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Abstract 

The high-temperature deformation behaviors of low and medium carbon steels with respectively 0.06 

and 0.5 wt.% C were investigated under strain rate and temperature ranges of 10-4-10-1 s-1 and of 900-

1100 °C. Three types of dynamic recrystallization (DRX) flow behaviors were identified, namely single 

peak, multiple transient steady state, and cyclic behaviors. The normalized critical stress (and strain) for 

the low and medium carbon steels were about 0.846 (0.531) and 0.879 (0.537), respectively. For both 

steels, the apparent deformation activation energy and the power of the hyperbolic sine law were found 

to be near the lattice self-diffusion activation energy of austenite (270 kJ/mol) and 4.5, respectively. As a 

result, it was concluded that the flow stress of plain carbon steels during hot deformation is mainly 

controlled by dislocation climb, and based on physically-based constitutive analysis, it was found that 

carbon has a slight effect on the hot flow stress of plain carbon steels. The significance of the approach 

used in this work was shown to be its reliance on the theoretical analysis based on the deformation 

mechanisms, which makes the comparison more reliable. 
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1. Introduction 

Deformation temperature, strain rate, strain and interpass times must be carefully monitored to 

achieve required shape, microstructure, and mechanical properties. During hot working, dynamic 

recovery (DRV) and dynamic recrystallization (DRX) are the restoration phenomena that 

significantly affect the flow behavior. Due to the low stacking fault energy of austenite, the kinetics 

of DRV is slow and hence the DRX process normally occurs during hot forming of steels, which 

initiates at a critical strain (εc). Generally, three types of DRX flow curves have been proposed: 

single peak [1], multiple transient steady state (MTSS) [2,3], and cyclic [4,5] behaviors, which are 

dependent on the level of flow stress (deformation temperature and strain rate) and initial grain size 

[6]. The understanding of the hot deformation behavior together with the constitutive relations 

describing material flow is a prerequisite for large-scale production in the industry. The constitutive 

modeling of flow stress is thus important in forming processes because any feasible mathematical 

simulation needs accurate flow description [7-9]. 

Carbon is the most important alloying element in steels, which controls their microstructure and 

properties. Therefore, characterizing the effect of carbon on hot working behavior of steels is of 

special importance. For instance, its effects on the initiation of DRX, type of DRX flow curves, and 

hot strength of steels is essential in production of steel parts. To investigate the effect of carbon, it is 

logical to consider plain carbon steels with different carbon contents. In the current work, an attempt 

has been made to fundamentally enlighten these points based on the physically-based constitutive 

modeling, which result to a more reliable comparison. Indeed, on the experimental front, this 

problem has studied before, as will be discussed in the results and discussion section, but the 

obtained results seems to be contradictory as some researchers have concluded that increasing the 

amount of carbon promotes hardening while some others have observed a reverse trend [10-14]. 
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2. Experimental details 

The chemical composition of the studied low carbon (0.06 wt.%) and medium carbon (0.5 wt.%) 

steels are shown in Table 1. Uniaxial hot compression tests were performed on cylindrical samples 

with the height of 11.4 mm and diameter of 7.6 mm. The strain rate and temperature for this work 

were in the range of 10
-4

-10
-1 

s
-1 

and 900-1100 °C, respectively. Samples were soaked at 1100 ºC for 

15 min before the compression test and argon flow was employed to inhibit decarburization of the 

steels and oxidation of the machine tools. The initial grain size measured after quenching the as-

received materials form the austenitization condition were ~ 78 µm and ~ 53 µm for the medium 

carbon and low carbon steels, respectively. More information about the experiments and preliminary 

hot deformation behaviors can be found elsewhere [15]. Here, the results are revisited on the basis of 

improved constitutive description and analysis of the work hardening rates. 

 

Table 1: Chemical compositions (wt.%) of the studied plain carbon steels. 

Element C Mn Si P S Cu 

Low Carbon Steel 0.06 0.42 0.12 0.002 0.005 0.13 

Medium Carbon Steel 0.50 0.68 0.2 0.002 0.038 0.28 

 

3. Results and discussion 

3.1. DRX flow behavior 

The stress-strain (σ-ε) curves at various conditions for both steels are shown in Fig.1. As can be seen, 

all three types of DRX flow curves can be identified: single peak, multiple transient steady state 

(MTSS), and cyclic behaviors. 
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Fig. 1: Flow curves obtained at different deformation conditions. 
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At high strain rates and low temperatures, the shape of flow curves can be characterized as single 

peak behavior. In this type, more cycles of DRX initiate before the completion of the first one and 

the averaged flow stress of different grains will be in the form of a smooth peak. Moreover, the peak 

and steady state stresses decrease with an increase in the forming temperature or a decrease in strain 

rate. Conversely, at low strain rates and high temperatures, a multiple peak (cyclic) behavior can be 

noticed, in which the repetition of stress fluctuations are observed before the onset of steady state in 

the flow curves. This fact is attributed to the occurrence of several independent cycles of DRX. 

Furthermore, there are signs of another type of DRX flow curves, which can be considered as a 

transition state between single and cyclic behaviors. For instance, as can be seen in Fig. 2 for the 

deformation condition of 1050 °C - 0.003 s
-1

, several plateaus (horizontal stress lines) followed by a 

decrease in flow stress after each plateau can be detected beyond the peak stress of the flow curve. 

Each plateau represents a transient steady state period (similar to a peak point), and the decrease in 

flow stress after each plateau may be attributed to the progress of a new DRX cycle. This condition 

was also observed in a stainless steel alloy and subsequently was named as multiple transient steady 

state (MTSS) behavior [2,3]. This implies that the MTSS behavior might be a general flow behavior. 

 

Fig. 2: Representation of different DRX flow curves for the medium carbon steel. 
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 3.2. Work hardening rate analysis  

The critical stresses for initiation of DRX (σC) were obtained from the inflection points in the work 

hardening rate (θ=dσ/dε) versus flow stress (σ) curves (before the peak stress) or from the minimums 

in the -dθ/dσ versus σ curves [16,17]. The former plots were used to determine other characteristic 

stresses. The critical strains for the onset of DRX (εc) were found directly from the inflection points 

of the lnθ-ε curves while other characteristic strains were determined from the θ-ε curves. More 

details are shown in Fig. 3. To obtain the values of θ, the following incremental equation was used: 

11

11

−+

−+

−

−
==

ii

ii

i
i d

d

εε

σσ

ε

σ
θ           (1) 

Fig. 4 shows the relations among the various characteristic points of flow curves for both steels. 

Regression analysis of these curves (using an equation of the form of y = ax based on the expected 

relations between the characteristic points) shows that σC = 0.879σP, εC = 0.537εP, and σS = 0.875σP 

for the medium carbon steel and σC = 0.846σP, εC = 0.531εP, and σS = 0.886σP for the low carbon 

steel. An interesting finding is the independency of the σC/σP and εC/εP ratios on the carbon content. 

However, this does not mean that the level of σC, σP, εC or εP does not depend on the carbon content, 

as will be discussed later. Moreover, it can be seen that the normalized critical strain can be 

expressed as εC / εP ≈ 0.53 for both steels. At the onset of steady state flow, as a result of the balance 

between work hardening and restoration processes, the flow stress reaches the value of ~ 0.88σP for 

both steels. This implies that the restoration processes can effectively soften the alloy during hot 

working. The obtained value of normalized critical strain is also consistent with previous studies 

(mainly on steels) which have reported a value in the range of 0.3-0.9 [3]. The normalized critical 

strain of ~ 0.53 is lower than the one reported for medium carbon microalloyed steel (~ 0.62) [18], 

which reveals that carbon does not significantly affect this value but the microalloying elements are 

effective in retardation of recrystallization. 
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Fig. 3: Methods used for determination of characteristic points of flow curves. 
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Fig. 4: Plots used to derive the relations among the various characteristic points of flow curves. 

 

3.3. Constitutive modeling 

One of the most-widely used parameters in hot deformation studies is the Zener-Hollomon one (Z), 

which is also known as the temperature-compensated strain rate. The basic constitutive equations in 

hot working are based on expressing Z as a function of flow stress as shown below [7,8]: 
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In this equation, Q is the hot deformation activation energy, ε�  is the strain rate, T is the absolute 

temperature, and finally A', A'', A, n', β, n, and α are material’s parameters. The power law is 

preferred for relatively low stresses. Conversely, the exponential law is suitable for high stresses. 

Finally, the hyperbolic sine law can be used for a wide range of Z parameters. The stress multiplier α 

is an adjustable constant which brings ασ into the correct range that gives linear and parallel lines in 

ε�ln versus )}ln{sinh(ασ plots and it can be estimated by α ≈β/n'. 

By taking natural logarithm from both sides of the expressions of Eq. (2), the following expressions 

can be obtained: 
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Since the deformation mechanism during hot working is usually based on the glide and climb of 

dislocations, the lattice self-diffusion activation energy can be employed as the deformation 

activation energy to determine Z [19]. As a result, the value of QSD = 270 kJ/mol [8,18] was 

considered for both steels in this work. Based on Eq. (3), the partial differentiation of the power and 

exponential laws leads to the following expressions at a given deformation temperature and for the 

particular case of the peak stress: 

 

TPn ]ln/ln[ σε ∂∂=′ �            (4) 

TP ]/ln[ σεβ ∂∂= �            (5) 

 

To determine the values of β and n' and
 
subsequently, α ≈ β/n', the slopes of the curves of ε�ln  versus 

σp and ε�ln
 
versus Pσln  can be employed. These plots are shown in Fig. 5 and the values of α were 
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determined as 0.0183 and 0.0188 MPa
-1

 for low and medium carbon steels, respectively. Therefore, 

for comparison purposes, the value of α was taken as 0.018 for both steels. Plots of lnZ vs. 

)]ln[sinh(ασ  were employed to obtain the relations between σp and Z as shown in Fig. 6 and the 

resulting equations are indicated below: 
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Fig. 5: Plots used for determination of the stress multiplier α. 
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Fig. 6: Fitting the hyperbolic sine equation on the experimental data. 

 

It can be seen that the value of n is near 4.5. It has been shown that the climb controlled intragranular 

flow of dislocations can be represented by Q = QSD and n' or n = 4.5-5 [7-9,19-24]. Therefore, it can 

be deduced that the flow stress of the investigated materials during hot deformation is controlled by 

dislocation climb. To make the comparison possible, the theoretical value of n = 4.5 was considered 

for constitutive analysis and the results are shown in Fig. 7 and can be summarized as follows: 
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Since n, α and Q are the same for both steels, the only quantity to compare the flow stresses based on 

the hyperbolic sine law is A, which shows that the flow stress of the low carbon steel is somewhat 

higher than that of the medium carbon steel. This result is consistent with previous studies [11-13], 

which have shown that at low Z parameters, the flow stress of the plain carbon steels with higher 

amount of carbon is lower than in low carbon steels. This difference in the flow stress of the studied 
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materials can be understood by consideration of Eq. (8) as a result of rewriting Eq. (7), which shows 

that the level of the flow stress of low carbon steel at each Z is slightly higher than that of the 

medium carbon steel. This is also in accordance with some reports, which indicate that the flow 

stress of carbon steels at temperatures higher than 900 °C is almost independent of carbon content 

[10]. 
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Fig. 7: Fitting the hyperbolic sine equation on the experimental data with n = 4.5. 

 

In the aforementioned analysis, the value of Q was taken as QSD and it was shown that the flow 

stress of plain carbon steels can be adequately described by the climb controlled intragranular flow 

of dislocations. Here, the values of the apparent hot deformation activation energies will be obtained 

empirically to compare them with QSD. By partial differentiation of the hyperbolic sine expression in 

Eq. (3) at constant strain rate and also at constant temperature, the following relation will be 

resulted: 
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Based on the abovementioned expression, the slope of the plot of )]ln[sinh( Pασ  vs. 1/T and the 

slope of the plot of ε�ln  vs. )]ln[sinh( Pασ  were used to determine the value of Q. The related curves 

are depicted in Fig. 8, which resulted in the average values of 301.4 and 306.6 kJ/mol for the 

activation energies of medium and low carbon steels, respectively. It can be seen that these apparent 

values are nearly consistent with the theoretical value of QSD = 270 kJ/mol. 

 

 

Fig. 8: Plots used for calculation of apparent deformation activation energies. 
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3.4. Characteristic points of flow curves vs. Z 

Based on the power relation of n

PAZ
′′= σ , one can obtain an equation of the form of p

P BZ=σ  to 

relate σP with Z. Similarly, the relation of q

P CZ=ε  can be employed to find a relation between εP 

and Z. Therefore, the plots of 
Pσln  and 

Pεln  vs. lnZ can be used to find the values of B, p, C, and q. 

The required illustrations for both steels are shown in Fig. 9, which resulted in the following 

equations: 
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It follows from Eq. (10) that the level of peak flow stress for both steels is the same but the low 

carbon steel shows slightly higher flow stress. This small difference can be ascribed in part to the 

decreasing rate of work hardening due to enhanced dynamic recovery in the steel with higher carbon 

content as a result of expansion in the austenite lattice and enhanced diffusivity [11,12]. 

Since the Z exponents of Eq. (11) for the studied steels are different, the comparison cannot be 

made. Therefore, the direct relation between εC and Z is  shown in Fig. 10, which displays that at the 

range of the deformation conditions used in this study, the level of εC for the medium carbon steel is 

higher than that of the low carbon steel (
CCCC %50.0%06.0 93.0 εε ×= ). This behavior is consistent with 

previous reports [13,14], which have indicated that at low Z values, the onset of DRX occurs at 

higher strains for the steels with higher carbon content. This delay in occurrence of DRX with 

increasing the carbon content can also be attributed to the enhanced dynamic recovery, which is the 

rival of recrystallization in consuming the stored energy, and hence, an enhancement in recovery can 

lead to reduction in driving force for the recrystallization process [6]. Based on Fig. 10, the 
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deformation conditions used in the present work belong to the low Z regime and it is anticipated that 

at lnZ higher than 25 (based on Q = 270 kJ/mol), a reverse trend is resulted, which is consistent with 

the observed trend in the previous research works [14]. However, It should be noted that the initial 

grain size for the low carbon steel is finer, which can decrease the values of the εC and εP. Therefore, 

the abovementioned comparison regarding the onset of DRX is not totally reliable. However, since 

the flow stress during hot deformation, resulted from the intragranular motion of dislocation, does 

not normally depend on grain size [19-21], the comparison regarding the flow stresses can be used 

safely. 

 

Fig. 9: The power law analysis. 

 

Fig. 10: The critical strain for initiation of DRX vs. Z. 
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4. Conclusions 

The following conclusions can be drawn from the study on the hot deformation behavior of plain 

carbon steels under the strain rate range of 10
-4

-10
-1

 s
-1

 and temperature range of 900-1100 °C: 

(1) Three types of dynamic recrystallization flow behaviors were identified, namely single peak, 

multiple transient steady state (MTSS), and multiple peak (cyclic) behaviors. The MTSS behavior 

was characterized as a transition state between single peak and cyclic behaviors. Moreover, the 

occurrence of this DRX flow behavior for plain carbon steels as well as stainless steels implies that 

the MTSS behavior might be a general flow behavior. 

(2) The work hardening rate plots were used to determine the critical conditions for the onset of 

DRX and other characteristic points of flow curves. The normalized critical stress and strain for 

initiation of DRX were determined as σC / σP = 0.879 and εC / εP = 0.537 for medium carbon steel 

and σC / σP = 0.846 and εC / εP = 0.531 for low carbon steel, respectively. Therefore, it can be 

deduced that the onset of DRX in plain carbon steels takes place at normalized critical strain of ~ 

0.53. The Z exponents for peak stress and strain were calculated as 0.17 and 0.125 for the medium 

carbon steel and 0.17 and 0.155 for the low carbon steel, respectively. 

(3) The apparent deformation activation energies were determined as 301.4 and 306.6 kJ/mol for the 

medium and low carbon steels, respectively, which are near the lattice self-diffusion activation 

energy of austenite (QSD = 270 kJ/mol). The obtained hyperbolic sine powers were also close to 4.5, 

which signified that the flow stress of the investigated materials during hot deformation is controlled 

by the dislocation climb step. As a result, the following constitutive equations were proposed: 
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(4) Based on physically-based constitutive analysis, the difference between the flow stress of the 

medium and low carbon steels were related to the difference in the value of the hyperbolic sine 
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constant and it was found that carbon has a slight effect on the hot flow stress of plain carbon steels. 

This is important in term of deformation mechanisms without being based on the apparent material’s 

constants and the obtained constitutive equations have a physical basis, which makes the comparison 

more reliable. 
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Figure Captions 

Fig. 1: Flow curves obtained at different deformation conditions. 

Fig. 2: Representation of different DRX flow curves for the medium carbon steel. 

Fig. 3: Methods used for determination of characteristic points of flow curves. 

Fig. 4: Plots used to derive the relations among the various characteristic points of flow curves. 

Fig. 5: Plots used for determination of the stress multiplier α. 
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Fig. 6: Fitting the hyperbolic sine equation on the experimental data. 

Fig. 7: Fitting the hyperbolic sine equation on the experimental data with n = 4.5. 

Fig. 8: Plots used for calculation of apparent deformation activation energy. 

Fig. 9: The power law analysis. 

Fig. 10: The critical strain for initiation of DRX vs. Z. 

 

Table Captions 

Table 1 Chemical compositions (wt.%) of the studied plain carbon steels. 

Table 1: Chemical compositions (wt.%) of the studied plain carbon steels. 

Element C Mn Si P S Cu 

Low Carbon Steel 0.06 0.42 0.12 0.002 0.005 0.13 

Medium Carbon Steel 0.50 0.68 0.2 0.002 0.038 0.28 

 

 




