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Resum

Wmediumd és una aplicació basada en el llenguatge de programació C i que va ser

desemvolupada per una consultora d’Estats Units anomenada Cozybit.

Wmediumd va ser creada per dur a terme emulació del medi sense fils a xarxes emulades

Linux. Aquesta aplicació permet als programadors de controladors 802.11 crear un entorn

de desenvolupament/prova amb un sol ordinador, estalviant temps i equips.

La versió actual d’aquesta aplicació només emula el comportament del medi mitjançant

la pèrdua de paquets basant-se en probabilitats, sense patrons de mobilitat entre ràdios

emulades i sense tindre en compte les interferències del medi.

És interessant per Cozybit i per altres desenvolupadors crear una extensió de Wmediumd

introduint el comportament del medi i de mobilitat de les ràdios emulades. D’aquesta

manera es millorarien els test-beds de 802.11 per als desenvolupadors de controladors.
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Overview

Wmediumd is an application based on the C programming language and was developed

by a United States company called Cozybit.

Wmediumd was created to perform emulation of the wireless environment on emulated

networks created on Linux OS. This application allows programmers of 802.11 drivers to

create an environment for development/testing with a single computer, saving time and

hardware.

Current version of this application only emulates the behaviour of the medium creating

frame losses depending on probabilities, but not using mobility patterns between emulated

radios and also without taking into account the interferences the environment has.

It is interesting for Cozybit and other developers to create an extension of Wmediumd to

introduce environmental behaviour and mobility on the emulated radios. Introducing this

extension will improve the test-beds for the 802.11 driver developers.
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1

INTRODUCTION

With the increase of the process capacity on mobile devices, the decrease of their costs

and the current investments on digital communications, 802.11 networks starts to get rel-

evance in many scenarios of our society.

Some of these scenarios are:

• Mobile communications.

• Military communications.

• Energetic meters now being deployed on residences.

• Internet access in poor countries.

• ...

IEEE 802.11 is a set of protocols used for wireless local area networks (WLAN) and nowa-

days it’s the most used protocol.

The wireless networks have an exponentially growth during lasts years as seen in Table 2

which shows the global WLAN chips shipments.

Table 2: WLAN global shipments [18].

Year WLAN chip shipments (Millions of units)
2009 100
2010 400
2011 800
2012 1300
2013 1700
2014 2200

Cozybit is a consultant company from United States located in San Francisco, it’s cos-

tumers include companies like: Google, Qualcomm, Sony, Samsung, etc.. The working

areas of the company are: distributed networks, wireless communications, the develop-

ment of the Linux kernel and embedded devices. This company created the first open

source 802.11s 1 implementation.

1IEEE 802.11s is an IEEE 802.11 amendment for mesh networking, defining how wireless devices can
interconnect to create a WLAN mesh network, which may be used for static topologies and ad hoc networks
[23].
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In order to improve the 802.11 driver a real scenario can be deployed, but this is highly

resource/time consuming. Using the Linux tools can be created an emulated environment

ready to test a driver as it would be done with real radios.

The problem is that created links will just forward all frames from one interface to the

others (as it would be done with a wireless medium), but with the difference that real

wireless medium has interferences, multipath and other problems. These factors create

transmission errors while reading the frames that the wireless network interface receives,

thing that doesn’t happen without a wireless medium emulator.

For that purpose Cozybit created and application called Wmediumd that communicates

it self with the kernel to create probabilistic errors and to emulate with this behaviour the

wireless medium. The problem of that is that the wireless medium has different errors

behaviour, in some way, related to the mobility of the stations, which is not taken into

account in the current behaviour of Wmediumd.

This project will study and perform an extension of Wmediumd to add capabilities to emu-

late medium and mobility behaviour to it.



Objectives 3

CHAPTER 1. OBJECTIVES

Current 802.11 development environment can be improved. This is the aim of this project

which will extend the wireless medium emulator Wmediumd to integrate on it the medium

and the mobility behaviour.

To do that next objective list is considered:

• Learn how Linux namespaces work in order to insulate operative system resources.

• Understand how radio network interfaces are emulated on Linux. Load and test the

specific kernel module that performs emulation, this module is mac80211_hwsim.

• To test network namespaces with emulated radio network interfaces and configure

an test a topology.

• Understand and test current wireless emulator Wmediumd. This is a relevant point,

because the knowledge acquired on current solution will help to find where the ex-

tension code has to be placed.

• Study the source code of Wmediumd and see how the execution flows and how the

simulator has communication with the kernel in order to produce or not transmission

errors.

• Study and search characterization models of wireless medium depending on inter-

ferences, mobility and multipath effects.

• Create and code studied behaviours in the emulator extension.

• Insert and test the mobility behaviour in Wmediumd to test the expected behaviour.

Dumping PCAP 1 files from the interfaces and reading them with Wireshark in order

to check the frames communication.

• Extract conclusions of the implemented extension and its fidelity.

• Perform a study of possible environmental impact associated to this project.

This objectives follow the normal procedures on the software development process and

will guarantee a good study and deployment of this extension.

1In the field of computer network administration, pcap (packet capture) consists of an application pro-
gramming interface (API) for capturing network traffic. Pcap also support saving captured packets to a file,
and reading files containing saved packets [3].
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CHAPTER 2. NAMESPACES, HARDWARE

SIMULATION AND OLD WMEDIUMD

Chapter 2 will explain the main concepts on hardware simulation networks for Linux de-

vices. To do that this chapter will first introduce main scenario resources to then integrate

them into the used development environment. Using this approach the reader will under-

stand main aspects before start to naming them in the rest of this document.

2.1. Linux Namespaces

In Linux there are many kernel resources that are globally shared, one of them is the

network interfaces. In order to perform the normal operations with a Linux OS this is

fine, but Kernel developers may want to perform testing on their network interface driver

improvements in an easy way. Namespaces solve that bringing the Linux capability to

isolate the network stack. This is similar to the chroot jails that some applications use.

Linux implements six different types of namespaces, the relevant for this project is the

network namespace:

• User namespaces (kernel v. > 2.6.23). Isolate the user and group ID number spaces.

A process’s user and group IDs can be different inside and outside a user names-

pace.

• Network namespaces (kernel v. > 2.6.24). Isolated network resources. Each net-

work space can have its own (virtual) network device and its own applications that

bind to the namespace port number space; suitable routing rules in the host system

can direct network packets to the network device associated with a specific con-

tainer. For example, it is possible to have multiple web servers on the same host,

with each server bound to port 80 in its network namespace.

• UTS namespaces (kernel v. > 2.6.19). Isolate two system identifiers: nodename

and domainname returned by the uname() system call.

• Mount namespaces (kernel v. > 2.6.19). Isolate the filesystem mount points. One

use is to emulate the chroot jails.

• IPC namespaces (kernel v. > 2.6.19). Isolate interprocess communication (IPC)

resources
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• PID namespaces (kernel v. > 2.6.24). Isolate the process ID number space. In other

words, processes in different PID namespaces can have the same PID.

Figure 2.1 shows a Linux OS network namespaces scheme where each network space

is isolated from the other (taking into account that here doesn’t exist real links or radio

interfaces):

Figure 2.1: Linux OS network namespaces.

Using namespaces is possible to create several network spaces independents ones from

others. In this way can be created many network spaces with independent network stacks.

[25] [26].

2.2. Hardware simulation with mac80211_hwsim

Having isolated network namespaces is not enough, is necessary to create network inter-

faces and a medium to connect them. This is provided by the mac80211_hwsim kernel

module which is a software emulator of 802.11 radios for mac80211 1.

Mac80211_hwsim allow to simulate any number of IEEE 802.11 radios and allow to test

most of the functionality for mac80211 framework and the network namespace tools in a

way that matches very closely with the real world usage on WLAN hardware. Mac80211

framework just see mac80211_hwsim as another hardware drivers so there is no previ-

ous setting of the mac80211 framework in order to work with mac80211_hwsim in testing

environments.
1Mac80211 is the framework that is mostly used today to write drivers for SoftMAC wireless devices, the

more used at this times. SoftMAC devices permit a finer control of the hardware, it allows for 802.11 frame
management to be done by software, for both parsing and generation of 802.11 wireless frames.
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The principal achievement of mac80211_hwsim is to create an easy test-bed scenario for

the wireless driver developers, because the simulated radios doesn’t have the hardware

resources needs that real hardware implies. With it, it’s very simple to create a scenario

and to recreate it when its need, it allows to full automate the scenario creation using shell

scripts. And as is always emulated by software there is no possibility of infringement of

regulatory country rules or real interference creation that would disturb other communica-

tions.

The software works tracking the channel of each virtual radio and copying all transmitted

frames to each one of the currently enabled virtual radios that have set the same channel

for transmitting. The real encryption layer is also used in here to allow complete testing as

would be done with real interfaces.

Figure 2.2 shows how the mac802_hwsim works.

Figure 2.2: Mac80211_hwsim kernel module.

The mac802_hwsim has also an argument that is used when the module is loaded, this

argument is the number of radios to simulate (by default 2). This allows the configuration

of very large scale tests (hundreds of stations) or simple ones (e.g., a single access point

with a station) [4].
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2.3. Resource integration for development environment

creation

This section will explain how all the theory explained in previous sections of this chapter

are integrated and configured together to have the development environment.

The scenario has next actors launched each one of them with a terminal on same PC:

Figure 2.3: Scenario actors.

Each terminal runs a different Bash2 script that has a menu to trigger actions. The actions

will be performed in different shells to be able to create different network namespaces

which will be assigned to it’s correspondent shell. A command launched in a terminal will

affect only to its network namespace. To each network namespace will be assigned its

emulated radio.

2Bash is a Unix shell that can run commands directly over it or using scripts that can be manually or
automatically launched.
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In next Figure it can be appreciated the menus to trigger actions on the terminals:

Figure 2.4: Terminal menus. Left-top terminal is main terminal, right-top terminal is 1st
terminal and down-left it’s the 2nd terminal.

In the options is possible to see numbers that follow a sequence from 0 to 11 jumping from

one terminal to the others. This is done because the procedure needs this order to assign

resources from main terminal and main namespace to the others and data information

obtained from one terminal is need into the others to can configure the scenario.

2.3.1. Mac80211_hwsim and Wmediumd settings: main terminal

In next subsections follow the enumeration order even if you have to jump from one

subsection to the other.

Main terminal performs next actions:

0. Stop network manager and configuring internet network (in this case to our wiFi DSL

default gateway)

1 sudo / e tc / i n i t . d / network−manager stop

2 sudo i f c o n f i g wlan0 up

3 sudo iwcon f i g wlan0 ess id $WIFI_SSID

4 sleep 3

5 sudo iwcon f i g wlan0 ess id $WIFI_SSID key $WIFI_KEY

6 sleep 3

7 sudo iwcon f i g wlan0 ess id $WIFI_SSID key $WIFI_KEY

8 sudo d h c l i e n t wlan0
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9 sleep 3

10 ping −c 5 8 . 8 . 8 . 8

11

1. Load emuled radios with mac80211_hwsim. Module is removed if it’s already con-

figured to load a newly one with two emulated radios. Then (3) a search of the name

of this newly virtual radios.

1 sudo rmmod mac80211_hwsim

2 sudo modprobe mac80211_hwsim rad ios =2

3 sudo f i n d / sys / ke rne l / debug / ieee80211 −name hwsim | cut −d / −f 6 | s o r t

4

6. Assign radios to network namespaces using obtained PID. The script will ask the

number of physics interface and the PIDs of both network namespaces (1,2,4), it will

perform the assignation (5,6).

1 read −e −p ’Number o f f i r s t phy i n t e r f a c e : ’ −a phy1

2 read −e −p ’ PID of f i r s t network namespace : ’ −a pid1

3 phy2=$ ( ( $phy1 + 1) )

4 read −e −p ’ PID of second network namespace : ’ −a pid2

5 sudo iw phy phy$phy1 set netns $pid1

6 sudo iw phy phy$phy2 set netns $pid2

7

9. Clean and compile wmediumd source code.

1 echo ’START CLEAN’

2 make clean −C $PATH_WMEDIUMD

3 echo ’END CLEAN’

4 echo ’==============================================================’

5 echo ’START COMPILE’

6 make −C $PATH_WMEDIUMD

7 echo ’END COMPILE’

8

10. Launch wmediumd loading the probability configuration file.

1 sudo $PATH_WMEDIUMD/ wmediumd −c $PATH_WMEDIUMD/ t e s t . c fg

2
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2.3.2. Network namespace 1: 1st terminal

2. Create new network namespace. Script will die but it’s need the new PID of the

namespace so it’s need to call again the script using next command ./first_terminal.sh

1 sudo unshare −n bash

2

3. Echo the PID of the namespace

1 echo ’ ########## ’

2 echo $$

3 echo ’ ########## ’

4

7. Configure already assigned virtual radio (3). Assign IP to the interface (5) and set a

link to join a network (6,7). Start pinging the other node (10).

1 read −e −p ’Number o f f i r s t phy i n t e r f a c e : ’ −a phy1

2 sudo iwcon f i g

3 sudo iw phy phy$phy1 i n t e r f a c e add mesh1 type mesh

4 sudo i f c o n f i g

5 sudo i p address add dev mesh1 192.168.4 .1 /24

6 sudo i p l i n k set mesh1 up

7 sudo iw dev mesh1 mesh j o i n bazooka

8 sudo i f c o n f i g l o up

9 sudo i f c o n f i g

10 sudo ping −c 20 192.168.4.2

11 sudo i f c o n f i g

12

11. Doing pings to 192.168.4.2 to force some traffic into the network.

1 ping 192.168.4.2

2

2.3.3. Network namespace 2: 2nd terminal

4. Create new network namespace. Script will day call it again using next step. ./sec-

ond_terminal.sh

1 sudo unshare −n bash

2
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5. Show PID of the namespace

1 echo ’ ########## ’

2 echo $$

3 echo ’ ########## ’

4

8. Configure already assigned virtual radio (3). Assign IP to the interface (4) and set a

link to join a network (5,6). Start pinging the other node (8).

1 read −e −p ’Number o f second phy i n t e r f a c e : ’ −a phy2

2 iwcon f i g

3 sudo iw phy phy$phy2 i n t e r f a c e add mesh2 type mesh

4 sudo i p address add dev mesh2 192.168.4 .2 /24

5 sudo i p l i n k set mesh2 up

6 sudo iw dev mesh2 mesh j o i n bazooka

7 sudo i f c o n f i g l o up

8 sudo ping −c 10 192.168.4.1

9 sudo i f c o n f i g

10

11. Doing pings to 192.168.4.1 to force some traffic into the network.

1 ping 192.168.4.1

2

With all this settings the development environment is configured and ready to perform the

extension and the suitable testing of it. The scripts allow to rapidly configure all environ-

ment in exactly same manner always, which will help to reproduce the results indepen-

dently on when or where they are performed. Compilation of the source code and simple

testing traffic generation is also included.

2.4. Old Wmediumd inspection

The problem that has mac80211_hwsim is that it doesn’t implement medium emulation,

it just forwards frames from one radio to others into same channel without interferences.

So there is a perfect communication that it really doesn’t exist into the the real wireless

medium.

To solve that the company Cozybit implemented a Wireless medium emulator called Wmedi-

umd. This software handle frames sent from the kernel space to the user space. It ba-

sically load a probabilistic losses behaviour which will apply to each frame coming from

mac80211_hwsim radios [5].
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In this section Wmediumd is dissected to know how it works and operates processing

frames coming from the kernel via Netlink3.

2.4.1. Communications with the Kernel via Netlink

To start it is need an explanation of how an user-space application as Wmediumd can have

communication with the kernel-space. This is a need because all network stack and the

radio emulations are performed on kernel-space and is necessary to make a kind of “man

in middle” to get the frames from sender radio, create errors or not into these frames and

send them back or not to the receiver.

Netlink was designed to transfer network information between the user space processes

and the Linux kernel-space.

Figure 2.5 is a scheme of the Netlink architecture.

Figure 2.5: Netlink communication scheme.

3Netlink is a socket family used for Inter Process Communication(IPC) between the kernel and user space
processes, as well as between user processes (e.g. Unix domain sockets) or a mixture of both types[6].
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Next enumeration explain each part of Figure 2.5:

1. Netlink subsystem transport layer.

2. Bus implemented inside the kernel, but which is available to userspace using the

socket API and inside the kernel with the normal Netlink API.

3. Netlink users.

4. Netlink controller that performs the communication functions and necessary calls.

5. The kernel socket API which attends the applications calls triggering the controller

functions.

Netlink consists of a standard socket-based interface for user space processes and a

kernel API for kernel modules. It’s a more flexible alternative to the ioctl communication

system [6][7].

2.4.2. Wmediumd application folders and files

This subsection will explain Wmediumd folder and main file structure.

• rawsocket/ : Raw socket based ping-pong application to test stability and wmediumd.

◦ client.c : Client socket app source code.

◦ server.c : Server socket app source code.

• wmediumd/ : Application to emulate wireless medium.

◦ config.c : Functions that are related with load a configuration file or write a

sample configuration one.

◦ config.h : Headers file from config.h

◦ ieee80211.h : Headers file from ieee80211.h

◦ mac_address.c : Parser from string to mac address struct.

◦ mac_address.h : Headers file from mac_address.h

◦ probability.c : Probability related functions.

◦ probability.h : Headers file from probability.h

◦ wmediumd.c : Main Wmediumd file with the core functionality.
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◦ wmediumd.h : Headers file from wmediumd.h

• wconfig/ : Java app to create configuration files for wmediumd.

◦ images/ : Application images folder.

◦ lib/ : Java libraries.

◦ src/ : Source code java files.

◦ manifest/ : Java manifest folder.

◦ wconfig.jar : Java app to execute

This file structure is relevant because on next subsection the reader will be able to com-

prehend the flow and the file and code location where an extension will be placed in order

to add the mobility behaviour.
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2.4.3. Wmediumd general application flow with UML activity diagram

This subsection will explain the flow of function calls Wmediumd has, to perform that the

next Figure is used:

Figure 2.6: Wmediumd program start calls flow.

1. wmediumd.c - main(): function wich trigger the load_config() function.

2. config.c - load_config(): this function loads the configuration file with the associated

probability matrix which depends on the frames source, destiny and the link speed.

3. wmediumd.c - init_netlink(): after the load_config() this function configures the netlink

framework to obtain the mac80211_hwsim frames. It also configure the callback

function to attend the kernel messages which is process_messages_cb().

4. wmediumd.c - send_register_msg(): register the communication with kernel via netlink.

5. wmediumd.c - nl_recvmsgs_default(): listen incoming messages in loop while run-

ning integer variable remains on 1.
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Figure 2.7 has the second part of the process where the callback receives the frames

from the Kernel.

Figure 2.7: Wmediumd callback function flow.

6. wmediumd.c - process_messages_cb(): callback function that receives messages

with frames from the kernel via Netlink, this function parse them to data structures

to then call send_frames_with_retries().

7. wmediumd.c - send_frames_with_retries(): It iterates all the radios and try to send

a copy of the frame to each interface. To do that it calls a function that will apply the

probabilistic behaviour which is send_frame_msg_apply_prob_and_rate().

8. wmediumd.c - send_frame_msg_apply_prob_and_rate() : Send or not a frame to a

radio depending on the probabilistic behaviour defined in the probability matrix. If

yes, send_cloned_frame_msg() is called.

9. wmediumd.c - send_cloned_frame_msg() : Send a frame to the kernel via estab-

lished Netlink communication.

These functions are located mainly into the wmediumd.c file but there are specific functions

or data structures that are called from these functions that are defined in the other files.
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Taking into account the described flow is possible to determine where the extension loca-

tion can reside. The function will create errors depending on the position that the stations

have, this will increase the probability of error depending on the distance between the

sender and receiver.

The function will be called inside the “send_frame_msg_apply_prob_and_rate()” function

where the transmission error is introduced or not.
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CHAPTER 3. MEDIUM CHARACTERIZATION

AND MOBILITY

On the Chapter 2 the development scenario and it’s elements is introduced, on it, it’s also

studied how Wmediumd works and where to place the mobility behaviour inside the code.

This chapter will face how the mobility factor have to be characterized. To do that a study

of how the mobility affect to the frame error probability will be performed.

3.1. Medium

As it is known the wireless medium has many interferences. The parameter that objectively

measures the problem of interferences is the relation of the power transmitted signal and

the interferences, this is the SNR1.

3.1.1. Interferences

The possible interference signals in the scenario are the external ones, this is because the

stations from the scenario are 802.11 which use CSMA/CA 2 that will avoid collisions.

The problem is that the interference power is very dependent on the scenario, it’s very

different to transmit in a city than in the middle of a desert. And there are empiric models

that deals with this medium changes, one example is the Okomura-Hata model. The

problem of this model is that it only takes into account frequencies bellow 1.5GHz, not

used into 802.11 which use 2.4, 3.6, 5 and 60 GHz frequency bands. The COST 231

Walfish-Ikegami model it also models urban environments but as the Okomura or the Hata

it can just be used for frequency carriers bellow 2GHz.

For that reason maybe a good approach to simulate the medium would be introducing a

constant coefficient applied depending on the level of interference to convert the medium

model in a more or less interfering.

1Signal-to-noise ratio (often abbreviated SNR or S/N) is a measure used in science and engineering that
compares the level of a desired signal to the level of background noise. SNR =

Psignal
Pnoise

[9]
2Carrier Sense Multiple Access with Collision Avoidance, in computer networking, is a network multiple

access method in which carrier sensing is used, but nodes attempt to avoid collisions by transmitting only
when the channel is sensed to be “idle” [10] .
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3.1.2. Fading

Fading its also known in wireless transmission world. Most of the times it’s related to the

movement of stations or objects inside the communication scenario. This phenomenon

usually happens when two signal paths create a deviation on signal time arrivals to re-

ceiver, this can result in either constructive or destructive interference. When paths addi-

tion result in a destructive interference, signal power seen by the receiver antenna tends

to zero and the communication is interrupted while the phenomenon occurs.

This phenomenon is usually modelled as a random process and using some intensity,

for that reason a random variable applied or not a constant fading intensity value in our

scenario would be a good approach.

3.2. Mobility

The other factor that will modify the SNR will be the mobility. This mobility will increase or

decrease the distance between the emitter and the receiver.

There are some equations that can help to model that behaviour.

3.2.1. Link budget with Free Space Transmission Equation

Equation 3.1 is the Free Space Transmission Equation included in a Link Budget3 and it

shows the power received in W . The equation takes the transmitted power by the emitter,

then it applies the antenna gain of the emitter, the antenna gain of the receiver and it

discounts the loss of power associated to the distance and the wavelength used (carrier

frequency).

Pr[W ] = PT [W ] ·GE [W ] ·GR[W ] · 1
(

4·Π·d[m]
λ

)2
(3.1)

The equation can be expressed in logarithmic scale using dB and dBm (as an addition of

terms) and in linear (as multiplications), expressing it in linear will allow an easy insulation

of terms.
3A link budget is the accounting of all of the gains and losses from the transmitter, through the medium to

the receiver in a telecommunication system [13].
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3.2.2. Maximum radio link distance

Knowing the lower power (Prnom) that a 802.11 radio needs to can demodulate a incoming

signal, the gain of the receiver antenna (GR), the transmitted power (PT ) and the gain of

transmission antenna (GT ) it can be obtained the maximum distance that the communica-

tion can have insulating from the equation of the distance dmax[m]. The transmitted power

and the gain of transmission antenna are the EIRP 4, depending the country law it would

have to be taken into account if the simulation wants to be done following EIRP country

maximum values.

dmax[m] =
|
√

PT ·GT ·GR
Prmin

|
4·Π
λ

(3.2)

The more sensitivity the receiver antenna has, the radio link will be able to have a bigger

distance from antenna to antenna, same happens with the transmitted power PT or the

gain of both antennas GT and GR , carrier frequency also changes the result.

3.2.3. Loss probability

All distances bigger than dmax will make a frame loss probability of 100% and the ones

lower than it a lower loss probability.

For that, a step of dcurrent [m]
dmax[m] will be done getting a loss probability Equation:

Loss probability [per unit]= dcurrent [m]
dmax[m] (3.3)

In that manner it can be model the Loss probability [per unit] using the Free Space

model linked with a Link Budged.

4EIRP, Equivalent isotropically radiated power is the amount of power that a theoretical isotropic antenna
would emit to produce the peak power density observed in the direction of maximum antenna gain [12].
EIRP = PT [W ] ·GE [W ]
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3.3. Mobility and medium emulation coupling

In order to couple mobility and medium models the Equation 3.3 will be tuned to introduce

the parameters explained in Section 3.1.:

• Constant coefficient applied depending on the level of interference to convert our

medium model in a more or less interfering one. Addition of loss probability with a

constant parameter can model that, this is the meaning of LPC .

• Factor to introduce probabilistic Fadings with a defined intensity. It’s modelled with

two constants, the fading probability ( FP ) and the Fading Intensity Constant that

would bee also model with a loss probability constant ( FIC ).

FP - is a function that takes values [0, 1] depending on the fading probability enabling

or disabling the Fading effect.

This Equation would be:

Loss probability [per unit] =
dcurrent [m]

dmax[m]
+LPC+FP( f ading probability) ·FIC

(3.4)

In that way mobility and medium can be emulated with tuning capabilities. Results can be

bigger than 1 but then a loss probability of 100% will be apply for that frame.

3.4. Model adjustments

The theoretical model explained in Section 3.3. has a deviation with the real behaviour.

This is because the loss probability is assigned linearly depending the relation of dmax and

dcurrent , but the real behaviour applies less grow of attenuation on first meters compared

with the other distances. For that reason the loss probability should be applied following

the same rule.
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Next Figure represents the linear path loss that a radio link has depending the distance

that follows a power law (blue color line) and an approximated linear model (purple color

lines).

Figure 3.1: Path loss depending radio link distance with a 2,4GHz carrier.

Figure 3.1 has been calculated with standard radio link parameters and a carrier frequency

of 2.4GHz. Figure 3.2 has same parameters and scale but a uses a carrier frequency of

5GHz.

Figure 3.2: Path loss depending radio link distance with a 5GHz carrier.



24 Medium and mobility behaviour insertion for 802.11 emulated networks

If the regression equations from power law models of both Figures (3.1 and 3.2) are ex-

tracted it will be obtained:

PL2,4GHz = 10120,47 ·X2

PL5GHz = 43925,66 ·X2
(3.5)

It can be appreciated that depending on the carrier frequency the coefficient that multiplies

the dependent term changes, so it’s difficult to model the loss probability in same way

because a new regression equation would have to be calculated each time. The linear

approach may be the solution if it’s applied with two functions as it’s shown in Figures 3.1

and 3.2 (purple color lines).

3.4.1. Model to apply

Having the previous sections into account it can be obtained a final theoretical model that

will be the one coded and inserted in Wmediumd. This model is reflected in next step

defined Equation:

Loss prob.(dcurrent)=


LPC+FP() ·FIC if dcurrent ≤ dcurrent

4

1
dmax−( dmax

4 )
·dcurrent +LPC+FP() ·FIC if dcurrent

4 < dcurrent

(3.6)

Once the theoretical model has been created the coding stage can start, next Chapter will

explain that process.
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CHAPTER 4. WMEDIUMD SIMULATOR

EXTENSION

On Chapter 2 it is explained the Wmediumd working environment and flow, it has been

found where the new code could be applied to recalculate the loss probabilities depending

on medium and mobility, this function was “send_frame_msg_apply_prob_and_rate()”.

In Chapter 3 it have also been search how to model theoretically the medium and the

mobility behaviours in radio link communications.

This chapter will explain how the mobility and medium emulation will be introduced into the

Wmediumd simulator explaining main extension topics: configuration data process, data

structures and extension flow with created functions.

4.1. Configuration file

Configuration is done independently on the old-way the emulator has worked. This means

that Wmediumd has two ways of being loaded: directly with probabilities, and with medi-

um/mobility behaviour. In that form the user will be able to load the extension in old direct

probability behaviour or in the new one.

The extension with mobility has next parameters which are loaded to configure the exten-

sion and the emulator:

1 i n t e r f e rence_ tunne r = 100; / / 10% of i n t e r f e r e n c e power , i s modeled as a loss

p r o b a b i l i t y

2

3 f a d i n g _ p r o b a b i l i t y = 200; / / 20% of fad ing appearance p r o b a b i l i t y

4 f a d i n g _ i n t e n s i t y = 900; / / 90% of fad ing power , i s modeled as a loss

p r o b a b i l i t y

5

6 ca r r i e r_ f requency = 2.4E+9; / / 2 ,4GHz

7 t ransmit_power = 50.0E−3; / / 50mW Tx used power

8 t ransmi t_ga in = 2 . 0 ; / / 3dB Tx antenna gain

9 rece ive r_ga in = 2 . 0 ; / / 3dB Rx antenna gain

10 receiver_min_power = 1E−12; / /−90dBm r e c i v e r s e n s i t i v i t y

11

12 i f a c e s _ w i t h _ m o b i l i t y : {

13 count_ ids = 2;

14 i ds = [ " 42 :00:00:00:00:00 " , " 42 :00:00:00:01:00 " ] ;

15

16 coun t_pos i t ions_ t ime = 3;
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17 pos i t i ons_ t ime_con ta ine r = (

18 [ " 1 |0 |0 " , " 5|500|500 " , " 10|2500|2500 " ] ,

19 [ " 1 |0 |0 " , " 5 |0 |0 " , " 10 |0 |0 " , " 15 |0 |0 " ]

20 ) ;

21 } ;

4.2. Data structures

New data structures need to be created to introduce the configuration file scenario param-

eters.

Next structure has a position and time of one radio.

1 s t r u c t pos i t i on_ t ime {

2 f l o a t t ime ;

3 i n t x ;

4 i n t y ;

5 } ;

This data structure defines a radio which has it’s MAC address a counter and an array of

positions that this radio will have.

1 s t r u c t r a d i o _ m o b i l i t y {

2 s t r u c t mac_address mac ;

3 i n t coun t_pos i t i ons ;

4 s t r u c t pos i t i on_ t ime p o s i t i o n s [ 1 0 0 ] ;

5 } ;

Next structure has the mobility settings which include the maximum distance (dmax) pos-

sible to communicate the radio stations with the configured carrier frequency, etc. It also

has the array of radios that exist on the scenario.

1 s t r u c t mobi l i ty_medium_cfg {

2 double dmax ;

3 i n t i n t e r f e rence_ tunne r ;

4 i n t f a d i n g _ p r o b a b i l i t y ;

5 i n t f a d i n g _ i n t e n s i t y ;

6 i n t count_ ids ;

7 s t r u c t r a d i o _ m o b i l i t y rad ios [ 1 0 0 ] ;

8 } ;
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4.3. Extension flow with a UML activity diagram

Next Figure shows the mobility extension flow with main implemented functions in a UML

activity diagram [14].

Figure 4.1: UML activity diagram.

Next Subsection will explain each function and the location of extension coding.

4.3.1. Functions, affected and new files

Next list will show which files need to be modified or created to be able to install on them

the extension functionalities. The listed functions are all new and created to support the

medium/mobility behaviour:

• wmediumd/: Main application folder.

◦ config.c - affected: File where the configuration parameters are read from the

scenario configuration file. Some calculations related to configure the scenario

are calculated here.

− int load_mobility_medium_config(const char *file): This function reads lib-

config [15] formatted files and reads all the medium, mobility and stations

scenario configuration. It also have debug information and checks if con-

figuration file is correct.
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− int load_basic_config(const char *file): Function to load application re-

quired data from mobility and medium configuration file.

− void calcule_max_distance(double carr_freq, double trans_pow, double

trans_gain, double rec_gain, double rec_min_pow, double *dmax): Theo-

retical maximum distance in meters calculated with a link budged including

free space equation.

− void print_mobility_medium_configuration(): This function prints mobility

and medium configurations in user screen.

◦ globals_mobility_medium.h - new: This file has the definition of global vari-

ables used to store the medium and the mobility settings and relevant data

used across all application.

◦ probability.c - affected: File with the necessary coding to calculate loss prob-

ability depending on mobility of the stations.

− int find_prob_by_addrs_mobility_and_medium(struct mac_address *src,

struct mac_address *dst): Returns the loss probability for a given radio

link, mobility and medium.

− int find_radio_pos_by_mac_address(struct mac_address *addr): Returns

the position inside the radios array given a mac_address.

− int find_distance_two_points(int x1, int y1, int x2, int y2): Calculates the

distance between two points on a 2D plane.

◦ wmedium.c: Main file of wmediumd.

− int send_frame_msg_apply_prob_mobility_and_medium(struct mac_address

*src, struct mac_address *dst, char *data, int data_len, int rate_idx): Func-

tion that sends back or not the frame to the kernel.

− void init_mobility_medium_globals(): Initialized the mobility and medium

extension need variables.

− int main(int argc, char* argv[]): Main application function. It has been

modified to introduce the new case on switch statement to load the mobility

behaviour.

◦ launch_scripts/ - new : folder where test scripts reside.

− main_terminal.sh - new: Script to configure operative system with mac80211_hwsim.

− first_terminal.sh - new: Script to configure first network namespace.

− second_terminal.sh - new: Script to configure second network names-

pace.
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CHAPTER 5. WMEDIUMD SIMULATOR

EXTENSION TEST WITH 802.11S

Wmediumd wireless medium simulation can be test with any 802.11 variants. In this

project it’s done with 802.11s because the tests begin following some examples of net-

works spaces that have been done with this protocol. Cozybit also has tests using 802.11s

so maybe useful for them to compare results with this protocol than with other.

5.1. Relevant aspects

Some aspects will have to be taken into account because some times they will condition/-

modify the results:

• The dump files have 802.11s frames which can not be parse it in Wireshark nor-

mal installation. This problem could be solved compiling the Wireshrak from the

development SVN repository because the newest version has the 802.11s dissector

installed on it. The procedure to be able to install it can be found in Appendix D.

• Wmediumd configures the kernel module Mac80211_hwsim to send all frames to

him. This means that all frames are send to the medium emulator, even the com-

munication frames with the beacon intervals or other communication control aspects

will be send to Wmediumd. Then, the drop of frames would be applied to any type of

frame that will arrive to the emulator, which is the expected behaviour. But this has to

be taken into account because less TCP packets will be dropped than the expected

ones. This is because the drop will take into account the communication control

plane frames also and the percentage of this frames arriving to the Wmediumd will

depend on the traffic the emulated interfaces will handle.

• Another problem is that after capturing packets into the monitor attached to each

interface the same frames are represented in both files running Wmediumd with loss

probability. This can be because the frames are send to Wmediumd by the kernel

before they have been send to the emitter emulated radios. And then both emulated

radios receive the same packets. No diagram of that process have been found so

it’s difficult to see the exact process without being a Linux Network specialist. In

any case it is sure that this is the behaviour because the packets present in both

dumps are increasing/decreasing in same order of probability increase/decrease of

loss probability.
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For that reason it only will be used one monitor in receiver interface. The packet

loss statistics presented by the Wmediumd app will also give the relevant data of

processed frames.

5.2. Scenario

It have been set one network monitor on the receiver interface from the second network

space, and then it have been capturing from there with tcpdump 1 application.

Figure 5.1: Scenario test.

In that manner it’s more easy to identify the frames timing and to analyse the behaviour of

the communication.

5.3. Results

Test have been perform to validate the modelled behaviour and to check the accuracy the

medium emulation has. The application will be check using some stages: static calcula-

tions, dynamic calculations and dumped results.

1Tcpdump is a packet analyser application with traffic capturing capabilities.
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5.3.1. Static calculations

This subsection will check if the application calculate the main static parameter, this is

the maximum distance (dmax) that a radio link will have taking into account communication

parameters. This parameter is one of the more important of the application because all

probabilities are calculated with it.

Let’s define the input parameters:

• Carrier frequency = 2,4 GHz.

• Transmit power = 50 mW.

• Transmitter gain = 3 dB (2 in linear).

• Receiver gain = 3 dB (2 in linear) .

• Receiver sensitivity = -90 dBm (1E-12 W).

Using the Equation 3.2 it can be obtained the theoretical result of dmax that will be used

to perform dynamic calculations, then it will be compared with the one that application

provides.

dmax[m] =
|
√

PT ·GT ·GR
Prmin

|
4·Π
λ

=
|
√

50E−3·2·2
1E−12 |
4·Π

299792458
2,4E9

= 4445.438meters (5.1)

Next Figure shows how the application outputs the parameters and it result.

Figure 5.2: dmax Wmediumd result.

It can be verified that the coding of the Equation 3.2 it’s correct.
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5.3.2. Dynamic calculations

This calculations will be calculated each time a frame arrives to Wmediumd and depending

on the execution time because the stations will simulate movement while the time changes.

Now some other parameters will be defined that will have to be taken into account on

dynamic calculations.

• Interference intensity = 10%

• Fading probability = 20%

• Fading intensity = 90% (of fading intensity power, it is modelled as a loss probability)

• First radio mobility info (time|x|y) [seconds|meters|meters] = "1|0|0", "5|500|500",

"10|2500|2500", "15|3500|3500", "20|4500|4500".

• Second radio mobility info (time|x|y) [seconds|meters|meters] = "1|0|0", "5|0|0", "10|0|0",

"15|0|0", "20|0|0".

Configured this parameters on the application it can be obtained from Wmediumd exten-

sion shell output parameters seen on next Figure:

Figure 5.3: Wmediumd extension shell output.

With this data it can be constructed Table 5.1 that will have to accomplish the Equation 3.6

to be consistent.
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Table 5.1: Time ranges losses depending mobility and interferences.

Time Position X Position Y
Distance

between rad.
Loss prob
distance

Interference
Loss

probability
1 0 0 0 0 10 10
2 0 0 0 0 10 10
3 0 0 0 0 10 10
4 0 0 0 0 10 10
5 0 0 0 0 10 10

6 500 500 707 0 10 10
7 500 500 707 0 10 10
8 500 500 707 0 10 10
9 500 500 707 0 10 10
10 500 500 707 0 10 10

11 2500 2500 3535 72 10 82
12 2500 2500 3535 72 10 82
13 2500 2500 3535 72 10 82
14 2500 2500 3535 72 10 82
15 2500 2500 3535 72 10 82

16 3500 3500 4949 115 10 125
17 3500 3500 4949 115 10 125
18 3500 3500 4949 115 10 125
19 3500 3500 4949 115 10 125
20 3500 3500 4949 115 10 125

21 4500 4500 6363 157 10 167
22 4500 4500 6363 157 10 167
23 4500 4500 6363 157 10 167
24 4500 4500 6363 157 10 167
25 4500 4500 6363 157 10 167

The obtained values are following the Equation 3.6, these values have been compared

with the ones from a calculus sheet successfully. The addition of probabilistic fading is also

added but it was not introduced into the table because frames arrive faster than a frame

per second and the table shows non consecutive frames data, so introducing fading would

not show the set fading probability. In any way, fading is add depending of it’s intensity (a

percentage value) and the apparition probability percentage.

5.3.3. Dumped results

Lets check a TCP connection over this scenario. For that MGEN will be used as traffic

generator from one network namespace to the other one.

For doing that a Server socket listening will be used and a Client starting a TCP session

with the server. For doing that MGEN is configured as follows:

• Server input file: server_mgen.mgn

1 LISTEN TCP 4002
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• Client input file: client_mgen.mgn

1 # t ime | udp−t cp | s rc po r t | ds t i p / po r t | t r a f f type [ packet ra te packet

s ize i n bytes ]

2 #100∗1000∗8 = 0 ,8 Mbit / s

3 0.0 ON 1 TCP SRC 4001 DST 192.168.4.2/4002 PERIODIC [100 1000]

MGEN will be instantiated in each network namespace shell and load as input file it’s cor-

respondent configuration file [16]. On client side it will be set next TCP flow characteristics

following file comments. These are:

• TCP traffic.

• From client port 4001.

• To port 4002.

• To IP 192.168.4.2.

• Packet rate 100 packet/second.

• Size of packet 1000 bytes.

Some of the captured frames are displayed with Wireshark to analyse if the behaviour is

the expected one. Figure 5.4 shows the capture of it:

Figure 5.4: Wireshark loaded monitor dump file.

Using the configuration parameters from Subsections 5.3.1. and 5.3.2. it’s seen how TCP

finds missing transmission packets and order to client retransmissions of them. Timing of
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1 second has probability losses of 10% due to medium constant interferences so at the

MGEN transmission rate of 100 packets/second, 10 packets will be drop per second. This

10 packet loss per second causes the retransmissions.

This is the expected results for a TCP connection with 10% of losses.
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CHAPTER 6. MATERIAL AND METHODS

This chapter refers to the tools used to perform the initial objectives. On it hardware and

software resources will be list to permit others emulate the results. Also some relevant

aspects that can affect the results and related to hardware will be explain in this section.

6.1. Hardware

In order to perform all tests and deployments the only used equipment was a 2013 laptop

Dell Vostro 2520 with next characteristic list:

• Processor : Intel Celeron processor 1000M (2M Cache, 1.8 GHz)

◦ 2M Cache

◦ 1.8 GHz

◦ 64-bit Instruction Set

• Memory : 2048MB (1x2GB) 1600MHz DDR3 Dual Channel

• Wireless NIC: Dell Wireless 1704 802.11b/g/n, Bluetooth v4.0+LE

Wmediumd could have to process a large amount of frames per time unit depending on the

transmission rate between configured radios. The processing time is present and changes

depending on machine. The hardware capabilities will change frame delay, this has to be

taken into account when choosing the hardware.

6.2. Software

Next software was used to perform the tests and deployments:

• Linux based operating system Ubuntu 12.04 LTS i386 (32 bits).

• Mac80211_hwsim kernel module has to be loaded (lsmod have to list it, if its present

and not active, it can be loaded with a2enmod mac80211_hwsim, then lsmod will

show it).
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• Used kernel: 3.4.0 generic.

• Wireshark development version: Version 1.11.0 (SVN Rev 50893 from /trunk)

• Bash scripting was used to deploy the test-bed.
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CHAPTER 7. ENVIRONMENTAL IMPACT

The environmental impact associated to this project is very difficult to quantify. This exten-

sion represents an improvement into the 802.11 development environment and it will be

used to make it better.

If it’s supposed an improvement of the 802.11 power-save mode using this extension, this

improvement would save charging cycles of mobile devices and would be partially caused

by this project.

7.1. Mobile devices shipments evolution

In this section it will be studied the volume of mobile devices that can exist in the society in

a near future. Table 7.1 shows the real evolution that mobile devices shipments had from

2009 to 2013 in millions of units [20].

Table 7.1: Mobile devices evolution.

Mobile device type r Year 2009 2010 2011 2012 2013
Smartphones 175 240 310 390 500
Desktops 136 146 152 157 159
Notebooks 135 164 189 210 232
Netbooks 34 36 29 26 27
Tablets 0 16 55 85 102
Total 480 602 735 868 1020

Taking into account the real data a growing Equation 7.1 can be obtained, that formula can

be used to create an expectation of how many mobile devices will be shipped in 2020. If a

2 years of lifetime for each mobile device are supposed it can be obtained approximately

the number of mobile devices that will exist in near future.

f (x) = 134,6x−269939,6 (7.1)
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Next Figure (7.1) shows real and expected values till 2020, where blue line is the known

values and the purple one is the expected values maintaining the actual growths.

Figure 7.1: Mobile devices evolution.

Maintaining actual growth of mobile device shipments in 2020 approximately 4000 millions

of them will exist. Supposing that the 70% of these devices will use 802.11 protocols for

communication purposes, will exist 2800 millions of devices that will be improved if the

802.11 power consumption is also improved.
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7.2. Power saving

These 2800 millions of terminals will use less energy so they will need less charging cycles.

Next Figure (7.2) shows the power consumption of 802.11 networks in power-save mode

(PS).

Figure 7.2: PS energy consumption over time.

The growing factor is the power in [watt] that each network interface will use, on PS it’s

0,33 watts. Assuming the use of 802.11 network interfaces is 25% of device power on

time and supposing 24 hours powered devices next results will be obtained:

PS consume after a year = 0,33 ·2800E6 ·365 ·24 ·0,25 = 2023,56E9 Wh

PSoptimized consume after a year = 0,20 ·2800E6 ·365 ·24 ·0,25 = 1226,40E9 Wh

(7.2)

As seen there is a relevant reduction of total consumed energy between the two modes,

this would be a positive impact related to this project.
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7.3. Mobile devices promotion and resources

But improving the 802.11 developing environment will end with better 802.11 specifica-

tions, which will stimulate the consumers to buy new devices. This renewal process will

also require resources in order to build them and to recycle the replaced ones.

The 802.11 protocol family improvements maybe encourage some developers to imple-

ment new applications using this protocol.

For example: an application to transfer photos between phones at hight speed. In some

way, this application can be very cool and excite some consumers to change their devices

to have this new features.

This effect will increase the mobile phones renewal ratio and increase the demand of

natural materials(such as coltan and tantaline) and energy in order to satisfy this demand.

This will increase the waste generation of old devices that will have to be processed using

also energy.

As discussed it’s very difficult to quantify the environmental impact of this project because

it has possible positive and negative aspects which are difficult to predict. In any case this

could be possible environmental impacts of this project.
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CHAPTER 8. CONCLUSIONS

This project contributes to create a better 802.11 development environment for driver de-

velopers introducing medium and mobility behaviour in their testing scenarios. This is

a better approach than the existent one because it’s more similar to real world wireless

conditions than simply apply probabilistic frame errors.

The implemented extension allow developers to simulate movement on emulated radio

interfaces and to test their drivers. The coding is also very tunable and allows users to

set the most commonly used variables on wireless communications as: antenna gains,

receiver sensitivity, transmission power, carrier frequencies, constant interferences and

probabilistic fadings.

Main objective is accomplished, the extension works providing mobility and medium emu-

lation following the defined theoretical model. This has been checked with calculus sheets

using directly the model equations and checking the program outputs (see 5.3.). The en-

vironmental impact study was difficult to perform because is difficult to predict if project

positive or negative aspects will dominate on future.

One interesting thing is that this project touch relevant aspects related to state of the art

Linux Kernel resources management as:

• Hardware simulation with emulation of network radios with mac80211_hwsim kernel

module.

• Insulating completely network stacks using network name spaces and assigning OS

resources to it.

• Inter process communications between user space and Kernel using Netlink API

calls.

Other aspects as changing Linux Kernels images or how creating/install Wireshark dissec-

tors are also important. Advanced C programming techniques where used, for example;

comparing data structures directly from memory with pointers and the structure block sizes

in bytes or using the libconfig to read well formed data structures stored in files.

Some problems introduced delays in project stages and some times they arrived to stop the

project. Wmediumd had no documentation, for running it where required weeks because

the found scripts did not work and all theory of network namespaces and mac80211_hwsim

had to be learn before switch on the old Wmediumd. The emulator couldn’t be compiled
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with kernel versions after v.3.4 and no one know that, for that reason was required to ask

a C expert why the coding was not running, the expert found that some macro definitions

where not included in newest Linux Kernels. In any case the problems where solved and

the project was successfully deployed.

This project represents a base that can be optimized or extended to add new functionali-

ties, for example to improve the process time delays. This delays could be improved work-

ing with pointers to frame structures on memory, actually Wmediumd works with frame

copies. Other thing that could be nice to force bit errors on frames, to then, deliver them to

the radios, current extension just drops the frames. Also a good thing to introduce would

be a bursty losses behaviour.

To conclude, just say that it would be good that with current improvements and this docu-

mentation some one would use Wmediumd extended version. ;)
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APPENDIX A. SETTING A SPECIFIC KERNEL IN

UBUNTU

This Appendix will show how to set and boot a precompiled Kernel version of Ubuntu Linux

OS.

To use a new kernel as-is it’s only need to download and install a image.deb package that

corresponds to the machine architecture.

Ubuntu kernel images can be found in: http://kernel.ubuntu.com/ kernel-ppa/mainline/

Open a terminal and move to the directory where the downloaded Kernel is.

1 $ cd ~/ Descargas /

Then use dpkg command to install the packages: linux-headers, linux-headers-generic

and linux-image-generic.

For linux-headers (is not architecture specific):

1 $ sudo dpkg − i l i nux−headers−3.4.0−030400_3.4.0−030400.201205210521 _ a l l . deb

For linux-headers-generic (architecture specific):

1 $ sudo dpkg − i l i nux−headers−3.4.0−030400−gener ic_3 .4.0−030400.201205210521

_i386 . deb

For linux-image-generic (architecture specific):

1 $ sudo dpkg − i l i nux−image−3.4.0−030400−gener ic_3 .4.0−030400.201205210521 _i386 .

deb

If any warnings or errors are seen while installing then try installing module-init-tools first,

and try again. Restart the system, choose the kernel to boot on select box of Grub and

check the kernel version after booting [24].

1 $ uname −a
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APPENDIX B. LINUX NAMESPACES WITH

802.11

One of the Linux Namespaces is the Network space. Next steps will show the process of

configuring separate network spaces to insulate two emulated radio interfaces:

1. On father terminal type:

1 rmmod mac80211_hwsim

2 modprobe mac80211_hwsim rad ios =2

3 f i n d / sys / ke rne l / debug / ieee80211 −name hwsim | cut −d / −f 6 | s o r t

4 iwcon f i g

5

2. On children terminal 1 type:

1 unshare −n bash

2 echo $$

3

3. On children terminal 2 type:

1 unshare −n bash

2 echo $$

3

4. On father terminal type:

1 iw phy phy9 set netns 2766

2 iw phy phy10 set netns 2781

3

5. On children terminal 1 type:

1 iwcon f i g

2 iw phy phy9 i n t e r f a c e add mesh9 type mesh

3 iwcon f i g

4 i f c o n f i g

5 i p address add dev mesh9 192.168.4 .9 /24

6 i p l i n k set mesh9 up

7 iw dev mesh9 mesh j o i n bazooka

8 ping 192.168.4.10

9 i f c o n f i g

10 ping 192.168.4.10

11 i f c o n f i g l o up

12 i f c o n f i g
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13 ping 192.168.4.9

14

15
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6. On children terminal 2 type:

1 iwcon f i g

2 iw phy phy10 i n t e r f a c e add mesh10 type mesh

3 i p address add dev mesh10 192.168.4.10/24

4 i p l i n k set mesh10 up

5 iw dev mesh10 mesh j o i n bazooka

6 ping 192.168.4.9

7 ping 192.168.4.10

8 ping 192.168.4.9

9 i f c o n f i g l o up

10 i f c o n f i g

11 ping 192.168.4.10

12
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APPENDIX C. MAIN EXTENSION FUNCTIONS

This Appendix will show some of the most relevant functions this extension has created.

C.1. calcule_max_distance()

Theoretical maximum distance in meters calculated with a link budged including free space

equation.

1 vo id calcule_max_distance ( double car r_ f req , double trans_pow , double t rans_gain

,

2 double rec_gain , double rec_min_pow , double ∗dmax) {

3

4 double lambda , p i = 3.14159265358979323846, c = 299792458.0 , f i r s t , second ,

5 t h i r d ;

6

7 lambda = c / c a r r _ f r eq ;

8

9 f i r s t = ( trans_pow ∗ t rans_ga in ∗ rec_gain ) / rec_min_pow ;

10 second = abs (pow( f i r s t , 1 . 0 / 2 . 0 ) ) ;

11 t h i r d = ( ( double ) 4.0 ∗ p i ) / lambda ;

12

13 ∗dmax = second / t h i r d ;

14 }

C.2. find_distance_two_points()

Calculates the distance between two points on a 2D plane.

1 i n t f i nd_d is tance_ two_po in ts ( i n t x1 , i n t y1 , i n t x2 , i n t y2 ) {

2

3 r e t u r n s q r t (pow( x2 − x1 , 2) + pow( y2 − y1 , 2) ) ;

4

5 }

C.3. find_radio_pos_by_mac_address()

Returns the position inside the radios array given a mac_address.

1 i n t f ind_radio_pos_by_mac_address ( s t r u c t mac_address ∗addr ) {
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2

3 i n t i = 0 ;

4

5 whi le (memcmp(&mob_med_cfg . rad ios [ i ] . mac , addr , s i z e o f ( s t r u c t mac_address ) )

6 != 0 && i < mob_med_cfg . count_ ids ) {

7 i ++;

8 }

9

10 r e t u r n i ;

11 }

C.4. find_prob_by_addrs_mobility_and_medium()

Returns the loss probability for a given radio link, mobility and medium. If an error occurs

returns -1.

1

2 i n t f ind_prob_by_addrs_mobi l i ty_and_medium ( s t r u c t mac_address ∗src ,

3 s t r u c t mac_address ∗dst ) {

4

5 / / P r o b a b i l i t i e s are def ined per 1000 u n i t s to perform them using in tege rs

6 i n t random_value = rand ( ) % 1000 + 1 , d is tance_prob = 0 , l o s s _ p r o b a b i l i t y =

7 0 , fad ing = 0 , src_radio_pos , dst_radio_pos , time_pos ;

8 unsigned long i n t execut ion_t ime ;

9

10 s t r u c t t imeva l cu r ren t_ t ime ;

11 get t imeofday (& cur rent_ t ime , NULL ) ;

12

13 execut ion_t ime = cur ren t_ t ime . tv_sec − s tar t_execut ion_t imestamp ;

14

15 src_radio_pos = find_radio_pos_by_mac_address ( src ) ;

16 dst_radio_pos = find_radio_pos_by_mac_address ( ds t ) ;

17 / / Both s t a t i o n s need to have same t ime l i n e d e f i n i t i o n , f o r t h a t we can use

or src or ds t to take the t ime .

18 i f ( execut ion_t ime

19 > ( i n t ) mob_med_cfg . rad ios [ src_radio_pos ] . p o s i t i o n s [ ( l a s t _ d e f _ p o s i t i o n

20 + 1) ] . t ime

21 && l a s t _ d e f _ p o s i t i o n

22 < ( mob_med_cfg . rad ios [ src_radio_pos ] . coun t_pos i t i ons − 1) ) {

23 l a s t _ d e f _ p o s i t i o n ++;

24 dcur ren t =

25 f i nd_d is tance_ two_po in ts (

26 mob_med_cfg . rad ios [ src_radio_pos ] . p o s i t i o n s [ l a s t _ d e f _ p o s i t i o n ] . x ,

27 mob_med_cfg . rad ios [ src_radio_pos ] . p o s i t i o n s [ l a s t _ d e f _ p o s i t i o n ] . y ,
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28 mob_med_cfg . rad ios [ dst_radio_pos ] . p o s i t i o n s [ l a s t _ d e f _ p o s i t i o n ] . x ,

29 mob_med_cfg . rad ios [ dst_radio_pos ] . p o s i t i o n s [ l a s t _ d e f _ p o s i t i o n ] . y ) ;

/∗meters ∗ /

30 }

31

32 i f ( dcur ren t <= mob_med_cfg . dmax / 4) {

33 dis tance_prob = 0;

34 } e lse {

35 dis tance_prob = ( ( ( f l o a t ) dcur ren t − ( f l o a t ) mob_med_cfg . dmax / 4 .0 )

36 / ( ( f l o a t ) mob_med_cfg . dmax − ( ( f l o a t ) mob_med_cfg . dmax / 4 .0 ) ) )

37 ∗ 1000; / / 1000 i s a scale f a c t o r

38 }

39

40 i f ( random_value < mob_med_cfg . f a d i n g _ p r o b a b i l i t y ) {

41 fad ing = mob_med_cfg . f a d i n g _ i n t e n s i t y ;

42 } e lse {

43 fad ing = 0;

44 }

45

46 l o s s _ p r o b a b i l i t y = dis tance_prob + mob_med_cfg . i n t e r f e rence_ tunne r + fad ing ;

47

48 i f ( debug == 1) {

49 p r i n t f (

50 "DEBUG INFO . POSITIONS : p1=(%d,%d ) p2=(%d,%d ) EXEC_TIME: %dsec .

LAST_ARR_INDEX: %d DISTANCE_BETWEEN_TX_RX: %d \ n " ,

51 mob_med_cfg . rad ios [ src_radio_pos ] . p o s i t i o n s [ l a s t _ d e f _ p o s i t i o n ] . x ,

52 mob_med_cfg . rad ios [ src_radio_pos ] . p o s i t i o n s [ l a s t _ d e f _ p o s i t i o n ] . y ,

53 mob_med_cfg . rad ios [ dst_radio_pos ] . p o s i t i o n s [ l a s t _ d e f _ p o s i t i o n ] . x ,

54 mob_med_cfg . rad ios [ dst_radio_pos ] . p o s i t i o n s [ l a s t _ d e f _ p o s i t i o n ] . y ,

55 execut ion_t ime , l a s t _ d e f _ p o s i t i o n , dcur ren t ) ;

56

57 p r i n t f (

58 " PROBABILITIES . random_value %d | d is tance_prob %d (%d%) |

l o s s _ p r o b a b i l i t y %d (%d%) | fad ing %d | dcur ren t %d | dmax %d \ n " ,

59 random_value , distance_prob , ( d is tance_prob / 10) ,

60 l o s s _ p r o b a b i l i t y , ( l o s s _ p r o b a b i l i t y / 10) , fad ing , dcurrent ,

61 ( i n t ) mob_med_cfg . dmax) ;

62 }

63

64 r e t u r n l o s s _ p r o b a b i l i t y ;

65 }
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APPENDIX D. SETTING WIRESHARK NETWORK

ANALYSER

In order to be able to check the behaviour of the implementations mesh network traffic it’s

used. This traffic is captured and processed by a network analyser, in that case Wireshark

will be the used one.

D.1. Compile Wireshark from sources

Wireshark uses a plugin type called dissector to parse the captured data into fields for

the graphic interface, it usually uses one dissector per protocol. Standard Wireshark in-

stallations doesn’t have the 802.11s dissector ready to use. Cozibit recommends in their

documentation to install Wireshark from sources in order to get the state of the art Wire-

shark code and the mesh dissector on it. This is the procedure that will be used.

For this Wireshark has to be compiled following next procedure:

1. Install dependencies:

1 ap t i t ude i n s t a l l b ison f l e x l i b g t k−3−dev subvers ion l ibpcap−dev

2 ap t i t ude i n s t a l l bu i ld−e s s e n t i a l automake autoconf l i b t o o l

3

2. Getting the Wireshark source code from the official Subversion repository:

1 svn co h t t p : / / anonsvn . wi reshark . org / wi reshark / t runk / wi reshark

2

3. Run the autogen.sh script at the top-level Wireshark directory to configure the build

directory.

1 cd wireshark

2 . / autogen . sh

3 . / con f igu re

4 make

5

4. Now you will find the binary file to run Wireshark on the root directory of the source

code , you can call it from the shell to run it [30].

1 . / w i reshark

2
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D.2. Installing a dissector

This section will explain how to install a dissector. This may be useful if you want to extend

some dissector or to install the 802.11s dissector into a standard Wireshark installation.

The following shows how to install one dissector:

1. Download a template of the dissector:

1 g i t c lone g i t : / / g i t o r i o u s . org / wireshark−d issec to r−template / wireshark−
d issec to r−template . g i t wireshark−d issec to r−template

2 cd wireshark−d issec to r−template

3

That template contains next files:

• Makefile.am - This is the UNIX/Linux makefile template

• Makefile.common - This contains the file names of this plugin

• Makefile.nmake - This contains the Wireshark plugin makefile for Windows

• moduleinfo.h - This contains plugin version info

• moduleinfo.nmake - This contains DLL version info for Windows

• packet-foo.c - This is the dissector source

• plugin.rc.in - This contains the DLL resource template for Windows

2. To use the template just change all occurrences of foo by your own plugin name,

and rename packet-foo.c by packet-yourpluginname.c

3. Building and installing the dissector:

1 mkdir b u i l d

2 cd b u i l d

3 cmake . .

4 make

5 make i n s t a l l

6

Now the dissector must be installed on the user home (/home/user/.wireshark/plugins/ )

folder and loaded when this user makes the call to Wireshark [31].

If a new dissector has to be created the procedure to do it will be found in the Bibliographic

Element [32].




