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A sizable amount of research has been done to improve the mechanisms
for knowledge extraction such as machine learning classification or re-
gression. Quite unintuitively, the no free lunch (NFL) theorem states that
all optimization problem strategies perform equally well when averaged
over all possible problems. This fact seems to clash with the effort put
forth toward better algorithms. This letter explores empirically the ef-
fect of the NFL theorem on some popular machine learning classification
techniques over real-world data sets.

1 Introduction

In the relatively recent history of machine learning, one important goal
has always been to provide the maximum predictive power on a particular
data domain.! Since this domain is usually fixed in the form of a data set,
the potential for prediction improvement lies in either data preprocessing
or more sophisticated algorithms. The former is a customized procedure
tailored to the specific needs of each data set, so to tackle general problems,
a large amount of research has been done to obtain better algorithms.

Unfortunately, an objective evaluation of machine learning classifiers
is not as straightforward as it could be. In 1996, Wolpert (1996a, 1996b)
wrote about what came to be known as the no free lunch theorem, with
another clarification oriented toward searching algorithms on (Wolpert,
2013). In a machine learning context, the NFL theorem implies that all
learning algorithms perform equally well when averaged over all possible
data sets. This nonintuitive idea meant that looking for a general, highly
predictive algorithm is not feasible. It is also surprising, since it is well
known in empirical research that some algorithms perform consistently
much better than others.

1Other possible goals include simplicity, interpretability, or accountability.
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This letter’s overview was compiled from results gathered on the devel-
opment of a custom machine learning library for a software project of one
of the authors (Gémez, 2014). Section II describes the relevant methodology
used in the original study: the implemented algorithms, the data sets that
were used, and other important details. From all the results, figures, and
tables, section 3 focuses and comments on those relevant for our discussion
on the NFL. Finally, we summarize our findings in section 4 and compare
them to other similar research.

2 Methodology

During our machine learning library development, we implemented and
tested eight well-known algorithms, not including other custom methods
beyond the scope of this review. The tests were performed by averaging
20 executions of each individual algorithm on every one of the chosen
data sets, using a holdout model validation scheme with two-thirds of the
data for training and the remaining third for testing. The reported results
include the average accuracy result and the 95% confidence interval to see
its variance.

Besides the different classifiers, the original study also includes results
about execution time, validation scheme behavior, and feature selection. The
focus in this letter, though, is on the algorithm and data set performance,
complemented with some results from other areas when necessary. (For
more information, see Gémez, 2014.)

Since the study was quite extensive, the training hyperparameters were
fixed to the default values specified in Table 1. Time and hardware support
were in limited supply, so a full-featured cross-validation hyperparameter
tuning procedure was not possible to do for many experiments in the report.
Nevertheless, the goal was not to obtain the maximum accuracy in each
execution but to get an approximation in order to compare the different
models, so the conclusions can still be valid if highly parametric classifiers
such as neural networks are carefully considered.

The objective of this study is to use the results from that report to observe
the effect of the assumptions and structural properties of both data sets and
algorithms and discuss which underlying mechanisms exist to cause those
effects.

For the purposes of testing the correctness and efficiency of the library,
six data sets were used as a benchmark, chosen to represent a wide enough
spectrum of complexity, size, and domain (medicine, finance, social science,
visual recognition). All of them are available at the UCI machine learning
repository (Lichman, 2013) and are described in Table 2.

The reason to develop a new machine learning library instead of reusing
another one was twofold. On the one hand, existing Java libraries did not
have the necessary technical or license requirements to use in our project,
but most important, by writing the code from scratch, we were able to learn
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Table 1: Classifiers Used and Default Parameters Used.

Classifier Default Parameters

Naive Bayes (John & Langley, 1995)
C4.5 decision trees (Quinlan, 1993) Prepruning
Neural networks (Rumelhart, Hinton, & Williams, 1988)  One hidden layer
(#attributes +
#classes)/2 nodes
Learning rate = 0.3
Momentum = 0.2
500 epochs
k-nearest neighbors (Altman, 1992) k=3
Euclidean distance
Logistic regression (Cox, 1958)
Random C4.5 forest (Breiman, 2001) 20 trees
AdaBoost.M1 (Freund & Schapire, 1996) Using decision stumps
Stacking (Wolpert, 1992) using:
Naive Bayes
Random C4.5 forest
Neural network
3-NN
Combiner: logistic regression

and control their inner workings in more detail. Knowing more about these
algorithms makes it possible to adjust, optimize, and use them in a more
effective way for our specific purposes.

In order to evaluate these classifiers’ implementation, the machine learn-
ing suite Weka (Hall et al., 2009) was used to compare the results and de-
termine whether the accuracy of our models is similar. The assessment was
positive, and it was concluded that all the algorithms work correctly, all
of them having similar accuracy results to Weka’s implementation with
the small exception of decision trees. In this last case, the design choice
to implement prepruning instead of postpruning makes our decision trees
slightly less accurate—a few percentage points at most.

3 Results

The average accuracy over all six data sets is pictured in Figure 1. These re-
sults are mostly consistent with previous research, but according to the NFL
theorem on a sufficiently large pool of data sets, they should be similarly
accurate. The most sensible explanation is that the classification problems
in the real world usually belong to a particular subgroup of these possible,
theoretical data sets.

Some common structural properties or assumptions are general and
applicable to all kinds of sets, like Occam’s razor or the independent and
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Table 2: Data Sets Used and Relevant Notes about Them.

Data Set Notes

Audiology Very imbalanced classes (see Figure 5)
Many imbalanced features
Large number of classes (24)
(Relatively) large number of features (69)
All features nominal
Large amount of missing values
Column Slightly imbalanced classes
Low number of features (6)
Low number of classes (3)
All features nominal
No missing values
Breast cancer Slightly imbalanced classes
Binary class
All features nominal
Some missing values
Difficult to classify®
Multiple features  Balanced classes (see Figure 5)
(Fourier) (Relatively) large set (2000 instances)
All features numeric
No missing values
Significant difference in difficulty between classes
German credit Slightly imbalanced classes
Binary class
Mix of nominal (13) and numeric (7) features
No missing values
Difficult to classify®
Nursery Large set (12,960 instances)
Mix of balanced (3) and imbalanced (2) classes
No missing values
All features nominal
All possible instance permutations available (census)
Easy to classify©

AResults from other research on the breast cancer set are available
at http://www.fizyka.umk.pl/kis/projects/datasets.html#Ljubljana. We
define difficulty as the inability to build a model that improves beyond
the baseline accuracy by any significant amount, as best described by the
K statistic (Carletta, 1996).

bResults from other research on German credit set are available at Huang,
Chen, and Wang (2006).

‘Results from other research on nursery set are available at Kumar, Nitin,
and Chauhan (2012).

identical distribution of the samples. From all the data-dependent structural
properties in the data sets, the most critical assumptions we have found in
our analysis are two: determinism and the Pareto principle.
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Overall accuracy ranking

accuracy [ %]

Figure 1: Average model accuracy over all six data sets.

3.1 Determinism. Determinism implies that the same input values
should belong to the same class. Causality and determinism are the basis
of science, even if noise is usually an unavoidable and unfortunate reality
in practice. In this case, noise-resistant algorithms such as naive Bayes tend
to work better than, for instance, decision trees that are prone to overfit the
model unless properly pruned.

The comparison between the results of a fully deterministic data set
(nursery, due to all possible instances being accounted for) and a noisy one
(credit rating, probably due to hidden variables) can tell us more. Observing
the decision tree’s behavior, we see that it has below-baseline performance
on the credit set but performs much better (compared to other algorithms)
on the nursery set (center right and bottom right in Figure 2, respectively).
By performing feature selection in the former, the next section will show
how the noise of useless attributes is filtered out and the result improves
beyond the baseline accuracy, to a similar level to the rest of algorithms.

Many of the drawbacks posed by decision trees are reduced by using
them in ensemble methods, such as bagging or random forests. These ag-
gregations are able to cancel some of the noise and offer consistent improve-
ment over individual trees, as pictured in Figure 3.

3.2 Pareto Principle. Most information in a data set is often contained
in only a few features. Of course, features are initially chosen by the data
collector, and many times they do not know which ones will be important;
that is why they might use machine learning in the first place.

That means some attributes tend to be useless and add noise without
providing much valuable information in return, disrupting the performance
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Figure 2: Average model accuracy for each tested data set (left) along with the
average Cohen’s kappa coefficient (right) to provide a more realistic outlook on
the real helpfulness of the models.

of some classifiers, like decision trees, if they are not filtered out. Figure 4,
for instance, shows how decision trees are specially sensitive to this problem
and how the model average accuracy is considerably improved by filtering
out the useless features.
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Breast cancer
— Decision tree -+ Random forest
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Figure 3: Average accuracy comparison between single decision trees and ran-
dom forest, for different holdout percentages, for the breast cancer data set. In
this case, forests reveal approximately a 4% improvement over single trees.
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Figure4: Breastcancer setaccuracy per classifier, with different feature selection
methods. Decision trees in particular perform notably better after CFS feature

selection (Hall, 2000), while the kNN classifier, a local approximator, is heavily
penalized.

Also related to this principle is the fact that many natural data sets
have intrinsically imbalanced classes. We can see an example of that in the
audiology data set class distribution in Figure 5 (left), where many classes
are barely available. Even when balance exists, it is many times artificially
implemented due to a lack of previous knowledge (see the multiple features
set class balance on the right in Figure 5, where the same number of samples
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Figure 5: Audiology (left) and multiple features (right) data set class distribu-
tions. Highly imbalanced sets are usually more difficult to learn properly, and
the overall accuracy estimation might not be representative of all classes.
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Figure 6: Training error for AdaBoost.M1 on the multiple features data set per
digit. Excluding the first few points, the error rate is always below the baseline

error (10%), yet when all these internal classifiers are combined, the average
error is around 25%.

was chosen for each class). In these cases the most conservative action is
assuming a noninformative prior (in Bayesian terms) and deciding that all
classes are equally probable.

In the case of the multiple features set, AdaBoost.M1 exhibits clearly
this effect (see Figure 6). This algorithm starts by training one-versus-all
classifiers for each class (i.e., “Does this input represent digit d?”), building
training sets with a 10%/90% class composition in this particular data set.
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SVM performance vs other models
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Figure 7: SVM models (with polynomial and RBF kernels) compared to the
rest of the models introduced in Figure 2. The red interval represents the range
(minimum and maximum) of the accuracies of the eight other models. In four
out of the six sets, kernel machines surpass the maximum obtained by these
previous classification algorithms.

The separate evaluation of these inner models can offer misleadingly high
accuracies (over 90%), yet combining these classifiers returns an overall
model with an accuracy around 75%.

This is expected. Since the goal is to minimize the error, there is always
a biased prior toward the most populated class, so the inner models in an
ensemble are not always representative of the original problem. This fact
might determine which algorithm to use, since some of them (like kNN or
SVM; Akbani, Kwek, & Japkowicz, 2004) are often significantly impaired
by imbalanced classes.

Despite this last assertion, additional experiments we performed to test
the capabilities of kernel machines (SVM in particular) show that even in
imbalanced sets, these algorithms can outperform other popular methods.
Figure 7 shows, for example, how an SVM on the audiology set can offer
an increase of 10% over the best algorithm we tried in the original study.

3.3 Abstraction Layers. Beyond the traits we are able to discern in
these admittedly simple (yet real) data sets, other aspects more relevant
for current applications and research are worth discussing as well. Many
state-of-the-art techniques in machine learning for complex data sets often
focus on deep learning. The idea behind this philosophy is to break down
complex problems in several abstraction layers to simplify the learning
process; its adoption in recent years is widespread and well documented
in a great variety of successful projects in companies such as Apple and
Google (Vinyals, Toshev, Bengio, & Erhan, 2014).
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Deep neural networks performance in 'multiple features' data set
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Figure 8: Results of deep neural networks on the multiple features data set.
Without pretraining, after layer 5, the accuracy drops to the baseline of 10%, or
what could be expected from a model choosing at random.

Despite the enormous success of these techniques, deep learning is also
subject to the NFL limitations. It has been proven to work for sets with
inherently hierarchical data from an abstraction point of view, like pictures
in a facial detection system (pixels become edges, then features and finally
faces), but without that kind of data structure, the added complexity may
not be worth it.

In our experiments with these simple, small sets using deep neural net-
works, we found disappointing results: the models seem incapable of pro-
ducing good results due to the limited number of examples and possibly
the low data abstraction potential. As an example, in the largest of the sets
tested (multiple features set with 2000 instances), we had the results shown
in Figure 8. Among other observations, we see that:

e Regular backpropagation training on its own is ill suited for deep
architectures, requiring some kind of pretraining to ease (Bengio,
Lamblin, Popovici, & Larochelle, 2007).

e Accuracy slightly increases with a few layers but tends to eventually
drop, as was previously known (Tesauro, 1992). Without pretraining,
sufficiently deep networks become effectively random since the first
layers are barely affected by backpropagation due to the vanishing
gradient problem (Hochreiter, 1991).

e This last fact is unlikely to be due to overfitting, since the training
and holdout accuracy are similar even on deep networks.

e Therefore, it seems reasonable to conclude that deep networks in
this case are not capable of offering substantial improvements over
shallow networks, even if more sophisticated training methods might
improve the models a bit further.



http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00793&iName=master.img-007.jpg&w=311&h=142

226 D. Gémez and A. Rojas

As a corollary to deep learning exploitation of data structure, we also
have to look at the kinds of data we are processing. Convolutional neu-
ral networks, for instance, are designed to take advantage of the specific
structural properties that can be expected from images: locality, bidimen-
sionality and, again, abstraction layers (Krizhevsky, Sutskever, & Hinton,
2012). Even with these traits, though, these networks can still be misled
(Nguyen, Yosinski, & Clune, 2014), showing us that for their correct use,
they need even further assumptions about the training images.

4 Conclusion

As usual in statistical modeling, we see that the most important point the
NFL theorem warns us about is checking assumptions for our particular
problem. Clearly, not all the algorithms will perform equally well on all
problems: very specific, artificial data sets could be designed to be difficult
to handle accurately for one particular classifier, as seen in Nguyen et al.
(2014). But in the real world, we have seen (in this small sample of six and
those in other research publications) that conclusions can be made that,
while not completely general, are applicable to most data sets found in real
practical problems.

While evaluating the average accuracy ranking for our six data sets,
we noticed the effect of the NFL theorem and how assumptions are key
to performance. On one hand there is Naive Bayes, a model that makes a
strong assumption about feature independence that is rarely met, with the
lowest score in the ranking. On the other hand, ensemble methods work
really well by properly combining the strengths of different classifiers and
compensating each other’s weaknesses. In our experiments, the stacking
classifier is rarely the most accurate on any set, but the results show that it
has the best average performance.

One premise we were concerned about in section 2 is the lack of hyper-
parameter tuning in this study and how that could affect our conclusions.
This concern was unwarranted. The most sensitive classifier to this prob-
lem, the neural network, has been ranked as the second-best model in our
test. That shows that even when not properly optimized, neural networks
are still very powerful classifiers.

By contrasting these results with previous research, further evidence
of the NFL theorem is found. Ferndandez-Delgado, Cernadas, Barro, and
Amorim (2014) reach similar results to those obtained in this letter, with one
glaring exception: stacking algorithms. While in our experiments the stack-
ing implementation had the best average accuracy, their study concluded
that it was one of the worst globally. The difference can be explained by the
base classifiers: they use zeroR in their implementation, while we included
those described in Table 1. For further evidence of stacking as a highly
competitive technique, most machine learning competitions end with some
kind of stacking (also known as blending) as the best classifiers, seen, for



NFL Theorem on Real-World Classification 227

example, in the 2008 Netflix competition (Bell, Koren, & Volinsky, 2008). We
see, then, that learning ensembles are very sensitive to the models they con-
tain, and their performance can wildly vary if not well designed. Whether
it is adequate will depend, once again, on the problem we are considering:
a consequence of the NFL theorem.

Besides this small discrepancy, the other results of the letter are mostly
coherent with ours: random forests, neural networks, and k-nn score high
on their ranking, followed by boosting and logistic regression and, later, by
naive Bayes, among others.

This comparison shows that the data and its preprocessing are as impor-
tant as, if not more so than, the algorithm itself in determining the quality
of the model. Data visualization or statistical techniques such as feature
selection can be crucial to provide a better fit and obtain simpler and bet-
ter models. Even if ultimately the classifier to use might be decided by
performing some kind of empirical model selection (like cross-validation),
knowing the advantages, disadvantages, assumptions, and caveats of the
different algorithms can guide and speed up the learning process.
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