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Abstract

This work deals with a facility location problem in which location and allocation (trans-
portation) policy is defined in two stages such that a first-stage solution should be robust
against the possible realizations (scenarios) of the input data that can only be revealed in a
second stage. This solution should be robust enough so that it can be recovered promptly
and at low cost in the second stage. In contrast to some related modeling approaches from
the literature, this new recoverable robust model is more general in terms of the considered
data uncertainty; it can address situations in which uncertainty may be present in any of the
following four categories: provider-side uncertainty, receiver-side uncertainty, uncertainty
in-between, and uncertainty with respect to the cost parameters.

For this novel problem, a sophisticated branch-and-cut framework based on Benders
decomposition is designed and complemented by several non-trivial enhancements, including
scenario sorting, dual lifting, branching priorities, matheuristics and zero-half cuts. Two
large sets of instances that incorporate spatial and demographic information of countries
such as Germany and US (transportation) and Bangladesh and the Philippines (disaster
management) are introduced. They are used to analyze in detail the characteristics of
the proposed model and the obtained solutions as well as the effectiveness, behavior and
limitations of the designed algorithm.

Keywords: Facility Location, Two-Stage Robust Optimization, Branch-and-Cut,
L-Shaped Cuts

1. Introduction

Nowadays, we are more and more aware of the growing presence of dynamism and un-
certainty in decision making. Fortunately, as the decisions become more complex, the avail-
ability of modeling, algorithmic and computational tools increases as well. Facility location
and allocation decisions are among the most relevant decisions in several private and public
transportation contexts and they usually involve strategic and operative policies with mid
and long term impacts. Precisely because of the practical relevance of these decisions, it

!Corresponding author: Industrial Engineering Department, Universidad de Talca, Merced 437, Curicd,
Chile (ealvarez@Qutalca.cl, Tel: +56-075-201706).

Preprint submitted to Elsevier May 24, 2015



is important that they incorporate the uncertainty that naturally appears during the plan-
ning, modeling and operative process. Such uncertainty can be represented by different
realizations of the input data: customers that actually require a commodity or a service,
locations where the facilities can be located, the transportation network that can be used
for connecting customers with facilities, and the corresponding costs. The true values of
this data usually become available later in the decision process. In such cases a standard
deterministic optimization model that considers a single possible outcome of the input data
can lead towards solutions that are unlikely to be optimal, or for that matter even feasible,
for the final data realization.

Supply chain management is a strategical area in which both wuncertainty and facility
location are core elements. For instance, as it is pointed out in [45], supply chains are
particularly vulnerable to disruptions (intentional or accidental), imposing the need of taking
into account the possible availability of depots and roads and different structures of the
demand. Likewise, short-term phenomena such as fluctuations in commodity prices (such as
oil) or long-term public policies (such as new toll road concessions) might lead to operational
cost increases that should be considered when deciding the transportation network to be used.

In another context, natural events such as tsunamis, hurricanes or blizzards can produce
disastrous effects with unpredictable intensity on populated areas and on the transportation
infrastructure. Countries such as Bangladesh and the Philippines are two typical examples;
both of them are regularly hit by hydrological disasters such as floods and typhoons. Ac-
cording to the Department of Disaster Management of Bangladesh [22], every year around
18% of the country is flooded, which produces over 5000 causalities and the destruction of
more than 7 millions of homes. However, flooded areas my exceed the 75% of the country in
case of severe events (as in 1988, 1998 and 2004). In the case of the Philippines, between 6
to 9 typhoons make landfall every year producing thousands of human losses and incalcula-
ble urban destruction; in November of 2013, typhoon Haiyan produced 6241 causalities and
material damage of over 809 millions USD [see[39]. In these examples, it is crucial to be able
to count with a robust system of humanitarian relief facilities that even in the worst possible
scenario can provide assistance with the quickest possible response reducing the number of
human loses after the occurrence of the event.

The Uncapacitated Facility Location Problem (UFL), also referred as the Simple Plant
Location Problem, is one of the fundamental models in the wide spectrum of Facility Location
problems [see, e.g., recent overviews presented in 23] 21]. In the classical deterministic version
of the UFL one is given the set of customers, the set of locations, the facility set-up costs and
the transportation costs. The goal is to define where to open facilities and how to allocate
the customers to them so that the sum of set-up plus transportation costs is minimized.

In practice, it is usually the case that from the moment that the information is gathered
until the moment in which the solution has to be implemented, some of the data might change
with respect to the initial setting. As mentioned above, even if some (rough) idea about
customers and locations is known, changes in demographic, socio-economic, or meteorological
factors can lead to changes in the structure of the demand during the planning horizon,
and/or the availability of a given location to host a facility (even if a facility has been
already installed). This means that the solution obtained using a classical method might
become infeasible and a new solution might have to be redefined from scratch. In these cases
it would be better to recognize the presence of different scenarios for the data and find a



solution comprised by first- and second-stage decisions.

Two well-known approaches to deal with uncertainty in optimization are Two-stage
Stochastic Optimization (25SO) and Robust Optimization (RO). In 2SSO [see 12] the so-
lutions are built in two stages. In the first stage, a partial collection of decisions is defined
which are later on completed (in the second stage), when the true data is revealed. Hence,
the objective is to minimize the cost of the first-stage decisions plus the expected cost of
the recourse (second-stage) decisions. The quality of the solutions provided by this model
strongly depends on the accuracy of the random representation of the parameter values
(such as probability distributions) that allow to estimate the second-stage expected cost.
Nonetheless, sometimes such accuracy is not available so the use of RO models dealing with
deterministic uncertainty arises as a suitable alternative [see 29, [I1, [0]. On the one hand
these models do not require assumptions about the distribution of the uncertain input pa-
rameters; but on the other hand, they are usually meant for calculating single-stage decisions
that are immune (in a certain sense) to all possible realizations of the parameter values.

A novel alternative that combines RO and 2SSO is Two-stage Robust Optimization
(2SRO); as in RO, no stochasticity of the parameters is assumed, and as in 2SSO, decisions
are taken in two stages. In this case, the cost of the second-stage decision is computed
by looking at the worst-case realization of the data. Therefore, the goal of 2SRO is to
find a robust first-stage solution that minimizes both the first-stage cost plus the worst-case
second-stage cost among all possible data outcomes. 2SRO is a rather generic classification
of models; for references on different 2SRO settings we refer the reader to [8], 50].

One of the possibilities in the 2SRO framework is Recoverable Robustness [see [36]. Re-
calling our practical motivation, assume that the facility location and allocation policy is
defined in two stages such that we are required to find a first-stage solution that should
be robust against the possible realizations (scenarios) of the input data in a second stage.
This means that the first-stage solution is expected to perform reasonably well, in terms of
feasibility and/or optimality, for any possible realization of the uncertain parameters. An
essential element of this approach is the possibility of recovering the solution built in the
first stage (i.e., to modify the previously defined location-allocation policy in order to render
it feasible and/or cheaper) once the uncertainty is resolved in a second stage. The recovery
plan is comprised by recovery actions which are known in advance and whose costs might
also depend on the possible scenario. This recovery plan is limited, in the sense that the
effort needed to recover a solution may be limited algorithmically (in terms of how a so-
lution may be modified) and economically (in terms of the total cost of recovery actions).
Therefore, instead of looking for a static solution that is robust against all possible scenarios
without allowing any kind of recovery [which is the case for many RO approaches, see 9], we
want a solution robust enough so that it can be recovered promptly and at low cost once the
uncertainty is resolved. This balance between robustness and recoverability is what defines
a recoverable robust optimization problem.

With respect to the UFL, we want to find a solution whose first-stage component (open-
ing of some facilities and allocating some customers) is implemented before the complete
realization of the data. This solution can then be recovered in the second stage (to turn it
into a feasible one) once the actual sets of customers and locations become available. In this
case the recovery actions correspond to the opening of new facilities, the establishment of
new allocations and the re-allocation of customers.



The Recoverable Robust UFL (RRUFL) looks for a solution that minimizes the sum of
the first-stage costs plus the second-stage robust recovery cost defined as the the worst case
recovery cost over all possible scenarios. A formal definition of the RRUFL is given in §2.1]

1.1. Our Contribution and Outline of the Paper

The contributions of this work can be summarized as follows: (i) Due to the nature of
the considered uncertainty, we use a recent concept of recoverable robust optimization to
formulate a Mixed Integer Programming (MIP) model that allows to derive a facility location
and allocation policy composed by first- and second-stage decisions; (ii) for this novel problem
we design a sophisticated exact branch-and-cut framework based on Benders decomposition
which is complemented by several non-trivial enhancements; (iii) using instances from two
different large classes (representing transportation and disaster management settings) we
analyze in detail the characteristics of the proposed model and the obtained solutions as well
as the effectiveness, behavior, and limitations of the designed approach.

In the concept of Recoverable Robustness is presented and the RRUFL is formally
defined. The proposed algorithmic framework is described in The description of the
benchmark instances and a detailed analysis of the computational results are presented
in §4 Finally, conclusions and final remarks are given in §5|

1.2. The Uncapacitated Facility Location Problem

It is hard to establish a single seminal work presenting the UFL, nonetheless [30] is usually
regarded as the earliest work where the UFL is presented as commonly known today. We
refer the reader to [I8] [49] (including the references therein) for comprehensive surveys on
the UFL and some of its variants.

A MIP formulation for the UFL can be given as follows. Let R be the set of customers,
J the set of potential location of facilities, and A a set of links (4, j) connecting customers i
in R with locations j in J (A C R x J). The cost of opening a facility at location j € J is
given by f;, and the cost of assigning customer 7 € R to facility j € J using an existing link
(i,7) is given by c;;. Let y € {0, 1}l be a vector of binary variables such that y; = 1 if a
facility is opened at location j € J and y; = 0 otherwise, and let x € {0, 1} be a vector of
binary variables such that z;; = 1 if customer 7 € R is allocated to a facility in j € J using
link (4,j) € A. Using this notation, the UFL can be formulated as follows:

OPT :mlnz ijj + Z Cijmij

JjeJ (i,j)€A
(1,5)€A
x’t]Sy]7 V(Zaj)€A7 VJGJ

y € {0, 1} and x € [0, 1]

Despite its simple definition, the UFL is known to be NP-Hard [I§]; however, the current
advances in MIP solvers, computing machinery and the development of sophisticated pre-
processing techniques allow to find optimal or nearly optimal solutions for large instances of

the UFL within reasonable time. We refer to [33] for recent works on reduction procedures
for the UFL.



The incorporation of different types of uncertainty when modeling and solving the UFL
is not new; in we will provide a brief review of Facility Location under uncertainty and
compare our setting with previously proposed problems.

2. The Recoverable Robust UFL

In this section we present a literature review on Recoverable Robustness and formally
define the RRUFL.

Recoverable Robust Optimization Recoverable Robust Optimization (RRO) was first
introduced in [35, [36] as a tool for decision making under uncertainty in applications arising
in the railway scheduling. In [I5] and [20] one can find further applications of RRO in the
context of railway scheduling.

In the last couple of years, RRO has been applied to other problems. The recover-
able robust knapsack problem considering different models of uncertainty is studied in [14].
Formulations and algorithms for different variants of the recoverable robust shortest path
problem are given in [I3]. Models, properties and exact algorithms for recoverable robust
two-level network design problems are presented in [5]. A more general framework of the
RRO is studied in [I7] where multiple recovery stages are allowed. The authors apply this
new model to timetabling and delay management applications.

Different types of uncertainty, e.g., interval, polyhedral and discrete sets, can be included
in the decision process trough RRO. In this paper, we use discrete sets to model the uncer-
tainty.

2.1. A Formulation of the RRUFL

As mentioned above, facility location along with the corresponding allocation decisions
are typically exposed to uncertainty in different input data. As described in [43], it is
possible to classify uncertainty in three categories: provider-side uncertainty, receiver-side
uncertainty, and in-between uncertainty. The first corresponds to the uncertainty in facility
capacity, facility reliability, facility availability, etc.; the second is related to the uncertain
structure of the set of customers, customer demands, customer locations, etc.; and the
third refers to the lack of complete knowledge about the transportation network topology,
transportation times or costs between facilities and customers. The proposed recoverable
robust UFL model is a general approach and it can address situations in which uncertainty
may be present in any of these three categories.

Suppose we are given an instance of the UFL in which uncertainty is present in the set of
customers R, the set of locations J, the set of allocation links A and the corresponding set-
up and allocation costs. Such application might arise, for instance, in the event of natural
disasters. In these cases it can be very hard to estimate in advance (i) which areas will
require humanitarian relief, (ii) where the emergency facilities (e.g., Red Cross facilities)
can be located and (iii) how the damaged areas can be reached by the emergency brigades
coming from the installed facilities. Therefore, instead of dealing with deterministic sets R,
J and A we are given a finite set K of discrete scenarios such that each scenario k € K
is characterized by its own sets R*, J¥ and A* and also by the corresponding set-up and
allocation costs.



Formally, let K be a set of scenarios representing possible realizations of the problem
data, more precisely, for a given k € K: let R* be the set of customers that require the
service if scenario k is realized; let J* be the set of locations where facilities can be opened
if scenario k is realized; and let A* be the set of links that can be used if scenario k is
realized. We define R” = (J,,c R* as the set of potential customers, J® = (J, ., J* as the
set of potential locations and A° = Urer AF as the set of potential connections. We assume
that the classical UFL has at least one feasible solution for R°, J° and A°, and that each
customer i € R* can be reached by some link from AF.

The decision maker faces a two-stage decision: she/he needs to define a first-stage plan
(to open some facilities and to allocate some customers to these open facilities) without
knowing in advance the actual data that will be revealed. Once the actual information
is available in a second stage (i.e., a single k € K and its corresponding R¥, J*¥ and A¥)
additional decisions can be taken in order to recover the first-stage plan and turn it into a
feasible solution for the revealed data. A second-stage decision is said to be feasible if for all
k € K each customer i € R* is allocated to one installed facility in j € J* and the allocation
link is operational, i.e., (i,j) € A¥. These second-stage decisions consist of (i) the opening
of new facilities, (ii) the allocation of customers to facilities that are either opened in the
second-stage or were opened in the first-stage, and (iii) the re-allocation of customers that
were allocated in the first-stage to facilities that are actually not available in the realized
scenario.

In Figure an instance of the RRUFL with set of facilities J° = {A, B, C}, set of
customers R® = {1,2,3,4} and with two scenarios is shown. Scenario k = 1 is given by
R' = {1,3,4}, J' = {A, B}, A' = {(1, A),(1,b), (3, A), (4, B)}, and scenario k = 2 is given
by R* = {2,3,4}, J* = {B,C}, A*> = {(2,B),(4,B),(3,C)}. In the first stage, allocation
and facility set-up costs are 1 and 2, respectively. In the second stage, allocation and set-up
costs are 1.5 and 3, respectively, the cost of re-allocating a customer is 2 and the penalty for
a facility opened at a non-available site is 3.5. A first-stage solution is shown in Figure ;
a facility at site A is opened, customers 1 and 3 are allocated to it and the total cost
is: 2 (one opening) + 1 + 1 (two allocations) = 4. For this given first-stage decision, we
present in Figure the optimal second-stage solution in case scenario k = 1 is realized: a
facility at site B has to be installed while the facility at A remains open, customers 1 and 3
keep their allocations while customer 4 is allocated to the facility in B; so the second-stage
cost is: 3 (one opening) + 1.5 (one allocation) = 4.5. The optimal second-stage solution in
case scenario k = 2 is realized is shown in Figure : facilities at B and C have to be
installed while the facility at A becomes unavailable, customers 2 and 4 are allocated to
the facility at B, while customer 3 has to be re-allocated to the facility in C; the cost is:
3+3 (two opening)+1.54+1.5 (two allocations)+2 (one re-allocation)+ 3.5 (one penalty) =
14.5. Therefore, in the worst case, the overall cost of establishing this first-stage solution
and recover it in the second stage is given as max{4 + 4.5,4 + 14.5} = 18.5. Our goal will
be to find the optimal first-stage decision, so that in the worst-case total cost of the first-
and second-stage is minimized. For this example, the optimal first-stage solution is defined
by the installation of a facility in B and the allocation of 4 to it; this solutions induces a
first-stage cost of 3 and worst case second stage cost of 6, yielding a total cost of 9.

MIP Formulation In the first stage, decisions are modeled as follows: let y° € {0, 1}/
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(a) Instance of RRUFL (b) A Ist-stage solution (¢) Solution for k =1 (d) Solution for k =2

Figure 1: Example of an instance and first- and second-stage solutions for the RRUFL.

be a vector of binary variables such that y;-) = 1 if a facility is opened at location j € JY in
the first stage (at cost f7) and y) = 0 otherwise; let x° € {0, 1}° be a vector of binary
variables such that z; = 1 if the link (7, j) € A? is used to allocate customer i € R° to the
facility at j € JO (at cost ;) and zJ; = 0 otherwise. For a given scenario k € K, second-
stage decisions are defined as follows: let y* € {0, 1} *I'be a vector of binary variables such
that y;-“ = 1 if a facility is opened at location j € J* in the second stage (at cost ff) and
yf — 0 otherwise; let x* € {0,1}4"l be a vector of binary variables such that z¥ = 1 if the
link (i,j) € A* is used to allocate customer i € R* to the facility at j € J* (at cost ¢};) and
xfj = 0 otherwise; and let z* € {0, 1}|Ak‘ be a vector of binary variables such that 28 = 1 if
the link (i,1) € A* is used to re-allocate customer i € RF to the facility at [ € J* (at cost
r%) and z& = 0 otherwise. If a facility is installed in the first stage at a given location j € J°
(y9 = 1) and this location is available if scenario k is realized in a second stage (j € J*),
then this facility remains open and no extra cost is incurred; if the location is not available
in the second stage (j € J%\ J*), then a penalty p} must be paid.

With this definition of variables, a first-stage solution is a pair (x°,y?) € {0, 1}|AO|+|JO|
satisfying

o <y, V(i j) e A° (FS.1)
d  al <1, VieR" (FS.2)

(i,5)€A°

Given a first-stage solution (x°,y°) and a scenario k € K, the recovery cost is the minimum
total cost p(x°,y?, k) of the second-stage recovery actions (x*,y*, z*) needed to render the
solution feasible. Hence, p(x°,y?, k) is found by solving the following recovery problem:



p(yO,x% k) =min Y fF(yf—of)+ D b+ Y e+ YD ) R

jeJk (i,5) €Ak (i,)e Ak FEJO\JE

s.t. Z g + Z af, =1, Vie R’ (R.2)
(i.4)€A (i.)€ AR

Yoo oal< Y ah, VieRt (R.3)

(1,)€ A0\ Ak (i,))e Ak
af 2l <yF, V(i j) € A¥, Vie R (R.4)
y) <uys, vjeJ* (R.5)
y< e {0, 1171 x* e {0, 13141, 2% e {0, 11141, (R.6)

Objective function is comprised by the set-up cost of facilities in the second-stage
e [P = 99)), the allocation cost in the second-stage (3, jcar clj2f;), the cost of
re-allocating customers (Zw) cAk rk2%), and the total penalty paid by those facilities opened
in the first stage that can not operate if scenario k € K is realized (3_. JO\J* p?y?) Con-
straints state that a customer is either allocated in the first stage (3 ;e a0 ;) or in
the second-stage (3 ; jcax xy;). Constraints model the fact that if a customer i € R*
has been allocated in the first-stage to a facﬂlty j € J° by means of a link (i, ) € A%\ A*
then it has to be re-allocated to another facility [ € J* through a link (7,1) available in
the second-stage (D_; e an 2F). Constraints (R.4) impose that if a customer is allocated or
re-allocated to a facility j € J*, then that facﬂlty has to be available and reachable in the
second-stage. The fact that a facility that has been opened in the first stage should remain
opened in the second stage is modeled by . The nature of the variables is imposed
in (note that one can also relax the integrality constraints for x* and z*, Vk € K).

For a given first-stage solution (x°,y°) the robust recovery cost R(x°,y") corresponds to
the maximum recovery cost among all k € K| i.e.,

R(x",y") = maxp (x°,y°, k). (RR)

Combining (FS.1)-(FS.2), (R.1)-(R.6) and , we define the Recoverable Robust UFL
problem (RRUFL) as

OPTrr =min Z )+ Z g + R (x%,y°) (1)

jeJo (i,j)€ A0
s.t. (FS1)-(FS2), (R2)-(R6) and (x°,y°) € {0, 11411, 2)

In the proposed formulation of the RRUFL we impose that each customer i € R* has
to be assigned (or re-assigned) to exactly one available facility j € J* for any given k € K.
It is possible to relax this and, instead, impose a penalty, say ¥, if customer i € RF is not
served by any facility if scenario k is realized. This can be done by introducing a dummy
facility 7% with a set-up cost equal to 0 and connecting it to every customer i € R¥ with an
allocation (and re-allocation) cost c¥ = rk =tk




In many applications it is natural to think that whichever decision we take in the future
it will be more expensive than if it would have been taken at present. For instance, opening
a facility at a given location is likely to be more expensive later on in the planning horizon
than now ( ff > f](-)). Likewise, an agreement between a depot (facility) and a customer is
expected to have better conditions (for one of the two parties at least) if it is established
earlier than if it is defined when the market conditions have evolved (cf; > ;). Furthermore,
it is also natural to think that if an already agreed pact between a depot and a customer is
forced to be changed (e.g., because no allocation link is available between them), this will
entail an additional re-allocation cost possibly higher than the original one (rf > c?j, for all
L e Jb).

An optimal first-stage solution (x°,y?) is robust because, regardless which scenario oc-
curs, it guarantees that the second-stage actions will be efficient (due to the minimization
of the worst case) and easy to implement (because only a simple UFL has to be solved).
Hence, the more scenarios we take into consideration to find (x°,y"), the more robust the
solution is; because we are foreseeing more possible states of the future uncertainty. Unlike
common approaches of RO that protect solutions against perturbations in parameters as
costs or demands, our approach also hedges against uncertainty in the very topology of the
network. Likewise, a first-stage solution is recoverable, or possesses recoverability, because it
can become feasible in a second stage by means of second-stage actions.

The Robust UFL without Recovery To assess the effectiveness and benefits of the
RRULF, we also introduce another natural, but more conservative, model. Assume a
decision-making context equivalent to the one taken into account before. Consider a model
in which first-stage decisions are comprised only by y° and second-stage decisions only by
x¥ VEk € K. This is, an 2SRO model in which facilities can be opened only in the first
stage and allocations can be decided only in the second stage. We will refer to this new
problem simply as Robust Uncapacitated Facility Location without Recovery (RUFL). This
alternative model lacks the concept of recoverability since the solution cannot be intrinsically
changed: no new facility can be opened and there is no need to re-allocate any customer
in the second stage. Therefore, the solutions of such model although possibly more robust
(since they are more conservative) are expected to be more expensive, either because un-
necessarily many facilities have to be opened in the first stage or because the second-stage
allocation costs are considerably higher than those of the first stage. If we consider again
the instance in Figure , one can easily see that for this new model the optimal (and only
feasible) first-stage solution would be given by the installation of facilities in A, B and C
(with a cost of 6). In both £ =1 and k = 2 the optimal second-stage cost would be 8. This
leads to a total cost equal to 6 + max{8,8} = 14, which is more than the cost of the optimal
solution of the RRUFL which is 9.

2.2. The RRUFL and Previously Proposed Problems

Already in the 70’s efforts were devoted to provide both theoretical and algorithmic
contributions on Stochastic UFL. In [44] one can find an excellent review on Facility Location
under uncertainty, describing contributions not only from the stochastic but also from the
RO perspective. More recent references to Facility Location under uncertainty include [45],
7, 46, (19, 43| 2] (1], 25, 4] 3, 26] and [34].



Our definition of the RRUFL, as well as the algorithmic framework described later, spans
different possible cases of uncertainty in Facility Location. Some of them have been already
addressed in the literature by the use of stochastic and robust two-stage models.

For instance if J¥ = J° and A¥ = A°, Vk € K, then we are only addressing uncertainty
in the set of customers and, eventually, in the second-stage costs. A 2SSO approach for
this problem has been considered in [41], where approximation algorithms have been pro-
posed. In [45, 19, [43] and [34], uncertainty has been addressed only in the set of locations
(RF = RY and AF = A° Vk € K). As stressed by the authors, this model is suitable for
applications where facilities might become unavailable in a second stage due to disruptions
caused by natural disasters, terrorists attacks or labor strikes [see [19]. These papers share
two important features. First, uncertainty is tackled by means of 2SSO since probabilities
of facility failure are known in advance for each scenario. Second, a user is assigned to a
so-called primary facility that will serve it under normal circumstances, as well as to a set
of ordered backup facilities such that the first of them that is available will serve the cus-
tomer when the primary is not available [see [45]. This second feature cannot be included in
our framework without introducing additional binary variables; nonetheless decision-maker
preferences about the re-allocation of a customer in case the originally assigned facility fails
can be incorporated by a proper definition of the re-allocation second-stage costs.

A third case is the one where only connections are subject to uncertainty (R* = R® and
JF = J°% Vk € K). A 25RO model of this case is studied in [28] where the relevance of such
a model of uncertainty is emphasized in the context of response planning after disasters.

3. Algorithmic Framework

Note that formulation (I))-(2) has a polynomial number of variables and constraints with
respect to |R°|, |A°| and |K|. Therefore it can be solved directly (as a compact model)
through any state-of-the-art MIP solver (e.g., CPLEX). However, as we will show later,
when large realistic instances have to be solved, the direct use of solvers turns out to be
impractical.

Model — is a natural candidate to be solved by means of a Benders-like decom-
position approach: the first-stage variables (x°,y®) are incorporated in the master prob-
lem (MP) and the second-stage variables (x*,y*,z*) are projected out and replaced by a
single variable w representing the robust recovery cost, for a given (x°,y°), that is com-
puted by solving |K| slave problems (SPs). Thus, the objective function becomes
OPTrpr = min Y, jo fy] + D jyeno hjrly +w, where w > p(x°,y°, k) ,Vk € K. Hence,
for each given value of (x%,y° k), w can be computed by independently solving | K| prob-
lems —.

In our framework we refrain from the traditional implementation of Benders decompo-
sition, given the drawback that several MIP problems (MP and SPs) need to be solved at
each iteration in order to obtain a single Benders-cut. Nowadays most of MIP optimization
suites provide branch-and-cut frameworks supported by the use of callbacks. These call-
backs allow for the Benders decomposition to be transformed into a pure branch-and-cut
approach. The implementation works as follows: Benders cuts are added to the model as
valid lower-bounds on w each time a potential (fractional) solution of the MP is found by
means of solving a Linear Programming (LP) problem in a given node of the enumeration
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tree. This technique exploits the benefits of the decomposition allowing to implement ad-
ditional methods for heuristically finding more cuts and/or for strengthening the obtained
ones. That way, both, the speed and the convergence of the algorithm can be improved [see,
e.g., recent implementations of [37), 40)].

Basic Separation of L-shaped and Integer L-shaped Cuts In our approach, a valid
lower bound on w is iteratively imposed by means of L-shaped and integer L-shaped cuts [see
48, BI]. For a given first-stage solution, the second-stage problem can be decomposed into
| K| independent problems: dual variables of the LP-relaxations of these SPs yield L-shaped
cuts that are added to the MP while integer solutions of the SPs yield integer L-shaped cuts.

At a given node of the enumeration tree, let (x°,y") be a first-stage solution satisfy-
ing - and let @ be the current value of variable w. For a given k € K, the dual
of 1’ after removing the integrality constrains can be formulated as

maxz o; | 1— Z Zi?j + i Z fgj ‘1“2 fk yj Z prJ

i€RF (i,5)€ A9 (i,) €A\ Ak jeJk jeJO\JE
(D.1)
s.t. o — 0;j < cm, V(i,j) € A%, Vi € RF (D.2)
v —6u <71k V(i) € A*, Vi e RF (D.3)
€j+ Z 5Z]§fjk, VjEJk (D4)
(i,j)€ Ak
(a, v, 6, €) >0, (D.5)

where a, 7, 6 and € correspond to the dual variables of constraints (R.2), (R.3), (R.4)
and (R.D)), respectively. Let (&,%,d, €) be an optimal solution to (D.1)-(D.5)) with optimal
value pF. Following the LP-duality theory, an L-shaped (optimality) cut is given by

wda | 1= 3 @+l Y A+ @G- Y P
i€ERk (,7)€ A0 (i,j) €A\ Ak jeJ*k JEJO\JE

(LS)

which is added to the model if @ < p*. Note that an L-shaped cut can be found
regardless of (x°,y%) being integer.

Now suppose that (X°,¥°) is integer. If there is no k € K with @ < p¥, then one can
attempt to find integer L-shaped cuts [see B1]. For a given k € K, let p* be the optimal
value of — (preserving the integrality constraints), if @ < p¥, then the following
valid inequality can be added to the MP,

SR A DR SEFURD ST SRR S ES) RN
(1,7)€AF (4,5)€ AR\ AR jeJk JjeJR\Tk

where A" = {(i,j) € A¥ | &), = 1} and J* = {j € J* | ) = 1} are the index sets of the
links (4, 7) € A¥ and locations j € J* chosen in the first stage, respectively.
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3.1. Strengthening and Calculating Additional L-shaped Cuts

In the following we will describe different enhancements that we have incorporated into
our algorithmic framework.

Scenario Sorting Formally speaking, when separating cuts we only need to add the
cut associated with the worst-case scenario k* = arg max,. (%) for a given (x°,y°). How-
ever this entails an important disadvantage: exactly |K| LPs and/or ILPs have to be solved
to optimality, and only a single cut is generated out of this eventually large computational
effort.

In order to overcome the above described drawback we have designed a strategy that
first dynamically sorts scenarios according to the information available from the previous
iterations and then attempts to add not a single but many potentially good cuts. We first
note that as long as @ < p*, one can add an cut. Secondly, it is intuitive to think
that for a given instance there is a subset of scenarios that systematically induce violated
cuts, while another subset of scenarios rarely do so. Therefore, on the basis of the cut
violation values, defined as p* — @, one can dynamically update an ordered list of scenarios
K = [ki, ks, ..., kk], placing in the first positions those scenarios that consistently induce
large cut violation and at the end those that rarely satisfy @ < p.

In our strategy we apply learning mechanisms to identify K and prioritize the search of
violated L-shaped cuts using the first elements of the list until a pre-fixed number M AX ;4 <
| K| of violated cuts has been found or a pre-fixed number M AXy, ;) < |K| of failed attempts
has been reached.

In Algorithm (1| we present the general scheme of the separation of L-shaped cuts using
the scenario sorting strategy. For each scenario k € K, the value freq[k] accumulates the
number of separation calls in which we have solved the corresponding SP. Likewise, the value
viol[k] is a cumulative cut violation value of scenario k, over all previous separation calls. In
Step [1] the list K is created and its elements are sorted in decreasing order with respect to
viol[k]/ freqlk], which represents the average violation that each scenario has induced in the
previous iterations. In loop the L-shaped cuts are added: in line [4] the first scenario in
the list K is taken and removed; the k—th SP is solved in line [5} both vectors needed to sort
scenarios are updated in line [6} if the solution of the SP induces a violated cut (line [7]) then
the corresponding inequality is added in line [§] and the counter of added cuts is increased
(line E[); if no violated cut is generated, the corresponding counter is increased in line .

In our default implementation (and after parameter tuning), we have set MAX .t =
0.25 x |K| and MAX¢,; = 0.25 x |K]|.

Dual Lifting Clearly, the strength of the generated L-shaped cuts will strongly influence
the performance of the algorithm; the stronger they are, the less MP iterations (hence, the
less explored nodes in the enumeration tree) are needed. In this paper we use a recently
proposed technique to strengthen L-shaped cuts [see[37]. In contrast to other approaches for
generating stronger cuts [see, e.g., B8], this heuristic method does not require to solve any
additional LP problem and the strengthening process can be performed in linear time (with
respect to the number of variables).

Let (X°,¥%) be a pair satisfying (FS.1)-(FS.2), @ the current value of variable w, and
(&, 7, 5, €) an optimal solution to (D.1 — that satisfies @ < p*. The scheme to strengthen

the corresponding L-shaped cut is the following: (i) If for customer i € R* we have Z(i’ 7)eA0 92‘?]-
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Algorithm 1 Basic L-shaped cut Separation with Scenario sorting

Input: Fractional solution (x%,5%,@); vectors freq and viol; MAX ¢ and MAXg,;).
1: K = sortScenarios(K, viol, freq);
2: Set ceyy = 0 and c¢py = 0;
3: repeat

4: k= getFirst(K);
5: Solve the LP-relaxation of the k—th SP — and let 5* be the corresponding optimal value;
6:  freq[k] = freq[k] + 1 and viol[k] = viol[k] + (" — @);
7. if & < p* then
8: Insert an L-shaped cut given by into the LP;
9: Ceut T3
10: else
11: Ctait ++3

12: until coyy = MAX (g OF Cray = MAXp 5 o0 K =0
13: Resolve the LP;

1, then the corresponding dual variable «; does not appear in (D.1). (ii) If for customer
i € R¥ we have Z(i, J)EA0\ Ak .72*?]- = 0, then the corresponding dual variable 7; does not appear
in (D.1). (iii) If for a facility j € J* we have g9 = 0, then the corresponding dual variable
¢; does not appear in (D.1]). (iv) Moreover, variables § do not appear in the objective
neither. On the basis of (i)-(iv) we observe that we deal with a highly degenerate LP and
one can expect that the optimal solutions to — usually produce positive slacks
(typically, an LP solver will fix the associated dual variables to zero). The idea is now to
produce another LP optimal solution of the dual SP such that these slacks are reduced to
zero. Therefore, the values of the dual coefficients in (LS|) will be lifted as follows:

~ . ~O
& = {O‘i i i gpen Ty < 1

ming ;e ar{c}; + d;;}  otherwise

3, = Vi ) if 76 j)eao ar Ty >0
ming ;eae{ry; + 05} otherwise
g & if 79 >0
& = - :
/ fr— > (ijjear 0z otherwise

This is why we refer to this procedure as dual lifting. If &; > a;, ¥; > 7, or €; > €; for at
least one i € R* or j € J*, respectively, then the lifted L-shaped cut is given by

ZED IR R R IR | DD CES o F R S 73
i€ RF (i,5)€ A9 (i,j)€AO\ Ak jeJk JEJO\JE

(I-LS)

Lemma 1 ([37]). The lifted L-shaped cuts ([-LS) are valid and strictly stronger than the
standard L-shaped cuts .
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From the algorithmic point of view, to apply this approach one simply has to insert a
cut of type instead of one of type in line (8] of Algorithm .

We finally point out that similar procedures are used for stabilizing column generation
approaches [32] see, e.g.,].

Zero-half- L-shaped Cuts Zero-half cuts are a subclass of rank-1 Chvatal-Gomory cuts
with multipliers restricted to {0, %} [16]. They play an important role in polyhedral theory,
and nowadays they are also incorporated in major MIP solvers. Instead of using a generic
zero-half cut generation [see, e.g., [6], we impose zero-half cuts in combination with the
learning mechanisms introduced in the previous section. To this end, for a given k € K,
observe that by reordering terms, an arbitrary or can be written as

W>A Z gz] ij Zey]7 (3)

(i,5)€ A0 jeJo

where A(ék) is a constant value and Sk and €* are the corresponding condensed dual multi-
pliers. Now, let us consider two scenarios k; and ks inducing cuts in a given node of
the search tree and such that all coefficients of are integer for ky and ko (with at least
one odd value). By first multiplying each coefficient of the two induced cuts by 1/2 and then
summing the two resulting inequalities, we get:

w2 s (AE)TAED) + X SE 8T L@ A @)

(LJ’)EAO JEJO

By rounding up the constant term and each of the coefficients of the above inequality, we
get the following zero-half cut:

w > E (A(E’“) +A(Zk2)ﬂ + Y { (& +¢ Wa:l] +> [ —‘yj (zh-LS)

(3,5)€ A0 jeJo

Now, suppose that the cut induced by k; is stronger than the one induced by ks; in this
case the resulting zero-half cut is stronger than the L-shaped cut corresponding to
ko. We use this observation to incorporate zero-half cuts into the scheme described
in Algorithm [1] for separating L-shaped cuts as follows: Let k; be the first scenario in K
that induces an L-shaped cut ; afterwards, for each following scenario explored in K
inducing a violated cut, we generate the corresponding and combine it with the one
obtained by ki, which yields a stronger violated . This strategy is justified by the
fact that the ordering of the elements in K is based on how strong the previously produced
cuts have been with respect to the cut violation.

A Matheuristic for Generation of Additional L-shaped Cuts We have described
how we use the current fractional solution (XY, Sfo) in order to obtain a collection of valid
inequalities of type (LS), ([-LS), (zA-LS) and (i-LS). The idea now is to use (x°,3°) in
order to heuristically obtaln an alternative fea51b1e pair (x°, y°) and use it to find additional
L-shaped cuts at the root node of the enumeration tree.

The pair (x°,y°) is found by a matheuristic that resembles the basic ideas of Local

Branching [see 24, 42]. Let Syo = {(i,7) € A° | &; > 7} and Syo = {j € J° | g} > 7},
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be the sets of first-stage allocation and location decisions, respectively, whose corresponding
optimal LP-values are greater than 7, where 7 is a predefined threshold value. If (x°, y°) is
integer, sets Sxo and Syo represent exactly a feasible first-stage solution. Hamming distances
of an arbitrary pair (x°,y") to (x°,¥") can be defined as

A (xo,fco) = Z (1-— x?j) + Z x?j

(i,7)€550 (4,5)€A°\S0

ALY =D -u+ Y o

jeSyo jeJO\Syo

and

For a given (x°,y°), the alternative solution (x°,y°) is found as follows. Let ® be the
set of points (x°,y?,w) defined by the cuts of type (LS), (FLS), (zh-LS)) or (i-LS) that have
been added to the (MP) so far. The solution (x°,y°) is found by solving the following LP
problem:

(f{o,yo) = arg min%} fQ . ’]ZGAO Cu% +w (MH.1)
st A (X% X7) < kg (MH.2)

A(y"y%) < my (MH.3)

Ay’ 3°) =1 (MH.4)

(x%y’w) e ® (MH.5)

(FSI), and (x°,y°) € [0, 1]14°[F17°], (MHL6)

where the constants kx and ky of and , respectively, define the neighborhood
within which we want to find (x°,y%). Constraint ensures that the new solution
will differ from the original one in at least 1 unit of distance with respect to y". The later
condition is imposed considering that a small change regarding the set of opened facilities
is more likely to yield a different (and potentially useful) solution than a change on the
allocation decisions.

Once that (MH.I)-(MH.6) is solved, the solution (x° y") is used to obtain cuts of
type ([-LS]) (or if the feature is enabled) applying the same procedures explained
above. Furthermore, we have implemented an iterative process in which problem (MH.1})-
is solved M), times, such that the neighborhood size is slightly increased in each
following iteration. More precisely, at a given iteration ¢, kx and ky are given by:

=[(1+1t) xVU x|Sx|] and ky =[(14+1) %0 x|Syl],

where ¢ € [0,1] is a user defined parameter. In our default implementation, parameters m,
¥ and M}, are set to 0.1, 0.75 and 2 respectively.

It is well-known that the incorporation of constraints such as (MH.2)) and - IMH.3|) usually
decreases the practical difficulty of a model [see 24], therefore, ﬁndlng these additional cuts
is computationally inexpensive.
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Algorithm 2 Primal Heuristic

Input: Fractional solution (X°,y°,@); threshold ©.
1: §j = averageLP-Val(y’,0);

2: T = averageLP-Val(x", O);
3: Initialize J = §, R® = () and & = 0;
4: JO={jeJo| g3 > rand[©, g]};
5: RO ={i € R"[ X, jycao ¥ > rand[O, 7]};
6: if [J°| > 0 then
7 Set g; =11if j € JO and 9; = 0 otherwise;
8 Set @~ = 1ifi € R and j* = argming; i e o joy Cij and Zi; = 0 otherwise.
9: @ =maxpex p (X°,¥% k)
10:  Try to set (X°,¥°,@) as incumbent solution;

3.2. Primal Heuristic

Another component of our algorithm is a primal heuristic that uses the information of the
current fractional solution (x°,y°) and attempts to construct a feasible solution (x°,y°, o)
that improves the current upper bound. The scheme of the primal heuristic is presented in
Algorithm [2]

Function averageLP-Val(y" ©) (see line [l), is given by

ZjeJO:gj>@ ?j?
PARET CI

which means that g is computed using only those elements whose LP-values are larger than
©, where O is a predefined threshold value. The value Z is computed similarly (see line [2)).

A key element of the proposed heuristic is given in lines 4| and : set JO (resp. RO) is
built by adding an element j (vesp. @) if g (resp. >, ;-0 77;) is greater than a value,
uniformly randomly generated in the interval [0, 3] (resp. [©,Z]). Thanks to the use of
average LP-values z and g, important information about the solution topology is transferred
from the current LP solution to the heuristic solution. On the other hand, the use of random
thresholds (lines 4] and [5) provides diversification to the heuristic and helps in escaping local
optima. The feasible first-stage solution (X, y°) is computed in lines [7] and [§| by means of a
very simple greedy heuristic. The heuristic value of @ is found in line |§] Although |K| ILP
problems — have to be solved they are not solved to optimality but until a gap of
less than 1% is reached (which typically takes at most a few seconds). The default value of
O was set to 0.01.

3.8. Auziliary Variables and Branching Priorities

Looking more carefully at the objective function of a k-th subproblem, one easily observes
that for each customer ¢ € R, its assignment variables are grouped together into binary
decisions: (i) the customer is served in the first stage (3_; ;a0 ay;), and (ii) the customer is
served in the first stage by a wrong facility (Z(Z /)EAD\ Ak x%). This motivates us to introduce
additional binary decision variables and impose a new non-standard branching on them.
More precisely, we introduce auxiliary binary variables q, s € {0, 1}|Rk|, for all k € K, as
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follows:

¢f= Y ), VieR\ VkeK (5)
(i,5)€ A0

si= Y a2}, VieRF VkeK. (6)
(i,5)€ A0\ Ak

These auxiliary variables play two important roles in our algorithmic framework. First, they
are useful in the efficient construction of the LP (and ILP) SPs. The right-hand-side of
and can be fixed for each i € R* without the need of any extra loop to sum up the values
of the first-stage solution 2°. Second, and more important, these auxiliary variables are used
to guide the branching in a more effective way by imposing higher branching priorities on
them. Clearly, fixing to 0 or to 1 one of these variables immediately fixes the value of other
variables. For instance if ¢¥ = 1 and s¥ = 0 for a given i € R* (customer i € R* has been
allocated in the first-stage to a facility through a link that is available in scenario k in the
second stage), then zf; = 25 = 0 V(i,j) € A*. Otherwise, if ¢f = 0 (customer i € R* has
not been allocated in the first-stage to any facility), then sf =0, 3. pe xfj =1 and ij =0
V(i,j) € Ak, Other combinations can be analyzed straightforwardly.

Adding these variables and constraints —@ does not modify the polyhedral charac-
terization of —, so the computational effort does not intrinsically change by including
them.

4. Computational Results

In this section we first introduce two sets of benchmark instances that resemble ap-
plication of facility location in transportation networks and in the disaster management,
respectively. We use these instances (i) to analyze the properties of the obtained solutions
and their dependence on the cost structure, (ii) for showing the advantages of the recoverable
robustness, and (iii) for assessing the performance of the proposed branch-and-cut algorithm.
Finally, we also compare the performance of the proposed algorithm with the performance
of CPLEX when solving formulation (I)-(2) directly (i.e., as a compact model).

All the experiments were performed on an Intel Core™ i7 (4702QM) 2.2GHz machine (8
cores) with 16 GB RAM. The branch-and-cut was implemented using CPLEX™ 12.5 and
Concert Technology framework. When testing our branch-and-cut all CPLEX parameters
were set to their default values, except the following ones: (i) All cuts were turned off, (ii)
heuristics were turned off, (iii) preprocessing was turned off, (iv) the time limit was set to 600
seconds. Besides, higher branching priorities were given to y° and to the auxiliary variables
q and s as described in

We have turned some CPLEX features off (only when running our algorithm) in order
to make a fair assessment of the performance of the techniques described in

4.1. Benchmark Instances

We consider two classes of instances, that we refer to as Trans and Dis. Instances of the
first class are intended to resemble real transportation networks in which the transportation
costs depend on both the distance to be covered and the amount of commodities to be
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transported, and where the set-up cost of facilities strongly depends on the demographic
characteristics of the corresponding (urban) area. Dis instances approximate situations such
as humanitarian relief in natural disasters in which some transportation links are interdicted,
i.e., they are damaged so that the transportation time can be severely increased. We assume
that if a given city ¢ € R* requires to be served but each path from any j € J* to i contains
at least one interdicted link, then the city is still assisted although at a very high response
time. Besides, set-up costs f](.) are such that one might favor to install facilities in cities where
the average distance to all the potential customers is relatively small.

Trans Instances In this class of instances we consider three groups: US, Germany and
ND-I. In groups US and Germany we consider the geographical coordinates and updated
data of population of the 500 most populated cities in each country [see [47]. In group
ND-I we consider random instances with up to 500 nodes randomly located in a unit square
and population being an integer number taken uniformly at random from the interval [1 x
10%,2.5 x 10°]. We denote by d;; the Euclidean distance between cities i and j, and by pop;
the population size of city 4.

Given the coordinates and the population size associated with each node, an instance of
the RRUFL is then generated as follows:

(i) take the first n cities in terms of population;

)
(ii) define R° by randomly selecting 50% of the cities;
(iii) for k& € K define R* by randomly taking |R°| x rand[0.4, 0.6] cities from RY;
)

(iv) for k € K define J* by randomly taking (n — |R¥|) x rand[0.2,0.3] cities from 1,...,n
(J° = Urer J*);

(v) for k € K define A* = R* x J* (A% = R? x J°);

(vi) first- and second-stage transportation/allocation costs are defined as c?j = d;j X %(popi—l—
pop;) X ¢, ¢f; = (14 01) x ¢; and r; = (1 4 02) x ¢, for k € K;;

(vii) first- and second-stage set-up costs and penalties are defined as f](-) = p X popj, f]’“ =
(1+03) x f and pf = (1 4+ 04) x f) for k € K.

All coefficients are finally rounded to their nearest integer values.

Parameter ¢ is given in $ per unit of distance per unit of demand, so the allocation costs
are purely expressed in $; parameter p is given in $ per inhabitant (so the larger a city is,
the more expensive the set-up of a facility is); parameters oy, 02, 03 and o4 are [0, 1] factors
representing the increase of the allocation and set-up costs in the second stage.

The possibility that a location (and the corresponding facility) becomes unavailable in the
second stage, stems from practical applications. For example, from a long term perspective,
changes in the environmental legislation might force to stop the construction of a facility, or
it might impose environmental mitigation costs that turn the project infeasible. Similarly,
from a short term perspective, a facility might become unavailable due to a labor strike. Our
purpose is to present a model of uncertainty that covers different situations as these two.
To this end, a subset of facilities, about 40-60% of them (depending on the scenario, see
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(a) Trans-US (b) Trans-Germany

Figure 2: Representation of Trans Instances.

(iii)) are subject to failure in the second stage. Notice that, by construction, not necessarily
all facilities are subject to failure, but only those that become unavailable in at least one
scenario (i.e., J°\ NgJ¥). A similar scheme applies for the sets of customers RF.

As can be seen from (v), for this set of instances we do not consider disruptions in the
transportation network, i.e., for a given & € K, all customers in R* can be reached from
every facility in J* (with higher single-stage costs, though).

Figures and show the graphical representation of the 500 cities used in groups
US and Germany respectively (the name of the first 25 cities are provided). For n = 500, each
scenario resembles a UFL instance with ~ 125 customers and ~ 100 locations (the sets J*
and R* may intersect).

To create a large set of benchmark instances, we use the following parameter settings: n €
{100, 250,500}, ¢ € {1075,107%,1073,1072}, p € {0.001,0.01,0.1,1.0} o1, 05 € {0.05,0.50},
and 03,04 € {0.10,1.0}. In our computations we consider up to 75 scenarios which are
created in advance. By doing this, when dealing with instances with 25 scenarios, we simply
use the first 25 scenarios out of those 75. The same applies for 50 scenarios. The scenarios
are identical for the different values of all other parameters. By proceeding in this way, it is
easier to measure the impact of considering a larger number of scenarios. For a given group
(US, Germany, or ND-I) there are 3 x 4 x 4 X 2 X 2 x 2 x 2 x 3 = 2304 instances to be solved.

Dis Instances In this class of instances we consider three groups: Bangladesh, Philippines
and ND-II. In group Bangladesh (resp. Philippines) we consider the geographical coor-
dinates and updated data of population of the 128 (resp. 100) most populated cities in
each case [see 47]; in group ND-II we consider random instances with 100 nodes randomly
located in a unit square and the size of the population is taken uniformly at random from
[1 x 10%,2.5 x 105]. In the case of groups Bangladesh and Philippines we use pairwise
Euclidean distances between selected cities and embed them in a network N = (V, A), with
V' being the set of n cities and A the allocation links (n = 128 for group Bangladesh and
n = 100 for group Philippines). For the case of the group ND-II, the network N = (V, A)
is obtained such that a link is established between two cities 7 and j if the Euclidean distance
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(a) Nodes of the input network (b) N = (V, A) after adding links  (c) Example of a 1st-stage solu-
tion

Figure 3: Construction process of Dis Instances and an example of a first-stage solution. Bangladesh
Instances.

is smaller than or equal to a/y/n (« is an input parameter fixed to 1.6 in our computations).
Figure shows the location of the 128 cities for the Bangladesh group of instances, Fig-
ure illustrates the embedded network N = (V, A) of the same group, and Figure
shows an example of a first-stage solution.

With the information of each group, Bangladesh, Philippines or ND-II, an instance of
the RRUFL is generated as follows:

(i) define R° by randomly selecting t% of the cities, with ¢ € {25,50, 75}
(ii) for k € K define R* by randomly taking |R°| x rand[0.4,0.6] cities from R;

(iii) for k € K define J* by randomly taking (n—|R¥|) x rand[0.08,0.12] cities from 1, ..., n
(J° = UkeKJk)Q

(iv) first-stage allocation costs c?j are equal to the shortest path cost between 7 and j in
N = (V, A) using Euclidean distances d,,, V{u,v} € A;

(v) for the second-stage allocation costs we consider random link interdiction, that is: let
I* be a set of f x |A| x rand[0.8, 1.2] links randomly chosen from A. Then d*, = d,,,
for all {u,v} € A\ I*, and df, = 100 X dy,, for all {u,v} € I*, so ¢} is equal to the
cost of the shortest path between i and j with edge costs given by d*. Reallocation
cost rfj is 1.5 x dfj, for k € K;

(vi) first-stage set-up costs are given by f) = 3. o ¢;/|R°|, and second-stage set-up and
penalty costs are given by fF = (14 03) x f) and p§ = (1+04) x f}, for k € K.

The remaining parameters are f € {0,0.10,0.25,0.50}, o3 = {0.00,1.00} and o, =
{0.10,1.0,4.0}. All possible parameter settings, in combination with k € {25, 50,75} imply
that there are 3 x 4 x 2 x 3 x 3 = 216 instances to be solved for each fixed value of n within
each group.
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4.2. Trans Instances: Solutions, Robustness and Recoverability

Influence of the Cost Structure The characteristics of a robust first-stage solution and
the corresponding recovery actions depend not only on the scenario structure but also on
the cost structure. If, for example, for a given instance the second-stage costs are very high
with respect to the first-stage costs then the solutions of the RRUFL will tend to have more
facilities and assignments defined in the first stage. Likewise, if the second-stage set-up costs
are much higher than the penalty costs ( f]’-“ >> pf), we would expect that more facilities
will be opened in the first-stage (and eventually more assignments) than if ff < pﬁ?, where
the cost of setting-up a facility in the second stage is cheaper than the penalty for a facility
placed at a non-available location.

In Figure |4 we show the later case by comparing two solutions of an instance of group US.
For the first one (Figure , the penalties are ~ 81% more expensive than the second-stage
set-up costs, while for the second one (Figure , the penalties are 45% cheaper. We can
see how changing the relation between f]’“ and pf leads to very different solutions: while in
the first case 3 facilities are opened in the first stage and 8 customers are allocated to them,
in the second case 14 facilities are opened in the first stage and 54 customers are allocated.

The relation between parameters ¢ ($ per unit of distance per inhabitant) and p ($ per
inhabitant), also influences the solution structure. Assume that we are given an instance with
@ < p (set-up costs are higher than the allocation costs) and another instance with ¢ > p
(allocation costs are higher than the set-up costs). We would expect that the solution of the
second instance will be comprised by a larger first-stage component compared to the solution
of the first instance. Figure [5|depicts this by comparing the solution obtained for ¢ = 0.0001

and p = 0.01 (Figure 5(a))) with the one obtained for ¢ = 0.01 and p = 0.001 (Figure [5(b))).
In the first case, only a single facility is open in the first stage and 5 allocations are defined,
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(a) (0.0001,0.01), [y°| =1,]x°| =5 (b) (0.01,0.001), [y°| =8, |x°| =12

Figure 5: Solutions considering different combinations of (¢, p) (Instances Ger, n = 250, o1 = 0.5, 03 = 0.5
o3 =0.1, 04 = 1.0 and |K| = 25)

while in the second case 8 facilities are installed and 12 allocations are established in the first
stage. This effect is quite intuitive considering that the second stage costs are proportional
to the first stage costs for these instances: it is better to open facilities in the same place
where the demand is located, i.e., in a subset of R° N J° in order to avoid high allocation
expenses (¢ > p).

A more extensive analysis on the influence of the second-stage cost parameters (¢, p) and
(01,09,03,04) on the performance of the algorithm and on the the solutions characteristics
is now presented. In Figure we show the box-plots of the attained gaps for all the
combinations of (¢, p) when solving Germany group with n = 250. Each box-plot contains
information about 48 instances. The maximum and attained gaps are marked with a bold
circle and an asterisk, respectively, and the number of instances solved to optimality is
displayed under each box-plot. Recall that ¢ is a factor expressed in $ per unit of distance
per unit of demand, and p is expressed in $ per inhabitant. We can observe the following:
(i) The problem becomes easier (more instances can be solved to optimality) when ¢ is
considerably smaller than p (10* — 10° times smaller), that is, for those instance where the
set-up costs are considerably higher than the operating costs (transportation). (ii) When
p < ¢ we have that the transportation costs are larger than the set-up costs; in these cases
the attained gaps are relatively small. (iii) The problems become harder when £ > 1072
These three behaviors can be explained by the fact that in the easier first two cases there is
not as much symmetry in the cost structure between opening and transportation costs as in
in the third case (where the opening and transportation costs are of the same magnitude).

In Figure we show the box-plots of the attained gaps for the 16 combinations of
(01,09,03,04). Average and maximum gaps are marked with bold circles and asterisk as
before, and under each box-plots we provide the average value of the number of facilities
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Figure 6: Influence of cost parameters (¢, p) and (o1, 02,03,04) on the algorithmic performance and the

solution structure (Group Germany, n = 250)

open in the first stage and the number of first-stage decisions (opened facilities and defined
allocations). From this graphic, one can highlight the following observations: (i) The largest
first-stage components (as well as high gaps) are obtained when the factor of the re-allocation
cost oy is 0.05 and, especially, when o; = 0.5 (the increasing factor of the second-stage
allocation costs). (ii) The algorithmic performance is considerably more stable (but not
better on the average) when o is 0.05 than when it is 0.5. (iii) The algorithm behaves
better when the penalty factor o4 is 0.1 than when it is 1.0 (the difference is more clear
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when o; = 0.5). These outcomes can be explained as follows. When the second-stage
allocation costs are expensive (50% higher the first-stage value), but the re-allocation costs
are cheap (only 5% higher), then an optimal or nearly optimal first-stage solution will tend to
consist of several allocations which, therefore, implies that several facilities have to opened in
the first-stage. On the other hand, if both costs are expensive (o7 = g5 = 0.5), then having
a large first-stage component does not pay off. Having expensive second-stage allocation
costs (7 = 0.5) implies that the x* variables will likely be equal to 0 (regardless of k); this
immediately reduces the average computational effort of the separation problem. At the
same time, this implies that a good first-stage policy is required for having a globally good
solution. However, such a first-stage solution might be hard to find quickly, which explains
the large dispersion of gaps observed when o; = 0.5. Likewise, if the penalty paid for having
a first-stage facility in a non-available location is expensive (o4 = 1.0), then the first-stage
solutions will tend to consist of as few facilities as possible (so the total second-stage penalty
for the misplaced facilities is as small as possible); again, the need of a good first-stage policy
(at least better than when o4 = 0.1) explains why the problem becomes harder, especially
when a greater value of o7 pushes towards solutions with more facilities opened in the first
stage.

The Gain of Recovery A more accurate measure of the benefits of the recovery can
be calculated by comparing the solutions obtained for the RRUFL with those obtained for
the RUFL presented in Recall that the RUFL model is such that facilities can only be
opened in the first stage, whereas allocations can only be established in the second stage.
Hence, no recovery actions (in terms of setting-up new facilities or re-allocating customers)
are allowed. To illustrate the benefits of the recovery, we now define a measure that we will
refer to as the Gain of Recovery (GoR). GoR is defined as the relative gain in terms of cost
when using the solution produced by our recoverable robust approach instead of the one
produced by the approach without recovery (the RUFL, in our case).

In Table We report on statistics regarding the GoR. Columns GoR(OPTrg) correspond
to statistics of the GoR defined as GoR(OPTrg) = % x 100%, where OPTE is
the objective function value produced by the RUFL. Columns GoR(OPT,) correspond to
statistics of the GoR defined as GoR(OPT,,) = A x 100%, where wg, is the worst-case
second stage cost for the RUFL. The obtained values emphasize the practical benefits of
recoverable robustness in cases in which recovery is possible; both, the costs of the complete
policy (first- and second-stage solutions) and the worst-case second stage solutions are on
average 25-40% cheaper (and the difference can scale above 90%). These results clearly
justify the benefits of the recovery in the second stage, when compared to a less flexible
decision making policy.

The Effort for Robustness and the Price of Robustness The more scenarios (pos-
sible data realizations) we take into account, the more robust the first-stage solution is
expected to be. Nonetheless, this additional robustness is obtained at the expenses of (i) an
increase of the difficulty of the problem, since a larger search space must be considered, and
(ii) an increase of the total solution cost, O PTrr, because more facilities have to be opened
and more allocations have to be established in the first stage or because a new worst-case
scenario induces a higher robust recovery cost (i.e., w increases). The first of these effects
has been coined as the Effort for Robustness in [5] ; the second effect is similar to what is
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GoR(OPTRrR) GoR(w)

Group |K| Median Ave. Max  Median Ave. Max
25 34.73  36.28 89.07 31.55  33.96 82.87

Us 50 38.64 39.30 91.94 3552 37.31 87.46
75 41.34 40.81 93.50  34.61 36.29 89.95

25 29.17  32.73 90.01 2491 26.39 84.37

Ger 50 29.44  34.39 92.65 26.66 28.31 88.61
75 3252 37.26 93.90  28.40 32.05 90.62

25 24.69 25.31 79.84 29.41 30.24 70.47

ND-I 50 23.47 25.75 83.49 22.57 26.18 75.79
75 24.12  26.79 85.22 22,76 27.33 78.32

Table 1: Statistics of two measures of the Gain of Recovery for different values of n and |K| (Groups US,
Germany and ND-I with n = 100)

called the Price of Robustness in [10].

To illustrate these effects, in Table [2| we report average values of the results obtained for
groups US, Germany and ND-I for varying number of nodes and scenarios (columns Group, n
and | K|, respectively). The presented values are related to the solution characteristics and to
the algorithmic performance. Each row corresponds to the results of 256 instances. Column
Time [s] reports the average running times expressed in seconds; column Gap (%) shows
the average gaps attained within the time limit; the average number of facilities opened in
the first stage is reported in column |y°| and the average number of first-stage allocations is
given in column [x°[; in columns AOPT% and Aw% we report the average relative increase
in the value of OPTxrg, resp. w, when considering 50 and 75 scenarios with respect to the
value obtained for 25 scenarios. In column #Opt the number of instances that were solved
to optimality (out of 256) is shown.

The Effort for Robustness is clearly illustrated by the worsening of the algorithmic per-
formance when increasing the number of scenarios: (i) the running times increase (cf. col-
umn Time [s/); (ii) the attained gaps increase (cf. column Gap (%)); and, hence, the number
of solutions solved to optimality (cf. column #Opt) decreases.

The Price of Robustness is demonstrated in columns AOPT% and Aw%, where one can
see that, without exception, the average values of the solution cost and the robust recovery
cost increase when increasing | K| from 25 to 50 and from 25 to 75. Recall that in our model,
decision maker needs to implement only the firt stage solution. In columns |y°| and |[x°| one
can see that the size of the first-stage solution is more or less constant for a given n, regardless
of the value of |K|. Hence, increasing the number of scenarios does not produce a measurable
effect on the size of the first-stage solution but only on the structure of the second-stage
recovery actions (which induces a higher value of w). Similarly, the major economical impact
of increasing the number of scenarios is on the costs of the recovery actions. We observe that
in all cases (except for two entries of the group Germany) the value of AOPT% is smaller
than the value of Aw%. This means that the obtained first-stage solutions are such that
they allow to reduce the impact of a higher robust recovery cost by balancing robustness
and recoverability. The two entries in which the average value of AOPT% is greater than
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Group n |K| Time [s] Gap (%) [y°] 0] a0P1% dwr #(ELS) #[LY)n #(-LS) #BBN #Opt

100 25  44.94 0.00 5 7 0.00 0.00 54 4 0 342 251

50  72.09 0.01 5 6 012 0.64 79 4 1 284 252

7 86.56 0.01 5 6 111 5.23 96 3 0 219 250

250 256 24326 0.18 11 14 0.00 0.00 105 9 0 183 175

Us 50 22945 0.06 11 11 2.89 5.61 89 3 0 125 197
75 28592 0.07 11 11 3.50 6.68 99 2 0 84 172

500 25 458.06 1.10 18 25 0.00 0.00 61 11 0 19 82

50  586.68 132 15 19 2.66 3.90 67 5 0 7 11

75 600.00 1.99 16 20 3.63 5.06 79 2 0 1 0

100 25  21.52 0.00 6 5 0.00 0.00 43 4 0 143 256

50  45.97 0.00 6 5 001 0.01 67 4 0 169 252

7 70.71 0.00 6 6 151 1.00 98 4 1 171 249

250 256 34782 036 13 14 0.00 0.00 274 9 1 243 134

Ger 50 40743 037 12 13 294 415 172 6 1 165 107
75 44938 055 12 13 3.03 4.25 158 6 0 98 92

500 25 431.51 0.52 17 20 0.00 0.00 59 9 0 31 96

50 54232 058 17 18 1.34 2.78 65 3 0 13 43

75 600.00 250 23 28 813 6.27 79 1 0 1 0

100 25  37.22 0.00 7 10 0.00 0.00 94 5 0 282 256

50  31.60 0.00 6 10 6.44 1185 66 3 0 99 256

75 48.10 0.00 6 10 6.45 11.82 91 3 0 100 256

250 25 296.20 0.07r 16 18 0.00 0.00 103 5 0 287 153
ND-T 50 38478 0.12 15 18 732 822 103 5 1 167 115
75 33024 013 14 16 8.86 10.71 106 4 1 106 151

500 25  543.29 1.98 25 38 0.00 0.00 7 15 0 30 33

50  584.45 201 24 33 067 5.07 63 7 0 6 12

75 600.00 238 23 36 12.25 18.06 79 2 0 1 0

Table 2: Statistics of solution characteristics and algorithmic performance for different values of n and |K]|
(Groups US, Germany and ND-I)

the average value of Aw%, can be explained by the fact that not all instances are solved to
optimality (especially for n = 500 and |K| = 75), so the non-optimal first-stage solutions
are such that the corresponding recovery costs are sub-optimally high.

4.8. Trans Instances: Algorithmic Performance

Assessment of Algorithmic Enhancements In §3| we have described several enhance-
ments for our algorithm: cut strengthening based on dual-lifting, scenario sorting, zero-half
cuts, matheuristic generation of cuts and branching priorities on auxiliary variables. In
Figure [7] we show box-plots of the gaps attained when solving instances of group US with
n = 250 when incrementally including the proposed techniques. Each box represents the
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Figure 7: Influence of the special enhancement strategies on the algorithmic performance (Group US, n = 250)

distribution of the obtained gaps over a set of 678 instances. The first box-plot corresponds
to the basic setting of the algorithm, that is, with the cuts of type and ; the
second box-plot shows the gaps obtained when using the strengthening technique based on
dual variables (i.e., when adding instead of ); in the third box-plot we display the
gaps obtained when adding the strategy of scenario sorting; the fourth box-plot shows the
gaps attained when adding cuts generated by our matheuristic approach; the gaps attained
when strengthening found cuts using zero-half cuts are given in the fifth box-plot; finally,
in the sixth box-plot we show the gaps obtained when imposing higher branching priorities
on the auxiliary variables (this last configuration is our default one). The bold points are
the maximum gaps, asterisks are the average gaps and on top of each box we show the total
number of instances (out of 678) that were solved to optimality.

The results clearly demonstrate that all the proposed techniques contribute to the ef-
fectiveness of the algorithm and complement each other: the average gap decreases, more
instances are solved to optimality and the performance is more stable. In terms of the
marginal contribution to the algorithmic performance, the strengthening technique based on
dual-lifting and imposing higher branching priorities on the auxiliary variables seem to be
the techniques that produce largest improvements of the algorithmic performance. Using
the basic strategy, only 131 instances can be solved to optimality. On the contrary, using a
combination of our enhancement methods, 544 instances are solved to optimality within the
same time limit.

More detailed indicators of the effectiveness of the considered cuts and their algorith-
mic performance are provided in Table . In columns #, #MH and # we
report the average number of L-shaped Cuts, L-shaped Cuts found via the matheuristic
approach, and integer L-shaped Cuts, respectively, that are added during the optimization
process. Column #BBN reports the average number of enumeration nodes explored within
the running time.

It is remarkable that (cf. column #), integer L-shaped cuts are added in very rare
cases. In a more detailed analysis we observed that whenever the current solution (x°,y°)
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Figure 8: Performance Profile of attained gaps and running times for different number of scenarios (Group
US, 2034 instances)

was integer, usually were able to close the gap, so no attempt was made to find
integer L-shaped cuts.

The number of explored enumeration nodes (column #BBN) clearly shows that increas-
ing the size of the instance and the number of scenarios produces a slowdown in the explo-
ration of the search-space. This happens because more time is spent at each node solving
the separation problem and performing the algorithmic enhancements described before.

The effectiveness of the proposed solution approach on the 2034 instances derived from
group US is shown in Figure |8l The performance profile of the attained gaps for different
values of |K| in Figure shows that (regardless of the value of |K|): (i) about 65% of
the instances are solved to optimality or a very small gap is reached, (ii) for almost 80% of
the instances a gap of less than 1.5% is reached, and (iii) for almost all, expect 5 instances,
the attained gap is less than 4.7%. As for the running times, Figure shows that: (i)
between 20% and 40% of the instances can be solved in less than 60 seconds, (ii) about 50%
can be solved in less than 300 seconds, and (iii) for almost 45% of the instances the time
limit is reached. Detailed performance profiles of the attained gaps for different values of n
are provided in the Appendix (Figure . The observed behavior is not very different in the
case of the group Germany (Figure [11]in the Appendix), nor in the case of the group ND-I
(Figure [12|in the Appendix).

Recall that for our branch-and-cut approach we have disabled some CPLEX features
(pre-processing, heuristics and general-purpose cutting planes) in order to get a better as-
sessment of the proposed techniques. For the sake of completeness, we have performed some
experiments where all CPLEX parameters are set to their default values. In Table [0] in the
Appendix we report statistics on the algorithmic performance when solving instances with
n = 100 of groups US, Germany and ND-I with the default CPLEX settings. Comparing this
table with Table [2) one observes that enabling these CPLEX features does not produce any
improvement on the algorithmic performance; moreover, it actually deteriorates it: fewer
instances are solved to optimality within the same time limit and the attained gaps are
slightly worse.

As mentioned above, formulation — can also be solved directly through any state-
of-the-art MIP solver such as CPLEX. Nonetheless, this straightforward strategy cannot be
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Opt. Times Attained Gaps B&C Indicators

Group k Ave. #0pt Ave. max #Nopt #BBN #CPX Cuts
25 17.43 256 - - 0 213 14
Us 50 36.08 237 39.56 84.34 19 182 26
75 54.16 221 62.72 99.1 35 190 22
25 14.20 256 - - 0 72 9
Ger 50 41.87 244 17.8 42.85 12 133 19
75 66.25 206 31.6 98.01 50 269 25
25 7.72 253 - - 0 138 13
ND-I 50 38.10 256 - - 0 131 17
75 54.40 228 49.48 99.63 28 175 31

Table 3: Algorithmic performance of CPLEX when solving the compact model. Trans Instances with n = 100
(256 instances per row).

applied successfully, even to our smallest instances (n = 100). In Table [3| (cf. Table [7)
we report statistics on the performance of CPLEX with default configuration when solving
instances of class Trans with n = 100 (within the same time limit of 600 seconds). We
observe that much less instances are solved to optimality, and the gaps of the unsolved
instances can be as high as 99%(!) and average gaps can range from 17.0% to more than
60.0%. In the table we also report the number of explored enumeration nodes (#BBN)
and the number of cuts added by the solver (#CPX Cuts). What seems surprising is the
small number of general-purpose cuts added during the optimization with respect to the
number of explored nodes; this means that cutting planes as those included in CPLEX are
insufficient to tackle the structure of the RRUFL (at least for the considered instances) and
the lower-bound improvement mainly relies on branching.

4.4. Dis Instances: Solutions and Algorithmic Performance

Solutions Dis class is intended to represent situations of natural disasters in which dif-
ferent number of cities are likely to need assistance (¢t = {0.25,0.50,0.75}), few cities are
in conditions to host a facility, a portion of the allocation links can be heavily damaged
(f ={0.00,0.10,0.25,0.50}) and the attractiveness of a location depends more on its posi-
tion than on its economical characteristics.

As in the case of Trans instances, the structure of the first-stage solutions strongly de-
pends on the instance definition. Figure[d|displays solutions of instances of group Philippines
considering different combinations of (¢, f). We can observe that for a fixed value of ¢ (Fig-
ures 9(c)| for t = 0.50 and Figures|9(d)R9(f)| for t = 0.75), a larger first-stage component
is defined when increasing f, i.e., more facilities are opened and more allocations are de-
fined. This behavior is expected due to the dramatic effect produced by the presence of
road failures; it is better to define robust first-stage allocations to prevent from very high
transportation times in the second stage.

Note that, from a practical point of view, if a given city 7 is assigned in the first stage to a
facility 7, the actual allocation cost (the one incurred when assistance comes from j to i after
the disaster) will still be scenario dependent (chosen roads might be damaged in any case).
However, this first-stage decision can help to decision makers (i) to define preventive plans
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(a) (0.50,0.10), |y°| = 3,|x°| = 11 (b) (0.50,0.25), [y°| = 4,|x°| =5 (¢) (0.50,0.50), |y°| = 7,|x°| = 13

(d) (0.75,0.10), |y°| = 3, |x°| = 2 (e) (0.75,0.25), |y°| = 5, |x°| = 29 (f) (0.75,0.50), |y°| = 7,|x°| = 58

Figure 9: Solutions considering different combinations of (¢, f) (Group Philippines, 03,04 = 1, |K| = 50)

to endure some roads, (ii) to have in mind how to access the affected areas regardless of the
presence of failures, and (iii) to make sure that if a given allocation should be re-defined, this
re-allocation will be economically efficient (due to the worst-case emphasis of the model).

Figures 9(a)H9(f)| have been produced by transforming our solutions into kml files that
can be displayed with the Google Earth free software [see 27].

In Table [ (equivalent to Table [2)) additional information on solutions’ structure is pro-
vided. As in the case of Trans instances, we can see that the number of scenarios does
not change the average values of |y°| and |x°|, which again shows that our model tackles
uncertainty in a way that cost structure influences more the characteristics of first-stage so-
lutions than the uncertainty. The values reported in columns AOPT% and Aw% reinforce
the previous observation: There is an important increment of the total cost of the solutions
(AOPT%) when increasing | K| but most of this increment is due to the second-stage compo-
nent (Aw%). The marginal difference between Aw% and AOPT% is due to the robustness
cost of the corresponding first-stage solutions. Note that the values of AOPT% and Aw%
are one order of magnitude higher than those obtained for Trans; this can be explained by
the nature of the Dis instances, where interdiction of transportation links induces higher
allocation/re-allocation costs in the second stage.

Further insights on the influence of the cost structure on the first-stage solutions are

shown in the Appendix: Figures[l3/and[l4](Bangladesh group), Figures[16|and[17 (Philippines

30



Type n |K| Time [s] Gap (%) |y°| [x°| aorr% aw% #({-LS) #(-L)wn #(-LS) #BBN #0pt

128 25 208.84  0.73 3 10 0.00 0.00 90 3 0 1548 54
Bang 50  308.63 1.81 3 11 23.50 23.60 138 3 0 1128 42
75 293.61 1.75 3 10 29.69 30.82 145 3 0 665 43

100 25 169.79  0.31 3 12 0.00 0.00 120 3 0 2126 61

Phi 50  265.63 1.53 3 12 2930 32.15 119 2 0 1872 52
75 34157 290 3 14 34.83 36.86 153 2 0 1480 39

100 25 219.90  0.56 3 8 0.00 0.00 104 2 0 2661 95

ND 50  249.05 1.74 3 7 1039 13.06 133 2 0 1394 47
75 29459  2.75 3 7 2264 2512 142 2 0 1105 39

Table 4: Statistics of solution characteristics and algorithmic performance for different values of | K| (Groups
Bangladesh, Philippines and ND-II)

Bangladesh-128 Philippines-100 ND-II-100
Opt. Times  Attained Gaps Opt. Times  Attained Gaps  Opt. Times  Attained Gaps
|K| Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt
25 7845 54 292 743 18 92.21 61 2.04 3.93 11 102.41 55  2.38 5.09 17
50 100.51 42 433 975 30 137.03 52 548 1511 20 62.38 47 5.00 9.20 25
75 86.98 43 433994 29 12290 39 6.32 15.60 33 36.16 39 6.00 10.87 33

Table 5: Running times needed for optimality and attained gaps when reaching the time limit for different
values of |K| (Groups Bangladesh, Philippines and ND-II)

group), and Figures |19 and [20] (ND-II group). From these figures we can see that the average
values of |yY| and [x°| depend more on factors ¢t and f (as previously shown in the examples)
than on (03, 04) (the second-stage set-up and penalty factors).

Algorithmic Performance As in the case of Trans instances, one can identify the Effort
for Robustness when solving Dis instances. From columns Time [s], Gap (%) and #Opt in
Table 4] we observe that the greater the value of |K|: (i) the larger the average running
time, (ii) the greater the average attained gap, and (iii) the fewer instances are solved
to optimality. From columns #({-LS)) and #BBN, we observe that, compared with Trans
instances of almost the same size, much more cuts are added but also much more nodes
are explored. This means that, on average, fewer cuts are added per enumeration node. This
can be explained by the increase of numerical instability due to the presence of coefficients
with different orders of magnitude. These differences lead to weaker or non-violated cuts.
Therefore, our scenario sorting strategy interrupts the cut-generation cycle and forces more
branching. A similar argument applies for explaining the small amount of heuristically
generated cuts (column #(-LS))uu) and of integer L-shaped cuts (column #(E-L3).

Table [5| reports more details regarding the algorithmic performance. The results indicate
that Dis instances are more difficult to solve than Trans instances. Even if the running times
for reaching optimality are still quite reasonable, the attained gaps are high (especially when
considering the maximum values). The additional difficulty of these instances is explained
by their more complex structure entailed by the presence of link failures (that can be very
different from one scenario to another).
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The relatively high average gaps, according to Table |5 are a consequence of the presence
of a few outliers with high gaps. The performance profiles of the gaps attained for different
| K| are shown in the Appendix in Figures , , andcorresponding to groups Bangladesh,
Philippines, and ND-II respectively. One can conclude that in all cases the following
pattern is observed: (i) for at least 60% of the instances optimality or a very small gap is
reached (regardless of the value of |K|); (ii) for 75-85% of the instances a gap below 5% is
attained (regardless of the value of |K|); (iii) for at most 5% of the instances gaps above
10% are obtained (only for |K| = {50, 75}).

The previously described instability of the attained gaps and their dependence on the
instance structure is clearly depicted in the complementary charts provided in the Appendix.
One observes that factors ¢ and f (Figures[13] [16]and [19) have more influence on the stability
of the algorithmic performance, than factors o3 and o4 (Figures and[20]). These results
respond to two facts: (i) parameter ¢ plays an important role in the very structure of the
instance (it defines the size of R), and (ii) parameter f produces a similar effect since it
defines the number of connecting links that become almost unavailable (their transportation
times become 100 times larger).

5. Conclusions

The UFL is a classical combinatorial optimization problem of an enormous practical
and theoretical relevance. Its simplicity and versatility makes it suitable to model different
problems of real-world decision making. Nonetheless, when truly implementable solutions
are sought, the consideration of uncertainty is unavoidable. For the UFL under different
sources of uncertainty, we applied a new recoverable robust optimization approach (RRO)
that falls within the framework of 2SRO. In this new concept, a robust solution is sought
such that it can be recovered (i.e., rendered feasible using a limited set of recovery actions)
once the uncertainty is revealed in a second stage. For the resulting problem, RRUFL,
we designed a branch-and-cut framework based on Benders decomposition and we included
several tailored enhancements to improve its performance.

The proposed algorithm was extensively tested on more than 7500 realistic instances
divided into two groups. The results show the efficacy of the algorithm in finding good
quality solutions within a short running time. Moreover, the results demonstrate the strong
influence of the instance cost structure on both the algorithmic performance and solution
characteristics. Our computational study also illustrates how robustness and recoverability
are expressed in the structure of optimal solutions, and it demonstrates the benefits of RRO
when compared to a RO model without recovery.

Finally, the obtained results indicate that solving the RRUFL is a not an easy task for
general purpose MIP solvers. To cope with the size of realistic instances, it is inevitable to
use more sophisticated decomposition techniques, like the one presented in this study.
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6. Appendix

6.1. Additional Results

In our deafult runs of the proposed branch-and-cut approach we have disabled some
CPLEX features (pre-processing, heuristics and general-purpose cutting planes) in order to
get a better assessment of the proposed techniques. For the sake of completeness, we have
performed some experiments where all CPLEX parameters are set to their default values.
In Table [6] we report statistics on the algorithmic performance when solving instances with
n = 100 of groups US, Germany and ND-I with the default CPLEX settings.

Us Germany ND-I
Opt. Times Attained Gaps Opt. Times Attained Gaps Opt. Times Attained Gaps
W Ave. #0pt Ave. max #Nopt Ave. #0pt Ave. max #Nopt Ave. #Opt Ave. max #Nopt
25 2285 244 0.06 0.10 12 17.16 253 0.030.07 3 38.64 238 0.26 1.04 18
50 41.95 250 0.070.32 6 3266 253 0.030.04 3 40.80 251 0.06 0.10 5
75 54.15 246 0.08 0.60 10 59.74 245 0.050.13 11 52.36 238 0.09 0.29 18

Table 6: Running times needed for optimality and attained gaps when reaching the time limit for different
values of n and |K| when enabling CPLEX Heuristics, Cuts and Preprocessing (n = 100, Instances US,
Germany and ND-I)

Us Germany ND-I
Opt. Times Attained Gaps Opt. Times Attained Gaps Opt. Times Attained Gaps
n |K| Ave. #O0pt Ave. max #Nopt Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt

100 25 33.89 251 0.04 0.06 5 21.52 256 - - 0 37.22 256 - - 0
50 63.71 252 0.59 0.88 4 37.18 252 0.01 0.01 4 31.60 256 - - 0
75 7423 250 030095 6 55.83 249 0.02 0.03 7 48.10 256 - - 0

250 25 78.14 175 0.57 232 81 118.23 134 0.75 2.54 122 91.68 153 0.16 1.59 103
50 118.48 197 0.252.12 59 139.28 107 0.63 2.17 149 120.91 115 0.22 1.94 141
75 13253 172 0.221.40 84 180.89 92 0.86 4.82 164 142.65 151 0.32 6.35 105
500 25 156.86 82 1.623.81 174 150.70 96 0.83 2.30 160 160.04 33 2.2710.65 223
50 290.02 11 1.384.66 245 256.63 43 0.70 2.59 213 268.23 12 2.11 6.19 244
(0] - 0 1.999.38 256 - 0 2501395 256 - 0 238 793 256

Table 7: Running times needed for optimality and attained gaps when reaching the time limit for different
values of n and |K| (Instances US, Germany and ND-I)
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6.2. Additional Performance Profiles of Trans Instances
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Figure 10: Performance Profile of attained gaps for different |K| (Group US with n € {250,500})
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6.3. Detailed Results for Bangladesh Instances
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Figure 13: Box Plot of attained gaps for different combinations of (¢, f) (Group Bangladesh, under each box-plot the number
of optimally solved instances and the average values of ([y°|, |x°|) are reported)
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6.4. Detailed Results for Philippines Instances
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O ]
—
15.6.% 5 b
o 155% )
< 152 % 152%
3 4
—
o
& A
- . °
~ 122% o
— - .
= e 11.1%
© K °
= o ° o
>
[=aN
© o
g
o
8
(O °
4 ° o
°
o
© _| o o
<
° 8
o~ ° °©
™ 7] _ °
2.12 4 LeETR— °
© | * 173 % R 165 %
- —_ H ° 116 %
o e —_— C—
230pt, (2,6) 250pt, (2,7) 29 Opt, (3,10) 24.0pt, (2,6) 24.0pt, (2,6) 270pt, (2,9)
T T T T T T
00.2) 01) 04) (10.2) (1) (14)

(03!04)
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6.5. Detailed Results for ND-II Instances
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optimally solved instances and the average values of (|y°|, |x°|) are reported)
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Figure 21: Performance Profile of attained gaps for different number of scenarios (Group ND-IT)
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