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Abstract
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arbitrariness in the solutions to the field equations, which are analyzed in-depth, and written
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1 Introduction

Higher-order field theories are relevant in physics and applied mathematics because they appear
in many of important situations; for instance, the standard gravitational theories, in particular
Hilbert’s Lagrangian for gravitation, are of this kind; as well as string theories, Podolsky’s
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generalization of electromagnetism, the different forms of the Korteweg-de Vries equation in fluid
theory, and other interesting models in physics. As a consequence, many works are devoted to
the development of a formalism for these kinds of theories and their application to many models
in mechanics and field theory (a long but non-exhaustive list of references can be found in

[8, 44, 45]).

In higher-order mechanical systems and field theories, the formalism shows explicit depen-
dence on accelerations or higher-order derivatives of the generalized coordinates of position, or
in the higher-order derivatives of the fields. Thus, for Lagrangian systems, if the Lagrangian
function depends on derivatives of order k, the corresponding Euler-Lagrange equations are of
order 2k. These kinds of systems are therefore modeled geometrically using higher-order tangent

and jet bundles as the main tool (see, for instance, [12, [16] 20, 211, 32] B3] [39], 41 (0} 51]).

In particular, as regards higher-order field theories, great efforts have been made to extend
the classical multisymplectic framework developed for describing first-order field theories to this
realm. The usual way to do this consists in generalizing the construction of the Poincaré-
Cartan form for a higher-order Lagrangian density and then stating the Lagrangian formalism
[2, 3, 26, 28] 291 [34] 35l [49]. Nevertheless, this procedure involves some ambiguity, since the
definition of the Poincaré-Cartan form in a higher-order jet bundle is not unique, and despite
that for the second-order case it is proved that all these forms are equivalent [50} 51], this is
not true for the general higher-order cases. These and other kinds of problems involving the
non-uniqueness of the geometrical constructions also appear in the definition of the Legendre
transformation associated with a higher-order Lagrangian and as well as a suitable choice of the
multimomentum phase space for the Hamiltonian formalism of the theory [4l 27 [36] 38].

A way to overcome these difficulties and simplify the formalism was recently achieved in [I]
using the so-called Skinner-Rusk or Lagrangian-Hamiltonian unified formalism for field theories.
The origin of this formalism is the seminal paper [52], where R. Skinner and R. Rusk present a
new framework for first-order autonomous mechanical systems that compresses the Lagrangian
and Hamiltonian formalisms into a single one. This was subsequently generalized to first-order
non-autonomous dynamical systems [7, [I5], control systems [6], higher-order autonomous and
non-autonomous mechanical systems [12] 14} 20] B2] 40}, [44], [45] [46], and first-order classical field
theories [19] 23], [47, 48]. Then, in [II] the authors present an extension of this formulation
to higher-order field theories in order to develop an unambiguous framework for higher-order
classical field theories. While this model allows us to simplify previous formulations, some
arbitrary parameters appearing in the solutions of the higher-order field equations and in the
definition of the Legendre transformation must be fixed “ad-hoc”. Another interesting approach
to the higher-order unified formalism for field theory, but using infinite-order jet bundles, is

given in [53].

In this paper, we present a modification of the model given in [I1I] by using finite higher-
order bundles to overcome some of the ambiguities in the solutions of the equations given by
the model, thus clarifying the construction of the Legendre map and the choice of the jet and
the multimomentum bundles for the Lagrangian and the Hamiltonian formalisms, as well as
the field equations in both formalisms. Our model is therefore a completion of the approaches
given in [IT] 53]. Our treatment works for second-order field theories because we want it to be
applied here and in future papers to describe the well known theories previously cited: gravita-
tion, Korteweg-de Vries equation and other models in physics, all of which are of second-order.
Another advantage of working at this order is that we can use the diffeomorphism among several
geometric structures in order to avoid part of the ambiguity inherent to the theory. In any case,
further work to generalize our results to higher-order cases is in progress.

The organization of the paper is as follows. First, in Section 2] we review the geometric struc-
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tures of higher-order jet bundles, introduce the concepts of holonomic sections and multivector
fields in order to state the field equations on these bundles, and define the space of symmetric
multimomenta suitable for the Hamiltonian formalism. Section [3]is devoted to developing our
proposal of the Lagrangian-Hamiltonian unified formalism for second-order field theories. After
introducing the unified jet-multimomentum bundles and their relevant submanifolds where the
formalism takes place, we state the field equations in the unified formalism using sections and
multivector fields. Thanks to this unified framework, we establish the Lagrangian and Hamil-
tonian formalisms for second-order field theories (in Sections [l and [l) for both the regular and
singular (almost-regular) cases. Finally, in Section [6l we apply our formulation to describe an
academic model: a first-order Lagrangian as a second-order one, and two physical systems: the
bending or deflection of a plate with clamped edges and the classical Korteweg-de Vries equa-
tion. A comparison of our results with those of previous papers is given in the last Section [1]
where we also summarize our results and outlook.

All the manifolds are real, second countable and smooth (C*). The maps and the structures
are assumed to be C'°°. Sum over repeated indices is understood. The usual multi-index notation
introduced in [50] is used: a multi-index I is an element of Z™ such that every component is
positive, the ith position of the multi-index is denoted I(7), and |[I| = > /%, I(i) is the length
of the multi-index, while I! = [[", I(¢)!. Finally, an expression of the type |I| = k means that
the expression (or the sum) is taken for every multi-index of length k. The same applies for
inequalities. (See [50], §6.1 for details).

2 Geometric structures of higher-order jet bundles

2.1 Higher-order jet bundles. Coordinate total derivatives

(See [50] for details).

Let M be an orientable m-dimensional smooth manifold, and let n € Q" (M) be a volume
form for M. Let E s M be a bundle with dimE = m +n. If k € N, the kth-order jet
bundle of the projection m, J*7, is the manifold of the k-jets of local sections ¢ € I'(r); that is,
equivalence classes of local sections of m by the relation of equality on every partial derivative
up to order k. A point in J¥7 is denoted by j¥¢, where x € M and ¢ € I'(r) is a representative
of the equivalence class. We have the following natural projections: if r < k,

k. Jkr — J'n ] k. Jkr — E ) ke gk — M
jre > gy D Jsd @
Observe that 75 o ¥ = 7F, 7k = 7% (where J7 is canonically identified with E), 7§ = Id k,

and 7™ = 7o 7*.

Local coordinates in .J*7 are introduced as follows: let (2?), (1 < i < m) be local coordinates
in M, and (2%,u®), (1 < a < n), local coordinates in E adapted to the bundle structure. Let
¢ € T'(r) be a section with coordinate expression ¢(x') = (z°, ¢%(2%)). Then, local coordinates
in J*7 are (2, u”, u$), where

ol e

u =¢% 5 uf =

Using these coordinates, the local expressions of the natural projections are

mr(@’ u® uf) = (2t u®,ug) 5 7Pt u® ug) = (@, u®) s 7 u®uf) = (af).
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If ¢ € I'(r), we denote the kth prolongation of ¢ to J*m by j*¢ € T'(7%). In natural
coordinates of J, if ¢(z) = (2%, (%)), its kth prolongation is given by

|I|a
jk¢($)—< Lo, ¢>, LI <k,

Definition 1. Let E —+ M be a bundle, v € M, ¢ € T'(7) a section in x, and v € TyM. The
kth holonomic lift of v by ¢ is defined as

((%0)s(v), jE¢) € (mf ) T TF 7 .

In coordinates, if v € T, M is given by v = v 881- , its kth holonomic lift is
o = [ 2]+ 3w urel] . 1)
JE®  1)=0 Iljke

The vector space (7T]]§+1) (TJ*kr ) +1, has a canonical splitting as a direct sum of two sub-

spaces:
(M (T TEm) vy = (w7 (V(EE)) e @ (55 0)(TeM)

where (j%¢).T, M denotes the set of kth holonomic lifts of tangent vectors in T, M by ¢. As a
consequence, the vector bundle (7 k+1) Trkg: (T k+1) TJ*r — Jk7 has a canonical splitting as a
direct sum of two subbundles

(et

( k-i-l) TJk ( £+1)*V( )@H( k—i—l) Tk Jkﬂ' 7

where H (7} ™) is the union of the fibres (j*¢). (T, M), for z € M.

Now, if X(7 k“) denotes the module of vector fields along the projection 7Tk+1 the submodule

corresponding to sections of (7 k+1) is denoted by X (7 k+1) and the submodule

TJk7T (WZ+1)*V(77'k)
Rly« is denoted by f{h(ﬂlljﬂ). The splitting for the

corresponding to sections of () T sk

Tl H (k)

bundles given above induces the following canonical splitting for the module X(7 k+1).

%( k:+1) — %U(ﬂ.]]z‘-i-l) D %h(ﬂ.]]z‘-i-l) )
An element of the submodule X" (7 k+1) is called a total derivative.

Definition 2. Given a vector field X € X(M), a section ¢ € I'(w) and a point x € M, the kth
holonomic lift of X by ¢, j*X € %h(ﬂ]]zﬂ), is defined as

(7°X) 1y = (70 (Xa)

o,
In local coordinates, if X € X(M) is given by X = X ZW’ then, bearing in mind the local
x
expression ([Il) of the kth holonomic lift for tangent vectors, the kth holonomic lift of X is

8 8

kX Xz

Finally, the coordinate total derivatives are the holonomic lifts of the local vector fields
9/0z" € X(M), which are denoted by d/dz’ € X(nf"), and whose coordinate expressions are

d 0 0 .
dr o + Z u”ll@u‘”’ Isism.
|1]=0
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2.2 Holonomic sections and multivector fields

(See appendix [A] for the terminology and notation on multivector fields in a manifold).

Definition 3. A section 1) € T'(7*) is holonomic of type r (1 < r < k) if jF7+¢ = 7TI]§_T+1 01,
where ¢ = ©* o) € T'(w); that is, the section W’,j_H_l o1 is the prolongation to the jet bundle
JF 1 of a section ¢ € T'(w). In particular, a section 1) is holonomic of type 1 (or simply

holonomic) if j* (7% o ) = 1); that is, ¢ is the kth prolongation of a section ¢ = 7F o1p € T'(r).
The commutative diagram that illustrates the previous definition is the following

¥ Jkr
/r;H
)

Th—r41°

M Jk—?"—l—lﬂ.

In the natural coordinates of J, if o € T'(7¥) is given by v(z?) = (2%,%*, %) (1 < |I| < k),
then the condition for ¢ to be holonomic of type r gives the system of partial differential
equations

Al e
or, equivalently,
o T .
¢1+1~:W7 I<[[<k—r,1<i<m, I<a<n. (3)
‘ x

Definition 4. A multivector field X € X™(J*r) is holonomic of type r, with 1 < r < k, if the
following conditions are satisfied:

1. X is integrable.

2. X is 7¥-transverse.

3. The integral sections ¢ € T'(7%) of X are holonomic of type r.
In particular, a multivector field X € X™(J*r) is holonomic of type 1 (or simply holonomic)

if it is integrable, TF-transverse and its integral sections v € T'\(T*) are the kth prolongations of
sections ¢ € I'(m).

In natural coordinates, if X € X™(J*7) is a locally decomposable and 7*-transverse multi-
vector field locally given by

N d d d
=Nfil=+F'~—+Fi=— << k),
X /\fl <8x2 S +F1728u?> , (1< <k)
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with f; non-vanishing local functions. Then, the condition for X to be holonomic of type r gives
the following equations:

Ff=ui ; Fy=ufy,,, 1<{[<k-r,1<i<m,1<a<n. (4)

1
Hence, the local expression of a locally decomposable holonomic multivector field of type 7 is
k—

F a 9
X:/\fi op T Yigge T Z Z Fl,ia—u? )

i=1 Uy |1| k—r+1

In the particular case r = 1, the local expression is

m k—1
0 ) )
X:/\f’ 8xi+ Za——'_zuf-i-l@aa—’_FKZa K=k
i=1 7|=1

Remark: It is important to point out that a locally decomposable and 7*-transverse multivector
field X satisfying the local equations () may not be holonomic of type r, since these local
equations are not a sufficient or necessary condition for the multivector field to be integrable.
However, we can assure that if such a multivector field admits integral sections, then its integral
sections are holonomic of type r. In first-order theories, these equations are equivalent to the
so-called semi-holonomy (or SOPDE) condition [24].

2.3 The space of 2-symmetric multimomenta

For the sake of simplicity, in the following we restrict ourselves to the case k = 2, that is, the
second-order case, which is our main goal in this paper. However, all the results that follow in
this Section can be stated for an arbitrary value of k (see [9] for details).

Following [I3| 22, 25], let us consider AJ(J'm) as the phase space for the Hamiltonian
formalism of a second-order field theory; that is, the bundle of m-forms over J'7 vanishing by
the action of two 7!-vertical vector fields. We have the following canonical projections:

Te: AR (J ) = Jin  dp, =7l ompg: AR(Jr) — M.

This bundle is endowed with some canonical structures. First, we define the tautological (or
Liowville) m-form on AJ*(J'm) by

O1(w)( X1, ...y X)) =w(T7m i (X1), ..., T (X)),

where w € AJY(J'7), and Xi,...,X,, € TL,AT(J'7). Then, we can define a multisymplectic
(m + 1)-form Q; € Q™Y AR(Jn)) as Q1 = —dOq, which is called the canonical (or Liou-
ville) multisymplectic (m + 1)-form on AJ(J'm). Recall that a multisymplectic k-form in a
n-dimensional manifold N is a closed k-form Q (with 1 < k& < n) which is 1-nondegenerate; that
is, for p € N,we have that i(X,)Q, = 0 if, and only if, X, = 0.

In addition, the bundle AJ*(J'7) is diffeomorphic to the union of the affine maps from J} 7!
0 (A" M)z (y), where u € Jr is an arbitrary point; that is,

Ap(Itm) 2 | AR (A" M)ngy,) -
ueJln
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Using this identification and the fact that J?7 is embedded into J'7!, we can define a canonical
pairing between the elements of J27 and the elements of AJ'(J'7) as a fibered map over Jlm,

defined as follows
C: P x ji A (Jtr) — AT(Ji7)

(]%(;5,(4}) — (jlgb);;(ﬁw
As C takes values in AT'(J'7), there exists a pairing function associated to C and the volume
form n € Q™(M), denoted by C: J?r x ji AT (J'7) — R, and such that C(j2¢,w) - (7 1,)*n =
(j1¢);1¢w-

Let (U;2t,u®), 1 < i < m, 1 < a < n, be a local chart in E adapted to the bundle
structure and such that n = dz' A ... Adz™ = d™x. Then, the induced natural coordinates
in Ji7 are ((71)~1(U); 2%, u® u&). Therefore, the induced local coordinates in AJ(J'7) are
((m! o WJlﬂ)_l(U);:Ei,ua,u?,p,pg,pg), 1<i,j <m,1<a<n. Observe that dim AT (J'7) =
m + n + 2nm + nm? + 1. In these coordinates, the Liouville m and (m + 1)-forms have the
following local expressions

O1 = pd™x + pdu® A d™ L +pgdu? A dm_lxj ,
, 3 (5)
O = —dp Ad™x —dp’, A du® A d™La; — dpd A du;?l A dm_lznj .

Finally, the pairing function C' associated to C and 7 has the following coordinate expression

Cla’,u® uft, p, P, P) = p + Pt + puf ., - ©)

According to the results in [51], let us consider the submanifold J27T < A (J'7) defined
locally by

J27TT:{w€A§”(J17T): pd = plt for every 1 <i,j <m, I<a<n}.

This submanifold is 7 1 ,-transverse, and therefore fibers over J'7, E and M. Let 7731”: T2t —

J'7 and 7’131” =7l 071317r: J?7T — M be the canonical projections. Natural coordinates in J27'

adapted to the bundle structure are (2, u®, u, p, pi,, pl ), where |I| = 2. Using these coordinates,
the natural embedding js: J2r' < A (J'7) is given by

k0 . koo 0, koo o, ko4 g
JsT =X 5 JU =U v JsUy = U 5 JsPa = Pas

1, ifi=j (7)
2, ifi

] 1 1i+1; ..
Jspd = (1)) Po ’, where n(ij) = {

The submanifold J27T < AZ(J'7) is called the extended 2-symmetric multimomentum bun-
dle. Although this submanifold is defined using coordinates, this construction is canonical [5119].

Remark: Observe that J271 is defined by nm(m —1)/2 local constraints, and therefore we have

-1 1
_7nm(m ):m+n+2mn+7nm(m+ )

dim J?7" = dim AJ(J ) 5 5

+1.

All the geometric structures defined above for AJ*(J'7) can be restricted to J27xT. In partic-
ular, let us denote ©% = j*©; € Q™(J%x") and Qf = j:Q; = —dOF € Q™1 (J27T) the pull-back
of the Liouville m and (m + 1)-forms to J27', which we call the symmetrized Liouville m and
(m 4+ 1)-forms. Bearing in mind the local expressions () of the Liouville m and (m + 1)-forms,
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and (7)) of the canonical embedding j,: J?7! A (J 1), the coordinate expressions of ©7 and
Q] are

; 1 Ry
O1 = pd"z + ppdu® A dm_lﬂfi + ﬁp(lfﬂjduf‘ A\ dm_lzltj ,
n(ij
8)
: 1 11 (
Of = —dp Ad™z — dpl, A du® Ad™ ;- ] dpel ™ A du A d
n(ij

An important fact concerning the pull-back of the multisymplectic (m + 1)-form Q; to J2xT
is that it is multisymplectic in J27. Since ()] = —dO7 is obviously closed, it suffices to show
that it is 1-nondegenerate, that is, i(X)Q§ = 0 if, and only if, X = 0. In coordinates: let
X € X(J%71) be a generic vector field locally given by
0 0 0 0 o, 0
-+ FY— + F— — +G = +acl — .
Oxt * Ou A dug +g@p * “opt, * “oplL

«

X=f

Then, taking into account the coordinate expression (8) of the (m + 1)-form Qf, the m-form
i(X)Q] is locally given by

1i+1; «@ m—2
- dps 7 Ndu$ N d ;
i(X)Q = f* (dp Ad™ Lz — dph A du® A d 2y — 2 Y xjk)

n(ij)
- 1
+ F%dp;, N\ d™ e + Fr— dplitli a dm_lznj —gd™x
n(ij)
_sz a/\dm—l '—GI
MG 2 )
iTlj=

1 -1
——duf Nd" " xy

where d™ 2z, = i(9/0x)d™ 'z;. From this coordinate expression it is clear that i(X)Q; =0
if, and only if, X = 0. Hence 2] is multisymplectic.

Furthermore, from the canonical pairing C: J?m x j1,. AJY(J'7) — AT (J'7), we can define a
pairing C*: J21 x ji. J2m!l — AT(J'7) as

C*(12,w) = C(326,s(@)) = (') 1y Gs(w) -

Again, since C° takes values in AT*(J'7m), there exists C* € C®(J?r x j1, J?r') such that
C3(j2p,w) - (7‘?}1”)*77 = (j1¢);f%¢ js(w). In the natural coordinates of J?z', bearing in mind
the local expressions (@) of the pairing function C' and (7)) of the canonical embedding, the
coordinate expression of C* is

C¥ (a2t u® ul, uf, p, ply, ph) = p + phud + phuf . (9)

Finally, let us consider the quotient bundle J27+ = J27xT/A7(J'7), which is called the
restricted 2-symmetric multimomentum bundle. This bundle is endowed with some natural
projections, namely the quotient map p: J?xt — J2?xt, and the projections 7T§[]17r2 Jirt = Jir
and 75, : J2rt — M.

Observe that J2m# can also be defined as the submanifold of AZ*(J'm)/AT"(J'7) defined by
the nm(m —1)/2 local constraints pg —pX = 0. Hence, natural coordinates (z%, u®, u$, p, pl,, pd )
in AJ*(J'7) induce local coordinates (:Ei,uo‘,u;?‘,pg,pg) in the quotient. Therefore, natural
coordinates in J27t are (xi,ua,uf‘,pg,pé). Observe that

1
dim J27F = dim J%2" — 1 = m +n + 2mn + %
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3 Lagrangian-Hamiltonian unified formalism

3.1 Geometrical setting

Let E =5 M be the configuration bundle describing a classical field theory, where M is a
m-dimensional orientable manifold with fixed volume form n € Q™ (M) and E is a (m + n)-
dimensional manifold. Let £ € Q™(J?7) be a second-order Lagrangian density for this theory,
that is, a @2-semibasic m-form on J?7. Since £ is a 72-semibasic m-form, we can write £ =
L - (72)*n, where L € C°°(J%7) is the second-order Lagrangian function associated to £ and 7.

According to [7), 23] [45], let us consider the fiber bundles
W=D xpn, JPnt 5 W, =31 x i, Jirb.

The bundles W and W, are called the extended 2-symmetric jet-multimomentum bundle and
the restricted 2-symmetric jet-multimomentum bundle, respectively.

These bundles are endowed with the canonical projections
prW = I o par W JPat pp W= Jn o puW— M,
p{:WT,—>J37T ; pgz)/\/r—hfzwi ; pTJlﬂZWT—)Jlﬂ' i Py We — M.

In addition, the natural quotient map p: J?x" — J27¥ induces a natural projection (that is,
a surjective submersion) pyy: W — W,.. Thus, we have the following diagram

w
MN
W,
P1
P1 J2 J27TT
Piix / lu
i
X 1
B ” St
3 i
7T1 T
Jlx
Jir
77.1
M

Let (U;2% u®) be a local chart of coordinates in E adapted to the bundle structure and
such that n = dz! A ... Ada™ = d™z. Then, we denote by ((7%)~1(U); 2", u®, u®, ug,us) and
((m! o wglw)_l(U);:E",uo‘,u‘ix,p,pg,pé) the induced local charts in J37 and J%xn', respectively,
with |I| = 2 and |J| = 3. Thus, (z%,u%,u$,pl,pl) are the natural coordinates in J%7t, and
the coordinates in W and W, are (z%, u®,u$ u‘}‘,u?,p,pfx,pé) and (mi,ua,uf‘,u‘}‘,uﬁ,pg,pé),

s Wi
respectively. Observe that

nm(m+ 1)(m + 2)

1
6 M

dimW =m+n+2nm+nm(m+ 1) +
and dim W, = dim W — 1.

The bundle W is endowed with some canonical structures.
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Definition 5. Let ©5 € Q™ (J%xT) and Qf € Q" FL(J%x") be the symmetrized Liouville forms.
Then we define the following forms in W

O =p30] € Q"(W) ; Q=p0f € Q"I (W), (10)

which are called the second-order unified canonical forms.

Bearing in mind the local expressions (8) of the forms ©7 and 2, and taking into account
that the projection ps is locally given by

P L, ,a QA 7 Iy i, , Q 7 1
p2(x y U 7ui 7uI7uJ7p7ponpa) - (:E , U 7ui 7p7pa7pa)7

we obtain the coordinate expression of the unified canonical forms, which are

) 1 p
O = pd"z + pldu® A d™ e+ ﬁp}xﬁl]duf‘ A dm_lxj ,
n(ij
11)
. 1 i, (
Q=—dpAd™z —dp’, Ndu® Nd™ L a; — ﬁ dp}frl’ A dug A dm_lxj .
n(ij

Observe that, although 2] is multisymplectic, the (m + 1)-form 2 is premultisymplectic, since
it is closed and 1-degenerate. Indeed, for every X € XV(?2) (W) we have i(X)Q = 0. This is easy
to check in coordinates: the C°(W)-module XV (¥2)(W) is locally given by

%V(PQ)(W):< 0 9 > (12)

a’ @
oug’ oug

with [I] = 2 and |J| = 3. Bearing in mind the local expression (II]) for €2, we have

i<i>Q:i<i>Q:0.
ou§ oug

Hence, (W, Q) is a premultisymplectic manifold of degree m+1, and we have ker Q = XV (2)(W).
The second canonical structure in W is the following:

Definition 6. The second-order coupling m-form in W is the pyr-semibasic m-form Ce Qm™W)
defined as follows: for every (ji¢,w) € W we have

C(jad,w) = C*(n3(j30)w) .- (13)

As before, since C is a pys-semibasic m-form, there exists a function C' € C°°(W) such that
C = C - pyn. Bearing in mind the local expression (@) of C*, the coordinate expression of the
second-order coupling form is

A~

C = (p + pfluf‘ + p{lu?) d"x . (14)

We denote £ = (130p1)*L € Q™(W). Since the L is a 72-semibasic form, we have that £ is a
par-semibasic m-form, and thus we can write £ = ﬂp}k\/ﬂ], where L = (n30p1)*L € C®°(W) is the
pull-back of the Lagrangian function associated with £ and 7. Then, we define a Hamiltonian
submanifold

W, = {w eW: L(w) :é(w)} 2y,

Since both £ and C are pys-semibasic m-forms, the submanifold W, is defined by the constraint
C — L =0. In local coordinates, bearing in mind the local expression ([I4]) of C , the constraint
function is

p+pouf +pguf —L=0, [I|=2.
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Proposition 1. The submanifold W, — W is 1-codimensional, pyy-transverse, and the map
b =y o jo: W, — W, is a diffeomorphism.

Proof. First of all, observe that W, is obviously 1-codimensional, since it is defined by a single
constraint function.

To prove that ® = uy o j,: W, — W is a diffeomorphism, we show that it is one-to-one.
First, observe that for every (j2¢,w) € W,, we have

L(m3(j3¢)) = L(jio,w) = C(jio,w),
and, on the other hand,

(bw © Jo) (Jo0, w) = pw(jad,w) = (jog, p(w)) = (jio, [w]).

First, let us prove that uyy o j, is injective. In fact, let (j2¢p1,w), (j3 P2, w2) € W, then we
wish to prove that
(1w © Jo) (J2d1,w1) = (1w © o) (22, wa) <= (ji¢1,w1) = (Jod2,ws)
— jx(bl - jm¢2 and W1 = w2 .

Now, using the previous expression for (uyy o jo)(joé, w), we have

(1w © Jo) (Fadr, w1) = (w0 Jo) (Jadba, wa) <= (j2¢1, [wi]) = (J2 b2, [wa])
> jod1 = jo¢o and [wi] = [wo],

From where we deduce j2¢1 = j3¢o = j3¢. Now, to prove wi = ws, observe that by definition
of W,, we have

(7T2(]x¢)) (7T2(]x¢)) (j§¢7w1) = é(]§¢7w2) .
Locally, from the third equality we obtain
plwr) + pa(wi)uf (73¢) + ph(wi)uf (75¢) = plws) + i (W2)uf (730) + pa(w2)uf (739)

but [wq] = [we] implies

Pa(wr) = pa([w1]) = pa([wa]) = ph(wa)

Pa(w1) = ph([w1]) = ph([wa]) = pa(w2) -
Then p(w;) = p(we), and hence w; = wy. Now, let us prove that uyy o j, is surjective. In fact,
given (j3¢,[w]) € W, we wish to find (j3¢,¢) € jo(W,) such that [¢] = [w]. It suffices to take
[C] such that, in local coordinates of W, it satisfies

PO = A+ Ph(Q) = Ph(<)
p(6) = L(m332)) — (]t (126) — ph([w])uf (120).

This ¢ exists as a consequence of the definition of W,. Now, since pyy 0, is a one-to-one submer-

sion, then, by equality on the dimensions of W, and W,., it is a one-to-one local diffeomorphism,
and thus a global diffeomorphism.

Finally, in order to prove that W, is pyy-transversal, it is necessary to check if L(X)(&) =
X(€&) # 0, for every X € ker pyy, and every constraint function ¢ defining W,. Since W, is
defined by the constraint C' — L = 0 and ker uyy, = (0/dp), computing we have

.9 . .
—(C-1L)= a—p(erpAU?erQU?—L) =1+#0,

then W, is pyy-transverse. ]
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As a consequence of Proposition [ the submanifold W, induces a section h € I'(uyy) defined
as h = j, 0 ®': W, — W, which is called a Hamiltonian section of jyy or a Hamiltonian
uw-section. This section is specified by giving the local Hamiltonian function

H = plui +pluf — L, (15)

that is, h(wi,ua,u?,u‘}‘,uﬁ,pg,pi) = (wi,ua,uf‘,u‘}‘,uﬁ,—H,pfx,pé). Observe that h satisfies

pi=pio h and p5 = pto p2 o h. Hence, we have the following commutative diagram:

W

pw > i po
W,
p1
T J2

it
‘e
P, 7 / lu
t
gl
J37 P 7 J2rt

73 /
1 Jlx

Next, we define the forms
O, =h"0ecQ™W,) ; Q =h"0ecQ™'W,),

with local expressions

N . 1 1.
O, = —Hd™z + p.du® A d™ 'z; + e pa T du® A d ey
n(ij

Q, = dH Nd™z — dpl, A du® Ad™ ;-

1 (16)

n(ij)

dpe ™ A dud A d™ ;.

Finally, we generalize the definition of holonomic sections and multivector fields to the unified
setting.

Definition 7. A section ¢ € I'(p},) is holonomic of type s in W,, 1 < s < 3, if the section
P o € T'(73) is holonomic of type s in J>T.

Definition 8. A multivector field X € X™(W,) is holonomic of type s in W,, 1 < s < 3, if

1. X s integrable.
2. X s ply,-transverse.

3. The integral sections v € I'(ply,) of X are holonomic of type s in W;.
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3.2 Field equations for sections

The Lagrangian-Hamiltonian problem for sections associated with the system (W, Q,.) consists
in finding holonomic sections ¢ € I'(p',) satisfying the following condition

P i(X)Q, =0, forevery X € X(W,). (17)

In the induced natural coordinates of W;, let ¢ € T'(p},) be a section locally given by P(xt) =
(2, u®, u®, ug, us, pt, pl). Then, bearing in mind the coordinate expression (I6]) of £, we obtain
the following system of partial differential equations for the component functions of the section

(8

" opl, 0L
2 o "o )
i=1
o Gpéﬁlj - oL
27— 19
;n(zj) OxJ T Pa ou? ' (19)
oL
pgc - W =0, (20)
I
o ou” o 1 Ouf
YT o =05 w 1.+21_::I n(ij) OzJ =0 (21)

Observe that equations (21]) give partially the holonomy condition for the section v, but since
we required this condition from the beginning, these equations are automatically satisfied.

Notice also that equations (20) do not involve any partial derivative of the component func-
tions of 1: they are pointwise algebraic conditions that must be fullfilled for every section
1 € T'(p},) solution to the field equation (7). These equations arise from the ph-vertical part
of the vector fields X € X(W,), as shown in the following result.

Lemma 1. If X € XV (W),), then i(X)Q, € Q™(W,) is p},-semibasic.

Proof. This result is easy to prove in coordinates. In the natural coordinates of W,., the C*°(W,)-
module of ph-vertical vector fields is given by

xV W) = <i> :

oug
with 2 < |I] < 3. Then, bearing in mind the local expression (I6]) of €2,, we have
L
) pé—a—a d"z, for |I| =2,
il = | = ouf
oug
0=0-d"z, for |I| > 2.
Thus, in both cases we obtain a p',-semibasic m-form. O
As a consequence of this result, we can define the submanifold
W, = {w €W, (i(X)Q)(w) = 0 for every X € wi(m)} X, (22)

where every section ¢ € I'(p),) solution to the equation (I]) must take values. This submanifold
is called the first constraint submanifold of the premultisymplectic system (W, 2,), and has
codimension nm(m + 1)/2.
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As we have seen in the proof of Lemma [I the submanifold W, < W, is locally defined by
the constraints (20). In combination with equations (I9]), we have the following result.

Proposition 2. A solution ¢ € I'(p,) to equation ([IT) takes values in a nm-codimensional
submanifold Wy < W, which is identified with the graph of a bundle map FL: J3m — J?xt
over J' defined locally by

L =1 d oL ;0L
P = o — — ; = . 2

Proof. Since W, is defined locally by the constraints (20)), it suffices to prove that these con-
traints, in combination with the remaining local equations for the section ¢ € I'(p),) to be a
solution to the equation (I7)), give rise to the local functions defining the bundle map given
above, and thus to the submanifold W,.

Replacing p! by oL /Ouf in equations (I9]), we obtain

=0.

PRSI S )

“ o oud et n(ij) ded Ous
Therefore, these constraints define a submanifold W, < W,, which can be identified with the
graph of a map FL: J31 — J%nt given by

FL2' =o' FLUY=u® ; FL9S,

0L X1 d oL ;  OL
* 1 - _ — o . * = . D
FLPa ous z_:l n(ij) dai (E?u‘f‘z +1j) P FLp ou

The bundle map FL: J37 — J?xt is called the restricted Legendre map associated with the
Lagrangian density £. Observe that

dim W, = dim J37 = m + n + mn + nm(r;z +1) + nm(m +é)(m +2) .

Remark: The terminology “Legendre map” is justified, since FL is a fiber bundle morphism
from the Lagrangian phase space to the Hamiltonian phase space that identifies the multimo-
menta coordinates with functions on partial derivatives of the Lagrangian function, and thus
generalizes the Legendre map in first-order field theories (see [22], 25]), and first-order and
higher-order mechanics (see [I] for first-order mechanics and [20] for the higher-order setting).

According to [51], we can give the following definition.

Definition 9. A second-order Lagrangian density £ € Q™(J%n) is regular if for every point
j2¢ € J3m we have

rank(FL(j3¢)) = dim J%7 + dim J'7 — dim E = dim J?=* .
Otherwise, the Lagrangian density is said to be singular.
Hence, a second-order Lagrangian density £ € Q™(J?r) is regular if, and only if, the re-

stricted Legendre map FL: J31 — J?rt associated to £ is a submersion onto J2m¥. This implies
that there exist local sections of FL, that is, maps o: U — J®7, with U C J?=t an open set,
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such that FL o o = Idy. If FL£ admits a global section Y: J?7t — J37, then the Lagrangian
density is said to be hyperregular.

Observe that
m(m+1) nm(m+1)(m+2)
+
2 6
1
> m-+n+nm+ 2nm+ % = dim J?#t,
and the equality holds if, and only if, m = 1. Therefore, unlike in higher-order mechanics or

first-order field theories, the Legendre map cannot be a local diffeomorphism due to dimension
restrictions.

dimJ?’ﬂ:m—l—n—l—nm—Fn

Computing the local expression of the tangent map to FL£ in a natural chart of J37, the
regularity condition for the Lagrangian density £ is equivalent to

2L
det 857 (j3p) #0, forevery j2¢ € JPr,
Ou'; Ou

where |I| = |K| = 2. That is, the Hessian of the Lagrangian function associated to £ and 7
with respect to the highest order velocities is a regular matrix at every point, which is the usual
definition for a regular Lagrangian density.

Note that since W, is diffeomorphic to the submanifold W, < W (Proposition [I), and
W, is defined locally by the constraint p + p!u + péu? — L = 0, the restricted Legendre map

FL: J37 — J*r* can be extended in a canonical way to a map FL: J3m — J?7t,| defining j:z*p
as the pull-back of the local Hamiltonian function —H. This enables us to state the following
result, which is a straightforward consequence of Proposition

Corollary 1. The submanifold W,y < W is the graph of a bundle morphism FL: 31 — J2rt
over J' defined locally by

—, 0L 1 d [ oL . « ;0L
FL P = Fua Z /j dxj<8u? ) ’ fﬁpa_au;“

U )) 41
/ alA - J oL )5 @9
* 5 L 1 d L L
FLp=L—-uf| % — — —— | 7 —uf e,
(&ui 32::1 n(ij) d <8u1i+1j) T oug

and satisfying FL = o FL.

The bundle map FL: J3r — J2xT is the extended Legendre map associated with the La-
grangian density £. An important result concerning both Legendre maps is the following.

Proposition 3. For every j2¢ € J31 we have rank(j:f(jggb)) = rank(FL(j3¢)).

Following the same patterns as in [I7] for first-order mechanical systems, the proof of this
result consists in computing in a natural chart of coordinates the local expressions of the Jacobian
matrices of both maps FL£ and FL. Then, observe that the ranks of both maps depend on the
rank of the Hessian matrix of the Lagrangian function with respect to the highest order velocities,
and that the additional row in the Jacobian matrix of FL is a combination of the others. Since
it is just a long calculation in coordinates, we omit the proof of this result.

Notice that the component functions u§ with |J| = 3 of the section ¢ € I'(p},) are not
yet determined, since the coordinate expression of the field equation (I7]) does not give any
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condition on these functions. In fact, these functions are determined by the equations (I8]) and
(@@). Indeed, since the section ¢ € I'(p},) must take values in the submanifold W, given by
Proposition 2, then by replacing the local expression of the restricted Legendre map in equations
([I8) and (I9) we obtain the Euler-Lagrange equations for field theories:

‘ot
dz’ Ouf
p

oL d' oL
5| de[ 5| =0, 1<a<n. (25)
v |1|=2 Ty

Finally, observe that since the section ¢ € I'(p},) must take values in the submanifold
We < W,, it is natural to consider the restriction of equation ([I7) to the submanifold W,; that
is, to restrict the set of vector fields to those tangent to W,. Nevertheless, the new equation
may not be equivalent to the former. The following result gives a sufficient condition for these
two equations to be equivalent.

Proposition 4. If ¢ € T'(p},) is holonomic in W, then the equation (7)) is equivalent to

P i(Y)Q, =0, foreveryY € X(W,) tangent to W . (26)

Proof. We prove this result in coordinates. First of all, let us compute the coordinate expression
of a vector field X € X(W,) tangent to W,. Let X be a generic vector field locally given by

P R L L R I )
+F + +F,au?+FJ8u +G +G

X=r ot ou ous *Opt, “opl

Then, since W, is the submanifold of W, defined locally by the nm + nm(m + 1)/2 constraint
functions &', ¢ with coordinate expression

., 0L 1 d 0L oL
Sa =Pa~ o T N 7 9 D =Pa
ous 32::1 n(ij) dx’ Ouf oug

then the tangency condition of X along W,, which is L(X)(&) = L(X)(&L) = 0 (on W), gives
the following relation on the component functions of X

27 Lit+1; 27 Li+l;
ai=p (o o L O ) e 0L 1 Op
dzkouy  n(ij) ded Oz ouPou®  n(ij) de?  OuP

L L d et (2L d opa Y
F\odloue  n(ij) dol o gyl "\odfoue  n(ij) di ouf

1;+15 1;+1; 1;+1;
_ L (e +Fy Lpo‘JerrFﬁ opa”
(i) \*7  ou’ W gy " guf )

k
fz

2L s 0L s O°L 5 O°L
T + Fone T o e T S A s
Oou OuP ous ou; Oug ou;0uf

Hence, the tangency condition enables us to write the component functions GY,, GI as functions
G!, G! depending on the rest of the components f?, F®, FY FR FS.
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Now, if ¢(z?) = (2%, u®, u$, u$, us, pl, pL), then the equation (IT) gives in coordinates

opi, oL 1 opet . oL
k... a a 77 a i
A <8azi 8u0‘) +E (n(zy) oxJ  Pa ous
oL - ou®
I} I Y i e et
+F[ <pa 8u‘}‘>+GO‘< i +Uz>

1 ouy
I a i m
+ G, | uT E (i) 92 d"x .
li-‘rlj:I

V(X)) =

where the terms (- - - ) contain a long expression with several partial derivatives of the component
functions and the Lagrangian function, which is not relevant in this proof. On the other hand,
if we take a vector field Y tangent to W,, then we must replace the component functions G?,
and GI by éfx and éé in the previous equation, thus obtaining

opl, oL 1 opi™ . oL
k(. .. a a Y Je% YPa i U
e+ F (E?xi 8u°‘)+F’ <n(zg) Oz T Pa ous
oL ~ ou™
a I N @
o (p“ éw?)m“( e+

~ 1 0u§
+ G ug - — .
o\ 1H§:I n(ij) Oxi

P (YY), =

Finally, if ¢ is holonomic, then equations (2I) are satisfied, and the last two terms of both
(X)), and i(Y)Q, vanish, thus obtaining

. op! oL 1 opath 9L
(X)), = | fE(-) + F* a_ | 4 F~ : R ——
vriX) fre) <8xl aua) o (n(z’j) 027 PaT g
oL
Ff | ph— == || d™2 =" i(Y)Q, .
+ <pa au«;ﬂd v = 4i(Y)
Hence, we have i(X)Q, = 0 if, and only if, i(Y)Q, = 0. O

Remark: Observe that, contrary to first-order field theories [23], the holonomy condition is not
recovered from the coordinate expression of the field equations. Moreover, in this case, unlike
in higher-order time-depending mechanical systems [45], not even a condition for the holonomy
of type 2 can be obtained. This is due to the constraints pg — p = 0 introduced in Section
to define both the extended and restricted 2-symmetric multimomentum bundles. Hence, the
full holonomy condition is necessarily required in this formalism.

It is important to point out that, although the holonomy condition cannot be obtained from
the field equation, a holonomic section ¢ € I'(p’,) satisfies equations (2I]). Hence, a holonomic
section can be a solution to the equation ([IT]).

Remark: The regularity of the Lagrangian density seems to play a secondary role in this
formulation, because the holonomy of the section solution to the equation (I7]) is necessarily
required, regardless of the regularity of the Lagrangian density given. Nevertheless, recall that
the Euler-Lagrange equations (23] may not be compatible if the Lagrangian density is singular,
and thus the regularity of £ still determines if the section ¢ € I'(p},) solution to the equation
([I7) lies in W, or in a submanifold of W,. If £ is singular, in the most favourable cases, there
exists a submanifold W, < W, where the section ¢ takes values.
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3.3 Field equations for multivector fields

The Lagrangian-Hamiltonian problem for multivector fields associated with the premultisymplec-
tic manifold (W,,2,) consists in finding a class of locally decomposable holonomic multivector
fields {X'} € X™(W,) satisfying the following field equation

i(X)Q, =0, forevery X € {X}. (27)

According to [18], we have the following result.

Proposition 5. A solution X € X™(W,) to equation [21) exists only on the points of the
submanifold W, <— W, defined by

We = {wGW (i(Z)dH)(w) =0, for everyZeker(Q)}

= {w EW,: (1(Y)Q)(w) =0, for everyY € %V(pg)(Wr)} .

The submanifold W, < W, is the so-called compatibility submanifold for the premultisym-
plectic system (W,,€2,.). Observe that we denoted this submanifold by W,, which is the notation
used for the first contraint submanifold defined in ([22)). Indeed, both submanifolds are equal.
In order to prove this, recall that the first constraint submanifold is defined locally by the con-
straints pf, — 813/ u§ = 0. Hence, it suffices to prove that the compatibility submanifold given in
Proposition Bl is defined locally by the same contraints.

In fact, in natural coordinates, the coordinate expression for the local Hamiltonian function
H is given by (IH]), and thus we have

' o 7.1 7 o o o oL af’
dH = uj'dp,, + p,du; +uldpé+p;idu1 — <8—adu + Guf‘ i 8u‘}‘

oL oL LY\  w ' wi
:—Wdu —i—( auf‘) dus —i—( Gu?) du§ + uldp, + uSdpl, .

Now, bearing in mind that kerQ is the (nm(m + 1)/2 + nm(m + 1)(m + 2)/6)-dimensional
C*®(W)-module locally given by (I2)), the functions i(Z)dH for Z € ker Q have the following

coordinate expressions

i<i>dﬁ:pé_a_L for [T =2 ; i<i>dﬁ:0 for |J| = 3.
oug oug oug

Therefore, the submanifold W, < W, is locally defined by the nm(m + 1)/2 constraints p! —
OL/0u} = 0. In particular, it is equal to the submanifold defined in ([22I), and we have

dimW, =dim W, —nm(m+1)/2 = m+n+2mn +nm(m +1)/2 + nm(m + 1)(m +2)/6 .

Now we compute the coordinate expression of the equation (27) in a local chart of Wi,.
From the results in [24], a representative X of a class of locally decomposable, integrable and
ph-transverse m-vector fields {X'} C X™(W,) can be written in coordinates

m a 0 0 i 0 I b5)
/:\ axJ b5 pun %%Ffﬂa 7 T Gy T Cuigyr | - (28)
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where f is a non-vanishing local function. Taking f = 1 as a representative of the equivalence
class, the equation (21 gives the following system of equations

1
L 1.;._1”(”) v .
i 1=

U oL
Ggi -9 30

; (6] aua ) ( )
N P S )

Z @) Cod = oug o (31)
7=1

oL

Py |K|=2. (32)

pu— —a 3
Jus,

The m additional equations alongside the da’ are a straightforward consequence of the others
and the tangency condition that follows, and thus we omit them. Therefore, the multivector
field X is locally given by

m
0 0 0 ;0 ; O
X:/\ 97 U Jaua+ZFIJa +G733p Gadapl ;

j=1 |I]=1 @
where the functions F, wa and G(i’j must satisfy the equations (29), (30) and (BIl). Note
that most of the component functions remain undetermined, and that there can be several
different functions satisfying the referred equations. However, recall that the statement of the
problem requires the class of multivector fields to be holonomic. In coordinates, this implies
that equations () are satisfied with k¥ = 3 and r = 1, and thus the multivector field X has the
following coordinate expression

:]i\l @ ]3— lg:lu“‘l](‘)a—i_FJﬂaa"'G,Jaz+Ga,j@ )

with Gfx - and GI ; satisfying (30) and (3.

Observe that the equations ([B2]) are a compatibility condition for the multivector field X,
which state that the multivector field solution to the field equation (27)) exists only at support
on the submanifold W,. Hence, we recover in coordinates the result stated in Proposition [Bl

Let us analyze the tangency of the multivector field X along the submanifold W, < W.,..
From [24] we know that the necessary and sufficient condition for ¥ = X3 A... A X, € X™(WV;)
to be tangent to W, is that X; is tangent to W, for every j =1,...,m

Thereforea since the submanifold W, < W, is locally defined by the constraint functions
¢8 = pE — 9L /0ug-, we must check if the condition L(X;)(¢X) = X;(¢X) = 0 holds on W, for
every 1 <j<m, 1< a<n,|K|=2 Computing, we obtaln

d d d .0 ;0 x 0L\
927 T e +121“1+1aa ot Caagyr t Gaagpr (p“ _8u‘}‘<>_0
O’L %L d*L *L
K _ o B ol _
— Gay 02 du; Y 8uﬁau Yl g B e 8ui58u I, ou ﬁauK !
gk - L oL _ 0
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Hence, the tangency condition enables us to determinate all the functions G¥ ., since we obtain

a,j?
nm?(m + 1)/2 equations, one for each function. Now, taking into account equations ([BI)) and

the coefficients Gf’ ; that we have determined, we obtain

m

1 g, 0L oL 1 d oL
G =0 < — —-0.
jZ:; n(zg) ] a a +pa pa auZa + Z n(@]) dxJ aui"ﬁ'lj

Hence, the tangency condition for the multivector field X along W, gives rise to mn new con-
straints defining a submanifold of W, that coincides with the submanifold W, introduced in
Proposition 21 Now we must study the tangency of X along the new submanifold W,. After a
long but straightforward calculation, we obtain

d OL d 0L
Gor==—"7F7=——"= —
kT gk ouy  dak Z_; n(ij) dal uf, 14,
- d 5 0°L
Z (i 1+1J,k drk I+ Ba o
= Qurdut,

Therefore, the tangency condition along the submanifold W, enables us to determinate all the
functions Gfx, - Now, taking into account equations (B0)), we have

. 0L oL  d 0L d' AL

Ou®  dzt ou® dz! oug
L=
e d g ) 0L
+ LY S
>3 7 (Al i, o

These n equations are the Euler- Lagrange equations for a locally decomposable holonomic mul-
tivector field. Observe that if £ is a regular Lagrangian density, then the Hessian of L with
respect to the second-order velocities is regular, and we can assure the existence of a local mul-
tivector field X solution to the equation (27]), defined at support on W, < W, and tangent to
We. A global solution is then obtained using partitions of the unity.

If the Lagrangian density is not regular, then the above equations may or may not be
compatible, and may give rise to new constraints. In the most favourable cases there exists a
submanifold Wy < W, (where we admit Wy = W,) where we have a well-defined holonomic
multivector field at support on Wy, and tangent to Wy, solution to the equation

(X)), =0. (33)

Therefore, we can state the following result.

Theorem 1. The following assertions on a holonomic section ¢ € I'(p;) are equivalent:

1. 1 is a solution to the equation ([IT), that is,

P i(X)Q. =0, for every X € X(W,.).

2. If the coordinate expression of v in the induced natural coordinates of W, is {(x') =

(2t u(x?), u}”(:ﬂ’), uf ('), u?(:pz),pé(:nl),pé (x%)), then the component functions of 1 satisfy

equations ([I8)) and ([@9), that is, the following system of n+nm partial differential equations

" op L ” opa el
& = — = —pt . 34
— oxt 8u0‘ ]Z:; n j OxJ ous Pa (34)
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3. 1 is a solution to the equation
i(A"P)(Qr09) =0, (35)
where A" : M — A™TW, is the canonical lifting of 1.

4. ¢ is an integral section of a multivector field contained in a class of locally decomposable
holonomic multivector fields {X} C X™(W,.), tangent to W, and satisfying the equation

@), that is,
i(X)Q, =0.

Proof.

(1 <= 2) From the results in Section B.2] the field equation (I7) gives in coordinates the
equations (I8), (I9), 20) and 2I)). As stated in the aforementioned Section, the equations (20)
are the local constraints defining the first constraint submanifold W, < W,.. In addition, since
we assume that the section ¢ € I'(p]},) is holonomic, the equations (2I)) are satisfied. Therefore,
the equation (7)) is locally equivalent to equations (I8]) and (I9), that is, to equations (34]).

(2+<=3) IfyeTI(p),) islocally given by
P(a') = (@ u (@), uf (2"), uf (27), uG (2", ph (), pi(a"))
then its canonical lifting to A™TW, is locally given by A™y' =) A ... A, with

d ., d , d ., d ., d

d
/ C i I
Vi = <0"”’0’1’0"”’0’ dzd ' drd 0 dgd D G T qai P i a> ’

where d/dx’ is the jth coordinate total derivative, and the 1 is at the jth position. Then, the
inner product i(A™")(Q, o 1) gives, in coordinates,

A, S ) 8‘2’ dpg o
(A @ 0w) = 3 () do' + (w— dxi>d“

i=1
oL 1 dpeith ;0L
o du® o du®
* ou? Pa ;::1 n(ij) dal v T\ Pa ou§ ur
du® 1 duy
—u® ) dnt Lo d 1
+ <d 13 uz) Pa + Z n(zg) dxd Uy Pa s

where the terms (- - - ) along the forms da? involve of partial derivatives of the Lagrangian function
and of the rest of component functions. Now, requiring this last expression to vanish, we obtain
equations (I8)), (I9), 20) and (2I), along with m additional equations which are a combination
of those. Same comments as in the proof of the previous item apply. In particular, equations
[0) are the local constraints defining the first constraint submanifold W, < W,., and equations
[2I) are automatically satisfied because of the holonomy assumption. Hence, equation (B3 is
locally equivalent to equations (I8]) and (I9), that is, to equations (34]).

(2<=4) From the results in this Section, if X € X" (W, ) is a generic locally decomposable
multivector field locally given by (28]), then, taking f = 1 as a representative of the equivalence
class, the field equation (27)) is locally equivalent to the equations (29]), (B0), BI) and [B2). As
already stated, equations (32]) give, in coordinates, the compatibility submanifold W, obtained
using the constraint algorithm in [I§]. On the other hand, since the multivector field X is
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assumed to be holonomic, then equations (29) are satisfied. Hence, the field equation (27)) is
locally equivalent to equations ([B0]) and (BTI).

Let v € T'(p};) be an integral section of X" given in the natural coordinates of W by y(xt) =
(xl,ua,uf‘,u?,uﬁ,pg,pé). Then, the condition of integral section is locally equivalent to the
following system of equations

oue o ou ous

pr— .a . v pr— ~a . pr— a . pr— a
8$i _‘Fz o 3 8%-7 ‘FL]O’Y ) (9.’1'] FI,]OfY ) 8%-7 FJ,]OfYa
op! , opl 7
dai ~ Cai®T e =G

Replacing these equations in (B0]) and (3I]), we obtain the following system of partial differential
equations for the component functions of

(6% (0% (63 (0%
ou o ous .0 ~ Ouf _ .0 ' 8uJ: o
oz’ t7 Ot Ll 9gi I 9 13
m ; 2 11_1_1 ~
dop, OL 1 Ops 7  OL ;
’ Z — Do -

pot dri  du~ n(ij) Oxd  Ou®

Jj=1

Since the multivector field X is holonomic and tangent to W,, the first equations are identically
satisfied. Thus, the condition of v to be an integral section of a locally decomposable holonomic
multivector field X € X™(W,), tangent to We, and satisfying the equation ([27)) is locally
equivalent to equations (34]). ]

4 Lagrangian formalism

Now we recover the Lagrangian field equations and geometric structures from the unified for-
malism. The results remain the same for both regular and singular Lagrangian densities. Thus,
no distinction will be made in this matter.

4.1 General setting

In order to establish the field equations in the Lagrangian formalism, we must define the
Poincaré-Cartan m and (m + 1)-forms in J37. Since a unique Legendre map is recovered in
the unified framework, we can give the following definition:

Definition 10. Let ©5 € Q™(J?xT) and Qf € Q™ +1(J27T) be the symmetrized Liouville forms
in J?>z'. The Poincaré-Cartan forms in J37 are the forms defined as O = }'ﬁ*@f € Q" (J3n)
and Qp = FL Q5 = —dO, € Q™ (J37).

These forms coincide with the usual Poincaré-Cartan forms for second-order classical field
theories that can be found in the literature (see, for instance, [2, 28 37, 43]). They can also be
recovered directly from the unified formalism. In fact:

Lemma 2. Let © = p50f] and O, = h*© be the canonical m-forms defined in W and W,
respectively. Then, the Poincaré-Cartan m-form satisfies © = piO, and O, = (p])*O .

Proof. A straightforward computation leads to this result. For the first statement we have

piOr = pi(FL ) = (FLo p1)*0; = ps0] = O,
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and from this the second statement follows:

(P1)Or = (proh)*Or =h*(p}Or) =h*"©=0,. O

Observe that, as the pull-back of a form by a function and the exterior derivative commute,
this result also holds for the Poincaré-Cartan (m + 1)-form Q.

Using the natural coordinates (z°,u®, uf, u¢, ug) in J 37, and bearing in mind the local
expression () of ©F, and (24)) of the extended Legendre map, the local expression of the Poincaré-
Cartan m-form is

(oL K1 d 0L o n el am
O, = _Zn(zg) (du®* Nd™  zy —uf'd™x)

ouy = da’ Ouf, 4,
1 oL
+ —— (du® Ad™ i — uf,pp,d"x) + Ld™ .

An important fact regarding the Poincaré-Cartan (m + 1)-form € is that it is 1-degenerate
when m > 1, regardless of the regularity of the Lagrangian density. Indeed, since the restricted
Legendre map FL: J31 — J?rt is a submersion with dim.J37 > dim J27¥, and rank(FL) =
rank(j-:Z), there exists a non-zero vector field X € X(J37) which is FL-related to 0 € X(J%xh),
that is, TFLoX =00 FL. Then, we have

i(X)Qe = i(X)FL Q) = FL i(0)Q5 = 0.
Proposition 6. The map pf =ploje: We — J3m is a diffeomorphism.

Proof. Since pf is a surjective submersion, the equality dim.?r = dim W, implies that it is
also an injective immersion, and therefore a diffeomorphism. O

4.2 Field equations for sections

Proposition 7. Let ¢ € I'(p};) be a holonomic section solution to the equation (D). Then the
section 1z = p o) € T'(73) is holonomic, and is a solution to the equation

Vri(X)Qe =0,  for every X € X(J°7). (36)

Proof. By definition, a section ¢ € I'(p’},) is holonomic if the section pjot) € I'(73) is holonomic.
Hence, ¢, = p] o9 is clearly a holonomic section.

Now, since pj: W, — J3m is a submersion, for every vector field X € X(J37) there exist
some vector fields Y € X(W,) such that X and Y are pj-related. Observe that this vector field
Y is not unique because the vector field Y + Y, with Y, € ker T'p] is also pj-related with X.
Thus, using this particular choice of p-related vector fields, we have

ri(X)Qe = (p1 0 ) i(X)Qe = 97 ((p1) (X))
= ¢%i(Y)(p1) " = 7U(Y)S2,

Since the equality 1*i(Y)Q, = 0 holds for every Y € X(W,), it holds, in particular, for every
Y € X(W,) which is pj-related with X € X(J37). Hence we obtain

Yri(X)Qe = ri(Y)Q = 0. O
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The following diagram illustrates the situation of the above Proposition:

Ye=pro — = [

Observe that Proposition [1 states that every section solution to the field equations in the
unified formalism projects to a section solution to the field equations in the Lagrangian formal-
ism, but it does not establish an equivalence between the solutions. This equivalence does exist,
due to the fact that the map pf: W, — J37 is a diffeomorphism. In order to establish this
equivalence, we first need the following technical result.

Lemma 3. The Poincaré-Cartan forms defined in J>w satisfy the identities (,of)*@g = Jj;0,
and (p7)* Qe = j3$

Proof. Since the exterior derivative and the pull-back commute, it suffices to prove the statement
for the m-forms. We have

(05) 0L = (p 0jr) Or = (prohojr)Or = (p1ohoje) (FL ©F)
= (FLoprohoje)®f =(ppohoj) 0 = (hojr)'®=j;0,. O

Now we can state the remaining part of the equivalence between the solutions of the La-
grangian and unified formalisms.

Proposition 8. Let ¢y € T'(73) be a holonomic section solution to the field equation ([B8). Then
the section ¥ = jz o (pf)~Lorbe € D(ph,) is holonomic and it is a solution to the equation (IT).

Proof. By definition, a section ¢ € I'(p},) is holonomic if the section pf otp € T'(7?) is holonomic.
Computing, we have

proty=piojeo(pf) o =1y,
since p] o jz = pf & plojeo (pf)_1 = Id s,. Hence, since ¥, is holonomic, the section
Y =jro (,Of)_l o 1, is holonomic in W,..

Now, since jz: Wg — W, is an embedding, for every vector field X € X(W,) tangent to We,
there exists a unique vector field Y € X(W,) which is jo-related with X. Hence, let us assume
that X € X(W,) is tangent to W,. Then we have

Hi(X)Q = (jr o (pf) " o) i(X)Qr = ((p7) ™" 0 ve) i(Y )20 -
Applying Lemma [3] we obtain
(D) o) i(Y)izQ = ((p7) ™" 0 ) i(Y) (pf)* Qe
= (pf o (p1) " 0 ve)"i(2)Qr = $1i(Z)

where Z € X(J37) is the unique vector field related with Y by the diffeomorphism pf. Hence,
as Y}i(Z2)Q = 0, for every Z € X(J37) by hypothesis, we have proved that the section 1 =
jeo(ph)~tothe € T(ph,) satisfies the equation

P i(X)Q,. =0, for every X € X(W,) tangent to W .
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However, from Proposition ll we know that if ¢ € I'(p’,) is a holonomic section, then the last
equation is equivalent to the equation (IT), that is,

P i(X)Q, =0, forevery X € X(W,). O

Let us compute the local equation for the section 1y = p} o9 € I'(73). Assume that
the section ¢ € T'(p},) is given locally by ¢(z?) = (wi,ua,uf‘,u‘}‘,uﬁ,pg,pi). Since 1 is a
holonomic section solution to equation (7)), it must satisfy the local equations (I8)), (I9) and
@I). The equations (2I)) are automatically satisfied as a consequence of the assumption of
1) being holonomic. Now, taking into account that ¢ takes values in the submanifold W, ==
graph(FL), the equations ([I8) and (IJ) can be pj-projected to J3m, thus giving the following
system of n partial differential equations for the component functions of the section ¢y = pj ot

oL d 0L d' oL
du™|, dx* ouf* * Z dx! du? ’ asn
c il 1=2 I
Yr
where the section 1), is locally given by ¢(z') = (z',u, u, u¢,ug). Finally, since ¢, is

holonomic in J37, there exists a section ¢ € I'(7) with coordinate expression ¢(z%) = (z°,u®(z*))
satisfying j3¢ = 1,. Then, the above equations can be rewritten as follows

L L oL
8_a _ dia_a d_la_a = 1<a<n, (37)
Ou|jay  dat Ou|jay 7]=2 du’ dug

J3¢

Therefore, we obtain the Euler-Lagrange equations for a second-order field theory.

4.3 Field equations for multivector fields

Lemma 4. Let X € X™(W,) be a multivector field tangent to Wy < W,. Then there exists a
unique multivector field Xp € X™(J3m) such that X o p} o jp = A™Tp} o X o ji.

Conversely, if Xy € X™(J3T), then there exists a unique multivector field X € X(W,) tangent
to Wr such that Xp o pjoje=A"TploX ojg.

Proof. Since the multivector field X is tangent to W,, there exists a unique multivector field
X, € X™(W;) which is je-related to X, that is, A™Tjz o X, = X o jr. Furthermore, since
pf: W, — J37 is a diffeomorphism, there is a unique multivector field X; € X™(.J37) which is
pf-related to X,; that is, X o pf = Amij o X,. Then, computing we have

X oploje=Xopr =A"Tpf o X,
=A"Tpi o N"TjroX, =AN"TpioXoj..

The converse is proved reversing this reasoning. O

The above result states that there is a 1-to-1 correspondence between the set of multivector
fields X € X™(W,) tangent to W, and the set of multivector fields Xz € X™(J?7), which makes
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the following diagram commutative

ATTW,
A™TpY
: ATy,
AT T3 ATW,
A"”Tp{:
X

Xc

J3

X,
W,
Jc
T pf We

As a consequence, we obtain the following result:

Theorem 2. Let X € X™(W,) be a locally decomposable holonomic multivector field solution
to the equation [27) (at least on the points of a submanifold Wy — W,) and tangent to W
(resp. tangent to Wy). Then there exists a unique locally decomposable holonomic multivector
field Xy € X™(J37) solution to the equation

(X)) =0, (38)
at least on the points of Sy = p~(Wy), and tangent to Sy).
! 1\"Vf f

Conversely, if Xp € X™(J?7) is a locally decomposable holonomic multivector field solution
to the equation B8) (at least on the points of a submanifold Sy — J3m, and tangent to St),
then there exists a unique locally decomposable holonomic multivector field X € X"™(W,) which
is a solution to the equation 1) (at least on the points of (p£)~1(Sy) = W), and tangent to
W, (resp. tangent to Wry).

Proof. Applying Lemmas 2] and @] we have
X))y, = i(X)(p1) Qely, = (1) (X)L,
= (X)) = UXL) Q| oy -

Hence, X is a solution to the equation i(X,)2s = 0 if, and only if, X' is a solution to the
equation i(X)Q, = 0.

Now we must prove that X, is holonomic if, and only if, X is holonomic. Observe that,
following the same reasoning as above, we have

i(X)(Ph) = (X))@ 0 p1) 0y, = (P1) (X ) (@) 0y,
= i(Xﬁ)(ﬁ3)*77 pTWe) — i(XE)(ﬁ3)*77|J37r .

Hence, X, is 73-transverse if, and only if, X is ph-transverse.

Now, let us assume that X € X™(W,) is holonomic, and let ¢ € I'(p},) be an integral section
of X. Then, the section 1z = p} 09 € T'(73) is holonomic by definition, and we have

Xﬁowﬁ:Xﬁopgow:AmTngXO’l/}:AmTpgowlzwzj
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where ©/: M — A™TW, is the canonical lifting of v to A™TW,. That is, 1 is an integral
section of X. Hence, if X' is holonomic, then X is holonomic.

For the converse, let us assume that Xy € X™(J3) is holonomic, and let ¥, € T'(7%) be an
integral section of Xz. Then, the section ¢ = j, o (pf)_1 oYy € F(p‘?’w) satisfies
prow =piojeo(pf) o =g,
since pfojr = pf < plojro(pf)~t = Id s,. Therefore, the section v is holonomic. Finally, since
the multivector field X' is tangent to We, there exists a unique multivector field X, € X™(W,)
satisfying A™Tj; o X, = X o j,. In addition, since the map pf is a diffeomorphism, X and &,
are (pt)~l-related; that is, X, o (pf)~1 = (A™Tp¥)~1 o Xz. Then we have
Xop=2Xojro(pf)  othr=A"TjoX,0(pf) "oty
= A"Tje o (N"Tpf) " o Xpotpp = A" Tje o (N"Tpf) " o gy
= (jeo(pr) " oye) =0’
Hence, 1 is an integral section of X'. Therefore, X is holonomic if, and only if, X, is holonomic.
O

Let Xz € X™(J37) be a locally decomposable multivector field. From the results in [24] we
know that X, admits the following local expression

N o 0 0 0 0
X:f/\<W+F8—+F aOlJrFIJaaJrFJ]au> (39)
1

Taking f = 1 as a representative of the equivalence class, since X is required to be holonomic,
it must satisfy the equations () with k£ = 3 and r = 1, that is,
iy =wmy 50 BTy =ursy -

In addition, X is a solution to the equation (B8]). Bearing in mind the local equations for the
multivector field X', we obtain that the local equations for the component functions of X are

oL d oL Z dl oL

due  dat duf et W@

— — d g 0°L
ZZ ( T+1;,i @%ﬂj) oPour "
=1 j=1

g
upOus 4y,

Theorem 3. The following assertions on a section ¢ € I'(m) are equivalent:

1. j3¢ is a solution to equation ([B0), that is,

(720)*i(X)Qz =0, for every X € X(J>n).

2. In natural coordinates, if ¢ is given by ¢(x') = (2!, u®), then its 3rd prolongation j3¢(x') =
(2", u®,uf, uf,u) is a solution to the Euler-Lagrange equations given by [B1), that is,

a1l oL
dxT dus
3¢

o
ou®

_d oL
7% dz’ Qug 73

|1|=2
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3. r = j3¢ is a solution to the equation
i(A™YL)( Qo) =0,
where A" : M — A™T(J37) is the canonical lifting of ¥.
4. §3¢ is an integral section of a multivector field belonging to a class of locally decomposable
holonomic multivector fields {X;} C X™(J3) satisfying equation [BY), that is,
(X)) =0.

5 Hamiltonian formalism

5.1 General setting

In order to describe the Hamiltonian formalism for second-order field theories using the results
obtained in Section [B, we must distinguish between the regular and non-regular cases.

Let FL: J31 — J%xT be the extended Legendre map obtained in (24) and FL: J37 — J?xt

the restricted Legendre map obtained in (Z3). Let us denote P = Im(FL) = FL(J37) Iy 2t

and P = Im(FL) = FL(J37) <y J2rt the image of the extended and restricted Legendre
maps, respectively, which we assume to be submanifolds. We denote 7p: P — M the natural
projection, and FL, the map defined by FL = j0 FL,.

Remark: In the hyperregular case, we have P = J?xt and FL, = FL.

With the previous notations, we can give the following definition:

Definition 11. A Lagrangian density £ € Q™(J?r) is said to be almost-regular if

1. P is a closed submanifold of J*nt.
2. FL is a submersion onto its image.

3. For every j2¢ € J3x, the fibers FL™YFL(j2¢)) are connected submanifolds of J3r.

If the Lagrangian density is almost-regular, the Legendre map is a submersion onto its
image, and therefore it admits local sections defined on the submanifold P < J?7*. We denote
by I'p(FL) the set of local sections of FL defined on the submanifold P. Observe that if £ is
regular, then I'p(FL) is exactly the set of local sections of FL.

As a consequence of Proposition 3, we have that P is diffeomorphic to P. This diffeomor-
phism is gt = g o j: P — P. This enables us to state:

Lemma 5. If tAhe Lagrangian density £ € Q™ (J%7) is, at least, almost-regular, then the Hamil-
tonian section h € I'(py) induces a Hamiltonian section h € T'(f) defined by

h([w]) = (p2 0 B)([(p5) " GWIDD),  for every [w] € P

Proof. 1t is clear that, given [w] € J27, the section h maps every point (53¢, [w]) € (p5) " ([w])
into py ! [p2(h(i3, [w]))]. So we have the diagram

d J2rt P w

Ip/ lu ) HWDB

J2rt W,
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Thus, the crucial point is the ps-projectability of the local function H. However, since a local

base for ker T'py is given by
o 0
kerTps =( —, —
T = (G )

with [I| =2 and |J| = 3, then we have that H is po-projectable if, and only if,

,  OL
pa:(‘?—u‘}"

This condition is fulfilled if [w] € P = Im(FL), which implies that pa[h((p) ' (w])] € P. O

As in the unified setting, this Hamiltonian p-section is specified by a local Hamiltonian
function H € C*°(P), that is,

i, a1 I i, a ,Q i I
h(ﬂj‘ y U 7ui7pa7pa):(x7u 7ui7_H7pa7pa)‘

Using the Hamiltonian p-section we define the Hamilton-Cartan forms ©; = h*0f € Q" (P)
and Q, = h*Q5 € Q™L(P). Observe that FLEO, = O, and FLEQ, = Q.

Remark: The Hamiltonian p-section can be defined in some equivalent ways without passing
through the unified formalism. First, we can define it as h = jo f~'. From this, bearing in
mind the definition of P and P as the image sets of the extended and restricted Legendre maps,

respectively, we can also define the Hamiltonian p-section as h = FL o o, where o € I'p(FL).

5.2 Hyperregular and regular Lagrangian densities

For the sake of simplicity, we assume throughout this Section that the Lagrangian density
L € Q™(J?r) is hyperregular, and that Y: J?7% — J37 is a global section of FL£. All the results
stated also hold for regular Lagrangians, restricting to the corresponding open sets where the
Legendre map admits local sections.

First, observe that if the Lagrangian density is hyperregular, then the local Hamiltonian
function associated to the Hamiltonian p-section h has the following coordinate expression

H(‘Tiv uav uf‘,pg,pi) = pfo? + pgcf}x - (7‘(‘5’ o T)*Lv (40)

where ff‘(a:i,uo‘,uf‘,pg,pé) = T*u§. Therefore, the Hamilton-Cartan forms have the following
coordinate expression

. 1 4.
O = —Hd"z + p,,du® N d™ e+ —péﬁl]duf‘ A dm_lxj ,

n(ij)

Qp, = dH A d™z — dp', A du® A d™ L — dpe YA du® A d™ N

1
n(ij)
In addition, since Im(FL) = J%7*, then the Hamiltonian sections h and h satisfy hoph = pao fl,
that is, the following diagram commutes

w

AT \

h

W, J2rt
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Proposition 9. If the Lagrangian density is hyperreqular, then the Hamilton-Cartan (m + 1)-
form Qp, = h*Q5 € QML J%7h) is a multisymplectic form in J?mt.

Proof. A direct computation in coordinates leads to this result. Let T € I'(FL) be a global
section of the restricted Legendre map, and assume that the local Hamiltonian function H is
given locally by ([@0). Then we have the following coordinate expression for dH

OL i OL A aL

+ ul'dpl, + f?dpa ,

where N
8ff dx J af] du B af] duﬁ af] d ] af] d K

= o ™ T 5P auf " op, T apE P

Observe that since H takes values in J27# = Im(FL), we have p! — OL/0u¢ = 0. Thus, the
expression of dH reads

dfi" =

L . L ; L .
dH:—a .dw’—a—duo‘+ Py — 0 du® + uldpl, + fedpl,
Ox* ou® ous

i

and therefore the Hamilton-Cartan (m + 1)-form is locally given by

oL ;. OL
QO = |— i a a g1 m
' [ ous T <“ zm?)d“ o dp”ffdpa]” !
1

—dpi, A du® Ad™ g — —— dpe T A du® A d"

n(ij)

Now, since the C*(J27#)-module of vector fields X(J27?) is locally given by

0 0 0 0 0
21y —
%(JW)_<895“aua’au?’(‘)pfx’apg)’

we have

z< 0 >Qh_—dH/\dm Yo — dpl, A du® A d™ 2y,

1 1
- — d/p,lfrlJ /\duf‘/\dm_zznjk,
n(ij)
0 OL -
i — 1, = ——— ™ 7 m—1 i
Z(@u‘l> h 8aal x+dpy, Nd"

e ;  OL L 141 1
— ) =p, — = |d" ——dps P Ad™
Z(@u?) " (pa au?) i “

i ( 8. > Qp = udd™z — du® A d™ e,
opl,
i 9 Qp = ffd"x — Z ! du$ A d™ tx
o) " n(ij) !
17;—1—1]‘:[

From this it is clear that i(X)Q, = 0 if, and only if, X = 0, that is, Qj is multisymplectic. [

Now we recover the field equations from the unified setting using the natural projection
Py Wr —J 27, First, the sections solution in the Hamiltonian formalism are recovered using
the following result:
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Proposition 10. Let ¢ € I'(p};) be a holonomic section solution to the equation ([IT). Then
the section vy, = ph o € F(ﬁ'ilw) s a solution to the equation

Uri(X)Q =0, for every X € X(J?xt). (41)

Proof. Since ply: W, — J37 is a submersion, for every vector field X € X(.J%7%) there exist some
vector fields Y € X(W,) such that X and Y are pj-related. Observe that this vector field Y is
not unique, the vector field Y + Y, with Y, € ker T'p} is also ph-related with X. Thus, using
this particular choice of pj-related vector fields, we have

ri(X) = (ph 0 ) i(X) = * () i (X)) = ¥ i(Y ) (ph)*
= " i(Y)(ho p5) Qi = *i(Y)(p2 0 h)* Q] = ¥i(Y)Q, .

~

Since the equality ¥*i(Y)$, = 0 holds for every Y € X(W,), in particular it holds for every
Y € X(W,) which is ph-related with X € X(J?7%). Hence we obtain

Phi(X)Qn = ¥7i(Y), = 0. O

The diagram illustrating the situation of the above Proposition is the following:

P P J2rt
7t A
Ve

M= — “dn=psou

Let us compute the local equations fqr the section 1y, = pho € F(ﬁﬁlﬂ). If the section
¢ € T'(phy,) is locally given by ¥(z*) = (ml,ua,uf‘,u?,uﬁ,pfx,pé), then the section 1y, = p} o1
is given in coordinates by ¥y (z%) = (2%, u®, u$,p,, pl). Now, bearing in mind that the section
¥ solution to the equation (7)) must satisfy the local equations ([I8]), (I9) and 2II), and that
the section ) takes values in the submanifold W, = graph(F L) and the local expression ([@0]) of
the Hamiltonian function H in the hyperregular case, we obtain the following system of partial
differential equations for the section )y,

ou® O_H . Z 1 Ou OH

ort  opl, T n(ij) Ozi  Opl’

m 9 B OH m 9 1;+1; OH (42)
Po . Pa .

— oxt — oue st OxJ __8u;?"

In order to recover the field equations for multivector fields, we first need the following
technical result, which is similar to Lemma [4]

Lemma 6. Let X € X™(W,) be a multivector field tangent to We < W,., and let X, € X™(W,)
be the unique multivector field which is jp-related to X. If X, is pg—pmjectable, then there exists
a unique multivector field Xj, € X™(J?mt) such that X}, o pho jr = A™Tph o X o ji.

Conversely, if X, € X™(J*n%), then there exist multivector fields X € X(W,) tangent to W
such that X, 0 phoje = AN"TphoX o j..
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Proof. The proof of this result is analogous to the proof of Lemma [, bearing in mind that
p2£ =phoic:We —J 27t is a submersion onto J27¥. In particular, since the multivector fields
X € X"(W,) and X, € X™(W,) are jo-related, the relation A™Tjro0X, = X oj is satisfied. On
the other hand, as X, is pg—projectable and p§: W, — J?xt is a submersion, there is a unique
multivector field A5, € X™(J%7%) which is p5-related to X,; that is, Ay 0 p§ = A™Tpf o X,. Then
we have

Xy o phojr=Xyops =A"Tp5 o0 X,
= A"Tpyo N"Tjr o X, = AN"TpyoXojp.

The converse is proved reversing this reasoning, but now the multivector field X, € X" (W)
which is p4-related with the given &, € X™(J?7) is not unique, since p5 is a submersion with
ker T')p& # {0}. O

As in the Lagrangian formalism, the previous result gives a correspondence between the set of
multivector fields X € X™(W,) tangent to W, and the set of multivector fields &, € X™(J?x?)
such that the following diagram is commutative

A™TW,
ATW, AT J27t

AmTpg

Xn

J2rt

Xo

W

jc

W

P

Nevertheless, observe that in the Hamiltonian formalism, the map p§ =phoje: We — J2nt
is a submersion (instead of a diffeomorphism, as in the Lagrangian setting), and thus the cor-
respondence is not 1-to-1. In particular, for every multivector field X € X™(W,) tangent to
W we can define a unique multivector field &, € X™(J?r%) such that the previous diagram

commutes. But since pg is a submersion, for every A, € X¥™(.J?r*) there are several multivector
fields X € X"™(W,), tangent to Wp, satisfying the same property.

Theorem 4. Let X € X™(W,) be a locally decomposable, ply,-transverse and integrable multi-
vector field solution to the equation ([21), tangent to Wy and such that the unique multivector
field in X, € X™(Wr) which is je-related to X is pg—pmjectable. Then there exists a locally
decomposable, (ﬁglﬂ)-transverse and integrable multivector field X;, € X™(J?nt) solution to the
equation

i(X)Q, =0, (43)

Conversely, if X, € X™(J?7%) is a locally decomposable, (ﬁiﬂﬂ)—tmnsverse and integrable
multivector field solution to the equation ([A3)), then there exist locally decomposable, integrable
and ph,-transverse multivector fields X € X™(W,) tangent to W, solution to the equation (27)).

Proof. The proof of this result is analogous to the proof of Theorem [2 O
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Let &), € X™(J%7%) be a locally decomposable multivector field given in the natural coordi-
nates of J27t by

" 0 o 0 o 0 ;0 0
Xh:f/\<@+ﬁ}—+ﬂ,jﬁ+(; +G! >7 (44)
j=1 :

oue . 3173 . 3p£

Taking f = 1 as a representative of the equivalence class, since &}, is a solution to the equation
([3]), we obtain that the local equations for the component functions of X} are

. OH 1 o« oH
o A T o

@ 1i+1j=I @

i i OH ) i Li+1; oH
Zz:; Ga,i - aua ) ]z::l Ga,j - 8’U,Za :

Theorem 5. The following assertions on a section iy, € F(ﬁﬂlw) are equivalent:

1. 9y, is a solution to equation (AIl), that is,
Uri(X)Q, =0, for every X € X(J?nt).

2. In natural coordinates, if 1y, is given by ¥y (z') = (2%, u®, u®, p,, pL), then its component
functions are a solution to the equations ([42l), that is,

oxi  Opi, n(ig) dx7 — OpL’

1i+1j=I
" op,  OH ial“‘_ OH
7j=1

oz’ ou® oxl oug

i=1

3. Yy, 1s a solution to the equation
H(A™) (2 0 1) =0,

where A™ ) : M — AT (J?rh) is the canonical lifting of 1y,.

4. 1y, 1s an integral section of a multivector field contained in a class of locally decomposable,
integrable and (ﬁﬂlﬂ)—transverse multivector fields {X} C X™(J?m*) satisfying equation

[@3)), that is,
(X)) = 0.

5.3 Singular (almost-regular) Lagrangian densities

For singular (almost-regular) Lagrangian densities, only in the most favourable cases does there
exists a submanifold Wy < W, where the field equations can be solved. In this situation,
the solutions in the Hamiltonian formalism cannot be obtained directly from the projection of
the solutions in the unified setting, but rather by passing through the Lagrangian formalism
and using the Legendre map. Recall that, in this case, the phase space of the system is P =
Im(FL) — J?rt.

Proposition 11. Let £ € Q™(J?r) be an almost-regular Lagrangian density. Let 1 € T'(p},) be
a solution to the equation ([IT)). Then, the section v, = FLy0 pl o) = FLyop € T'(Tp) is a
solution to the equation

Yri(X)Qp =0,  for every X € X(P). (45)
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Proof. Since the Lagrangian density £ is assumed to be almost-regular, then the map FL,
is a submersion onto its image, P. Thus, for every vector field X € X(P) there exist some
vector fields Y € X(J3m) such that X and Y are FL,-related. Using this particular choice of
FL,-related vector fields, we have

Yri(X)Q = (FLy o) (X)), = Y7 (FLL(X)OQ)
= Pri(Y)FL O = Yri(Y )
Then, using Proposition [7, we have proved v;i(X ), = 97i(Y )2z = 0, since the last equality

holds for every Y € X(J37) and, in particular, for every vector field FL,-related to a vector
field in P. O

The diagram for this situation is the following

Wi
I
_ FL J27T1
P
- J
FLo
P
_ A
Tp P
7

MZ = D =FLoove

Now, assume that there exists a submanifold Wy < W, and a multivector field X € X™(W,),
defined at support on Wy and tangent to Wy, which is a solution to the equation (33). Now
consider the submanifolds Sy = pf(Wy) < J3r and Py = FL(S;) — P — J>zt. Using
Theorem [2I from the holonomic multivector field X € X™(W,) we obtain the corresponding
holonomic multivector fields Xz € X™(J3) solution to the equation (B8) at support on Sy.
From this, one can prove that there are multivector fields in Sy (perhaps only on the points of
another submanifold), which are FL-projectable to P¢. So we have the diagram

Wr

Sy Py

Moreover, we can state the following result, which is the analogous theorem to Theorem [l
in the case of almost-regular Lagrangian densities.
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Theorem 6. Let X € X™(W,) be a locally decomposable, ply,-transverse and integrable multi-
vector field, defined at support on Wy and tangent to Wy, which is a solution to the equation
B3). Then there exists a locally decomposable, integrable and (ﬁ%)—tmnsverse multivector field
Xy, € X™(P), defined at support on Py and tangent to Py, which is a solution to the equation

i(Xn)p, = 0. (46)

Conversely, if X, € X™(P) is a locally decomposable, (ﬁ%)—tmnsveme and integrable mul-

tector field defined at support on Py and tangent to Py which is a solution to the equa-
tion (4Gl), then there exist locally decomposable, p'y,-transverse and integrable multivector fields
X € X"™(W,), defined at support on Wy and tangent to Wy, which are solutions to the equation

B3).

6 Examples

6.1 A first-order Lagragian density as a second-order one

Let us first study the case of first-order classical field theories considered as second-order ones.
Hence, let m: £ — M be the configuration bundle describing a classical field theory, with
M being a m-dimensional orientable manifold and E a (m + n)-dimensional manifold. Let
n € Q™(M) be a fixed volume form for M, and £ € Q™(J'x) be a first-order Lagrangian
density for this theory, that is, a 7'-semibasic m-form on J'z. Since £ is 7'-semibasic, we can
write £ = L - (7!)*n, where L € C*°(J!r) is the first-order Lagrangian function associated to £
and 7.

Now, let £, = (72)*L € Q™(J?7) be the pull-back of £ by the canonical submersion
72 J?r — Jlm. Since £ is wl-semibasic, we have that £, is 7°-semibasic, and thus there
exists a function L, = (77)*L such that £, = L, - (72)*n. Observe that we have

oL

W2:0, for every [I| =2, 1<a<n,
I

and, therefore, this second-order Lagrangian density is always singular.

Lagrangian-Hamiltonian formalism. In this setting, the local expression of the local Hamil-
tonian function H € C*°(W,) is exactly (3], replacing L by L,. On the other hand, the
coordinate expressions of the forms O, and €2, remain as in (I6]).

Let ¢ € I'(p},;) be a section. Then, computing in coordinates the field equation (I7) in this
particular case, we obtain the following system of equations

m

3 opi, 0L, 0
ort  oux

p
o Ou® 1 Ou
YT P =0 e Z (1) Oxd =0
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That is, the second-order multimomenta p! vanish, and therefore these equations reduce to
apa
— axl 8u0‘
i oL, _
¢ oud ’
ph =0,

ou® 1 oud
« _ . (07 A
Uy — oxt =0 ; uj —1‘;1._] — - =0.
A j=

:0,

From these local equations, we obtain the coordinate expression of the Legendre map FL: J3m —
J%7t, which is

* 1 81:0
FLp!, = 90

that is, the coordinate expression of the Legendre map corresponding to a first-order classical
field theory.

; FL'pg =0,

On the other hand, by combining the first two groups of equations, we obtain the Euler-
Lagrange equations for classical field theories
d oL,
dz? Ouf
¥

oL,
ou®
P

Now, let X € X™(W,) be a locally decomposable multivector field given locally by (28]).
Then the equation (27)) gives locally the following system of equations

1
o o] . o Oé
Ff=uf 5 )] i) i =
Li+1,;=1I
- ai — Lo
Z O‘vi 8ua )
=1

i) ed T oue P
pi( =0, |K| =2.
Furthermore, if we assume X to be holonomic, then we have the additional equations

[0 (0% . o (0%
Fiy=uip, 5 Frj=upg,;-

From the field equations, we deduce that the first constraint submanifold W, < W, is given in
coordinates by the local constraints p!, = 0. The tangency condition for the multivector field
X along W, enables us to determine all the coefficients G ., with 1 < j < m, 1 < a < n and
|I| = 2, in the following way

a,j?
I
Ga,j — 0
Then, using the previous local field equations, we obtain the following additional constraints

- 9L
%
pa aula )
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which define a new submanifold W, < W,. Analyzing the tangency of X along this new
submanifold, we obtain the following equations

i _ d oL,

ok dak Qug
Using again the field equations, we obtain the Euler-Lagrange equations for a multivector field,
which are

auf 8u§-‘ -

A A 97
8[/0 d OLO 4 <F6 iug> 6 LO

ou®  dx' Ouf Bl dxd Tt

That is, we obtain the coordinate expression of the field equations for first-order field theories
in the unified formalism, which were obtained previously in [23].

Lagrangian formalism. Now we recover the Lagrangian structures and equations from the
unified setting. In order to obtain the Poincaré-Cartan m-form O, = 7??@{ € Qm(J3n),
we need the extended Legendre map FL: J37 — J2x. From the results in Section B2 the
extended Legendre map is locally given by (24]), which in our case reduces to

QZ?LO

b ous

—k Lo * %
fﬁp’a:guq . FLpl=0 ; FLp=L,—u

Therefore, the Poincaré-Cartan m-form is given locally by

0L,
N ou

O©r (du® Ad™ Lz; — ufd™z) + Lod™z,

which is exactly the Poincaré-Cartan m-form for a first-order classical field theory.

Now, if Qy = —dO,, we recover the Lagrangian solutions for the field equations from the
unified formalism. In particular, if ¢» € I'(p),) is a holonomic section solution to the field
equation (7)), then the section 1y = p} o1 € I'(7%) is holonomic and is a solution to the
field equation (B6). In coordinates, the component functions of the section 1, = j3¢, for some
#(z') = (2%, u(z?)) € T'(r), are a solution to the Euler-Lagrange equation

0L, d 0L,

— . =0.
ou® dx* Ous

33 i*¢

Finally, if X € X™(W,) is a locally decomposable holonomic multivector field solution to the
field equation (27]), then there exists a unique locally decomposable holonomic multivector field
X € X™(J3m) solution to the equation [B8]). In coordinates, the component functions of this
multivector field must satisfy the equation

oL, d aLo+<Fﬁ i@) 9°L,

B — o ) /2 =
du>  dat uf b dpd auiﬁﬁu‘;‘

Hamiltonian formalism. Observe that, in this situation, the second-order Lagrangian den-
sity £, = (72)*L can not be regular. Nevertheless, it is straightforward to compute the coordi-
nate expression of a local Hamiltonian function H that specifies the Hamiltonian p-section h of
a first-order classical field theory as

H(:Eivuavu?vpg’pé) = pfxuza - ( il)’ © J)*L07

where o is any (local) section of the Legendre map associated to L,. It is now straightforward
to obtain the Hamilton-De Donder-Weyl equations for this first-order classical field theory [22].
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6.2 Loaded and clamped plate

Let us consider a plate with clamped edges. We wish to determine the bending (or deflection)
perpendicular to the plane of the plate under the action of an external force given by a uniform
load. This system has been studied using a previous version of the unified formalism in [11],
and can be modeled as a second-order field theory, taking M = R? as the base manifold (the
plate) and the “vertical” bending as a fiber bundle E = R? x R -+ R? (that is, the fibers are
1-dimensional).

We consider in M = R? the canonical coordinates (z,y) of the Euclidean plane, and in
E = R? we take the global coordinates (z,y, u) adapted to the bundle structure. Recall that R?
admits a canonical volume form n = dx A dy € Q?(R?).

In the induced coordinates (x,y, u, u1, ug, u(2,0), U(1,1), U(0,2)) of J?7, the Lagrangian density
L € Q%(J?r) for this field theory is given by

1

£:§

(uém + 2u?171) + u%w) — 2qu)dx N dy,

where ¢ € R is a constant modeling the uniform load on the plate.

Lagrangian-Hamiltonian formalism. Following the results in Section Bl let us consider
the fiber bundles
W=D xpn, JPnt W, =J37 x p, Jiab,

with the natural coordinates introduced in the aforementioned Section.

Observe that, in this example, we have dim J37r = 12 and dim J%7% = 10, and therefore
dim W = 18 and dim W, = 17.

The Hamiltonian pyy-section h e I'(pyy) is specified by the local Hamiltonian function
H = p'uy + p*us + p(z’o)u(z()) + P(l’l)u(l,l) + P(O’z)u(oz)
L g 2 L g

T 5%20 T U1y T 5%02) T I

and the forms ©, € Q™(W,) and Q, € Q™TL(W),) are given by

N 1
O, = —Hdz A dy + p'du A dy — p*du A dz +p(2’0)du1 ANdy — Ep(l’l)dul A dx

+ %p(l’l)dw Ady — p(0’2)du2 Adz
Q, = dH A da A dy — dp'du A dy + dp*du A dz — dp@ O duy A dy

+ % dp(l’l)dul ANdx — % dp(l’l)dw Ady + dp(o’z)dm ANdx .

Let ¢ € I'(p';) be a section. Then the field equation ([I7) gives in coordinates the following
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system of equations

%—i + 88_1;2 +q=0,
e

pEY —upy =0 5 pMY—2uqyy =0 ; pOY —upy =0,
u1—%—0 ; u2—g_Z—0’

U(2,0) — 881;1 =0 5 wuqy— % <%—L;1 + %) =0 ; wupa — 88—1;2 =0.

Combining the second and third group of equations, we obtain the constraints defining the
submanifold W,, and hence the Legendre map associated to this Lagrangian density, which is
the fiber bundle map FL: J?7 — J2rt given locally by

FLD = —ugg)y—uaa 3 FLP = —u@1) — Uoga)
fﬁ*p(2’0) = U0 ; ]:E*p(l’l) =2u() ]:ﬁ*p(o’z) = U(0,2) -

Observe that the tangent map of FL at every point j3¢ € J37 is given in coordinates by the
10 x 12 real matrix

100000O0OO0TO O O O
01000000 0 O 0 0
00100000 0 O O O
000100000 O O O
000010000 O O O

TpoFL=100000000 -1 0 -1 0
00000000 0 -1 0 -1
000001000 O O O
000000200 0 0 0
000000011 O O O O

From this it is clear that rank(FL(j3¢)) = 10 = dim J?7¥. Hence, the restricted Legendre map
is a submersion onto .J?7#, and therefore the Lagrangian density £ € Q2(J%7) is regular.

Finally, combining the first three groups of equations, we obtain the Euler-Lagrange equation

O, o o
ox4  0x20y2 Oyt -

This is the classical equation for the bending of a clamped plate under a uniform load gq.

U(1,0) T 2U(2,2) + U(04) = ¢ <

Now, let X € X2(W,) be a locally decomposable bivector field given locally by (28]). Then
the equation (27)) gives in coordinates the following system of equations

Fr=w ; F=us,

Fii=upo ; % (Fig+ 1) =u@any 5 Fae=ugyg),
Gy +G3 = —q,

ng,o) n % G;l’l) _ %Ggm) n G;og) 3

0,2)

PPV —upgy =0 5 pMY —2uqyy =0 5 pOP —ugy =0,
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Moreover, if we assume that X' is holonomic, then we have the following additional equations

Fio=u@gyy 3 IFai=uay 3 Feoa=uso  Feoo2=u21):
F(1,1),1 = U2,1) 3 F(1,1),2 = U2 F(0,2),1 =U1,2) 3 F(o,z),z = U(0,3) -

From the field equations, we deduce that the first constraint submanifold W, < W, is given in
coordinates by the local constraints

0,2)

PP —upgy =0 5 pMY —2uqyy =0 5 pO? —ugy =0.

The tangency condition for the multivector field X along V. enables us to determine all the
coefficients G, with i = 1,2 and |I| = 2, in the following way

ng,o) =ugo) Ggl’l) =2u(21) G§0,2) — Y2,

ng,o) =@ Ggl’l) =2u12) Géw) — H03)-

Then, using the previous field equations, we obtain the following additional constraints
P tueo tuay =0 5 PPt uen +ues) =0,

which define a new submanifold W, < W,. Analyzing the tangency of the multivector field X
along this new submanifold W, we obtain the following equations

Gl + Fzo1+Fai21=0 ; Gi + Fo1,1+ Foz,1=0,
Gy + Faoz+Faz2=0 5 Gi+Faona+ Foga=0.

Using again the field equations, we obtain the Euler-Lagrange equation for a multivector field,
which is

Faon+Faza +Fene + Fos)2 =4
Observe that if ¢ € I'(p},) is an integral section of X', then its component functions must satisfy
the Euler-Lagrange equation previously obtained for sections.

Lagrangian formalism. Now we recover the Lagrangian structures and equations from the
%
unified setting. In order to obtain the Poincaré-Cartan 2-form O, = FL 05 € Q*(J37), we need

the extended Legendre map FL: J37 — J2rt. From the results in Section B2 the extended
Legendre map is given locally by

FL pt = —Uu3,0) — U(1,2) FL p* = —U(2,1) — U(0,3) 5
FL p?0 = U@,0) i FLphY = 2uy s FL PO = U(0,2) »
Ly

S 1
FL p= ’LL(370)U1 + U(172)U1 + U(271)U2 + U(073)’LL2 — §u%270) — u%u) — §’LL(072) —qu.

Therefore, the Poincaré-Cartan 2-form is given locally by
_ (1o 2 L
Oc = | Jueo T U1y T 5U02) T U~ UEUl T U1~ Ul

— u(073)uQ> dx N dy — (ug0) +ug,2))du A dy + (ue,1) + ue3))du A de

+ u(270)du1 Ady — ’LL(171)d’LL1 Adx? + ’LL(171)d’LL2 Ady — U(072)d’LL2 Adx.
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Now, if Q = —dO,, we recover the Lagrangian solutions for the field equations from the
unified formalism. In particular, if ¢ € T'(p},) is a holonomic section solution to the field
equation (7)), then the section 1y = p} o1 € TI'(7%) is holonomic and is a solution to the
field equation (B6). In coordinates, the component functions of the section 1, = j3¢, for some
o(x,y) = (z,y,u(z,y)) € T'(7), are a solution to the Euler-Lagrange equation

U(4’0) + 2'&(2’2) + U(0’4) =q.

Finally, if X € X2(W,) is a locally decomposable holonomic multivector field solution to the
field equation (27]), then there exists a unique locally decomposable holonomic multivector field
X € X%(J37) solution to the equation (B8). In coordinates, the component functions of this
multivector field must satisfy the equation

Faoa+ Fa2a+ Feone+ Foge =4

Hamiltonian formalism. Since the Lagrangian density is regular, the Hamiltonian formalism
takes place in an open set of J?rt. In fact, £ € Q?(J%7) is a hyperregular Lagrangian density,
since the restricted Legendre map admits global sections. For instance, the map

20 Lyam yon Lo L 141 p2>
) 2 ) ) ) ) ) )

T: <x7y7u7u17u27p( 2 2 2 2

is a section of FL defined everywhere in J%7?.

In the natural coordinates of J2m¥, the local Hamiltonian function H that specifies the
Hamiltonian p-section h is given by

1 2 1 2 1 2
H = puy + p*ug + 5 (p(2’0)) + 1 (p(1’1)> + 5 (p(0’2)> +qu.
Hence, the Hamilton-Cartan 2-form 0, € Q2(J%7t) is given locally by

O = <—p1U1 — pPus — % (p(2’°)>2 - i (p(1’1)>2 - % (p(O’Q)f - qU> dz A dy

+ ptdu A dy — p*du A dz + pPO duy A dy — %p(l’l)dul A dx

1
+ 3 p(l’l)dug Ady — p(0’2)dU2 ANdz .

Now we recover the Hamiltonian field equations and solutions from the unified setting. First,
let ¢» € T'(p};) be a (holonomic) section solution to the field equation ([I7)). Then, the section
Yy, = photh € F(ﬁiﬂﬂ) is a solution to the equation ([I]). In coordinates, the component functions
of 1, must satisfy the following system of partial differential equations

8u o . 8U N 8U1 _.(2,0) . 8u2 Gul _ (1) . Guz _ . (0,2)

or 8y_u2 or P ’ 8m+8y - P T Oy DR
opt  op? apZ0) 1 gpth) . 1 opth  9p(0:2) )
-t =4q; +35 =-p ;5 =-p°.
Oz oy ox 2 Oy 2 Oz dy

Finally, if X € X2(W,) is a locally decomposable multivector field solution to the equation
(27), then there exists a locally decomposable multivector field &), € X¥%(J?xt) solution to the
equation ([43). If A&} is locally given by ({4]), then its component functions must satisfy the
following equations

Fi=uw ; Fo=uy ; Fii=p0 ; B+ Fo=p"Y ; Fy=p0?,

GaGi=q; P04 i =t LGP =
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6.3 Korteweg-de Vries equation

Next we derive the Korteweg-de Vries equation, usually denoted as the KdV equation for short,
using the geometric formalism introduced in this paper. The KdV equation is a mathematical
model of waves on shallow water surfaces, and has become the prototypical example of a non-
linear partial differential equation whose solutions can be specified exactly. Many papers are
devoted to analyzing this model and, in particular, some previous multisymplectic descriptions
of it are available for instance [B B0, [54]. A further analysis using a different version of the
unified formalism is given in [53].

The usual form of the KdV equation is

0 0 0°

ot oxr  Ox3
that is, a non-linear, dispersive partial differential equation for a real function y depending on
two real variables, the space x and the time ¢. It is known that the KdV equation can be derived

from a least action principle as the Euler-Lagrange equation of the Lagrangian density

poLoudu (Ou\' 15y
- 20z Ot oz 2\ 022)
where y = Ou/0z. It is therefore clear that we can use our formulation to derive the KdV

equation as the field equations of a second-order field theory with a 2-dimensional base manifold
and a 1-dimensional fiber over this base.

Hence, let M = R? with global coordinates (,t), and £ = R? x R with natural coordinates
adapted to the bundle structure, (z,¢,u). In these coordinates, the canonical volume form in
R? is given by n = dz A dt € Q%(R?).

In the induced coordinates (:E,t,u,ul,ug,u(270),u(171),u(o,g)) of J?7, the Lagrangian density

L € Q%(J?r) given above may be written as

1
L= 3 <u1u2 — 2u:1)’ — uém) dx N dt.

Lagrangian-Hamiltonian formalism. Following Section Bl consider the fiber bundles
W =037 %, JPxl 5 W, = Tn x g, Jrrb,

with the natural coordinates introduced in the aforementioned Section. Observe that, as in the
previous example, we have dim J?7 = 12 and dim J?7% = 10, and therefore dim W = 18 and
dim W, = 17.

The Hamiltonian pyy-section he () is specified by the local Hamiltonian function

R 1 1
H = Plul + P2U2 + p(2’0)u(2,0) +P(1’1)U(1,1) +P(0’2)U(0,2) - §U1U2 + U:{’ + 5“?2,0) )

and the Hamilton-Cartan forms have the same expressions as in the previous example, replacing
the local Hamiltonian function.

Let ¢ € I'(p';) be a section. Then the field equation ([I7) gives in coordinates the following
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system of equations

opt  op? B
o T 70
op0 1 9pth 1 5 1optt)  op©®2 1
T e A R T T L
p®) fupe =0 ;5 ptY=0 ; p®P =0,
ou ou
Uy — a—x =0 N ug — E 0,
aul 1 8’&1 8’&2 OUQ
e gy =0 “<M>‘§<W+%> =05 ey =5 =0,

From these local equations, we obtain the coordinate expression of the Legendre map FL: J3m —
J%7t, which is
1

1
FLpt = QU2 ~ 3u? + uz,0) FLp? = UL

]:ﬁ*p(z’o) = —Up) ; ]:E*p(l’l) =0 ; ]:E*p(o’z) =0.

The tangent map of FL at every point j2¢ € J37 is given in coordinates by

100 0 O 0 00O0DGO0O0O
010 0 0 0 0O0DO0GOTOO
001 0 0 0 000O0O0O0O
000 1 0 0 00O0GO0GOO
000 0O 1 0 000GO0O0O

TpoPL=10 0 0 —6uy 1/2 0 00100 0
000 12 0 0 00000 O
000 0O 0 —-1000000O0
000 O 0O 0 00O0GOTOO
000 O 0 0 00O0O0OO

From this it is clear that rank(FL(j3¢)) = 7 < 10 = dim J?z*. Therefore, the Lagrangian
density £ € Q%(J?) is singular.

Finally, by combining the first three groups of equations, we obtain the second-order Euler-
Lagrange equation for this field theory

Fu _ oudu o_
Ot Ox or 0x2  Oxt

which, taking y = du/0x, is the usual Korteweg-de Vries equation.

u(l,l) — GU1U(270) + U(4’0) =0

Now, let X € X2(W,) be a locally decomposable 2-vector field with coordinate expression
[28). Then the field equation ([27]) gives in coordinates the following system of equations

Fy=u ; Fy=u,
1
Fii=u@e 3 ;F2+tR)=uay 5 F2=1u0y),
Gl+G2=0,
20 , 1 an _1 o 1 . loan 02 1 2
Gy +§G2 —§u2—3u1—p ; §G1 + Gy =5u =P,

PP fupg =0 ; pt=0 ; p®»=0.
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Moreover, if we assume that X' is holonomic, then we have the following additional equations
Fio=uayy 5 Fea=uay 3 Feoi=ugo i Feoe2 =121,
Fapi=uey 3 Fapz=uaz 5 Foni=ua2 i Fozaz=e3-

From the coordinate expression of the field equation, we obtain the local constraints defining
the first constraint submanifold W, < W,., which are

PP tupg =0 ; pt=0 ; p®=0.

The tangency condition for the 2-vector field X along W, gives the following local equations
G+ uz0) =0 ai'V=0 ; " =o,
AP fupy =0 ; G¥Y=0 ; aP? =o.

Then, using the local equations obtained above, we have the following additional constraints

1 1
p1—§u2—|—3u%—u(3,0):0 ) P2—§u1=0,

which define a new submanifold W, < W,. Analyzing the tangency of the multivector field
along this new submanifold W,, we obtain the following equations

. 1

Gl = uan + 6utueo) — Faoa =0 5 G = Sup =0,
1 1 7 !

Gz = Juey +6uuay — Feoz =0 5 Gz—juqy =0.

Using again the field equations, we obtain the Euler-Lagrange equation for a multivector field
(1) — 6urtz,0) + Fiz1 =0,
from where we can determinate Fi3 ) as

Fi30),1 = 6uiugz o) — u(1,1) -

Remark: Observe that, in this case, the Lagrangian density is singular, but there are no addi-
tional constraints. This implies that the final constraint submanifold is the whole submanifold
W, in the unified formalism.

Lagrangian formalism. Now we recover the Lagrangian formalism from the unified setting.
First, we need the coordinate expression of the extended Legendre map FL: J 37 — J?xt. From
the results in Section B2] the local expression of FL is

1 1
FLpt = U2~ 3u? + Uz,0) FLp? = JuL
FLrp20) = —U20) Foopb =0  Frop2 =g,

% 1 1
FL p= —§U1’LL2 + QU? — U(3,0)U1 + 5’&?270) .

Therefore, the Poincaré-Cartan 2-form O, = j‘f*Gf € Q?(J37) is given locally by

1 1
Or = <§u1u2 —2u} + U(3,0)U1 — §u%270)> dz N\ dy

+ (%ug — 3u? + u(3,0)> du A dy — %uldu Ndr —ugpydur Ady .
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Let ¢ € I'(p’;) be a holonomic section solution to the field equation (I7). Then, the section
Yr = pt ot € T(7%) is holonomic and is a solution to the Lagrangian field equation (B6). In
coordinates, the component functions of the section 1y = j3¢ for some ¢(z,t) = (x,t,u(x,t)) €
I'(m), are a solution to the Euler-Lagrange equation

u(l,l) — 67,L1U(270) + U(470) =0.

On the other hand, if ¥ € X2(W,) is a locally decomposable holonomic multivector field solution
to the field equation (27]), then there exists a unique locally decomposable holonomic multivector
field Xz € X%(J3m) solution to the equation (BS]). In coordinates, the component functions of
this multivector field must satisfy the equation

Fi30),1 = 6urugz o) — u(1,1) -

Hamiltonian formalism. Since the Lagrangian density is singular, the Hamiltonian formal-
ism takes place in the submanifold P = Im(FL) < J%z*. Bearing in mind the coordinate
expression of the Legendre map, the submanifold P is locally defined by the constraints

1
pPogu=0; pU=0; p*=0.

Observe that dim P = rank(FL) = 7.

The natural coordinates (m,t,u,ul,uQ,pl,p2,p(270),p(lvl),p(o’z)) in J27t induce coordinates
(x,t,u,uq, uz,pl,p@’o)) in P, with the natural embedding j: P < J?xt given locally by
1
I=gu o =05 PP =0
In these coordinates, the local Hamiltonian function that specifies the Hamiltonian section
h is given by

1 2
H = puy + ui{’ 3 <p(2’0))
Therefore, the Hamilton-Cartan 2-form 0 = h*0% € Q?(P) is given locally by

1 2
@h — <§ (p(270)) — p1U1 — U?) da: /\ dt + pldu /\ dt

1
— guadu A da + p20duy A dt .

Now we recover the Hamiltonian field equations. If ¢ € T'(p},) is a (holonomic) section
solution to the field equation (I7), then the section v, = FLop} o1y € I'(7p) is a solution to the
equation (@H). In coordinates, the component functions of v, must satisfy the following system
of partial differential equations

ou 10u 1 opt 10w Ouy (2,0)

o G g P TM s Gt oy T

Finally, if X € X2(W,) is a locally decomposable 2-vector field solution to the equation (Z7),
then there exists a locally decomposable 2-vector field &}, € X2(P) solution to the equation (E8]).
If A}, is locally given by

0 0 0 0 1 0 20 O
Xy = (8 +F18 —i—F11a +F218 +G181+G 8p<2’0)>

9 0 9 9 .0 o O
<8t+F28 -I—F12a +F228 +G281+G 8p(270)>’
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then its component functions must satisfy the following equations

1 1
Fl = 3 §F2 — pl + 3’(,6% ) G% + §F172 =0 ; F’171 — _p(270) X

7 Conclusions and further research

We develop a new multisymplectic framework for describing higher-order field theories, and,
in particular, second-order ones which are the most relevant in physics (to the best of our
knowledge, the most interesting higher-order models and theories in physics are of second-
order). This model is based on the extension of the so-called Skinner-Rusk unified formalism
from mechanical systems to higher-order field theories, and thereby complements previous papers
such as [I11 [53], in which analogous but different formulations are given.

The key points of the formalism are as follows:

e The Skinner-Rusk formalism is a special case of what (in the modern terminology) is called
a Dirac structure. It unifies in a single frame the Lagrangian and Hamiltonian formalisms,
and hence gives a unified version of the Euler-Lagrange and the Hamilton equations.

In our case, the 4th-order Euler-Lagrange equations and the Hamilton-De Donder-Weil
equations for field theories described by 2nd-order Lagrangian densities are stated in a
combined form using both sections and multivector fields in a suitable fiber bundle over the
configuration bundle of the theory, E — M. This bundle is the restricted 2-symmetric jet-
multimomentum bundle W, = J37 x ;1. J?x*, which is a quotient bundle of the extended 2-
symmetric jet-multimomentum bundle W = J37 x j1,. J?7 T, where J?71 is the 2-symmetric
multimomentum bundle introduced in [51], and J27+ = J2xf /AT (J'7). The use of this
bundle is the crucial point for univocally defining a Legendre map, and therefore the
Poincaré-Cartan forms.

As usual, the physical information of the theory is given by a Lagrangian density, although
the geometry is provided by the canonical multisymplectic form 2; with which the 2-
symmetric multimomentum bundle is endowed. This enables us to construct the form €2,
which induces the geometry of W,. Thus, in the unified formalism the geometry and the
physical information are separated.

e As is characteristic in the unified formalism, independently of the regularity of the La-
grangian density, €2, is a premultisymplectic form in W,. Hence, the compatibility condi-
tion for the field equations and the subsequent tangency or consistent condition for their
solutions allows us to determine univocally the Legendre map, thanks to the symmetry
relation introduced in the highest-order multimomenta coordinates. This relation equals
the number of highest-order multimomenta with the number of highest-order “velocities”
in the Lagrangian density, and therefore enables us to establish a 1-to-1 correspondence
between these two sets of coordinates, giving rise to the highest-order equations defining
the Legendre map. If the Lagrangian is regular (in the sense given in Definition []), then
the constraint algorithm stops at the first level; otherwise it continues in the usual way.

Furthermore, as stated above, from the form €2, in the unified formalism we also recover
the Poincaré-Cartan form of the Lagrangian formalism in an unambiguous way. Hence,
the Lagrangian formalism for second-order field theories is stated straightforwardly for the
regular and singular (almost-regular) cases. In the same way, we can obtain the associated
Hamiltonian formalism in both cases using the unambiguously defined Legendre map, and
eventually a Hamiltonian section associated to the Lagrangian function.
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e Despite what occurs in higher-order mechanics, the condition for the solutions to the field
equations to be holonomic is not guaranteed (even in the regular case), and neither can
it be obtained from the constraint algorithm. In higher-order field theory, this condition
constitutes an additional requirement of the theory.

e Comparing our formulation with previous works found in the literature, we have that:

The unified formalism developed in [I1] is different from ours, since it uses J2m X ji,
AT(J'7) as the extended jet-multimomentum bundle, and, as pointed out in the intro-
duction, some parameters appearing in the solutions of the higher-order field equations
(which are written in terms of sections and Ehresmann connections), and in the definition
of the Legendre map remain undetermined and must be fixed “ad-hoc”. This does not
occur in our formalism; in fact, the constraint algorithm plays a crucial role in the deter-
mination of all these arbitrary parameters. In addition, in [I1] the theory is stated only
in the unified setting, and the Lagrangian and Hamiltonian formalisms are not explicitly
recovered.

In [31] the authors use a different approach to higher-order field theories by means of a
generalized version of Tulczyjew’s triple, where the field equations are obtained as La-
grangian submanifolds of the suitable extended phase spaces, and no explicit use is made
of Poincaré-Cartan forms.

Our formalism is also different from the unified formalism developed in [53], where infinite-
order jet bundles are used, which are infinite-dimensional manifolds.

Another construction of a unique Poincaré-Cartan form for second-order classical field
theories is made in [37] using purely variational methods, whereas that in this work this
form is derived using a Legendre transformation obtained by means of the constraint
algorithm.

Finally, in [2] 42, [43] the authors make a more standard formulation of higher-order field
theories generalizing both the Lagrangian and Hamiltonian formalisms separately.

e In addition to analyzing the example of the loaded and clamped plate, we use this uni-
fied framework to give a multisymplectic description of the KdV equation, which is also
different from the standard ones existing in the literature.

As further research, we intend to study the variational principles of second-order field theories
from this perspective.

In the main, we wish to apply this formalism to provide a multisymplectic description of
the Hilbert-Einstein theory of gravitation and other classical theories in theoretical physics.
We believe that this formalism will be useful for studying new reduction procedures of the
corresponding field equations, or for developing new numerical techniques of integration of these
equations using multisymplectic integrators.

This formulation fails when we try to generalize it to a classical field theory of order greater
or equal than 3. The main obstruction is also the fundamental tool that we have used to obtain
a unique Legendre map from the constraint algorithm in the unified setting: the space of 2-
symmetric multimomenta. In particular, the relation among the multimomentum coordinates
that we have introduced in Section 23], pg = pk for every 1 < 4,5 < m and every 1 < o < n,
can indeed be generalized to higher-order field theories [9]. That is, we can generalize both
the extended and restricted 2-symmetric multimomentum bundles to higher-order field theories.
The main issue, however, is that only the “symmetric” relation among the multimomentum
coordinates holds for the highest-order multimomenta. That is, this relation of symmetry on
the multimomenta is not invariant under change of coordinates for lower orders, and hence we
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do not obtain a submanifold of AZ*(J*~17). A work to overcome this obstruction and to obtain
a coordinate-free definition of a suitable Hamiltonian phase space for classical field theories of
order greater or equal than 3 is nowadays in progress.

A Multivector fields

(See [24] for details).

Let M be a n-dimensional differentiable manifold. Sections of A™(TM) are called m-
multivector fields in M (they are the contravariant skew-symmetric tensors of order m in M).
We denote the set of m-multivector fields in M by X" (M).

If Yy € X"(M), for every p € M, there exists an open neighbourhood U, C M and
Yi,..., Y, € X(Up) such that

y|Up = Z fi1...imy'i1 A“‘AY;m’

1<i1 <. <i <1

with fi-im € C°(U,) and m < r < dim M. Then, Y € X™(M) is said to be locally decompos-
able if, for every p € M, there exists an open neighbourhood U, C M and Y1,...,Y,, € X(Up)
such that Y|y, = Y1 A ... A Yy,

A non-vanishing m-multivector field Y € X™ (M) and a m-dimensional distribution D ¢ TM
are locally associated if there exists a connected open set U C M such that Y|y is a section of
A"D|y. If Y,V € X™(M) are non-vanishing multivector fields locally associated with the same
distribution D, on the same connected open set U, then there exists a non-vanishing function
f € C®(U) such that YV'|y = fY|y. This fact defines an equivalence relation in the set of non-
vanishing m-multivector fields in M, whose equivalence classes will be denoted by {¥}y. Then
there is a one-to-one correspondence between the set of m-dimensional orientable distributions
D in TM and the set of the equivalence classes {)} o4 of non-vanishing, locally decomposable
m-multivector fields in M.

If Y € X" (M) is non-vanishing and locally decomposable, and U C M is a connected open
set, the distribution associated with the class {YV}y is denoted by Dy (V). If U = M we write
D(Y).

A non-vanishing, locally decomposable multivector field ) € X" (M) is said to be integrable
(resp. involutive) if its associated distribution Dy ()) is integrable (resp. involutive). Of course,
if Y € X" (M) is integrable (resp. involutive), then so is every other in its equivalence class {V},
and all of them have the same integral manifolds. Moreover, Frobenius theorem allows us to
state that a non-vanishing and locally decomposable multivector field is integrable if, and only
if, it is involutive. Nevertheless, in many applications we have locally decomposable multivector
fields Y € X" (M) which are not integrable in M, but integrable in a submanifold of M. A
(local) algorithm for finding this submanifold has been developed [24].

The particular situation in which we are interested is the study of multivector fields in fiber
bundles. If 7: M — M is a fiber bundle, we will be interested in the case where the integral
manifolds of integrable multivector fields in M are sections of 7. Thus, Y € X™(M) is said
to be m-transverse if, at every point y € M, (i(Y)(7*f)), # 0, for every g € Q™(M) with
B(m(y)) # 0. Then, if Y € X"™(M) is integrable, it is m-transverse if, and only if, its integral
manifolds are local sections of m: M — M. In this case, if ¢: U C M — M is a local section
with ¢(z) =y and ¢(U) is the integral manifold of Y through y, then T,,(Im ¢) = Dy(Y).
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