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Inequivalence of entanglement, steering, and Bell nonlocality for general measurements
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Einstein-Podolsky-Rosen steering is a form of inseparability in quantum theory commonly acknowledged to
be intermediate between entanglement and Bell nonlocality. However, this statement has so far only been proven
for a restricted class of measurements, namely, projective measurements. Here we prove that entanglement,
one-way steering, two-way steering, and nonlocality are genuinely different considering general measurements,
i.e., single round positive-operator-valued measures. Finally, we show that the use of sequences of measurements
is relevant for steering tests, as they can be used to reveal “hidden steering.”
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I. INTRODUCTION

The phenomenon of Einstein-Podolsky-Rosen (EPR) steer-
ing, first discussed by Schrödinger [1], represents one form of
nonlocality in quantum theory. Consider two distant observers
sharing an entangled state. By performing a measurement on
his system one observer can remotely steer the state of the
system held by the other observer. Often discussed in the
context of continuous-variable quantum systems [2,3], EPR
steering was put on firm grounds by Wiseman, Jones, and
Doherty [4], who formalized the effect for arbitrary systems.

Recently a growing interest has been devoted to the notion
of steering. Methods for the detection [5–8] and quantification
[9–12] of steering were developed. Experimentally, loophole-
free demonstrations of steering have been reported [13].
Steering is also relevant in the context of quantum information
processing [14–16]. From a more fundamental viewpoint,
steering was shown to be related to the incompatibility of
quantum measurements [17,18], and to be able to detect bound
entanglement [19].

Despite these advances it remains an open question whether
steering is a form of quantum nonlocality that is inequivalent
to entanglement or to Bell nonlocality [20,21]. More precisely,
it is unclear if there exist entangled states which are useless
for steering, and whether there exist states useful for steering
which cannot lead to Bell inequality violation. Although this
inequivalence was shown to hold for the particular case of pro-
jective measurements [4,22–24], it may not persist if general
measurements, not necessarily projective, are taken into ac-
count. Note that general measurements were shown to be use-
ful in the context of nonlocality, where they can be used to in-
crease the amount of violation of certain Bell inequalities [25].

Let us also notice that, contrary to entanglement and
nonlocality, steering features a fundamental asymmetry in the
sense that in a steering test the observers play a different role.
It is then conceivable that there exist entangled states which
are only one-way steerable in the sense that, say, Alice can
steer Bob, but Bob cannot steer Alice. First investigated in the
context of Gaussian systems [26,27], the effect of one-way
steerability was demonstrated for simple two-qubit states, but
only for projective measurements [28]. It is again open whether

the phenomenon of one-way steering can be observed when
general measurements are considered.

Here we show that entanglement, one-way steering, two-
way steering, and Bell nonlocality are genuinely different.
Specifically, considering here general measurements, we prove
the existence of (i) entangled states that cannot lead to steering,
(ii) states that can lead to steering but not to Bell nonlocality,
and (iii) states which are one-way steerable but not two-way
steerable (see Fig. 1). For each case, we provide a general
method for constructing the corresponding states, and discuss
explicitly simple examples.

Finally, we also consider the use of sequences of measure-
ments in steering tests, and uncover a phenomenon of “hid-
den steering”—by analogy to hidden nonlocality [29,30]—
whereby steering can be activated using local preprocessing.

II. SCENARIO

We consider two distant observers, Alice and Bob, perform-
ing local measurements on a shared entangled quantum state ρ.
The measurements are described by positive-operator-valued
measures (POVMs) {Ma|x} and {Mb|y} (where Ma|x � 0
and

∑
a Ma|x = I, and similarly for Mb|y), where x and y

denote the choice of the measurements and a and b denote
their corresponding outputs. The corresponding probability
distributions are given by

p(ab|xy) = tr(ρMa|x ⊗ Mb|y). (1)

The above distribution is termed Bell local when it admits a
decomposition of the form

p(ab|xy) =
∫

dλπ (λ)pA(a|x,λ)pB(b|y,λ), (2)

where λ is some classical random variable, distributed accord-
ing to density π (λ), and pA(a|x,λ) and pB(b|y,λ) are local
response functions. A quantum state ρ is said to be local, or
equivalently to admit a local hidden variable (LHV) model,
when the statistics of arbitrary local measurements can be
reproduced by a distribution of the form (2) (see [31]). In
contrast, if such a decomposition does not exist, the state is
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FIG. 1. (Color online) Relations between entanglement, one-
way steering, two-way steering, and nonlocality. Nonlocality implies
two-way steerability (i.e., from Alice to Bob and from Bob to Alice),
while one-way steerability (i.e., from Alice to Bob or from Bob to
Alice) implies entanglement. Here we show that the converse relations
do not hold, considering arbitrary POVMs (red crosses).

nonlocal and violates a Bell inequality for suitably chosen
local measurements [20,21].

A different notion of nonlocality is that of EPR steering. In
a steering test, Bob, who does not trust Alice, wants to verify
that ρ is entangled. To this end, he asks Alice to perform
measurement x on her subsystem and announce its result a.
By doing so, she remotely steers the state of Bob’s system to

σa|x = trA(Ma|x ⊗ Iρ), (3)

where trA denotes the partial trace over Alice’s system. Bob’s
task is now to ensure that the set of conditional states {σa|x}, a
so-called assemblage, does not admit a decomposition of the
form

σa|x =
∫

dλπ (λ)pA(a|x,λ)σλ, (4)

where λ is a classical random variable distributed according to
density π (λ), pA(a|x,λ) is any possible local response function
for Alice, and σλ are some quantum states. If the assemblage
observed by Bob (e.g., via quantum tomography) does admit
a decomposition (4), Bob concludes that Alice could have
cheated by using the following strategy: Alice would have
sent the (single party, hence unentangled) quantum state σλ to
Bob, and announced measurement outcome a according to the
response function pA(a|x,λ); note that λ can be understood
here as Alice’s choice of strategy. If an entangled state ρ

admits a decomposition of the form (4) for all possible
measurements, the state is termed unsteerable or, equivalently,
it admits a local hidden state (LHS) model. However, if the
assemblage {σa|x} does not admit a decomposition of the form
(4), the state is called steerable. In this case, steering can be
detected via violation of a steering inequality [5].

Note that LHS models correspond to a special class of LHV
models in which one of the response functions is “quantum”
(see [31]). Hence, any state admitting an LHS model is local,
while the converse may not be true. Moreover, due to the
asymmetry of the concept of steering, it is in principle possible
that there exist entangled states which are only one-way
steerable.

The main goal of this work is to fully characterize the
relation between entanglement, one-way steering, two-way
steering, and nonlocality for general measurements. For the
restricted class of projective measurements, all four notions are
proven to be inequivalent [4,28,32]. However, when consid-

ering arbitrary POVMs, it is only known that entanglement is
inequivalent to nonlocality [33]. Here we shall see that all four
notions are inequivalent for POVMs. Specifically, we show
by giving explicit examples that (i) there are entangled states
that are unsteerable for POVMs, (ii) there exist steerable states
admitting an LHV model for POVMs, and (iii) there exist
states which are only one-way steerable for POVMs. Finally,
we discuss the use of sequences of measurements in steering
tests, and uncover the phenomenon of hidden steering.

A. Entanglement versus steering

We first give a method for constructing classes of entangled
states admitting an LHS model for POVMs. Specifically,
starting from a given entangled state admitting an LHS model
for projective measurements, we can construct a different
state which (a) admits an LHS model for POVMs and (b)
is entangled. More formally, we can state the following.

Lemma 1. Consider an entangled state ρ acting on the
Hilbert space Cd ⊗ Cd and admitting an LHS model for
projective measurements from Alice to Bob. Then, the state

ρ ′ = 1

d + 1
[ρ + d P⊥ ⊗ ρB] (5)

is entangled and admits an LHS model for POVMs from Alice
to Bob. Here, P⊥ denotes a projector on a subspace that is
orthogonal to the support of ρA, hence ρ ′ acts on Cd+1 ⊗ Cd .
Note that ρA,B = trB,A(ρ) denote the reduced states.

Proof. Let us first notice that ρ ′ is entangled by construc-
tion, as one can obtain ρ from ρ ′ by applying a local filter on
Alice’s side (an operation which cannot produce an entangled
state from a separable one). Then, the construction of the LHS
model for POVMs for ρ ′ follows directly from the work of [30]
(see Protocol 2). Note that having an LHS model for binary
projective measurements for ρ is in fact enough for the result
to hold. �

Applying the above method to known examples of en-
tangled states admitting an LHS model for projective mea-
surements (see [4,22,24,28,32] for examples) allows one
to construct entangled states admitting an LHS model for
POVMs.

Another example worth mentioning is the Werner states
acting on Cd ⊗ Cd :

ρW = α
2P anti

d(d − 1)
+ (1 − α)

Id2

d2
, (6)

where P anti denotes the projector on the antisymmetric
subspace, and Id2 is the identity matrix in dimension d2. It
is known that ρW is entangled for α > 1/(d + 1) [32], and
admits an LHV model for POVMs for α � 3d−1

d+1 (d − 1)d−1d−d

[33]. We point out that the model of [33] can actually be
reformulated as an LHS model; see Appendix A for details.
Hence Werner states with 1

d+1 < α � 3d−1
d+1 (d − 1)d−1d−d are

also examples of entangled states which cannot be steered us-
ing POVMs.1 Clearly, since Werner states are permutationally
invariant, they are two-way unsteerable.

1An interesting open question is whether all Werner states admitting
an LHS model for projective measurements, i.e., with α � d−1

d
, also
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B. Steering versus nonlocality

Before discussing examples of steerable states admitting an
LHV model for POVMs, we first derive a useful property of
LHS models. Consider a state ρ admitting an LHS model
from Alice to Bob (i.e., Alice cannot steer Bob). Then,
any local probabilistic transformation represented by a trace
nonincreasing completely positive (CP) map (for instance a
local filtering) Bob may apply to his system must leave the
global state ρ unsteerable (from Alice to Bob). This fact,
already noticed in [12,17], can be formally stated as follows.

Lemma 2. Let ρ be an entangled state, unsteerable from
Alice to Bob. For any local operation represented by an
arbitrary trace nonincreasing CP map � acting on Bob’s
system, the final state

ρF = (I ⊗ �)(ρ)

tr[(I ⊗ �)(ρ)]
, (7)

where I stands for the identity map, is unsteerable from Alice
to Bob.

Proof. Since ρ admits an LHS model (from Alice to Bob)
we have that any assemblage {σa|x} generated from ρ admits
a decomposition of the form (4). Using this fact, we will now
prove that ρF also admits an LHS model (from Alice to Bob).
To this end, let us first notice that an assemblage {̃σa|x} obtained
from ρF by Alice performing a measurement {Ma|x} is related
to {σa|x} through

σ̃a|x = 1

pF

�(σa|x), (8)

where pF = tr[�(ρB)] with ρB = trA ρ. After inserting Eq. (4)
into Eq. (8) and then rearranging the terms, one obtains

σ̃a|x =
∫

dλ
π (λ)ω(λ)

pF

p(a|x,λ)̃σλ, (9)

where ω(λ) = tr[�(σλ)], and σ̃λ = �(σλ)/ω(λ) is a nor-
malized density matrix. To complete the proof, note that
π̃ (λ) = π (λ)ω(λ)/pF is a proper probability density. In par-
ticular, it follows from Eqs. (3) and (4) that ρB = ∑

a σa|x =∫
dλπ (λ)σλ, and therefore (1/pF )

∫
dλπ (λ)ω(λ) = 1. �

A relevant corollary of Lemma 2 is the following. Consider
again an entangled state ρ and a local operation on Bob’s
side. If Alice can steer Bob with the final state ρF , then the
initial state ρ must also be steerable (from Alice to Bob).
Moreover, if ρF violates a given steering inequality, one can
construct another steering inequality which can be violated by
the initial state ρ (see Appendix B for details). A particular
example of such local operation � is the local filtering where
�(·) = F (·)F † with F being any matrix satisfying F †F � I.

We are now in a position to discuss our examples of
steerable states, which are nevertheless local for all POVMs.

admit an LHS model for POVMs. See [34] for recent progress in this
direction.

Consider the class of states of the form

ρG = 1

9

[
q|ψ−〉〈ψ−| + (3 − q)

I2

2
⊗ |2〉〈2|

+ 2q|2〉〈2| ⊗ I2

2
+ (6 − 2q)|22〉〈22|

]
, (10)

where |ψ−〉 = (|01〉 − |10〉)/√2 is the two-qubit singlet state,
and I2 denotes the identity in the qubit subspace {|0〉,|1〉}.
For 0 < q � 1/2, these states are proven to be local for
POVMs [30].

We will now see that ρG is steerable (in both directions) for
0 < q � 1. Notice that if Alice applies a local filtering on the
qubit subspace {|0〉,|1〉} the filtered state is of the form

ρF
G = α|ψ−〉〈ψ−| + (1 − α)

I2

2
⊗ |2〉〈2|, (11)

with α = q/3. Note that states of the form (11) are so-called
“erasure states” (as they can be obtained by sending half of a
singlet state |ψ−〉 through an erasure channel). If Bob applies
a local filtering on the qubit space, the filtered state is also
an erasure state (where the subsystems are swapped), with
α = 1/3. Since the erasure state is steerable (in both directions)
for 0 < α � 1, it follows from the corollary to Lemma 1 that
the state ρG with 0 < α � 1/2 is two-way steerable but local
for all POVMs.

The steerability of the erasure state for any 0 < α � 1
deserves a few more explanations. First notice that steerability
from Alice to Bob follows again from our corollary: when Bob
applies a projection on the qubit subspace {|0〉,|1〉}, the filtered
state is simply the pure singlet state |ψ−〉, which is clearly
steerable. Steering from Bob to Alice can be demonstrated by
considering an explicit family of steering inequalities [35].

C. One-way steering for POVMs

We give here a simple technique for constructing states
that are unsteerable from Alice to Bob for arbitrary POVMs,
but steerable from Bob to Alice. Notice that by construction
such states are local for POVMs. The technique will then be
illustrated by an example.

The idea of the method is to start from a state that is one-way
steerable (that is steerable from Bob to Alice, but not from
Alice to Bob) for projective measurements (examples were
provided in [28]), and then construct a state that is one-way
steerable for POVMs. More formally we have the following.

Lemma 3. Let ρ be a quantum state acting on the
Hilbert space Cd ⊗ Cd such that Alice cannot steer Bob with
projective measurements but Bob can steer Alice. Then, the
state ρ ′, defined as in Eq. (5), is such that Alice cannot steer
Bob using arbitrary POVMs, but Bob can steer Alice.

Proof. First, notice that since ρ admits an LHS model for
projective measurements from Alice to Bob then the state ρ ′
admits an LHS model for POVMs from Alice to Bob, which
follows from Lemma 1. Second, there exists a local operation
that allows Alice to map the state ρ ′ to ρ, which, by assumption,
is steerable from Bob to Alice. Hence, it follows from Lemma
2 that ρ ′ is steerable from Bob to Alice. �

032107-3
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To provide an explicit example of a state featuring one-way
steering for POVMs, we first consider the state

ρ1W = 1

2

[
|ψ−〉〈ψ−| + 3

5
|1〉〈1| ⊗ I2

2
+ 2

5

I2

2
⊗ |0〉〈0|

]
,

(12)

which cannot be steered from Alice to Bob, considering
projective measurements, but Bob can steer Alice using
13 well-chosen measurements [28]. By applying the above
lemma, we can construct the state

ρ ′
1W = 1

3
ρB + 2

3
|2〉〈2| ⊗ I2

2
, (13)

which is one-way steerable for POVMs.

III. SEQUENCES OF MEASUREMENTS

We have shown above that entanglement, one-way steering,
two-way steering, and nonlocality are genuinely different
when considering general measurements. A natural question is
to see whether the relations between these notions of quantum
nonlocality change when states are subjected to sequences
of measurements. Sequences of measurements are relevant in
the context of Bell nonlocality as they allow one to detect
the nonlocal properties of quantum states that have a LHV
model for general measurements, a phenomenon known as
“hidden nonlocality” [29,30]. Below, we show that a similar
effect is possible for steering. Specifically, we demonstrate
that a state which admits an LHS model for POVMs (in
both directions) can lead to steering when Alice and Bob can
perform a sequence of measurements.

Consider the Werner state (6) with α = (d − 1)/d, denoted
ρ̃W , which admits an LHS model for projective measurements
[32]. Now, using Lemma 1 twice in a row (first performing the
extension on Alice’s side, and then on Bob’s side), we obtain
the following state:

ρHS = 1

d2

[
ρ̃W + d

(
P⊥ ⊗ Id

d
+ Id

d
⊗ P⊥

)
+ d2P⊥ ⊗ P⊥

]
,

(14)

where P⊥ is a projector on a subspace orthogonal to the support
of the reduced states of Alice and Bob. By construction ρHS

admits an LHS model for POVMs from Alice to Bob and from
Bob to Alice. Consider now applying the local filters FA =
FB = |0〉〈0| + |1〉〈1|, i.e., projections onto a qubit subspace,
on both Alice’s and Bob’s side. The resulting state is given as

(FA ⊗ FB)ρHS(F †
A ⊗ F

†
B)

tr[(FA ⊗ FB)ρHS(F †
A ⊗ F

†
B)]

= 1

1 + 2
d

[
|ψ−〉〈ψ−| + 2

d

I4

4

]
,

(15)

which is steerable (in both directions) for any d � 3 [4]. Hence,
the state ρHS has hidden steering.

Note that the notion of hidden steering is intimately related
to one-way steerability. In fact, novel examples of states with
one-way steering can be easily constructed from the above
example of hidden steering (see Appendix C).

IV. DISCUSSION

We have shown that entanglement, steering, and nonlocality
are inequivalent when general measurements are considered.
The natural question is now to see how these notions relate
to each other when sequences of measurements are allowed.
While we are not in position to give a final answer, we
could nevertheless show that sequences of measurements are
relevant for demonstrating steering. More generally, it is in fact
not known whether entanglement and nonlocality are strictly
inequivalent in this case, despite recent progress [36,37].

ACKNOWLEDGMENTS

We thank Joe Bowles, Flavien Hirsch, and Paul
Skrzypczyk for discussions. We acknowledge financial sup-
port from the Swiss National Science Foundation (Grant
No. PP00P2_138917 and Starting Grant DIAQ), SEFRI
(COST action Grant No. MP1006), the János Bolyai Pro-
gramme of the Hungarian Academy of Sciences, the Hun-
garian National Research Fund OTKA (Grant No. K111734),
the European Research Council CoG QITBOX and AdG
OSYRIS, the European Union project SIQS, the Spanish
project FOQUS, the John Templeton Foundation, and the
Generalitat de Catalunya. R.A is supported by the Spanish
MINECO through the Juan de la Cierva scholarship, and D.C.
is supported by the Beatriu de Pinós fellowship (BP-DGR
2013).

APPENDIX A: CONVERTING BARRETT’S LHV MODEL
FOR WERNER STATES INTO AN LHS MODEL

We show that the Werner states discussed in the main text
admit an LHS model for arbitrary nonsequential POVMs. This
is done by showing that Barrett’s model [33] for simulating
POVMs on these Werner states can be straightforwardly
transformed into an LHS model.

Without going into full details about the model, we recall
that the shared variable λ can be viewed as a quantum state of
dimension d: |λ〉. Alice’s response function is given by

pA(a|Ma|x,λ) = αa|x
d − 1

(1 − tr[|λ〉〈λ|Pa|x]), (A1)

where Pa|x is a rank one projector defined by Ma|x = αa|xPa|x ,
the POVM elements. By noticing that

αa|x
d − 1

(1 − tr[|λ〉〈λ|Pa|x]) = αa|x
d − 1

tr[(Id − |λ〉〈λ|)Pa|x]

= tr

(
Id − |λ〉〈λ|

d − 1
αa|xPa|x

)

= tr

(
Id − |λ〉〈λ|

d − 1
Ma|x

)
, (A2)

one can define a new shared variable, as the quantum state
σλ = 1

d−1 (Id − |λ〉〈λ|), in order to transform the initial LHV
model into an LHS model.
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APPENDIX B: CONSTRUCTING FAMILIES
OF STEERING INEQUALITIES

Here we provide a simple method for constructing a steering
inequality violated by a state ρ, starting from a steering
inequality violated by the transformed state

ρF = 1

pF

(I ⊗ �)(ρ), (B1)

where � is any trace nonincreasing completely positive map
and pF = tr[(I ⊗ �)(ρ)] is the probability that a quantum
operation represented by this map has been successfully
implemented. For this purpose, let us first prove the following
lemma.

Lemma 4. Consider the steering inequality

tr
∑
a,x


a|xσ uns
a|x � 0, (B2)

where 
a|x are the operators characterizing the inequality (see
[9] for details), and {σ uns

a|x } an arbitrary unsteerable assemblage;
notice that by redefining the operators 
a|x one can always set
the bound of any steering inequality to zero. Then, for any
completely positive map �,

tr
∑
a,x

[
�†(
a|x)σ uns

a|x
]

� 0 (B3)

is also a steering inequality. Here by �† we denote a dual map
of �.2

Proof. First, using the definition of a dual map, one can
rewrite the left-hand side of inequality (B3) as

tr
∑
a,x

[
�†(
a|x)σ uns

a|x
] = pF tr

∑
a,x

[

a|x

1

pF

�
(
σ uns

a|x
)]

, (B4)

where pF = tr[�(ρB)] with ρB denoting the second subsystem
of an unsteerable state ρ giving {σ uns

a|x }. Then, as shown in the
proof of Lemma 2, for any unsteerable assemblage {σ uns

a|x }
the operators σ̃ uns

a|x = �(σ uns
a|x )/pF form another unsteerable

assemblage that corresponds to the state ρF given in Eq. (B1).
This means that inequality (B2) is satisfied for {̃σ uns

a|x }, which
together with the fact that pF � 0 implies Eq. (B3). This
completes the proof. �

Now, let us see how this method works in practice. Assume
that a state ρF given by Eq. (B1) violates some steering
inequality (B2) by the amount

βF = tr
∑
a,x


a|x trA[Ma|x ⊗ IρF ] > 0. (B5)

2A dual map �† of some linear map � is one that satisfies
tr[X�(Y )] = tr[�†(X)Y ] for any pair of matrices X,Y .

Then, it clearly follows that ρ violates the following inequality:

tr
∑
a,x

[
�†(
a|x)σ uns

a|x
]

� 0, (B6)

which, as proven in Lemma 4, is a proper steering inequality,
and the amount of violation is

tr
∑
a,x

[�†(
a|x) trA(Ma|x ⊗ Iρ)] = βF pF > 0. (B7)

APPENDIX C: FROM HIDDEN STEERING
TO ONE-WAY STEERING

In this section we present a general technique for con-
structing a state with one-way steering, starting from a state
featuring hidden steering. Before stating the general result we
show how to construct a novel example of a one-way steerable
state starting from a Werner state.

As discussed in the main text, the local model presented by
Werner [32] is an LHS model. Hence if one party (say Bob)
projects his subsystem onto the qubit subspace {|0〉,〈1|}, i.e.,
applying the filter F01 = |0〉〈0| + |1〉〈1|, the filtered state

ρF
W = 1

N
(Id ⊗ F01)ρW (Id ⊗ F01), (C1)

where N = tr[(Id ⊗ F01)ρW (Id ⊗ F01)], is unsteerable from
Alice to Bob. However, Bob can steer Alice whenever d � 3.
This follows from the fact that, if Alice now also projects her
subsystem onto the qubit subspace {|0〉,〈1|}, the final state is a
two-qubit Werner state with visibility greater than 1/2, which
is steerable.

More generally, we have the following result.
Lemma 5. Consider a state ρ such that Alice cannot steer

Bob, but Bob can steer Alice with the filtered state

ρ ′ = (FA ⊗ FB)ρ(F †
A ⊗ F

†
B)

tr[(FA ⊗ FB)ρ(F †
A ⊗ F

†
B)]

. (C2)

Then, the state

ρ ′′ = (I ⊗ FB)ρ(I ⊗ F
†
B)

tr[(I ⊗ FB)ρ(I ⊗ F
†
B)]

(C3)

is one-way steerable: Alice cannot steer Bob, but Bob can steer
Alice.

Proof. It follows directly from Lemma 2 that Alice cannot
steer Bob with the state ρ ′′. It also follows from Lemma 2 that
if Bob can steer Alice with ρ ′ he can steer Alice with ρ ′′. �

Finally, note that if ρ has hidden steering for projective
measurements the state ρ ′′ is one-way steerable for projective
measurements, whereas, if ρ has hidden steering for POVMs,
the state ρ ′′ is one-way steerable for POVMs.
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