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ABSTRACT.  

Identification of activities of daily living is essential in order to evaluate the quality of life both 

in the elderly and patients with mobility problems. Posture transitions (PT) are one of the most 

mechanically demanding activities in daily life and, thus, they can lead to falls in patients with 

mobility problems. This paper deals with PT recognition in Parkinson’s Disease (PD) patients 

by means of a triaxial accelerometer situated between the anterior and the left lateral part of the 

waist. Since sensor’s orientation is susceptible to change during long monitoring periods, a 

hierarchical structure of classifiers is proposed in order to identify PT while allowing such 

orientation changes. Results are presented based on signals obtained from 20 PD patients and 

67 healthy people who wore an inertial sensor on different positions among the anterior and the 

left lateral part of the waist. The algorithm has been compared to a previous approach in which 

only the anterior-lateral location was analyzed improving the sensitivity while preserving 

specificity. Moreover, different supervised machine learning techniques have been evaluated in 

distinguishing PT. Results show that the location of the sensor slightly affects method’s 

performance and, furthermore, PD motor state does not alter its accuracy. 
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1. Introduction 

 

Identification of activities of daily living (ADL) is crucial in order to evaluate the 

quality of life in the elderly and patients with mobility problems such as Parkinson’s 

disease (PD) patients [1]. Among the different ADL, posture transitions (PT), mainly 

sit-to-stand (SiSt) and stand-to-sit (StSi), are specially relevant since they are the most 

mechanically demanding activities and are considered to be a prerequisite of walking 

[2,3]. In the dependency care area, analyzing these transitions could be essential to 

enhance fall prevention [4,5]. In the case of PD, which is the second most common 

neurodegenerative disease after Alzheimer’s disease, PT are affected by motor 

symptoms suffered by patients, such as bradykinesia (slowness of movement) [6], 

dyskinesia (involuntary movements) [7] and freezing of gait [8], among others.  

Several methods have been used in order to study PT, such as electromyography [9-

11], goniometry [3,12], video [13], photography [14] and pressure platforms [15]. Since 

these systems rely on cumbersome, heavy or not wearable instruments, they cannot be 

used in ambulatory monitoring. Nowadays, Micro-Electro-Mechanical-Systems 

(MEMS) technology has opened up the possibility to use smaller and lighter sensors, 

such as miniaturized accelerometers and gyroscopes (inertial sensors). MEMS sensors 

are commonly embedded within wearable devices given their small size and low 

energy consumption [9,10]. This way, inertial sensors based on MEMS are widely used 

to study human movement and PT in particular. Moreover, since they provide a low 

consumption, several hours of monitoring is possible and, consequently, daily life and 

ambulatory monitoring is currently being researched [10,11].  

In PT identification and monitoring, location of the inertial system is one of the most 

important factors involved in obtaining usable results from daily monitoring. In this 

sense, it should be considered that most of current algorithms are affected by the 

location in which the inertial sensor is worn. Given a change in the sensor position or 

orientation, human movement measurements will be affected and, in consequence, 

algorithm results will be altered. One example of this issue was reported by Bachlin et 

al; they reported in [12] that locating an inertial system at the leg improves the 

sensitivity of detecting a PD symptom called Freezing of Gait, contrasting the results 

obtained when the sensor is at the hip. On the other hand, comfort is another relevant 

factor since quality of life assessment involves wearing an inertial system during 

several hours [13]. In this sense, numerous works have analyzed PT locating the sensor 

in different parts of the body. Bidargaggi located an inertial sensor at the waist in order 

to analyze Sit-to-Stand (SiSt) and Stand-to-Sit (StSi) transitions [14] while Najafi placed 

the inertial system at the chest [15]. A headband with an inertial system was used by 

Aloqlah et al. for classifying human postures [16] and Bieber et al. performed a SiSt and 

StSi classifier using a mobile phone within a trouser pocket [17]. Among these different 

positions on which an inertial sensor can be worn, waist is the most comfortable one as 



concluded in a research work in which a questionnaire was responded by elderly 

people [18].  Moreover, waist position enables movement monitoring since waist is 

close to the center of mass of human body and, thus, the most representative part of 

human movement is monitored [19,20]. 

This paper aims to identify PT in PD patients by means of a unique accelerometer 

located at the waist. To this end, movement signals were collected from 20 PD patients 

and 67 users. More specifically, inertial signals from PD patients were collected at 

patients’ home during periods of several hours based on an inertial sensor attached to 

the waist in a lateral position. However, given the duration of the monitoring and the 

anatomic differences among patients, its orientation and location were altered during 

data collection and they were, at least, slightly different among patients. Thus, this 

paper addresses PT detection assuming changes on the sensor placement. More 

specifically, an algorithmic approach is proposed to deal with two different sensor 

positions: on the one hand, anterior-lateral waist location, as shown in the left part of 

Figure 1.1, and, on the other hand, lateral waist, as shown in the right part of Figure 

1.1. Signals employed in this paper belongs to, in the case of PD patients, Personal 

Health Device for the Remote and Autonomous Management of Parkinson’s project 

(REMPARK) [21]. Signals from healthy users were gathered while users performed a 

specific set of activities and with the inertial sensor located at the two positions shown 

at Figure 1.1. 

 

 

Figure 1.1: Orientation of the inertial system 

 

The main goal of this paper is to present a robust algorithm capable to detect and 

identify posture transitions through a sensor placed at any location between the 

anterior and lateral left side of the waist. Therefore, 2 algorithms are compared, the 

first one, which was presented in prior works, was designed for signals obtained from 

the anterior-lateral waist location. This algorithm was tested in 8 PD patients achieving 

high performance results [22].  In this paper, results obtained by this algorithm on the 

set of signals from 20 PD patients and 67 healthy users are compared against those 

obtained by the proposed algorithm. This new algorithm introduces new features and 

a machine learning approach in order to enhance posture transition identification with 



different sensor orientations. Results show that the new algorithm improves sensitivity 

more than 7.5% in respect of the previous work and, moreover, it also provides 

sensitivities and specificities over 88% in both PD patients and healthy users.  

The rest of this paper is organized as follows.  First, related work on PT with MEMS 

based inertial systems is reported. Then, new algorithm proposed for PT identification 

is described. In the fourth section, experiments performed are detailed. Finally, 

obtained results are reported along with discussions and, in the last section, 

conclusions of the work are presented.  

 

2. Related work 

 

Posture transitions have been studied with many different systems, as previously 

shown. However, inertial systems based on MEMS have been the most spread 

approach to study and analyze these movements [23]. In this section, related work in 

the field of posture transitions and human movement activity recognition based on 

MEMS-based inertial systems is described [24].  

In this literature review, two kinds of movements are distinguished. On the one hand, 

it is distinguished static activities or static postures, which are those postures during 

which human movement barely occurs and consist on sitting, lying and standing. On 

the other hand, dynamic postures or activities are those activities in which movement 

occurs, as during walking or posture transitions. Given this two-fold classification of 

human movement, signal analysis performed from inertial sensors is also 

distinguished in this sense. Static signal analysis consists in the analysis of inertial 

signals assuming that the subject measured is in a static posture, so that only gravity 

would be measured by an accelerometer, i.e. ( )2 2 2 2
9,81 / ,x y z

static
a a a m s+ + =  where 

x
a , ya , z

a  are accelerations measured in the three axis of the triaxial accelerometer. On 

the other hand, dynamic signal analysis assumes that a dynamic posture is being 

performed and, then, not only gravity is measured by the accelerometer since 

accelerations due to human movement are also sensed. 

Many studies have examined physical activity recognition by means of static 

analysis. Veltink et al. analyzed static activities with 3 uniaxial accelerometers, 2 of 

them located at the chest and the other one at the leg [25]. Veltink et al. determined that 

it is possible to distinguish different activities evaluating the first-order statistics of 

accelerometer signals. Specifically, it was shown that standard deviation of these 

values enables distinguishing dynamic activities from static activities. Baek et al. 

recognized static activities with an accuracy of 100 % by means of a biaxial 

accelerometer and measuring the relative inclination against gravity placing the 

accelerometer at the waist [26]. On the other hand, Karantonis et al. developed a real-

time classifier with the ability to distinguish various static and dynamic activities. 

Static activities were determined by a reduction of the activity provided by the Signal 

Magnitude Area (SMA) and then the inclination relative to gravity was analyzed. 



Within the static activities, Karantonis et al. obtained 94.1% accuracy 

distinguishing positions just by measuring the tilt of the accelerometer respect gravity 

were shown to be troublesome since they might be easily confused. For example, 

Figure 2.1 shows how the inertial system remains at the same orient

static postures. The same situation would happen in case that the inertial system was 

located at the thigh and the algorithm tried to recognize a Lying posture from a Sit 

posture. In consequence, the 

static postures consists in including more inertial systems. 

reported an accuracy improvement by including more than one sensor

accuracy on detecting ‘Sit’ was obtained, initially, 

was enhanced up to a 99% of accuracy with 4 accelerometers. 

 

 

 Figure 2.1: Posture recognition conflictive cases 
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Within the static activities, Karantonis et al. obtained 94.1% accuracy [27]. However, 

distinguishing positions just by measuring the tilt of the accelerometer respect gravity 

were shown to be troublesome since they might be easily confused. For example, 

Figure 2.1 shows how the inertial system remains at the same orientation in 

static postures. The same situation would happen in case that the inertial system was 

located at the thigh and the algorithm tried to recognize a Lying posture from a Sit 

posture. In consequence, the most common method employed to differentiate 

static postures consists in including more inertial systems. For instance, Gjoreski et al. 

improvement by including more than one sensor

was obtained, initially, with just an inertial system

99% of accuracy with 4 accelerometers.  
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3. Posture Transition Identification Algorithm 
 

In this section, the proposed PT algorithm is described and its different parts are 

detailed in different subsections.  

The proposed PT identification algorithm’s main goal is to ameliorate a prior 

algorithm which employed an inertial system located at the anterior – lateral position 

(AL) [22]. The enhancement consists in enabling the sensor to be additionally located at 

the lateral position since, during long monitoring periods, the movement sensor 

position may vary.  

Signals provided by the accelerometer during a PT in both positions, anterior-lateral 

and lateral (AL-L) positions, differ as shown in Figure 3.1. If the inertial system is 

located in a lateral position, sensor’s orientation before and after a PT might remain 

without change, as shown in Figure 2.1, and, in consequence, the acceleration values 

would measure gravity in the same way (right subfigure in Figure 3.1). On the other 

hand, when the inertial system is located in the anterior-lateral (AL) position, after a PT 

the sensor lies on the abdomen and, thus, its contraction slightly changes the 

orientation of the inertial system in respect of the one it had before the PT.  

 

 

 

Figure 3.1: Posture transitions with different inertial system orientation from a PD 

patient 

 

 



 
Figure 3.2: Posture Transition Algorithm 

 

The proposed approach to identify PT transitions from AL-L positions is shown in 

Figure 3.2. It consists of a hierarchical structure of classifiers comprising: 

• “STFT classifier”, which is in charge of indicating whether a PT has 

occurred or not. 

• “Y classifier”, which indicates whether a person has its trunk in a 

vertical direction (Sit or Stand Posture) or, otherwise, the person is in a prone 

position (Bent, or Lying). In the schema, ‘Posture’ variable corresponds to this 

position, so that it has a value of ‘0’ in case the person is sitting, a value of ‘1’ 

when the person is stand, ‘2’ when the person is lying and ‘3’ when the person 

is bent. 

• SiSt-StSi classifier is a SVM-based classifier which determines whether a 

StSi or SiSt PT has occurred. Given the differences between both PT, the input 

of this SVM is set to represent the signal’s shape in the most relevant axis. 



 

Following the hierarchy of classifiers, when a window acquisition is completed, a 

STFT is firstly performed in order to consider whether a PT has occurred or not. Then, 

YW (window average value of Y axis) is analyzed.  

The rest of schema’s decisions are based on previous states determined by ‘Posture’ 

variable, which must be initialized to a given value since the accelerometer signals 

might be similar if the person is either standing or sitting. This variable designates the 

‘static’ posture and only a change on Y axis or a STFT may modify this value. If the 

user was previously in a ‘Stand’ position, and a ‘Bent’ condition is satisfied, it means 

that a ‘Bend Down’ PT has been performed. However, if the person was in a ‘Sit’ 

posture, the PT has been, then, ‘Lying’. In the same way, if the person was Lying and 

YW indicates that the person has recovered the verticality of the trunk, the PT has been, 

in this case, ‘Lying to Sit’. On the other hand, if the person was ‘Bent’, the person is 

now ‘Stand’. However, if YW does not vary and indicates the person’s trunk is vertical, 

a ‘SiSt’ or ‘StSi’ PT has occurred and the SiSt-StSi classifier is executed. Though, if the 

person remains in a prone position, there may have been a change of orientation while 

sleeping. In this case, no action is carried out.  

Bending and lying postures, determined by vertical tilt, affect the Y axis 

independently of the sensor waist location. Thus, in respect of the previous AL 

algorithm, the identification of these two postures assuming AL-L positions remains 

unaffected. However, ‘Stand’ and ‘Sit’ postures detection is different since their 

transitions, as shown in Figure 3.1, are altered. To this end, a machine learning 

technique has been introduced in the AL-L approach. Another relevant difference of 

the new approach consists in the data employed. In prior works, experiments were 

performed under controlled conditions and the training data employed were gathered 

from healthy volunteers. On the contrary, the presented algorithm has been trained 

only with PD inertial data and with real life conditions, that is to say, in their homes.  

Next subsection describes more concretely the different parts in which the approach 

is divided. 

 

3.1 STFT classifier 

  

The STFT classifier determines whether a person has performed a PT. A posture 

transition is considered as the movement during which a person’s posture changes. 

This movement is detectable based on a STFT in which provides the repeatability of a 

signal during time [22]. The STFT, in contrast to the Fast Fourier Transform, is 

characterized by the analysis of the signal in a finite window of time. The discrete STFT 

is defined as: 
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where k is the harmonic for which the STFT is computed, m is window length being 

[ ]x n  the discrete signal to be transformed (x, y and z) and [ ]w n m−  is the window 

function in which the accelerometer samples belonging to this window are evaluated.  

 

Let ( ),XZ m w  be the sum of the amplitudes of the harmonics under 0.68Hz without 

considering the DC component (k=0) for x and z axis of the accelerometer: 
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F  is the sampling frequency and ·  is the integer part of a 

real number. 

Then, a PT event is determined based on: 
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where STFTth is a threshold for the value computed from which a PT is considered to 

occur. Hence, and according to Najafi et al., a relevant frequency response below 0.68 

Hz indicates that a PT has occurred [15]. 

 

3.2 Y classifier 

 

On the other hand, the Y classifier determines the verticality of the trunk and is based 

on the average analysis of the accelerometer vertical axis at window-level 

y
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∑
, where n is the number of window samples. This value ( W

Y ) is 

compared to a previously set threshold (Yth) and to 1W
Y −  in order to assess the 

evolution and, in consequence, determine, if necessary, the performed PT. Equation (4) 

shows the different results for the analysis of W
Y . 

  

 

1

1

1

, , , ,          ( )  

  ,                  ( )  
 

 ,   ,                 

  ,   ,        

W W

W W

W W

W

Stand Sit SiSt StSi if Y Y Yth

Bent or Lying if Y Y Yth
Posture

Bend up Lying to Sit if Y Yth Y Yth

Bend down Sit to Lying if Y Yth

−

−

−

∧ >

∧ <
=

> ∧ <

< 1

  

WY Yth−






 ∧ >

 (4) 

 

The final posture depends on the variable ‘Posture’ but, in the case of satisfying 

conditions 1( )
W W

Y Y Yth−∧ >  and ( ),  XZ m w STFTth> , the SiSt-StSi classifier must be 

executed. 



 

3.3 SiSt-StSi classifier  

 

The SiSt-StSi classifier determines which PT has occurred, either a StSi or a StSi PT. 

As Figure 3.1, signals obtained in the lateral position are very similar for both PT. In 

order to distinguish among them, a machine learning technique is employed. The input 

of this machine learning technique consists of the following input vector: 
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Ta  and y

Ta  are vectors composed of accelerations measurements from X and Y 

axis and T is the period during which signal samples must be used. W
XZ  is defined as 
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lateral accelerometer sample values, respectively, at sample i, while W is the current 

analyzed window. 

The period to analyze is determined as 

, ,  such that  (I)  , ,(II)  1.5·  
r s

t t r s r s windowlength… ∈ = −  N   , (III)  s  is the ending 

sample of the window currently being analyzed and (IV)  r  is the sample belonging to 

the first sample of the prior window. Since window length is set to 128 samples, 

, ,
r s

t t…  comprise 192 samples, which cause a large number of inputs to the machine 

learning classifier. Once a method is chosen to classify SiSt and StSi, the model should 

be optimized. To lighten the computational burden, vector i
x  with 1 2·( 1)s r+ + −  

samples has been resampled to have length 1 2·  P+  where P is the number of samples 

after resampling x

ia  and y

ia . The effect of altering the value P in terms of accuracy is 

shown in section 5.  
 

 

3.4 Anterior-Lateral Algorithm 

 

The prior work, had as a main goal the detection and identification of different PT 

with the sensor located at the anterior-lateral waist position shown in Figure 1.1 [22]. 

The algorithm was named as anterior-lateral algorithm (AL). This algorithm is the 

same shown in Figure 3.2 but, however, the SiSt-StSi classifier based on machine 

learning techniques is substituted by the following condition: 
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where XZth threshold was set at 1.5. This condition relies on the variation of signal 

between the X axis and the Z axis when a StSi or SiSt PT is executed as shown in Figure 

3.1. Parameters which took part in this algorithm were trained with a dataset achieved 

from healthy users. However, evaluation was performed over PD patients, achieving 

high accuracy results.  

The AL algorithm is compared in this paper against the proposed AL-L algorithm 

using a given set of signals. This way, optimal parameters obtained with a fixed 

location inertial system will be compared to results achieved from an algorithm which 

works in optimal conditions in the left side of the waist. 

 

 

4. Experiments 

 

In this section, experiments performed to select the different classifiers that 

comprise the hierarchical structure of classifiers belonging to the AL-L and AL 

algorithms are reported. First, the data capture process is presented and, then, the 

training process is described.  

 

4.1 Dataset description 

 

Two signal databases have been used to evaluate both AL and AL-L algorithms. The 

first one was gathered from healthy volunteers (from now on D1) while the second one 

(from now on D2) was collected from PD patients.  

In this paper, it is considered that a Lying state or a Bending state is not dependent 

on the PD motor state and only depends on trunk’s tilt relative to gravity. In 

consequence, sensor’s orientation is not important in the anterior – lateral plane. Thus, 

and since some posture transitions were not obtained at D2 database performed by PD 

patients, i.e. Bending Down, Bending Up, Sit to Lying and Lying to Sit , these PT are 

evaluated with D1 database. This way, signals obtained from D1 users were used to set 

Yth and signals gathered from PD patients (D2) were employed to set STFTth and to 

train the SiSt-StSi classifier. 

D2 database is a subset of the signals collected within REMPARK project 

(http://www.rempark.eu) and has been built with the collaboration of 4 different 

hospitals: Maccabi Healthcare Centre (Israel), Fundazione Santa Lucia (Italy), National 

University of Galway (Ireland) and Centro Médico Teknon (Spain). Signals were 

collected from patients diagnosed with PD and with at least 2 points of Hoehn & Yahr 

Scale in a scale from 0 to 5 [30]. For this experiment, 20 patients (14 men, 6 women) 

have been selected with an average Hoehn & Yahr scale of 2.93 and a standard 

deviation of 0.37 points. Mean age of patients is 72.7 years old with a standard 

deviation of 5.1 years old. All patients performed the test protocol twice, being under 



the effects of the PD medication and without. All patients were in their homes wearing 

an inertial system called 9x2 [31]. PD patients have performed a total of 235 StSi PT and 

a total of 221 SiSt PT.  

Regarding the location of the sensor at the D2 database, from the 38 sets of inertial 

signals obtained from 20 PD patients (2 patients did not perform the second test), 17 

inertial signals were captured with the inertial system located at a lateral location and 

19 inertial signals were taken with the inertial system at the anterior-lateral location, 

and, finally, 2 inertial signals were taken from an anterior location. 

The inertial system employed to acquire inertial data contains an accelerometer 

(LIS3LV02DQ) and a dsPIC33F. Acquired data are stored in a µSD card at 200Hz. The 

inertial system’s size is 77x37x21 mm3 and it weights 78g [31]. All test protocols were 

video recorded in order to have a visual gold-standard. 

D1 is composed of two groups of data collected. The first group of signals (from 

now on D11) was collected from users who wore the inertial system at the anterior – 

lateral position, and the second group (D12) from users who wore the system at the 

lateral position. The first group is composed of 36 healthy volunteers (22 men and 14 

women, ages from 21 to 56 years old, mean age of 35.77 and standard deviation of ± 

9.58). The second group is composed of 31 healthy volunteers (15 men, 16 women, ages 

from 23 to 53 years old, mean age of 35.32 and standard deviation of ±7.668). The 

protocol test on both groups consists in performing different activities, in which 

Bending and Lying PT are the analyzed PT. Table 1 shows the number of PT 

performed in this second database.  

 

Table 1. Second dataset’s number of events  

Posture Transition 
Number of events D11 

(anterior-lateral location) 

Number of events D12 

(lateral location) 

Sit to Lying 72 63 

Lying to Sit 72 63 

Bending Up 65 62 

Bending down 65 62 

 

This dataset has also been video-recorded having a visual gold-standard to correctly 

label data. 

 

4.2 Training and evaluation methodology  

 

In this section, the preprocessing methodology and classifier trainings and 

evaluations are detailed. Before treating inertial signals, they are pre-processed by, 

first, resampling at 40 Hz, since this frequency has been shown enough to analyze 

human movement [32]. Then, inertial signals are filtered in order to remove noise and 

communication data errors. The employed filter is a 2nd order Butterworth low-pass 



filter. Moreover, the inertial signal is windowed in 128-sample windows and 

overlapped at 50%, in order to any loss of events information between consecutive 

windows. With a 128-sample window length and a sample frequency of 40 Hz, a 

window of 3.2 seconds is suitable to analyze PT, since SiSt and StSi PT last about 3 

seconds according to Kralj et al. and Kerr et al. [3,33].  

 

4.2.1 SiSt-StSi detection 
 

In this paper, 6 different classifiers have been tested to distinguish SiSt from StSi PT. 

In order to evaluate these classifiers, a 10 fold cross validation has been performed and 

the accuracy achieved by each classifier has been obtained in order to establish the 

selected one.   

First, Artifical Neural Networks (ANN) have been used [34]. ANN establishes a 

mathematical relation between the outputs and the inputs and one of the most used 

methods in activity and posture recognition is the Multilayer Layer Perceptron [35], 

which is the employed method in the present work and it is trained by means of the 

backpropagation algorithm with three different learning rates. Second, K-Nearest 

Neighbor has been used [36], which employs the geometrical distance between the 

different patterns with respect of the different class centroids to assign a class to a 

pattern. Several values for the number of centroids (K) have been tested in order to 

obtain the best one. Values K=3,10,20,…,50 have been used. The third method used is 

Naïve-Bayes, a probabilistic classifier based on the estimated conditional probability 

obtained through Bayes rule. This method has been shown to be a good classifier in 

activity recognition problems [28]. Logistic Regression and Random Forest have also 

been tested due to its effective functioning in some works [37,38]. Finally, SVM’s with 4 

kernels (Linear, Radial Basis Function, 2nd-order and 3rd order Polynomial) have been 

employed. 

SVM’s are a kind of machine learning techniques that map input vectors (

, 1 )N

ix i l∈ ≤ ≤R  to a higher dimensional feature space by ( )
i

xϕ . A hyperplane is 

built in order to separate the 2 classes, represented by { }1, 1
i

y ∈ − . The constructed 

hyperplane maximizes the classification margin, which, at the same time, maximizes 

the Vapnik-Chervonenkis dimension [39]. The optimal hyperplane is defined 

according to the following optimization problem: 

 ( ) ( )( )
1 , 1

1
    · ,

2

l l

i i j i j

i i j

maximize W y y Kα α α α
= =

= −∑ ∑ i jx x  

      0 ,  1, ,
i

Subject to C i lα≤ ≤ = …  
(8) 

 

in which C is the trade-off between balance and misclassification error and the kernel 

function ( , )K i jx x  replaces the dot product ( )· ( )
i j

x xϕ ϕ .  

Given that C and the kernel-dependent parameter values must be tuned, a sweep of 

values are tested through a 10-fold cross-validation method in order to obtain the final 



SVM model. Moreover, given that SVM are easily implementable within a 

microcontroller as shown Boni et al. [40] and the amount of memory and the prediction 

time needed by SVM depend on the number of support vectors, in this paper, support 

vectors have been minimized in order to lighten computational burden. Each 

combination of parameters provides an average accuracy and number of support 

vectors. The selected parameters are those which provide an accuracy higher than 

max(SVM model accuracy)-5% and, among them, the minimum number of SVs.  

All classifier models are compared based on their accuracy and, then, the best model 

is evaluated within the AL-L algorithm. A total of 20 iterations are performed to train 

and evaluate SiSt-StSi classifier with different datasets in order to evaluate its 

capabilities on identifying PT. In each iteration, from the 20 PD patients, signals from 

10 of them will be randomly chosen to train the classifier, and the remaining signals 

will be used to evaluate the obtained model. Within the AL-L algorithm, this classifier 

is also evaluated along the STFTth as explained in the next section. 

 

4.2.2 Yth and STFTth threshold tuning 
 

Thresholds described in Section 3 that allow determining some postures are set 

through SVM’s using a linear kernel ( ), ·i j i jK x x x x= , in which the margin found that 

separates classes 1 and -1 is the chosen threshold, since 
i

x  are actually scalar values.  

The training set to determine Yth threshold is formed by 80 PT (40 PT from D11 and 40 

PT from D12). On the one hand, output SVM labels 1
i

y =  will be all those windows 

where the label indicates bending state or lying state. On the other hand, output labels 

1
i

y = −  will be those windows indicating sit or standing postures. Results of training 

40 PT from D11 and 40 PT from D12 will be evaluated at its respective datasets. The 

expected trained value for both datasets should be similar, since bending postures and 

lying postures are only dependent on the Y axis. 

The second threshold (STFTth) is trained and evaluated only with PD patients 

according to the same methodology followed by the AL-L algorithm, setting and 

evaluating it 20 times. This threshold, along with the established rules at the 

hierarchical structure of classifiers, works as a filter to the SiSt-StSi classifier since only 

those windows that meet the condition of this threshold are evaluated by the SiSt-StSi 

classifier. 

 

 

5. Results and Discussion 
 

In this section, results obtained are reported. First, the SiSt-StSi classifier results are 

reported with different machine learning techniques. Second, the 10 fold cross-

validation results are described and discussed comparing PD patients in ON and OFF 

state and the localization of the inertial system. Then, the classifier model is explained 



regarding the number of support vectors and input vectors. Afterwards, results of Yth 

are analyzed and evaluated with a random set of healthy volunteers. Finally, results of 

SiSt and StSi employing the AL and AL-L algorithm are shown and discussed.  

 

5.1 Machine learning techniques results in SiSt-StSi classifier 

 

Table 2 shows the results achieved after applying the previously described methods 

to the inertial signals obtained from 10 randomly chosen PD patients.  

 

Table 2. Different machine learning techniques applied to SiSt-StSi classifier 

Machine learning technique Main parameters Accuracy obtained (%) 

K-NN 

K=3 95 

K=10 93.125 

K=20 94.375 

K=30 93.125 

K=40 91.875 

K=50 91.25 

Random Forest     93.75 

Logistic Regression     93.125 

Naive-Bayes     95.125 

Neural Networks 

Learning rate:  0.3 95.625 

Learning rate:  0.5 96.25 

Learning rate: 1 96.25 

SVM with linear kernel C: 100 96.25 

SVM with 2nd-degree polynomial kernel C: 10 97.5 

SVM with 3rd-degree polynomial kernel C: 10 73.125 

SVM with RBF kernel C: 10 σ: 0.001 98.75 

 

Results show that the best classifier is the SVM with RBF kernel with almost a 99% 

of accuracy. SVM classifiers maximize the margin between classes, and, with the RBF 

kernel, they allow a higher generalization which fits better to the dataset used. The rest 

of machine learning techniques only minimize the empirical risk, this is to say that, in 

the evaluation of new data, the probability to decrease accuracy results is higher than 

SVM. SVM model with 2nd-degree polynomial kernel provides the closest result 

(97.5%). The K-NN algorithm, provides a descendant accuracy as K increases. This can 

be justified as the effect of overtraining. Logistic Regression, Random Forest and 

Naïve-Bayes provide a reduced accuracy compared to SVM with RBF kernel (~5% less). 

On the other hand, ANN accuracy results are slightly lower by reaching 96% of 

accuracy at a learning rate of 0.5.  Due to the results obtained, SVM with RBF kernel is 

selected to be the machine learning technique that performs the SiSt-StSi detection. 

  



5.2 Motor state and location analysis 

 

In this section, the influence of the motor state of PD patients and the location of the 

inertial system when a PT is detected has been measured. Table 3 shows the results 

obtained in this section.  

In order to observe the influence of the motor state on PD patients, a 10 fold cross-

validation has been applied, firstly with PD patients who are in ON state (under the 

effect of PD medication and with a good motor control) and in OFF state (with a lack of 

medication effect and an altered motor control). The machine learning technique 

applied has been the one that better classifies SiSt from StSi PT’s. This evaluation 

shows an accuracy of 97.6% for OFF states and 98.5% for ON states. This way, the SiSt-

StSi classifier provides similar results in spite of the PD motor states in which patients 

were. A similar conclusion was obtained in a previous work in which a single location 

was evaluated [41], where a PT identification algorithm was trained with data from 

healthy users and was evaluated with signals acquired from PD patients, achieving 

results of sensitivity and specificity above 97% and 84% respectively.  

Another parameter evaluated has been the location of the inertial system. Among 

the different tests performed by the 20 PD patients in ON and OFF states, a total of 15 

tests were done with the inertial system worn at a lateral position, 12 tests were 

executed with the system located at an anterior-lateral position and, finally, 13 tests 

were carried out with system between both placements. The impact of the sensor 

location on detecting PT has been evaluated based on a 10 fold cross-validation with 

the selected SVM (RBF kernel). The SiSt-StSi classifier achieves an accuracy of 99.05% 

to those tests in which the system was worn in an anterior-lateral position, a 95.5% of 

accuracy is attained in those tests where PD patients wore the system in a lateral 

location, and an accuracy of 96.86% is obtained at the rest of the tests. The descend of 

accuracy achieved in a lateral position reflects the complexity of classifying SiSt from 

StSi with the inertial system located in a lateral position, as shown Figure 3.1. 

 

 

 

 

Table 3. Motor state and location analysis results 

 

Motor State Location analysis 

  ON state OFF state 45 degrees 60 degrees 90 degrees 

Accuracy obtained (%) 97.6 98.5 99.05 96.86 95.5 

 

 

5.3 Classifier optimization 

 

Once the classifier model is selected, it might be optimized in order to lighten the 



computational burden. In this case, SVM with RBF kernel is chosen and, thus, the 

number of support vectors and number of elements of the input vector should be 

reduced. 

After selecting the SVM model parameters, the obtained model is trained again for 

values P=2, 4,…, 30. Hence, 15 new SVM models are obtained and the finally chosen 

model is the one which minimizes ·(1 2 )
P

SV P+  having an accuracy higher than 

max(SVM_model_accuracy)-2%, where P
SV  is the number of support vectors of the SVM 

model obtained.  

 Figure 5.1 shows the accuracy and the number of SV obtained for a given training 

data. As it is shown, in this case, the final SVM model chosen has an accuracy of 95.2%, 

and, 23 support vectors being P=6, meaning that the input vector length 
i

x  is 13. As 

shown in Figure 5.1, the number of support vectors needed to keep a high accuracy is 

rather high having few elements for the input vector, however, when the input vector 

contains a significant number of elements, the number of support vectors increases due 

to the burden computation provoked without achieving higher accuracies. Therefore, 

the chosen model (highlighted zone) minimizes the number of inputs and support 

vectors while maximizes the accuracy. Note that previous machine learning 

techniques, including the SVM analysis, have been performed with P=385, which is 

difficult to implement within a microcontroller due to a high computational burden. 

 

 
Figure 5.1: Example of SVM model selection according to parameter P, number of 

Support Vector and accuracy 

 

5.4 Yth evaluation 

 

Parameters employed to evaluate Yth are Sensitivity = 
TP

TP FN+
 and Specificity = 

TN

TN FP+
, in which TN, TP, FN and FP are, respectively, True Negative cases, True 

Positive cases, False Negative cases and False Positive cases. A TP is considered as Y 

change correctly detected. A TN is a period of more than 10 seconds correctly rejected. 

A FP is a Y change event incorrectly detected, and a FN a PT incorrectly rejected. 



Table 4 presents the results achieved after training Yth. Yth obtained for D11 is 5.35m/s2 

and for D12 is 5.15m/s2, which and has been evaluated with 31 patients from D11 

dataset and with 26 patients from D12 dataset. In this table, ‘BD’ denotes Bend Down, 

‘BU’ indicates Bend Up, ‘SL’ is Sit-to-Lying, and ‘LS’ signifies Lying-to-Sit.  

 

Table 4. Yth evaluation results 

 

 BD(D11) BU(D11) BD(D12) BU(D12) SL(D11) LS(D11) SL(D12) LS(D12) 

Sensitivity 0.88 0.95 1 0.99 1 1 1 0.99 

Specificity 0.99 0.99 0.96 0.92 1 0.99 1 0.98 

 

5.5 AL and AL-L algorithm evaluation 

 

After setting Yth threshold at 5.25m/s2, 20 iterations are performed where the STFTth 

threshold and the SiSt-StSi classifier are trained with 10 randomly chosen PD patients. 

The AL-L and the AL algorithms are, then, executed with the new parameters along 

the remaining 10 patients, randomly chosen for evaluation purposes. STFTth can be 

averaged to 3.5. 

Results obtained with both algorithms are shown in Table 5 and 6. The training set 

and the evaluation set has been performed exclusively with PD patients wearing an 

inertial system at the left side of the waist. It is observed that, although AL presents 

specificities slightly higher than those provided by AL-L, AL-L sensitivities are clearly 

higher than the obtained by the AL algorithm approach. 

 

Table 5. AL algorithm results 

 Stand to Sit Sit to Stand 

Sensitivity (%) 83.88±3.11 81.48±2.93 

Specificity (%) 96.2±0.84 93.45±0.87 

 

Table 6. AL-L  algorithm results  

 Stand to Sit Sit to Stand 

Sensitivity (%) 88.48±3.61 92.26±2.18 

Specificity (%) 95.51±2.02 88.21±1.79 

 

The AL algorithm SiSt-StSi classifier relies on a relation between 2 axes (X and Z), thus, 

the PT is easier to detect if the relation ( )W WX Z∆ −  is high. However, this algorithm is 

tested in PD patients who wear the sensor in any place at the left side of the waist, 

between the anterior and lateral location. In consequence, this relation is not relevant 

when the inertial system is worn at the lateral of the waist as shown in Figure 3.1. 

Therefore, sensitivity values are lower than specificities, since many FN are obtained. 

In the case of AL-L, sensitivity values are improved more than a 7.5% in average, since 

not only the ( )
W W

X Z∆ −  relation is analyzed but also the signal shape, since X and Y 



axes are also part of the classifier input vectors and, therefore, a more complete 

analysis is performed on the PT.  

Specificity values obtained by AL-L algorithm are also relevant since they are above 

88% although it is lower than the obtained by the AL algorithm. This could be 

explained by the rebounds in the signal obtained when this PT is executed. Often, a PD 

patient does not stand up in a single movement and some attempts are performed 

before eventually standing up. Equation (6) may reject these attempts since rebounds 

do not provide a high value at  ( )
W W

X Z∆ − . However, the waveform can be similar to 

a SiSt PT and, thus, some FP are produced in the case of the AL-L algorithm.  
 

6. Conclusions 

    

Posture transitions are an important activities of daily living and monitoring them is 

potentially useful to evaluate the quality of life of people with dependency. In this 

paper, a real-case scenario in which PD patients are monitored with an inertial sensor 

for several hours is considered. In this long monitoring periods, the inertial system, 

which incorporated a triaxial accelerometer and a µSD card in which signals were 

stored, was worn in the waist at different positions, from the left lateral side until the 

left anterior-lateral location. An algorithm called AL-L has been purposed to deal with 

the identification of posture transitions with a sensor located on these different 

positions.  

AL-L algorithm enhances a previous algorithm (AL), given the changes observed in 

Stand-to-Sit and Sit-to-Stand transitions in the different locations described. In this 

paper, the AL-L and the AL algorithms have been tested on signals obtained from a 

total of 20 PD patients at their homes twice. The first time the patients were under the 

effect of PD medication (ON state) and the second one without the effect (OFF state). 

To complement the evaluation of both posture transition algorithms, signals from 67 

healthy users have been evaluated in order to analyze bending and lying.  

In order to select an optimal classifier for the AL-L algorithm, different machine 

learning techniques have been tested and their performances compared. Moreover, 

different groups of PD patients have been evaluated according to the motor state and 

the location of the inertial system. It has been observed that location of the system 

slightly affects the accuracy of the classifier, being the lateral position the most difficult 

one. However, the motor state does not affect to the classifier performance.  

AL-L and AL algorithms have been tested with the same parameter values, being 

the main difference the inclusion of a SiSt-StSi classifier. Both algorithms have been 

evaluated 20 times with different evaluation sets. Results provided by the AL-L 

algorithm showed a significant increase in sensitivities (7.5% in average) against a 

slightly descent at specificity (3% in average) compared to the AL algorithm results. 

However, results at AL-L algorithm keeps values over 88% at both sensitivities and 

specificities identifying SiSt and StSi PT. On the other hand, the AL algorithm has 

sensitivities of 81.5% and 83.9%.  



Further work consists in the real-time implementation of the AL-L algorithm, since 

it has been optimized to identify PT by minimizing the number of support vectors. A 

real-time validation of the algorithm is also necessary in order to confirm the well 

performance of the algorithm. 
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Highlights 

 

 

• Posture Transition identification is performed by means of a tri-axial 

accelerometer located in the waist. 
• A hierarchical structure of classifiers allows to determine the human posture. 
• SVM techniques have been used to set parameters of the algorithm. 
• The algorithm allows different locations along waist’s left side.  
• The algorithm is focused on Parkinson’s disease patients. 

 
 

 




