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Abstract

This paper proposes a solution to the problem of grasp analysis and synthe-
sis of 2D articulated objects withn links considering frictionless contacts. The
boundary of each link of the object is represented by a finite set of boundary points
allowing links of any shape to be considered. Grasp analysisis carried out to verify
whether a set of contact points on the object boundary allowsa force-closure grasp,
while the goal of grasp synthesis is to determine a set of contact points that allows
a force-closure grasp. The paper describes the process of finding the elements of
the generalized wrench vector generated by a force applied to any link of the ar-
ticulated object and a procedure to search for a force-closure grasp based on these
generalized wrenches. The approach has been implemented and some examples
are included in the paper.
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1 Introduction

The majority of robots used in industry, at home, at school, or in research carry out ac-
tivities or operations which require grasping, fixing or manipulating objects of different
shapes and sizes. Moreover, many of these objects may be articulated, i.e. composed of
rigid links connected by joints or hinges, such as scissors,staplers, doors, laptop com-
puters, pliers, truck toys and some cell phones. The goal of agrasp is to constrain the
object degrees of freedom despite the possible presence of external force disturbances
(see [1] for a survey on grasping).

Typically, a grasp must satisfy one of the following properties: a) force-closure
(hereafter FC), which means that the forces applied by the fingers ensure object immo-
bility; or b) form-closure, which means that the finger contact positions on the object
boundary ensure object immobility [2]. In the case of a 2D rigid body with three
degrees of freedom grasped by fingers pressing the object at punctual contacts, four
fingers are necessary to ensure an FC grasp if the contacts arefrictionless while only
two fingers may be enough if the contacts are frictional. Regarding form-closure im-
mobilization, since the fingers have fixed positions and do not push against the object,
friction is not relevant and four punctual contacts are always necessary. It must how-
ever, be remarked that when the object has rotational symmetry, frictionless contacts
do not allow its immobilization. A detailed discussion about the number of contact
points necessary for each case can be found in [3] [4].
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Several works deal with FC grasps of 2D objects, both polygonal objects with three
frictional contacts [5][6] and four frictionless contacts[7][8], and non-polygonal ob-
jects with four frictionless contacts [9] and three frictional contacts [10]. The problem
has also been adressed for 3D objects, both polyhedra with three [11] and four [12]
frictional contacts and objects of any shape with seven [13]frictionless contacts and
three [14][15] and four [16] frictional contacts.

Nevertheless, the majority of the work done in the area of object grasping and fix-
turing was centered on 2D or 3D solid object while grasp and manipulation of non-rigid
objects were lees common. For instance, there are works dealing with the immobiliza-
tion of deformable 2D objects using two frictionless [17] and two frictional [18] con-
tacts. There are also works dealing with the immobilizationof non-stretchable cloth
polygons [19], showing that it is necessary to pin all the convex vertices plus no more
than one-third of the concave vertices for simple polygons,or plus no more than one-
third of the concave vertices and two additional pins per hole for polygons with holes.
Dealing with grasping and fixturing of articulated objects,the topic o this paper, there
are relevant works based on the use of spatial operator algebra algorithms for mod-
eling and dynamic analysis of multiple parallel manipulators grasping an articulated
object [20], interactive perception algorithms [21] or an occlusion aware reconstruc-
tion system [22] to acquire a model that enables the manipulation of articulated objects
by a robot. Although these works proposed approaches to the grasping and manipula-
tion of articulated objects, they did not present a systematic procedure to find a set of
points on the object boundary that allow an FC grasp or a test to check whether a given
grasp is FC.

Regarding immobilization by frictionless contacts of a 2D serial chain withn poly-
gons linked by joints with one degree of freedom, it was determined that the number
of sufficient contacts is:

• Polygons without parallel edges [23]:n+2 contacts ifn 6= 3, andn+3 contacts
otherwise.

• Polygons with parallel edges [24]:n+ 2 contacts ifn is even, andn+ 3 if n is
odd.

In order to achieve robust immobilization (i.e. any contactcan be perturbed slightly
without loss of the immobilization) when these chains haven ≥ 6 polygons, the fol-
lowing strategies were used [23] [24]:

• Polygons without parallel edges: the chain is divided into sets of five polygons
starting from one end of the chain until at most five polygons are left. Then, each
group of five polygons is immobilized with six contacts with the arrangement
(0,0,3,0,3), which means 0 contacts in the first, second and fourth polygons,
and three contacts in the third and fifth polygons. The remaining polygons are
immobilized with a number of contacts that depends on the number of remaining
polygons.

• Polygons of any type (i.e. they may have parallel edges): thechain is divided into
sets of four polygons until at most four polygons are left. Then, each group of
four polygons is immobilized with five contacts using the arrangement (0,0,3,2),
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which means zero contacts in the first and second polygons, three contacts in
the third polygon and two contacts in fourth polygon. The remaining polygons
(except if these are three of them) are immobilized as above described for chains
of polygons without parallel edges. If three polygons are left, they are com-
bined with the last quadruple and robustly immobilized withthe arrangement
(4,0,0,4,0,0,4), i.e. four contacts in the first, fourth andseventh polygons, and 0
contacts in the second, third, fifth and sixth polygons.

More recently, based on second-order effects, the upper bound was demonstrated
to ben + 2 for any chain ofn 6= 3 hinged polygons without parallel edges. In any
case,n+ 3 frictionless contact points are always sufficient to immobilize any chain of
n polygons [25].

In this work, we focus on general FC grasps of 2D serial articulated objects withn
links andm = n + 2 degrees of freedom (dof ) considering the minimum number of
frictionless contactsk = m+1 = n+3. We first deal with the problem of determining
whether a given set of contact points on an articulated object allows an FC grasp, and
second with the problem of finding FC grasps. In latter, a random initial grasp is found,
and if it is not FC, then the contact points are iteratively changed to search for an FC
grasp.

The algorithms developed here are based on the work by Roa andSuárez [13], ex-
tending it to the case of articulated objects. Both in grasp analysis and grasp synthesis,
the generalized force vector plays a relevant role.Thus, a procedure to find a proper
representation of this vector is presented.

The contribution of this work is a systematic procedure to analyze and synthesize
FC grasps of articulated objects using a generalized wrenchspace. The grasping device
is not considered, unlike in [26][27][28] for rigid objects. Hence, in the grasp synthesis
the proposed contact points may not be reachable by certain type of robotic hands, but
they are always useful for object fixturing in industrial applications.

The rest of the paper is structured as follows. Section II provides an overview of the
problem, including the main assumptions. Section III presents a procedure to find the
vector elements of generalized wrenches for an articulatedobject withn links. Section
IV details an analysis to determine whether a given set of contacts points allows a FC
grasp. Section V describes the algorithm to find an FC grasp. Section VI shows some
examples of the proposed approach. Finally, Section VI presents some conclusions and
proposes future work.

2 Problem Definition and Assumptions

Consider a 2D serial articulated object withn links and rotational joints, as illustrated
in Fig. 1. The problems to be addressed are as follows:

• Determination of whether a given set of contact points on thesurface of the links
allows an FC grasp of the object, i.e. they allow the immobilization the object,
including the internaldof, in the presence of external perturbations.

• Search for a set of contact points on the surface of the links that allows a FC
grasp.
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Figure 1: Articulated object withn links (a generic forcef i,j acting on a pointpi,j is
represented on each linki).

The following assumptions are considered:

• The links are connected by rotational joints.

• The links can overlap each other. This does not pose any problem.

• The boundary of each link is represented by a (large enough) set Ω of points
described by position vectorspi,j (therefore, the proposed approach is valid in-
dependently of whether the links are polygonal or non-polygonal).

• The normal direction̂ni,j pointing towards the interior of the object at each point
pi,j is known.

• The contact points between the fingers and the object are frictionless. This en-
sures a worst-case grasp, because the existence of frictionin real cases will in-
crease grasp robustness.

3 Generalized wrenches for articulated objects

3.1 Generalized wrenches for a rigid body

Consider a coordinate system at the center of mass (COM) of the object used to de-
scribe the positionspi of the contact points. A forcef i applied to the object atpi

generates a torqueτ i = pi × f i with respect to COM;f i andτ i can be grouped in a
wrench vectorwi = (f i, τ i)

T . For frictionless grasps, forces can only be applied in
the direction normal to the object boundary. Thus, the wrench vector is given by

wi =

[

f i

τ i

]

=

[

f i

pi × f i

]

= fi

[

n̂i

pi × n̂i

]

(1)

with fi being the magnitude off i.
A grasp defined by a set ofk frictionless contacts,G = {p1, ...,pk}, is able to apply

k wrencheswi to the object that can be grouped in a wrench setW = {w1, ...,wk}.
The information inW is sufficient to analyze whetherG allows a FC grasp, which can
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now be formally defined as a grasp able to apply forcesf i producing wrencheswi that
counterbalance any perturbationwe in the object, i.e.

we =
k

∑

i=1

wi, ∀we (2)

Then, for planar objects with threedof the wrench vectorswi are 3-dimensional,
and so is the wrench space. In the absence of rotational symmetries, four contacts are
sufficient to ensure the FC condition, i.e. a set of pointsG = {p1, ...,p4} allowing an
appropriate set of wrenchesW = {w1, ...,w4} always allows an FC grasp [3] [4].

3.2 Generalized wrenches for a serial articulated object

The generalized wrench vector generated by the applicationof a force to a link of the
articulated object is deduced by a general analysis of an open virtual kinematic chain
with n+ 2 links. Fig. 2 illustrates a virtual robot withn+ 2 links that contains the ar-
ticulated object and some auxiliary elements (two virtual links and three virtual joints)
used for the developments below. Virtual kinematic chains were also used in [29] to
generate a systematic constraint-based approach to specify complex tasks of general
sensor-based robot systems consisting of rigid links.

The following basic nomenclature is used in the rest of the paper(see Fig. 2):

Li: Link i of the virtual robot,i = −1, . . . , n. Note that links−1 and 0 are virtual
ones, and links 1 ton correspond to the real articulated object.

qi: Jointi of the virtual robot,i = −2, . . . , n− 1 (generalized coordinates). Note that
joints−2,−1 and 0 are virtual ones, and joints 1 ton−1 correspond to the joints
of real articulated object.

Qi: Origin of reference frame attached to linki, i = −1, . . . , n. These are equivalent
to the positions of the jointsqi, i = −1, . . . , n− 1, and position of the final end
of the linkLn for i = n, respect to the base frame.

P i,j : Contact pointj on linkLi respect to the base frame.

pi,j : Contact pointj on linkLi represented with respect to jointqi−1 (i.e. pi,j = P i,j −Qi),
i = −1, . . . , n, j = 1, . . . , ki, whereki is the number of contact points on link
Li. Note that the total number of contacts isk =

∑

i ki.

ri: PositionQi respectQi−1 (i.e. ri = Qi −Qi−1).

si,j : Contact pointj on linkLi respect toQi (i.e. si,j = P i,j −Qi = pi,j − ri).

f i,j : Forcej applied to linkLi at contact pointpi,j .

W i,j : generalized wrench produced by forcef i,j applied topi,j .
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Figure 2: Schematic diagram of the virtual robot, where linksL−1 . . . Ln represent the
total links of the virtual robot andL1 . . . Ln are the links of the articulated object.

The generalized wrench vector is obtained as follows. Consider the virtual robot
with n + 2 links in Fig. 2, where the first two links (L−1 andL0) are virtual ones
and the rest are equivalent to the articulated object to be grasped. The first three joints
(q−2, q−1 andq0) are therefore not real, but they are useful for the model development
because they represent the three degrees of freedom of the first link of the chain, while
each real joint represents one of the internal degrees of freedom of the object.q−2 and
q−1 are prismatic joints andq0 is revolute; the remaining jointsqi, i = 1, ...n− 1, are
those of the articulated object.

Fig. 2 shows a general forcef i,j applied to each linkLi of the articulated object at
a pointpi,j , which can be expressed as

f i,j =

[

fxi,j

fyi,j

]

(3)

f i,j and the resultant moment with respect toQi are grouped into a wrench vectorwi,j

acting onLi as

wi,j =





fxi,j

fyi,j

Msi,j



 (4)

whereMsi,j = si,j × f i,j .
Consider the JacobianJi for each linkLi of the virtual robot in order to relate forces

f i,j applied to linkLi with torquesτk at each robot joint under equilibrium condition
(JacobianJi is computed by standard procedures used for serial robots [30][31]).

Then, the vectorτ i,j of torquesτ ki,j
at jointsqk necessary to balance the effect of

a wrenchwi,j produced by a forcef i,j applied on the linkLi is obtained as

τ i,j =
[

τ−2i,j , ..., τki,j
, ..., τ(n−1)i,j

]T
= JT

i wi,j = JT
i





fxi,j

fyi,j

Msi,j



 (5)
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Then, the vectorτ i of torquesτki
in joints qk due to all the forcesj applied toLi

results in

τ i =
[

τ−2i , ..., τki
, ..., τ(n−1)i

]T
=

ki
∑

j=1

τ i,j =

ki
∑

j=1

JT
i wi,j =

ki
∑

j=1

JT
i





fxi,j

fyi,j

Msi,j



 (6)

and the torquesτk in jointsqk due all forcesf i,j applied to all the linksLi is given by

τ =
[

τ−2, ..., τk, ..., τ(n−1)

]T
=

n
∑

i=−1

ki
∑

j=1

τ i,j =

n
∑

i=−1

ki
∑

j=1

JT
i wi,j =

n
∑

i=−1

ki
∑

j=1

JT
i





fxi,j

fyi,j

Msi,j





(7)

Forcesf i,j acting on the virtual robot include external perturbation forces and those
applied by the grasping device (it must be noted that, sinceL−1 andL0 are virtual
links, applying forces to them is not possible, i.e.f

−1,j = f0,j = 0). Since it is
desired to immobilize the articulated object, the total torque at each joint must be null
(considering perturbations and forces applied by the fingers), i.e.τ = 0, and therefore
τk = 0 ∀k.

Then, computing JacobiansJi and makingτk = 0, ∀k, from eq. (7) we obtain:

τ−2 =
∑

j fx1,j
+

∑
j fx2,j

+ ... +
∑

j fxn−1,j
+

∑
j fxn,j

= 0

τ−1 =
∑

j
fy1,j +

∑
j
fy2,j + ... +

∑
j
fyn−1,j

+
∑

j
fyn,j

= 0

τ0 =
∑

j
p
1,j×f

1,j +
∑

j
r1×f

2,j + ... +
∑

j
r1×fn−1,j +

∑
j
r1×fn,j = 0

τ1 = 0
∑

j
p
2,j×f

2,j + ... +
∑

j
r2×fn−1,j +

∑
j
r2×fn,j = 0

...
... 0

τn−2 = 0
... ...

∑
j
pn−1,j×fn−1,j +

∑
j
rn−1×fn,j = 0

τn−1 = 0 0 ... 0
∑

j pn,j×fn,j = 0

(8)

Now, it is possible to consider a generalized wrench spaceW defined by the base
{τ−2, τ−1, τ0, τ1, . . . , τ2, τn−1}, such that the generalized wrenchesW 1,j ,W 2,j, . . . ,

W n−1,j,W n,j generated, respectively, by forcesf1,j ,f2,j , . . . ,fn−1,j ,fn,j are

W 1,j=















fx1,j

fy1,j
p
1,j×f

1,j

0
...
0
0
0















W 2,j=

















fx2,j

fy2,j
r1×f

2,j

p
2,j×f

2,j

0
...
0
0

















(9)

W n−1,j=



















fxn−1,j

fyn−1,j

r1×fn−1,j

r2×fn−1,j

...
rn−2×fn−1,j

pn−1,j×fn−1,j

0



















W n,j=

















fxn,j

fyn,j

r1×fn,j

r2×fn,j

...
rn−1×fn,j

pn,j×fn,j
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Note thatW−1,j = W 0,j = [0, . . . , 0]
T because no real forces are applied to links

L−1 andL0 (i.e. f
−1,j = f0,j = 0). It is also worth noting that the dimension ofW

is n + 2, and a generalized wrenchW i,j has thereforem = n + 2 components,with
2 + i non null components. In summary, the dimension of the generalized wrench is
equal to the number ofdof of the articulated object, i.e.n+2. The number of non null
components isi+2, but in any case the maximum number of independent components
is always three, originated from the two components x and y off i,j , and from one
parameter defining the contact pointpi,j .

3.3 Force-Closure Test

As mentioned in Section 1, serial articulated objects withn links havem = n+ 2
dof and can be inmobilized withk = m + 1 = n + 3 frictionless contacts. Now,
considering the set ofk contact pointsG =

{

pi,j , i = 1, ...n, j = 1, ..., ki
}

and a uni-
tary forcef i,j applied at eachpi,j , a setW = {W i,j , i = 1, ..., n, j = 1, ..., ki} is ob-
tained. The necessary and sufficient condition for the existence of an FC grasp is that
the origin of the generalized wrench space lies inside the convex hull of the contact
wrenchesW [4][32]. The test used in this work to verify this condition is based on the
following Lemma, derived from [13] for the case of a rigid object (linear programming
techniques can also be used [33][34]).

Lemma. Let G be a grasp with a setW = {W i,j , i = 1, ..., n, j = 1, ..., ki} of
k = n + 3 contact wrenches for an articulated object withm = n + 2 dof. Let
Hl, l = 1, ..., k be each of the hyperplanes defined in the wrench space by the set of
pointsW − {W i,j} with i = 1, ..., n, j = 1, ..., ki, and letP be the centroid ofW . P
and the origin of the wrench spaceO must lie on the same side of each hyperplaneHl

in order for grasp G to be FC.⋄
Fig. 3 illustrates the Lemma for a hypothetical 2D wrench space. Given a grasp

with a wrench setW = {W 1,1,W 2,1,W 3,1}, hyperplanesHl are defined by the
following sets of points:

H1 defined byW − {W 1,1} = {W 2,1,W 3,1}
H2 defined byW − {W 2,1} = {W 1,1,W 3,1}
H3 defined byW − {W 3,1} = {W 1,1,W 2,1}

The lemma is fulfilled for the grasp in Fig. 3a because originO andP are on the
same side of each hyperplaneHl. The grasp in Fig. 3b is not FC because originO and
P are on different sides of hyperplaneH3.

4 Grasp analysis

Using the results of the previous section, it is possible to analyze in a systematic way
whether a given set of contact points on the articulated object allows an FC grasp.

As examples, consider an articulated object with two links,as shown in Fig. 4 with
the grasping pointsG =

{

p1,1,p1,2,p1,3,p2,1,p2,2

}

. The grasp in Fig. 4a is not FC
because the contact points on the second link generate moments of the same sign, and
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Figure 3: FC test in a hypothetical 2D space, a) FC grasp, b) non-FC grasp.

p1,1

p1,2

p1,3

p2,1 p2,2

p1,1 p1,2

p1,3

p2,1

p2,2

a) b)

Figure 4: Illustration of two non-FC grasps.

external disturbances on the second link may therefore produce moments that cannot
be counterbalanced.

The grasp in Fig. 4b is not FC because the contact points on both links cannot
counterbalance any external force pushing the object down.The test in Lemma 1 is not
fulfilled in either case.

If setG allows an FC grasp, it means that the convex hull(W ) contains the origin of
the generalized wrench spaceW . Note that each generalized wrenchW i,j will have
a number of independent components smaller than the dimension ofW which depend
on the link where the contact point is located. This imposes additional constraints on
the distribution of forces applied on the object boundary, requiring them to be properly
distributed on the object links (for instance, in the simplecase of an object with two
links and one joint it is straightforward that at least two contact points are necessary on
each link).

Note that this approach is a generalization of those alreadyused for grasp anal-
ysis of 2D and 3D rigid bodies using, respectively, 3-dimensional and 6-dimensional
wrench spaces, even when here each generalized wrenchW i,j has a reduced number
of independent components.

5 Grasp Synthesis

Following the developments above, the main idea of the algorithm described in this
section is a generalization of that in [13]. This generalization considers that the wrench
space may have any dimension other than 3 and 6 for 2D and 3D rigid objects, re-
spectively. The algorithm generates a graspG1 by selectingk random points from set
Ω, which describes the object boundary, then computes the corresponding setW 1 of
generalized wrenches and verifies whether the points inG1 allow an FC grasp. If it
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Algorithm 1 Grasp synthesis

Ensure: : GraspGk with FC
1: Generate a random initial graspGk, k=1.
2: while Gk is not FCdo
3: Compute the corresponding set of wrenchesW = {W i,j , i = 1, ..., n, j = 1, ..., ki}.
4: Determine a subsetGk

R of grasp points inGk to be replaced.
5: Generate a subsetΩk

C with candidate points to replace one of the points inGk
R.

6: Obtain an auxiliary graspGaux replacing a point inGk
R with one point inΩk

C .
7: Update the counterk = k + 1.
8: Gk=Gaux.
9: end while

10: return Gk

Figure 5: Search procedure to find one FC grasp in a hypothetical 2D wrench space.

does not, then a search for new contact points is done based onseparating hyperplanes
in the wrench space that define candidate points to replace one of the current points in
G1. This procedure is iteratively repeated until an FC grasp isfound. The steps of the
procedure, described in Algorithm 1, are explained below.

If graspGk fails the FC test, the search procedure, steps (4) to (8) of the algorithm,
iteratively tries to improve the grasp by changing one of thepoints inGk.

In Step (4) subsetGk
R is formed by all the wrenches inW that simultaneously

belong to all hyperplanesHl that cause the FC test failure, i.e. those hyperplanes not
satisfying the condition in Lemma 1. If there is only one critical hyperplane, thenGk

R

includes all the points that define such hyperplane. Fig. 5 shows a hypothetical example
in 2D (note that the real wrench space ism-dimensional): graspG producing wrenches
W = {W 1,1,W 2,1,W 3,1} is not FC, withH1 andH2 being the hyperplanes that
cause the FC test failure. Then, the set of possible points tobe replaced isGk

R =
{

p2,1

}

, with p2,1 being the point that produces wrenchW 2,1, which belongs toH1

andH2.
In Step (5), subsetΩk

C with candidate points to replace one of the points inGk
R is

determined using hyperplanesH
′

l passing through the origin and parallel to the critical
hyperplanesHl. Candidate points to be used for the replacement are those that simul-
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taneously lie on the opposite side of pointP with respect to hyperplanesH
′

l . In Fig. 5,
the points that produce the wrenches in the gray area determined by hyperplanesH

′

1

andH
′

2 belong toΩk
C .

In Step (6), one of the points inGk
R is replaced by a point producing a wrenchW ∗

randomly taken fromΩk
C . An auxiliary graspGaux is obtained with the replacement

producing the set of wrenches{W 1,1,W
∗,W 3,1}, as shown in Fig. 5. For the candi-

date grasp, centroidP ∗ and distance
∣

∣P ∗O
∣

∣ are computed, usingP k to represent the

centroid of the set of wrenchesW in iterationk. If the relation
∣

∣P ∗O
∣

∣ <

∣

∣

∣
P kO

∣

∣

∣
is

satisfied, then the auxiliary grasp is selected and the correspondingW ∗ is used for the
replacement. If all points inGk

R are verified and none of them reduces the distance
∣

∣

∣
P kO

∣

∣

∣
, the candidateG∗ that has the smallest distance

∣

∣P ∗O
∣

∣ is selected.

Finally, in steps (7) to (8), counterk is updated and the selected point is included
in the new graspGk=Gaux.

6 Numerical Examples

In this section, we present some numerical examples illustrating the grasp analysis and
synthesis of articulated objects with two and three links. The proposed approach has
been implemented using Matlab and C++ on a Intel Core2 Duo 2.0GHz computer.

6.1 Grasp Analysis Examples

Example 1. Articulated object composed of two aligned ellipsesx1 = 2 cos(θ) and
y1 = sin(θ) linked at the end of the major axis, with the first centered at(2, 1), as
shown in Fig. 6.

Example 2. Articulated object composed of two unaligned ellipsesx1 = 2 cos(θ)
andy1 = sin(θ) linked at the end of the major axis, with the first centered at(2, 1) and
the second rotated an angleβ = 22.5◦, as shown in Fig. 7.

Example 3. Articulated object composed of two aligned rectangles withside lengths
1 and 2, linked by a vertex, with the first centered at(1, 1.5), as shown in Fig. 8.

Example 4. Articulated object composed of two unaligned rectangles with side
lengths 1 and 2, linked by a vertex, with the first centered at(1, 1.5) and the second
rotated an angleβ = 18◦, as shown in Fig. 6.1.

Example 5. Articulated object composed of two symmetric polygons without par-
allel edges with side lengths 1 .41 and 3.16 and an angle18◦ between the longest sides,
linked by a vertex, as shown in Fig. 10.

Example 6. Articulated object composed of three ellipsesx1 = 2 cos(θ) andy1 =
sin(θ) linked at the end of the major axis, with the first centered at(2, 1), the second
aligned and the third rotated an angleβ = 22.5◦, as shown in Fig. 11.

6.2 Grasp Synthesis Examples

Several examples illustrating the application of the graspsynthesis algorithm are given
in Fig. 12 to 18; the articulated objects and their positionsare straightforward from the
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figures and the description of the objects in the previous subsection. The initial and
final wrenches and the number of required iterations are given in each example.

7 Conclusions

This paper proposes a procedure to model the generalized wrench space and a system-
atic procedure to analyze and synthesize FC grasps of 2D articulated objects consid-
ering frictionless contacts. The approach is illustrated for polygonal and non-polygonal
articulated objects with two and three links. The dimensionof the generalized wrenches
for objects withn links is always equal to the number of degrees of freedom of the ar-
ticulated object(n+2), but they have a maximum number of independent components
equal to three., which are derived from the three independent components of the ap-
plied forces (the two components of the applied force and onecomponent fixing the
contact point). Using the proposed generalized wrench space, it is possible to analyze
in a general and systematic way whether a given set of contactpoints on the links of
an articulated object allows an FC grasp. The proposed generalized wrench space can
also be used to find FC grasps of articulated objects using a generalization of proce-
dures initially developed for rigid objects.

Future work includes the generalization of the approach forthe case of frictional
contacts, as well as for 3D articulated objects with frictionless and frictional contacts.
Real experiments should be performed using, for instance, atwo-handed robotic sys-
tem. The search for optimal grasps that meet quality criteria and the generalization of
the approach for closed-loop articulated objects are also future research topics.
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Figure 6: Example 1 of grasp analysis.
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Figure 7: Example 2 of grasp analysis.

−1 0 1 2 3 4
−1

0

1

2

p1,1

p1,2

p1,3

p2,1

p2,2

WrenchesW i,j Pointspi,j Normaln̂i,j

W 1,1 = [1 0 − 0.6316 0] p1,1 = [0 0.6316] n1,1 = [1 0]
W 1,2 = [0 − 1 − 0.4103 0] p1,2 = [0.4103 1] n1,2 = [0 − 1]
W 1,3 = [0 1 0.9744 0] p1,3 = [0.9744 0] n1,3 = [0 1]
W 2,1 = [0 1 2 1.1795] p2,1 = [1.1795 − 1] n2,1 = [0 1]
W 2,2 = [−1 0 − 0.5 − 0.4211] p2,2 = [2 − 0.4211] n2,2 = [−1 0]

Figure 8: Example 3 of grasp analysis.
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Figure 15: Example 4 of grasp synthesis, articulated objectwith two unaligned poly-
gons without parallel edges (the second rotated an angleβ = 22◦), the FC grasp was
achieved after five iterations.
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Figure 16: Example 5 of grasp synthesis, articulated objectwith three ellipses, the FC
grasp was achieved after 55 iterations.
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