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Abstract—This paper proposes and analyses a microcontroller-based interface circuit for 

inductive sensors with a variable self-inductance. Besides the microcontroller (µC) and the 

sensor, the circuit just requires an external resistor and a reference inductor so that two RL 

circuits are formed. The µC appropriately excites such RL circuits in order to measure the 

discharging time of the voltage across each inductor (i.e. sensing and reference) and then it 

uses such discharging times to estimate the sensor inductance. Experimental tests using 

different commercial µCs at different clock frequencies show the limitations (especially, due 

to parasitic resistances and quantisation) and the performance of the proposed circuit when 

measuring inductances in the millihenry range. A non-linearity error lower than 0.3% Full-

Scale Span (FSS) and a resolution of 10 bits are achieved, which are remarkable values 

considering the simplicity of the circuit. 
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1. INTRODUCTION 

Inductive sensors are widely used in industry electronic instrumentation because they are 

robust and compact and, in comparison to capacitive sensors, they are less affected by 

environmental factors such as humidity and dust [1]. Within the group of inductive sensors, 

those based on a variable self-inductance (due to changes of either the magnetic reluctance or 

the number of turns of the coil winding) are quite common to measure displacement (e.g. of 

±1 mm [2], ±5 mm [3] and ±6 mm [4]), position (e.g. of a piston inside a power cylinder [5]) 

and proximity. Other physical quantities that indirectly cause a displacement are also 

measured through these sensors, for instance: inductive pressure sensors based on either a 

Bourdon tube [6] or a vertical coil embedded into an integrated circuit (IC) package [7]. 

Inductive sensors have also been proposed to measure temperature by using cores with a low 

Curie temperature [8]. In the previous applications [3,4,6,7], the sensor inductance is in the 

range of units or tens of millihenry, but lower values (e.g. units or tens of microhenry) can 

also be found. 

Two main types of interface circuits have been proposed for inductive sensors with a 

variable self-inductance and both usually operate at low-medium frequencies. The first type is 

a relaxation oscillator (based, for instance, on a 555 IC timer [7]) providing a time-modulated 

signal that can be read by a digital system (e.g. a µC with an embedded timer) without using 

an analog-to-digital converter (ADC). The second type is an AC-excited bridge (such as the 

Maxwell bridge [6] or the Maxwell-Wien bridge [3]) providing an amplitude-modulated 

signal that needs to be demodulated and digitized before being read by the digital system. The 

reference inductor usually required in bridge circuits is proposed to be emulated by a 

generalized impedance converter in [9]. Another interface circuit suggested for inductive 

sensors that does not belong to the previous two groups is the dual slope inductance-to-digital 

converter whose output can be read by a digital system without an ADC, as in the oscillator 
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circuits, but it needs operational amplifiers (OpAmp) and analogue comparators in the signal 

path [4]. There are also a few commercial ICs (e.g. LDC1000 from Texas Instruments) that 

perform an inductance-to-digital conversion, but these are mainly intended for inductive 

sensors based on eddy current operating at higher frequencies. 

With the aim of reducing the cost and power consumption of sensor electronic interfaces, 

the concept of “direct interface circuit” has been widely proposed, analysed and tested for 

resistive [10-12] and capacitive [13-15] sensors. In these circuits, the sensor resistance (or 

capacitance) together with a capacitor (or resistor) form an RC circuit whose charging or 

discharging time is directly measured by a µC through an embedded digital timer and without 

using any intermediate active circuit (such as comparators, OpAmps, timers and/or ADC). 

The performance of such circuits is quite remarkable taking into account their simplicity, for 

instance: a non-linearity error (NLE) of 0.01% full-scale span (FSS) and an effective 

resolution of 13 bits when measuring resistive sensors in the kiloohm range [10,11], and 0.1% 

FSS and 9 bits when measuring capacitive sensors in the picofarad range [13]. Although the 

same operating principle could be applied to measure inductive sensors by employing an RL 

circuit, instead of an RC circuit, formed by the sensor inductance and a resistor, no attempts to 

do so have been reported so far. Just in [16,17] we can find very preliminary circuit proposals 

but these have not been either analysed or tested. 

As a continuation of the work presented in [18,19], this paper proposes, theoretically 

analyses and experimentally evaluates a direct interface circuit for inductive sensors with a 

variable self-inductance. In the proposed circuit, the inductive sensor is excited by a single 

step pulse and the result of the measurement is the inductance value at low frequencies; this is 

assuming that the frequency dependence of the inductance (due to the frequency dependence 

of the permeability) starts decreasing at high enough frequencies. For this reason, the 

proposed circuit is not suitable for those inductive sensors whose operating principle involves 

the measurement of the inductance at medium-high frequencies; this is the case, for instance, 
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of eddy-current sensors that are generally excited by an AC signal of high frequency (say, 

units or tens of MHz) so as to have an appropriate penetration depth in the metallic target to 

be detected [20, 21]. Furthermore, the sensor is expected to have an inductance of some units 

or tens of millihenry [3,4,6,7]; lower values of inductance would require a very high speed 

reference oscillator that is not feasible nowadays in common low-cost 8-bit microcontrollers. 

The paper is organised as follows: Section 2 describes the operating principle of the circuit, 

Section 3 analyses the error sources, Section 4 shows experimental results, and Section 5 

provides the main conclusions. 

2.  OPERATING PRINCIPLE 

The proposed direct interface circuit for inductive sensors is shown in Fig. 1a. Besides the 

µC and the sensor (Lx), this electronic interface just needs a reference inductor (Lr) that is used 

for a single-point calibration, and an external resistor (R0) that limits the current provided by 

the µC. With these components, two RL circuits are formed: R0 together with Lx, and R0 

together with Lr. Then, each RL circuit is appropriately excited by the µC so as to measure the 

discharging time (Tx and Tr) of the voltage across each inductor (Lx and Lr, respectively). As 

for the µC, only digital peripherals (specifically, a timer) and digital input/output ports are 

required, thus resulting in a fully-digital sensor interface circuit. 

The measurement of the discharging time of each RL circuit requires two phases. Figs. 1c 

and 1d show, respectively, the state of the digital ports of the µC during the first and second 

phase when measuring the RL circuit that includes Lx. In the first phase (Fig. 1c), pin 1 

generates a step pulse (i.e. from a digital ‘0’ to ‘1’, or from 0 V to the supply voltage, VDD) 

that is synchronized with the start of the timer, pin 3 provides a digital ‘0’ (i.e. 0 V), and pins 

2 and 4 are in a high-impedance (HZ) state. This configuration results in a discharging voltage 

across Lx, as shown in Fig. 1b, that is monitored by pin 2. When such a discharging voltage 

reaches the low threshold voltage (VTL) of the digital Schmitt-trigger (ST) buffer embedded 
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into pin 2, the timer stops and a digital number with information about the length of Tx is 

registered. Under ideal conditions, Tx is equal to 

 DD

0 TL

lnx
x

L VT
R V

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (1) 

In the second phase (Fig. 1d), pin 1 provides a digital ‘0’, whereas the other pins do not 

change their state. With this configuration, the inductor current is discharged towards zero; 

this phase must be long enough (at least five times the discharging time constant) so as to be 

sure that the energy stored before in the inductor is removed. Afterwards, the circuit operates 

similarly for the measurement of the RL circuit that includes Lr, but pin 3 is in HZ state and 

pin 4 provides a digital ‘0’. In that case, the result is a digital number with information about 

the length of Tr, which is ideally equal to 

 r DD
r

0 TL

lnL VT
R V

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (2) 

After measuring Tx and Tr, the following single-point calibration technique is proposed to 

be applied  

 *
r

r

x
x

TL L
T

=  (3) 

where *
xL  is the estimated value of Lx. Replacing (1) and (2) in (3) yields *

x xL L=  and, hence, 

the estimated value has no error under ideal conditions. Furthermore, changes of temperature 

affecting the circuit are cancelled out by (3) whenever (i) temperature remains constant during 

the measurement of Tx and Tr, and (ii) the reference inductor has a low temperature 

coefficient. Note that changes of temperature can affect the values of R0, VDD and VTL in (1) 

and (2), but if they do in the same way in both measurements, then such thermal effects are 

compensated through (3). Time drifts affecting R0, VDD and VTL are also auto-calibrated by 

(3). In order to compensate for the temperature dependence and time drifts of Lx, the circuit 

would require an Lr with the same dependence. The application of a three-signal calibration 

technique [10,13] seems in principle unnecessary since the offset parasitic inductance (of 
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some units of nanohenry) introduced by the circuit itself (for instance, due to the 

interconnections on the printed circuit board or to the bonding pad of the µC chip) is much 

lower than the sensor inductance (of some units or tens of millihenry). 

The current consumption of the proposed circuit can be reduced by following the guidelines 

suggested in [22]. In the first phase, the discharging time should be measured by the timer 

running at high frequency (e.g. units or tens of MHz) so as to have a good timing resolution, 

but the CPU (Central Processing Unit) should be off whenever this does not stop the interrupt 

system and the timer. In the second phase, just the CPU should be on but running at low 

frequency (e.g. tens or hundreds of kHz) since we do not need an accurate control of the 

duration of that phase. Using such configurations, the current consumption of the internal 

electronics of the µC is about ten times higher in the first phase [22]. On the other hand, we 

also have the current flowing through the external RL circuit, but only that required in the first 

phase must be considered in terms of current consumption since the RL circuit is 

disconnected from VDD in the second phase. Accordingly, the average current consumption in 

active mode (i.e. when the µC is working to carry out the measurements) can be approximated 

to T int ext p1 p1 p2( )( / ( ))I I I T T T≈ + + , where Iint and Iext are the average current consumed by, 

respectively, the internal electronics and the external RL circuit in the first phase, and Tp1 and 

Tp2 are the lengths of the first and second phases, respectively. Assuming Iint = 4 mA at 

20 MHz [22], Iext = 0.37·VDD/R0, and Tp2 = 5·Tp1 (so as to remove the energy stored in the 

inductor), then IT ≈ 2 mA at VDD = 5 V and, therefore, the power consumption is 10 mW; it 

has been assumed that (i) the discharging time is almost equal to the time constant and, hence, 

the factor 0.37 in the previous equation, and (ii) the equivalent resistance is 200 Ω, which 

considers the values of the external resistor and the parasitic resistances reported later in 

Section 4. 
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3.  ERROR ANALYSIS 

As indicated before, under ideal conditions, we have *
x xL L= when (3) is applied. However, 

in practice, the estimated value undergoes some errors mainly due to (i) the parasitic 

resistances of both the inductors and the digital ports of the µC, and (ii) the quantisation of the 

discharging-time measurement.  

A. Effect of parasitic resistances 

The effect of parasitic resistances on the proposed direct interface circuit are analysed using 

the equivalent circuit shown in Fig. 2, where Rp,1 and Rn,1 are the parasitic output resistances 

of pin 1 when it provides a digital ‘1’ and ‘0’, respectively, Rn,3 and Rn,4 are the parasitic 

output resistances of pins 3 and 4, respectively, when they provide a digital ‘0’, Zin is the input 

impedance (which is assumed to be very high) of a pin set in HZ state, and Rx and Rr are the 

parasitic equivalent series resistance (ESR) of Lx and Lr, respectively. The different states of 

the digital ports are modelled by switches (S1, S3 and S4).  

Assuming the parasitic resistances shown in Fig. 2, the discharging times Tx and Tr are, 

respectively, equal to 

 
( )

( )
p,1 0 DD

p,1 0 3 p,1 0 3 TL 3 DD

lnx
x

R R VLT
R R R R R R V R V

⎡ ⎤+
= ⎢ ⎥

+ + + + −⎢ ⎥⎣ ⎦
 (4) 

 
( )

( )
p,1 0 DDr

r
p,1 0 4 p,1 0 4 TL 4 DD

ln
R R VLT

R R R R R R V R V

⎡ ⎤+
= ⎢ ⎥

+ + + + −⎢ ⎥⎣ ⎦
 (5) 

where 3 n,3 xR R R= +  and 4 n,4 rR R R= + . Replacing now (4) and (5) in (3) yields the actual 

relation between *
xL  and Lx:  
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( )

( )

DD

34
TL TL DD

p,1 0p,1 0*

3

p,1 0 DD

4
TL TL DD

p,1 0

ln
1

1
ln

x x

V
RR V V V

R RR R
L LR

R R V
RV V V

R R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ −+ ⎢ ⎥++ ⎣ ⎦=
⎡ ⎤+ ⎢ ⎥+
⎢ ⎥
⎢ ⎥+ −⎢ ⎥+⎣ ⎦

 (6) 

From (6), if R3 = R4 then *
x xL L= . However, if the parasitic resistances are not well-matched 

(basically due to the mismatch between Rx and Rr since the mismatch between Rn,3 and Rn,4 is 

expected to be just a few tenths of ohm [10]), then we can achieve *
x xL L≈  by having 

(Rp,1 + R0) >> R3 and (Rp,1 + R0) >> R4. Therefore, the higher the value of R0, the lower the 

error due to parasitic resistances. Nevertheless, as shown later in the next subsection, a high-

value R0 is not advisable in terms of quantisation effects. 

Considering (Rp,1 + R0) >> R3 and (Rp,1 + R0) >> R4 and applying first-order Taylor-series 

approximations, Eq. (6) can be simplified to 

 [ ]*
341x xL R Lα≈ + ∆  (7) 

where  

 

DD

TL

p,1 0 DD

TL

1
1 1

ln

V
V

R R V
V

α

⎡ ⎤
−⎢ ⎥

⎢ ⎥= −
⎢ ⎥+ ⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 (8) 

and 34 3 4R R R∆ = − . According to (7), the mismatch between parasitic resistances brings about 

a gain error that is positive (i.e. slope higher than 1) if ∆R34 > 0, but it is negative (i.e. slope 

lower than 1) if ∆R34 < 0. On the other hand, the relative error due to parasitic resistances can 

be expressed, from (7), as  

 
*

r 34
x x

x

L Le R
L

α−
= = ∆  (9) 
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Assuming the experimental data presented later in Table I for the different variables involved 

in (8), we have α ≈ 0.005 Ω-1 that would cause a relative error of 0.5% for ∆R34 = 1 Ω. 

Some inductive sensors (e.g. those based on the variation of the number of turns of the coil 

winding) may offer an Rx that changes with the value of Lx. In that case, Rx can be expressed 

in a first approximation as  

 ,0x x xR R Lβ= +  (10) 

where Rx,0 is the parasitic ESR when Lx = 0, and β is a sensitivity factor in Ω/mH. 

Consequently, the resistance mismatch also depends on Lx as  

 34 34,0 xR R Lβ∆ = ∆ +  (11) 

where 34,0 n,3 ,0 n,4 rxR R R R R∆ = + − − . Replacing now (11) in (7) yields 

 * 2
34,01x x xL R L Lα αβ⎡ ⎤≈ + ∆ +⎣ ⎦  (12) 

which shows a quadratic relation between *
xL  and Lx, thus causing a non-linearity error. Note 

that the electronic circuit is auto-calibrated by (3), but the overall measurement system (i.e. 

the sensor with the electronics) is expected to be subjected later to a two-point field 

calibration (for instance, two well-known displacements will be applied and the output values 

will be registered) and, therefore, the non-linearity error becomes the main source of 

inaccuracy. 

B. Effect of quantisation 

The time-to-digital conversion performed by the digital timer brings about a quantisation 

error in the measurement of Tx and Tr. If an input associated with a capture module is used to 

monitor the discharging voltage (i.e. pin 2 in Fig. 1a), the quantisation error ranges from – Ts 

(=1/fs) to 0 [11], where Ts and fs are, respectively, the period and the frequency of the 

reference oscillator of the timer. If then the quantified values of Tx and Tr (i.e. Tx,q and Tr,q, 
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respectively) are used in (3), the estimation of the sensor inductance undergoes an error. The 

worst cases, assuming 34 0R∆ = , are when: 

(a) Tx suffers from the minimum quantisation error (i.e. zero), whereas Tr suffers from the 

maximum one (i.e.  – Ts), thus resulting in  

 ,q* s
r r x

r,q r s r

1x x
x

T T TL L L L
T T T T

⎛ ⎞
= = ≈ +⎜ ⎟− ⎝ ⎠

 (13) 

which behaves as a gain error. 

(b) Tx suffers from the maximum quantisation error (i.e.  – Ts), whereas Tr suffers from the 

minimum one (i.e. zero), thus resulting in  

 

,q* s s
r r x r

r,q r r

x x
x

T T T TL L L L L
T T T

−
= = = −  (14) 

which behaves as an offset error. 

Equations (13) and (14) define, respectively, the high and low boundaries of the response 

*
xL versus xL  due to quantisation effects, as shown in Fig. 3. Considering that the values of *

xL  

are randomly distributed between those boundaries (see, for example, the crosses in Fig. 3), 

then the most critical error introduced by quantisation seems to be the non-linearity. The 

closer the boundaries, the lower the non-linearity error, and this can be achieved by (i) a fast 

reference oscillator (i.e. a lower value of Ts), although this increases the current consumption 

of the µC, and (ii) a low-value R0, which increases, from (2), the value of Tr. Note, however, 

that the value of R0 can be as low as required whenever it limits, together with the parasitic 

resistances, the current of the RL circuit below the maximum current that can be sourced/sunk 

by the digital ports of the µC. On the other hand, the relative error due to quantisation is 

determined by 

 s sr
r

r rx

T TL e
T L T

− ≤ ≤  (15) 

which, as in the non-linearity error, can be reduced by decreasing the factor Ts/Tr. 
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C. Other effects 

The parasitic capacitances (Cp) of the digital input ports of the µC, such as pin 2 in Fig. 1a, 

could limit the speed of the transient response of the voltage at pin 2 at the beginning of the 

first phase (see Fig. 1b). However, assuming a common value of Cp (say, 10 pF [14]) and 

R0 = 100 Ω (see Section 4), the settling time of such a transient response is 5 ns, which is 

much lower than the minimum period (i.e. 1/16MHz = 62 ns) used later for the reference 

oscillator of the timer and, therefore, the effect of Cp on the discharging-time measurement 

can be assumed negligible. Similar effects are expected to be caused by the parasitic 

capacitance of the inductors, i.e. a capacitance in parallel with Lx or Lr. The effect of leakage 

currents of the digital ports is also expected to be insignificant, at least in CMOS 

microcontrollers. 

Another source of error could be the frequency dependence of the relative permeability (µr) 

of the ferromagnetic material used in the core of the inductors. A Cole-Cole plot of µr tends to 

be a semicircle [23] that remembers the typical response of a low-pass system with a 

dominant pole. Therefore, in a first approximation and in the Laplace domain, the frequency 

dependence of µr can be expressed as ( ) 11
r r,0 c( ) 1s sµ µ ω

−−= + , where µr,0 is the permeability at 

s = 0 and ωc (= 2πfc) is the frequency of the dominant pole where the real and imaginary parts 

of the complex permeability are equal. Accordingly, the inductance also depends on 

frequency as ( ) 11
0 c( ) 1L s L sω

−−= + , where L0 is the inductance at s = 0. If now the RL circuit 

in Fig. 1a is analysed considering such frequency dependence of L, then the resulting 

discharging time to be measured is 

 ( )1 0 0DD
0 0 c 1

TL 0 0 c

ln L RVT L R
V L R

ω
ω

−
−

⎛ ⎞
= + ⎜ ⎟+⎝ ⎠

 (16) 

Comparing (16) with (1) or (2), we can see that there is an error in the discharging time that 

depends on ωc; the higher the value of ωc, the lower the error. In order to have an error lower 
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than the minimum period used later for the reference oscillator of the timer (i.e. 62 ns), fc 

should be higher than 500 kHz at VDD = 5 V, VTL = 1.50 V and R0 = 100 Ω, and higher than 

700 kHz at VDD = 5 V, VTL = 2.42 V and R0 = 100 Ω, which are the two test conditions 

considered in Section 4. Note that a ferrite core or a powdered-iron core generally has an fc 

higher than 1 MHz [24] and, therefore, the effects on the discharging-time measurement are 

expected to be negligible, at least for these ferromagnetic materials. 

4.  EXPERIMENTAL RESULTS AND DISCUSSION 

The direct interface circuit shown in Fig. 1a has been implemented using two commercial 

8-bit CMOS microcontrollers (PIC16F877 and AVR ATmega328P) whose main features are 

summarised in Table I; the output resistance of the digital ports were measured using the 

method proposed in [10]. The PIC ran on a 20-MHz oscillator, but fs was four times lower (i.e. 

5 MHz); an internal prescaler rate of 2 was also used to assess the effects of operating at a 

lower frequency (to be precise, 2.5 MHz). On the other hand, the AVR ran on a 16-MHz 

oscillator providing fs = 16 MHz. The discharging voltage was monitored by a digital input 

(i.e. pin 2 in Fig. 1a) associated with a capture module that automatically registers the value of 

the timer when a falling edge is detected. The inductance values corresponding to Lx (between 

1 mH and 100 mH) were provided by a variable decade inductance box (Metrel MA 2705) 

and the actual value of those inductances was measured by an RCL meter (Philips PM6303A). 

The parasitic resistance (Rx) depended on Lx as [ ] [ ]0.343 0.062 mHx xR LΩ = +  in the range 

from 1 mH to 10 mH, and as [ ] [ ]1.233 0.043 mHx xR LΩ = +  in the range from 10 mH to 

100 mH. The reference inductor had a nominal value of 1.2 mH, but the actual values were 

Lr = 1.192 mH and Rr = 2.415 Ω; note that higher values of Lr (e.g. 10 mH or 50 mH) would 

result in a bulky and expensive component. In order to decrease the effects of quantisation, we 

employed a low-value R0 with a nominal (actual) value of 100 Ω (99.0 Ω). This value of R0 

together with the parasitic resistances were high enough to limit the current sourced/sunk by 
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the digital ports, whose maximum value is 25 mA for the PIC and 40 mA for the AVR. All 

measurements were carried out at room temperature. 

Using the previous components (to be precise, the PIC microcontroller), the transient 

response of the voltage at pin 2 during the discharging-time measurement was acquired by a 

digital oscilloscope, as shown in Fig. 4. In comparison with the theoretical transient response 

represented in Fig. 1b, there was a significant difference at the beginning of the second phase 

since the ESD (Electrostatic Discharge) protection diode embedded into pin 2 became forward 

biased and, then, the voltage was limited to around −0.7 V. However, this is not critical for the 

operating principle of the circuit because the discharging time is measured before the ESD 

diode becomes forward biased.  

The experimental results when measuring inductances from 1 mH to 10 mH are shown in 

Fig. 5 for three different cases: (a) PIC with fs = 2.5 MHz, (b) PIC with fs = 5 MHz, and (c) 

AVR with fs = 16 MHz. Each figure shows the experimental values of *
xL  versus xL , and the 

NLE calculated by fitting a straight line to the experimental data using the least-squares 

method and then expressed as a percentage of the FSS; the value of *
xL represented in Fig. 5 is 

the mean of thirty measurements. The results in Fig. 5 suggest that the effects of quantisation 

predominate over those of parasitic resistances because: (i) the NLE is quite random in terms 

of sign and magnitude, and (ii) the maximum value of the NLE (i.e. 0.70%, -0.23% and -

0.12% in cases (a), (b) and (c), respectively) decreases with the speed of the reference 

oscillator of the timer, which is probably due to the fact that the boundaries in Fig. 3 were 

closer. Since the discharging-time measurement was mainly affected by quantisation, the 

digital number with information about Tx was very stable for a given value of Lx and, hence, 

averaging did not bring any benefit. In such conditions, a resolution of 8, 9, and 10 bits was 

possible using the PIC at 2.5 MHz, PIC at 5 MHz, and AVR at 16 MHz, respectively, for an 

overall measuring time of a few hundreds of microsecond. 
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Figure 6 shows the experimental results when measuring inductances from 10 mH to 

100 mH for the same three cases indicated before. Again, each figure shows the experimental 

values of *
xL versus xL , and the resulting NLE. Unlike what happens in Fig. 5, the results in 

Fig. 6 suggest that the effects of parasitic resistances predominate over those of quantisation 

since: (i) the NLE shows the typical response generated by a quadratic relation, as predicted 

by (12), and (ii) the maximum value of the NLE (i.e. 0.26%, 0.28% and 0.22% in cases (a), 

(b) and (c), respectively) is quite independent of the speed of the reference oscillator of the 

timer. Table II shows, for the three cases under test, the theoretical value of the coefficients of 

the quadratic response obtained from (12) using the data in Table I, and the experimental 

value of those coefficients that result from fitting a quadratic polynomial to the experimental 

data in Fig. 6. The agreement between those coefficients reinforces the idea that the parasitic 

resistances seem to be the dominating error source. Moreover, in such a range of inductances, 

the discharging-time measurement was affected by trigger noise [11] so that the digital 

number with information about Tx had some variability for a given value of Lx. The standard 

deviation of *
xL was about 70 µH for the PIC, which corresponds to an effective resolution of 

10.5 bits for an overall measuring time of a few units of millisecond. For the AVR, the 

standard deviation was higher probably due to a higher level of noise generated by the higher 

frequency of the reference oscillator of the timer. 

5. CONCLUSIONS 

This work has gone a step further in the field of direct interface circuits by proposing, 

analysing and testing a circuit for inductive sensors with a variable self-inductance. The 

proposed circuit uses a low-cost µC to measure the discharging time of two RL circuits 

formed by the sensor inductance, a reference inductor and an external resistor. The sensor 

inductance is then estimated through a single-point calibration that applies such discharging 

times. Two main error sources have been identified: the quantisation of the discharging-time 

measurement and the parasitic resistances of both the inductors and the digital ports of the µC. 
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Experimental results with different commercial µCs at different speeds have shown that the 

effects of quantisation predominate when measuring inductances from 1 mH to 10 mH, 

whereas those of parasitic resistances are more significant from 10 mH to 100 mH. In both 

ranges, however, it is feasible to achieve a NLE lower than 0.3% FSS and a resolution of 

10 bits, which are remarkable values considering the simplicity of the proposed circuit. 
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List of Figure Captions 

Figure 1. (a) Proposed direct interface circuit for an inductive sensor (Lx). (b) Transient 

response of the voltage at pins 1 and 2 when measuring the RL circuit that includes Lx. (c) 

First phase for the measurement of Lx. (d) Second phase for the measurement of Lx. 

Figure 2. Equivalent circuit to analyse the effect of parasitic resistances on the proposed direct 

interface circuit. 

Figure 3. Quantisation effects on the estimation of Lx. 

Figure 4. Experimental transient response of the voltage at pin 2 during the measurement of 

the discharging time. 

Figure 5. Experimental results when measuring inductances from 1 mH to 10 mH using (a) 

PIC with fs = 2.5 MHz, (b) PIC with fs = 5 MHz, and (c) AVR with fs = 16 MHz. 

Figure 6. Experimental results when measuring inductances from 10 mH to 100 mH using (a) 

PIC with fs = 2.5 MHz, (b) PIC with fs = 5 MHz, and (c) AVR with fs = 16 MHz. 

 

List of Table Captions 

Table I. Main features of the microcontrollers used to implement the direct interface circuit 

shown in Fig. 1a. (1) This value has been calculated by (8) assuming R0 = 99.0 Ω. 

Table II. Theoretical and experimental value of the coefficients of the quadratic response that 

relates *
xL  versus Lx for the three cases under test. Theoretical values are obtained from (12) 

using the data in Table I, whereas the experimental ones result from fitting a quadratic 

polynomial to the experimental data in Fig. 6. 



 

 22

Figure 1 
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Figure 2 
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Figure 3 
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Figure 5 
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Figure 6 
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Table I 

Feature PIC16F877 
(Microchip) 

AVR ATmega328P 
(Atmel) 

fs (MHz) 2.5 and 5  16 
VDD (V) 5.06  5.06 
VTL (V) 1.50  2.42 
Rp,1 (Ω) 83.9  26.2 

Rn,3 (Ω) 29.8   23.1 

Rn,4 (Ω) 29.1  23.2 

α (1) (Ω-1) 0.0052  0.0038 
 

 

 

Table II 

 PIC at 2.5 MHz PIC at 5 MHz AVR at 16 MHz 
 Theoretical Experim. Theoretical Experim. Theoretical Experim. 

Constant 
term 0 -0.10 0 -0.01 0 -0.04 

Linear 
coefficient 0.99 0.98 0.99 0.99 0.99 0.99 

Quadratic 
coefficient 2.3·10-4 2.8·10-4 2.3·10-4 3.0·10-4 1.7·10-4 2.2·10-4 
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