diagram shows the average effect 
based on five measurements (n=5) with SEM for changes in the NLC peak amplitude as normalised values and 
changes in the V1/2 are presented as absolute values. 
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3.2.2 Intracellular accessibility of positions within TM 3 in rat prestin 

As before, Figure 3.15 shows WT_△Cys as a reference example for a rat prestin construct 

insensitive to the intracellular application of MTS reagents perfused through the patch 

pipette. Position S465C was previously shown to be accessible from the intracellular side 

(cf. Gorbunov et al., 2014) and served as a positive control for MTS modification.

 

Figure 3.15: The effects of intracellular MTS application on rat prestin constructs. A+B: WT_△Cys. A: 
Normalised NLC traces and shifts of the V1/2. B: Shown are single traces from the upper graphs: the initial trace 
(black) is a trace shortly after starting the measurement before a potential effect was distinct and the red 
(MTSES) and blue (MTSET) traces are single representative traces from a time point towards the end of the 
measurement. C+D: The mutant S465C is shown as example for an intracellularly accessible position (cf. 
Gorbunov et al., 2014). C: The two graphs are representative normalised traces of the NLC and the V1/2 of the 
mutant S465C. D: Shown are single traces from the upper graphs: the initial trace (black) is a trace shortly after 
starting the measurement before a potential effect was distinct and the red (MTSES) and blue (MTSET) traces 
are single representative traces from a time point towards the end of the measurement with a fully established 
effect. 
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The results for the intracellular accessibility of positions within transmembrane domain 3 

in rat prestin are presented in Figure 3.16 and Figure 3.17 in the same way as for the 

extracellular accessibility. 

 

Figure 3.16: The effects of intracellularly applied MTS reagents on the NLC peak amplitude of rat prestin 
constructs with mutations within TM 3. WT_△Cys was the basic construct with all cysteines mutated to 
alanines. All traces show a representative capacitance measurement and were normalised. In black: a control 
measurement without application of MTS reagents. In red: a measurement with intracellularly applied MTSES. 
In blue: a measurement with intracellularly applied MTSET. 
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Figure 3.17: The effects of intracellularly applied MTS reagents on the V1/2 of the rat prestin constructs 
with mutations within TM 3. WT_△Cys was the basic construct with all cysteines mutated to alanines. All 
traces show the V1/2 of a representative measurement and were normalised. In black: a control measurement 
without application of MTS reagents. In red: a measurement with intracellularly applied MTSES. In blue: a 
measurement with intracellularly applied MTSET. 
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Figure 3.18: Summary of the effects of intracellularly applied MTS on rat prestin constructs with 
mutations within TM 3. Bars represent the mean of five measurements (n=5)  SEM. Black bars are the control 
measurements without MTS application, red bars are measurements with MTSES application and blue bars are 
measurements with MTSET application. A: The bar diagram shows the changes of the normalised NLC peak 
amplitude upon intracellular MTS application. B: The bar diagram shows the changes of the V1/2 upon 
intracellular MTS application. Absolute values of the V1/2 are shown. 

Figure 3.18 summarises the effects of the application of MTS reagents. It demonstrates 

intracellular accessibility for two mutants. The mutant P136C was intracellularly accessible 

to MTSET as can be seen by a shift of the V1/2 of 14.6  4.3 mV in the hyperpolarised direction 

(Figure 3.19). The mutant V139C exhibited changes in NLC peak combined with a shift of 

the V1/2 to more positive values upon intracellular application of MTSES. Consequently, the 

mutant V139C is intracellularly accessible. Figure 3.20 gives detailed data that provide 

evidence for the intracellular accessibility of the mutant V139C. The effect following the 

MTSES application was a decrease in the peak NLC (54.2  3.3 %) combined with a shift of 

the V1/2 of 16.0  3.6 mV in the depolarised direction. 
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Figure 3.19: The effects of intracellular MTS application on rat prestin P136C. A: The upper two graphs of 
the normalised NLC and shifts of the V1/2 are taken from Figure 3.16 and Figure 3.17. B: The lower two graphs 
are single traces from the upper graphs: the initial trace (black) is a trace shortly after starting the measurement 
before a potential effect was distinct and the red (MTSES) and blue (MTSET) traces are single representative 
traces from a time point towards the end of the measurement with a potentially fully established effect. C: The 
bar diagram shows the average effect based on five measurements (n=5) with SEM for changes in the NLC peak 
amplitude as normalised values and changes in the V1/2 as absolute values. 

 

 

Figure 3.20: The effects of intracellular MTS application on rat prestin V139C. A: The upper two graphs of 
the normalised NLC and shifts of the V1/2 are taken from Figure 3.16 and Figure 3.17. B: The lower two graphs 
are single traces from the upper graphs: the initial trace (black) is a trace shortly after starting the measurement 
before a potential effect was distinct and the red (MTSES) and blue (MTSET) traces are single representative 
traces from a time point towards the end of the measurement with a potentially fully established effect. C: The 
bar diagram shows the average effect based on five measurements (n=5) with SEM for changes in the NLC peak 
amplitude as normalised values and changes in the V1/2 as absolute values. 
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3.2.3 Summary of cysteine accessibility in TM 3 in rat prestin 

Transmembrane domain 3 in rat prestin was investigated from position I134C to I144. 

Table 3.4 summarises all conclusions as to the accessibility derived from the data described 

above. The three mutants that lacked membrane targeting (G135C, F137C, M143C) and 

another two mutants that were dysfunctional (A138C, G146C) are also included in Table 

3.4. 

The previous sections showed the effects of MTS modification on WT_△Cys and the eight 

rat prestin constructs with mutations within transmembrane domain 3 which displayed a 

strong membrane localisation and delivered proper signals. The average effects on the NLC 

peak amplitudes and the V1/2 were presented in Figure 3.11 and Figure 3.18. Detailed 

information on each position, which was not modified by application of MTS reagents, is 

attached in the supplement (Supplemental figure 7.1). Table 3.4 sums up the results of the 

experiments concerning membrane localisation, functionality and accessibilities. 

Table 3.4: Overview of the results of the scanning of rat prestin constructs with mutations within TM 3. 
Predominant membrane localisation and functionality are marked with + and accordingly cytosolic localisation 
and lack of functionality with -. Yellow indicates insensitivity (-) to MTS reagents, accessibility from the 
extracellular side is marked in blue, from the intracellular side in red and additionally with +. Positions with a 
lack of membrane targeting or functionality were not tested for their accessibility and are therefore not 
determined (n.d.). 

  
PM 

 
functional 

extracellularly 
accessible 

 

intracellularly 
accessible 

 MTSES MTSET MTSES MTSET 
I134 + + — — — — 
G135 — n.d. n.d. n.d. n.d. n.d. 
P136 + + — — — + 
F137 — n.d. n.d. n.d. n.d. n.d. 
A138 + — n.d. n.d. n.d. n.d. 
V139 + + + + + — 
I140 + + — — — — 
S141 + + — — — — 
L142 + + + + — — 
M143 — n.d. n.d. n.d. n.d. n.d. 
I144 + + — — — — 
G145 + + + — — — 
G146 + — n.d. n.d. n.d. n.d. 

 

Figure 3.21 maps these results onto the structural homology model of Gorbunov et al. from 

2014. The transmembrane domains 1, 3, 8 and 10 are shown and additionally the accessible 

positions were highlighted in colour. 
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Figure 3.21: Parts of the structural homology model of rat prestin based on UraA with the TMs 1, 3, 8 and 
10. TM 3 is shown in yellow, TM 10 in green and the putative anion-binding site (S396) is shown as sticks. A: 
The orange circle represents a bound anion at the presumptive anion-binding site. B: The model is expanded for 
accessibility results of TM 3. The model shows the presumptive structural localisation of positions that were 
accessible from the intracellular (red), extracellular (blue) side or double accessible (purple). The model is 
based on the results of Gorbunov et al., 2014. 
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3.3 SCAM of zebrafish prestin 

The zebrafish prestin constructs with cysteine substitutions in transmembrane domains 3 

and 10 that showed a wild type-like membrane localisation (cf. Figure 3.2 and Figure 3.3) 

and delivered robust transport currents (cf. Figure 3.6 and Figure 3.7) were further 

investigated for MTS accessibilities. The principles of the measurements of the transport 

currents of the zebrafish prestin constructs were as described in section 3.1. 

3.3.1 Transmembrane domain 3 of zebrafish prestin 

Among the 13 zebrafish prestin constructs with mutations in transmembrane domain 3, 

three mutants lacked a predominant membrane localisation of prestin and another three 

mutants were dysfunctional. Thus, seven mutants were analysed by SCAM. 

3.3.2 Extracellular accessibility of positions within TM 3 in zebrafish prestin 

In Figure 3.22 representative traces of two zebrafish prestin mutants are shown, of the basic 

construct WT_△Cys which was insensitive to applied MTS reagents as expected and of a 

mutant whose transport current decreased upon extracellular MTSES application and 

which was therefore considered extracellularly accessible (cf. Figure 3.24). The increase of 

the transport current at the beginning of the measurements was observed consistently in 

all functional mutants and can be attributed to relatively slow equilibration of oxalate 

between the patch pipette and the cell. 

Figure 3.23 shows representative measurements of normalised transport currents and the 

effects of extracellular MTS application on the zebrafish prestin constructs with cysteine 

mutations in transmembrane domain 3. There was a strong decrease of the transport 

currents upon MTS application in the mutants V140C, S142C, L143C and G147. Application 

of MTSES was also followed by a decrease in the transport current in the mutant M144C in 

this individual recording. However, this effect was less pronounced between experiments 

and, ultimately, turned out to be not statistically significant. Thus, position M144C was 

considered not to be extracellularly accessible. The extracellular accessibility of the other 

positions is summarised by the bar diagram of Figure 3.24 and details are shown in the 

following figures. 
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Figure 3.22: The effects of extracellular MTS application on zebrafish prestin constructs. A+B: WT_△Cys. 
A: A graph of representative normalised traces of the transport currents at 0 mV. B: Shown are single traces 
from the upper graph: the initial trace (black) was a trace before the application of MTS reagents was started 
and the red (MTSES) and blue (MTSET) traces were single representative traces from a time point during the 
MTS application. C+D: The mutant M400C is shown as an example for an extracellularly accessible position. C: 
The two graphs are representative normalised traces of the transport current at 0 mV of the mutant M400C. D: 
Shown are single traces from the upper graphs: the initial trace (black) was a trace before the application of the 
MTS reagents was started and the red (MTSES) and blue (MTSET) traces were single representative traces from 
a time point during the MTS application with a fully established effect. 
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Figure 3.23: The effects of extracellularly applied MTS reagents on the transport currents of the 
zebrafish prestin constructs with mutations within TM 3. WT_△Cys was the basic construct with nearly all 
cysteines mutated to alanines (cf. 2.4). All traces show transport currents of a representative measurement and 
were normalised. In black: a control measurement without application of MTS reagents. In red: a measurement 
with extracellularly applied MTSES. In blue: a measurement with extracellularly applied MTSET. 
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Figure 3.24: Summary of the effects of extracellularly applied MTS on zebrafish prestin constructs with 
mutations within TM 3. Bars represent the mean of five measurements (n=5)  SEM. Black bars are the control 
measurements without MTS application, red bars are measurements with MTSES application and blue bars are 
measurements with MTSET application. The bar diagram shows the changes of normalised transport currents 
on extracellular MTS application. 

The cysteine at position V140C was accessible from the extracellular side to both MTS 

reagents. The effects were statistically highly significant as the bar diagram of Figure 3.25 

demonstrates. The transport current decreased drastically upon the application of MTSES 

(to 2.1 ± 2.6 % of the initial current) as well as of MTSET (to 0 ± 10.5 %). 

Accessibility of cysteine S142C was only moderate in terms of kinetics and maximal effect 

(Figure 3.26). Even if the effect built up slowly upon MTSES application, the transport 

current decreased to 48.5 ± 4.7 % compared to its initial value, which was highly significant. 

In contrast, the application of MTSET did not affect the transport current of S142C (72.0 ± 

6.7 %). 

The transport currents of the mutant L143C were also affected by extracellular MTS (Figure 

3.27). The effects were statistically significant (MTSES: 31.2 ± 8.9 % and MTSET: 32.4 ± 

10.9 %). The cysteine G147C was only accessible to the negatively charged MTSES (Figure 

3.28). The average decrease of the transport current was to 40.6 ± 8.2 % upon application 

of MTSES (MTSET: 91.7 ± 8.8 %). 
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Figure 3.25: The effects of extracellular MTS application on zebrafish prestin V140C. A: The upper graph 
is taken from Figure 3.23. B: The lower two graphs are single traces from the upper graphs: the initial trace 
(black) is a trace before the application of the MTS reagents was started and the red (MTSES) and blue (MTSET) 
traces are single representative traces from a time point during the MTS application with a fully established 
effect. C: The bar diagram shows the average effect based on five measurements (n=5) with SEM for changes in 
the transport currents as normalised values. 

 

 

Figure 3.26: The effects of extracellular MTS application on zebrafish prestin S142C. A: The upper graph 
is taken from Figure 3.23. B: The lower two graphs are single traces from the upper graphs: the initial trace 
(black) is a trace before the application of the MTS reagents was started and the red (MTSES) and blue (MTSET) 
traces are single representative traces from a time point during the MTS application with a fully established 
effect. C: The bar diagram shows the average effect based on five measurements (n=5) with SEM for changes in 
the transport currents as normalised values.  
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Figure 3.27: The effects of extracellular MTS application on zebrafish prestin L143C. A: The upper graph 
is taken from Figure 3.23. B: The lower two graphs are single traces from the upper graphs: the initial trace 
(black) is a trace before the application of the MTS reagents was started and the red (MTSES) and blue (MTSET) 
traces are single representative traces from a time point during the MTS application with a fully established 
effect. C The bar diagram shows the average effect based on five measurements (n=5) with SEM for changes in 
the transport currents as normalised values. 

 

 

Figure 3.28: The effects of extracellular MTS application on zebrafish prestin G147C. A: The upper graph 
is taken from Figure 3.23. B: The lower two graphs are single traces from the upper graphs: the initial trace 
(black) is a trace before the application of the MTS reagents was started and the red (MTSES) and blue (MTSET) 
traces are single representative traces from a time point during the MTS application with a fully established 
effect. C The bar diagram shows the average effect based on five measurements (n=5) with SEM for changes in 
the transport currents as normalised values.  
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3.3.3 Intracellular accessibility of positions within TM 3 in zebrafish prestin 

Again, representative traces of normalised currents and the associated I-V curves of the 

zebrafish prestin construct WT_△Cys and the mutant M400C, which was sensitive to the 

intracellular application of MTS, are shown in Figure 3.29. 

 

Figure 3.29: The effects of intracellular MTS application on zebrafish prestin constructs. A+B: WT_△Cys. 
A: A graph of representative normalised traces of the transport current at 0 mV. B: Shown are single traces from 
the upper graph: the initial trace (black) is a trace shortly after starting the measurement before a potential 
effect was distinct and the red (MTSES) and blue (MTSET) traces are single representative traces from a time 
point towards the end of the measurement. C+D: The mutant M400C is shown as example for an intracellularly 
accessible position. C: The two graphs are representative normalised traces of the transport current at 0 mV of 
the mutant M400C. D: Shown are single traces from the upper graphs: the initial trace (black) is a trace shortly 
after starting the measurement before a potential effect was distinct and the red (MTSES) and blue (MTSET) 
traces are single representative traces from a time point towards the end of the measurement with a potentially 
fully established effect. 
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Figure 3.30 shows representative measurements of normalised transport currents and the 

effects of intracellular MTS application on all of the functional cysteine mutants. Figure 3.31 

gives an overview of the effects of intracellular MTS application on the zebrafish prestin 

constructs with mutations within transmembrane domain 3. A representative normalised 

trace as well as the statistics of intracellularly applied MTSES are missing for the mutant 

V140C because of a lack of sufficient independent recordings of appropriate quality. 

 

Figure 3.30: The effects of intracellularly applied MTS reagents on the transport currents of the 
zebrafish prestin constructs with mutations within TM 3. WT_△Cys was the basic construct with nearly all 
cysteines mutated to alanines (cf. 2.4). All traces show transport currents of a representative measurement and 
were normalised. In black: a control measurement without application of MTS reagents. In red: a measurement 
with intracellularly applied MTSES. In blue: a measurement with intracellularly applied MTSET. 
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Figure 3.31: Summary of the effects of intracellularly applied MTS on zebrafish prestin constructs with 
mutations within TM 3. Bars represent the mean of five measurements (n=5) measurements  SEM, except for 
position V140C under intracellular MTSET application where the bar only represents four measurements (n=4) 
 SEM. The bar of intracellular MTSES application for the mutant V140C is missing because of a lack of sufficient 
independent recordings of appropriate quality. Black bars are the control measurements without MTS 
application, red bars are measurements with MTSES application and blue bars are measurements with MTSET 
application. The bar diagram shows the changes of the normalised transport currents on intracellular MTS 
application. 

An effect of intracellularly applied MTS reagents on constructs of zebrafish prestin with 

mutations within transmembrane domain 3 was limited to V140C if at all. While 

measurements without MTS application produced strong signals (Table 3.2), 

measurements with intracellularly offered oxalate (106 mM) and MTSES delivered no or 

only very small transport currents. There have been numerous unsuccessful attempts to get 

evaluable signals. Possible explanations for this problem will be considered in the 

discussion section. The statistics for the effect of intracellularly applied MTSET were based 

on four measurements and the transport current was not affected by the application of 

MTSET from the intracellular side (116.1  5.1 %). 
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3.3.4 Summary of cysteine accessibility in TM 3 in zebrafish prestin 

Transmembrane domain 3 in zebrafish prestin was investigated from position I135 to G147, 

which are the structurally homologous positions to the investigated part of transmembrane 

domain 3 in rat prestin. All results of the scanning of the zebrafish prestin constructs with 

mutations within transmembrane domain 3 are listed in Table 3.5. Detailed information on 

each position insensitive to MTS reagents, is presented in the supplement (Supplemental 

figure 7.2). 

Table 3.5: Overview of the results of the scanning of zebrafish prestin constructs with mutations within 
TM 3. Predominant membrane localisation and functionality are marked with + and accordingly cytosolic 
localisation and lack of functionality with -. Yellow indicates insensitivity (-) to MTS reagents, accessibility from 
the extracellular side is marked in blue, from the intracellular side in red and additionally with +. Positions with 
a lack of membrane targeting or functionality were not tested for their accessibility and are therefore not 
determined (n.d.). No final conclusion of the intracellular accessibility (MTSES) can yet be made for the position 
V140. 

  
PM 

 
functional 

extracellularly 
accessible 

 

Intracellularly 
accessible 

 MTSES MTSET MTSES MTSET 
I135 — n.d. n.d. n.d. n.d. n.d. 
G136 — n.d. n.d. n.d. n.d. n.d. 
T137 + + — — — — 
F138 + — n.d. n.d. n.d. n.d. 
A139 + — n.d. n.d. n.d. n.d. 
V140 + + + + ? — 
I141 — n.d. n.d. n.d. n.d. n.d. 
S142 + + + — — — 
L143 + + + + — — 
M144 + + n.d. n.d. n.d. n.d. 
I145 + + — — — — 
G146 + — n.d. n.d. n.d. n.d. 
G147 + + + — — — 

 

Figure 3.32 maps the results of the cysteine accessibility of transmembrane domain 3 in 

zebrafish prestin onto the structural homology model. Comparable with transmembrane 

domain 3 in rat prestin, the positions of zebrafish prestin within transmembrane domain 3 

were expected to be mainly accessible from the extracellular side of the plasma membrane. 

In fact, four positions were accessible from the outside. Three of them are structurally 

homologous positions to the extracellularly accessible positions in rat prestin. Data on the 

intracellular application of MTSES for V140C were inconsistent and therefore, the 

accessibility from the intracellular side of the position V140 remains unknown. For this 

reason, this possible accessibility was not included in Figure 3.32. 
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Figure 3.32: Parts of the structural homology model of zebrafish prestin based on UraA with the TMs 1, 
3, 8 and 10. TM 3 is shown in yellow, TM 10 in green and the putative anion-binding site (S399 in zebrafish 
prestin) is shown as sticks. A: The orange circle represents a bound anion at the presumptive anion-binding site. 
B: The model is expanded for accessibility results of TM 3. The model shows the presumptive structural 
localisation of positions that were accessible from the extracellular (blue) side. The model is based on the results 
of Gorbunov et al., 2014. 
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3.3.5 Transmembrane domain 10 of zebrafish prestin 

All zebrafish prestin constructs with mutations within transmembrane domain 10 showed 

a strong membrane localisation (cf. Figure 3.3). As mentioned before, the mutants T393C, 

F394C and V395C showed appropriate membrane targeting of prestin but because of their 

positions, which are predicted to be located in the bulk of the protein, they were not further 

investigated. Additionally, the mutant H392C was examined, since the structurally 

homologous position in rat prestin (Q389) was extracellularly accessible (Gorbunov et al., 

2014). Finally, nine mutants which were tested for their functionality exhibited transport 

currents that were large enough to be identified unequivocally (cf. Figure 3.7) and thus, 

were examined for their accessibility. 

3.3.6 Extracellular accessibility of positions within TM 10 in zebrafish prestin 

Representative experiments obtained with zebrafish prestin constructs were already 

shown in Figure 3.22 and Figure 3.29 and, thus, were not additionally included in this 

section. Figure 3.33 shows normalised transport currents of constructs with mutations 

within transmembrane domain 10. 
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Figure 3.33: The effects of extracellularly applied MTS reagents on the transport currents of the 
zebrafish prestin constructs with mutations within TM 10. WT_△Cys was the basic construct with nearly all 
cysteines mutated to alanines (cf. 2.4). All traces show transport currents of a representative measurement and 
were normalised. In black: a control measurement without application of MTS reagents. In red: a measurement 
with extracellularly applied MTSES. In blue: a measurement with extracellularly applied MTSET. 
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Figure 3.34 gives an overview of the mean effects of extracellular MTS application on 

transport currents of the zebrafish prestin constructs with mutations within 

transmembrane domain 10. The transport currents of the mutants M400C and S401C were 

modified by MTSES, as indicated by a rapid decrease of the transport current upon 

extracellular MTSES application. The transport current of the mutant M400C decreased to 

15.0 ± 3.0 % (73.6 ± 4.3 %) upon application of MTSES (MTSET) (Figure 3.35). The effect of 

extracellularly applied MTSES on the mutant S401C was even more pronounced, as the 

transport current was entirely abolished (0 ± 8.1 %), whereas the application of MTSET had 

no effect (102.0 ± 2.1 %) (Figure 3.36). 

 

 

Figure 3.34: Summary of the effects of extracellularly applied MTS on zebrafish prestin constructs with 
mutations within TM 10. Bars represent the mean of five measurements (n=5)  SEM. Black bars are the 
control measurements without MTS application, red bars are measurements with MTSES application and blue 
bars are measurements with MTSET application. The bar diagram shows the changes of the normalised 
transport currents on extracellular MTS application. 
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Figure 3.35: The effects of extracellular MTS application on zebrafish prestin M400C. A: The upper graph 
is taken from Figure 3.33. B: The lower two graphs are single traces from the upper graphs: the initial trace 
(black) is a trace before the application of the MTS reagents was started and the red (MTSES) and blue (MTSET) 
traces are single representative traces from a time point during the MTS application with a fully established 
effect. C: The bar diagram shows the average effect based on five measurements (n=5) with SEM for changes in 
the transport currents as normalised values. 

 

 

Figure 3.36: The effects of extracellular MTS application on zebrafish prestin S401C. A: The upper graph 
is taken from Figure 3.33. B: The lower two graphs are single traces from the upper graphs: the initial trace 
(black) is a trace before the application of the MTS reagents was started and the red (MTSES) and blue (MTSET) 
traces are single representative traces from a time point during the MTS application with a fully established 
effect. C: The bar diagram shows the average effect based on five measurements (n=5) with SEM for changes in 
the transport currents as normalised values.  
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3.3.7 Intracellular accessibility of positions within TM 10 in zebrafish prestin 

In Figure 3.37 representative normalised transport currents show the effects of 

intracellular MTS application on zebrafish prestin constructs with mutations within 

transmembrane domain 10 and Figure 3.38 summarises the average (± SEM) of five 

independent measurements for each mutant. 
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Figure 3.37: The effects of intracellularly applied MTS reagents on the transport currents of the 
zebrafish prestin constructs with mutations within TM 10. WT_△Cys is the basic construct with nearly all 
cysteines mutated to alanines (cf. 2.4). All traces show transport currents of a representative measurement and 
were normalised. In black: a control measurement without application of MTS reagents. In red: a measurement 
with intracellularly applied MTSES. In blue: a measurement with intracellularly applied MTSET. 
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Figure 3.38: Summary of the effects of intracellularly applied MTS on zebrafish prestin constructs with 
mutations within TM 10. Bars represent the mean of five measurements (n=5)  SEM. Black bars are the 
control measurements without MTS application, red bars are measurements with MTSES application and blue 
bars are measurements with MTSET application. The bar diagram shows the changes of the normalised 
transport currents on intracellular MTS application. 

Five mutants (M400C, S401C, S403C, L404C and V405C) showed an effect upon intracellular 

presentation of MTSES and MTSET. Detailed data for these MTS-sensitive mutants are 

presented in Figure 3.39 to Figure 3.43. The transport currents of the mutant M400C 

decreased to 19.7  3.3 % of the initial current when the pipette contained MTSES and to 

2.8  4.5 % with MTSET (Figure 3.39). A decrease in the transport currents was also found 

in the mutant S401C (Figure 3.40). MTS application led to a decrease in the transport 

current to 23.7  22.7 % (MTSES) and to 0  7.3 % (MTSET), respectively. 

Similarly, the transport currents of the mutant S403C diminished drastically to 2.1  2.5 % 

with MTSES and decreased more moderately to 26.6  11.9 % in the presence of MTSET 

(Figure 3.41). 

The effects of intracellular MTS application on the mutant L404C were a decrease of the 

transport currents to 33.8  10.5 % (MTSES) and to 42.3  14.5 % (MTSET) (Figure 3.42). 

The cysteine at position V405 was also modified by the intracellular application of MTS 

compounds (Figure 3.43). Upon MTSES (MTSET) application the transport currents 

declined to 12.0  4.8 % (29.5  9.4 %). 
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Figure 3.39: The effects of intracellular MTS application on zebrafish prestin M400C. A: The upper graph 
is taken from Figure 3.37. B: The lower two graphs are single traces from the upper graphs: the initial trace 
(black) is a trace shortly after starting the measurement before a potential effect was distinct and the red 
(MTSES) and blue (MTSET) traces are single representative traces from a time point towards the end of the 
measurement with a potentially fully established effect. C: The bar diagram shows the average effect based on 
five measurements (n=5) with SEM for changes in the transport currents as normalised values. 

 

 

Figure 3.40: The effects of intracellular MTS application on zebrafish prestin S401C. A: The upper graph 
is taken from Figure 3.37. B: The lower two graphs are single traces from the upper graphs: the initial trace 
(black) is a trace shortly after starting the measurement before a potential effect was distinct and the red 
(MTSES) and blue (MTSET) traces are single representative traces from a time point towards the end of the 
measurement with a potentially fully established effect. C: The bar diagram shows the average effect based on 
five measurements (n=5) with SEM for changes in the transport currents as normalised values. 
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Figure 3.41: The effects of intracellular MTS application on zebrafish prestin S403C. A: The upper graph 
is taken from Figure 3.37. B: The lower two graphs are single traces from the upper graphs: the initial trace 
(black) is a trace shortly after starting the measurement before a potential effect was distinct and the red 
(MTSES) and blue (MTSET) traces are single representative traces from a time point towards the end of the 
measurement with a potentially fully established effect. C: The bar diagram shows the average effect based on 
five measurements (n=5) with SEM for changes in the transport currents as normalised values. 

 

 

Figure 3.42: The effects of intracellular MTS application on zebrafish prestin L404C. A: The upper graph 
is taken from Figure 3.37. B: The lower two graphs are single traces from the upper graphs: the initial trace 
(black) is a trace shortly after starting the measurement before a potential effect was distinct and the red 
(MTSES) and blue (MTSET) traces are single representative traces from a time point towards the end of the 
measurement with a potentially fully established effect. C: The bar diagram shows the average effect based on 
five measurements (n=5) with SEM for changes in the transport currents as normalised values. 
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Figure 3.43: The effects of intracellular MTS application on zebrafish prestin V405C. A: The upper graph 
is taken from Figure 3.37. B: The lower two graphs are single traces from the upper graphs: the initial trace 
(black) is a trace shortly after starting the measurement before a potential effect was distinct and the red 
(MTSES) and blue (MTSET) traces are single representative traces from a time point towards the end of the 
measurement with a potentially fully established effect. C: The bar diagram shows the average effect based on 
five measurements (n=5) with SEM for changes in the transport currents as normalised values. 

In summary, five positions within transmembrane domain 10 (M400C, S401C, S403C, 

L404C and V405C) are clearly solute-accessible from the intracellular side. 
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3.3.8 Summary of cysteine accessibility in TM 10 in zebrafish prestin 

Transmembrane domain 10 in zebrafish prestin was investigated from position H392 to 

V405 except for the positions T393 to V395. The transport currents of two mutants were 

affected by extracellular application of MTS reagents (cf. Figure 3.34). Upon intracellular 

application of MTS reagents five mutants showed decreased transport currents (cf. Figure 

3.38). Table 3.6 combines all results of positions within transmembrane domain 10. 

Detailed data obtained for those positions insensitive to MTS reagents, is presented in the 

supplement (Supplemental figure 7.3). 

Table 3.6: Overview of the results of the scanning of zebrafish prestin constructs with mutations within 
TM 10. Predominant membrane localisation and functionality are marked with + and accordingly cytosolic 
localisation and lack of functionality with -. Yellow indicates insensitivity (-) to MTS reagents, accessibility from 
the extracellular side is marked in blue, from the intracellular side in red and additionally with +. Positions with 
a lack of membrane targeting or functionality were not tested for their accessibility and are therefore not 
determined (n.d.).  

  
PM 

 
functional 

extracellularly 
accessible 

 

intracellularly 
accessible 

 MTSES MTSET MTSES MTSET 
H392 + + — — — — 
 

— 

V396 + + — — — — 
T397 + + — — — — 
A398 + + — — — — 
S399 + — n.d. n.d. n.d. n.d. 
M400 + + + — + + 
S401 + + + — + + 
R402 + — n.d. n.d. n.d. n.d. 
S403 + + — — + + 
L404 + + — — + + 
V405 + + — — + + 

 

Figure 3.44 depicts the accessibilities of positions within transmembrane domain 10 in 

zebrafish prestin mapped onto the structural homology model. The two positions (M400 

and S401) that turned out to be accessible from the intracellular as well as from the 

extracellular side are highlighted in purple. 
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Figure 3.44: Parts of the structural homology model of zebrafish prestin based on UraA with the TMs 1, 
3, 8 and 10. TM 3 is shown in yellow, TM 10 in green and the putative anion-binding site (S399 in zebrafish 
prestin) is shown as sticks. A: The orange circle represents a bound anion at the presumptive anion-binding site. 
B: The model is expanded for accessibility results of TM 10. The model shows the presumptive structural 
localisation of positions that were accessible from the extracellular (blue) side, from the intracellular (red) side 
or double accessible (purple). The model is based on the results of Gorbunov et al., 2014. 
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3.4 V139C in rat prestin confers mechanical sensitivity 

In the course of the accessibility study of the third transmembrane domain, position V139 

in rat prestin turned out to be of special interest. V139 is predicted at the inner end of the 

transmembrane domain 3 helix. The rat prestin mutant V139C was sensitive to MTS 

reagents applied from the extra- as well as intracellular side of the cell (Figure 3.12 and 

Figure 3.20). 

The setup for these experiments was the same as for the scanning measurements. An 

application needle connected with a perfusion system was closely placed to the patched cell. 

While the measurement was performed, it was possible to start and stop the additional 

fluid-flow via the application system. The applied fluid was the standard bath solution 

(unless mentioned otherwise).  

Unexpectedly, the rat prestin mutant V139C showed mechanosensitive properties not 

observed with the wild type protein. Thus, fluid-flow applied to the cell strongly increased 

NLC amplitude, whereas NLC was minimal in the absence of such mechanical stimulation 

(Figure 3.45 A). In contrast, in wild type prestin presence or absence of fluid-flow had no 

effect on the NLC other than a minimal shift of the voltage-dependence (V1/2). 

Since the mutant V139C was originally generated for the cysteine accessibility scanning, it 

was based on the cysteine-free rat prestin construct with all cysteines mutated to alanines 

as described before (cf. 2.4 and 7.1.1). In order to characterise and potentially understand 

the unexpected gain of mechanosensitivity, wild type and the cysteine-free mutant as well 

as the mutation V139C in both backgrounds (WT and WT_△Cys) were investigated for their 

flow-dependency of activity (Figure 3.45 B). 

There was no effect on the NLC peak amplitude upon applied fluid-flow in the two controls 

of rat prestin (WT and WT_△Cys), neither in the wild type (104.0 ± 2.0 %) nor in the 

cysteine-free mutant (99.8 ± 1.6 %). Only the wild type protein exhibited mechanical 

sensitivity in form of a slight shift of the V1/2 in the hyperpolarised direction in the absence 

of fluid-flow. Thus, the mechanosensitivity was not the result of mutation of all native 

cysteines to alanines. For this reason, only the wild type prestin was investigated as the 

control construct in the further experiments. Furthermore, the two variants with the V139C 

mutation also behaved comparably and showed a similar decrease of the NLC peak 

amplitude in the absence of fluid-flow (V139C (WT): 28.1 ± 9.9 %; V139C (WT_△Cys): 40.0 

± 3.7 %). Because some of the experiments were already performed with the mutant V139C 

(WT_△Cys), all further experiments were also carried out with this construct (in the 

following referred to as V139C). 
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Figure 3.45: Mechanosensitive properties of rat prestin wild type and V139C. A: The upper graphs are 
representative measurements of rat prestin wild type (WT), the lower graphs of rat prestin V139C (WT_△Cys). 
Left graphs show the normalised NLC peak amplitude. Black bars and traces indicate periods with fluid-flow 
while grey bars and traces indicate the absence of fluid-flow. The traces were normalised to a trace under fluid-
flow condition around one minute after starting the measurement (additionally marked by the black asterisks). 
Furthermore, the asterisks mark the positions of the representative traces shown in the right graphs. C: 
Comparison of the flow-dependent effect in different variants of rat prestin. The effect of applied fluid-flow was 
tested in WT, WT_△Cys and the mutants V139C (WT) and V139C (WT_△Cys). The average effect on the NLC 
peak amplitude is shown. The number of measurements for each condition is indicated. Mean ±SEM. 
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To examine the possibility of a cell type-dependent phenomenon to CHO cells, the mutant 

was further tested for flow-dependency of activity in HEK 293 cells. In both different cell 

lines, the same effect could be observed (Figure 3.46). The NLC peak amplitude decreased 

(relative to the amplitude in flow-condition) to 40.0 ± 3.7 % in CHO cells and to 45.5 ± 4.7 % 

in HEK 293 cells in the absence of fluid-flow. 

 

 

Figure 3.46: Comparison of the mechanosensitive properties in different cell lines. CHO cells: n=19 and 
HEK 293 cells: n=4. Mean ± SEM. 

 

Next it was tested, whether mechanical sensitivity was also induced by other amino acid 

substitutions at the position V139. In fact, all SLC26 isoforms have either a valine or 

isoleucine residue at the structurally homologous position, suggesting an important 

structural or functional role of such a hydrophobic amino acid at this position. Thus, 

different substitutions of valine for other amino acids were explored for flow-dependent 

behaviour. Substituting V139 by isoleucine (or leucine) did not confer mechanical 

sensitivity (Figure 3.47). Alanine and glycine are also nonpolar and small amino acids, 

whereas tryptophan and proline are nonpolar but bulky. As found for isoleucine and 

leucine, all these exchanges did not result in flow-dependency of activity. Interestingly, even 

the mutation to serine, which is the isosteric replacement of cysteine, did not induce flow-

dependent behaviour. Mutations to arginine (basic) and to glutamate (acidic) led to proteins 

not targeted to the cell membrane, that, therefore, could not be studied. Thus, the flow-

dependency of activity was exclusively induced by the exchange of valine to cysteine. 
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Figure 3.47: Mechanosensitive properties in rat prestin were exclusively mediated by V139C. The 
cysteine-free (WT_△Cys) variant of rat prestin served as the basic construct for all mutations at V139. A 
significant decrease of the NLC peak amplitude in the absence of fluid-flow was only observed in the mutant 
V139C. The differences of this effect were highly significant only between the basic constructs (WT and 
WT_△Cys) and the mutant V139C but not the other mutants. n3. Mean  SEM. 

3.4.1 A common behaviour within the SLC26 transporter family upon applied 

fluid-flow 

To test whether a mechanical sensitivity could also be induced in a transport-capable 

prestin, the structurally homologous position to rat prestin V139 was mutated to cysteine 

in zebrafish prestin (V140C). Interestingly, the activity of zebrafish prestin V140C was also 

dependent on flow-application. In the absence of fluid-flow the transport current drastically 

decreased, similar to the decrease of the NLC peak amplitude in rat prestin V139C, whereas 

the transport current of zebrafish prestin wild type was not affected by applied fluid-flow 

(Figure 3.48 A). 

As for rat prestin, the mechanosensitivity of the four variants of zebrafish prestin was 

compared between native and cysteine-free constructs, namely the wild type (WT), the 

nearly cysteine-free variant (WT_△Cys) (cf. 7.1.2) and V140C in both backgrounds. As 

shown in Figure 3.48 B both zebrafish prestin wild type and the nearly cysteine-free variant 

were insensitive to fluid-flow as no change of the transport current size was observed when 

fluid-flow was stalled (WT: 93.4 ± 4.4 %; WT_△Cys: 93.6 ± 9.1 %). In contrast, the mutation 

of V140 to cysteine caused a decrease of the transport current upon the switch-off of fluid-

flow (V140C (WT): 18.3 ± 4.8 %; V140C (WT_△Cys): 29.0 ± 11.1 %). 
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Figure 3.48: Flow-application affected transport currents of zebrafish prestin V140C. A: The left graphs 
show normalised transport currents at 0 mV of WT and V140C (WT_△Cys), respectively. Individual 
representative current traces are shown in the right panels. Black bars and traces: with fluid-flow; grey bars and 
traces: without fluid-flow. The traces were normalised to a trace under fluid-flow condition around one minute 
after starting the measurement with stable representative values (additionally marked by the black asterisks). 
The asterisks also mark the positions of the representative traces. The pipette solution contained 10mM or 106 
mM sodium oxalate for measurements in wild type or V140C, respectively. B: The effect of fluid-flow was tested 
in two controls, namely the wild type (WT) and the nearly cysteine-free variant (WT_△Cys), and the mutants 
V140C (WT) and V140C (WT_△Cys). In the bar diagram, the average effects on the transport currents are shown. 
The number of measurements for each condition is indicated. Mean ±SEM. 
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Differences between the two controls (WT and WT_△Cys) as well as differences between 

the two V140C mutants were not statistically significant, whereas flow-dependent current 

changes were highly significant for each V140C mutant. For all further experiments in 

zebrafish prestin, the wild type construct and the mutant V140C (WT) were used. 

3.4.2 Effects of changes of extracellular osmolarity on rat prestin V139C 

The flow-dependency of activity of rat prestin V139C points to increased mechanosensitive 

properties of mutated prestin. But the nature of the relevant mechanical stimulus was yet 

to be characterised further. What does the application of fluid-flow cause? Is it membrane 

tension or something else, e.g. shear stress? Membrane tension appeared to be an attractive 

explanation, given that the area motor mechanism implies a fundamental dependence of 

state-occupancy on membrane tension even in native prestin (Dong & Iwasa, 2004). 

Adjusting the osmolarity of recording solutions is one of the standard strategies to test for 

tension sensitivity of transmembrane proteins, as resulting water fluxes alter cell volume 

and hence membrane stretch. Therefore, the extracellular bath solution was adjusted to 

different osmolarities, i.e. hypo- and hypertonic solutions. 

Application of these solutions stressed cells, which could be observed by swelling and 

shrinking of the cells, respectively. However, challenging the cell with different osmolarities 

did not reproduce the effect of fluid-flow described above for rat prestin V139C (Figure 

3.49). 

Exchange of either hypotonic or hypertonic solution for the iso-osmotic standard bath 

solution (310 mOsm/kg) had no significant effect on the NLC peak amplitude in either wild 

type prestin or the V139C mutant, whereas in the same cells, changes in fluid-flow (stalling 

of flow) yielded the same reduction of the NLC described above for the mutant, but not for 

wild type prestin (Figure 3.49 A and B). Voltage dependence was only slightly and 

inconsistently affected in both wild type and V139C prestin (Figure 3.49 B). 

These findings thus do not support a role of membrane tension in the flow dependency of 

activity in the mutant V139C. 
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Figure 3.49: Different osmolarities did not reproduce mechanical sensitivity in rat prestin V139C. A: The 
upper graphs are representative measurements of rat prestin wild type, the lower graphs of rat prestin V139C. 
Left graphs show the normalised NLC peak amplitude. The right graphs show corresponding representative 
traces. Black bars and traces: with fluid-flow; grey bars and traces: without fluid-flow; turquoise bars and traces: 
application of hypotonic solution (150 mOsm/kg); dark green bars and traces: application of hypertonic solution 
(454 mOsm/kg). The traces were normalised to a trace under fluid-flow condition around one minute after 
starting the measurement with stable representative values (additionally marked by the black asterisks). 
Furthermore, the asterisks mark the positions of the representative traces shown in the right graphs. B: The bar 
diagrams sum up the effects on the NLC peak amplitude and on the V1/2. The denoted ratios are for a mean of 
five representative traces under condition X (X=without fluid-flow, under application of hypo- or hypertonic 
solution) compared with a mean of five representative traces with fluid-flow. The osmolarity of the bath solution 
is indicated in the first three bars on the left diagram. n3. Mean  SEM. 
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Prestin is organised in cholesterol-rich membrane microdomains (Rajagopalan et al., 2006; 

Sturm et al., 2007). It appeared possible that membrane tension changes as induced by 

osmotic challenge might not transmit into these possibly rigid domains, which could explain 

the absence of any effect of osmotic stimuli on activity of V139C. It was reported that 

extraction of cholesterol from the membrane by methyl-ß-cyclodextrin (MßCD) released 

prestin from the microdomains. Therefore, the effect of osmotic challenge on the mutant’s 

activity after MßCD treatment was tested. 

After preincubation with 10 mM MßCD most cells were roundish and a shift of V1/2 of V139C 

was seen as described for wild type (Rajagopalan et al., 2007). When fluid-flow was 

abolished, NLC peak amplitude was still significantly decreased as shown in Figure 3.50 A. 

After depletion of cholesterol by MßCD, NLC amplitudes of both V139C and wild type prestin 

remained unaffected by osmotic challenge (Figure 3.50 B). However, under these conditions 

a significant shift of the voltage dependence (as quantified by V1/2) was obvious for both 

prestin variants. Although this observation supports an increased exposure of prestin to 

membrane tension after dissociation of the cholesterol-dependent microdomains, at the 

same time, it argues against a role of tension in the flow-dependency of activity, since no 

changes of NLC amplitude (the hallmark of flow-dependency) were found, and the V1/2 

shifted in a similar way in the mutant and wild type. 
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Figure 3.50: Pretreatment with MßCD shifted the V1/2 but did not induce mechanical sensitivity 
provoked by different osmolarities. A: 10 mM MßCD was applied during whole cell recordings. Left graph: 
NLC peak amplitude was normalised to a representative trace with stable values under flow condition (marked 
by the black asterisk). Black bars and trace: with fluid-flow; grey bars and trace: without fluid-flow; blue bars 
and trace: application of MßCD (10 mM). The right graph shows corresponding representative traces. The 
asterisks mark the positions of the representative traces. The application of MßCD (10 mM) shifted the V1/2 to 
more positive values, but it affected neither the NLC peak amplitude nor its decrease during non-flow conditions. 
B: After incubation with MßCD (10mM) for about 10 minutes the fluid-flow was applied to cells transfected with 
rat prestin wild type (WT) or V139C. Cells were measured with the standard bath solution (310mOsm/kg) as 
well as hypotonic (198 mOsm/kg; light green) or hypertonic (398 mOsm/kg; dark green) bath solutions. The 
left bar diagram shows the average ratio (X=hypotonic or hypertonic solution, respectively) of the NLC peak 
amplitude, the right diagram the average changes of the V1/2 as absolute values. The number of measurements 
for each condition is indicated. Mean   SEM. 
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3.4.3 No interaction of V139C with the cytoskeleton to induce mechanical 

sensitivity 

Since experiments with osmotic challenge did not point to a direct role of membrane tension 

in the flow-dependency of activity of V139C, alternative mechanisms had to be considered. 

By its tight association with the plasma membrane, the cytoskeleton is involved in cellular 

mechanosensing as well as in exerting force onto the membrane (Ohashi et al., 2017). 

Therefore, it was next analysed whether the cytoskeleton could play a role in mediating 

mechanosensitivity of the V139C mutant. 

Latrunculin A inhibits actin polymerisation by binding to actin monomers and thereby 

effectively dissociates cellular F-actin structures (Coué et al., 1987). Pretreatment for 30 

minutes with 5 M Latrunculin A induced cell rounding, confirming its activity. However, 

the mechanosensitivity of V139C was not affected (Figure 3.51). The NLC peak amplitude 

decreased to 41.1 ± 1.3 % (n=2) upon stalling of fluid-flow, quantitatively not different from 

the control conditions described above. In consequence, the involvement of the 

cytoskeleton in mechanosensitivity of the mutant V139C could be excluded. 

 

Figure 3.51: The actin modulator Latrunculin A did not affect the mechanosensitive activity of rat prestin 
V139C. Cells were treated with 5 µM Latrunculin A for 30 min before recording. The left graph shows the 
normalised NLC peak amplitude. The measurement was normalised to a representative trace with stable values 
under flow condition (marked by the black asterisk). Black bars and trace: with fluid-flow; grey bars and trace: 
without fluid-flow. The right graph shows corresponding representative traces. The asterisks mark the positions 
of the representative traces. 

To further probe for a potential role of other intracellular factors or signalling cascades, the 

flow-dependency of activity of V139C was studied in excised outside-out patches (Figure 

3.52). Measurements were first performed in whole cell mode and subsequently outside-

out patches were pulled, allowing determination of mechanosensitivity in both recording 

conditions from the same cell. 
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Figure 3.52: Flow-dependency of activity was observed in whole cell and outside-out patches in rat 
prestin V139C. A: Representative traces of measurements in whole cell (left) and outside-out mode (right) of 
the same cell transiently transfected with rat prestin wild type (upper graphs) and V139C (lower graphs), 
respectively. Black traces: w/ fluid-flow; grey traces: w/o fluid-flow. B: The left bar diagram shows the average 
effect on NLC, the right bar diagram changes in V1/2. The denoted ratios are for a mean of five representative 
traces w/o fluid-flow when the effect was fully distinct compared with a mean of five representative traces w/ 
fluid-flow directly before the effect was initiated by turning off the application of fluid-flow. n4. Mean  SEM. 
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As shown in Figure 3.52 fluid-flow affected the NLC to the same degree under whole cell and 

outside-out conditions. Thus, NLC amplitude of rat prestin wild type was not affected by the 

absence of fluid-flow, neither in the whole cell mode (99.0 ± 1.5 %) nor in outside-out 

patches (100.0 ± 4.2 %). Importantly, for rat prestin V139C NLC in outside-out mode 

decreased to 51.0 ± 8.1 %, when the flow was switched off, very similar to the effect in whole 

cell mode (41.4 ± 8.7 %). Changes in voltage dependence (V1/2) were minimal and 

statistically not significantly different between any of the tested conditions. 

In conclusion, the excised-patch experiments suggest that the mechanosensitivity of V139C 

does not require intracellular factors. 

3.4.4 Influence of the redox-state on the flow-dependency  

Since the thiol-group of cysteine is known to be sensitive to redox modifications, it was 

further studied whether the flow-dependency of activity of rat prestin V139C was affected 

by the application of redox-active substances. 

DTT acts on thiol-groups and maintains them in a reduced state. Strikingly, the application 

of DTT (5 mM) abolished the flow-dependency of activity of rat prestin V139C. Thus, there 

was no longer a decrease in the NLC peak amplitude in response to turning off the fluid-flow 

after application of DTT (WT: 102.0 ± 1.8 %; V139C: 96.6 ± 7.0 %). Furthermore, DTT also 

reduced the flow-dependent shift of the V1/2 in rat prestin wild type as shown in Figure 3.53 

A (WT: -1.35 ± 1.57 mV; V139C: +0.37 ± 1.39 mV). In contrast, application of the oxidising 

reagent H2O2 (150 mM) to convert the thiol-groups into their oxidised form preserved the 

flow-dependency of activity of V139C (Figure 3.53 B). The difference between the case with 

and without applied fluid-flow was still significant with a decrease to 45.6 ± 2.6 %. 

Moreover, the flow-dependent V1/2-shift in wild type and in V139C was not affected by 

application of H2O2 (-20.49 ± 4.05 mV and -17.57 ± 5.71 mV, respectively), and comparable 

with the shifts observed without the preapplication of H2O2 (WT: -18.11 ± 4.19 mV; V139C: 

-13.82 ± 2.08 mV; Figure 3.53 C). 
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Figure 3.53: Effect of the application of DTT and H2O2 on the flow-dependency of activity of rat prestin 
V139C. A+B: Left graphs show normalised changes of the V1/2 (WT) or the normalised NLC (V139C), 
respectively. The measurements were normalised to a representative trace with stable values under flow 
condition. Black bars and traces show a condition with fluid-flow, grey bars and traces without fluid-flow, orange 
bars the application of DTT (5 mM), blue bars the application of H2O2 (150 mM). The upper graphs show a 
representative measurement of WT, the lower graphs of V139C. Asterisks mark the position of the 
corresponding traces. The right graphs picture corresponding representative traces. A: Effect of DTT on the 
flow-dependency of rat prestin. B: Effect of H2O2 on the flow-dependency of rat prestin. C: The bar diagrams sum 
up effects of DTT and H2O2 on the NLC peak amplitude and V1/2. The denoted ratios are for a mean of five 
representative traces without fluid-flow when the effect was fully distinct compared with a mean of five 
representative traces with fluid-flow directly before the effect was initiated by turning off the fluid-flow. n5. 
Mean  SEM. 

Equivalent experiments were also performed in zebrafish prestin (Figure 3.54). The effects 

of the redox agents (DTT and H2O2) on flow-sensitivity of anion transport were qualitatively 

similar to those in rat prestin. However, application of DTT and H2O2 immediately and 

strongly affected the size of transport currents in the zebrafish prestin V140C mutant (DTT: 

1026.9 ± 322.8 %; H2O2: 30.8 ± 4.5 %) but not in the wild type (DTT: 99.1 ± 1.1 %; H2O2: 

95.3 ± 1.3 %). This means that the currents were strongly increased by DTT application, but 

inhibited by H2O2 application in V140C in zebrafish prestin. Thus, flow-sensitivity of 

transport was abolished by DTT application (w/o flow after DTT: 97.7 ± 1.0 % of the current 

under flow condition), whereas the application of H2O2 preserved the decrease of the 

transport current upon stalling of the flow (w/o flow after H2O2: 46.1 ± 18.5 %). In wild type 
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zebrafish prestin neither DTT nor H2O2 affected the insensitivity to fluid-flow on transport 

currents (w/o flow after DTT: 96.2 ± 1.0 %; w/o flow after H2O2: 98.4 ± 2.4 %). 
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Figure 3.54: Effect of the application of DTT and H2O2 on the flow-dependency of activity of zebrafish 
prestin V140C. Left graphs show the normalised change in the transport currents. The measurements were 
normalised to a representative trace with stable values under flow condition (marked by the black asterisk). 
Black bars and traces show a condition with fluid-flow, grey bars and traces without fluid-flow, orange bars the 
application of DTT (5 mM), blue bars the application of H2O2 (150 mM). The upper graphs show a representative 
measurement of wild type (WT), the lower graphs of V140C. The right graphs show corresponding 
representative traces. Asterisks mark the position of the corresponding traces. A: Effect of DTT on the flow-
dependency of zebrafish prestin. B: Effect of H2O2 on the flow-dependency of zebrafish prestin. C: The bar 
diagram sums up effects of DTT and H2O2 on the transport currents. The denoted ratios are for a mean of five 
representative traces without fluid-flow when the effect was fully distinct compared with a mean of five 
representative traces with fluid-flow directly before the effect was initiated by turning off the fluid-flow. n5. 
Mean  SEM. 

 

Through these experiments it was not possible to determine whether the redox agents were 

interacting directly with the cysteine introduced at position 139 (or 140, respectively) or 

whether they were acting by changing the environment of the anion translocation pathway 

or the protein and thereby affected the flow-dependency of activity of rat prestin V139C and 

zebrafish prestin V140C, respectively. To address this question, a combined experiment was 

performed. After application of the redox reagents (DTT or H2O2) the MTS compound 

MTSET was applied, which was previously shown to interact with rat prestin V139C (cf. 

Figure 3.12). 
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Figure 3.55 shows the results of this combined experiment. Although slightly different 

degrees of NLC reduction upon MTSET application were observed, dependent on redox 

pretreatment, these differences were not statistically significant. 

Thus, most likely, MTS-reactivity of cysteine 139 was not altered by the redox 

manipulations, argueing against a direct effect of the redox state on this cysteine. 

 

 

Figure 3.55: Combination of DTT or H2O2 and extracellularly applied MTSET in rat prestin V139C. Black 
bars: with fluid-flow; grey bars: without fluid-flow; orange bars: application of DTT (5 mM); light blue bars: 
application of H2O2 (150 mM); dark blue bars: application of MTSET (1 mM). The left graphs were normalised 
peak NLC traces. The bar diagram shows the effects of extracellularly applied MTSET (exMTSET) with and 
without preapplication of DTT or H2O2, respectively, on the NLC peak amplitude. n≥3. Mean ± SEM.  
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3.4.5 Probing the orientation of prestin’s anion-binding site with competitive 

inhibitors 

The results of the cysteine modification strategy described above provided the first 

experimental evidence for an elevator-like conformational behaviour of a transport-active 

prestin ortholog, and, moreover, suggested that mammalian prestin undergoes a similar, 

although incomplete molecular reorientation. 

Nevertheless, the interpretation of the data was somewhat complicated by the complex 

behaviour of the important mutant V139C (V140C in zebrafish prestin). Moreover, the 

cysteine modifications might have altered the behaviour relative to the wild type prestin. 

Therefore, an alternative approach for probing transport- and electromotility-related 

reorientations was carried out. 

In this respect, it is noteworthy that competitive inhibitors of anion-binding to prestin have 

been identified. Such inhibitors should act from either side of the membrane, if the anion-

binding site is fully translocated through the membrane, as a consequence of an elevator 

movement, but its action should be restricted to one side, if the protein is only capable of 

partial reorientation. 

The best-characterised blocker of mammalian prestin is salicylate, which competes with 

chloride for the anion-binding site (Oliver et al., 2001; Santos-Sacchi et al., 2006). However, 

because of its reversible deprotonation under physiological conditions, salicylate is 

membrane-permeable and when applied extracellularly passes through the cell membrane. 

There is strong evidence indicating that salicylate blocks mammalian prestin from the 

cytosolic side (Kakehata & Santos-Sacchi, 1996; Oliver et al., 2001) – however, given its 

presence at both sides of the membrane, it is not well suited to probe accessibility of the 

substrate-binding site to specifically one face of the membrane. Therefore, the use of 

membrane-impermeable salicylate analogues was considered. Phenolsulphonic acid (PSA) 

appeared as an ideal compound, as it is structurally highly similar to salicylate but 

membrane-impermeable. Preliminary experiments performed by Florian Nies in the Oliver 

lab confirmed this hypothesis. He compared the effects of extracellularly applied salicylate 

and PSA on the wild type constructs of chicken and rat prestin. Supplemental figure 7.4 

shows the results. In summary, transport currents of the transport-capable chicken prestin 

were blocked by salicylate as well as PSA with a non-significant difference. By contrast, NLC 

amplitudes of rat prestin wild type were only blocked by extracellularly applied salicylate 

but not PSA. The V1/2 was not affected. 
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Figure 3.56 shows the results of the experiments with these two blockers in rat prestin wild 

type and V139C performed by the author. The NLC of rat prestin wild type was blocked by 

extracellularly applied 10 mM salicylate (37.0 ± 0.7 %), but not by 10 mM PSA (97.5 ± 3.3 %) 

and the difference between the effects of the two blockers was highly significant. These 

results were consistent with the preliminary results of Florian Nies. In contrast, the NLC of 

the mutant V139C was blocked by both reagents (salicylate (10 mM): 52.0 ± 2.0 %; PSA (10 

mM): 69.3 ± 9.4 %) with a non-significant difference.  

These results suggest that the mutation V139C renders the mutant sensitive to an 

extracellular blocker, presumably acting by competitively binding to the substrate-binding 

site. Therefore, this mutant probably alters the conformational landscape of prestin 

towards an extracellularly accessible conformation. 
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Figure 3.56: Comparison of the two NLC blockers phenolsulphonic acid (PSA) and salicylate. Black bars 
and traces: with fluid-flow; green bars and traces: extracellularly applied PSA (10mM); purple bars and traces: 
extracellularly applied salicylate (10 mM). A: The upper graph shows a representative measurement of rat 
prestin wild type (WT), the lower graph of rat prestin V139C. The left graphs were normalised NLC peak traces. 
The right graphs show corresponding representative traces. Asterisks mark the position of the corresponding 
traces. B: The bar diagrams show the average effects on the NLC amplitude and the V1/2 upon PSA or salicylate 
application. n3. Mean ± SEM. 
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4 Discussion 

Two transmembrane domains that are predicted parts of the central cavity of prestin were 

investigated with an accessibility study (SCAM) with the aim to obtain experimental insights 

into the structural dynamics in this region which could then be interpreted with respect to 

the working hypothesis of an elevator transport mechanism. Transmembrane domain 10 

was studied because it includes the putative anion-binding site. S399 in zebrafish prestin is 

part of the putative anion-binding site, which is structurally homologous to position S396 

in rat prestin. Transmembrane domain 3 is the ‘counterpart’ of transmembrane domain 10 

with similar structure/motifs but an antiparallel orientation. Furthermore, these two 

domains were analysed in a comparative manner in both rat and zebrafish prestin as 

representatives of mammalian and non-mammalian prestin, which differ in their transport-

related function. While the mammalian prestin has electromotile properties, the non-

mammalian prestin functions as an anion exchanger. Experimental structures of other 

SLC26 members and structurally related transporters suggest an alternating-access 

mechanism for the anion exchange (Reithmeier et al., 2016; Thurtle-Schmidt & Stroud, 

2016; Walter et al., 2019). In this scenario, the complete core domain moves along the gate 

domain allowing for alternate access of the anion-binding site in a molecular reorientation 

also termed ‘elevator transport movement’. Such conformational dynamics predict that 

parts of the core domain should change their exposure to extracellular and intracellular 

sides, depending on the conformation of the protein during the transport cycle. Our working 

hypothesis is that mammalian prestin also performs an elevator movement, however an 

incomplete one, which has evolved from the anion exchange mechanism used by other 

SLC26 isoforms, including non-mammalian prestin orthologues. A comparison of the 

accessibilities of both prestin orthologues was expected to provide conclusions regarding 

the molecular dynamics underlying anion transport and electromotility. 

Although the accessibilities of positions in rat and zebrafish prestin are not identical, they 

are similar. The data suggest that the function of SLC26 transporters follows general 

principles. The generation of NLC and in consequence the electromotile changes in cell 

length are realised by conformational changes, which are also underlying anion transport. 
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Accessibility of positions within transmembrane domain 10 from the intracellular 

side and of positions within transmembrane domain 3 from the extracellular side are 

consistent with the structural models derived from experimental structures 

Positions within the transmembrane domains 3 and 10 of rat and zebrafish prestin mostly 

show accessibilities as expected from the structural models. This means that positions 

within transmembrane domain 3 are accessible from the extracellular side, positions within 

transmembrane domain 10 are accessible from the intracellular side. 

The accessibilities of positions within transmembrane domain 3 and 10 of both rat and 

zebrafish prestin are shown in Figure 4.1. Note that position numbering is shifted by one 

(three) amino acid in transmembrane domain 3 (in transmembrane domain 10), e.g. I134 

in rat prestin is structurally homologous to position I135 in zebrafish prestin. Within 

transmembrane domain 3, the extracellularly accessible positions located most towards the 

extracellular end of transmembrane domain 3 were G145 in rat prestin and G147 in 

zebrafish prestin. The respective structurally homologous positions were dysfunctional and 

could therefore not be tested for accessibility. The next positions with accessibility to the 

extracellular side were L142 in rat and L143 in zebrafish prestin. Furthermore, position 

S142 in zebrafish prestin was accessible to extracellular solutes, whereas the structurally 

homologous position in rat prestin (S141) was insensitive to MTS application. Also the 

position V139 in rat and the corresponding position V140 in zebrafish prestin were 

extracellularly accessible. Together these extracellularly accessible positions occur every 

third amino acid position along the primary sequence, which fits the predicted position of 

these amino acids in an alpha helix because one helix turn is 3.6 amino acids. Consequently, 

these positions fall directly above each other and are facing the predicted substrate access 

pathway. Moreover, it has to be noted that the structurally homologous positions in rat and 

zebrafish prestin were modified by the extracellular application of the same MTS reagent, 

e.g. rat prestin L142 was accessible to extracellularly applied MTSES and MTSET and this 

was also correct for zebrafish prestin L143. 

Transmembrane domain 10 of rat prestin was already investigated previously (Gorbunov 

et al., 2014) and those results are also listed in Figure 4.1 B. The putative anion-binding site 

S396 was only intracellularly accessible. This again suggests an incomplete transport cycle, 

in which this position is never faced towards the extracellular side. Another four positions 

within transmembrane domain 10 were affected by intracellular application of MTS 

compounds via the patch pipette. These positions are all oriented closer to the cytoplasm 

than S396. The first position within transmembrane domain 10 of rat prestin, which showed 

extracellular accessibility, was Q389. The structurally homologous position in zebrafish 
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prestin, H392, was insensitive to applied MTS. Again, this is a non-conserved position. The 

basic histidine is substituted for a neutral but polar glutamine. The reason for different 

behaviour can be the different amino acids or a different relocation of the positions during 

the conformational transition.  

The comparison between accessibilities within transmembrane domain 10 of rat and 

zebrafish prestin show that most of the accessibilities are the same and correspond to 

structurally homologous positions but there are also differences: S403 was intracellulary 

accessible in zebrafish prestin but the structurally homologous position S400 in rat prestin 

was dysfunctional and therefore was not tested for its accessibility. 

Interestingly, two positions within transmembrane domain 3 of rat prestin were accessible 

from the intracellular side. The first position was P136. Accessibility of P136C from the 

intracellular side is consistent with lining the anion-binding site ('central cavity') as 

suggested by the inside-open homology model of prestin. This is one of the few amino acids 

in transmembrane domain 3 that is not conserved between zebrafish and rat prestin. The 

rat prestin residue proline substitutes for a threonine in zebrafish prestin at the structurally 

homologous position. These two amino acids are both neutral, but threonine is a polar 

amino acid and proline is a nonpolar which is known to often introduce a kink into the 

protein structure. T137 in zebrafish prestin was insensitive to MTS application. The second 

position was V139 of rat prestin that was even accessible from both sides. The crystal 

structure of SLC26Dg, a bacterial homolog of prestin, predicts inaccessibility of the positions 

near the anion-binding site to the extracellular side in the inward-open conformation of the 

protein (Geertsma et al., 2015). This two-sided accessibility was not expected for a position 

in rat prestin as it does not function as transporter. But this finding helps to understand the 

molecular dynamics of prestin. It suggests for a rigid transmembrane movement of the core 

domain against the gate domain where position V139 does not undergo a rearrangement. 

This finding supports the idea of an alternating-access mechanism with an elevator-like 

movement. According to the model of prestin, the position V139 is located within the anion 

permeation pathway near the putative anion-binding site S396. Depending on the residue 

on position 139, valine or cysteine, the distance between it and S396 is 6.73 Å to 8.44 Å (in 

the inward-open conformation) based on the structural homology model (Gorbunov et al., 

2014). Position V139 in rat prestin faces to different sides of the cell membrane during the 

transport cycle depending on the conformational state of the protein, whereas according to 

the theory of an incomplete transport cycle performed by mammalian prestin the outward-

open conformation will probably never be reached, which was supported by the single-

sided accessibility of S396C (Gorbunov et al., 2014). The two-sided accessibility of V139C 
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could most likely be in an elevator-like manner as it has been suggested for the prokaryotic 

SLC26 member (Geertsma et al., 2015). Furthermore, crystal structures of the related 

transporter families SLC23 and SLC4 suggest an alternating-access transport via an elevator 

mechanism (Arakawa et al., 2015; Alguel et al., 2016; Thurtle-Schmidt & Stroud, 2016). A 

recently published crystal structure of the uracil transporter UraA is in the occluded state 

(Yu et al., 2017) and thereby allows for comparison of two different conformational states 

of the same protein. Yu and colleagues observed a downward and leftward sliding of the 

core domain against the gate domain while changing from the occluded state into the 

inward-open conformation. Superposition of both states let them conclude that anion 

transport is realised by a combination of an elevator and rocking bundle mechanism. The 

elevator transport mechanism is further supported by recently published structures of a 

eukaryotic SLC26A9 (cryo-EM), which directly compare the protein in the inward-facing 

and intermediate state (Walter et al., 2019). Although experimental structures are not yet 

available, the presented accessibility results, in particular the extracellular accessibility of 

V139, strongly suggests the outward movement of the core domain consistent with an 

elevator movement in electromotile mammalian prestin. 

Additionally, V139C in rat prestin was extracellularly accessible to both MTS compounds, 

whereas it was only modified by the negatively charged MTSES from inside. It seems that 

the way to the central cavity and to this position is more selective from the cytoplasmic side. 

The accessibility scanning of transmembrane 3 in zebrafish prestin corresponds in many 

points with the results of transmembrane 3 in rat prestin. These findings indicate that there 

is a common mechanism used by both prestin variants. This hypothesis could be perfectly 

underpinned by the two-sided accessibility of the mutant V140C of zebrafish prestin. The 

cysteine modifications of this mutant leave no doubt about its extracellular accessibility. 

However, it was not possible to obtain reliable results regarding the application of MTSES 

from the cytoplasmic side within this study. The results of intracellularly applied MTSET 

are in line with the results of the structurally homologous position V139C in rat prestin. 

Both positions are insensitive to MTSET applied from the inside. Several attempts have been 

made to measure V140C with intracellular application of MTSES. The transport currents of 

the mutant V140C (-52.4 ± 8.8 pA at 0 mV, n=5) were smaller than of the control (-67.2 ± 

29.3 pA at 0 mV, n=5) under standard conditions without MTS application but good enough 

to read out. However, the measurements with application of intracellular MTSES showed 

small or even no signals (-7.18 ± 4.87 pA at 0 mV, n=11). One consideration was that the 

diffusion of the MTSES reagent was faster than of the oxalate from the patch pipette into the 
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Figure 4.1: Comparison of the SCAM results in rat and zebrafish prestin. A, C and D: The homology model 
of prestin (Gorbunov et al., 2014) shows the transmembrane domains 1, 3, 8 and 10. A: The orange circle 
symbolises a bound anion. The position S396 is shown as sticks. B: Sequence alignment of rat and zebrafish (zf) 
prestin. Positions with proven accessibilities are highlighted in blue (extracellularly accessible), in red 
(intracellularly accessible) and purple (from both sides). The presumptive anion-binding site in rat prestin S396 
has a yellow background. C+D: Model of rat (C) and zebrafish (D) prestin with focus of the central cavity and 
accessible positions which are highlighted in the mentioned colours. 

patched cell. If the intracellular application of MTSES causes a cysteine modification 

resulting in the block of transport currents it can be possible that no transport currents will 

be detectable. The extracellular application of oxalate via the application system accelerates 

the onset of measurable transport currents. Therefore, experiments were performed with 

separated reagents, oxalate (10 mM) extracellularly applied via an application capillary and 
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MTSES intracellularly applied via the patch pipette. The application of the oxalate was 

started in the cell-attached mode before the membrane was ruptured and the measurement 

started. This approach was also not successful in generating appropriate good signals. The 

increase of the oxalate concentration (100 mM) led to larger transport currents, but the 

measurements were unstable and cells get too leaky very rapidly (21.8 ± 0.9 pA at 0 mV, 

n=2). Both MTS reagents often delivered small or even no signals when applied via the patch 

pipette. This observation suggests that a small amount of the MTS reagent could be attached 

to the outside of the patch pipette, which suppressed the currents. This idea is supported 

by the extracellular cysteine modifications of the mutant V140C that influenced the signal 

within a few seconds (Figure 3.25). Therefore, one could consider that the MTS compounds 

had an effect before the measurement with intracellularly applied MTS was started. DTT is 

a chemical compound that is used as reducing agent. It can dissolute the bond formed 

between a cysteine and the sulfhydryl group of the MTS reagents. Furthermore, it increases 

the transport current of this mutant per se (Figure 3.54). The extracellular application of 

DTT should increase the signal and suppress any extracellular effect of MTS attached to the 

patch pipette. The application of DTT delivered better signals and no effect of the 

intracellularly applied MTSES was observed. But the cells were not of the best quality at that 

moment and did not survive for an adequate time. The question remains whether there is 

no intracellular effect of MTSES or whether the cysteine modification takes longer after the 

previous DTT application. Although it is very attractive to speculate that structurally 

homologous positions in rat and zebrafish exhibit the same accessibilities, it is not possible 

to make a certain statement of the intracellular accessibility of the position V140 in 

zebrafish prestin by the MTSES compound at this time. 

The two-sided accessibility of central positions in zebrafish prestin indicate 

alternating-access transport - consistent with elevator movement of the core domain 

– and furthermore, the lack of extracellular access of the homologous positions in rat 

prestin shows that the extracellular-exposed conformation is not obtained in 

mammalian prestin (previous results) 

The two-sided accessibilities of zebrafish prestin M400 and S401 and the single-sided 

accessibilities of their corresponding positions in rat prestin (L397 and S398) are again in 

line with expectations. The transporter function of zebrafish prestin requires the facing of 

the central cavity towards both sides of the cell membrane for the anion exchange. 

Furthermore, both prestin orthologues show positions in close proximity that are only 

intracellularly accessible, thus these parts of the anion translocation pathway are never 

faced towards the outside. These observations further support the theory of the incomplete 
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transport cycle performed by mammalian prestin (Schaechinger et al., 2011). Of particular 

interest was the accessibility of position S399 in zebrafish prestin. S399 is structurally 

homologous to S396 in rat prestin, which is part of the presumptive anion-binding site 

(Gorbunov et al., 2014). Rat prestin S396 is intracellularly accessible and zebrafish prestin 

S399 was expected to be accessible from both sides. The mutant S399C in zebrafish prestin 

is dysfunctional and a potential cysteine modification could therefore not be tested. Another 

transport-capable orthologue is chicken prestin but the mutation of the corresponding 

position in chicken prestin (S402C) also resulted in a dysfunctional mutant. But the two-

sided accessibilities of M400 and S401 (zebrafish prestin) are sufficient to provide adequate 

information about the organisation of the anion pathway and the molecular dynamics 

during anion translocation. The loss of transporter function goes along with the 

electromechanical activity of mammalian prestin. Thus, it coincides with our expectations 

to find positions near the anion-binding site with double-sided accessibility in zebrafish 

prestin but not in rat prestin. This constitutes further evidence that the electromotile 

transition and the conformational states are connected. 

The two-sided accessibility of rat prestin V139C points towards an outward 

movement of the core domain within an incomplete transport transition 

The rigid movement of the core domain against the gate domain indicates an alternating-

access in an elevator-like transport. Especially, the rat prestin mutant V139C gives a strong 

hint for this transport mode. The two-sided accessibility of this mutant shows that V139 

faces the translocation pathway in the inward-open as well as in the occluded conformation 

and thus stays rigid and does not undergo a conformational rearrangement. An alternating-

access transport in elevator mode is characterised by a relatively rigid immobile gate 

domain, a mobile core domain, which contains the anion-binding site, and a vertical 

displacement of the bound substrate. The results of the scanning support this mode of 

transport that was also proposed for a prokaryotic SLC26 family member (Geertsma et al., 

2015). While crystal structures record a protein in a certain conformation, cysteine labelling 

provides the opportunity to study the full conformational changes. Figure 4.2 illustrates the 

model derived from the results of the scanning. 

The model shows the movement of the core against the gating domain in rat (upper row) 

and zebrafish prestin (lower row). There is a schematic model in the inward-open 

conformation according to the structural homology model (Gorbunov et al., 2014) on the 

left side. Alternate conformations are shown on the right side which are determined by the 

extracellular accessibilities of positions of the respective prestin orthologue. To what extent 

the core domain opens to the extracellular side can be deduced from the accessibilities of 
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the positions V139 within transmembrane domain 3 in rat prestin and M400 and S400 

within transmembrane domain 10 in zebrafish prestin (Figure 4.2: shown in purple). There 

is an obvious difference between the alternate conformation of rat and zebrafish prestin. 

The core domain of zebrafish prestin moves along the gate domain as far as positions within 

transmembrane domain 10 also faces the extracellular side. This demonstrates the different 

conformational states of rat and zebrafish prestin. Zebrafish prestin undergoes a full 

transport cycle from an inward-open to an outward-open conformation, whereas rat 

prestin alternates between the inward-open and the intermediate (occluded) conformation. 

The results of the scanning show that the elevator mode of transport is mainly realised by 

zebrafish prestin. Rat prestin fails to reach the outward-open conformation, thus it 

performs an incomplete transport mechanism in an elevator-like manner. 

 

 

Figure 4.2: Comparison of the conformational states realised in rat and zebrafish prestin. Schematic 
overview of the conformational states of rat (upper row) and zebrafish prestin (lower row). The figure shows a 
full monomer of prestin that is connected to a second monomer of which only the gate domain is outlined. On 
the left: the inward-open conformation. On the right: the occluded state (rat prestin) and the outward-open 
conformation (zebrafish prestin). Core domains in blue, gating domains in teal, transmembrane domain 3 in 
yellow and transmembrane domain 10 in green. Accessibilities are highlighted in red (intracellularly accessible) 
and purple (from both sides). The small olive-green square within the gating domain symbolises the 
electrostatic barrier, which has to be overcome for conformational changes. 
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Although the mutant V139C shows some alteration of behaviour 

(mechanosensitivity) it supports the elevator model  

In addition to the two-sided accessibility of rat prestin V139C, the mutation of valine to 

cysteine induced a special flow-sensitivity (Figure 3.45). In the absence of fluid-flow, the 

NLC of the mutant rat prestin V139C significantly decreased. This flow-dependency of 

activity was reversible. A similar behaviour was found in the structurally homologous 

mutant V140C in zebrafish prestin (Figure 3.48). Without applied flow the transport current 

decreased significantly and reversibly. Zebrafish prestin wild type showed no flow-

sensitivity. 

The related behaviour of rat prestin V139C and zebrafish prestin V140C upon flow 

application indicates common conformational dynamics in SLC26 transporters. It is 

presumed that core and gating domain tilt against each other to move anions through the 

protein to produce electromotility or transport currents, respectively. Predicted by the 

structural model of mammalian prestin (Gorbunov et al., 2014) V139 is located within a 

region that serves as a pivot point for the tilting process, which is necessary for the 

conformational changes underlying anion translocation and in consequence NLC 

generation/electromotility. The results obtained by SCAM demonstrated the accessibility of 

rat prestin V139C from both sides, intra- and extracellular (Figure 3.11 and Figure 3.18). 

The data here presented further suggest that this position – if mutated to cysteine – might 

react to mechanical stress from the extracellular side due to its flow-dependency of activity. 

Also, the rat prestin wild type was affected by applied fluid-flow (Figure 3.45). With applied 

fluid-flow the V1/2 shifted in the depolarising direction. In CHO cells transiently transfected 

with rat prestin the V1/2 is around -70mV (Ludwig et al., 2002; Schaechinger et al., 2011), 

which is comparable with values in mammalian outer hair cells, e.g. from rat and mouse 

(Ludwig et al., 2002; Zhu et al., 2013), although this hallmark varies in outer hair cells 

according to conditions like postnatal stage (Oliver & Fakler, 1999). Without fluid-flow the 

V1/2 of wild type rat prestin shifted from -78.33  3.27 mV to more hyperpolarised potentials 

of -110.66  5.09 mV (n=11). This is a shift of around 32.33 mV, which is a considerable shift 

compared to other experiments, e.g. Santos-Sacchi and colleagues (Santos-Sacchi et al., 

2001) observed a maximum V1/2-shift of 7.5 mV in TSA 201 cells transiently transfected 

with gerbil prestin upon a pipette pressure of 2 kPa. This effect was reversible and they 

claimed that those transfected cells are sensitive to membrane tension. The shift of the V1/2 

is small compared to the shift in outer hair cells, where it is about 50 mV upon applied 

pressure (Kakehata & Santos-Sacchi, 1995), which the authors explain by additional 

components in outer hair cells interacting with prestin, which are absent in transfected 
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cells. There are two main physiological mechanisms, which could cause a shift of the V1/2: 

membrane tension and phosphorylation (Frolenkov et al., 2000). In the data here presented, 

the response of CHO cells transiently transfected with the wild type of rat prestin to applied 

fluid-flow was similar to that of TSA 201 cells transiently transfected with gerbil prestin and 

outer hair cells to applied pipette pressure (Kakehata & Santos-Sacchi, 1995; Santos-Sacchi 

et al., 2001). 

Regarding the V1/2-values of V139C there was also a shift to hyperpolarised potentials in the 

absence of fluid-flow beside the decreased NLC (from -105.92  2.08 mV to -118.36  

2.99 mV; n=19). The voltage range of the measurements was  120 mV. Some of the values 

of V139C are out of range and furthermore a reliable analysis of the V1/2 was limited by 

drastically decreased NLCs (partially around 100 fF). The more reliable and evident effect 

of the fluid-flow on V139C is the change in NLC peak amplitude. 

Because of the V1/2 -shifts of rat prestin wild type upon applied fluid-flow and its similarity 

with the reported shifts upon applied membrane tension it was the next step to find out if 

the flow-dependency of activity of the mutant rat prestin V139C was also caused by 

membrane tension. To answer this question, it was necessary to analyse whether the 

application of fluid-flow really induces changes in membrane tension, which in turn affects 

the NLC. Measurements with extracellular solutions of different osmolarities caused a 

swelling or shrinkage, respectively, of the affected cells, as it was expected. However, it had 

no influence on the NLC. Furthermore, the role of membrane fluidity was tested for 

consequences on the flow-dependency of activity of V139C. Cholesterol depletion by MßCD, 

which decreased membrane stiffness and destroyed cholesterol-rich microdomains, only 

shifted the V1/2 but it did not affect the flow-dependency of activity of V139C (Figure 3.50). 

After pretreatment with MßCD the influence of solutions with different osmolarities was 

tested again but still had no effect on the flow-dependency of activity of V139C. But after the 

pretreatment with MßCD the V1/2 shifted upon application of hyper- and hypotonic 

solutions as expected. Application of hypertonic solution caused V1/2-shifts in the 

hyperpolarised direction in wild type prestin as well as in the mutant V139C and in the 

depolarised direction upon application of hypotonic solution. Thus, the flow-dependency of 

activity of V139C cannot be explained by changes in membrane tension. 

Furthermore, the role of intracellular signalling cascades can be excluded by the 

measurement of outside-out patches, which reproduced the flow-dependency of activity of 

V139C as it was observed in whole cell recordings (Figure 3.52). Additionally, the role of the 

actin cytoskeleton on protein stability does not seem to be important as after preincubation 
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with Latrunculin A (an inhibitor of actin polymerisation) the flow-dependency of activity of 

V139C was still preserved (Figure 3.51). 

Mutations to other amino acids than cysteine at position V139 in rat prestin did not 

introduce a flow-sensitivity of activity. Cysteines are known to form covalent bonds with 

other cysteines. These disulphide bonds play an important role in forming the tertiary 

structure of a protein. However, this cannot be the case here because the basic construct of 

V139C was a cysteine-free variant of rat prestin (WT_△Cys). Furthermore, V139 is 

positioned deep in the central cavity of prestin. Thus, interactions with other cysteine-

containing proteins are unlikely. Cysteines can also react with the protein backbone itself 

as it was described for the phosphatase PTP1B (van Montfort et al., 2003). PTP1B is a 

protein tyrosine phosphatase with a catalytic cysteine (C215) within the characteristic 

signature sequence of PTP1B. The negatively charged side chain of C215 is stabilised by 

amino acids of the protein backbone to facilitate the binding of the phosphate moiety of the 

substrate phosphotyrosine. With further oxidation of the cysteine from sulphenic acid to 

sulphinic and sulphonic acid it loses the stabilising bonds resulting in an inactivate enzyme. 

Although the cysteine in rat and zebrafish prestin is not native, it was a further approach to 

test if the redox state of this cysteine influences the flow-dependency of activity. Redox 

agents were used here to change the redox state of the cysteine at position V139. After 

application of H2O2, cysteines are suspected to be oxidised. Under this condition the flow-

dependency of activity of V139C was preserved. After application of DTT, cysteines are 

reduced. In this case the flow-dependency of activity was abolished (Figure 3.53). Similar 

results were obtained for the transport-capable zebrafish prestin carrying the V139C-

homologous mutation V140C (Figure 3.54). The effects of the redox agents (DTT and H2O2) 

on the flow-dependency of activity are similar to those observed in rat prestin V139C. In 

wild type zebrafish prestin neither DTT nor H2O2 affected the transport currents. In contrast 

to the wild type, DTT and H2O2 already affected the size of the transport currents of the 

V140C mutant in zebrafish prestin. The currents strongly increased upon DTT application, 

whereas application of H2O2 nearly blocked the transport currents of the mutant. The 

response of V140C on flow changes abolished after DTT application, while there still was 

the flow-sensitivity of activity after application of H2O2, even if it was reduced. Though the 

effect on the flow-dependency of activity was similar to that in rat prestin V139C, it has to 

be mentioned that the transport current of zebrafish prestin V140C, but not the NLC peak 

amplitude of rat prestin V139C, was affected by application of redox agents. The reason for 

this is elusive. By these experiments it was not possible to differentiate whether the redox 

agents are interacting directly with the cysteine or are acting through changing the 
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environment of the translocation pathway or the protein and thereby affecting the flow-

dependency of activity. A possible explanation is that the cysteine of rat prestin V139C and 

zebrafish prestin V140C, respectively, was reduced by DTT and therefore the protein 

became more flexible, which facilitated conformational changes and abrogated the flow-

dependency of activity. In contrast, the application of H2O2 did not change the 

mechanosensitive properties of these mutants. Even without an in vivo function of the 

cysteine in rat (V139C) and zebrafish prestin (V140C), respectively, the change of the 

mechanosensitive properties upon DTT application could be due to the formation of bonds 

with the protein backbone and thus the stabilisation of the cysteine. 

Interestingly, the same reagents influenced the flow-dependent shift of the V1/2 in wild type 

rat prestin as the flow-dependency of activity of V139C (Figure 3.53). The effect was 

abolished after DTT application, whereas H2O2 had no influence on the flow-dependent shift. 

In summary, V139C showed a combination of mechano- and redox-sensitivity. As 

mentioned above, the flow-dependency of activity of rat prestin V139C seems to be 

correlated with the microenvironment of the mutant - the more inflexible the side chain the 

more distinct the flow-dependency of activity. On the basis of the presented data the applied 

fluid-flow does not cause membrane tension in V139C. The flow-dependency of activity of 

V139C seems to be provoked by pure shear stress. The tension-sensitivity of prestin wild 

type is an intrinsic property where tension leads to a shift of the voltage-dependent V1/2 and 

thereby reduces the necessary energy to produce NLC and in consequence electromotile 

changes in outer hair cells. In contrast, applied fluid-flow changes the ability or the number 

of proteins to be activatable in the mutant V139C. Finally, the phenomenon of the mechano- 

and redoxsensitivity could not yet be clarified. 

In fact, the mutant V139C shows some alteration of behaviour regarding its flow-sensitivity 

of activity, but given its position at a pivot point it supports the elevator model. 

Fundamentally, the function of rat prestin V139C and zebrafish prestin V140C, respectively, 

is preserved. Thus, the conformational landscape cannot be totally different between the 

mutant and the wild type. 

Altered extracellular efficacy of blocker in fact suggests a wider opening to the 

extracellular face of V139C compared to wild type  

Furthermore, rat prestin V139C was tested for its accessibility for the membrane-

impermeable phenolsulphonic acid (PSA) which is thought to block prestin’s NLC. In 

contrast to salicylate, PSA did not block the NLC of rat prestin wild type when extracellularly 

applied (Figure 3.56 and Supplemental figure 7.4). Former work from Florian Nies also 
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proved the ability of PSA to block transport currents of chicken prestin (Supplemental 

figure 7.4). But the extracellular application of PSA reduced the NLC of rat prestin V139C 

similar to salicylate (Figure 3.56). This was unexpected and indicates a different 

organisation of V139C compared to the wild type. Because the presumptive anion-binding 

site of rat prestin is never faced towards the extracellular side, it is conceivable that PSA 

does not bind to the binding site directly but to a position where it hinders the 

conformational change and thereby blocks the NLC of V139C and transport currents in 

chicken prestin. Most likely, the mutant is wider open to the extracellular side in the 

occluded conformation compared to the wild type. That could also be the reason for its 

mechanosensitivity. Measurements with intracellularly applied PSA in rat prestin have to 

be performed for a better understanding of these results. 

Nevertheless, the unchanged lack of transport and the preserved NLC does not suggest 

fundamental changes of the conformational landscape of V139C. 
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5 Outlook 

The accessibilities of the cysteine mutants provide information about the molecular 

dynamics of the wild types. As an initial approach, further MD simulations could be 

performed like already realised for rat prestin (Gorbunov et al., 2014). MD simulations 

mimic motions of atoms and provide an opportunity to further explore the dynamics of 

prestin suggested by the here presented results. 

A crystal structure of rat prestin is absolutely necessary to compare with the structural 

homology model and the findings of this study. The current trend is towards cryo-EM 

(cryogenic Electron Microscopy) which enables the high-resolution structure 

determination of frozen (‘vitrified’) biomolecules in solution. A cryo-EM structure of 

Slc26a9 was recently published (Walter et al., 2019). In this paper Walter and colleagues 

used a combination of cryo-EM and patch-clamp experiments to get insights into the three-

dimensional structure of SLC26A9. Finally, structures of all conformational states from an 

electromotile prestin as well as from a transport-capable prestin orthologue will be needed 

to gain detailed knowledge of the intricate conformational dynamics of electromotility as 

well as differences and common features with anion transport. 

Another option to verify the structural homology model is to examine the interaction 

between the core and gating domain via a cysteine-based cross-linking study (Caseley et al., 

2017; Jiang, 2013). Two positions that are predicted to be juxtaposed at the interface of 

prestin and in close proximity to each other will be mutated to cysteines (WT_△Cys + two 

cysteine substitutions). Disulphide bonds between the highly reactive thiol-groups of the 

cysteines will form under oxidising conditions and break under reducing conditions if the 

cysteines are in close vicinity. In experiments, crosslinkers are used. If the spacer arms of 

the crosslinker reach the two cysteines, an artificial bond can be built between the two 

cysteines. During patch-clamp experiments, disulphide bonds between the core and gating 

domain impair conformational changes, which could provide further information of 

prestin’s molecular dynamics. 

The results of the cysteine accessibility study indicate a rearrangement of core and gating 

domain in an elevator-like manner during anion transition. But how this is connected with 

prestin’s function as area motor is not immediately answered by this model. Prestin acts as 

a voltage-dependent motor protein. Voltage-clamp fluorometry combines voltage-clamp 

experiments and spectroscopy of fluophores tagged to mobile regions of a protein (Horne 

& Fedida, 2009; Kusch & Zifarelli, 2014). This technique allows to monitor structural 

rearrangement after voltage stimuli and thus makes the connection between structure and 
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function. Addressing this and other questions will be the subject of future studies, for which 

this work provides a profound foundation. 

Redox sensitive behaviour was observed in rat prestin wild type as well as in the V139C 

mutant. There are studies, which investigated the impact of the production of reactive 

oxygen species (ROS) after noise exposure and the resulting damages to the point of hearing 

loss (Lorito et al., 2006; Adelman et al., 2008; Loukzadeh et al., 2015). Particularly damaged 

mitochondria and in consequence oxidative stress has been considered as the major 

reasons for age-related hearing loss (Fujimoto & Yamasoba, 2014; Kamogashira et al., 2017; 

Rana et al., 2017). The underlying mechanisms and a potential role of prestin are widely 

unknown. But the data affirm that prestin could be also affected by oxidative stress. The rat 

prestin mutant V139C could also provide a model system to investigate the impact of ROS 

on prestin. 
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7 Supplements 

7.1 Protein sequences 

All prestin constructs were cloned in the standard vector pEGFP-N1 that has a gene for 

kanamycin resistance for selection. Furthermore, it has the gene for enhanced GFP, which 

allows for expression control of prestin and traceability of its localisation. 

7.1.1 Sequences of rat prestin 

Below the protein sequence of rat prestin wild type is listed. The DNA sequence consists of 

2.235 base pairs and the transcribed protein has 745 amino acids. In the protein sequence 

the cysteines, which were mutated to alanines for the SCAM experiments, were marked in 

red. All nine cysteines could be mutated without loss of functionality. Thirteen amino acids 

within transmembrane domain 3 were investigated for their accessibility. These amino 

acids are additionally highlighted in yellow. 

>rat prestin wild type: protein sequence (>NP_110467.1) 
MDHAEENEIPAETQKYLVERPIFSHPVLQERLHVKDKVTDSIGDKLKQAF 50 

TCTPKKVRNIIYMFLPITKWLPAYKFKEYVLGDLVSGISTGVLQLPQGLA 100 

FAMLAAVPPVFGLYSSFYPVIMYCFFGTSRHISIGPFAVISLMIGGVAVR 150 

LVPDDIVIPGGVNATNGTEARDALRVKVAMSVTLLSGIIQFCLGVCRFGF 200 

VAIYLTEPLVRGFTTAAAVHVFTSMLKYLFGVKTKRYSGIFSVVYSTVAV 250 

LQNVKNLNVCSLGVGLMVFGLLLGGKEFNERFKEKLPAPIPLEFFAVVMG 300 

TGISAGFNLHESYSVDVVGTLPLGLLPPANPDTSLFHLVYVDAIAIAIVG 350 

FSVTISMAKTLANKHGYQVDGNQELIALGICNSIGSLFQTFSISCSLSRS 400 

LVQEGTGGKTQLAGCLASLMILLVILATGFLFESLPQAVLSAIVIVNLKG 450 

MFMQFSDLPFFWRTSKIELTIWLTTFVSSLFLGLDYGLITAVIIALLTVI 500 

YRTQSPSYTVLGQLPDTDVYIDIDAYEEVKEIPGIKIFQINAPIYYANSD 550 

LYSSALKRKTGVNPAIIMGARRKAMRKYAKEVGNANIANATVVKVDAEVD 600 

GENATKPEEEDDEVKFPPIVIKTTFPEELQRFLPQGENIHTVILDFTQVN 650 

FMDSVGVKTLAGIVKEYGDVGIYVYLAGCSAQVVNDLTSNRFFENPALKE 700 

LLFHSIHDAVLGSQVREAMAEQETTVLPPQEDMEPNATPTTPEAT   

Total length= 745 amino acids 
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7.1.2 Sequences of zebrafish prestin 

The following sequence is the protein sequence of zebrafish prestin wild type. The DNA 

sequence has a length of 2.217 base pairs and the protein consists of 739 amino acids. There 

are seven native cysteines in zebrafish prestin wild type. The first six cysteines (marked in 

red) were mutated to alanines for the SCAM experiments. However, the mutation of C726A 

leads to a dysfunctional protein. Therefore, the experiments were performed in a nearly 

cysteine-free basic construct. The cysteine at position 726 (marked in blue) is located within 

the STAS domain of prestin and consequently far away from the investigated 

transmembrane sections. Furthermore, the basic construct (“nearly cysteine-free”) of the 

SCAM study was functional and produced wild type-like transport currents. Additionally, 

this construct was insensitive to MTS reagents despite the remaining cysteine. The 

investigated positions within transmembrane domain 3 are highlighted in yellow and the 

positions within transmembrane domain 10 are highlighted in green. 

>zebrafish prestin wild type: protein sequence (>NP_958881.1) 
MEHVTVSEEPSATLMYHVERPIFSEAYIDSELLHKRKKTPKPYKLRVAEH 50 

LCCSSEKVKSVVFGFLPILTWLPSYPLKEYLFGDIVSGISTGVMQLPQGL 100 

AYAMLAAVPPVFGLYSSFYPVLLYTFFGTSKHISIGTFAVISLMIGGVAV 150 

REAPDSMFMVNGTNSSLVVNIEARDSRRVEVVVALTTLVGIIQFVLGLLR 200 

FGFLAIYLTEPLVRGFTTAAAVHVSVSQLKYLLGVKTARFNGPLSVVYSL 250 

DAVLRNIADTNIVTLIIGLGCTVFLYIIKQLNERFKKKLLIPIPGEIIVV 300 

IVSTGISYGMLMSENYGVDVVGKIPTGLLPPKVPDFSVFPNLFADAVPIA 350 

VVGFSITISLAKTFALKYGYSVDGNQELIALGLCNFVSSFFHTFVVTASM 400 

SRSLVQESTGGHTEIAGLLASLLVLLVVVAIGFVFQPLPTTVLAAIIMVN 450 

LLGMFKQTRDIPVLWRKSKIELAIWLVSFFASVLLGLDYGLAVAMAFAIL 500 

TVIYKTQRPKNVVLGQIPDTGLYFDVDEYEEAEECSGIKIFQSNSSIYFA 550 

NSELYVKALKAKTGIDPEKLLDAKKLQLKYAKRDTEGTKTVNQGSLLKKN 600 

AVVLLDMELGVTHEVLNGPQKPKHVHTNGQMTEKHIESESEDEFFLQRLT 650 

PIHSVILDFTPVNFIDSVGAKTIKSVIKEYATVDVKVVLAGCSRTLLSEL 700 

RTLQFFSEPVTPDLIFPTIHDAVLQCKRWRDLPVHPNIH 

Total length= 739 amino acids 
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7.2 Supplemental figures: SCAM 

The following figures show representative NLC traces of the mutants which were insensitive 

to applied MTS reagents. Supplemental figure 7.1 shows the insensitive mutants of 

transmembrane domain 3 in rat prestin. 

 

 

Supplemental figure 7.1: The effects of applied MTS reagents on the NLC of the rat prestin constructs 
with mutations within TM 3. WT_△Cys is the basic construct with all cysteines mutated to alanines (cf. 2.4). 
Each mutant is represented by five graphs with two representative traces of each condition. All traces show the 
NLC of a representative measurement. Black traces are the initial traces before MTS was applied and the 
potential effect would be distinct. Grey traces are traces from the control measurements without MTS 
application, red traces are from a measurement with applied MTSES and blue traces from a measurement with 
applied MTSET. These traces (grey, red and blue) were taken from a timepoint towards the end of the 
measurement. 
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Representative transport currents of the mutants of transmembrane domain 3 and 10 in 

zebrafish prestin, which are insensitive to MTS compounds, are depicted in the 

Supplemental figure 7.2 and the Supplemental figure 7.3. 

 

 

Supplemental figure 7.2: The effects of applied MTS reagents on the transport currents of the zebrafish 
prestin constructs with mutations within TM 3. WT_△Cys is the basic construct with nearly all cysteines 
mutated to alanines (cf. 2.4). Each mutant is represented by five graphs with two representative traces of each 
condition. All traces show transport currents of a representative measurement. Black traces are the initial traces 
before MTS was applied and the potential effect would be distinct. Grey traces are traces from the control 
measurements without MTS application, red traces are from a measurement with applied MTSES and blue traces 
from a measurement with applied MTSET. These traces (grey, red and blue) were taken from a timepoint 
towards the end of the measurement.  
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Supplemental figure 7.3: The effects of applied MTS reagents on the transport currents of the zebrafish 
prestin constructs with mutations within TM 10. WT_△Cys is the basic construct with nearly all cysteines 
mutated to alanines (cf. 2.4). Each mutant is represented by five graphs with two representative traces of each 
condition. All traces show transport currents of a representative measurement. Black traces are the initial traces 
before MTS was applied and the potential effect would be distinct. Grey traces are traces from the control 
measurements without MTS application, red traces are from a measurement with applied MTSES and blue traces 
from a measurement with applied MTSET. These traces (grey, red and blue) were taken from a timepoint 
towards the end of the measurement.  
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7.3 Supplemental figures: Competitive inhibitors 

Supplemental figure 7.4 shows the measurements with the two different blockers that were 

performed by Florian Nies. The measurements compared the blocking abilities of 

membrane-permeable salicylate (10 mM) and membrane-impermeable phenolsulphonic 

acid (PSA; 30 mM). Transport currents of the wild type of chicken prestin decreased upon 

extracellular application of salicylate (28.9 ± 10.3 %) as well as of PSA (43.3 ± 11.3 %). In 

contrast, the NLC peak amplitude of rat prestin wild type was only blocked by salicylate 

(43.0 ± 1.4 %) but not by PSA (100.9 ± 5.3 %). 
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Supplemental figure 7.4: Comparison of the effect of the two NLC blockers phenolsulphonic acid (PSA) 
and salicylate on chicken and rat prestin. Black bars and traces: with fluid-flow; green bars and traces: 
extracellularly applied PSA (30 mM); purple bars and traces: extracellularly applied salicylate (10 mM). A: The 
upper graph shows a representative measurement of chicken prestin wild type (WT), the lower graph of rat 
prestin wild type (WT). The left graphs were normalised traces of the transport current and the NLC, 
respectively. The right graphs show corresponding representative traces. Asterisks mark the position of the 
corresponding traces. B: The bar diagrams show the effects on the transport current, the NLC peak amplitude 
and the V1/2 upon PSA or salicylate application. Measurements were performed by Florian Nies. n3. Mean ± 
SEM.
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