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Abstract 

The textile industry is one of the largest consumers of water in the world and its 

wastewater is a serious problem when it is discharged without the proper treatment.  In 

this work, wastewater generated by textile industry was treated coupling a 

homogenization-decantation treatment with polyvinylidene difluoride (PVDF) 

ultrafiltration membranes. 

Initially, the wastewater was aerated in a homogenization-decantation tank where 17% 

colour and 10% chemical oxygen demand (COD) were removed. The aerated effluent 

was treated with an ultrafiltration membrane in order to reuse the permeate in new 

dyeing processes. Firstly, the ultrafiltration treatment was performed in a laboratory 

plant. The permeate analysis showed 20% colour removal and 60% COD decrease. 

On the basis of these results, a semi-industrial system was built. With this plant, the 

permeate characterization showed similar results. The system was found to be 

scalable and suitable for the treatment of this kind of effluents.  

Finally, new dyeings were performed with both permeates. Monochromatic dyeings 

were carried out with 100% permeate whereas 50% permeate was reused for dyeings 



with a mixture of three dyes. The colour differences were found to be lower than 1.5, 

which was the acceptance value established. 
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1. Introduction 

The textile industry is characterized by high water consumption. Up to 100 L of water 

are required to produce a kilogram of textile product [1]. Wastewater from textile 

industry contains different kind of dyes and chemical additives [2,3], which cannot be 

easily degraded.  

The most applied wastewater treatments are based on biological or physical-chemical 

processes. In general, conventional biological treatment provides good chemical 

oxygen demand (COD) removal, but low efficiencies in discoloration due to the 

chemical stability and resistance to microbiological attack of the dyes [4,5]. Chemical 

coagulation can remove the colour completely, but it generates a sludge which requires 

an additional treatment to be destroyed [6,7]. These methods are able to meet 

legislative requirements but they do not allow water reuse in textile processes [8].   

Advanced oxidation treatments such as photo-fenton [9], photocatalytic [10] and 

electrochemical [11] have been studied in order to improve the efficiency in colour 

removal. Good results were obtained although they were found to be quite expensive 

[2]. Membrane technology is nowadays an attractive alternative to treat textile 

wastewater. In general, nanofiltration [12–14] and reverse osmosis [15] membranes 

have been studied to treat textile effluents. Its main advantage is that they can be 

applied to remove many kind of dyes, producing a concentrate, where dyes are 

retained, and a permeate free of dyes. Some studies have be focussed on the reuse of 

dyes concentrate [16] but the reuse of permeate in new processes is more 

advantageous. 



Direct feed to membrane modules can produce irreversible fouling. As a result, the 

maintenance cost of the membrane is increased and its life time is reduced [17]. If 

advanced treatments like membrane technologies are combined with conventional 

processes, the quality of the effluent treated is good enough to be reused [18] and the 

fouling observed decreases. Generally, the combination of membranes process with 

coagulation-flocculation [19–22] and biological treatments [2,3,23] have been studied.  

The reuse of textile wastewater is an important challenge, specially the effluents from 

polyester dyeing. In fact, the liquor ratio (amount of fibre/water) for conventional dyeing 

of polyester fabrics is generally 1:10 – 1:20, that implies the use of 10-20 ton water for 

each ton fabric. In addition, the consumption of polyester fibre has increased 

dramatically in the lasts years. Nowadays this fibre represents about the 50% of the 

total world textile fibre consumption and it still has an increasing demand [24]. Taking 

into account these considerations, this work is focused on the treatment and reuse of 

wastewater generated by a textile mill specialized in polyester dyeing. The wastewater 

was treated by coupling a homogenization-decantation treatment with two 

polyvinylidene difluoride (PVDF) ultrafiltration membranes. The permeate was reused 

in new polyester dyeings. Finally, fabrics dyed with the reused water were evaluated 

respect to references carried out with softened tap water.  

Several authors have published studies about treatment of textile effluents by 

membranes technologies. In these studies, after exhaustive analyses of the treated 

effluents, they conclude the suitability of permeate to be reused. But, to the best of our 

knowledge, a complete study of permeate reuse in new dyeings, both at laboratory and 

industrial scale, has not been yet carried out for any of them.  

 

2. Experimental 

2.1 Reagents 

Nine Foron disperse dyes provided by Archroma-Spain were selected for the study of 

permeate reuse: Blue RD-S (referred as FB), Brilliant Red S-RGL 200 (FR), Brilliant 



Yellow RD-E 0.5 (FY), Marine Blue S-2GRL 200 (FM), Rubine RD-GFL 200 (FRU), 

Scarlet RD-S 0.5 (FS), Black BLN 200 (FBL), Yellow-Brown S-2RFL 150 (FYB) and 

Blue E-BL 150 (FB150). Figure 1 shows the available structures of the dyes FYB, FRU, 

FB150, and FR. The structures of the other dyes have not been already published.     

 

Figure 1- Chemical structure of a) Yellow-Brown S-2RFL 150 (FYB), b) Rubine RD-GFL 200 (FRU), c) 

Blue E-BL 150 (FB150), d) Brilliant Red S-RGL 200 (FR). 

 

Sodium hypochlorite solution (6-14% active chlorine) acquired from Sigma-Aldrich was 

used for the membrane cleaning. 

 

2.2 Wastewater 

The textile effluents were supplied for the mill Vincolor (Terrassa, Spain). The effluents 

were collected after the dyeing processes during different days. 

The dyeing process takes place in different steps as it is shown in Figure 2. 

 

Figure 2- Schema of the dyeing process  

 

The main characteristics of the wastewater which was discharged into the 

homogenization-decantation treatment are presented in Table 1.  



 

Table 1- Characteristics of wastewater discharged into the homogenization-decantation treatment 

Parameter Feed 

pH 6.9 

COD (mg·L-1) 806 

Conductivity (µS·cm-1) 1825 

Alkalinity (ºF) 15 

Colour (mg Pt-Co·L-1) 300 

SS (mg·L-1) 112 

Hardness (ºF) 5 

Cl- (mg·L-1) 270 

SO42- (mg·L-1) 387 

 

 

2.3 Homogenization-decantation treatment 

The treatment was carried out in a homogenization tank (V=200m3), where the 

wastewater generated in the different steps of the dyeing process, was discharged. 

The Hydraulic Retention Time (HRT) was 2.5 days. A screening process was applied to 

the effluents before the homogenization treatment in order to remove residual fibres.  

A cylindro-conical clarifier (V=18 m3) was placed after the treatment.  

  

2.4 Ultrafiltration modules 

In this study, two hollow fibre membranes modules were studied: UOF-1b (Motimo 

Membrane Technology, China) and UOF-4 (Motimo Membrane Technology, China), 

referred herein after as U-1b and U-4, respectively. In Table 2 are described the main 

characteristics of these membranes. 

 



Table 2- Membrane characteristics 

Membrane Pore size (µm) Membrane Surface (m2) 

U-1b 0.04 0.5 

U-4 0.03 40 

 

Two pilot plants were built to accommodate the membrane modules, according to the 

geometry and specifications of each membrane. 

The pilot 1 (Figure 3) was equipped with U-1b membrane. It was fed by a 100 L tank. 

Peristaltic pumps were used for feed, permeate, and concentrate effluents. The pilot 

operated in cycles of 15 minutes of filtration and 30 seconds of backwashing with 

permeate.   

  

Figure 3- Pilot 1 with U-1b membrane. a) Feed tank, b) U-1b Membrane, c) Permeate tank 

 

The pilot 2 (Figure 4) was a semi-industrial system with U-4 membrane. Before the 

membrane module, two meshes (500 and 200 µm) were placed to remove the high 

particle size. The volume of feeding tank was 1000L. The membrane worked in cycles 

of 30 minutes of filtration and 30 seconds of backwashing with permeate.   

 

Figure 4- Semi-industrial system. a) Meshes, b) Feed tank, c) Control system, d) U-4 membrane 



 

Finally, after each filtration process, the membranes were cleaned with a sodium 

hypochlorite solution (5 mg·L-1). 

 

2.5 Analytical methods and measurements 

The permeate flux was determined to evaluate the membrane fouling. It was 

determined by measuring the permeate volume collected in a certain period and using 

the following equation: 

J (L·m-2·h-1) = V/A·∆t  

Where J is the permeate flux (L·m-2·h-1), A is the effective area of the membrane (m2) 

and V is the collected volume in a time interval ∆t (L·h-1). 

COD was determined according to the method 5220C recommended by American 

Public Health Association [25]. The COD reduction was calculated using the following 

equation: 

RCOD = ((CODf-CODp)/CODf)·100 

where CODf and CODp are the COD values in feed and permeate respectively.  

The conductivity was measured following the method 2510 B [25] with a Conductimeter 

GLP 31 (CRISON).  The pH was determined according to the method 4500 H+B [25] 

using a pHmeter GLP 21 (CRISON). 

Suspended solids (SS), alkalinity and colour measurements were performed following 

standard methods (methods 2540D, 2320B and 2120B respectively) [25]. 

Water hardness was measured by complexometric titration with a standard solution of 

ethylenediamminetetraacetic acid (method 2340C) [25]. 

Finally, the determination of anions chloride (Cl-) and sulphate (SO4
2-) were carried out 

with Ion Chromatography ISC-1000 (Dionex) (method 4110B) [25].  

 

2.6 Permeate reuse 



The reuse dyeing tests were performed in a laboratory dyeing machine (Testherm 90-

S) according to the mill procedure: 10 g of polyester fabric, dye concentration 0.5% 

o.w.f (over weight of fibre) and liquor ratio 1:15 (1 g fibre/15 mL dye bath). 

Dyeings with only one dye (monochromies) were carried out with 100% permeate. For 

dyeings with a mixture of three dyes (trichromies), only 50% permeate was reused due 

to the different behaviour of each dye. Dyed fabrics were evaluated with respect to the 

corresponding reference (performed with softened tap water). The experiments were 

run in duplicate. 

  

2.7 Dyed fabric evaluation 

The quality of dyed fabrics was studied from colour differences (DECMC(l:c)) using a 

MINOLTA CM 3600d spectrophotometer. The difference in colour was determined in 

conformity with the Standard UNE-EN ISO 105-J03 [26]. 

The equation for DECMC(l:c) describes an ellipsoidal volume with axes in the direction of 

lightness (L), chroma (C), and hue (H) centered about a standard. Colour difference is 

composed of three components:  

 Lightness component (DLCMC) that is weighted by the lightness tolerance 

(DL*/lSL). If DLCMC is positive, the reused dyeing is lighter than the standard. If 

DLCMC is negative, the reused dyeing is darker than the standard.  

 Chroma component (DCCMC) that is weighted by the chroma tolerance 

(DC*ab/cSc). If DCCMC is positive, the reused dyeing is more chromatic than the 

standard. If DLCMC is negative the reused dyeing is less chromatic than the 

standard.   

 Hue component (DHCMC) that is weighted by the hue tolerance (DH*ab/SH). It 

describes the difference between the hue angle of the standard and the hue 

angle of the reused dyeing in a polar coordinate.  

Colour difference is calculated from the following equation: 

DECMC(l:c)= [(DL*/lSL)
2+(DC*ab/cSc)

2+(DH*ab/SH)2]1/2 



The lengths of the semi axes of the ellipsoid are calculated from the values L*r, C*ab,R 

and hab,R, that correspond to the reference as follows: 

SL=0.040975 L*R/(1+0.01765 L*R) if L*R ≥16 or SL= 0.511 if L*R <16 

SC=[0.0638 C*ab,R/(1+0.0131 C*ab,R)] + 0.638 

SH=(FT+1-F)Sc 

where 

F=((C*ab,R)4/((C*ab,R)4+1900))1/2 

T=0.36+l0.4 cos(35+hab,R)l if hab,R ≥ 345º or hab,R ≤ 164º 

or T=0.56+ l0.2 cos(168+ hab,R)l if 164º < hab,R < 345º 

In summary, a dyeing is considered acceptable when the DECMC(l:c) value is lower than 

1.5, measured by MINOLTA CM 3600d spectrophotometer with respect to a reference 

sample. 

 

3. Results and discussion 

3.1 Homogenization-decantation treatment 

Textile wastewater shows high variability and its main characteristics depend mainly on 

the dyeing process and on the type of fibre. Therefore, the homogenization-decantation 

treatment was applied to improve the membrane process as the membrane was 

exposed to a more homogenous feed.  

 

Figure 5- %Removal in the homogenization-decantation treatment 



As can be seen in Figure 5, after the homogenization-decantation treatment, COD and 

colour removal were 10% and 17% respectively. This reduction is mainly due to the 

mixing of the different effluents, causing a dilution of the different compounds present 

in the wastewater. The Cl- concentration remained almost constant and the SO4
2- 

removal was 34%, which provided 23% conductivity reduction. This phenomenon could 

be attributed to the precipitation of sulphate and calcium ions present in the effluent 

producing the salt. The alkalinity and hardness values were also lower after the 

treatment.  

The clarifier reduced 8% suspended solids. The low efficiency of the clarification 

process can be attributed to the effect of surfactants in the effluent, which are used as 

auxiliary agents for dyeing and washing processes. 

The homogeneous effluent was finally treated with U-1b membrane.  

 

3.2 Membrane treatment 

3.2.1 Pilot 1 with U-1b membrane 

After homogenization-decantation treatment, three effluents (referred as E1, E2 and 

E3) were treated by means of an ultrafiltration membrane lab pilot. The trans-

membrane pressure was set at 0.2 bar. The permeate flux remained constant at 10 

L·m-2·h-1 during the experiment (90 minutes). The membrane fouling has been reported 

as a major problem to the further application of UF technology in wastewater treatment 

[27], because it produces a reduction in the permeability and consequently the 

maintenance cost of the membrane is increased and its life time is reduced [17]. 

The membrane material is an important factor in the membrane fouling. In general, 

polymers such as PVDF, polysulfone (PS), polyacrylonitrile (PAN) and cellulose 

triacetate (CA) are employed to design membranes. The material provides different 

characteristics to the membranes: pore size, porosity and hydrophobicity [28,29]. 

Although PVDF membranes have hydrophobic characteristics [30] and therefore they 

have a certain tendency of fouling, they have been widely used due to their thermal 



stability and resistance to corrosion from many chemicals and organic compounds 

[30,31]. In addition, PVDF ultrafiltration membranes have shown percentage of dye 

retention and COD removal up to 90% when they are applied to treat textile wastewater 

[32]. In this study, the low fouling observed with this pilot showed the feasibility of 

applying PVDF membranes to treat textile wastewater.  

The efficiency of the membrane process was determined with the permeate 

characterization (referred as P1, P2 and P3). Their main characteristics and the 

efficiency of the process are shown in Table 3.  

 

Table 3- Effluents characterization and efficiency in the treatment with U-1b membrane 

Parameter E1 P1 % E2 P2 % E3 P3 % 

pH 7.5 7.9 - 7.6 7.6 - 7.4 7.5 - 

COD (mg·L-1) 732 237 67.6 553 319 42.3 864 275 68.2 

Conductivity 

(µS·cm-1) 

1426 1378 3.4 1383 1404 - 1429 1475 - 

Alkalinity (ºF) 14 14 - 14 14 - 14 14 0.0 

Colour (mg Pt-

Co·L-1) 

250 200 20.0 300 250 16.7 300 200 33.3 

SS (mg·L-1) 161 2 98.8 44 2 95.5 309 2 99.4 

Hardness (ºF) 2 2 - 2 2 - 2 2 - 

Cl- (mg·L-1) 254 249 2.0 291 284 2.4 256 242 5.5 

SO4
2- (mg·L-1) 250 237 5.2 276 259 6.2 244 236 3.3 

 

From Table 3 it can be concluded that about 60% COD decrease and 20% colour 

removal were achieved. During the dyeing process different auxiliary products are 

employed. For example, a mixture of organic acids is added as a buffer, to maintain the 

pH constant. The membrane can retain these products resulting in a reduction of COD 

and also in an increase of pH.  Also, suspended solids were completely removed with 



the membrane treatment. The Cl- and SO4
2- removals were about 3% and 5% 

respectively. It is important to highlight that the UF membranes cannot retain ions.  

Finally, conductivity, hardness, alkalinity did not change with respect to the initial 

effluents. 

According to results of section 3.1 and 3.2.1, the combination of homogenization-

decantation and PVDF ultrafiltration was suitable to treat textile wastewater as it 

reduced all the studied parameters, except the pH which remained practically constant 

(Figure 6). 

 

Figure 6- % Removal in the different treatments 

 

At the end of both treatments, the COD removal was 66% and colour reduction was 

about 30%. The highest efficiency was obtained with the suspended solids (98%). The 

decrease in the conductivity was mainly due to the reduction of sulphate ions obtained 

in the homogenization-decantation treatment.   

 

3.2.2 Semi-industrial pilot 

On the basis of the promising results obtained at lab scale, the membrane behaviour 

was tested at semi-industrial scale during 2 days with the pilot 2.  The trans-membrane 

pressure was also set up at 0.2 bar. A constant permeate flux of 15 L·m-2·h-1 was 

0
10
20
30
40
50
60
70
80
90

100

%
 R
e
m
o
va
l

Parameters

Homogenization‐
decantation treatment

Membrane treatment

Total



obtained. As in the case of pilot 1, membrane fouling was not observed at the working 

conditions. 

During this study, two effluents (E4 and E5) were treated. The efficiency of the 

membrane process was also determined with the permeate characterization (P4 and 

P5). Their main characteristics and the efficiency of the process are shown in Table 4.  

 

Table 4- Effluents characterization and efficiency in the membrane treatment with U-4 membrane 

Parameter E4 P4 % E5 P5 % 

pH 7.4 7.7 - 7.4 7.8 - 

COD (mg·L-1) 509 236 53.6 648 236 63.6 

Conductivity 

(µS·cm-1) 

1521 1518 0.2 1557 1518 2.5 

Alkalinity (ºF) 17 16 5.9 17 16 5.9 

Colour (mg Pt-

Co·L-1) 

300 150 50.0 300 250 16.7 

SS (mg·L-1) 74 2 97.3 118 2 98.3 

Hardness (ºF) 3 2 33.3 2 2 - 

Cl- (mg·L-1) 226 218 3.5 270 264 2.2 

SO4
2- (mg·L-1) 240 229 4.6 268 253 5.6 

 

At the end of the process, 60% of COD removal was achieved. Colour removal 

obtained was 33%, higher than with U-1b membrane. This was due to the pore size, 

which in this membrane is smaller. As in pilot 1, the suspended solid were effectively 

removed. Regarding the ions, they passed through the membrane to the permeate. It 

can be noticed that the permeate characterization showed similar results than the lab 

pilot (section 3.2.1), which indicated that the treatment could be scaled to industrial 

scale.  

 



3.3 Permeate reuse 

The treated effluents were used in order to study the feasibility of the permeate reuse.  

Monochromies were carried out with 100% of the permeate. Dyeings obtained were 

evaluated with respect to a reference dyeing (with softened tap water). Their colour 

differences (DECMC (2:1)) are shown in Table 5. 

 

Table 5- Colour differences for monochromies 

Dye DL DC DH DECMC(2:1) 

FB 
0.55 

0.43 

-0.09 

-0.02 

-0.40 

-0.16 

0.68 

0.46 

FS 
-0.15 

0.00 

-0.11 

-0.24 

0.38 

0.26 

0.42 

0.35 

FY 
-0.71 

-0.60 

-0.25 

-0.65 

-0.89 

-0.52 

1.16 

1.03 

FR 
0.13 

0.07 

-0.27 

-0.20 

-0.59 

-0.52 

0.66 

0.56 

FYB 
-0.35 

-0.36 

0.23 

0.23 

-0.49 

-0.49 

0.65 

0.65 

FB150 
0.79 

1.22 

-0.96 

-0.83 

-1.76 

-1.86 

2.15 

2.37 

FM 
-1.10 

-0.89 

-0.19 

-0.12 

0.92 

0.78 

1.45 

1.19 

FBL 
0.24 

-0.02 

-0.34 

-0.48 

-0.31 

-0.39 

0.52 

0.62 

FRU 
-0.65 

-0.51 

-0.22 

-0.28 

-0.15 

0.03 

0.70 

0.58 

 



As can be seen, all DECMC(2:1) except the FB150 dye were lower than 1.5, which is the 

maximum value accepted by the quality control of mill. It is important to highlight that 

FB150 is an anthraquinone dye, with a compact aromatic ring structure, which may 

interact with the residual compounds of the permeate. FY and FM showed DECMC(2:1) 

close to 1.5, mainly due to DL and DH values.  

The reuse of the permeate in dyeing processes with trichromies was also studied. The 

trichromies were made with three of the following dyes: FR, FY, FRU, FYB and FB150. 

Taking into account the results of FB150 in monochromies, the trichromies dyeings 

were performed with 50% permeate and 50% clean water. Dyeings were found to be 

acceptable, as in all cases DECMC(2:1) were clearly  lower than 1.5 (Table 6). In this 

sense, further studies could be done to establish the maximum percentage of permeate 

that can be reused and fulfil the acceptance criteria.   

 

Table 6- Colour differences for trichromies 

Colour Dyed DL DC DH DECMC(2:1) 

Purple 
-0.41 

0.37 

-0.57 

0.60 

0.08 

-0.07 

0.71 

0.70 

Beige 
-0.14 

0.08 

-0.30 

-0.07 

-0.70 

-0.81 

0.78 

0.82 

Red 
-0.38 

0.00 

-0.63 

-0.85 

0.04 

0.07 

0.74 

0.85 

Blue-gray 
-0.50 

-0.20 

0.15 

-0.30 

0.49 

0.36 

0.71 

0.51 

Light gray 
-0.13 

-0.26 

-0.23 

-0.32 

-0.70 

-0.46 

0.75 

0.62 

 

The high water consumption in the industry and their scarcity in certain regions have 

caused the increase of water cost. In addition, the new environmental policies are 



focused on water recycling and reuse. Wastewater reuse involves both environmental 

and economic benefits. On the one hand it decreases the discharged of pollutant into 

the environment and on the other hand it allows to reduce water consumption and cost 

of depuration processes.   

According to the company selected for this study, more than 5 m3 are required to 

produce 160m of fabric. The price of municipal water is 2.64 €/m3 (including 

wastewater discharge cost). Therefore, the permeate reuse can save up to 13€ per 

160m of fabric produced.    

 

4. Conclusions 

Textile effluents were treated by means of homogenization-decantation and membrane 

treatments. 

The combination of two treatments provided almost 66% and 30% of COD and colour 

removal respectively. The membrane treatment was shown to be scalable at semi-

industrial scale and no fouling was observed during the experiments.  

Finally, it can be stated that results of the permeate reuse are promising for the textile 

industry. When 100% permeate was reused, the colour differences for monochromies 

were into the acceptance range, except for the FB150 dye. With 50% permeate reuse, 

all trichromies fulfil the quality criteria. As the textile industry consumes large amounts 

of water, the homogenization-decantation followed by membrane treatment is an 

advantageous combination from both the environmental and economical points of view.  
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