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(Received 29 July 2015; accepted 15 October 2015; published online 29 October 2015)

We propose a method to characterize electrical resistor damage based on entropy measurements.

Irreversible entropy and the rate at which it is generated are more convenient parameters than

resistance for describing damage because they are essentially positive in virtue of the second law

of thermodynamics, whereas resistance may increase or decrease depending on the degradation

mechanism. Commercial resistors were tested in order to characterize the damage induced by

power surges. Resistors were biased with constant and pulsed voltage signals, leading to power

dissipation in the range of 4–8 W, which is well above the 0.25 W nominal power to initiate failure.

Entropy was inferred from the added power and temperature evolution. A model is proposed to

understand the relationship among resistance, entropy, and damage. The power surge dissipates

into heat (Joule effect) and damages the resistor. The results show a correlation between entropy

generation rate and resistor failure. We conclude that damage can be conveniently assessed from

irreversible entropy generation. Our results for resistors can be easily extrapolated to other systems

or machines that can be modeled based on their resistance. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4934740]

I. INTRODUCTION

Electrical circuit performance relies on the quality of

their components. These components may become damaged

or wear over time, jeopardizing circuit performance. A good

understanding of their reliability is necessary to predict sys-

tem lifetime. Determining reliability has been approached

from various perspectives: electrical modeling, statistical

distributions, and thermodynamic evolution. Electrical mod-

eling characterizes the electrical parameters as abnormalities

in impedance, current, or power consumption. Statistical

approaches for modeling damage evolution include curve fit-

ting approaches, such as Weibull distributions and Kalman

filters.1,2 This knowledge is based on many a priori measure-

ments and not directly connected to a direct wear out prop-

erty. A potentially interesting field that has attracted less

attention is thermodynamics.3 A branch of thermodynamics

studies systems that undergo irreversible processes, includ-

ing classical irreversible thermodynamics (CIT). From a

theoretical perspective, entropy generation rate rs is a pa-

rameter that “is important in engineering because the product

Trs is a measure of the degradation or dissipation of energy

in engines, and its minimization may be useful to enhance

their efficiency.”4 This approach has been applied to the

study of mechanical damage and wear in solid materials.5–8

Khonsari and Amiri have carried out a comprehensive inves-

tigation of thermodynamics of mechanical failure.9 Also,

Naderi et al. have investigated heat generation during me-

chanical stress in beams and proposed an entropy threshold

for damage assessment.8,10

Entropy is only sparsely applied in electrical applica-

tions. However, the entropy generated from conductive

wires is well known in thermodynamics.4,11 The Joule

effect is also an evident phenomenon. The electrical behav-

ior following mechanical fatigue has also been evaluated,

where mechanical damage has been related to electrical

damage.5 In these mechanical systems, damage is moni-

tored using the parameter D,12 where 0�D� 1, D¼ 0

means no damage, and D¼ 1 means total damage. Basaran

and Yan6 have pioneered the introduction of entropy as a

damage metric in electromigration characterization, i.e., lat-

tice degradation due to electron scattering. Thus, the combi-

nation of current and voltage as electrical variables, along

with entropy from thermodynamics, could lead to an accu-

rate description of electrical damage.6,13,14 Entropy has also

been introduced for understanding the physics leading to

the failure of oxides in order to obtain accurate models of

their reliability.15,16 Reversible entropy is widely used in

adiabatic computing,17 where heat dissipation must be

minimized, and in electrochemical battery research, for

characterizing their charge state and health.18,19

Recently, Amiri and Modarres20 have reviewed the pos-

sibilities for successfully implementing entropy as a parame-

ter for measurement and instrumentation. While mainly

theoretical, they highlighted its viability in electrical and me-

chanical systems. Nonetheless, entropy has not yet reached

maturity for system monitoring. In this study, we investigate

entropy evolution to characterize commercial resistor dam-

age, with the aim of generalizing the effects of resistive ther-

mal dissipation for any dissipative resistance-modeling

system. Our objective is to demonstrate that entropy is a val-

uable parameter for studying resistor deterioration, even

more so than resistance. Resistance can increase or decrease

due to several effects, including electronic dispersion, me-

chanical strain (Bridgman law), temperature, electromigra-

tion, oxidation, and corrosion. Resistor failures can be due toa)Email: angel.cuadras@upc.edu
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overheating or overvoltage, which may lead to either open or

short circuits.15

We attempt to combine the thermodynamic framework

proposed by the Basaran group2,6,14,21 and the parametric

approach of damage and failure reliability as investigated by

the Feinberg group.3,22,23 The final aim is to explain both

short and open circuit resistor behavior with a single model

based on positive irreversible entropy generation. Thus, a

threshold for maximum allowable damage can be established,

which has been suggested in mechanical damage studies by

Naderi.8 This approach could pave the way for successfully

implementing entropy as a parameter for assessing the deteri-

oration in other electrical systems with parasitic resistance,

including capacitors, inductors, power lines, and batteries.

II. THEORETICAL APPROACH

Entropy is a thermodynamic function of intrinsic and

extensive states, and commonly used to describe irreversible

processes. Generally, a system satisfies the law of entropy

balance4 when

_S ¼ _Se þ _Si; (1)

where the subindices e and i refer to external (entropy

exchange) and internal entropy (entropy generation), respec-

tively. The dot over the variable represents a time derivative,

i.e., _S ¼ dS=dt. We impose the approximation of local equilib-

rium, i.e., the system is locally stable and the local and instan-

taneous relationships between thermodynamic quantities in a

system out of equilibrium are the same as those for a uniform

system in equilibrium. In this regard, entropy remains a valua-

ble state function, even under non-equilibrium conditions. In

accordance with the second law of thermodynamics, _Si � 0.

Equation (1) can be rewritten in differential form using the

volume integral of rs, the rate of entropy production,

_Si ¼
ð
V

rsdV; (2)

and the entropy flux, Js, integrated through the surface, R,

using the normal projection n,

_Se ¼ �
ð
R

Js � n dR: (3)

Hence,

q
@s

@t
¼ �rJs þ rs; (4)

where q is the mass density (S¼ q s) and s is the specific en-

tropy, and thus, rs � 0 is satisfied.4 With regards to

electrical conductors, electrical current dissipates heat

energy (Joule effect) so that the generated entropy is related

to the added power, such that

Tq rs ¼ R I2; (5)

where R is the element resistance, I the electrical current,

and T is the resistor temperature. This expression is analo-

gous to the Gouy–Stodola theorem,24 which states that when-

ever a system operates irreversibly, it destroys work at a rate

that is proportional to the system’s rate of entropy genera-

tion. The theorem is usually applied to thermal machines

exchanging mechanical work with an external atmosphere. If

we related this to a resistor, as illustrated in Fig. 1, the added

electrical power, P, in the resistor, due to the current flowing

to it, I, and the voltage drop, V, generate entropy equal to

_S ¼ P

T
¼ I V

T
: (6)

The power dissipated in a resistor through the Joule

effect is typically assumed to dissipate as heat to the environ-

ment, which is normal for resistor operation. However, it is

also true that a continually biased resistor deteriorates. We

propose to study entropy dissipation using Eq. (1), where the

usual heat flux entropy is _Se and the resistor degradation is

assessed from _Si. This would demonstrate a dependence of

friction dissipation in sliding solids through three processes:

rise in temperature; wear particle generation; and the entropy

changes associated with material transformation in the inter-

face.7,25 In this work, we determine a correlation between

damage entropy and the resistor’s resistance evolution,

which may help for resistor damage diagnosis and prognosis.

The form of _Si will be discussed later in light of the experi-

mental results. Finally, entropy change is obtained by inte-

grating the entropy rate:

DS ¼
þ

_S dt: (7)

III. MATERIALS AND METHODS

Commercially available 0.25 W carbon film resistors

were investigated. These resistors are made of carbon film

deposited onto a ceramic rod and covered by an electrically

insulating epoxy resin, which is also a good thermal conduc-

tor. Their main characteristics are described in Table I. The

resistors used for testing (RDUT) were placed in a voltage di-

vider, with RD in series to monitor current (RD<RDUT, usu-

ally RD¼ 0.1 RDUT), as depicted in Figs. 1 and 2. Resistors

were biased in order to measure their power dissipation.

Temperature was monitored using a PT1000 sensor that was

FIG. 1. Resistor under voltage bias V,

current flow I, and emitting heat q. To

is the environmental temperature and T
is the actual resistor temperature.

165103-2 Cuadras et al. J. Appl. Phys. 118, 165103 (2015)
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mechanically attached to the resistor and thermally con-

nected with a heat sink compound (Dow Corning 340).

Voltage dividers were biased with voltages ranging

from 7 V to 10 V using a voltage source (Promax FAC662B).

Both continuous and pulsed biases, with a duty cycle of

66%, were investigated (30 s/15 s On/OFF). RDUT was also

investigated when placed in air at room temperature and cov-

ered using a thermally insulating polymer inside of a metal-

lic box (thermal conductivity is approximately 0.06 W m�1

K�1) to minimize heat exchange with the surroundings.

Current, voltage, and temperature were acquired using a

microcontroller-based data acquisition system. Data were

transferred to a computer and manipulated using Eqs. (5) and

(6) to infer entropy accumulation and entropy rate genera-

tion. From these data, knowledge of the circuit’s deteriora-

tion was obtained instantaneously.

IV. RESULTS

Here, we summarize the results obtained from electri-

cally stressing 10 X resistors under various experimental

conditions, in order to determine the relationship between re-

sistor damage and entropy generation.

A. Measured parameters under different conditions

Resistors were biased at a constant voltage. The added

power, voltage, current, temperature, resistance, and _S were

monitored for several resistors in air and covered, under con-

tinuous and pulsed modes. We observe that the power

slightly increases with a decrease in resistance and an

increase in temperature. _S exhibits a change in its behavior

at the same time as resistance, as illustrated in Figs. 3 and 4,

for continuous and pulsed biases.

B. Relationship between magnitudes

Resistance and entropy are found to be directly

related, as illustrated in Fig. 5. Resistance decreases with

time until failure. We compute _S according to Eq. (6),

and find that _S evolves in a manner similar to the evolu-

tion of resistance. This correlation is found in all of the

studied cases. Thus, _S may be a valuable indicator of re-

sistor performance.

Figure 6 illustrates that the time to failure decreases

when the dissipated power in the resistor increases, as

expected. Also, under identical electrical conditions, the

stressed resistor fails earlier when covered than in air, which

is also expected (see Fig. 7). Moreover, the resistance

evolves differently when the resistor is biased larger or

smaller. In the first case, the resistance decreases until fail-

ure. In the second case, the resistance increases following a

common logarithmic rule for a fatigue aging process,3 and

TABLE I. Resistor data according to the datasheet.

Property Values

Tolerance 5%

Rated temperature 70 �C

Operating temperature range �55–155 �C

Maximum voltage 250 V

Rating wattage at 70 �C 0.25 W

Load life 62% DR/R for 1000 operating hours at rated continuous working voltage (RCWV) with duty cycle of 1.5 h on and

0.5 h off at 70 �C 6 2 �C ambient

Short time overload Resistance change rate is 6(1%þ 0.05 X) with no mechanical damage. Applied voltage 2.5 times the RCWV for 5 s

Temperature cycling Resistance change rate is 6(1%þ 0.05 X) with no mechanical damage in the operating temperature range

FIG. 2. Experimental circuit setup. RDUT belongs to the electrical voltage di-

vider and RT belongs to the PT1000 sensor circuit.

FIG. 3. Graph comparison among injected power, temperature, _S, and resist-

ance as a function of time for continuous injection at 9.5 V. The vertical line

flags the failure time, indicating that _S is able to predict the failure. The line

connecting the points is to guide the eye.
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does not break down (see Fig. 8). Also, the time scales of

both effects are very different, as demonstrated by a compar-

ison of Figs. 7 and 8.

Now that the electrical behavior has been discussed, we

discuss the thermal behavior. _S exhibits a trend that is the

same as that followed by electrical measurements. In Fig. 9,

we plot _S for various continuous biases in air. _S decreases as

the bias decreases. Finally, we integrate _S to find the total en-

tropy variation, DS, as depicted in Fig. 10. We find that en-

tropy increases faster in cases where failure occurs earlier.

However, the total entropy generation is not a useful parame-

ter to assess resistor performance, because it is due to both

thermal flux dissipation and system degradation. Specifically,

resistors biased at lower voltages have a larger entropy

variation because they exchange more entropy with the sur-

roundings as heat flux.

C. Reliability projections

Here, we conduct a reliability projection for these compo-

nents to summarize our findings. We plot the time-to-failure,

defined as the time when the resistance increases above 10%

over the nominal value due to fatigue or when the resistor

FIG. 4. Graph comparison among injected power, temperature, _S, and resist-

ance as a function of time. The vertical line highlights the failure time and

demonstrates that _S can be an indicator of resistor failure. The line connect-

ing the points is to guide the eye. Singular points where injected power is

zero (disconnection) have been removed for clarity.

FIG. 5. Comparison between resistance evolution and _S in the resistor at 8 V

in air and under continuous excitation.

FIG. 6. Resistor failure due to various biases in 10 X in air.

FIG. 7. R variation for a 10 X resistor in a closed and open environment

applying an input voltage of 9.5 V.

FIG. 8. Evolution of resistance at 7 V in air and covered, under continuous

excitation. Notice the time span in comparison to Fig. 7.
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fails, for the injected power, as depicted in Fig. 11. This

time-to-failure is the same for both resistance failure and
_S. Therefore, if the entropy of the system is measured, the

system’s performance can be projected. This would apply

to any system that dissipates power and works under

heated conditions: electrical, mechanical, or even chemical.

However, we will see that this representation is not suffi-

cient to describe resistance failure because it takes into

account injected power rather than degradation energy, as

discussed for Fig. 13.

V. DISCUSSION

First, we consider the well-known resistor-reversible

temperature dependence. Second, we discuss the entropy

generation rate and how to distinguish the thermal generation

and aging effects. Third, we consider the physical mecha-

nism that degrades the resistor. Finally, we discuss the en-

tropy generation rate as a valuable diagnosis parameter.

With respect to reversible temperature dependence,

models based on free electron gas models provide a well-

known expression relating temperature to resistance,

R ¼ Rnom ð1þ aðT � Tref ÞÞ; (8)

where a¼6 350 ppm �C�1. For the tested 10 X nominal

resistors, this leads to an increase of approximately 1 X,

depending on the resistor, as shown in Figs. 6 and 7. This

change in resistance is reversible and does not damage the

device.

A. Damage characterization

We now focus on the damage characterization.

According to Lemaitre,5 resistor damage is given by a phe-

nomenological relationship,

I ¼ I0

1� D
; (9)

where D is damage, I is the actual current, I0 is the nominal

current in a fresh resistor, and 0�D� 1, where D refers to

the decrease in elasticity modulus.26 The use of a damage pa-

rameter, D, has also been inferred from statistical princi-

ples.21,27 However, this relationship is not considered useful

to explain our results because I can either increase or

decrease, which is not explained with this equation. In elec-

trical degradation, two possible mechanisms are found: cas-

cade conduction and resistance increase. In either case,

current increases or decreases. Since damage can be studied

as an irreversible process, rs� 0. So after recovering Eq. (1),

we can rewrite it as

_S ¼ _Se þ _Si;

V I

T
¼

_Qe

T
þ _Si;

V I ¼ _Qe þ _Si T;

(10)

where _Qe is the exchanged heat with the surroundings. Since

V, I, and T are known, we can plot V�I as a function of T, as

depicted in Fig. 12. A similar approach was used for deter-

mining degradation in sliding contacts.28 The independent

term is related to entropy flow, whereas the slope is related

to damage entropy generation. The critical point is to deter-

mine the behavior of _Si. According to CIT, the behavior

should be expressed as the product of force and flux. If one

considers that the material’s structure changes, a change in

FIG. 9. Evolution of _S in resistors biased using a constant voltage in air.

FIG. 10. Total entropy generation in the resistor.

FIG. 11. Lifetime projection estimation as a function of injected power P.
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stress and strain in the material can be expected.12,27,29 The

intrinsic or mechanical dissipation, /int, is written as5,26

/int ¼ r : _ep � Ak � _Vk; (11)

where r and _ep are the stress and strain tensors, respec-

tively, and Ak and _Vk stand for other internal variables able

to describe material changes. The first term is dissipation

due to plastic deformation, induced by the product of the

strain tensor and applied stress, and the second term is

related to the nonrecoverable energy stored in the material,

i.e., dilatation dissipation. This second term accounts for

5%–10% of the total dissipation, so it is usually negligi-

ble.5,21 Stress would be due to the generation of defects,

including interstitials and dislocations, governed by electri-

cal potentials. One of the critical issues of this work is to

justify fatigue (resistance increase) and failure (resistance

increase) as irreversible processes with positive entropy

generation. Kluitenberg29 developed an expression that

relates the entropy generation rate to material strains (see

Eqs. (2.6) and (5.1) in Ref. 29, and consider only the me-

chanical terms),

rsi ¼
1

T
�
X3

a;b¼1

P
vð Þ

ab

d~eab

dt
þ
X3

a;b¼1

si
ab

dei
ab

dt
� 3P vð Þ de

dt
þ 3si dei

dt

0
@

1
A;

¼ 1

T
g 3ð Þ

X3

a;b¼1

d~eab

dt

� �2

þ 3g 4ð Þ de
dt

� �2

þ g 1ð Þ
X3

a;b¼1

si
ab

� �2

þ 3g 2ð Þ sið Þ2
0
@

1
A; (12)

where P
ðvÞ
ab is the viscous pressure tensor, ~eab and ei

ab are the

total and inelastic strain tensors, and si
ab and si are the stress

tensors. Both elastic and inelastic strains contribute to en-

tropy generation. The second term is a linearized approxima-

tion described by the constants g(1), g(2), g(3), and g(4). The

key point for our approach is that this expression is tempera-

ture independent. The entropy generation rate is definitely

positive because all of the strain terms are quadratic, i.e.,

regardless of strain generation (fatigue or failure), entropy

will be positive, as expected from the second law of thermo-

dynamics. In our opinion, this was not evident in previous

studies based on D parameters.5,6,13,27 Thus, we plot the

curve of added power to the resistor as a function of temper-

ature, P(T), as illustrated in Fig. 12, which shows linear

behavior, and we can estimate _Si from the linear fit.

Alternatively, the term related to entropy flow, the ther-

mal entropy generation rate per unit volume, is

rse ¼ q
ds

dt
þrJs ¼ qr 1

T

� �
¼ q2

kT2
; (13)

where k is thermal conductivity.4 This expression can be fur-

ther developed if heat flux q (Wm�2) is characterized.

Thermal conduction takes place through surface contact with

the environment and through the resistor cable connections,

and described by the Fourier conduction law as4

q ¼ �krT: (14)

Generation rate is related to entropy generation according

to11

rse ¼
1

k
rTð Þ2

T2
: (15)

We do not have access to thermal gradients, but we can

quantify the total heat transferred, _Qe.

We found a linear trend in the P-T representation as

illustrated in Fig. 12. Using Eq. (10), we fit linear regressions

to experimental data, as plotted in Fig. 13, and summarize

FIG. 12. Power added to the resistor P plotted against temperature for cov-

ered and continuous data. The slope slightly increases, whereas the heat flux

intercept decreases.

FIG. 13. Lifetime projection estimation as a function of _S i for short-

circuited resistor failure.
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the slope and intercept terms in Table II. The slope is

directly related to _Si, and we observe that the slope and thus
_Si become larger as the resistor degradation rate increases,

due to the surge in power. The intercept is related to heat

flux. When the dissipated power increases, the heat flux also

increases, as expected. Both covered and exposed experi-

mental curves exhibit linear behavior, but their slopes are

different (see Table II). Based on these findings, it is reason-

able to assume that their aging mechanisms are the same.10

For low power surges, _Si exhibits different behavior,

i.e., two slopes, M1 and M2, are possible. Consequently, dis-

tinguishing between the two degradation mechanisms is pos-

sible with this method. _Si also behaves linearly, as expected

from the irreversible aging due to material stress. In turn, _Si

can be characterized by identifying the constants in Eq. (12),

which depend on the material. This finding enables one to

understand material generation and energy defects using en-

tropy monitoring. Although we did not aim to investigate the

behavior of resistor materials in this work, it might be the ba-

sis of a future investigation.

We find that the energy needed for aging is T� _Si. The

product of the slope and maximum temperature produces

values between 0.5 W and 0.9 W. The input power ranges

from 2.4 W to 6.2 W. Thus, in this case, the power devoted

to resistor degradation is roughly 7%–9% of the input magni-

tude, signifying that the resistor dissipates heat and degrades,

before it finally fails. We emphasize that this percentage is

large because the resistors are highly stressed, above their

nominal values, which damages the resistors during continu-

ous use. This representation is more accurate for resistor life-

time predictions than that depicted in Fig. 11, because it only

considers the effects of degradation, whereas the former

includes entropy exchange. This approach can be useful for

resistive systems that are not specially designed as resistors,

which deteriorate when electrical current flows through

them. Resistors have been specially designed for this pur-

pose. Thus, once we have demonstrated this behavior in the

general case, it can be applied to other particular cases.

We conclude with a discussion of the contributions of

both elastic and inelastic strain, in accordance with Eq. (12).

While inelastic strain clearly results in irreversible material

damage, elastic strain can decrease. Thus, if we bias a resistor

at large voltage, we find that its resistance decreases (see

Fig. 6), but when it cools down, its resistance increases, up to

14.7 X and 11.9 X for 9 V and 8 V biases, respectively. After

the resistors have failed, analyses of the resistors might be

necessary for discriminating the failure mechanism. To further

verify the elastic stress influence, we compared the results

of T� _Si for continuous and pulsed signals, as shown in Fig. 14.

Similar behavior is found in both cases. Slopes are

2.08 6 0.16 mW K�1 and 1.95 6 0.23 mW K�1, whereas

intercepts are 4.20 6 0.07 W and 3.90 6 0.1 W, respectively.

The intercept is smaller in the pulsed case because the average

power is smaller due to the duty cycle. However, the degrada-

tion mechanisms seem consistent in both cases, confirming

the hypothesis that temperature is independent of _Si, as pro-

posed in Eq. (12). Also, from this expression, we infer that

since the slope is much similar in both cases, the small differ-

ences can be attributed to elastic stresses in the material.

B. Degradation

Depending on the degradation mechanism, resistor resist-

ance can increase, because as described by percolation mod-

els, thermal dissipation generates activated defects that

behave as open circuits30 or decreases if conductive paths are

present in the material31 due to dielectric breakdown as elec-

trons find a ballistic path. Dielectric breakdown occurs during

heating, but when it cools down, the resistance increases and

then degrades until it is reheated. Electromigration in the re-

sistor is also possible and has been thermodynamically

described in metals for current densities above 104 A cm�2.

For normal home utilities, current densities are approximately

102 A cm�2 and do not result in aging or electromigration.27

In the case of our resistor experiments, current densities reach

a maximum of about 500 A cm�2 (1 A in an estimated section

of 2 � 10�3 cm2), which would be low for a metal. However,

in this case, we have a resistor, where electrical scattering is

larger than that in metals. In both cases, entropy is positive as

demonstrated in Refs. 27, 30, and 31.

TABLE II. Linear regression fittings for entropy generation rate in covered

and air measurements. M1 and M2 distinguish between short and open fail-

ure mechanisms.

Covered continuous Air continuous

Bias

voltage (V)

Input

power (W)

Slope

(mW K�1)

Intercept

(W)

Slope

(mW K�1)

Intercept

(W)

10 6 1.8 5.5 1.87 5.57

9.5 5.6 1.4 5.16 2.53 4.77

9 5 1.2 4.57 2.08 4.20

8.5 4.1 1.3 3.53 1.55 3.77

8 3.7 1.1 3.38

7.5 M1: 3.2 0.95 2.96

7.5 M2: 25 10.5

7 M1: 2.4 0.79 2.22

7 M2: 12.6 4.03
FIG. 14. Comparison between continuous and pulsed entropy generation for

resistors biased at 9 V in air.
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C. Entropy generation model

From the experimental results, we have clearly deter-

mined that entropy varies in electrically stressed resistors, but

some issues must be addressed. Note that, as expected from

the second law of thermodynamics, intrinsic entropy always

increases. Thus, it is convenient to evaluate the entropy deliv-

ered to the environment due to heat transfer, because the sys-

tem is not adiabatic. In Sec. I, generated entropy was split

between device entropy, DSi, and the entropy transferred to

the environment, DSe. We propose an equivalent electrical cir-

cuit to describe this behavior, which is modeled using an ele-

ment for each mechanism. The input power delivered to the

resistor is described by a current source, I. This source is

coupled to a dependent current source, _S, which describes the

entropy generation rate in the resistor. The generated entropy

is split into _Se and _Si. This last term accounts for the irreversi-

ble processes in the resistor (fatigue and failure) and is mod-

eled with a capacitor, CSirr, as a storage irreversible entropy

reservoir, as illustrated in Fig. 15. When the capacitor reaches

a certain threshold value, the system fails, which has been

proposed in mechanical systems by Naderi.8

Accordingly, because internal entropy production leads

to degradation of the system,2 it is possible to define a

function,

_Stf � kth
_S0; (16)

where _Stf and _S0 are the failure and initial entropy generation

rates, respectively. kth describes the constant threshold limit

and can be tuned as a parameter for diagnoses and

prognoses.

VI. CONCLUSIONS

An entropy approach to commercial resistor reliability

has been presented. In particular, the entropy generation rate

has been demonstrated to be a good estimator for describing

electrical circuit failure. The results presented here have

demonstrated that entropy increase can be monitored in

standard carbon commercial resistors under different biases

and environmental conditions.

We have identified two different mechanisms leading to re-

sistor failure. In both cases, a positive irreversible entropy gener-

ation rate was found. The entropy flow rate and generation rate

inside the resistor have also been possible to identify, which

clearly heralds deeper thermal characterization of electrical cir-

cuits. It is reasonable to assume that these results can be extended

to other types of resistive elements, including electrochemically

equivalent resistances, semiconductors, and digital logics.

Future studies must attempt to consider an entropy gen-

eration model for resistors to predict device lifetime as well

as to validate the statistics of identical devices.
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FIG. 15. Irreversible entropy damage model for a resistor generator. The

electrical current I flowing through R dissipates energy at R. Irreversible en-

tropy is generated ( _S). Part of _S is released to the environment as heat flux

through _Se and partially delivered for material degradation, _S i. We introduce

a capacitor as a reservoir for cumulated entropy, CSirr, and a diode to reflect

the irreversibility of the process.
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