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 I

Summary 
 

Nowadays “waste management” is a topic largely studied and questioned among government and 

Institutional organizations, as a complex phenomenon with a range of consequences for the involved 

stakeholders and society. In an European scenario, the Northern countries, where waste is considered as a 

resource, implement an efficient management of the solid residues, while the Southern countries, like Italy, 

seem to have a slowly evolution on waste treatment. Although different waste management options are 

now available the development of a sustainable waste management system needs to be discussed from a 

broader systems perspective, taking the environmental, social and economic issues into account. 

In this study, Life-Cycle Assessment (LCA) in accordance to ISO 14040/44 standards, helps to expand the 

perspective beyond the waste management system. Scope of this study is using LCA method to compare 

the environmental performance of two different waste management systems in the municipality of 

Avezzano (Southern Italy). These are landfilling, the Avezzano's original waste management, and 

incineration for supplying heat and electricity to household; Waste to Energy is a system largely 

experimented in Sweden, that has been agreed upon in Avezzano, but not yet implemented. After data 

collection, models have been developed using GaBi 4, an LCA tool that allows to account material and 

energy flows and carry out environmental impact assessment from a life cycle perspective.  

Life cycle impact assessment has been addressed at mid-point level (i.e. problem-oriented); at the end 

incineration results to be negative for the air quality, and consequently for human health, due to CO2 and 

SOX emissions in the atmosphere. These substances affect not only the Climatic Change but also 

phenomena like Acidification that impact flora, fauna, humans and artistic building. Although Landfilling is 

more toxic for the soil quality. Incineration produces 35% more energy than landfilling and this is ideal for 

the Avezzano inhabitants, as the city, like the whole Italy, depends strongly of foreign Countries for the 

energy production. Implementing an incineration plant result 30% less economical than landfilling, and 

currently in Italy there are no economic incentive to build Waste to Energy plants, and also there are still 

problem of legality that make incineration project even more difficult to be implemented. 
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Symbols/Abbreviations 

CO2                                                         Carbon dioxide 

CH4                                                          Methane 

eq.                                                          Equivalence factor 

EU                                                           European Union 

FAEP                                                       Fresh water aquatic ecotoxicity potential 

FU                                                           Functional Unit 

GaBi                                                        Ganzheitliche Bilanzierung (holistic balancing)  

HCFCs                                                     Hydro chlorofluorocarbons 

HCl                                                          Hydrogen chloride 

HF                                                           Hydrogen fluoride 

HFC                                                        Chlorofluorocarbons 

IPCC                                                       Intergovernmental Panel on Climate Change 

ISO                                                         International organization for standardization 

HTPAU                                                   Human toxicity potential Australia 

LCA                                                         Life Cycle Assessment 

LCI                                                          Life Cycle Inventory 

LCIA                                                       Life Cycle Impact Assessment 

LHV                                                        Lower heating value 

MAEP                                                    Marine aquatic ecotoxicity potential 

NMVOC                                                Non-methane volatile organic compounds 

NO                                                         Nitric oxide 

NO2                                                        Nitrogen dioxide 

NOx                                                       Nitrogen oxides 

O2                                                           Oxygen 

P                                                             Phosphorus 

P-tot                                                      Total phosphorus 

PAH                                                       Polyaromatic hydrocarbons 

SCR                                                        Selective Catalytic Reduction 

SO2                                                        Sulphur dioxide 

SO3                                                        Sulphite 

T                                                            Temperature of landfill gas 

TEP                                                        Terrestrial ecotoxicity potential 

WTE                                                      Waste-to-Energy 
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1. Introduction  
As the world is moving towards a rapid urbanization, quantity of produced solid waste by humans being 

is one of the most important products of the urban lifestyle; as the increasing of GDP, the waste volumes 

are growing even faster than the rate of urbanization. For instance, ten years ago there were 2,9 billion 

urban residents who have been generating 0,68 billion tons per years; currently, the world cities 

generate about 1,3 billion tons of solid wastes per year (Tahir and Hussain, 2015). According to the World 

Bank and the publication of the “Global Review of Solid Waste Management” (Hoornweg and Bhada-

Tata, 2012), the volume of waste is expected to increase to 2,2 billion tones by 2025.  

Solid waste management is a responsibility of local governments and is often their single largest budget 

item. It is practically the most important municipal service and it is a precondition for the other municipal 

actions, because his role is leading in a sustainable development that covers economic, social and 

environmental skills of the municipality. MSW, Municipal Solid Waste, requires a strong social deal 

between the municipality and community. The waste workers, formal and informal, represent from 1% 

up to 5% of all urban employment, and workers tend to be younger (World Bank, 2012). This has a strong 

influence on economy, municipalities need capacities in procurement, management, and often 

unionized labor management, and ongoing expertise in capital and operating budgeting and finance 

(World Bank, 2012). 

 

1.1 Waste Hierarchy 
On 21 December 2005, the European Commission approved the 6th Environmental Action Plan: ‘‘Taking 

sustainable use of resources forward: A thematic strategy on the prevention and recycling of waste’’, 

with this Communication, the prevention and the recycling are basically the main strategies planned on 

European framework. 

According to the Waste Framework Directive 2008/98/EC, the basic objectives of current EU waste policy 

is a waste hierarchy (figure 1), in which preventing wastes and promoting reuse are the first step. The 

waste hierarchy governs how waste management should take place in Europe and it is made up of five-

step as follows; in order are: prevent waste generation if possible, reuse or recycle wastes, energy 

recovered for what cannot be recycled and finally, the least option, is disposal in landfills.  

However, the environmental impact of a waste management system depends on a number of 

geographic, economic, social and technological factors; for this reason, the waste hierarchy should not 

be seen as beginning of a rigid prescription, but just a starting order of treatment options for the best 

way to treat wastes. 
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Figure 1 Waste Hierarchy (European Union, 2008) 

 

 

1.2 Life cycle thinking 
During the last decade, a number of new waste treatment technologies have come into use and it has 

begun to be contested as what can be considered the best treatment option in the waste hierarchy. 

Consequently, new scenarios are evaluated in order to find out the optimal solution and the best 

combination to improve the energy and material recovering and to have low impacts on the 

environment. 

A new system, where the key phrase is “life cycle thinking” has been introduced in the European context; 

it moves away from the rigid waste hierarchy and starts to assess alternative scenarios,  e.g. what waste 

treatment is the best option, which alternatives are available, and which system fits better with the 

surrounding environment. The Waste Framework Directive (European Commission, 2008) does not state 

which assessment should be used, but introduces Life Cycle Assessment (LCA), just known at the early 

1990s, applied to waste management. Furthermore, in some cases there are many differences in the 

waste management system adopted and the energy system with which it interchanges itself, this 

stimulates the introduction of LCA models, that are more flexible and manageable, applied to waste 

system and energy recover. 
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2. Aim and objectives  

 
The aim of the study is to investigate and discuss the potential life cycle environmental impacts of the 

hypothetical introduction of an incineration plant in the city of Avezzano (South Italy) in comparison 

with the actual practice, landfilling. The introduction of a waste to energy system is coherent with the 

European waste hierarchy, which encourage energy recovering instead than disposal in a landfill. Scope 

of this report is evaluating the impacts of this scenario (that privilege incineration) on environment and 

human health, and developing recommendations. For this purpose, LCA has been adopted as decision 

making analysis. 

After explaining how the European sustainable waste hierarchy thinking is conceived in Italy, the 

following objectives are considered: 

- stream line a Life Cycle Assessment, according to ISO, International Organization for 

Standardization, to compare the two different waste management solutions, landfilling and incineration,  

- identify and analyze the process-related impacts on the environment and human health and 

which phases of the life cycle  contribute most to that, using Gabi 4 LCA software tool; 

- evaluate pros and cons of the introduction of an incineration plant in Italy in order to increase 

the Avezzano energy independence; 

- Discuss the economical achievability of incineration and how to proceed with a future 

assessments to have a more detailed sustainable vision of these scenario. 

 

2.1 Current Waste Management Practices in Italy 
On July 2012, the European Commission published the document “Screening of waste management 

performance of EU Member”, with the scope to figure the present municipal waste management 

situation in Europe. Major discrepancies have been found in the implementation and application of the 

European Waste Framework Directive into Italian legislation. 

Landfilling is nowadays the most common practice of waste management in Italy, in spite of enforced 

regulations aimed at increasing waste pre-sorting as well as energy and material recovery (Cherubini, 

2008). According with ISPRA, the Italian Institute for Environmental Protection and Research,  for the 

unsorted waste management, land-filling represents the 42% and Waste to Energy only the 16%;  even 

if this values are increasing, this data are far from countries like Sweden, in which Waste to energy 

represents the 50% and land-filling just the 0,7% (Avfall Sverige, Swedish Waste Management 2014). 

The recycle system increases, especially in those small-scale municipal centers. 
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2.2 Waste to energy in Italy 
In Italy, in 2013, 57 facilities of incineration are surveyed by ISPRA, 55 of those are operating. 24 plants 

are located in the North, the 42,1% of the national equipment; 20 plants are in the Center and 13 plants 

in the South, respectively, the 35,1% and 22,8% of the total in the country (ISPRA). Waste to energy is a 

practice mostly implemented in the North of Italy, since in the South are observed lots of problems of 

lawfulness, corruption and it is present a bad conduct of the citizens who often leave the garbage in 

open space with a great impact on environment and life health.  

Another benefit connected to incineration is supplying energy that could partly solve the Italian energy 

problem of strong dependence on other Countries: 43,821 MTOE produced in contrast of 154,114 MTOE 

imported (Italian Energy Balance, 2013). One of the main problem is the public prejudice about 

incineration, the greens and the common sense are in contrast and they vindicate the eventual 

environmental impact and damages on human health. 

 

2.2.1    Avezzano’s case 

Avezzano is a small city of 42 434 inhabitants (Italian Statistic Institute, INSTAT, Demographic Session), 

in the south of Italy and it is the main city of the Abruzzo National Park. The city is surrounded by 

mountains and, since it is located on a drained lake, his economy is basically agriculture. 

Currently in Avezzano is present a service door to door, it means that each family is responsible of his 

own trash, and every day a truck of the company that manage the municipal wastes, (Tekneko), comes 

to collect the trash. This method is considered an optimal way to educate the inhabitants of the city to 

respect the environment, to think about the importance of recycling and to generate less wastes.   

In the last years, the local administration has been discussing about the introduction of an incineration 

plant to replace the currently used  landfilling method,. The introduction of an incineration plant could 

be also an optimal solution, for the energy supply in the city, that is located in the middle of the 

mountains and the transportation of energy could be tricky and pollutant. 

 Avezzano could be a good starting point to evaluate if waste to energy has more impact on environment 

and human health than landfilling, as supposed by Avezzano inhabitants, greens and ecologist 

movement.  

 

2.3 Environmental effect of waste management 
The Environment is strongly affected by the waste management; globally nature of MSW includes its 

contribution to GHG emissions, like the methane from the organic fraction of the waste stream, the 

increasingly global linkages of products, urban practices and recycling industry. Additionally, solid wastes 

are one of the most pernicious uncollected local pollutants; the solid wastes are usually the leading 

responsible to local flooding and air and water pollution. (World Bank, 2014) 

According with Eurostat (2015) currently, Italy covers one of the first position as emitter of greenhouse 

gases, which promote climate change, worldwide. Nowadays climate change is of national and 

international interest. 
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                                      Figure 2 Total greenhouse emissions by European Country 2012 (Eurostat, 2015)  

The statistic made by United Nations framework convention on climate change (UNFCCC, 2012) covers 

trends in emissions of all Kyoto greenhouse gases: carbon dioxide (CO2), methane (CH4), nitrous oxide 

(N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and Sulphur hexafluoride (SF6).  

 

2.3.1 Climatic change effect in Italy 

Italy, in line with the EU international headline target (international commitments under the Kyoto 

Protocol's 2013-2020) has the commitment to reduce of 20% the GHG emissions by 2020. Major EU 

initiatives to reduce greenhouse gas emissions include: implementing legislation to raise the share of 

energy consumption produced by renewable energy sources to 20%, increase Europe's energy efficiency 

by 20% by improving the energy efficiency of buildings and of a wide array of equipment and household 

appliances; reduce CO2 emissions from new cars and vans. 

In Italy, climate changes are noticeable through the "traditional" effect of weather and climate 

phenomena, due to temperature increasing and consequent desertification, floods and intense rainfall; 

changing also appear with new intensity and worrying effect: heat waves, summer hail storms. 

Everything increases risk of hydro-geological landslides (e.g. tornadoes, storm surges, locusts’ 

infestation in southern Italy). Climate changes affect not only the inhabitants but also the activities like 

trading, agriculture and tourism that are the basis of the Italian economy (Rete Clima Italia, 2013).  
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3. Methodology  

In this chapter the methodology adopted during the study is listed. 

3.1 Literature study 

In order to obtain a deep background of the topic, a wide literature research has been performed. 

Database of KTH are been used, and scientific literature within the areas of waste management 

techniques, Life Cycle Assessment and LCA applied to waste framework.  Annual report of 

International and National (Italian) organism, to investigate Italian and European waste stream situation 

(ISPRA, ISTAT), and International handbook about organism for the environmental protection. 

3.2 Interview 

Interview to the companies in charged to the waste management in the city of Avezzano, Tekneco and 

Aciam, have been necessary to obtain specific data about the composition and quantification of the 

urban waste and the transportation. The municipal institution have been contacted also, in order to 

obtain information about the amount of the municipal waste. 

3.3 Life Cycle Assessment 

Life Cycle Assessment (LCA) has been definite by the International Organization for Standardization (ISO 

standards). ISO has developed several guideline for the awareness of the importance of environmental 

protection, and the possible impacts associated; the main one is LCA and is described by ISO 14040-

14044, 14040 contains the principles and the framework, and UNI ISO 14044 contains requirements and 

guidelines. (ISO, 2006) 

According to ISO 14044 LCA can assist in 

— identifying opportunities to improve the environmental performance of products at various points in 

their life cycle. 

— informing decision-makers in industry, government or non-government organizations (e.g. for the 

purpose of strategic planning, priority setting, product or process design or redesign). 

— the selection of relevant indicators of environmental performance, including measurement 

techniques, and  

- marketing (e.g. implementing an ecolabelling scheme, making an environmental claim, or producing 

an environmental product declaration). (UNI ISO 14040:2006) 

In this study LCA has ben adopted as decision making in order to compare the two waste management 

scenarios, and it will be explained in a deeper description in the following chapter.  

3.4 Gabi Software 

GaBi 4  is a software, developed by the Institute for Polymer Testing and Polymer Sciences (IKP) of the 

University of Stuttgart, in cooperation with PE International. It is an internationally well-known LCA 

tool, as it presents databases  to  perform a LCA  inventory and Impact category assessment. It has 

been used in this study to model the two systems,  
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 and to  compare both, evaluating their environmental impacts. All the information about GaBi are 

taken from the GaBi 4 manual. 

3.5 Impact Assessment CML 

The so-called CML 1992 (Dutch guidelines) method is the methodology of the Centre for Environmental 

Studies (CML) of the University of Leiden and it focuses on a series of environmental impact categories 

expressed in terms of emissions to the environment. The CML method includes classification, 

characterization, and normalization, and it bases on midpoint modelling (GaBi Manual, 2006). This kind 

of impact assessment models reflect the relative potency of the stressors at a common midpoint within 

the cause-effect chain (GaBi manual, 2006). This analysis minimizes the amount of forecasting and effect 

modeling incorporated into the LCIA, thereby reducing the complexity of the modeling and often 

simplifying communication. (Bare, 2003). This method contains more than 1700 different flows that can 

be downloaded from their website of 2011(Acero, 2014). However in this study just 8 impacts have neem 

chosen, since they most allows a comparison about the human and ecosystem impacts, they are: 

Climatic Chang, Ozone Depletion Potential, Acidification Potential, Eutrophication Potential, Human 

Toxicity Potential, Marine, fresh water and industrial soil Ecotoxicity Potential. 

 Economic ssessment 

Many information are indicated in BAT document: where it is guarantee an optimal energy production and 

utilization, that allows to reach the maximum value of energy with less emissions. A classification is 

presented by the Best Available technology published by BREF, under the IPPC Directive and the Industrial 

Emissions Directive with last references from 2006. These documents recommend information about the 

price of incineration plant and landfill in relation of their capacity. Thereby it has been possible outline an 

approximate price of both the techniques.    
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4. Life Cycle Assessment 
 

LCA is a subcomponent of Life Cycle Engineering and it is not an exact scientific tool, but a science-based 

assessment methodology (Guineè, 2004). LCA addresses the environmental aspects and potential 

environmental impacts (e.g. use of resources and the environmental consequences of releases) 

throughout a product's life cycle from raw material acquisition through production, use, end-of-life 

treatment, recycling and final disposal (i.e. cradle-to-grave) (UNI ISO 14040:2006).  

It is increasingly utilized for strategic planning, so it fit also with a solid waste management systems 

especially in the political decision-making process and in strategy-planning (Abeliotis, 2011). All the 

processes involved the material and energy flows for the entire life cycle product system are analyzed. 

However in waste management some exceptions must be taken into account since the extraction of raw 

materials and the manufacturing of products, that finally result in the domestic waste, can be 

disregarded because they are the same for all systems under study.   

 

According to ISO 14044 LCA follows four steps: 

a) goal and scope definition 

b) inventory analysis 

c) impact assessment  

d) interpretation  

                                             Figure 3 LCA framework (ISO 14040-14044:2006)  
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4.1 Goal and Scope definition 
According to the ISO 14040 standard, the first phase of an LCA is the definition of the goal and scope. In 

this step all general decisions for setting up the LCA system are made. The goal and scope should be 

defined clearly and consistently with the intended application. This step consists in “initial choices which 

determine the working plan of the entire LCA” (Cherubini, 2008) as the objectives and the framework of 

the investigation.  

� Goal Definition 

In the goal definition, the following points need to be determined: 

• The intended application of an LCA study  

• The purpose of an LCA study  

• The intended audience of an LCA report 

• Usage for comparative analysis  

 

 

� Scope Definition 

The scope defines:  

• functional unit (FU)  

• the associated system to be studied 

• the system boundaries  

• the quality of data that the system requires  

• Impact categories and the impact assessment method 

It describes the primary function of the system and it serves as the basis for all calculations in the LCA 

study.  

 

 

4.1.1 Functional Unit  

According to ISO standard, a functional unit is defined as “the quantified performance of a product”. It 

is a system for the measurement of the performing (function) of a product (or a more complex system), 

and it helps to define clearly the comparisons of the different systems.  The main function of a waste 

management system is to treat a certain amount of waste from the defined area and provide different 

kinds of products that can be recovered from waste (The United Nations Environment Program, UNEP).  

 

4.1.2 System Boundaries  

The system boundary defines which processes will be included in, or excluded from, the system; It is 

helpful to describe the system using a process flow diagram showing all processes included in the LCA 

and their relationships. The system also includes emissions taking place in the extraction of raw materials 

and generation of energy needed for the waste management (upstream effects and the final disposal of 

the materials used).  

There are four main options to define the system boundaries used  
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• Cradle to Grave: includes the material and energy production chain and all processes from the raw 

material extraction through the production, transportation and use phase up to the product’s end of life 

treatment. 

• Cradle to Gate: includes all processes from the raw material extraction through the production phase; 

used to determine the environmental impact of the production of a product. 

• Gate to Grave: includes the processes from the use and end-of-life phases; used to determine the 

environmental impacts of a product once it leaves the factory. 

• Gate to Gate: includes the processes from the production phase only; used to determine the 

environmental impacts of a single production step or process. 

 

4.2 Life Cycle Inventory (LCI) 
 The Inventory Analysis concerns the modelling of the processes within the system boundaries. This 

includes the collection of data and the calculations for specification of relevant inputs and outputs for 

the product system (ISO 14044:2006). The inputs, e.g. raw materials and energy and the outputs e.g. 

emissions from production, into the air, water and soil.  All material and energy flows are recorded and 

compiled in the inventory and analyzed.  

 

4.3 Life Cycle Impact Assessment (LCIA) 
ISO developed a standard for conducting an impact assessment entitled ISO 14042, Life Cycle Impact 

Assessment refers to the calculation of potential environmental impacts, effects on resource availability 

and human health impacts. Inputs and outputs, identified in the inventory analysis, are characterized and 

assessed. For example, an environmental release identified in the LCI may harm human health by causing 

cancer or sterility, or affect workplace safety. Likewise, a release identified in the LCI could also affect the 

environment by causing acid rain, global warming, or endangering species of animals. 

 

4.3.1 Selection of Impact Categories, Category Indicators and Models 

The first step in the impact assessment is the choice of impact categories from a list of resource use and 

environmental impacts. Their contribution is quantified by indicators and models. This step should be 

completed as part of the initial goal and scope definition phase to guide the LCI data collection process and 

requires reconsideration following the data collection phase.  Impacts are calculated based on the 

inventory results and specific characterization models for each substance in the inventory. Typically, LCIAs 

focus on the potential impacts on three main endpoint categories: human health, ecosystem quality, and 

resources.  

 

4.3.2 Assignment of LCI Results (Classification) 

The several impacts of the selected categories of the LCI are assigned to their environmental effects, e.g. 

CO2 is assigned to climate change and SO2 to terrestrial aquatic eco-toxicity potential. 
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4.3.3 Calculation of Category Indicator Results (Characterization) 
As many different interventions apply to a certain impact category, the estimation of the effect is expressed 

by so called equivalence factors. Therefore, for example, CO2 is an intervention having an effect on climate 

change. It serves as a reference substance to all other gases within this category. Their impacts are 

therefore calculated as CO2-equivalence factors (CO2-eq). Methane is supposed to have a 21 times bigger 

effect on climate change than CO2 on a 100 year time scale, therefore each kg of emitted CH4 is taken into 

account as 21 kg CO2-eq. 

 

                                                       Figure 4 Concept of category indicator (Büning, 2004) 

 

 

4.4 Results and Interpretation 
The calculated LCI and LCIA results are interpreted with respect to the goal of the LCA study and 

recommendations for decision-making are given.  

A sensitivity analysis is part of the interpretation as well as the quantification of the accuracy of the LCA 

results by evaluating data quality and data gaps (GaBi manual 2003).   

 

4.5 Life Cycle Assessment in Italy 
LCA, as a decision-support tool in planning integrated municipal solid waste management, is not yet widely 

used in Italy, among local authorities, waste management companies and enterprises. (Buttol, 2007). 

However, some studies about the main city (Roma, Bologna) have been published; university and institutes, 

especially ENEA, Italian National Agency for New Technologies, Energy and the Environment, are 

developing and improving the researches about LCA, and spreading the study to all Italian areas. 
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4.6 GaBi 4 Software 
GaBi (GaBi = Ganzheitliche Bilanzierung = holistic balancing) is a software that allows the creation of a Life 

Cycle Assessment Inventory by modeling the product life cycle and calculating the different balances 

throughout the system based on the input-output materials and the energy flow. 

It is a tool to create life cycle balances and it is able to support the handling of large amounts of data. 

Balances show the results of a model. Once these balances have been created, they can be analyzed within 

the program in many different ways. 

Each database consists out of objects which have a certain order according to their hierarchy. These objects 

are balances, plans, processes, flows, quantities, units, users, projects, quality indicators, weighting and 

global parameters. The hierarchy is shown in Figure 5,  that shows the user interface. 

 

                                                                                      Figure 5 GaBi user face 

GaBi calculates the potential environmental impacts and other important quantities of a product system 

based on plans, the plans is made up by processes and process is characterized by flows. The plan 

represents the system with its boundaries, processes represent the processes that are taking place in the 

model and flows are all the inputs and outputs related to the system, which connect plans or processes 

within the system. The list of input and output flows is referred to the Life Cycle Inventory, LCI, inputs are 

the flows entering in the system like natural system, energy, resources, and  the outputs are the flows 

leaving the system (emission, ashes); all these flows are called elementary flows. 
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Flow information are essential in GaBi, because they are characterized by mass, energy and costs with their 

respective values. For example, GaBi contains flow information for different raw materials, plastics, metals, 

emissions to air and water and many more. (GaBi manual, 2003) 

An extensive database of substance flow analysis, materials and processes has been implemented by many 

years of experience and based on numerous projects in the fields of life cycle assessment. Several 

companies and research institutes are now using the software tool GaBi 4 database worldwide. 
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5. Goal and Scope definition 

  

5.1 Goal Definition 
The primary goal of this study is to evaluate and compare the environmental performance of two waste 

management options in the urban area of Avezzano. The case history of Avezzano, that now it is 

consisting to collect the unrecyclable waste in a landfilling, is compared with the hypothetical 

introduction of an incineration plant in the city, for the combustion of waste and the production of 

energy. 

The potential environmental impacts and effect on human health of a change in waste management 

strategy are shown through a comparison between the procedure of landfilling and waste to energy, by 

incineration, through LCA. The result of this investigation could be used by the local stakeholders that 

are involved into the waste management of Avezzano, in order to evaluate if the introduction of the 

incineration is more or less environmental and human unsafe than landfilling, and if it represents 

effectively a real available source of energy. 

The unsorted waste, things that are not yet recycled, is take uder study. Recycling is not taken in 

consideration during the analysis as it is considered the same for both scenarios. Therefore, two 

scenarios are evaluated. 

Scenario 1, (present situation): the wastes are picked from Avezzano, transferred to Aielli,  25 km from 

Avezzano, and deposited into the landfilling. Part of the biogas naturally released by the landfill is 

collected, treated and burnt to produce electricity. A sorting plant at landfill site separates the organic 

and inorganic fractions. Ferrous components are also recovered and sent to recycling (Aciam Company). 

  Scenario 2: Unsorted, not recyclable waste is directly incinerated to produce electricity with no further 

pre-sorting or pre-treating process, the incineration is located directly outside the city. 

 

5.2 Scope definition 
LCA with Gabi can be adapted to waste management, with some differences, since generally all inputs 

and outputs are based on a “cradle to grave” system approach. In waste management study, the LCA is 

basically the same, according with international standards; however some differences approaches must 

be taken (Finnveden, 2000). In this case, the system starts at the point where domestic solid wastes are 

generated, the extraction of raw materials and the manufacturing of products, that finally result in the 

domestic waste, can be disregarded because they are the same for all systems under study (Büning, 

2004). The LCA starts at the point of waste collection, and it follows with waste deposited in the landfill, 

the gas generation and consequently electricity produced. In the case of waste, the input is made up by 

different material, with huge variety of emission that is impossible to allocate precisely. Unfortunately, 

data like these are not available, neither from landfills nor from incinerators, as all emission profiles are 

considered for the whole amount of waste (Sundqvist, 1999). 

Therefore, the emissions calculated in this study are based on so called “transfer coefficients” (TC) and 

they are mainly refer to elementary composition. What can be allocated to different fractions, in this 

study they are taken from Gabi database.  
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5.2.1 System Boundaries 

In figure 6 the geographical location of the system boundaries is shown and figure 7 shows the 

interaction, material and energy flows between the different steps. 

       Figure 6 Geographical location of the system boundary of Avezzano  (Google Heart) 

 

The study starts from the collection of waste, from the household and from the street bins, and then the 

wastes are transported to the transfer point. From this point, in the basic case, wastes are transferred 

to the landfill of Aielli, 25 km far from Avezzano; in the case of incineration, it is supposed to be close to 

the transfer station, so no transportation is considered.  
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   Figure 7 System boundaries 

 

5.2.2 Functional Unit 

According to LCA applied to Italian waste management, the fictional unit is the amount of unsorted 

waste produced in one year (CNR Bologna, 2009). This value is shown in a mandatory document called 

MUD, that concernes environment declaration that each municipality have to compile.  

According to MUD of Avezzano, the amount of waste produced in one year (2012) in the city of Avezzano 

is 4.930.660 t from the household and 837.160 t from the street garbage; thus the FU adopted in the 

study is the sum of both values, 5.767.82 t.  

 

5.2.3 Time aspects of Landfilling 

Addictional problem connected to waste management is the time expected for the emission; generally, 

most emissions in LCA are instantaneous. However, things are different for landfilling, where emissions 

last for centuries, even for thousands of years. In order to compare emissions from a landfill with the 

ones from an incinerator, a time frame needs to be created (CNR Bologna, 2009). 

“The period is called the survey able time period and covers 30 years characterized by high internal 

activities” (Sundqvist 1999). This, of course, is of importance for landfilled materials considered as inert 

(glass, metals), hardly degradable (plastics) and materials slowly leaching out (slag), as they are most 

likely to emit most hazardous substances in the time after this short period (Büning, 2004).  

5.2.4 Assumption and limitation 

In this study the process have been adapted to the process already present in GaBi, they present some 

difference with the reality, since they have been adapted to an European average that don’t represent 
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the specific Italian situation. The time has not been enough to create new databases with the specific 

features of Italian region. 

 

5.2.5 Impact categories and the impact assessment method 

As said in chapter 2, waste management has strong impact on environment system and on human 

health. The impact categories for this study were obtained using CML method, a method from the 

university of Leiden, that would be better described in the next chapter. The method has been used by 

Gabi4 to express emissions at midpoint level. The method consist in impacts such as climate change, Eco 

toxicity and acidification. 
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6. Life Cycle Inventory 
 

6.1 Collection and Transportation 
The transportation activities are significant contributor to emissions and energy use due to the high 

tonnages, distances, truck types and load efficiencies and they have to be identified. For the location of 

the incinerator it is assumed to be next to the collection point, so in scenario 2 is supposed that after 

the collection the truck goes straight without stopping at the transfer station. However, in the Basic 

Case, it is also considered the transportation from the transfer station to the landfill. From Avezzano to 

Aielli, 25 km. 

The two different trucks are taken from GaBi database, with the process called “Truck”, Figure 8. For the 

first route it has been adopted a technology mix, diesel, euro 2, 14-20 total cap/ 11, 4 payload. In the 

case of landfill route, the track from the transfer station to the landfill is technology mix, diesel, euro 2, 

34-40 total cap/ 27t payload capacity. The label <u-so> of the process, means that represent a unit single 

process operation referred to a gate to gate process. This process type contains only the data for one 

specific process step and no LCI (or Life cycle inventory) data. 

 

6.2 Road transport 
Transportation systems are found in the using phase, which contains the fuel demand and released 

emissions. 

The formula for the calculation of the transport emission is set in GaBi truck process. However, the 

parameters have been changed according with the model. Cargo input is equal to FU adopted, 5.767.82 

t, over distances listed in the table. 

      

Table 1 trucks  and distance values  

Path Average distance (Km) Truck  

Avezzano- transfer station 5 diesel euro 2 cargo 14-20 t 

Transfer station - Aielli 25 diesel euro 2 cargo 34-40 t 

 

 

 

  Figure 8 Truck process in GaBi 
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The formula for the calculation of the emission is related with Emissions Factors (EF) [g/km] for 1 kg of 

cargo, with the assumption that the utilization ratio behaves linearly. 

In this part the basis for the emission assessment as the total payload applies to trucks, the required 

Sulphur content and the share of biogenic CO2 in fuel, are calculated. The following equation is taken 

from GaBi manual: 

  Emission Factor =  
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                                         (1) 

EF empty = Emission factor for empty run [g/km] 

EF loaded = Emission factor for loaded run [g/km] 

Utilization = Utilization ratio referred to mass 

Payload = Maximum payload capacity [t] 

The payload and utilization ratios are variable parameters; they have been adapted to this case. 

The total emissions for each pollutant refer to FU cargo; (truck) the transportation distance is calculated 

based on the driving share of the specific emissions in [g/(km*kg)] and the distance [km] for the 

transport has been introduced (GaBi Paper Clip Tutorial,2006). 

 

6.3 Gasoline 
Gasoline is a flow, and it is referenced as “mass”, it could be assigned also the quantity “energy” because it 

has a heat values. According to GaBi, Diesel has a volume of 1.36 l and a heat value of 43.5 MJ per kg (GaBi 

manual, 2004). 

The flow can be also determined with a price, determined at the gas station with its current daily price. For 

the gasoline has been adopted the process Diesel EU-15, taken directly from GaBi dataset. 

 

 

 

 

6.4 Waste composition  
Waste is always homogenized in order to obtain a relative constant calorific value and to comply with 

the emission standards. However, the used model and the used settings for the average MSW allows to 

attribute the environmental burden, the emissions and also the resource consumption of auxiliaries, the 

energy production and the credits (the metal scrap exported) to a single fraction or specific waste 

incinerated within an average MSW. The average has been adapted to a EU-15 statistic, according with 

Euro-stat. 

 
Figure 9 GaBi Diesel process 
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6.5 Landfilling 
The process of landfill has been taken from GaBi database; the model is adapted to an average of some 

European Countries (shown in figure 11), including Italy. The label <p-agg> means that is a partly 

terminated system and it contains all LCI data for the process, except for one or more product flows that 

require additional modelling.  The model refers to the state of art of landfill and takes features from the 

Best Available Technology for Landfill 2011. Therefore, the data set has been directly performed 

according with the European limits for emissions of a typical municipal waste landfill with surface and 

basic sealing.  

                                                             Figure 11 waste composition GaBi Database 2004 

 

The landfill performed by GaBi4 includes the following processes: 

1. the construction of the plant (and its land use) of which it is collected the portion of Functional Unit . 

2. The provision, compacting and daily covering of waste with shovels, excavators and trucks. 

3. The treatment of the biogas (or landfill gas) produced during the life of the landfill. The time is 

assumed to be equal to 30 years, for the determination of the quantity and composition of the landfill 

biogas, the moisture content of the waste, the number and distance of fine that captures the biogas. 

(GaBi4 database information, 2004) 

Figure 10 waste composition GaBi Database 2014 
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The inside model of the landfill is representing by the following figure 12:  

The size of the Landfill is height 30 m and the area is equal to 40.000 sqm, for 30 years of deposit. As 

said site includes landfill gas treatment, leachate treatment, sludge treatment and deposition. 

The effort for sealing materials (clay, mineral coating, PE film) and diesel for the compactor is included 

in the data set.  

The sealing contains gravel and sand used as filter layer, clay as mineral coverage in the surface and 

basic sealing and polyethylene film as waterproofed sealing. All manufacturing processes of the sealing 

materials are considered:  The basis for the production of polyethylene film is crude oil. Gravel, sand and 

clay are mined from dry quarry. 

 

6.5.1 Biogas 

 Biogas is composed mainly of CH4, CO2, and other gases in smaller percentages. Combustion converts CH4 

to CO2. The tapped biogas can be burned in an engine for the production of energy, and another part of 

biogas directly into the atmosphere in a percentage, which can be also 40% (Buning, 2004). 

Landfill gas production is calculated according to German first order “Weber Model 1990”. With this model, 

it is assumed that as time goes by, potential amount of LFG is reduced by the 1st order decomposition 

reaction. 

The amount of LFG (landfill gas) at a given certain time (t), after deposition has taken place for an amount 

of waste (M), in t period, can be calculated as follows: 

QLFG (m3 /y) = 1,868 . M . TOC. fao . fa . fo. fs . k . e-kt                                                     (2) 

Where: TOC: Total organic content (kg/t) 

t: Time (y) 

k: LFG emission kinetic constant, defines the speed of gas emission (ca. 0,05 to 0,15) (1/y) 

Figure 12 GaBi process landfill model 
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a, t : time between the calculated beginning and the considered year of the gas production (y) 

fao : opening time factor for consideration of the gas production during the first half year after 

deposition has taken place (ca. 0,8 to 0,95) 

fa: Degradation factor; relation of under optimum conditions of degradable TOC to TC. 

fo : Factor of optimization; relation of under practical landfill conditions degradable TOC to under 

optimum decomposition conditions gasified TC in the test. 

fs : Capacity determined by the system; relation of the under landfill conditions captured amount of gas 

(with ongoing degassing) to actual produced amount; 0-1, normally for vertical gas pipes 0,5. 

Landfill gas models calculate methane yield based on three key inputs: (1) Waste amounts deposited in 

landfill until its closure, (2) Biodegradable total organic content, and (3) Decay rate (k).  

Distribution of landfill gas is an average landfill gas industrial country standard: 22 % flare, 28 % used, 

50 % emissions (Krümpelbeck, 2000). Use of landfill gas represents composition and amount for stable 

methane phase. (Thomé-Kozmiensky, 1989). 

 

6.5.2 Leachate treatment 

The amount of generated landfill gas is allocated to the organic carbon content in the waste input and 

represents an average landfill gas composition. (GaBi Modelling Principles, PE International. University 

of Stuttgart, 2004) 

In the process is also contained the treatment of the leachate produced during the life of the landfill. 

The amount of leachate collected and the part, which enters into the soil is determinate by many factors: 

the size of the landfill, the layers that constitute it, precipitation, solar radiation and the vegetation that 

stands on the ground that covers the landfill. 

In the case of the landfill waste has an effect that lasts from when the order to end of the period of 

control and maintenance (30 years after closure). The precipitation data is 660 mm/a and a rate of 60 % 

transpiration/run off is assumed (Finnveden, 2005) 

Leachate and landfill body are assumed homogeneous; landfill body is saturated and there is circulation 

of leachate. Basic sealing effectively for leachate is 70 % and the leachate treatment includes active 

carbon and flocculation/precipitation processing. (GaBi database landfill, 2004) 

The leachate is treated in a sewage treatment plant for industrial water and the sludge are disposed in 

a landfill for hazardous waste or non-hazardous according to the classification of leachate. After a 

chemical and physics purification, the leachate is subjected to biological purification. Sludge treatment 

and deposition are included. (GaBi database landfill, 2004) 

   6.5.3 Electricity mix 

The data set of electricity mix used by Gabi process database of the process is an average of European 

specific electricity supply for final consumers, including electricity own consumption, 

transmission/distribution losses 7% and electricity imports from neighboring countries. The energy mix 

used for electricity production from the power plant, direct to combine heat and power generation 

(CHP), efficiency data including transmission/distribution losses and own consumption values, are taken 
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from International Energy Agency official statistics. The net calorific values associated to the waste is 9,7 

MJ/kg (GaBi4 database, 2004). The Gabi inventory is partly based on primary industry data, partly on 

secondary literature data; the power plant models were used to the calculation of the emission values 

like gases NOx and particles of heavy metals. Figure 13 and Figure 14 represent the landfilling model 

implemented with GaBi. They represent the whole process, including transportation from the house and 

from the street garbage until the transfer station, and then to the landfill. In the figures are represented 

the material flow (Fig. 13) and the energy flow (Fig. 14) that happen during the process. 

 

 

 

 

 

 

 

 

 

 

    Figure 13 Plan Model Landfill, Mass flow 
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6.6 Incineration 
The incineration process is included in GaBi4, and the data set represents an average European waste-

to-energy plant (WTE) for the thermal treatment of municipal solid waste (MSW) with typical 

technology used in Europe to meet the legal requirements.  
The data set represents a typical European situation (EU-27 + CH and NO), that is composed by a mix of 

dry and wet flue gas cleaning and different NOx removal technologies (SCR = Selective Catalytic 

Reduction and SNCR = Selective Non-Catalytic Reduction) is applied to represent the actual application 

in the EU-27 countries, Switzerland and Norway. The assumed model is an average of European WTE 

plant; Generally it doesn’t exist a general values of efficiency, of emission as the transfer coefficients 

and elementary composition will differ for every specific WTE plant. 

 

Figure 14  Plan model Landfill Energy flow 

 Figure 15 Municipal Waste GaBi4 Process 
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The emissions and resource consumption for the thermal treatment of waste, the collection of the 

bottom ash, as the air pollution control residues on a landfill are included in the data set. It should be 

considered that this data set is an approximation of the reality. Figure 16 and figure 17 represents the  

 

Figure 16 Waste combustion process modelled by GaBi 4, first part (Gabi Manual) 
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Figure 17 Waste combustion process modelled by GaBi 4, second  part (Gabi Manual) 

The data set covers all relevant process step technologies over the supply chain of the represented 

cradle-to-gate inventory process with a good overall data quality. The inventory is mainly based on 

industry data and is completed, where necessary, by secondary data. 

Two different incineration models one with a wet and one with a dry Flue Gas Treatment (FGT) and 

different NOx-removal technologies are mixed to represent the appliance of the different FGT systems 

in Europe. 

The incineration adopted is according to data published in the BREF document "Waste Incineration" of 

the European Commission (2006), two-thirds of the MSW are treated within a plant operating with a dry 

FGT and one-third of the MSW are incinerated within a plant with a wet FGT.  

For the NOX reduction, a share of two-third SNCR (Selective Non-Catalytic Reduction) and one-third SCR 

(Selective Catalytic Reduction) is used. An energy balance for the plant was made using data from the 

"CEWEP Energy Report" (2006) representing 97 waste-to energy plants in Europe. 

 The plant consists of an incineration line fitted with a grate and a steam generator. The average 

efficiency of the steam production is about 81.9%.  
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Produced steam is used internally as process-steam and the balance is used to generate electricity or 

exported as heat to industry or households. All the GaBi incineration values for 1t of MSW are shown in 

table 2, the process is adapted for the FU introduced. 

 Average efficiency steam production. 81,90% 

Grid losses 7% 

Lower calorific value MSW 10 GJ/t 

Electricity distribution 1.09 GJ/t 

Thermal energy 3.16 GJ/t 

 

All utilities used in the waste incineration plant, the operation of the underground deposit and the 

landfill for bottom ash and air pollution control (APC) residues, as well as the meltdown processes for 

the recovered metals are included in the system (Gabi, database, incineration MSW) that is represented 

in figure 19. 

                                           Figure 18 Flow diagram of Waste Incineration, GaBi4 

 

 

 

Table 2 MSW efficiency and energy value. 
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6.6.1 Flue gas treatment system 

      

   Dry FGT 

The flue gas treatment system uses a dry technology with adsorbent and a SNCR system for NOx-

reduction. The NOx reducing agent ammonia is directly injected into the furnace and reacts with the 

NOx to nitrogen and water. The flue gas is conditioned, with addition of adsorbents and filtered with 

fabric filters. Lime milk and small parts of hearth furnace coke are used as adsorbents; a part of the 

adsorbents is re-circulated. The fly ash together with the adsorbent is mixed together with the boiler 

(CEWEP, 2006) 

   

Wet FGT:  

The flue gas treatment system uses a pre-dusting stage and an additional downstream deducted both 

fabric filters and wet scrubbers to clean the flue gas. After leaving the pre-deducting stage used to 

reduce the dust load before the wet scrubbers, the flue gas is feed into the water of the first wet 

scrubber. Mainly HF and HCl are removed in the first stage. The deposition of Sulphur dioxide in very 

acid medium of the first stage (pH 0-1) is low and requires a second wet scrubber to remove SO2. Lime 

milk, hearth furnace coke and tress are used as adsorbents in the filters and scrubbers. It hasn't been 

done a purification of the brine from the first scrubber to hydrochloric acid and the sulphate slurry from 

the second scrubber to gypsum. All residues are treated together as APC residues. As final treatment 

stage the flue gas passes a SCR system to reduce NOx. Due to the quenching movement of the flue gas 

in the wet scrubber and the temperature requirements of the SCR catalyst, the flue gas has to be 

reheated (Gabi, database, incineration MSW). 

 

6.7 Emissions 
For the emissions HCl, HF, NOx, VOC, N2O, CO, NH3, SO2, dust, dioxin and the heavy metals As, Cd, Co, 

Cr, Ni and Pb mean emission values per cubic meter of cleaned flue gas published in the BREF document 

"Waste Incineration" of the European Commission are used. Due to the wide range of emissions for 

some elements and substances the mathematical mean values are adjusted with additional real plant 

data. The emission of all other elements and the distribution of all elements and substances into the 

different residues are calculated by means of transfer coefficients (see model description below).  

 

6.8 Treatment of residues 
Metals (Fe, Al, Cu, Zn and Pb) are recovered (10% Fe, the 1% Al and Cu, 0.6% Zn and Pb) in  the bottom 

ash) and a three month ageing process is done to stabilize the bottom ash. (CEWEP, 2006) 

60% of the produced bottom ash after metal recovery and ageing is reused as construction material (and 

will leave the system as bottom ash for reuse). The remaining 40% are disposed on a landfill (CEWEP, 

2006). 
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220kg/t of MSW (approximately 195 kg/t of MSW without metals) consist approximately to bottom ash 

and they are quenched. (CEWEP, 2006). 

The tests for bottom ash and standard leakage rates for landfills are used to consider the transfer of 

elements of the bottom ash into ground water, waters bodies or air leachate.  According to the current 

situation in Europe APC (Air Pollution control), the residues (42kg/t of MSW), including boiler ash, filter 

cake and slurries, are disposed in salt mines (43%) or landfills (57%). (CEWEP, 2006). 

The disposal in salt mines without free water and contact to ground water reservoirs has been modeled 

as emission free and the operation of the underground deposit is included. 

The landfill was modeled similar to the bottom ash using leachate test data for APC residues. Transports 

for bottom ash and APC residues independent of the different routes are considered. (CEWEP, 2006) 

Figure 18 represent the whole incineration process modelled with GaBi tools, it includes transportation 

form the household and from the street garbage to the transfer station close to the hypothetical 

incineration plant, the energy generated is distributed to the household as thermal energy or electrical 

energy. 

 

 

                                                                                  Figure 19 Incineration scenario in GaBi 4, Mass Flow 
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                                                                      Figure 20 Incineration scenario in GaBi 4, Energy Flow   
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7. Life Cycle Impact Assessment  
As suggested in ISO 14040 norms, after the target and scope definition, a detailed life cycle inventory 

(LCI) needs to be performed, in which mass and energy flows directly involved in the urban waste system 

are identified. Results from the LCI are then used for the characterization of impacts (LCIA). 

There are different methods that can be used to perform a Life Cycle Impact Assessment. These methods 

are continually investigated and developed by different scientific groups based on different approaches. 

GaBi utilizes two main methods for the life cycle impact assessment, TRACI and CML that are used to 

classify and characterize environmental impacts: the problem-oriented approach, mid-point, and the 

damage-oriented approach, end point (GaBi manual, 2006). 

The midpoint level describes impact such climate change, eco-toxicity and acidification, in contrast to 

endpoint level where human health and ecosystems damages are described. Liquid, solid and gaseous 

emissions have been carefully evaluated and classified into impact categories to which they contribute. 

With CML methods more than a thousand substances are classified and characterized according to the 

ranch to which they contribute to a list of environmental impact categories. Impact categories such 

global warming potential and ozone layer depletion are based on IPCC factors the others are elaborated 

by CML and they are classified in appendix C. 

 

7.1 Total energy 
Total energy is not an environmental indicator, but it is a helpful category in order to analyze the 

efficiency of the waste management systems.  In addition, it is useful to provide a more specific data 

analysis of climate changes and other impact categories. 

This category covers renewable and non-renewable energy sources. It can be seen as an indicator for 

the depletion of energy resources and is expressed with his net calorific value MJ. 

 

7.2 Global Warming Potential (GWP) 
As mentioned in chapter 2, the increasing temperature of the troposphere is due to anthropogenic 

greenhouse gases e.g. from the burning of fossil fuels, and the consequently emission of CO2. In LCA, 

Global Warming Potential (GWP) is measured in kg of CO2 equivalent according with IPCC 

(Intergovernmental Panel on Climatic Change). This is a measure of how much a unit mass of gas 

contributes to global warming compared to carbon dioxide. The other gasses as CH4, N2O, SF6, PFC, and 

HFC values are expressed in CO2 equivalent. For Global Warming Potential time must always be 

expressed for a certain time horizon index as 25, 100 or 500 years, because the characteristic effect of 

greenhouse gases have various atmospheric lifetimes. The reference time horizon for this study is 100.  
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6.3 Ozone Depletion Potential (ODP)  
Another global effect analyzed is Ozone Depletion Potential, which main effect is the reduction of the 

ozone concentration in the Stratosphere, due to emissions such as Chloro-fluoro-carbons (CFCs).  In LCA 

the Reference Substance is Ozone Depletion Potential (ODP), is a measure of the destructive effects of 

gases on the ozone layer, measured in Tri-chloro-fluoro-methane-equivalent, R11-equivalent, (Guinee, 

2001). The ozone layer is the earth’s shield against UV radiation and in this way prevents excessive 

warming of the earth's surface. Consequences of ozone layer depletion include the growth of tumors in 

humans and animals as well as photosynthetic disruption in plants. (Gabi tutorial clip 1, 2006) 

 

6.4 Acidification Potential (AP)  
Acidification Potential refers to the effects of the acid gases like Sulphur dioxide (SO2), sulfur trioxide 

(SO3), nitrogen oxides(NOx), hydrogen chloride (HCl) and hydrogen fluoride  that are released into the 

air, taken up by atmospheric precipitations and consequently falling like “acid rain”.  The  pH-value of 

precipitation, due to the wash-out of acid gases, increases, the rain are lately  absorbed by plants, soil 

and surface waters leading to damage and super acidity of the soil, with consequently impact on 

vegetation, lakes and rivers. Acidification is also harmful for human health especially on the respiratory 

apparatus; Another big impact is the degradation of monuments, houses, bridges and building products;  

The area of Avezzano, Fucino, is an important center in the middle of three national parks; this area is 

the main center for the agricultural and industrial economy of the region, in addiction, like in all Italy, 

the place is full of architectural and cultural places, so taking control of the Acidification effect is 

essential. 

In the LCIAI, the effect of other acidifying emissions (e.g. NOx, H2S) is given in SO2 equivalents, the 

reference unit measure of how much the equivalent of a given mass contributes to acidification. (Guinee, 

2001). 

 

6.5 Eutrophication Potential (EP)  
Eutrophication is a nutrient enrichment culminating in over nourishment in aquatic and terrestrial 

ecosystems. This may cause the increasing of biomass production, and consequently a shift in the 

composition of species. In aquatic ecosystems, the increased growth of algae allows less sunlight reaches 

deeper layers, less photosynthesis occurs and oxygen concentration decreases. Dead plants fall down to 

deeper layers and are degraded. Finally, the concentration of oxygen is too low for fishes and other 

animals to survive. Degradation processes happen without oxygen, they are anaerobic and gases like 

methane are produced. 

For terrestrial ecosystems, eutrophication might cause a change in flora and fauna, biodiversity can 

decrease; this event is negatively critical and significant for a natural area like Abruzzo, where species of 

fauna and flora are frequently controlled.  
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In LCAI, The contribution of relevant emissions is expressed in PO4 equivalent. Eutrophication is caused 

by excessively high levels of macronutrients, the most important of which are nitrogen (N) and 

phosphorus (P). The full list of relevant substances and their equivalence factors, determined by the 

CML, are listed in appendix C.  

 

6.6 Human Toxicity , Marine, Freshwater and Terrestrial Eco- 

Toxicity Potential 
Different toxicity potential are analyzed: Human toxicity, marine, freshwater and terrestrial eco-toxicity. 

The main contributor are heavy metals, emitted to air, water and soil. The toxicity of a substance is based 

on several parameters: its chemical composition, physical properties, point source of emission and the 

time of exposure; Harmful sub-stances can spread to the atmosphere, into water bodies or into the soil. 

Characterization factors are calculated through the “Centre of Environmental Science (CML), Leiden 

University”. 

Human Toxicity Potential (HTP) assessment aims to estimate the negative impact on humans, Eco-

Toxicity potential aims to outline the damaging effects on ecosystem. (GaBi Paper Clip Tutorial, part 1. 

PE International, 2006). The surface of the model is divided into 3% surface water, 60% natural soil, 27% 

agricultural soil and 10% industrial soil. 25% of the rainwater is infiltrated into the soil. (GaBi Paper Clip 

Tutorial, part 1. PE International, 2006). This leads to a division of the toxicity into the groups mentioned 

above (HTP, AETP, TETP,METP) for which, based on the location of the emission source (air, water, soil), 

three values are calculated 

The potential toxicities (human, aquatic and terrestrial ecosystems) are generated from a proportion 

based on the reference substance Dichlorbenzol (C6H4Cl2). The unit is 1.4 kg Dichlorbenzol-Equivalent kg 

emission.  
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8. Result and interpretation 
 

8.1 Global Warming Potential 
The model provides a clear overall result regarding the impact category climate change: Table 3 and 

Figure 19 show that landfilling generates significant savings on CO2 production and emission in the air. 

   Table 3 GWP comparison each scenario, CO2-Equiv  

Global Warming Potential [kg CO2-Equiv./FU] Incineration Landfilling 

Emissions to air 7462113,037 4043586,574 

 

 

 

CO2 are emitted mainly during the combustion, however even landfill have a strong impact on the air 

quality. The organic material decomposes anaerobically produce LFG is, consisting of 45% to 60% 

methane gas, 40% to 60% carbon dioxide, and 2% to 9% other gases which are mostly emitted to the 

atmosphere (Uni Assignment Center, 2006). LFG is a significant contributor to atmospheric methane; 

this production is a great concern as a great impact on greenhouse effect. Landfills are the largest 

anthropogenic source of atmospheric methane in many developed countries. In Europe, 23% of 

anthropogenic emission is methane in 2006 (Capellia, 2014). 

Although methane and carbon dioxide are produced in almost equal amounts in landfills, methane is 21 

more than carbon dioxide. 

0

2000000

4000000

6000000

8000000

1

Global Warming Potential [kg CO2-Equiv.]

incineration landfilling

Figure 21 GWP representation for each scenario, CO2-Equiv. 
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Having a deeper analysis the base case, table 4, has a greater emission on transportation, since landfill 

is located farer than the incineration, from the city. 

 

 

The results from the impact category total energy provide useful information for the interpretation of 

this category. Table 4 shows the emission of CO2-eq. in relation to the generated energy. 

Ratio of total energy and climate change [CO2 equiv/MJ] 

incineration landfilling 

0,237272211 4,617888779 

 

Option 2 shows a production of about 16 times more greenhouse gases per MJ. The result shows a 

better utilization of the incineration generator. Secondly, the emissions from the combustion plant are 

largely composed by CO2; for the landfill, the main part of the emissions is methane and every kg of 

methane counts 21 kg CO2-eq. 

Here, emissions of combustion have a big impact on climate change; however, incineration produces 

related IHT energy and guarantees more energy saving and less greenhouse gas emissions. 

 

8.2 Ozone Depletion Potential  
Biogas from landfill is a main contributor to ODP as well as the combustion of Diesel due to emissions of 

CO, NMVOCs and VOCs; therefore transport activities play a major role. Biogas production is the reason 

because Option 1 gets a slight worse result in CO2 terms compared with incineration and methane 

landfills; results are powerful greenhouse gas and effects on the ozone layer they are emitted in the air; 

however their impact is not big. 

Figure 22 scenario  trucks comparison, CO2-Equiv 

Table 4 ratio of total energy comparison, CO2.equiv 
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     Table 5 comparison ODP each scenarios, kg R11-Equiv.  

Ozone Layer Depletion Potential [kg R11-Equiv.] Incineration Landfilling 

Emissions to air 0,011773818 0,006919415 

 

 

 

Figure 23 ODP representation for each scenario, kg R11-Equiv 

 

Coherently with what has already been analyzed incineration have a greater impact than landfill on the 

air quality. But less emission compared on the energy production (table 6). 

Table 6 comparison ratio of total energy kg R11-Eq/MJ 

Ratio of total energy on ODP [ Kg R11-eq/ MJ] 

incineration landfilling 

3,74E-10 7,90E-09 
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8.3 Acidification Potential  
Emission are more pollutant in incineration, the graphic shows the acid compound for FU. Acidification 

Potential is increased by acidifying compounds from human sources, principally fossil fuel and biomass 

combustion, other main pollutants involved in acidification are sulfur and nitrogen compounds. 

However landfilling have a more impact on water quality due hydrochloric acid. 

 

Acidification Potential [kg SO2-Equiv.] Incineration Landfilling 

Emissions to air 8422,207418 1848,27358 

Emissions to fresh water 0,000636786 0,62086425 

  

  

 

Figure 23 comparison truck each scenario,  kg SO2-Equiv. 

 

 

8.4 Eutrophication Potential  
The model presents a clear ranking for the impact category eutrophication potential. Incineration 

produces a small saving compared to the Base Case. Main impacts are transportation, leachate from 

landfill and  exhaust from WTE. Incineration itself is a big source of nitrogen emission as it is shown in 

table 8, on fact WTE has the biggest impact on the air quality while the production of leachate is more 

dangerous for the soil and water quality. 
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Table 7 AP comparison emissions for each scenario, kg SO2-Equiv 
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Table 8 EP comparison emissions for each scenario, kg Phosphate-Eq 

Eutrophication Potential [kg Phosphate-Equiv.] Incineration Landfilling 

Emissions to air 1257,225801 250,674494 

Emissions to fresh water 23,38650282 997,041128 

Emissions to sea water 0,247448282 0,03529596 

Emissions to industrial soil 3,684707801 8678,97664 

 

 

 

Figure 24 EP comparsion 
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Figure 25 EP, representation of the specific emissions, kg-Phospate-eq 

 

According with the precedent analysis, there is a close connection between total energy and impact 

category. Benefits from incineration are clearer, WTE guarantees a better production of energy and  

therefore higher energy utilization; Every MJ of electricity produced in the incineration process 

contributes to this impact category with 4,08446E-05kg P-eq. that is almost 300 hundred less than the 

energy produced by landfill. 

Table 9 EU comparison  total ratio energy Kg P/ MJ 

 

8.5 Human Toxicity Potential (HTP) 
Main benefits arise out of land-filling. Released biogas, exhaust from the electricity generator at landfill, 

leachate and exhaust from WTE cause impacts. For the combustion of waste, heavy metals residues are 

the main contributor.  

In the following table 10 and graphics, the effects on human and environment toxicity are shown. It can 

be seen a sort of coherence in the analysis, incineration emissions have a huge impact on air. 

 

 

 

Ratio total energy EP [kg P-Eq] 
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Human Toxicity Potential [kg DCB-Equiv.] Incineration Landfilling 

Emissions to air 30906,1055 6549,78544 

Emissions to fresh water 452,439454 1721,61724 

Emissions to sea water 866,009435 116,15248 

Emissions to industrial soil 3,86107438 273,418236 

 

 

Figure 26 HTP comparison for scenarios 

 The behavior and effects of atmospheric emissions in soils and plants for both cases are discussed. 

Incineration has a higher effect on Human toxicity as it could be seen in the graphic of figure 26, due to 

his biggest effects in the emission to air or the gas emissions which are more intense than land-filling. 

However land-filling has a major impact on freshwater and industrial soil, especially if the production of 

leachate, and it is not fine controlled. 
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Figure 27 Human Toxicity Potential Emissions  

 

 

 

8.6 Marine Aquatic Ecotoxicity Pot. MAETP 
The results for this impact category are determined by impacts caused by leachate (emissions to water 

and soil) and exhaust fumes. Although impacts by exhaust from garbage combustion are of little 

relevance compared to land-filling emission in the soil, the emissions of Hydrocarbons to the sea water 

are worst by incineration than by land-filling. For the incineration case, the presence of metals and 

organics in the incinerator quenches water and in leachates from ash disposed in landfills are reviewed, 

as well as their toxicity to fish. 

Table 11 MAETP comparison of emissions for each scenario, DCB-Eq 

Marine Aquatic Ecotoxicity Pot.  [kg DCB-Equiv.] Incineration Land-filling 

Emissions to air 8951691,415 8497352,8 

Emissions to fresh water 293246,7114 21060899,9 

Emissions to sea water 2335456,34 313950,481 

Emissions to industrial soil 4186,129008 211759,463 

 

 

Figure 28 HTP comparison emissions kg DCB-Equiv  
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Figure 28 MAETP comparison for each scenario, kg DCB-Eq 

 

 

 

8.7 Freshwater Aquatic Ecotoxicity Potential  
The impact for this category arise mainly out of heavy metal emissions from leachate to water. As they 

are especially high for leachate from slag. This is particularly  evident explained  in Figure 12 
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Freshwater Aquatic Ecotoxicity Pot.  [kg 1,4 DCB-

Equiv.] 

Incineration Landfilling 

Emissions to air 286,3703824 81,20706916 

Emissions to fresh water 207,3510955 244,0638025 

Emissions to sea water 0,008589247 0,001073517 

Emissions to industrial soil 5,906544834 374,9264591 

 

Figure 30  FAEP representation of total impact for each scenario 
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Areas near landfills have a greater possibility of groundwater contamination because of the potential 

pollution source of leachate direct mitigation. 

 

8.8 Terrestric Ecotoxicity Potential  
Exhaust from WTE, inorganic particles, diesel consumption (e.g. for transportation) and waste handling 

are the main factors causing impacts. Incineration still have the main impact on air quality, however 

landfilling impact is almost 66 times higher than WTE due to more heavy metals toxic for the soil 

quality. 

Table 13 TETP emissions for each scenario 

Terrestrial Ecotoxicity Potential [kg DCB-Equiv.] Incineration Landfilling 

Emissions to air 276,314369 59,00084647 

Emissions to fresh water 0,30714169 0,110806082 

Emissions to sea water 1,23238309 0,187677422 

Emissions to industrial soil 68,371277 4569,390586 
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Figure 33 Comparison TETP emissions 
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8.9 Results comparison 
After the presentation and interpretation of the results in the previous paragraphs, it is possible to draw 

an overall vision in order to obtain conclusions and to give recommendations. In figure 44 all the results 

of the study are collected and compared. To analyze the incineration impact compared to landfilling, a 

Value of 1 has been assigned to the Base Case (landfilling), the incineration values are taken as ratio that 

measure how much the incineration impact is higher than landfilling. 

 

Figure 34 Overall Comparison of the Effects 

The analysis shows that incineration has a more dangerous impact  than landfilling; however focusing 

on energy production waste to energy produces almost 35% more energy. (figure 45) 

 

Figure 35 Energy production 

This is ideal for the Avezzano inhabitants, as the city, like the whole Italy, depend strongly on external 

Countries for the e energy production. However building an incineration plant need a deeper analysis, 

with this study is clear that the waste to energy has mayor effect on Acidification Potential and Human 

toxicity potential. Acidification potential is dangerous for the flora and fauna of Marsica area (The area 

around Avezzano). Human toxicity potential, confirm the protest of greens and local inhabitants, as 
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incineration has great impact on human safety. Another helpful practice would be to move the landfilling 

from Aielli to Avezzano in order to avoid the transportation, that is as shown one of the biggest emitter 

of CO2, consequently, reducing the distance, the process would produce less greenhouse gases and it 

would be more sustainable. It is necessary to evaluate the economic impact of an eventually incineration 

plant introduction. In order to reach an overall view. 

 

8.10 Economic Assessment 
It is not easy having a detailed economic analysis of the incineration practice. Many factors influence 

the cost of incineration: the cost of the land where the incineration is built up, the environmental and 

economic fees, dimensions and size of the technologies, final disposal treatment, price of energy, metal 

recover and cost of the personal. Energy price of production and distribution (Andretta, 2009). 

Many information are indicated in BAT document: where it is guarantee an optimal energy production 

and utilization, which allows reaching the maximum value of energy obtained. A classification is 

presented by the Best Available technology published by BREF, under the IPPC Directive and the 

Industrial Emissions Directive with last references from 2006. The classification depends on the size of 

the plant. For plant that process less of 50000 ton of garbage the average cost value is 111.76 euros/ton. 

According with CEWEP still there are not grants for the production of energy, and in relation to 

CEE/CEEA/CE n° 77  directive of September 2001, just the organic part of municipal waste is considered 

as renewable energy. Fees on incineration vary according to the Country. The same happens with 

landfilling. All results  are showing in table 14: 

Table 14  Incineration total cost  

incineration cost 111,76 €/ton 

total cost 644611,563 €/year 

investment 88,66 €/MWh 

waste energy 1,9 MWh/ton 

total energy 10958,858 MWh/year 

energy demand 1026,3 kWh/ab 

total energy demand 434771,469 MWh/year 
 

Total cost is based on 5767.82 ton of waste produced in the city of Avezzano, and the average italian 

household energy demand is 1026.3 kWh/ab (Italian Statistic Institute,2014)- This value has been 

multiply for 42 434 number of inhabitants.  

According with this calculation waste to energy produces approximately 10958.858 MWh/year, that 

cover 2,52% of the total energy demand of the Avezzano municipal. Therefore, it would be helpful to 

improve the ratio of fossil energy towards more renewables resources, In the Abruzzo zone solar or 

wind, power could be improved to cover the energy supply. 

Regarding landfilling price, according the Italian the average price of landfilling is 471807.676€ 

(Andretta, Bologna 2009)  for landfill that contains less than 50000 ton. 
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Table 15 Landfilling cost  

average price 81,8 €/ton 

total price 471.807,68 € 

  

Approximately incineration is 30% more expensive than landfilling, although, as showed in the previous 

chapter it is an advantageous source of energy. 

 

8.11 Sensitivity analysis 
The database used by GaBi are average of European condition. In the case of incineration and landfilling, 

they include the state-of-art of the technologies for the waste treatment, but they don’t perform the 

real Italian condition. The incineration technology includes: for landfill a site based leachate treatment 

plant, a modern flue gas cleaning system and slag treatment including metal recovery after combustion; 

for the combustion modern grate combustion and a modern end of pipe system. A more detailed model 

should be developed with a deeper study of the local Italian framework and other technologies, which 

have proved practicability should be included (Büning, 2004). 

 In the studied model for landfilling, the pretreatment of waste is not considered, while Abruzzo is the 

unique Italian region where all waste is pre-treated, (Lega Ambiente, 2012) before landfilling. If this 

method would be applied also for incineration, the calorific value would increase (Büning, 2004) due to 

this fact more energy would be produced. Another important point to be studied is the Italian energy 

mix. GaBi4 debases use a European energy mix supply, the consequence is that the results for this study 

dependent mainly on European condition and they are not calibrated the specific situation in Abruzzo.  

 

8.12 Recommendations 
Based on these considerations, recommendations for further activities could be given. This analysis 

could be a starting point for ongoing research. To improve the results of this investigation, it would be 

worthwhile to develop an “Abruzzo specific” database, those would mean a big support, even though, 

as specified before, it is rare having reliable data. This database should contain statistics about waste 

composition, about more appropriate technology that could be adopted, coherently with Italian 

scenario and according with Italian average.  

Furthermore, an algorithm for a more detailed calculation of the distances between the main city and 

the workspace need to be performed.  

A deeper analysis of the energy mix and an accurate calculation of leachate and slag, considering also a 

pretreatment process before landfilling, is also necessary. Another useful study is to extend the LCA / to 

analyze the recycling practice in Abruzzo, even if Abruzzo is one of the six region with a better waste 

organization, (Lega Ambiente 2012). A new combination between recycling and waste to energy could 

be find in order to have an optimal and sustainable energy production with less impact on the 

environment and on human health. 
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In order to have a sustainable perspective also would be necessary to introduce a Social Life Cycle 

Assessment and a Life Cycle Cost Assessment that would consider also the social and economic feasibility 

of the introduction of the incineration   .  
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9. Conclusions 
Based on previous discussion and analysis, it is possible to draw conclusions 

 

- According to Life Cycle Assessment, Incineration practice has more effect on air quality 

and consequently on human health; however landfilling could lead to a degradation of soil, fresh 

and marine water quality that could have effect especially on agriculture, influencing also the 

income of Avezzano inhabitants. 

 

- Incineration more risky impact in comparison to landfilling is the Acidification Potential that is 

dangerous for the ecological environment and for Human health but also for historic monument 

and architectures. However according with LCA performed by GaBi4, Incineration saves more 

CO2 than landfilling during the transportation phase. 

 

- Incineration produces almost 35% more energy than Landfilling and it could be an optimal energy 

source for the Avezzano inhabitants as it covers the 2,52% of the municipal energy demand, that 

would be local produced, instead to be imported. This scenario allows to save money and to 

avoid CO2 during the energy transportation. 

 

- Incineration results to be 30% more expensive than landfilling, however deeper assessment 

should be made as it is not easy to evaluate the overall cost of waste to energy plant, many 

actors, polices and situations need to be analyzed and for this reason further study  about 

economic but also social assessment should be done. 
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ANNEX I 

Landfilling Emissions 

  CML2001, Global Warming Potential (GWP 100 years) [kg CO2-Equiv.] kg CO2-Equiv. 

Emissions to air  3840841,55 

Inorganic emissions to air  1509622,29 

 Carbon dioxide 1502984,61 

 Carbon dioxide (biotic) 1491,99589 

 Nitrous oxide (laughing gas) 5145,67937 

 Sulphur hexafluoride 0,01139794 

Organic emissions to air 

(group VOC) 

 2331219,26 

 Group NMVOC to air (Halogenated organic 

emissions to air ) 

60,7571867 

 Methane 2331157,25 

 VOC (unspecified) 1,25292743 

 

 

 

 

  CML2001 - Nov. 09, Marine Aquatic Ecotoxicity Pot. (MAETP inf.)  kg DCB-Equiv. 

Emissions to air (tot)  8497352,799 

Heavy metals to air  489485,0773 

 Antimony 7,488582496 

 Arsenic (+V) 729,3233169 

 Arsenic trioxide 0,001748919 

 Cadmium (+II) 1135,820126 

 Chromium (+III) 0,014615343 

 Chromium 

(unspecified) 

13,51701739 

 Cobalt 2492,505135 

 Copper (+II) 1084,018033 
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 Hydrogen arsenic 

(arsine) 

0,169388341 

 Lead (+II) 48,39077016 

 Mercury (+II) 981,8866298 

 Molybdenum 267,3221663 

 Nickel (+II) 26080,718 

 Selenium 108593,2525 

 Thallium 98,69882022 

 Tin (+IV) 11,07563483 

 Vanadium (+III) 347164,4068 

 Zinc (+II) 776,4679726 

 Inorganic emissions to 

air 

8007853,266 

Inorganic emissions to air  131535,1412 

 Beryllium 15411,54203 

 Carbon disulphide 5,16E-07 

 Hydrogen fluoride 7860906,071 

 Tin oxide 4,29E-06 

 Zinc oxide 7,00E-05 

 Zinc sulphate 0,511117845 

Organic emissions to air (group VOC)  14,45588483 

 VOC (unspecified) 0,000535445 

 

CML2001 - Nov. 09, Marine Aquatic Ecotoxicity Pot. (MAETP inf.) kg DCB-Equiv. 

 

Emissions to fresh water  21060899,93 

Heavy metals to fresh water  177825,6951 

 Antimony 3,34E-05 

 Arsenic (+V) 761,120765 

 Cadmium (+II) 5046,770445 

 Chromium (+III) 0,776096728 

 Chromium (+VI) 5,38E-09 

 Chromium (unspecified) 101,1832722 

 Cobalt 23,20363524 
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 Copper (+II) 3559,740574 

 Lead (+II) 13,76314358 

 Mercury (+II) 25,52259016 

 Molybdenum 18528,639 

 Nickel (+II) 82892,64428 

 Selenium 41067,88996 

 Thallium 8,98233508 

 Tin (+IV) 0,000432226 

 Vanadium (+III) 24812,92775 

 Zinc (+II) 982,5307479 

Inorganic emissions to fresh water  20883074,17 

 Barium 11590,86896 

 Beryllium 5994,176329 

 Hydrogen fluoride (hydrofluoric 

acid) 

20865489,12 

Organic emissions to fresh water  0,069736107 

 Halogenated organic emissions to 

fresh water 

4,38E-09 

 Polychlorinated dibenzo-p-dioxins 

(2,3,7,8 - TCDD) 

4,38E-09 

 Vinyl chloride (VCM; chloroethene) 1,73E-12 

 Hydrocarbons to fresh water 0,069588876 

 Acrylonitrile 1,02E-06 

 Anthracene 0,012063016 

 Aromatic hydrocarbons 

(unspecified) 

0 

 Benzene 0,000192018 

 Benzo{a}anthracene 0,002348858 

 Benzofluoranthene 0,046062247 

 Chrysene 0,003477801 

 Ethyl benzene 1,72E-05 

 Fluoranthene 0,000433668 

 Phenol (hydroxy benzene) 0,00380675 

 Toluene (methyl benzene) 7,46E-05 
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 Xylene (isomers; dimethyl benzene) 0,001111678 

 Naphthalene 0,000147227 

 

 

 

  CML2001 - Nov. 09, Marine Aquatic Ecotoxicity Pot. (MAETP inf.) kg DCB-Equiv. 

Emissions to sea water  313950,4805 

Heavy metals to sea water  90792,00159 

 Arsenic (+V) 674,3647587 

 Cadmium (+II) 6438,528474 

 Chromium (unspecified) 31,74334976 

 Cobalt 22568,8402 

 Copper (+II) 5582,939949 

 Lead (+II) 8,752674907 

 Mercury (+II) 46,05062526 

 Molybdenum 0,028688517 

 Nickel (+II) 13891,49365 

 Tin (+IV) 0,000467963 

 Vanadium (+III) 35249,9272 

 Zinc (+II) 6299,331557 

Inorganic emissions to sea water Inorganic emissions to sea water 223111,1048 

 Barium 120027,3199 

 Beryllium 103083,7848 

Organic emissions to sea water Organic emissions to sea water 47,37413097 

 Hydrocarbons to sea water 47,24872201 

 Naphthalene 0,125408959 

 

 

 

  CML2001 - Nov. 09, Marine Aquatic Ecotoxicity Pot. (MAETP 

inf.)  

kg DCB-Equiv. 

Heavy metals to industrial soil  211759,463 
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 Arsenic (+V) 965,407108 

 Cadmium (+II) 5587,4757 

 Chromium (+III) 1,78E-05 

 Chromium (unspecified) 462,99955 

 Cobalt 192,808124 

 Copper (+II) 2686,22606 

 Lead (+II) 29,8765329 

 Mercury (+II) 0,84714659 

 Nickel (+II) 196685,75 

 Zinc (+II) 5148,07312 

 

 

  CML2001, Terrestric Ecotoxicity Potential (TETP inf.)  kg DCB-Equiv. 

Emissions to air  59,00450844 

Heavy metals to air  56,48003326 

 Antimony 0,000138365 

 Arsenic (+V) 5,071307315 

 Arsenic trioxide 1,22E-05 

 Cadmium (+II) 0,083498331 

 Chromium (+III) 0,008450613 

 Chromium (unspecified) 7,815560073 

 Cobalt 0,049853814 

 Copper (+II) 0,008482665 

 Hydrogen arsenic (arsine) 0,001177832 

 Lead (+II) 0,107574597 

 Mercury (+II) 23,17295474 

 Molybdenum 0,002410136 

 Nickel (+II) 0,805392541 

 Selenium 0,273956757 

 Thallium 0,00130855 

 Tin (+IV) 0,021196673 

 Vanadium (+III) 18,91864245 

 Zinc (+II) 0,138115642 
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Inorganic emissions to air  0,878602299 

 Barium 0,819981646 

 Beryllium 0,057960617 

 Carbon disulphide 1,74E-09 

 Hydrogen fluoride 0,000569098 

 Tin oxide 8,20E-09 

 Zinc oxide 1,25E-08 

 Zinc sulphate 9,09E-05 

Organic emissions to air (group VOC)  1,645872881 

 Group NMVOC to air 1,645741228 

 VOC (unspecified) 0,000131653 

 

 

  CML2001, Terrestric Ecotoxicity Potential (TETP inf.)  kg DCB-Equiv. 

Emissions to fresh water  0,110806082 

Heavy metals to fresh water  0,110785855 

 Antimony 2,04E-29 

 Arsenic (+V) 6,67E-20 

 Cadmium (+II) 3,24E-22 

 Chromium (+III) 2,05E-22 

 Chromium (+VI) 3,55E-31 

 Chromium (unspecified) 2,67E-20 

 Cobalt 1,43E-23 

 Copper (+II) 6,21E-23 

 Lead (+II) 5,92E-24 

 Mercury (+II) 0,110785855 

 Molybdenum 2,05E-20 

 Nickel (+II) 3,79E-20 

 Selenium 2,52E-20 

 Thallium 1,06E-23 

 Tin (+IV) 2,77E-28 

 Vanadium (+III) 2,95E-20 

 Zinc (+II) 1,80E-22 



 62

Inorganic emissions to fresh 

water 

I 1,76E-05 

 Barium 7,07E-21 

 Beryllium 3,66E-21 

 Hydrogen fluoride (hydrofluoric acid) 1,76E-05 

Organic emissions to fresh water  2,59E-06 

 Halogenated organic emissions to fresh 

water 

5,87E-14 

 Polychlorinated dibenzo-p-dioxins 

(2,3,7,8 - TCDD) 

5,75E-14 

 Vinyl chloride (VCM; chloroethene) 1,18E-15 

 Hydrocarbons to fresh water 2,52E-06 

 Acrylonitrile 7,29E-09 

 Anthracene 7,87E-08 

 Benzene 9,94E-07 

 Benzo{a}anthracene 3,95E-09 

 Benzofluoranthene 2,18E-08 

 Chrysene 9,77E-09 

 Ethyl benzene 1,50E-08 

 Fluoranthene 2,47E-09 

 Phenol (hydroxy benzene) 1,68E-07 

 Toluene (methyl benzene) 8,54E-07 

 Xylene (isomers; dimethyl benzene) 3,68E-07 

 Naphthalene 6,82E-08 

 

 

  CML2001, Terrestric Ecotoxicity Potential (TETP inf.) [kg DCB-

Equiv.] 

kg DCB-Equiv. 

Emissions to sea water  0,18767742 

Heavy metals to sea water  0,18767417 

 Arsenic (+V) 5,83E-20 

 Cadmium (+II) 3,92E-22 

 Chromium (unspecified) 7,91E-21 
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 Cobalt 1,38E-20 

 Copper (+II) 9,37E-23 

 Lead (+II) 3,54E-24 

 Mercury (+II) 0,18767417 

 Molybdenum 3,17E-26 

 Nickel (+II) 6,28E-21 

 Tin (+IV) 2,82E-28 

 Vanadium (+III) 4,16E-20 

 Zinc (+II) 1,09E-21 

Inorganic emissions to sea 

water 

 1,36E-19 

 Barium 7,31E-20 

 Beryllium 6,29E-20 

Organic emissions to sea water  3,25E-06 

 Hydrocarbons to sea water 3,18E-06 

 Naphthalene 7,21E-08 

 

 

  CML2001, Terrestric Ecotoxicity Potential (TETP inf.) [kg DCB-

Equiv.] 

kg DCB-Equiv. 

Emissions to industrial soil  4569,39059 

Heavy metals to industrial 

soil 

 4569,39059 

 Arsenic (+V) 41,7793965 

 Cadmium (+II) 8,3035218 

 Chromium (+III) 0,00017164 

 Chromium (unspecified) 4459,88469 

 Cobalt 0,01951556 

 Copper (+II) 0,32255641 

 Lead (+II) 1,28959674 

 Mercury (+II) 0,28658787 

 Nickel (+II) 39,9440726 

 Zinc (+II) 17,5604802 
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  CML2001, Human Toxicity Potential (HTP inf.) [kg DCB-Equiv.] kg DCB-Equiv. 

Emissions to air Emissions to air 6549,831012 

Heavy metals to air Heavy metals to air 1938,214857 

 Antimony 1,519702681 

 Arsenic (+V) 1095,824242 

 Arsenic trioxide 0,002628351 

 Cadmium (+II) 149,0554282 

 Chromium (+III) 0,001803358 

 Chromium (unspecified) 1,667837509 

 Cobalt 8,011768498 

 Copper (+II) 5,211251682 

 Hydrogen arsenic (arsine) 0,254509688 

 Lead (+II) 3,202675973 

 Mercury (+II) 4,9174782 

 Molybdenum 0,745694414 

 Nickel (+II) 243,1432376 

 Selenium 244,3144142 

 Thallium 1,664180677 

 Tin (+IV) 0,002558954 

 Vanadium (+III) 177,4696437 

 Zinc (+II) 1,205801042 

Inorganic emissions to air  3047,091943 

 Ammonia 0,056011852 

 Barium 127,6372233 

 Beryllium 7,434040121 

 Carbon disulphide 8,15E-07 

 Hydrogen chloride 1,999698375 

 Hydrogen fluoride 549,9519012 

 Hydrogen sulphide 2,359014242 

 Nitrogen dioxide 9,55E-09 
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 Nitrogen oxides 2312,100942 

 Sulphur dioxide 45,55231758 

 Tin oxide 9,90E-10 

 Zinc oxide 1,09E-07 

 Zinc sulphate 0,000793731 

Organic emissions to air 

(group VOC) 

 1306,994502 

 Group NMVOC to air 1306,993136 

 VOC (unspecified) 0,001365431 

Particles to air  257,5297102 

 

  CML2001, Human Toxicity Potential (HTP inf.) [kg DCB-Equiv.] kg DCB-Equiv. 

Emissions to fresh water  1721,617237 

Heavy metals to fresh water  168,3133735 

 Antimony 6,33E-06 

 Arsenic (+V) 6,102677789 

 Cadmium (+II) 0,524477642 

 Chromium (+III) 0,001850029 

 Chromium (+VI) 5,34E-12 

 Chromium (unspecified) 0,241196769 

 Cobalt 0,000511809 

 Copper (+II) 0,020483654 

 Lead (+II) 0,152045078 

 Mercury (+II) 0,169806866 

 Molybdenum 48,891489 

 Nickel (+II) 12,19756154 

 Selenium 90,74574058 

 Thallium 0,076075969 

 Tin (+IV) 6,10E-09 

 Vanadium (+III) 9,148015079 

 Zinc (+II) 0,04143538 

Inorganic emissions to fresh 

water 

 1420,680209 

 Barium 8,769469347 
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 Beryllium 0,155272198 

 Hydrogen fluoride (hydrofluoric acid) 1411,755467 

Organic emissions to fresh 

water 

 132,6236549 

 Halogenated organic emissions to fresh water 7,49E-07 

 Polychlorinated dibenzo-p-dioxins (2,3,7,8 - 

TCDD) 

8,40E-08 

 Vinyl chloride (VCM; chloroethene) 6,65E-07 

 Hydrocarbons to fresh water 132,6228834 

 Acrylonitrile 0,013372692 

 Anthracene 8,21E-06 

 Benzene 132,3961391 

 Ethyl benzene 0,010471827 

 Phenol (hydroxy benzene) 0,003324624 

 Toluene (methyl benzene) 0,018265596 

 Xylene (isomers; dimethyl benzene) 0,181301432 

 Naphthalene 0,000770673 

 

  CML2001, Human Toxicity Potential (HTP inf.) [kg DCB-Equiv.] kg DCB-Equiv. 

Emissions to sea water  116,1524799 

Heavy metals to sea water  19,53714569 

 Arsenic (+V) 4,717480658 

 Cadmium (+II) 0,362027138 

 Chromium (unspecified) 0,038779089 

 Cobalt 0,169499987 

 Copper (+II) 0,022342365 

 Lead (+II) 0,06098174 

 Mercury (+II) 0,201241462 

 Molybdenum 7,43E-05 

 Nickel (+II) 1,798680998 

 Tin (+IV) 4,09E-09 

 Vanadium (+III) 11,98598454 

 Zinc (+II) 0,180053375 
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Inorganic emissions to sea 

water 

 91,45811176 

 Barium 88,86709844 

 Beryllium 2,591013326 

Organic emissions to sea water  5,157222463 

 Hydrocarbons to sea water 5,156483389 

 Anthracene 4,72E-06 

 Benzene 5,155392076 

 Ethyl benzene 0,000275885 

 Phenol (hydroxy benzene) 3,97E-06 

 Toluene (methyl benzene) 0,000563754 

 Xylene (isomers; dimethyl benzene) 0,00024298 

 Naphthalene 0,000739074 

 

 

CML2001, Human Toxicity Potential (HTP inf.) [kg DCB-Equiv.] kg DCB-Equiv 

Emissions to industrial soil Emissions to industrial soil 273,418236 

Heavy metals to industrial soil Heavy metals to industrial soil 273,418236 

 Arsenic (+V) 12,78021 

 Cadmium (+II) 3,31948015 

 Chromium (+III) 8,17E-06 

 Chromium (unspecified) 212,165364 

 Cobalt 0,00516875 

 Copper (+II) 0,02817791 

 Lead (+II) 11,6318101 

 Mercury (+II) 0,00553037 

 Nickel (+II) 33,1810185 

 Zinc (+II) 0,30146823 

 

 

  CML2001, Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) [kg DCB-Equiv.] 

kg DCB-Equiv. 
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Emissions to air  81,9955909 

Heavy metals to air  58,001668 

 Antimony 0,00084368 

 Arsenic (+V) 0,1560201 

 Arsenic trioxide 3,74E-07 

 Cadmium (+II) 0,2974421 

 Chromium (+III) 5,36E-06 

 Chromium (unspecified) 0,00495743 

 Cobalt 0,29312798 

 Copper (+II) 0,26893745 

 Hydrogen arsenic (arsine) 3,62E-05 

 Lead (+II) 0,01647362 

 Mercury (+II) 0,25928006 

 Molybdenum 0,01337388 

 Nickel (+II) 4,36880205 

 Selenium 2,79853409 

 Thallium 0,00598124 

 Tin (+IV) 0,00374382 

 Vanadium (+III) 49,3087931 

 Zinc (+II) 0,20531544 

Inorganic emissions to air  8,68229968 

 Barium 7,22538385 

 Beryllium 0,56191004 

 Carbon disulphide 1,11E-08 

 Hydrogen fluoride 0,89487061 

 Tin oxide 1,45E-09 

 Zinc oxide 1,85E-08 

 Zinc sulphate 0,00013515 

Organic emissions to air (group 

VOC) 

 15,3116232 

 Group NMVOC to air 15,3104667 

 VOC (unspecified) 0,00115654 
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  CML2001, Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.)  kg DCB-Equiv. 

Emissions to fresh water Emissions to fresh water 244,063803 

Heavy metals to fresh water Heavy metals to fresh water 215,755759 

 Antimony 2,43E-08 

 Arsenic (+V) 1,32724944 

 Cadmium (+II) 34,8955101 

 Chromium (+III) 0,00623259 

 Chromium (+VI) 4,32E-11 

 Chromium (unspecified) 0,81257134 

 Cobalt 0,01803643 

 Copper (+II) 17,7007714 

 Lead (+II) 0,11925629 

 Mercury (+II) 0,20448191 

 Molybdenum 4,22251394 

 Nickel (+II) 119,279073 

 Selenium 4,72954732 

 Thallium 0,00270707 

 Tin (+IV) 3,58E-06 

 Vanadium (+III) 25,9301299 

 Zinc (+II) 6,50767505 

Inorganic emissions to fresh 

water 

 11,4636064 

 Barium 3,1678664 

 Beryllium 1,01497353 

 Hydrogen fluoride (hydrofluoric acid) 7,28076652 

Organic emissions to fresh water  16,844437 

 Halogenated organic emissions to fresh water 1,70E-08 

 Polychlorinated dibenzo-p-dioxins (2,3,7,8 - 

TCDD) 

1,69E-08 

 Vinyl chloride (VCM; chloroethene) 1,28E-10 

 Hydrocarbons to fresh water 16,7529939 
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 Acrylonitrile 0,00014998 

 Anthracene 0,22855541 

 Benzene 0,00661243 

 Benzo{a}anthracene 0,03247018 

 Benzofluoranthene 0,12373889 

 Chrysene 0,02160137 

 Ethyl benzene 0,00691094 

 Fluoranthene 0,0065719 

 Phenol (hydroxy benzene) 16,0290181 

 Toluene (methyl benzene) 0,01776811 

 Xylene (isomers; dimethyl benzene) 0,2795966 

 Naphthalene 0,09144311 

 

  CML2001, Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) [kg DCB-

Equiv.] 

kg DCB-Equiv. 

Emissions to sea water  0,00107352 

Heavy metals to sea water  0,00016633 

 Arsenic (+V) 7,57E-23 

 Cadmium (+II) 8,80E-23 

 Chromium (unspecified) 3,41E-25 

 Cobalt 3,41E-21 

 Copper (+II) 1,55E-22 

 Lead (+II) 4,31E-26 

 Mercury (+II) 0,00016633 

 Molybdenum 7,21E-27 

 Nickel (+II) 1,47E-21 

 Tin (+IV) 3,68E-30 

 Vanadium (+III) 4,60E-21 

 Zinc (+II) 9,91E-23 

Inorganic emissions to sea 

water 

 5,17E-20 

 Barium 2,66E-20 

 Beryllium 2,51E-20 

Organic emissions to sea water  0,00090719 
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 Hydrocarbons to sea water 0,00086359 

 Anthracene 0,00050353 

 Benzene 2,26E-07 

 Benzo{a}anthracene 2,80E-05 

 Benzofluoranthene 0,00026544 

 Chrysene 3,85E-05 

 Ethyl benzene 3,71E-08 

 Fluoranthene 2,67E-05 

 Phenol (hydroxy benzene) 8,63E-07 

 Toluene (methyl benzene) 1,21E-07 

 Xylene (isomers; dimethyl benzene) 1,61E-07 

 Naphthalene 4,36E-05 

 

 

  CML2001, Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) [kg DCB-

Equiv.]  Emissions to industrial soil 

kg DCB-Equiv. 

Heavy metals to industrial 

soil 

 374,926459 

 Arsenic (+V) 1,68348586 

 Cadmium (+II) 38,6341755 

 Chromium (+III) 1,43E-07 

 Chromium (unspecified) 3,71820515 

 Cobalt 0,14987179 

 Copper (+II) 13,35723 

 Lead (+II) 0,25887723 

 Mercury (+II) 0,00434087 

 Nickel (+II) 283,022625 

 Zinc (+II) 34,0976474 

 

 

 

  CML2001, Eutrophication Potential (EP) [kg Phosphate-Equiv.] kg Phosphate-Equiv. 
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Emissions to air  250,6744941 

Inorganic emissions to air  250,6744941 

 Ammonia 0,196041483 

 Ammonium 1,30E-05 

 Ammonium nitrate 7,91E-07 

 Nitrogen dioxide 1,03E-09 

 Nitrogen monoxide 0,000836851 

 Nitrogen oxides 250,477602 

 

 

  CML2001, Eutrophication Potential (EP) [kg Phosphate-Equiv.] kg Phosphate-Equiv. 

Emissions to fresh water  997,041128 

Analytical measures to fresh 

water 

 2,34705422 

 Biological oxygen demand (BOD) 0,01547564 

 Chemical oxygen demand (COD) 2,03611352 

 Total dissolved organic bounded carbon 3,70E-07 

 Total organic bounded carbon 0,2954647 

Inorganic emissions to fresh 

water 

 994,619223 

 Ammonia 0,06590933 

 Ammonium / ammonia 451,597796 

 Nitrate 0,23108884 

 Nitrogen 2,27E-05 

 Nitrogen organic bounded 0,07533563 

 Phosphate 0,084405 

 Phosphorus 542,564666 

Organic emissions to fresh 

water 

 0,07485105 

 Hydrocarbons to fresh water 0,07485105 

 Acetic acid 0,00016708 

 Hexane (isomers) 3,53E-10 

 Hydrocarbons (unspecified) 0,00332279 
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 Methanol 0,00178472 

 Oil (unspecified) 0,03548896 

 Xylene (isomers; dimethyl benzene) 0,0340875 

 Organic compounds (dissolved) 5,99E-10 

 Organic compounds (unspecified) 1,59E-21 

 

 

  CML2001, Eutrophication Potential (EP) [kg Phosphate-Equiv.] kg Phosphate-Equiv. 

Emissions to sea water  0,03529596 

Analytical measures to sea water  0,01707862 

 Biological oxygen demand (BOD) 0,000391 

 Chemical oxygen demand (COD) 0,0156449 

 Total organic bounded carbon 0,00104273 

Inorganic emissions to sea water  0,00090212 

 Ammonia 1,33E-06 

 Nitrate 0,00090079 

Organic emissions to sea water  0,01731522 

 Hydrocarbons to sea water 0,01731522 

 Acetic acid 8,56E-06 

 Hexane (isomers) 2,43E-10 

 Oil (unspecified) 0,01627191 

 Xylene (isomers; dimethyl 

benzene) 

0,00103475 

 

 

  CML2001, Eutrophication Potential (EP) [kg Phosphate-Equiv.] kg Phosphate-Equiv. 

Emissions to industrial soil( total)  8678,97664 

 Inorganic emissions to industrial 

soil 

8678,97664 

 

 

  CML2001, Ozone Layer Depletion Potential (ODP, steady state)  kg R11-Equiv. 
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Organic emissions to air (group 

VOC) 

 0,006493881 

 Group NMVOC to air 0,006493881 

 

 

 

  CML2001 - Nov. 09, Acidification Potential (AP) [kg SO2-Equiv.] 

Emissions to air 

kg SO2-Equiv. 

Inorganic emissions to air (total)  1554,09339 

 Ammonia 0,89618964 

 Ammonium 0,00012579 

 Ammonium nitrate 3,75E-06 

 Hydrogen bromine (hydrobromic acid) 3,22E-05 

 Hydrogen chloride 2,99529288 

 Hydrogen fluoride 0,26270486 

 Hydrogen sulphide 17,1564672 

 Nitrogen dioxide 3,98E-09 

 Nitrogen monoxide 0,00318004 

 Nitrogen oxides 963,375392 

 Sulphur dioxide 569,40397 

 Sulphuric acid 3,38E-05 

 

 

 

  CML2001 - Nov. 09, Acidification Potential (AP) [kg SO2-Equiv.] 

Emissions to fresh water 

kg SO2-Equiv. 

Inorganic emissions to fresh 

water(tot) 

 0,52839511 

 Hydrogen chloride 2,26E-06 

 Hydrogen fluoride (hydrofluoric acid) 0,528177622 

 Sulphuric acid 0,000215228 
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Incineration Emission:  

  CML2001 - Nov. 09, Global Warming Potential (GWP 100 years)  kg CO2-Equiv. 

Emissions to air  7462113,037 

Inorganic emissions to air  7405028,348 

 Carbon dioxide 7291207,774 

 Carbon dioxide (biotic) 235,5054545 

 Nitrous oxide (laughing gas) 113585,0464 

 Sulphur hexafluoride 0,022419382 

Organic emissions to air (group 

VOC) 

 57084,68917 

 Group NMVOC to air 106,1378027 

 Methane 56978,16269 

 VOC (unspecified) 0,388684923 

 

  CML2001 - Nov. 09, Ozone Layer Depletion Potential (ODP, 

steady state)  

[kg R11-Equiv.] 

Emissions to air  0,011773818 

Organic emissions to air 

(group VOC) 

 0,011773818 

 NMVOC (Halogenated organic 

emissions to air) 

0,011773818 

 

 

  CML2001 - Nov. 09, Acidification Potential (AP) kg SO2-Equiv. 

Emissions to air  6830,546858 

Inorganic emissions to air  6830,546858 

 Ammonia 259,5116578 

 Ammonium 4,63E-06 

 Ammonium nitrate 1,51E-06 
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 Hydrogen bromine (hydrobromic acid) 8,15E-05 

 Hydrogen chloride 68,88425231 

 Hydrogen fluoride 0,234475202 

 Hydrogen sulphide 4,156403087 

 Nitrogen dioxide 6,59E-09 

 Nitrogen monoxide 1,07E-06 

 Nitrogen oxides 4617,14471 

 Sulphur dioxide 1880,612781 

 Sulphuric acid 0,002489801 

 

  CML2001 - Nov. 09, Acidification Potential (AP)  kg SO2-Equiv. 

Emissions to fresh water  0,00054195 

Inorganic emissions to fresh 

water 

 0,00054195 

 Hydrogen chloride 5,28E-06 

 Hydrogen fluoride (hydrofluoric acid) 3,38E-05 

 Sulphuric acid 0,00050289 

 

  CML2001 - Nov. 09, Eutrophication Potential (EP)  [kg Phosphate-Equiv.] 

Emissions to air  1360,138427 

Inorganic emissions to air  1360,138427 

 Ammonia 56,76817515 

 Ammonium 4,78E-07 

 Ammonium nitrate 3,19E-07 

 Nitrogen dioxide 1,71E-09 

 Nitrogen monoxide 2,81E-07 

 Nitrogen oxides 1200,457625 

 Nitrous oxide (laughing gas) 102,9126259 

 

  CML2001 - Nov. 09, Eutrophication Potential (EP)  [kg Phosphate-

Equiv.] 

Emissions to fresh water  23,38650282 

Analytical measures to fresh water  0,960682206 
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 Biological oxygen demand (BOD) 0,012341164 

 Chemical oxygen demand (COD) 0,794051089 

 Total dissolved organic bounded 

carbon 

2,12E-07 

 Total organic bounded carbon 0,154289742 

Inorganic emissions to fresh water  20,33097949 

 Ammonia 0,010097389 

 Ammonium / ammonia 19,38786841 

 Nitrate 0,308784939 

 Nitrogen 1,34E-07 

 Nitrogen organic bounded 0,434486906 

 Phosphate 0,105048034 

 Phosphorus 0,084693675 

Organic emissions to fresh water Organic emissions to fresh water 2,094841128 

 Hydrocarbons to fresh water 2,094841127 

 Organic compounds (dissolved) 9,92E-10 

 Organic compounds (unspecified) 3,72E-21 

 

  CML2001 - Nov. 09, Eutrophication Potential (EP)  [kg Phosphate-

Equiv.] 

Emissions to sea water  0,247448282 

Analytical measures to sea water  0,105897343 

 Biological oxygen demand (BOD) 0,001279587 

 Chemical oxygen demand (COD) 0,101205329 

 Total organic bounded carbon 0,003412427 

Inorganic emissions to sea water  0,006792211 

 Ammonia 6,65E-06 

 Nitrate 0,006785562 

Organic emissions to sea water  0,134758728 

 Hydrocarbons to sea water 0,134758728 

 Acetic acid 6,19E-05 

 Hexane (isomers) 1,22E-09 

 Oil (unspecified) 0,126798325 

 Xylene (isomers; dimethyl benzene) 0,00789846 
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  CML2001 - Nov. 09, Eutrophication Potential (EP)  [kg Phosphate-

Equiv.] 

Emissions to industrial soil  3,684707801 

Inorganic emissions to industrial soil  3,684707801 

 Ammonia 1,940612688 

 Phosphorus 1,744095113 

 

  CML2001 - Nov. 09, Human Toxicity Potential (HTP inf.)  kg DCB-Equiv. 

Emissions to air  30906,10546 

Heavy metals to air  17216,99236 

 Antimony 2,554485732 

 Arsenic (+V) 1075,785037 

 Arsenic trioxide 0,00502299 

 Cadmium (+II) 13194,62753 

 Chromium (+III) 0,003958715 

 Chromium (unspecified) 23,87033198 

 Cobalt 27,8015026 

 Copper (+II) 206,5677701 

 Hydrogen arsenic (arsine) 0,486388593 

 Lead (+II) 798,4239952 

 Mercury (+II) 9,741696971 

 Molybdenum 3,595534333 

 Nickel (+II) 814,109244 

 Selenium 383,7848936 

 Thallium 5,254984043 

 Tin (+IV) 0,004233236 

 Vanadium (+III) 667,8383603 

 Zinc (+II) 2,537388883 

Inorganic emissions to air  11967,42921 

 Ammonia 16,21947861 

 Barium 169,7927925 
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 Beryllium 12,40415474 

 Carbon disulphide 1,85E-06 

 Hydrogen chloride 45,98806618 

 Hydrogen fluoride 490,8553375 

 Hydrogen sulphide 0,571505424 

 Nitrogen dioxide 1,58E-08 

 Nitrogen oxides 11081,1473 

 Sulphur dioxide 150,4490225 

 Tin oxide 1,90E-09 

 Zinc oxide 2,09E-07 

 Zinc sulphate 0,001547887 

Organic emissions to air (group VOC)  1625,259689 

Group NMVOC to air  1625,257567 

 Group PAH to air 0,002205775 

 Anthracene 1,35E-06 

 Naphthalene 0,002204428 

 Halogenated organic emissions to air 806,4680334 

 Acrolein 0,00103923 

 Benzene 804,0746538 

 Butadiene 0,003029649 

 Ethene (ethylene) 0,003139119 

 Ethyl benzene 0,122787958 

 Formaldehyde (methanal) 1,522840412 

 NMVOC (unspecified) 13,00475883 

 Phenol (hydroxy benzene) 3,00E-07 

 Styrene 9,24E-10 

 Toluene (methyl benzene) 0,020467384 

 Xylene (dimethyl benzene) 0,034611609 

 VOC (unspecified) 0,002121695 

Particles to air  96,42419641 

 

 

  CML2001 - Nov. 09, Human Toxicity Potential (HTP inf.)  kg DCB-Equiv. 
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Emissions to fresh water  452,4394543 

Heavy metals to fresh water  334,940978 

 Antimony 1,21E-05 

 Arsenic (+V) 14,37646545 

 Cadmium (+II) 0,200892393 

 Chromium (+III) 0,003146955 

 Chromium (+VI) 5,00E-05 

 Chromium (unspecified) 0,057537117 

 Cobalt 0,001126733 

 Copper (+II) 0,045639745 

 Lead (+II) 0,262894256 

 Mercury (+II) 0,470767567 

 Molybdenum 92,21940217 

 Nickel (+II) 4,604226857 

 Selenium 204,5944213 

 Thallium 0,138720709 

 Tin (+IV) 1,33E-08 

 Vanadium (+III) 17,95858656 

 Zinc (+II) 0,007088098 

Inorganic emissions to fresh water  47,36840403 

 Barium 47,01340438 

 Beryllium 0,264728653 

 Hydrogen fluoride (hydrofluoric acid) 0,090270999 

Organic emissions to fresh water  70,13007229 

 Halogenated organic emissions to fresh 

water 

1,23E-06 

 Polychlorinated dibenzo-p-dioxins 

(2,3,7,8 - TCDD) 

1,34E-07 

 Vinyl chloride (VCM; chloroethene) 1,10E-06 

 Hydrocarbons to fresh water 70,12547812 

 Naphthalene 0,004592936 
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  CML2001 - Nov. 09, Human Toxicity Potential (HTP inf.)  kg DCB-Equiv. 

Emissions to sea water Emissions to sea water 866,0094346 

Heavy metals to sea water Heavy metals to sea water 140,4802417 

 Arsenic (+V) 30,58826102 

 Cadmium (+II) 0,624252759 

 Chromium (unspecified) 0,231802373 

 Cobalt 1,306947509 

 Copper (+II) 0,127784463 

 Lead (+II) 0,342223326 

 Mercury (+II) 1,321444844 

 Molybdenum 0,00037244 

 Nickel (+II) 12,13240758 

 Tin (+IV) 2,05E-08 

 Vanadium (+III) 92,41911307 

 Zinc (+II) 1,385632305 

Inorganic emissions to sea water Inorganic emissions to sea water 689,493703 

 Barium 669,5153954 

 Beryllium 19,97830762 

Organic emissions to sea water Organic emissions to sea water 36,03548992 

 Hydrocarbons to sea water 36,02938181 

 Anthracene 3,83E-05 

 Benzene 36,02227294 

 Ethyl benzene 0,0015188 

 Phenol (hydroxy benzene) 3,01E-05 

 Toluene (methyl benzene) 0,00366691 

 Xylene (isomers; dimethyl benzene) 0,00185471 

 Naphthalene 0,006108112 

 

  CML2001 - Nov. 09, Human Toxicity Potential (HTP inf.)  kg DCB-Equiv. 

Emissions to industrial soil  3,861074378 

Heavy metals to industrial soil  3,861074378 

 Arsenic (+V) 0,004380588 

 Cadmium (+II) 0,0026 

 Chromium (+III) 1,86E-05 
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 Chromium (unspecified) 3,211415355 

 Cobalt 0,01126814 

 Copper (+II) 0,000136934 

 Lead (+II) 0,00085818 

 Mercury (+II) 0,000233491 

 Nickel (+II) 0,62966096 

 Zinc (+II) 0,000502142 

 

 

 

  CML2001, Marine Aquatic Ecotoxicity Pot. (MAETP inf.)  [kg DCB-Equiv.] 

Emissions to air  8952028,448 

Heavy metals to air  1734676,76 

 Antimony 12,58764453 

 Arsenic (+V) 715,9862697 

 Arsenic trioxide 0,003342326 

 Cadmium (+II) 100544,6342 

 Chromium (+III) 0,032083472 

 Chromium (unspecified) 193,4575105 

 Cobalt 8649,199987 

 Copper (+II) 42969,17547 

 Hydrogen arsenic (arsine) 0,323714815 

 Lead (+II) 12063,77179 

 Mercury (+II) 1945,151888 

 Molybdenum 1288,954307 

 Nickel (+II) 87325,2895 

 Selenium 170585,3092 

 Thallium 311,6613072 

 Tin (+IV) 18,32224608 

 Vanadium (+III) 1306418,964 

 Zinc (+II) 1633,935561 

Inorganic emissions to air  7216885,431 

 Barium 174978,1009 
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 Beryllium 25715,10902 

 Carbon disulphide 1,18E-06 

 Hydrogen fluoride 7016191,224 

 Tin oxide 8,22E-06 

 Zinc oxide 0,000134348 

 Zinc sulphate 0,996752118 

Organic emissions to air (group 

VOC) 

 466,2564013 

 Group NMVOC to air 466,2562485 

 Group PAH to air 337,4670698 

 Anthracene 0,004397212 

 Benzo{a}anthracene 0,001326548 

 Benzo{a}pyrene 0,142765768 

 Benzo{ghi}perylene 0,001924784 

 Benzofluoranthene 0,275358664 

 Chrysene 0,001322703 

 Indeno[1,2,3-cd]pyrene 0,006290423 

 Naphthalene 0,00024799 

 Phenanthrene 0,000620939 

 Polycyclic aromatic hydrocarbons (PAH) 337,0328147 

 Halogenated organic emissions to air 123,5949583 

 Dichloromethane (methylene chloride) 2,51E-13 

 Dioxins (unspec.) 0,041903545 

 Polychlorinated dibenzo-p-dioxins (2,3,7,8 - 

TCDD) 

123,5530547 

 Vinyl chloride (VCM; chloroethene) 7,90E-08 

 Acrolein 0,010337087 

 Alkene (unspecified) 1,82E-11 

 Benzene 0,001185341 

 Butadiene 3,74E-12 

 Ethene (ethylene) 3,91E-13 

 Ethyl benzene 0,000100394 

 Fluoranthene 0,001685364 

 Formaldehyde (methanal) 2,994926065 
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 NMVOC (unspecified) 2,185601228 

 Phenol (hydroxy benzene) 3,20E-07 

 Styrene 9,93E-12 

 Toluene (methyl benzene) 4,38E-05 

 Xylene (dimethyl benzene) 0,000340791 

 VOC (unspecified) 0,000152818 

 

 

  CML2001, Marine Aquatic Ecotoxicity Pot. (MAETP inf.)  kg DCB-Equiv. 

Emissions to fresh water  293246,711 

Heavy metals to fresh water  219553,405 

 Antimony 6,40E-05 

 Arsenic (+V) 1793,0205 

 Cadmium (+II) 1933,08105 

 Chromium (+III) 1,32016355 

 Chromium (+VI) 0,05029435 

 Chromium (unspecified) 24,1371134 

 Cobalt 51,0821239 

 Copper (+II) 7931,47802 

 Lead (+II) 23,797228 

 Mercury (+II) 70,7580792 

 Molybdenum 34948,8233 

 Nickel (+II) 31289,5768 

 Selenium 92591,2459 

 Thallium 16,3788371 

 Tin (+IV) 0,00094186 

 Vanadium (+III) 48710,579 

 Zinc (+II) 168,075553 

Inorganic emissions to fresh 

water 

 73692,8739 

 Barium 62139,0175 

 Beryllium 10219,6674 

 Hydrogen fluoride (hydrofluoric acid) 1334,18896 
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Organic emissions to fresh 

water 

 0,43254328 

 Halogenated organic emissions to fresh water 7,00E-09 

 Polychlorinated dibenzo-p-dioxins (2,3,7,8 - 

TCDD) 

7,00E-09 

 Vinyl chloride (VCM; chloroethene) 2,87E-12 

 Hydrocarbons to fresh water 0,43166585 

 Acrylonitrile 2,55E-06 

 Anthracene 0,06900942 

 Benzene 0,00010159 

 Benzo{a}anthracene 0,01481279 

 Benzofluoranthene 0,31969637 

 Chrysene 0,02243844 

 Ethyl benzene 4,80E-06 

 Fluoranthene 0,00231286 

 Phenol (hydroxy benzene) 0,00305388 

 Toluene (methyl benzene) 3,29E-05 

 Xylene (isomers; dimethyl benzene) 0,00020026 

 Naphthalene 0,00087742 

 

 

 

 

 

 

 

  CML2001, Marine Aquatic Ecotoxicity Pot. (MAETP inf.) kg DCB-Equiv. 

Emissions to sea water  2335456,34 

Heavy metals to sea water  635942,6079 

 Arsenic (+V) 4372,597739 

 Cadmium (+II) 11102,12119 
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 Chromium (unspecified) 189,7461735 

 Cobalt 174019,4199 

 Copper (+II) 31930,95161 

 Lead (+II) 49,11912185 

 Mercury (+II) 302,389779 

 Molybdenum 0,143744608 

 Nickel (+II) 93700,4745 

 Tin (+IV) 0,002344743 

 Vanadium (+III) 271798,0318 

 Zinc (+II) 48477,61003 

Inorganic emissions to sea water  1699112,668 

 Barium 904273,2347 

 Beryllium 794839,4336 

Organic emissions to sea water  401,0638772 

 Hydrocarbons to sea water 400,0274291 

 Anthracene 4,330496061 

 Benzene 0,002604246 

 Benzo{a}anthracene 18,86635861 

 Benzofluoranthene 364,3834857 

 Chrysene 9,58593386 

 Ethyl benzene 0,001333213 

 Fluoranthene 1,07518425 

 Phenol (hydroxy benzene) 1,761933951 

 Toluene (methyl benzene) 0,004845925 

 Xylene (isomers; dimethyl benzene) 0,015253351 

 Naphthalene 1,036448088 

  CML2001, Marine Aquatic Ecotoxicity Pot. (MAETP inf.)  [kg DCB-Equiv.] 

Emissions to industrial soil  4186,12901 

Heavy metals to industrial soil  4186,12901 

 Arsenic (+V) 0,33090624 

 Cadmium (+II) 4,37641878 

 Chromium (+III) 4,06E-05 

 Chromium (unspecified) 7,00813665 

 Cobalt 420,331367 
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 Copper (+II) 13,0540448 

 Lead (+II) 0,00220425 

 Mercury (+II) 0,03576628 

 Nickel (+II) 3732,4152 

 Zinc (+II) 8,57492016 

 

  CML2001 - Nov. 09, Freshwater Aquatic Ecotoxicity Pot. (FAETP 

inf.)  

kg DCB-Equiv. 

Emissions to air  286,3703824 

Heavy metals to air  247,9539428 

 Antimony 0,001418146 

 Arsenic (+V) 0,153166979 

 Arsenic trioxide 7,15E-07 

 Cadmium (+II) 26,33005565 

 Chromium (+III) 1,18E-05 

 Chromium (unspecified) 0,070951417 

 Cobalt 1,017178442 

 Copper (+II) 10,66035804 

 Hydrogen arsenic (arsine) 6,93E-05 

 Lead (+II) 4,106856671 

 Mercury (+II) 0,513642899 

 Molybdenum 0,064485193 

 Nickel (+II) 14,62792949 

 Selenium 4,396118469 

 Thallium 0,018886967 

 Tin (+IV) 0,006193346 

 Vanadium (+III)  

 Zinc (+II) 185,5545704 

Inorganic emissions to air  0,432048978 

 Barium 11,34831307 

 Beryllium 9,611757982 

 Boron compounds 

(unspecified) 

0,937581585 

 Carbon disulphide 0 
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 Hydrogen fluoride 2,53E-08 

 Tin oxide 0,798709875 

 Zinc oxide 2,78E-09 

 Zinc sulphate 3,55E-08 

Organic emissions to air (group VOC)  0,000263563 

 Group NMVOC to air 27,06812654 

 VOC (unspecified) 27,06632942 

 

 

  CML2001 - Nov. 09, Freshwater Aquatic Ecotoxicity Pot. (FAETP 

inf.)  

kg DCB-Equiv. 

Emissions to fresh water  207,351095 

Heavy metals to fresh water  172,623732 

 Antimony 4,66E-08 

 Arsenic (+V) 3,12668576 

 Cadmium (+II) 13,3661418 

 Chromium (+III) 0,01060182 

 Chromium (+VI) 0,0004039 

 Chromium (unspecified) 0,19383764 

 Cobalt 0,03970667 

 Copper (+II) 39,4391885 

 Lead (+II) 0,20620065 

 Mercury (+II) 0,56689965 

 Molybdenum 7,9645296 

 Nickel (+II) 45,0244016 

 Selenium 10,6631892 

 Thallium 0,0049362 

 Tin (+IV) 7,80E-06 

 Vanadium (+III) 50,9037729 

 Zinc (+II) 1,11322835 

Inorganic emissions to fresh water  18,7139598 

 Barium 16,9830327 

 Beryllium 1,73046159 
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Hydrogen fluoride (hydrofluoric acid)  0,00046555 

Organic emissions to fresh water  16,0134036 

 Halogenated organic emissions 

to fresh water 

2,73E-08 

 Polychlorinated dibenzo-p-

dioxins (2,3,7,8 - TCDD) 

2,71E-08 

 Vinyl chloride (VCM; 

chloroethene) 

2,12E-10 

Hydrocarbons to fresh water  15,4684353 

 Acrylonitrile 0,00037265 

 Anthracene 1,30750697 

 Benzene 0,00349839 

 Benzo{a}anthracene 0,20476933 

 Benzofluoranthene 0,85881337 

 Chrysene 0,13937001 

 Cresol (methyl phenol) 0 

 Ethyl benzene 0,00192588 

 Fluoranthene 0,03504951 

 Phenol (hydroxy benzene) 12,858925 

 Toluene (methyl benzene) 0,0078369 

 Xylene (isomers; dimethyl 

benzene) 

0,05036728 

Naphthalene  0,54496832 

 

 

  CML2001 - Nov. 09, Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) kg DCB-Equiv. 

Emissions to sea water  0,00858925 

Heavy metals to sea water  0,00109217 

 Arsenic (+V) 4,91E-22 

 Cadmium (+II) 1,52E-22 

 Chromium (unspecified) 2,04E-24 

 Cobalt 2,63E-20 

 Copper (+II) 8,89E-22 
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 Lead (+II) 2,42E-25 

 Mercury (+II) 0,00109217 

 Molybdenum 3,61E-26 

 Nickel (+II) 9,90E-21 

 Tin (+IV) 1,84E-29 

 Vanadium (+III) 3,55E-20 

 Zinc (+II) 7,63E-22 

Inorganic emissions to sea water  3,94E-19 

 Barium 2,00E-19 

 Beryllium 1,94E-19 

Organic emissions to sea water  0,00749707 

 Hydrocarbons to sea water 0,0071367 

 Anthracene 0,00408821 

 Benzene 1,58E-06 

 Benzo{a}anthracene 0,00023692 

 Benzofluoranthene 0,00225 

 Chrysene 0,00032575 

 Ethyl benzene 2,04E-07 

 Fluoranthene 0,00022549 

 Phenol (hydroxy benzene) 6,54E-06 

 Toluene (methyl benzene) 7,87E-07 

 Xylene (isomers; dimethyl benzene) 1,23E-06 

 Naphthalene 0,00036037 

 

 

  CML2001 - Nov. 09, Freshwater Aquatic Ecotoxicity Pot. 

(FAETP inf.) 

kg DCB-Equiv. 

Emissions to industrial soil  5,90654483 

Heavy metals to industrial 

soil 

 5,90654483 

 Arsenic (+V) 0,00057704 

 Cadmium (+II) 0,03026041 

 Chromium (+III) 3,26E-07 
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 Chromium (unspecified) 0,05628016 

 Cobalt 0,326728 

 Copper (+II) 0,0649111 

 Lead (+II) 1,91E-05 

 Mercury (+II) 0,00018327 

 Nickel (+II) 5,37079047 

 Zinc (+II) 0,05679496 

 

 

  CML2001, Terrestric Ecotoxicity Potential (TETP inf.) kg DCB-Equiv. 

Emissions to air  276,3514358 

Heavy metals to air  272,1438517 

 Antimony 0,00023258 

 Arsenic (+V) 4,978568932 

 Arsenic trioxide 2,32E-05 

 Cadmium (+II) 7,39140731 

 Chromium (+III) 0,018550712 

 Chromium (unspecified) 111,8574277 

 Cobalt 0,17299688 

 Copper (+II) 0,336242673 

 Hydrogen arsenic (arsine) 0,002250932 

 Lead (+II) 26,81824219 

 Mercury (+II) 45,90643697 

 Molybdenum 0,011621018 

 Nickel (+II) 2,696671801 

 Selenium 0,430349004 

 Thallium 0,004132009 

 Tin (+IV) 0,035065318 

 Vanadium (+III) 71,19299327 

 Zinc (+II) 0,290639236 

Inorganic emissions to air  1,188198427 

Organic emissions to air 

(group VOC) 

 3,019385676 
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 Group NMVOC to air 3,019298003 

 Group PAH to air 0,037280577 

 Anthracene 8,19E-08 

 Benzo{a}anthracene 3,00E-07 

 Benzo{a}pyrene 2,52E-05 

 Benzo{ghi}perylene 2,37E-07 

 Benzofluoranthene 6,91E-05 

 Chrysene 6,88E-07 

 Indeno[1,2,3-cd]pyrene 6,94E-07 

 Naphthalene 2,23E-07 

 Phenanthrene 1,16E-08 

 Polycyclic aromatic hydrocarbons 

(PAH) 

0,037184078 

 Halogenated organic emissions to air 0,005000158 

 Dichloromethane (methylene chloride) 2,79E-16 

 Dioxins (unspec.) 1,70E-06 

 Polychlorinated dibenzo-p-dioxins 

(2,3,7,8 - TCDD) 

0,004998462 

 Vinyl chloride (VCM; chloroethene) 1,59E-10 

 Acrolein 0,000298206 

 Alkene (unspecified) 3,09E-13 

 Benzene 6,59E-06 

 Butadiene 3,17E-14 

 Ethene (ethylene) 6,65E-15 

 Ethyl benzene 1,81E-07 

 Fluoranthene 1,53E-07 

 Formaldehyde (methanal) 1,722810053 

 NMVOC (unspecified) 1,253900649 

 Phenol (hydroxy benzene) 1,92E-09 

 Styrene 2,65E-15 

 Toluene (methyl benzene) 9,97E-07 

 Xylene (dimethyl benzene) 4,36E-07 

 VOC (unspecified) 8,77E-05 
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  CML2001, Terrestric Ecotoxicity Potential (TETP inf.)  [kg DCB-Equiv.] 

Emissions to fresh water  0,307141687 

Heavy metals to fresh water  0,30713945 

 Antimony 3,91E-29 

 Arsenic (+V) 1,57E-19 

 Cadmium (+II) 1,24E-22 

 Chromium (+III) 3,48E-22 

 Chromium (+VI) 3,32E-24 

 Chromium (unspecified) 6,37E-21 

 Cobalt 3,14E-23 

 Copper (+II) 1,38E-22 

 Lead (+II) 1,02E-23 

 Mercury (+II) 0,30713945 

 Molybdenum 3,86E-20 

 Nickel (+II) 1,43E-20 

 Selenium 5,67E-20 

 Thallium 1,93E-23 

 Tin (+IV) 6,03E-28 

 Vanadium (+III) 5,80E-20 

 Zinc (+II) 3,08E-23 

Inorganic emissions to fresh 

water 

 1,13E-09 

 Barium 3,79E-20 

 Beryllium 6,25E-21 

 Hydrogen fluoride (hydrofluoric acid) 1,13E-09 

Organic emissions to fresh 

water 

 2,24E-06 

 Halogenated organic emissions to 

fresh water 

9,40E-14 

 Polychlorinated dibenzo-p-dioxins 

(2,3,7,8 - TCDD) 

9,20E-14 

 Vinyl chloride (VCM; chloroethene) 1,95E-15 

 Hydrocarbons to fresh water 1,83E-06 

 Acrylonitrile 1,81E-08 
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 Anthracene 4,50E-07 

 Benzene 5,26E-07 

 Benzo{a}anthracene 2,49E-08 

 Benzofluoranthene 1,52E-07 

 Chrysene 6,30E-08 

 Ethyl benzene 4,19E-09 

 Fluoranthene 1,32E-08 

 Phenol (hydroxy benzene) 1,35E-07 

 Toluene (methyl benzene) 3,77E-07 

 Xylene (isomers; dimethyl benzene) 6,63E-08 

 Naphthalene 4,06E-07 

 

 

 

 

 

 

  CML2001, Terrestric Ecotoxicity Potential (TETP inf.)  [kg DCB-Equiv.] 

Emissions to sea water  1,23238309 

Heavy metals to sea water  1,232355695 

Inorganic emissions to sea 

water 

Inorganic emissions to sea water 1,04E-18 

 Barium 5,50E-19 

 Beryllium 4,85E-19 

Organic emissions to sea 

water 

 2,74E-05 

 Hydrocarbons to sea water 2,68E-05 

 Naphthalene 5,96E-07 

 

  CML2001, Terrestric Ecotoxicity Potential (TETP inf.)  [kg DCB-Equiv.] 

Emissions to industrial soil  68,37127695 
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Heavy metals to industrial soil  68,37127695 

 Arsenic (+V) 0,014320449 

 Cadmium (+II) 0,006503776 

 Chromium (+III) 0,000390733 

 Chromium (unspecified) 67,50650474 

 Cobalt 0,042544893 

 Copper (+II) 0,001567502 

 Lead (+II) 9,51E-05 

 Mercury (+II) 0,012099657 

 Nickel (+II) 0,758000335 

 Zinc (+II) 0,029249724 
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ANNEX II 
 

1.        Incineration of MSW 

Incineration is a thermal treatment in which the waste is combusted with excess of air. Incineration itself 

is one part of the overall complex waste treatment system, it is one of the solution adopted in line with 

other treatments like landfilling and gas treatment.  

The incineration sector has found a rapid technological development during the last 10 to 15 years, 

thanks also to the legislation that drive also the industrial production, like the reduce of emissions to air.  

Continual process of development are still ongoing, that aim to limit costs, improving environment 

performance and previously reduce the volume of hazard, capturing or destroying potentially harmful 

substances that could be released during the incineration process. 

Waste incineration is the oxidation of combustible materials contained in the waste. Waste is generally 

a highly heterogeneous material, consisting essentially of organic substances, minerals, metals and 

water [9]. During incineration, flue-gases are created that will contain the majority of the available fuel 

energy as heat. 

The organic fuel substances in the waste will burn when they have reached the necessary ignition 

temperature and been exposed to oxygen. 

The organic part oxidized with production of CO2 and H2O, while the inorganic noncombustible is 

discharged as slag or ash. The energy generated during the process is produced for stream production, 

district heating production and electric power production. Since is a combustion process it also gives 

dangerous emissions to the environment, as  

• Nitrogen oxides,  

• Sulphur oxides, 

• Hydrochloric acid,  

• Heavy metals,  

• polyromantic hydrocarbons (PAH), 

•  chlorinated organic compounds (for example TCDD and other “dioxins”) 
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Before 2008, according to the waste hierarchy defined in Directive 2006/12/EC,1, waste incineration 

were considered as disposal operations, instead of an alternative way of energy production, in the form 

of power and heat production (Grosso 2010) 

Nowadays Incineration is one of the most argued issue, because for one side energy recovery from waste 

is an undeniable interesting option of treating waste, but in opposition to that, the environmentalist 

associations asserted that promoting incineration would affect negatively waste recycling for material 

recovery and recycling (Grosso 2010) . Moreover, the impact of an incinerator on the environment can 

be effectively reduced with state-of-the-art technologies for flue gas treatment (Grosso 2005) and with 

the introduction of the Best Available Technology. Waste-to-energy lobby also tried to underline the 

positive contribute that these plants might give by reducing the dependence on landfills and fossil fuels. 

(EPA ,Environmental protection Agency) . 

 

 

1.2        R1 Formula 

With the R1 formula The Dircetive allows The Directive allows municipal waste incinerators to be classified 

as recovery operations provided they contribute to the generation of energy with high efficiency to promote 

the use of waste to produce energy in energy efficient municipal waste incinerators and encourage 

innovation in waste incineration. (Grosso, 2010). 

Energy efficiency –    
���	������

�.��∗	������
                                                                                                               (3) 

Ep : annual energy produced as heat or electricity,calculated with energy in the form of electricity being 

multiplied by 2.6 and heat produced for commercial use multiplied by 1.1 (GJ/year) 

Ef: annual energy input to the system from fuels contributing to the production of steam(GJ/year) 

Ew: annual energy contained in the treated waste calculated using the net calorific value of thewaste (GJ/year) 

Ei: annual energy imported excluding Ew and Ef (GJ/year) 

0.97 is a factor accounting for energy losses due to bottom ash and radiation  (Grosso 2010). 
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1.2      Best Available Techniques 

The R1 formula shall be applied in accordance with BREF, Reference formula shall be applied in 

accordance with the 

Reference Document on Best Available Techniques for Waste Incineration (BREF WI). 

“the most effective and advanced stage in the development of an activity and its methods of operation, 

which indicate the practical suitability of particular techniques for providing, in principle, the basis for 

emission limit values, and in the case of an industrial emissions directive activity other additional licence 

conditions, designed to prevent or eliminate or, where that is not practicable, generally to reduce an 

emission and its impact on the environment as a whole” 

B ‘best’ in relation to techniques, means the most effective in achieving a high general level of protection 

of the environment as a whole 

A ‘available techniques’ means those techniques developed on a scale which allows implementation in 

the relevant class of activity under economically and technically viable conditions, taking into 

consideration the costs and advantages, whether or not the techniques are used or produced within the 

State, as long as they are reasonably accessible to the person carrying on the activity 

T ‘techniques’ includes both the technology used and the way in which the installation is designed, built, 

managed, maintained, operated and decommissioned 

 

1.3    Incineration techniques  

The state of art of incineration techniques are described above according with Division of Technology, 

Industry and Economics of United Nations Environment Program. 

A modern incinerator is a complex industrial process plant involving several process steps in order to 

optimise the energy production and to minimise the unwanted emissions. The process plant can be 

divided in several sub-plants of which the most important are. 

· Combustion chamber, where the solid material is combusted. 

· After-combustion chamber, where the gases from the combustion chamber are hold at high 

temperature and oxygen excess in order to oxidize unburned gases. 

· Boiler, which recovers the energy from the flue gases. 
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· Flue gas cleaning system (there are several systems available) 

· In cases of wet flue gas cleaning there is also a water treatment system. 

· Ash handling system. 

· Landfilling of slags and ashes. 

 

Figure 1.2 Illustration of an incinerator plan and the system boundaries used in this (Sundqvist, 1999) 

Mass-burn systems 

Mass-burn systems are the predominant form of MSW incineration. Mass-burn systems, Generally 

formed by two or three incineration units (each one with a capacity from 50 to 1,000 tons per day ) with 

a general facility capacity that ranges from about 100 to 3,000 tons per day. The  success of these 

facilities is that they are able to accept refuse that has undergone little preprocessing other than the 

removal of oversized items, such as refrigerators and sofas. Although this versatility makes mass-burn 

facilities convenient and flexible, local programs to separate household hazardous wastes (eg, cleaners 

and pesticides) and recover certain materials (eg, iron scrap) are Necessary to Help Ensure 

environmentally responsible incineration and resource conservation. 
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Modular incinerators 

Modular incinerator units are usually prefabricated units with relatively small capacities of between 5 

and 120 tons of solid waste per day. Typical facilities have between one and four units for a total plant 

capacity of about 15 to 400 tons per day. The majority of modular units produce steam as the sole energy 

product. Due to their small capacity, modular incinerators are generally used in smaller communities or 

for commercial and industrial operations. Their prefabricated design gives modular facilities the 

advantage of shorter CONSTRUCTION times. On average, capital costs per ton of capacity are lower for 

modular units than for other MSW incineration options. 

 

Fluidized-bed incinerators 

In a fluidized-bed incinerator, the stoker grate is replaced by a bed of limestone or sand that can 

withstand high temperatures, fed by an air distribution system. The heating of the bed and the increasing 

of the air velocities cause the bed to bubble, which gives rise to the term fluidized. There are two types 

of fluidized-bed technologies, a bubbling bed and a circulating bed. The differences are reflected in the 

relationship between air flow and bed material, and have implications for the type of wastes that can 

be burned, as well as the heat transfer to the energy recovery system. 

 

Unlike mass-burn incinerators, fluidized-bed incinerators require front-end pre-processing, also called 

fuel preparation. They are generally also associated with source separation because glass and metals do 

not fare well in these systems. Also, fluidized-bed systems can successfully burn wastes of widely varying 

moisture and heat content, so that the inclusion of paper and wood, which are both recyclable and 

burnable, is not a crucial factor in their operation (and thus paper can be extracted for higher-value 

recycling). These factors would appear to indicate that fluidized-bed technologies are more compatible 

with high-recovery recycling systems, since there might be less competition for waste streams that are 

both burnable and recyclable. For this reason, fluidized-bed technology may be a sound choice for high-

recycling cities in developing countries when they first move to incineration. 

 

Fluidized-bed systems are more consis-tent in their operation than mass burn and can be controlled 

more effectively to achieve higher energy conversion efficiency, less residual ash, and lower air 

emissions. Cost comparisons with mass-burn are inconclusive. In general, however, fluidized-bed 
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incinerators appear to operate efficiently on smaller scales than do mass-burn incinerators, which may 

make them attractive in some situations. 

 

 

 

1.4    Waste Management Europa 

The European Statistic Office, Eurostat holds the leadership of the Environmental Data Centre on Waste. 

According with Eurostat, the amount of municipal waste in EU28 during 2012 ( data obtained on 2014) 

is decreased of about 2.4% compared to 2011 ( from almost 253 million tons in approximately 246.8 

million tons ). 

2012 has been a consequence of the previous downward trend of municipal waste production that 

started in the previous years (between 2010 and 2011 the decline registered was 0.9% ). Considering 

the group EU 15 , the reduction recorded between 2011 and 2012 amounted to 2.6 % ( from about 214.6 

to almost 209 million tons ) , while in reference to the new Member States , it is noted in the same period 

fell by 1.4 % ( from about 38.4 to about 37.8 million tons ) . 

 

Fig. 1.2 Urban Solid Production UE (1000*t), 2009-2011, ISPRA (2013) 
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The strongest reduction has been calculated in Italy and Spain (-4,4%); followed by Great Britain and 

Germany, respect, -3,3% and -2,2% while France presents a small reduction (-0,2%). The quantity of 

waste in these 5 Countries ( Italy, Spain, Germany, Great Britain, France) on 2012 amounts  of 165,8 

million of tons  (almost 4,6 million of tons less than the privies year), and is as the 67,2% of the UE 

production. However analyzing the data of the per capita production, reporting also with the population, 

the situation results characterized by different variability. Estonia and Denmark are in the opposite 

extreme, the first one with the amount 668 kg habitant, and the second 279. However, a great difference 

come out between the “older” and the “ new” member states. 

 

Fig. 1.3 per capita municipale Waste production (kg/ab), 2009-2011, ISPRA, Eurostat (2013) 

 

 

Figure 1.3 shows the present situation in European Union relating to the amount of per capita municipal 

waste disposed of in landfills in 2011. The value per capita for the disposal in landfill in EU27 countries 

amounted on average to 176 kg / inhabitant per year, 5.9% less over the previous year. The data is 

diversified in the Community, with lower values in EU 15 (average 159 kg / inhabitant per year), in which 

the measures undertaken for the removal of waste from the landfill are now consolidated, and values 

much higher in the NMS (on average 240 kg / inhabitant per year), in which the implementation of EU 
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legislation was started more recently. In both groups there was a reduction compared to 2010 (-5.9% in 

the old Member and-5.5% In the NMS).(ISPRA) 

 

Fig.1.4 Landfilling Waste disposal UE (kg/ab) 2010-2012, ISPRA, (2014) 

 

As for landfilling, also data concerning the incineration highlight are highly heterogeneous among 

members: about 30 million tonnes ( 53.1% of the total EU-27) are incinerated in only Germany and 

France, while 6 states States (Bulgaria, Estonia, Greece, Cyprus,Latvia and Romania) are not satisfied at 

all. 

The situation with regard to the quantities per capita municipal waste incineration started in 2011 in 

Europe it is illustrated in thematic map of Figure 1.4. It can be observed that in ten Member States 

(Bulgaria,Estonia, Greece, Cyprus, Latvia, Romania, Lithuania, Poland, Malta and Slovenia) the quantity 

initiated incineration do not exceed 6 kg per capita. The average amount per capita municipal waste 

incinerated in the countries of EU 27 during 2011 is equal to 113 kg / inhabitant per year. Incineration is 

particularly widespread in the central Europe, in particular Denmark (387 kg / inhabitant per year), 

Luxembourg (264), Sweden (237), Germany (220), countries Netherlands and Belgium (193), France 

(184) and Austria(183). When considering the two territorial  groupings  EU 15 and the NMS, we note 

the emergence of a situation opposite to that registered with reference to disposal in landfill. 
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Fig 1.5. Incineration waste UE (kg/ab), 2009-2011, ISPRA, (2013) 

2.5  Waste Management Italy 

On July 2012, the European Commission published the document “Screening of waste management 

performance of EU Member” [10], with the aim to figure the present situation in Europe regarding 

municipal waste management. Major discrepancies have been found in the implementation and 

application of the European Waste Framework Directive into national legislation. 

The study analyses the practical implementation of the waste management hierarchy taking in 

consideration the application of economic and legal instruments to move up the waste hierarchy, 

sufficiency of treatment infrastructure and quality of waste management planning. The screening results 

confirm the assumption of large differences within the 27 EU Countries, with deep gap  especially 

regarding the application of legal or economic instruments and  planning quality in  municipal waste 

management framework, which the most critical adoption of  landfilling in the Urban area . 

The evaluation allowed the classification for the members States into three different group according 

with Urban Waste Management.  

Italy has been placed in the Group of States those present the largest deficit with deficiencies such as 

weak or non-existent policies of waste prevention, lack of incentives to promote alternative 

management options to landfill and inadequacy infrastructure for the treatment of waste. 
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The policies of waste management must necessarily take into account the priorities identified at 

European level. First the abandonment of the landfilling use and second the activation of useful actions 

to realize the decoupling between economic indicators and the production of waste.  

Nowadays in Italy waste production has decreased as a consequence of the crisis, that counts less 

disposal in the landfilling. However It is necessary asking if the trend fit exclusively to an international 

economic crisis, that affects primarily the consumptions or if it linked with a more “virtuous” lifestyle, 

with particular attention to consumption and disposal, and also if it is a consequence of an improving of 

local rules, and environmental attention. 

Figure 1.6 shows the tendency of economic factors BIP, consumption, and waste production, during the 

period (2001-2011) they follow the same trend.  

 

Fig. 1.6 comparation  between BIP, consumption and solid waste production. (ISPRA, 2014) 

 

Figure 1.7 shows the division of waste management in Italy, landfilling in Italy is still the most common 

practice, while incineration and energy production are just (incinerator, gas production, composting) a 

little percentage, the 1,8% of waste is exported. 
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Fig. 1.7 Italian Waste Managment Tratment (ISPRA, 2014) 

Fig.1.8 shows the list of approved facilities for the production of secondary solid fuel (CSS); the amount 

of authorized treatment amounted to 6.6 million tons, an increase over to 2010, by 6.3%. This value, in 

some installations, also includes the line biological treatment of recyclables. 

Of  a total of 57 plants surveyed, 55 those Operating. 24 plants are located in the North , accounting for 

42.1% of national envelope; 20 plants in the center  and 13 plants in the South, respectively, 35.1% and 

22.8% of the national total. 

The production of CSS, in 2011 (1.094.908 tons), points out, compared to 2010, an increase of 2.1%. 

The incineration with recovery systems for the production of Electric energy uses about 3.5 million tons 

of waste treated and recover 2.4 million MWh of energy electricity. The plants, with cogeneration, 

incinerated about 2.3 million tonnes of waste with a recovery about 1.7 million MWh of electric energy 

and 2.3 million MWh of Thermal energy. Figure 9 shows that the production of electric energy has a 

rising trend in the period 2001-2011, from 1.2 million MWh of electricity produced in 2001, to 4,000,000 

MWh in 2011. The thermal energy recovery starts to have more widespread and has increased from 505 

thousand MWh in 2001 to 2.3 million MWh in 2011. 
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Fig 1.8 Energy production by Incineration (1000*MWh),2003-2013 (ISPRA 2014) 

  

Table 1. Energy production according with the plants and treated waste 
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ANNEX III  

Equivalence factors taken from GaBi4 

Equivalence factors for climate change [kg CO2-eq.] 

Carbon dioxide [Inorganic emissions to air]  1 

Carbon tetrachloride (tetrachloromethane) [HOE to air] 1400 

CFC 11 (trichlorfluormethane) [HOE to air]  4000 

CFC 11 (trichlorofluoromethane) [HOE to air] 4000 4000 

CFC 113 (trichlorofluoroethane) [HOE to air] 5000 5000 

CFC 114 (dichlorotetrafluoroethane) [HOE to air] 9300 9300 

CFC 115 (chloropentafluoroethane) [HOE to air] 9300 9300 

CFC 116 (hexafluoroethane) [HOE to air] 12500 12500 

CFC 12 (dichlorodifluoromethane) [HOE to air] 8500 8500 

CFC 123 (dichlorotrifluoroethane) [HOE to air] 93 93 

CFC 124 (chlorotetrafluoroethane) [HOE to air] 480 480 

CFC 125 (pentafluoroethane) [HOE to air] 3200 3200 

CFC 13 (chlorotrifluoromethane) [HOE to air] 11700 11700 

CFC 134a (tetrafluoroethane) [HOE to air] 1300 1300 

CFC 141b (dichloro-1-fluoroethane) [HOE to air] 630 630 

CFC 142b (chlorodifluoroethane) [HOE to air] 2000 

CFC 143 (trifluoroethane) [HOE to air]  290 

CFC 143a (trifluoroethane) [HOE to air]  4400 

CFC 152a (difluoroethane) [HOE to air]  140 

CFC 22 (chlorodifluoromethane) [HOE to air] 1700 

CFC 225ca (dichloropentafluoropropane) [HOE to air] 170 

CFC 225cb (dichloropentafluoropentane) [HOE to air] 530 

CFC 227ea (septifluoropropane) [HOE to air] 3300 

CFC 23 (trifluoromethane) [HOE to air] 12100 

CFC 236fa (hexafluoropropane) [HOE to air] 8000 

CFC 245ca (pentafluoropropane) [HOE to air] 610 

CFC 32 (trifluoroethane) [HOE to air] 580 

CFC 43-10 (decafluoropentane) [HOE to air] 1600 

Dichloromethane (methylene chloride) [HOE to air]  9 

Halon (1301) [HOE to air]  5600 



 109

Laughing gas (dinitrogen monoxide) [Inorganic emissions to air] 310 

Methane [Organic emissions to air (group VOC)]  21 

Nitrous oxide (laughing gas) [Inorganic emissions to air] 310 310 

Sulphur hexafluoride [Inorganic emissions to air] 23900 

Tetrafluoromethane [HOE to air]  6300 

Trichloroethane [HOE to air]  110 

Trichloromethane (chloroform) [HOE to air]  5 

 

Equivalence factors for eutrophication potential [kg PO43--eq.]  

Ammonia [aust inorganic emissions to air] 0,33 

Ammonium / ammonia [Inorganic emissions to water] 0,33 

Ammonium nitrate [Inorganic emissions to air]  0,8 

Chemical oxygen demand (COD) [Analytical measures to water] 0,022 

Kjeldahl N [Analytical measures to water] 0,42 

Nitrate [Inorganic emissions to water] 0,1 

Nitrogen oxides [Inorganic emissions to air] 0,13 

Phosphate [Inorganic emissions to water]  1 

Total P (Total-P) [Analytical measures to water]  3,06 

 

Equivalence factors for POCP [kg C2H4-eq.] 

Acetone (dimethylcetone) [Group NMVOC to air] 0,178 

aliphatic hydrocarbons [Group NMVOC to air]  0,396 

Aromatic hydrocarbons (unspecified) (Copy) [Group NMVOC to air] 0,7609 

Benzene [Group NMVOC to air] 0,189 

Benzo{a}pyrene [Group PAH to air] 0,761 

Butadiene [Group NMVOC to air]  0,906 

Butane (n-butane) [Group NMVOC to air]  0,41 

Butene (vinyl acetylene) [Group NMVOC to air]  0,959 

Butylacetate [Group NMVOC to air]  0,323 

Butylene glycol (butane diol) [Group NMVOC to air]  0,196 

Butyraldehyde (n-; iso-butanal) [Group NMVOC to air]  0,568 

Carbon monoxide [Inorganic emissions to air]  0,036 

Carbon tetrachloride (tetrachloromethane) [HOE to air]  0,005 
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CFC 11 (trichlorfluormethane) [HOE to air] 0,021 

CFC 11 (trichlorofluoromethane) [HOE to air]  0,021 

CFC 113 (trichlorofluoroethane) [HOE to air]  0,021 

CFC 114 (dichlorotetrafluoroethane) [HOE to air] 0,021 

CFC 115 (chloropentafluoroethane) [HOE to air]  0,021 

CFC 116 (hexafluoroethane) [HOE to air] 0,021 

CFC 12 (dichlorodifluoromethane) [HOE to air]  0,021 

CFC 125 (pentafluoroethane) [HOE to air]  0,021 

CFC 13 (chlorotrifluoromethane) [HOE to air] 0,021 

CFC 134a (tetrafluoroethane) [HOE to air]  0,021 

CFC 141b (dichloro-1-fluoroethane) [HOE to air] 0,021 

CFC 142b (chlorodifluoroethane) [HOE to air] 0,021 

CFC 22 (chlorodifluoromethane) [HOE to air] 0,021 

Chlorobenzene [HOE to air]  0,021 

Chloromethane (methyl chloride) [HOE to air] 0,021 

Cyclohexane (hexahydro benzene) [Group NMVOC to air]  0,761 

Cyclohexanol [Group NMVOC to air]  0,196 

Cyclohexanone [Group NMVOC to air]  0,761 

Cyclopentanone [Group NMVOC to air]  0,761 

Dichlorobenzene (o-DCB; 1,2-dichlorobenzene) [HOE to air] 0,021 

Dichlorobenzene (p-DCB; 1,4-dichlorobenzene) [HOE to air]  0,021 

Dichloroethane [HOE to air] 0,021 

Dichloroethane (ethylene dichloride) [HOE to air]  0,021 

Dichloroethane (isomers) [Group NMVOC to air]  0,021 

Dichloromethane (methylene chloride) [HOE to air] 0,01 

Ethanal (Acetaldehyde) [Group NMVOC to air] 0,52701 

Ethane [Group NMVOC to air] 0,082 

Ethanol (ethyl alcohol) [Group NMVOC to air]  0,268 

Ethene (ethylene) [Group NMVOC to air] 1 

Ethine (acetylene) [Group NMVOC to air] 0,168 

Ethyl benzene [Group NMVOC to air]  0,593 

Ethyl benzene [Group NMVOC into air]  0,593 

Ethylene acetate (ethyl acetate) [Group NMVOC to air]  0,218 

Formaldehyde (methanal) [Group NMVOC to air]  0,421 
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Furfuryl alcohol [Group NMVOC to air]  0,196 

Heptane (isomers) [Group NMVOC to air]  0,529 

Hexane (isomers) [Group NMVOC to air]  0,421 

Hydrocarbons [Group NMVOC to air] 0,39799 

Methane [Organic emissions into air (group VOC)] 0,007 

Methane [Organic emissions to air (group VOC)]  0,007 

Methanol [Group NMVOC to air] 0,123 

Methyl acetate [Group NMVOC to air]  0,025 

NMVOC (unspecified) [Group NMVOC to air] 0,416 

Octane [Group NMVOC to air]  0,493 

Pentane (n-pentane) [Group NMVOC to air]  0,408 

Phenol (hydroxy benzene) [Group NMVOC to air] 0,761 

Polychlorinated biphenyls (PCB unspecified) [HOE to air]  0,021 

Polychlorinated dibenzo-p-dioxins (2,3,7,8 - TCDD) [HOE to air]  0,021 

Polychlorinated dibenzo-p-furans (2,3,7,8 - TCDD) [HOE to air]  0,021 

Polycyclic aromatic hydrocarbons (PAH) [Group PAH to air] 0,76098 

Propane [Group NMVOC to air] 0,42 

Propanol (iso-propanol; isopropanol) [Group NMVOC to air]  0,196 

Propene (propylene) [Group NMVOC to air] 1,03 

Propyl acetate [Group NMVOC to air] 0,215 

Propylene glycol [Group NMVOC to air] 0,196 

Styrene [Group NMVOC to air] 0,761 

Tetrachloroethene (perchloroethylene) [HOE to air]  0,021 

Tetrafluoromethane [HOE to air] 0,021 

Toluene (methyl benzene) [Group NMVOC to air]  0,563 

Trichloroethane [HOE to air]  0,001 

Trichloroethene (isomers) [HOE to air] 0,066 

Trichloromethane (chloroform) [HOE to air] 0,021 

Vinyl chloride (VCM; chloroethene) [HOE to air]  0,021 

VOC (unspecified) [Organic emissions to air (group VOC)]  0,337 

Xylene (dimethyl benzene) [Group NMVOC to air] 0,777 
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Equivalence factors for HTPAU [kg DCB-eq.] 

Acrylonitrile [Hydrocarbons to water] 1800 

Acrylonitrile [Group NMVOC to air]  200 

Ammonia [Inorganic emissions to air]  0,016 

Ammonium / ammonia [Inorganic emissions to water 1 

Antimony [Heavy metals to water]  74 

Arsenic [Heavy metals to water]  9 

Barium [Inorganic emissions to water]  17 

Barium [Inorganic emissions to air]  110 

Benzene [Hydrocarbons to water]  190 

Benzene [Group NMVOC to air] 160 

Beryllium [Inorganic emissions to air]  20000 

Beryllium [Inorganic emissions to water] 520 

Cadmium [Heavy metals to soil]  560 

Cadmium [Heavy metals to water]  0,14 

Carbon disulphide [Inorganic emissions to air]  0,18 

Chlorobenzene [HOE to air] 0,86 

Chromium (unspecified) [Heavy metals to air] 1 

Chromium (unspecified) [Heavy metals to water]  1 

Chromium +VI [Heavy metals to water] 0,02 

Copper [Heavy metals to water] 0,0085 

Copper [Heavy metals to air] 370 

Dichlorobenzene (o-DCB; 1,2-dichlorobenzene) [HOE to air]  0,98 

Dichloroethane [HOE to air] 0,51 

Ethyl benzene [Group NMVOC to air 0,047 

Ethyl benzene [Hydrocarbons to water]  0,046 

Formaldehyde (methanal) [Group NMVOC to air]  0,047 

Formaldehyde (methanal) [Hydrocarbons to water]  0,019 

Hydrogen chloride [Inorganic emissions to air]  0,073 

Hydrogen sulfide [Inorganic emissions to air]  0,018 

Lead [Heavy metals to soil] 11 

Lead [Heavy metals to water] 0,06 

Mercury [Heavy metals to water] 7,4 
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Mercury [Heavy metals to air]  1200 

Mercury [Heavy metals to soil]  220 

Molybdenum [Heavy metals to air]  890 

Nickel [Heavy metals to water] 3,4 

Nitrogen oxides [Inorganic emissions to air]  0,055 

Phenol (hydroxy benzene) [Hydrocarbons to water]  0,02 

Polychlorinated dibenzo-p-dioxins (2,3,7,8 - PCDD) [HOE to water] 1 

Polychlorinated dibenzo-p-dioxins (2,3,7,8 - TCDD) [HOE to air]  1 

Polycyclic aromatic hydrocarbons (PAH) [Group PAH to air]  1 

Polycyclic aromatic hydrocarbons (PAH, unspec.) [Hydrocarbons to water]  1 

Selenium [Heavy metals to water] 2700 

Selenium [Heavy metals to air]  8100 

Sulphur dioxide [Inorganic emissions to air]  0,008 

Tetrachloroethene (perchloroethylene) [HOE to water]  1 

Tetrachloroethene (perchloroethylene) [HOE to air] 1 

Tin [Heavy metals to soil] 0,054 

Tin [Heavy metals to water]  8,90E-

05 

Toluene (methyl benzene) [Group NMVOC to air]  0,017 

Toluene (methyl benzene) [Hydrocarbons to water]  0,018 

Trichloroethane [HOE to air]  1,8 

Trichloroethene (isomers) [HOE to air 1,8 

Trichloromethane (chloroform) [HOE to air]  1,5 

Trichloromethane (chloroform) [HOE to water]  1,5 

Vanadium [Heavy metals to air]  940 

Vinyl chloride (VCM; chloroethene) [HOE to water]  19 

Zinc [Heavy metals to air] 9,1 

Zinc [Heavy metals to water]  0,0032 

Zinc [Heavy metals to soil]  1,2 
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Equivalence factors for FAEP [kg DCB-eq.] 

Acrylonitrile [Group NMVOC to air]  0,4 

Acrylonitrile [Hydrocarbons to water]  150 

Antimony [Heavy metals to water] 2,3 

Arsenic [Heavy metals to water]  17 

Barium [Inorganic emissions to air] 14 

Barium [Inorganic emissions to water] 48 48 

Benzene [Group NMVOC to air] 5,70E-

05 

Benzene [Hydrocarbons to water]  0,15 

Beryllium [Inorganic emissions to air]  7500 

Beryllium [Inorganic emissions to water] 26000 

Cadmium [Heavy metals to water]  93 

Cadmium [Heavy metals to soil]  64 

Carbon disulphide [Inorganic emissions to air]  0,021 

Chlorobenzene [HOE to air] 0,00031 

Chromium +VI [Heavy metals to water] 1,7 

Chrysene [Hydrocarbons to water] 3200 

Copper [Heavy metals to water]  73 

Copper [Heavy metals to air]  27 

Dichlorobenzene (o-DCB; 1,2-dichlorobenzene) [HOE to air] 0,002 

Dichloroethane [HOE to air]  8,40E-

05 

Ethyl benzene [Hydrocarbons to water] 0,94 

Ethyl benzene [Group NMVOC to air]  8,20E-

05 

Formaldehyde (methanal) [Hydrocarbons to water] 980 

Formaldehyde (methanal) [Group NMVOC to air] 3,6 

Lead [Heavy metals to soil 0,56 

Lead [Heavy metals to water]  0,57 

Mercury [Heavy metals to air]  28 

Mercury [Heavy metals to soil]  68 

Mercury [Heavy metals to water]  100 
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Molybdenum [Heavy metals to air]  50 

Nickel [Heavy metals to water] 280 

Phenanthrene [Hydrocarbons to water] 390 

Phenol (hydroxy benzene) [Hydrocarbons to water]  840 

Selenium [Heavy metals to water] 1100 

Selenium [Heavy metals to air] 300 

Tin [Heavy metals to soil]  0,59 

Tin [Heavy metals to water] 0,61 

Toluene (methyl benzene) [Group NMVOC to air]  4,30E-

05 

Toluene (methyl benzene) [Hydrocarbons to water] 0,49 

Trichloroethane [HOE to air] 8,20E-

05 

Trichloromethane (chloroform) [HOE to air]  6,90E-

05 

Trichloromethane (chloroform) [HOE to water]  0,067 

Vanadium [Heavy metals to air] 340 

Vinyl chloride (VCM; chloroethene) [HOE to water] 0,045 

Zinc [Heavy metals to soil]  4,4 

Zinc [Heavy metals to air]  2,2 

Zinc [Heavy metals to water]  5,6 
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