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The radial deformation of multiwall carbon nanotubes (MWNTs) under hydrostatic pressure is investi
gated within the continuum elastic approximation. A thin shell theory, with accurate elastic constants
and interwall couplings, allows us to estimate the critical pressure above which the original circular
cross section transforms into radially corrugated ones. The emphasis is placed on the rigorous formula
tion of the van der Waals interaction between adjacent walls, which we analyze using two different
approaches. Possible consequences of the radial corrugation in the physical properties of pressurized
MWNTs are also discussed.
1. Introduction

Nanomaterials are tiny platforms on which a beautiful interplay
between structure and property can be appreciated. For the last
decade, advanced nanofabrication techniques have put out various
nanostructured materials with novel geometry [1 5], many of
which exhibit unprecedented properties not seen in macroscopic
structures. Among such nanostructures, carbon nanotubes have
drawn great deal of attention. The salient feature of carbon
nanotubes is their mechanical robustness and resilience [6]: due
to the extremely large stiffness, for instance, their thermal conduc
tivity becomes higher than even that of diamond [7]. Besides, their
flexibility in bending [8,9], twisting [9 12], radial compression
[13 17], and the associated variations in the physical properties
hold promise for developing nanoelectromechanical devices
[18,19]. Towards successful implementations of such ideas, com
putational studies have been playing a vital role in complementing
experimental observations, often difficult and incomplete for
nanomaterials [20].

In view of structure property relations, radial deformation is
expected to elicit untouched behavior of multiwall carbon nano
tubes (MWNTs); see Fig. 1 for a microscopic image of a typically
synthesized MWNT [21]. The radial deformation disturbs both
the equal spacings between the concentric walls in MWNTs and
the in plane hexagonal lattice within each wall. In particular,
spatial modulation in the wall wall separation may enhance (or
hinder) the electron charge transfer between neighboring walls if
a).
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they locally get close to (or pull away from) each other [22,23]; this
implies significant changes in various observables of MWNTs un
der external pressure. Despite the broad interest, theoretical efforts
on the mechanics of radially pressurized MWNTs remain limited
[24 26]. This scarcity is mainly because atomistic based simula
tions of MWNTs having many walls are computationally very
expensive.

In the present work, we employ a powerful alternative, the con
tinuum elastic thin shell theory approach, to analyze the stable
cross sectional shapes of MWNTs under hydrostatic pressure. Such
approaches are often plagued with inaccurate or inconsistent elas
tic moduli. Here, we carefully select the intra wall and wall wall
elastic constants for an accurate prediction of the critical pressure
pc above which the original circular cross section transforms into
radially corrugated ones. In the corrugation modes, each wall
exhibits a wavy structure in the circumferential direction along
the tube axis. Such the pressure induced corrugation is attributed
to the mismatch in the mechanical stability between the flexible
outmost walls with large tube diameters and rigid innermost walls
with small diameters.
2. Methods

2.1. Mechanical energy

Although atomistic simulations may provide precise estima
tions of physical quantities in general, they often demand
huge computational resources in systems of interest. On this
background, the thin shell theory based analysis for the carbon
nanotube mechanics has long been developed [13,27 31]. Along
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Fig. 1. Transmission electron microscopy image of a MWNT obtained via chemical
vapor decomposition. The number of concentric walls, N, and the innermost tube
diameter, D, are estimated as 12 and 3.0 nm, respectively. After Ref. [21].
the continuum thin shell method, a MWNT is mapped onto a set of
N continuum elastic hollow tubes of radii ri (1 6 i 6 N). A point on
the circle corresponding to the cross section of the ith tube is de
scribed by (x,y) = (ri cosh,ri sinh) in terms of the polar coordinates;
h is the circumferential angle around the tube axis. Under pressure
p, the point moves to

ðx�; y�Þ ð½ri þ uiðh;pÞ� cos h v iðh; pÞ sin h; ð1Þ
½ri þ uiðh;pÞ� sin hþ v iðh; pÞ cos hÞ: ð2Þ

If the deformation amplitudes, ui and vi, are sufficiently small, the
mechanical energy of the ith tube per unit axial length is given by

UðiÞD
ri
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 !
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Here, �i and ji are respectively the in plane and bending strains of
the ith wall, both depending on ui, vi and their derivatives with re
spect to h [32]. The constant eC denotes the in plane stiffness, eD the
flexural rigidity, and m the Poisson ratio of each wall.

For quantitative discussions, the values of eC and eD must be
carefully determined. In the conventional thin shell theory for
macroscopic objects, eC and eD are related to the Young’s modulus
E of the wall and its thickness h as eC Eh; eD Eh3=½12ð1 m2Þ�.
However, for carbon nanotubes, the wall is made out of a mono
atomic graphitic layer and consequently the notion of a wall thick
ness becomes elusive. Hence, the macroscopic relations for eC andeD noted above fail since there is no unique way of defining the
thickness of the graphene wall [33]. Thus the values of eC and eD
should be evaluated ab initio from direct measurements or com
putations of carbon sheets, without reference to the macroscopic
relations. In actual calculations, we substitute eC 345 nN/nm,eD 0:238 nN nm, and m = 0.149 along with the prior work [28]
based on the density functional theory. It should be noted that
the values of eC and eD are essentially tube diameter dependent.
Neverthelss, such the dependences become negligible when the
tube diameter exceeds 1 nm, above which the elastic constants of
carbon nanotubes converge to those of a planar graphene sheet
[28]. On this background, we will take into account only the
nanotubes whose diameters are larger than 1 nm, which allows
to fix the values of eC and eD as noted above.

The stable cross sections of MWNTs under p minimize the
mechanical energy U of the whole system that is described by [34]

U
XN

i 1
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X
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Uði;jÞI þX; ð4Þ
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with u
0 � du/dh. The term Uði;jÞI accounts for the van der Waals (vdW)

interaction energy of adjacent pairs of walls, and X is the negative
of the work done by p during cross sectional deformation. Note that
U is a functional of ui and vi; therefore, the variational method al
lows to obtain the optimal solutions of ui and vi that minimize U un
der a given p.

For N� 1, the outside walls have large diameters, and conse
quently are very flexible and susceptible to mechanical instabilities
under radial pressure. The contrast in the radial rigidity between
the outermost walls and the innermost ones triggers a non trivial
cross sectional deformation observed in radially pressurized
MWNTs. In fact, the linearized buckling analysis leads to the con
clusion that immediately above a critical pressure pc, the circular
cross section of MWNTs becomes radially deformed as described
by [34]

uiðhÞ uð0Þi ðpcÞ þ dliðnÞ cos nh; v iðhÞ dmiðnÞ sin nh: ð7Þ

The solution (7) represents a wavy structure of a MWNT’s cross sec
tion, called the radial corrugation with a mode index n. The integer
n indicates the wave number of the corrugated walls, being un
iquely determined by the one to one relation between n and pc

[34]. We will find below that n depends systematically on N and
the innermost tube diameter D � r1 as presented in Fig. 3.

2.2. Wall wall interaction coefficient

It is known that in the axial buckling of MWNTs, the buckling
load is sensitive to the vdW interaction between adjacent walls
[35]. Likewise, pc is thought to depend on the strength of vdW
interactions; this is the reason why we address the rigorous formu
lation of the interaction. Using both a discrete pairwise summation
and a continuum approach, we derive the coefficients cij in Eq. (5)
through a first order Taylor approximation of the vdW pressure
[35,36] associated with the vdW potential V(d) = 4e[(r/d)12

(r/d)6].
Here, d is the distance between a pair of carbon atoms,

21/6r = 0.3833 nm is the equilibrium distance between two inter
acting atoms, and e = 2.39 meV is the well depth of the potential
[37]. The resulting equilibrium spacing between neighboring walls,
used here to define the geometry of the MWNCTs, is 0.3415 nm.
The derivative F = @V/@d is the force between the two atoms.

There exist several continuum models for the vdW interactions
[35 37]. In Ref. [35], expressions for the pressure and the vdW
interaction coefficients were obtained by integrating the contin
uum vdW force and its derivative on curved wall surface, while
disregarding the vectorial nature of the force. The significance of
the vectorial nature of the force was addressed in Ref. [36], where
analytical expressions for the vdW pressure were obtained by con
sidering only the component of the vdW force normal to the wall.
It was emphasized in Ref. [36] that for a two walled carbon nano
tube, the pressure exerted on inner wall is different from the pres
sure on the outer wall. The pressures on the inner and outer walls
for a concentric two walled tube with radii rinn and rout are given
below (with positive signs for compression):

pinn a
rout

rinn
f and pout a

rinn

rout
fþ; ð8Þ

where a 3perq2
c=32 with qc = 38.18 nm 2 being the area density

of carbon atoms. We used the notations:



Fig. 2. Tube-radius dependence of the derivatives of pressure (top) and the vdW
interaction coefficients ci j (bottom).

Fig. 3. N-dependence of critical pressure curve pc. Immediately above pc, the
original circular cross section of MWNTs gets radially corrugated.
f� 231b11 c E13 � E11ð Þ 160b5ðc E7 � E5Þ; ð9Þ

where b r=ðrout þ rinnÞ, c h=ðrout þ rinnÞ;h rout rinn, EmR p=2
0 ð1 k2 sin2 hÞ m=2dh and k = 4rinnrout/(rinn + rout)2.

In the following, we obtain analytical expressions for ci,j linear
izing the formula (8) for the pressure. The formula takes into ac
count correctly the normal to wall component of vdW forces,
and avoids common assumptions like pinn = pout [29] and pinnrinn =
poutrout [38]; therefore, the resulting ci,j will be also free from
unnecessary assumptions.

In the present work, infinitesimal deformation is considered.
Hence, the linearzed pressure is needed for vdW energy calcula
tion. Note that the vdW energy depends quadratically on the
change in spacing between two adjacent walls. Consider two con
secutive walls with radii ri and ri+1, where the subscripts i and i + 1
correspond to inn and out respectively. The vdW energy stored due
to symmetric perturbation along the positive direction of pressure
is given by

U � rm

2

Z 2p

0
pi;iþ1

Dh
2

pi;iþ1
Dh
2

� �
dh; ð10Þ

where rm = (ri + ri+1)/2 is the mean radius and pi,i+1 is the vdW pres
sures on the ith wall. The corresponding linearized pressure is given
by @pi;iþ1=@hjrm

. In Eq. (10), rmdh describes the length of the infini
tesimal element on which the pressure is acting. Using the linear
ized pressure and comparing with Eq. (5), we get the expressions
for vdW coefficients as
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1
4
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See Appendix for the derivatives of @f±/@h. Note that the ci,j is
symmetric.

These analytical expressions for the stiffness coefficients associ
ated with the vdW interactions obtained with the continuum
approximation are compared with the coefficients obtained using
a discrete pairwise calculation. In the later approach, the pressure
coefficients are computed by summing the component normal to
the wall of the linearized vdW forces acting on an atom a, i.e. the
normal component of

P
bð@F=@dÞð@d=@hÞjðda bÞ, where the linearized

force @F/@d is evaluated at the actual distance between the pair of
interacting atoms a and b, da b. In Ref. [35], the linearization is
done at the equilibrium distance of the potential. Noting that most
of the interacting atom pairs are not at the equilibrium distance, it
is apparent that the linearization should be done at the actual dis
tance between each pair of interacting atoms. The discrete pres
sure can be obtained by dividing the force exerted on one atom
by the area per atom. The vdW force on one atom is obtained by
considering the interactions between this atom with all the atoms
on a neighboring wall. The effect of the relative lattice placement of
interacting walls is averaged out by integrating the interactions
over a symmetric triangle of the representative hexagonal cell of
graphene.

The normalized pressure derivatives ð@pi;j=@hÞ=ð8perq2
c Þ and

normalized vdW interaction coefficients ci;j=ð8perq2
c Þ are plotted

against normalized radius (rinn + rout)/r in Fig. 2. A good match is
observed between the discrete pairwise and the continuum ap
proach. The interaction coefficient for two horizontally placed
graphene walls, cgraphene

i;j , is obtained from the second derivative of

3

the analytic continuum interaction potential [37]. For larger radii,
ci,j approaches to cgraphene

i;j , corroborating our results for nanotubes.
3. Results and discussion

Fig. 3 plots pc as a function of N for various values of D. An initial
increase in pc at small N (except for D = 1.0 nm) is attributed to the



enhancement of radial stiffness of the entire MWNT by encapsula
tion. This stiffening effect disappears with further increase in N,
resulting in decay or convergence of pc(N). It is noteworthy that
MWNTs practically synthesized often show D larger than those
presented in Fig. 3. In fact, the MWNT depicted in the image of
Fig. 1 gives D = 3.0 nm, for which pc(N) lies at several hundreds of
MPa as estimated from Fig. 3. Such degree of pressure applied to
MWNTs is easily accessible in high pressure experiments, support
ing the feasibility of our theoretical predictions. The D dependence
of pc for various fixed N is provided in Fig. 4 in a normalized man
ner; When N = 1, we obtain pc / D 3 in agreement with previous
studies on single walled nanotubes [13,39]. It also deserves com
ment that a radial pressure large enough to cause corrugation
can be achieved by electron beam irradiation; the self healing nat
ure of eroded carbon walls gives rise to a spontaneous contraction
that exerts a high pressure on the inner walls [40 42].

Fig. 5 shows the stepwise increases in the corrugation mode in
dex n, defined by Eq. (7). For all D, the deformation mode observed
just above pc abruptly increases from n = 2 to n P 4 at a certain va
Fig. 4. D-dependence of normalized critical pressure curve pc. Inset: Cubic behavior
of the pc curve when N = 1. The dashed line showing the power-law pc / D 3 is a
visual reference.

Fig. 5. Stepwise increase in the corrugation mode index n.
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lue of N, followed by the successive emergence of higher corruga
tion modes with larger n. These successive transitions in n at N� 1
originate from the mismatch in the radial stiffness of the innermost
and outermost walls. A large discrepancy in the radial stiffness of
the inner and outer walls results in a maldistribution of the defor
mation amplitudes of concentric walls interacting via vdW forces,
which consequently produces an abrupt change in the observed
deformation mode at a certain value of N.

A possible physical consequence of radial corrugation is a pres
sure driven change in quantum transport of carriers in radially cor
rugated nanotubes. It is known that mobile carriers whose motion
is confined to a thin curved layer behave differently from those on
a conventional flat plane because of the curvature induced electro
magnetic field [43 45]. Another interesting issue is the effect of
atomic lattice registry on non linear deformation (i.e. large defor
mation amplitude) regimes [46 48]. In the latter case, the degree
of commensurance in atomic structures between neighboring car
bon layers plays a prominent role in determining the optimal mor
phology of highly corrugated MWNTs, in which the interwall
spacings partially vanish. Crumpling or twisting caused by radial
pressure is expected, and in fact were observed in preliminary cal
culations [49].
4. Conclusion

The thin shell theory has been employed to derive the critical
hydrostatic pressure pc above which the cross section of pressur
ized MWNTs transforms into radially corrugated patterns. The
value of pc lies on the order of several hundreds of MPa for practi
cally synthesized MWNTs with N� 1 and D P 3 nm, indicating the
experimental feasibility of the prediction. The enegetically favored
corrugation pattern strongly depends on N and D, where a larger N
and smaller D give a larger corrugation mode index n. Our results
provide a clue in developing MWNT based devices operating under
high pressure.
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Appendix A. Functional forms of ›f±/›h

It follows from Eq. (9) that

@f�
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����
rm

231 b11 dc
dh

E13 þ c
dE13

dh
� dE11

dh

� �
160 b5 dc

dh
E7 þ c

dE7
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� dE5
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� �
: ðA:1Þ
All Em functions obey the recurrence relation (m 2)(1 k2)Em =
(m 3)(2 K2)Em 2 (m 4)Em 4 from complete elliptic integrals
of the first and second kind, K(k) and E(k), respectively; E1 = K(k) and
E 1 = E(k) in the current notation. Hence, the required derivatives of
Em in Eq. (A.1) are given below:



@E5
@k

1
3ðk2 1Þ3k

ð 3E 7k2Eþ 2k4Eþ 3K 2k2K k4KÞ;
@E7
@k

1
15ðk2 1Þ4k

ð15Eþ 58k2E 33k4Eþ 8k6E

15K þ 2k2K þ 17k4K 4k6KÞ;
@E11
@k

1
315ð 1þk2Þ6k

ð 315kE 2309k2Eþ 2611k4E

1899k6Eþ 760k8E 128k10E

þ315kK þ 419k2K 1403k4K þ 993k6K

388k8K þ 64k10KÞ;
@E13
@k

1
3465ð 1þk2Þ7k

ð 3465E 31907k2Eþ 44991k4E

43633k6Eþ 26206k8E 8832k10Eþ 1280k12E

þ3465K þ 7652k2K 24562k4K þ 23204k6K

13615k8K þ 4496k10K 640k12KÞ:

ðA:2Þ

Other derivatives are given by @k=@hjrm
h=ðr2

mkÞ and
@c=@hjrm

1=rm.
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