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SUMMARY 6 

The paper describes a three phase single point MPM formulation of the coupled flow (water 7 

and air) – mechanical analysis of geotechnical problems involving unsaturated soils. The 8 

governing balance and dynamic momentum equations are discretized and adapted to MPM 9 

characteristics: an Eulerian computational mesh and a Lagrangian analysis of material 10 

points. General mathematical expressions for the terms of the set of governing equations are 11 

given. A suction dependent elastoplastic Mohr-Coulomb model, expressed in terms of net 12 

stress and suction variables is implemented. The instability of a slope subjected to rain 13 

infiltration, inspired from a real case, is solved and discussed. The model shows the 14 

development of the initial failure surface in a region of deviatoric strain localization, the 15 

evolution of stress and suction states in some characteristic locations, the progressive large 16 

strain deformation of the slope and the dynamics of the motion characterized by the history 17 

of displacement, velocity and acceleration of the unstable mass. 18 

 19 
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1. INTRODUCTION 21 

Applications of unsaturated soil mechanics often involve large deformations. This is 22 

the case of collapse behaviour of low density soils or the unrestrained swelling of 23 

expansive clays. Rain induced instability of unsaturated slopes is a further example 24 

of large displacements. In this case the slide run-out is directly associated with the 25 

risk evaluation of the instability. Finite element methods find difficulties to 26 

reproduce large deformations, while particle-based methods and, in particular, the 27 

Material Point Method offers an interesting alternative.  28 
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The Material Point Method (MPM) (Sulsky et al., 1994) was developed to 29 

simulate large deformations in history-dependent materials. It combines the 30 

advantages of Eulerian (fixed finite element grid) and Lagrangian (moving material 31 

points) approaches of the media: mesh distortion is eliminated because the 32 

computational grid is fixed. The formulation is dynamic and automatically includes a 33 

no-slip contact algorithm. These features make MPM especially useful to solve 34 

problems involving large deformations and displacements, velocities and 35 

accelerations. 36 

During the last decade, MPM has been applied to very different fields, such as ice 37 

dynamics (Sulsky et al., 2007), gas dynamics (Tan & Nairn, 2002) or fracture of 38 

wood (Nairn & Matsumoto, 2009). It is also receiving increasing attention to solve 39 

geotechnical problems, e.g. studies of granular flows (Więckowski et al., 1999; 40 

Bardenhagen & Kober, 2004), modelling of anchors placed in soil (Coetzee et al., 41 

2005), landslides and slopes (Andersen & Andersen, 2010; Beuth et al., 2011; Yerro 42 

et al., 2014; Alonso et al., 2014), and retaining walls (Więckowski, 2004; Beuth, 43 

2012). In most of them, the soil is considered as a single-phase material. More 44 

recently, the interaction between two phases (solid and fluid) has been formulated 45 

basically in two different manners, either adopting one set of material points (Zabala 46 

& Alonso, 2011; Jassim et al., 2012) (single-point formulation) or two sets (Abe et 47 

al., 2014; Wieckowski, 2013) (multiple-point formulation).  48 

In this paper, the MPM formulation is extended to model unsaturated soil 49 

problems, where the soil is understood as a unique medium integrated by three 50 

distinct phases (solid, liquid and gas). All phases are combined in each material point 51 

and balance and momentum equations are formulated and numerically solved within 52 

the framework of a general purpose MPM code. The soil constitutive model is 53 

formulated in a net stress-suction framework. The method is applied to analyse the 54 

instability of a slope on unsaturated soil subjected to rain infiltration. 55 

2. MULITPHASE PROBLEMS IN MPM 56 

The basic MPM formulation for a 1-phase mechanical problem is described in 57 

(Sulsky & Schreyer, 1996), where the equation of dynamic momentum balance is 58 

discretized. In these simulations, one single set of material points is necessary to 59 

model the continuum media. This approach is shown schematically in Figure 1 as 1-60 
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phase-1-point formulation. This formulation has a large number of applications, 61 

including the geotechnical field. However, in most real problems different phases 62 

coexist and interact within the same domain. The necessity of modelling multiphase 63 

problems has led some authors to develop different MPM formulations. 64 

In order to simulate 2-phase problems, in which solid and fluid phases interact, 65 

two main formulations have been developed: those based on a 1-point formulation 66 

and those based on a 2-point formulation (see Fig.1).  67 

The first one has been used by different authors (Zabala & Alonso, 2011; Jassim 68 

et al., 2012; Al-Kafaji, 2013) to solve problems in saturated porous media. In this 69 

approach each material point carries all the information of the saturated porous 70 

media and the pore pressure is considered as an additional variable. In this case, the 71 

material points move attached to the solid skeleton.  72 

The second discretization for 2-phase problems has been presented more recently 73 

in Abe et al. (2014), Bandara (2013) and Wieckowski (2013). It can be defined as a 74 

2-point formulation, where the solid skeleton and the liquid phase are represented 75 

separately by two sets of Lagrangian material points (Fig.1). The fluid phase is 76 

modelled as an independent material; therefore the solid-fluid medium can be viewed 77 

as the superposition of two continuous media. Thus, the material points that represent 78 

the fluid phase, e.g. water, can simulate both, water within the pores (in a saturated 79 

porous media) and free water. In this way, seepage problems and fluid-structure 80 

interactions can be naturally solved. However, the computational cost of this 81 

approach is high because the number of material points needed in a calculation is 82 

twice the number of a single-point formulation in those parts of the domain where 83 

both phases coexist.  84 

When the problem requires the simulation of 3 different phases, the MPM 85 

formulation can be stated in different ways (see Fig.1). The first approach 86 

corresponds to the 1-point discretization extended from 2-phases to 3-phases. A 87 

second approach is the extension from 2-point to 3-point formulation, where each 88 

phase is represented by an independent set of material points. Moreover, a 3-phase 2-89 

point formulation can also be defined as a third possible case where two phases (e.g. 90 

the fluids: liquid and gas) are represented by the same set of material points.  91 

The purpose of this paper is to simulate the unsaturated porous media as a unique 92 

continuous media formed by three phases (the 3-phase-1-point formulation has been 93 

implemented). The two other sketched multiple-point possibilities would require two 94 
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or three sets of material points, which imply a large computational cost. Every 95 

material point represents a portion of the solid-liquid-gas mixture and it moves fixed 96 

to the solid skeleton carrying the water and the gas pressures as variables.  97 

3. UNSATURATED POROUS MEDIA 98 

The unsaturated porous media is assumed to be a combination of three different 99 

phases (ph): solid (s), liquid (l) and gas (g) (Fig. 2). The solid phase constitutes the 100 

solid skeleton of the media; meanwhile the liquid and the gas phases fill the voids. 101 

Moreover, the fluids have been considered as a mixture of two components (c): water 102 

(w) and dry air (a). 103 

Considering a portion of the unsaturated domain, its total volume V can be written 104 

as: 105 

gls
ph

ph VVVVV ++==∑         (1) 106 

where Vph is the partial volume of a phase and Vs, Vl and Vg are the partial volumes 107 

for the solid, liquid and gas phases. The partial volumes can be written as  108 

VnV phph =                  (2) 109 

where nph is the volume fraction associated with each phase.  110 

Taking into account the volumetric relations of porosity n, and the degree of 111 

saturation Sl,  112 

s

gl

V
VV

n
+

=           (3) 113 

l
l
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=
+

         (4) 114 

the volume fraction of each phase can be written as  115 

( )nns −= 1       ;     ll nSn =     ;     gg nSn =       (5) 116 

where Sg = (1- Sl) is the gas degree of saturation. 117 

The mass m of a volume V is calculated as the sum of the partial masses mph of 118 

each phase:   119 
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∑=
ph

phmm           (6) 120 

Taking into account that each phase can be considered as a mixture of 121 

components, the total mass is the sum of the partial masses of the components in 122 

each phase 𝑚𝑝ℎ
𝑐 . 123 

∑∑=
ph c

c
phmm           (7) 124 

Defining the mass fraction of a component in a phase as  125 

ph

c
phc

ph m
m

=ω           (8) 126 

and considering equation (2), the mass of a component in a phase is given by  127 

VnVmm phph
c
phphph

c
phph

c
ph

c
ph ρωρωω ===       (9) 128 

where ρph is the density of a phase. Finally, the density of the mixture ρm is defined 129 

by considering the volume fractions of each phase as: 130 

( ) gglls
ph

phphm nSnSnn ρρρρρ ++−==∑ 1       (10) 131 

where ρs, ρl and ρg are the densities of solid, liquid and gas phases.  132 

4. GOVERNING EQUATIONS 133 

The dynamic behaviour of an unsaturated porous media can be formulated by 134 

specifying a set of physical laws: the momentum balances, the mass balances, the 135 

energy balance and the first and second laws of thermodynamics. In the most 136 

common form of the finite element formulation, the relative accelerations of the 137 

liquid and gas phases are neglected and the equations are solved considering solid 138 

displacement, liquid pressure and gas pressure as the primary unknowns (us-pl-pg 139 

formulation) (Xikui & Zienkiewicz, 1992). 140 

However, in order to capture the physical response of the porous media under 141 

dynamic conditions, the numerical approach presented in this work takes into 142 

account the relative accelerations and relative velocities of the pore fluids. Here, the 143 
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velocities of each phase become the fundamental unknowns (vs-vl-vg formulation) 144 

(based on Jassim et al., 2012).  145 

4.1. General assumptions 146 

The following assumptions have been adopted in the coupled MPM formulation 147 

described in this paper: 148 

1) Isothermal conditions 149 

2) No mass exchange between solid and fluid phases 150 

3) There is mass exchange of air and water between liquid and gas phases 151 

4) Solid grains are incompressible 152 

5) Distribution of porosity in the soil is assumed smooth (see Eq. I.16 in Appendix 153 

I) 154 

6) Spatial variations of water and air mass are assumed small (see Eq. I.16 in 155 

Appendix I) 156 

7) Diffusion of water in liquid is neglected 157 

8) Diffusion of air in gas is neglected 158 

4.2. Momentum balance equations  159 

The momentum balance equation of the liquid phase (per unit of liquid volume) and 160 

the momentum balance of the gas phase (per unit of gas volume) can be written, 161 

respectively, as follows: 162 

( ) bvva lsl
l

ll
lll k

nSp ρ
µ

ρ +−−∇=        (11) 163 

( ) bvva gsg
g

gg
ggg k

nS
p ρ

µ
ρ +−−∇=       (12) 164 

where al and ag are the acceleration of the liquid and gas phase; vl, vg and vs are the 165 

total liquid, gas and solid velocities; pl and pg are the liquid and gas pressures, μl and 166 

μg are the dynamic viscosities of the liquid and the gas; kl and kg are the intrinsic 167 

permeabilities of the liquid and the gas and b is the body force vector. These 168 

expressions describe a generalized Darcy’s law.  169 

Finally, the momentum balance equation of the mixture (per unit of volume of 170 

mixture) can be written as:  171 
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( ) bσaaa mggglllss nSnSn ρρρρ +⋅∇=++−1      (13) 172 

where σ is the total stress tensor of the mixture. The momentum balance of the 173 

mixture has been selected instead of the momentum of the solid phase for 174 

convenience because, in practice, the total stress is usually known, unlike the stresses 175 

acting on the solid skeleton. 176 

4.3. Mass balance equations  177 

Because the exchange of mass between fluid phases is enabled, the mass balance 178 

equations have been formulated for each component (solid, water, air) instead of for 179 

each phase (solid, liquid, gas). In this manner, the flux terms become simpler because 180 

the evaporation and condensation of water and the dissolution and liberation of air 181 

are balanced within each component balance. 182 

The mass balance equation of a component can be written as:  183 

0=











⋅∇+











∂
∂∑

ph

c
ph

c
ph

V
m

t
j         (14) 184 

The first term in the sum is the time derivative of the partial mass 𝑚𝑝ℎ
𝑐  per unit 185 

volume of porous media and the second one is the divergence of the fluxes. The 186 

external sources or sinks of mass might appear in the right side of the equation, but in 187 

this case they have not been considered.  188 

The flux referred to a particular component 𝐣𝑝ℎ𝑐  is written as the sum of diffusive 189 

flux (𝐢𝑝ℎ𝑐 ) and advective flux: 190 

ph

c
phc

ph
c
ph V

m
vij 









+=          (15) 191 

The diffusive fluxes (i.e. diffusion of water in the gas and the diffusion of air in 192 

the water) can be modelled  by means of the Fick’s law (Fick, 1855), written as: 193 

c
ph

c
phph

c
ph ωρ ∇−= Di           (16) 194 

in which c

phD  is the dispersion tensor which includes non advective flux caused by 195 

molecular diffusion and hydrodynamic dispersion. 196 
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Developing the expressions (14) and (15) (see Appendix I), the mass balance 197 

equation for the solid skeleton becomes the following expression which describes de 198 

material derivative of the porosity. 199 

( ) sn
Dt
Dn v⋅∇−= 1          (17) 200 

Water and air mass balance equations have also been expanded (see Appendix I) 201 

considering the fluid pressures (pl and pg) as state variables, leading to the following 202 

expressions:  203 
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 (19) 206 

where the dot on pl and pg indicates the variation in time of the liquid and gas 207 

pressure, respectively.  208 

4.4. Constitutive equations 209 

The soil constitutive model is formulated in a net stress-suction framework. The 210 

net stress σnet is equal to the excess of total stress over gas pressure and the suction is 211 

the difference between gas pressure and liquid pressure, 212 

mσσ gnet p−=          (20) 213 

lg pps −=           (21) 214 

where m = (1 1 1 0 0 0)T 215 

For saturated conditions when pl > pg, Terzhaghi’s effective stress should be 216 

recovered and suction is assumed to be zero. It is then convenient to define the model 217 

in terms of the following constitutive stresses:  218 

{ }max ,g lp p= −σ σ m                   (22a) 219 
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{ }0,max lg pps −=                  (22b) 220 

The general form of a suitable stress-strain relationship can be written 221 

incrementally as: 222 

sd'dd hεDσ +⋅=          (23) 223 

in which D is the tangent matrix and h’ is a constitutive vector. Both are defined by 224 

means of the constitutive model. dɛ is the strain increment vector. 225 

4.5. Hydraulic constitutive equations 226 

The degree of saturation Sl is strongly dependent on pore liquid and gas pressures. 227 

There are a number of empirical equations that describe this characteristic for soil in 228 

the literature. In this work the well-known van Genuchten retention curve 229 

(Genuchten, 1980) has been implemented, where P0 and λ are assumed constants: 230 

( )minmax

1
1

0
min 1 SS

P
sSSl −
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
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−

−

l

l
      (25) 231 

It is also necessary to specify the dependence of the liquid permeability on the 232 

degree of saturation. Being ksat the liquid permeability under saturated conditions, the 233 

Hillel expression (Hillel, 1971) has been adopted:  234 

( )m
lsatl Skk =           (26) 235 

The power m typically takes values in range 2-4 (a value of 3 is used in this work). 236 

In addition, the variation of water mass fraction in the gas phase can be calculated 237 

according to the psychometric law (Edlefson & Anderson, 1943) and the variations 238 

of air mass fraction in the liquid can be obtained via the Henry’s law (Mackay & 239 

Shiu, 1981). 240 

Finally, viscosity and density of the phases can also be written depending on the 241 

fluid pressures. 242 

4.6. Mechanical constitutive model  243 

There was an interest in examining the behaviour of unsaturated slopes subjected to 244 

rain infiltration. In addition to determining the conditions leading to the onset of 245 

instability, a main objective was to follow the run-out of the unstable mass and to 246 
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determine the travelled distance, velocities and accelerations. All of these variables 247 

define the risk and the destructive power of landslides. The instability is essentially 248 

governed by the evolution of apparent soil cohesion and friction angle with the 249 

evolving suction. The shear strength of unsaturated soils has been examined by 250 

several authors (Fredlund et al., 1978; Escario & Saez, 1986; Delage & Graham, 251 

1996). In general, both cohesion and friction depend nonlinearly on suction. It has 252 

also been found that it depends on the current degree of saturation (Han et al., 1995; 253 

Vaunat et al., 2002), but this dependence has not been included here.  The soil shear 254 

strength is defined by a Mohr-Coulomb expression 255 

ϕστ τan+= c          (27) 256 

The strength parameters, c and φ, are written as follows:  257 

sccc += '           (28) 258 

sϕϕϕ += '           (29) 259 

where c’ and φ’ correspond to the cohesion and friction angle for saturated 260 

conditions. The second terms of equations (28) and (29) include the effect of suction 261 

in the material strength. It is accepted that cohesion increases with suction up to a 262 

maximum value Δcmax as: 263 

( )( / )
max 1 atmB s p

sc c e−= ∆ −         (30) 264 

where patm is the atmospheric pressure. B controls the rate of variation of apparent 265 

cohesion with suction. On the other hand, the friction angle is assumed to have a 266 

linear dependence with suction depending on parameter A: 267 

( / )s atmA s Pϕ =          (31) 268 

Obviously, other expressions could be introduced.  269 

In order to reduce the singularities of the Mohr-Coulomb yield surface, the 270 

modifications proposed by Abbo & Sloan (1995) have been implemented. An 271 

explicit sub-stepping algorithm with error control and a correction for the yield 272 

surface drift have been applied (Potts & Gens, 1985) . 273 
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5. NUMERICAL IMPLEMENTATION OF THE MPM. UNSATURATED 274 

FORMULATION 275 

5.1. Space discretization  276 

MPM discretizes the media in two different frames. First, the continuum is divided 277 

into a finite number of subdomains represented by material points (p) (see Fig.3). 278 

Each material point moves attached to the solid skeleton, carrying all the information 279 

and providing a Lagrangian description. Considering the standard MPM approach, it 280 

is assumed that the whole mass of a material point is concentrated at the 281 

corresponding material point; the density of the mixture ρm can be expressed as: 282 

( ) ( )∑
=

−=
Np

p
ppm mt

1
, xxx δρ         (32) 283 

in which mp and xp are the mass and the position of the material point p, δ is the 284 

Dirac delta function, and Np is the total number of material points. Moreover, in the 285 

3-phase-1-point MPM formulation, it is also necessary to consider the density of 286 

each phase ρph as: 287 

( ) ( )∑
=

−=
Np

p
p

p
phph mt

1

~, xxx δρ         (33) 288 

The relationship between mp and the mass of each phase is given by the following 289 

expression: 290 

∑∑ ==
ph

p
phph

ph

p
php mnmm ~         (34) 291 

The second discretization frame is an Eulerian computational mesh (see Fig.3). 292 

The momentum equations are solved in the nodes (i). The standard linear shape 293 

functions Ni provide the relationship between the nodes and any point of the domain 294 

as follows: 295 

( ) ( ) ( )∑
=

=
Nn

i
ii tNtt

1
,, xwxw         (35) 296 

with Nn being the total number of nodes and wi a specific field, such as the 297 

displacement field, evaluated in the node i. 298 
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5.2. Discrete form of the momentum balance equations 299 

The Galerkin method of weighted residuals (Galerkin, 1915) has been applied to 300 

obtain the weak form of the momentum balance equations (11,12,13) (see the 301 

derivation in Appendix II). The expressions (32), (33) and (35) have been used to 302 

discretize the integrals over the domain into the nodes of the computational mesh 303 

considering the information carried by the material points. The final system of 304 

equations is written as: 305 

( )sll
int
l

ext
lll vvQFFaM −⋅−−=⋅~

       (36) 306 

( )sgg
int
g

ext
ggg vvQFFaM −⋅−−=⋅~        (37) 307 

intext
ggllss FFaMaMaM −=⋅+⋅+⋅       (38) 308 

where as, al, and ag and vs, vl, and vg are the nodal acceleration and velocity vectors 309 

for each phase. 𝐅𝐥 𝐞𝐞𝐞 and 𝐅𝐠 
𝐞𝐞𝐞  are the vector of the liquid and gas external forces, 310 

respectively and Fext
 the vector of the external forces of the mixture. Internal forces 311 

are indicated by means the superscript “int”. Ql and Qg are the liquid and gas 312 

dragging matrixes. M and 𝐌�  are mass matrices per unit volume. The mathematical 313 

expression for each term is properly defined in the Appendix II. 314 

This dynamic formulation includes natural damping in the dragging terms. 315 

However, in some problems such as in homogenous linear elastic materials it is 316 

necessary to apply artificial damping in order to reduce numerical instabilities. In this 317 

formulation, an additional damping force has been considered for each phase in the 318 

momentum balance equations. It is proportional to the corresponding unbalanced 319 

force (proportional factor 𝛼) and it is opposite to the phase velocity. This can be 320 

understood as frictional force. High values of the proportional factor can be used in 321 

quasi-static problems to get faster the static solution. In dynamic problems, where the 322 

accelerations have an important role in the course of the calculation, this factor 323 

should be very small (0-5%) in order to approximate the correct solution. 324 

The classical MPM approach suffers from a “cell crossing instability” due to a 325 

jump discontinuity in the gradient of linear shape functions when the internal forces 326 

are calculated in the nodes. In order to mitigate this inconsistency, a simple technique 327 

that requires a low computational cost has been applied. It was used previously by 328 

several authors (Zabala & Alonso, 2010; Al-Kafaji, 2013; ). It arises from 329 
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considering that the stress on each element is constant and corresponds to the average 330 

of the stresses of the material points that are located within the cell. Then, Gauss 331 

integration can be adopted to calculate the internal forces (as in FEM). A single 332 

Gauss point with an averaged stress is adopted in the analysis performed. In the 333 

literature several authors proposed other techniques to overcome this difficulty. 334 

Bardenhagen & Kober (2004) proposed a particle characteristic function instead of a 335 

Dirac delta function; in this way the mass of each material point is distributed in a 336 

certain space. This results in a family of methods known as Generalized Interpolation 337 

Material Point (GIMP) methods, such as uniform GIMP (uGIMP) and the 338 

contiguous-particle GIMP (cpGIMP), in which the particle characteristic function 339 

associated with each material points is constant or time-dependent respectively 340 

(Steffen et al., 2008). Other extensions of the MPM are the convected particle 341 

domain interpolation methods (CPDI1 and CPDI2) which are capable of tracking 342 

material point domains more accurately, especially for problems involving massive 343 

deformations (Sadeghirad et al., 2011; Sadeghirad et al., 2013; Kamojjala et al., 344 

2013). These techniques typically increase the computational cost compared with the 345 

standard MPM. 346 

5.3. Time discretization 347 

The solution of the momentum balance equations (36) to (38) is obtained in a set of 348 

discrete times tk by means of an explicit time integration scheme, where Δt is the 349 

time step increment, k is the number of time steps and Nt is the total number of time 350 

steps at the end of the calculation:  351 

ttt kk ∆+=+1    INk t ∈= ,...,1      (39) 352 

Since the acceleration terms are the unknowns of the system of equations, the 353 

Forward Euler scheme is used to update the velocities, 354 

kkk tavv ∆+=+1          (40) 355 

The Backward Euler scheme is adopted for the displacements  356 

11 ++ ∆+= kkk tvuu          (41) 357 

The discrete approximation of the solution at time tk is indicated by the superscript k. 358 
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5.4. Computational cycle 359 

The numerical procedure is described by the following steps, which are solved for 360 

each time increment: 361 

1) The information carried by the material points, such as the velocity of each 362 

phase, is mapped on the computational mesh. Nodal mass is calculated using the 363 

shape functions and the mass matrices are formed. Internal forces of the gas 364 

phase, the liquid phase and the mixture are evaluated in the nodes. 365 

2) Nodal non-advective fluxes of air in the liquid and the water in the gas are 366 

calculated. 367 

3) The momentum balance of gas is solved and nodal accelerations of the gas phase 368 

are calculated. 369 

4) The momentum balance of liquid is solved and nodal accelerations of the liquid 370 

phase are calculated. 371 

5) The momentum balance of the mixture is solved using liquid accelerations and 372 

gas accelerations previously obtained in steps 3 and 4. Nodal accelerations of the 373 

solid skeleton are determined. 374 

6) Material point velocities and nodal velocities are updated using the forward 375 

Euler scheme. Particle displacements are updated using backward Euler scheme. 376 

7) Strain increments for the solid phase and volumetric strain rates for the fluid 377 

phases are calculated on the material points. 378 

8) The mass balance of the water and the mass balance of the air are solved as a 379 

linear system of equations. The increments of water and gas pressure are 380 

obtained in the material points. 381 

9) The constitutive stresses are updated using a material constitutive model. 382 

10) The material properties are updated in material points. The material point 383 

volume is updated considering the increment of volumetric strain; porosity is 384 

updated with the mass balance equation of solid; the degree of saturation is 385 

updated considering the updated fluid pressures. Other properties can also be 386 

updated here, such as the permeabilities, viscosities or mass fractions. 387 

11) The computational grid is initialised for the next step and the material points 388 

carry all the updated information. 389 

6. RAINFALL EFFECTS ON AN EMBANKMENT SLOPE 390 
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6.1. Case description 391 

The problem solved was inspired by a real case described in Alonso et al., 2010. 392 

Several road embankments of medium height (6-8 m) were subjected to heavy 393 

rainfall immediately after the end of construction. In some slopes, shallow failures, 394 

which damaged the road side shoulders, were observed. The slides moved 395 

downwards an estimated distance of 2-4 m. The embankments were built in summer 396 

time and the soil, a low to medium plasticity sandy clay, was compacted dry of 397 

optimum. Compaction conditions were investigated and some suction controlled 398 

direct shear tests were also carried out. The loss of strength upon soil saturation 399 

could be established.  400 

The slope simulated has a height of 7 m and an angle of 32,5º (Figure 4). The flat 401 

upper and lower surfaces reproduce the actual embankment geometry. The 402 

calculation was performed in three dimensions and plane strain conditions were 403 

assumed. The thickness of the model is 0.4 m.  404 

Figure 4 also shows the computational mesh, formed by tetrahedrons, and the 405 

distribution of material points. Those are initially distributed within each element and 406 

are initially located at the corresponding integration points of a 4-point Gaussian 407 

quadrature. The computational mesh covers a larger volume to allow for the expected 408 

large displacements associated with the slope instability.  409 

MPM as well as FEM are mesh dependent. Some authors have discussed the 410 

influence of the number of material points and the mesh size on the accuracy of the 411 

solution (Buzzi et al., 2008; Bandara, 2013). Buzzi et al. (2008) have shown that the 412 

mesh size is more determinant than the number of material points. Moreover, 413 

separation and splitting in an MPM discretization also depends on the mesh size 414 

because the material points remain numerically “in contact” while they have a node 415 

in common. This fact is due to the no-slip contact, which is naturally included in the 416 

MPM formulation, and it may lead to non-physical increase of the stiffness of the 417 

material when it tends to separate (Huang et al., 2011). Although the degree of mesh 418 

dependency has not been established in this case, the mesh has been refined and 419 

made homogeneous in the region where the failure is expected in order to get 420 

accurate results. 421 

Other numerical parameters are presented in Table 1. In this calculation a small 422 

value of damping (𝛼 =0.05) was adopted which may represent the friction that can 423 

occur between grains. A low value allows capturing the acceleration of the mass 424 
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motion and reduces spurious numerical instabilities. A too high value of damping 425 

would slow down any movement of the soil.  426 

Regarding boundary conditions, the lower boundary is fixed and horizontal 427 

displacements along vertical contours are prevented. Lateral and bottom contours are 428 

impervious for the liquid phase. A constant zero gas pressure in excess of 429 

atmospheric pressure is prescribed in all the boundaries (pg = 0 kPa).  430 

The initial stresses and pore pressures of the slope are in equilibrium with the 431 

gravity force and the prescribed suction (s0 = 800 kPa) distributed along the slope 432 

surface, which is in contact with the atmosphere.  433 

The rainfall induced wetting is modelled by applying a decrease of suction on the 434 

material points located along the ground surface from 800 to 0 kPa during 10 435 

seconds. Afterwards, the saturated boundary condition (s = 0 kPa) is maintained 436 

constant on the ground surface during the entire simulation period. An essentially 437 

downward flow is generated in the embankment due to suction gradients. 438 

The embankment soil is assumed to be homogeneous and the properties of the 439 

different phases forming the soil (solid-liquid-gas) are presented in Table 2. Neither 440 

water vapour nor dissolved gas have been taken into account in this calculation. 441 

Therefore the liquid phase is pure water and the gas phase is considered to be dry air. 442 

The water saturated permeability of the embankment was increased to accelerate 443 

wetting times and to reduce the computational time. 444 

The elasto-plastic suction-dependent Mohr-Coulomb model simulates the soil 445 

behaviour and the constitutive parameters are summarized in Table 3. A small 446 

cohesion (1 kPa) is assumed under saturated conditions to avoid numerical 447 

difficulties in zones of very low effective confinement. The friction angle at saturated 448 

conditions was found to be close to 20º in direct shear tests performed on recovered 449 

samples. These parameters lead to unstable conditions, in a limit equilibrium 450 

analysis, in a situation of full saturation of the slope and zero suction. The slope 451 

remains initially stable thanks to the additional strength induced by the suction which 452 

depends on parameters A, B and Δcmax (equations (30) and (31)). The estimated A 453 

value leads to a very small variation in friction with suction: less than 1º for the 454 

maximum range of change on suction (800 kPa). The selected B and Δcmax values 455 

leads to a progressive reduction of cohesion with suction from a value c = 67 kPa at 456 

the initial state (s = 800 kPa) to c’= 1 kPa for saturated conditions.   457 
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The parameters of the water retention curve, equation (25), are listed in Table 4. 458 

The shape of the van Genuchten model is shown in Figure 5.  459 

6.2. Embankment response 460 

In order to analyse the embankment behaviour, attention will focus on four 461 

material points located in the lower half of the embankment, close to the boundary 462 

slope, at depths of 0.5 m and 1.7 m. These shallow depths have been selected since a 463 

relatively shallow failure is expected in this case because the loss of suction is faster 464 

the closer to the boundary subjected to rainfall. The points (S1, S2, D1 and D2) are 465 

represented in Figure 6a. The evolution of suction may be followed in Figure 6. 466 

Contour plots of equal suction, at five different times, are selected: t1 = 0 s, t2 = 20 s, 467 

t3 = 35 s, t4 = 130 s and t5 = 200 s.  468 

The first 20 seconds result in a major change in suction if compared with the 469 

initial state characterized by an essentially constant value (s = 700-800 kPa). The 470 

initial (t1 = 0 s) vertical suction gradient reflects flow equilibrium conditions in view 471 

of the imposed boundary conditions. 472 

Also shown in the figure are the contours of deviatoric plastic strain. High shear 473 

strains begin to develop at the slope toe soon after the beginning of wetting. A shear 474 

band defining a potential shallow failure surface at an average depth of 1.5 m is 475 

already defined at this early time. However the material points S1, S2, D1 and D2 476 

remain essentially on their original positions. The slope is still stable. A few seconds 477 

later, t3 = 35 s, the shear band is already well developed and a failure surface is 478 

defined. The slope becomes unstable and this is shown by the new positions of the 479 

control points (Figure 6e). The displacement vector of point S2 shows that the central 480 

part of the slope surface is having the maximum motion. The sliding mechanism is 481 

also appreciated by the successive shapes of the slope as wetting continues to 482 

increase. Soil masses located in the central and upper parts of the slope slide down 483 

and pass over the material points located in the slope toe (point S1) which 484 

experiences small displacements. The lowest point, D2, remains motionless because 485 

it is located below the shear band. 486 

It is also interesting to check that small positive water pressure (negative values of 487 

suction in the figure) can be observed at some material points close to the bottom 488 

boundary on the right side of the embankment, at times t4 and t5 (sketched in Figures 489 

6g and 6i).  490 
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The final run-out can be quantified to be 2.5 m, if it is defined as the distance 491 

between the initial toe of the slope and the toe of the final geometry. 492 

The wetting process is also illustrated in Figures 7 and 8. Figure 7 shows the 493 

evolution of “green field” suction for the left and right boundaries. We understand 494 

“green field” conditions, in the context of this example, as the conditions of the 495 

upper and lower horizontal “half spaces” in the absence of the presence of the slope. 496 

This condition is approximated by the left and right vertical boundaries of the 497 

example. The fast reduction of suction on the upper parts of the soil is well illustrated 498 

in the plots of Figure 7. Note that small positive pore water pressures are calculated 499 

in the lower part of the slope at t5 = 200 s. Saturation is faster in this part of the slope. 500 

This is a consequence of the position of the impervious bottom boundary, which is 501 

closer to the ground surface (5 m below the surface) than on the left side (12 m 502 

below the surface). At the end of the calculation period the water still moves 503 

downwards in the left portion of the domain. However, on the left side water begins 504 

to accumulate on the lower part and the flow is directed towards the right, following 505 

pressure gradients. 506 

Figure 8 shows the evolution of liquid pressure and the degree of saturation of 507 

points S1, S2, D1 and D2. Note that the plots of Figures 8a and 8b are directly 508 

related between them by the water retention relationship. According to the initial 509 

suction distribution, the degree of saturation at t1 = 0 s is approximately 0.758. Points 510 

located at the same depth have similar wetting evolution. The reduction of suction is 511 

faster in shallow points (S1, S2) than in deeper points (D1, D2). As the calculation 512 

proceeds the degree of saturation increases and approaches almost fully saturated 513 

conditions at the end of the calculation period. However, significant suctions remain 514 

inside the embankment at this time (Figure 6i). 515 

6.3. Stress-suction-time  516 

The stress evolutions have been analysed for the four control points (S1, S2, D1 517 

and D2) and are presented in Figures 9, 10 and 11. Figure 9 shows the evolution of 518 

net mean stress and Figure 10 shows the evolutions of shear stress and the 519 

corresponding yield stress.  520 

In these two figures some oscillations are observed. Because of the dynamic 521 

formulation, whenever there is an unbalanced force in a node, some elastic waves are 522 

generated and cross the domain reflecting at the boundaries (if the boundaries are not 523 
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absorbing boundaries, as the case solved in the example). A sudden change of 524 

external or internal forces can be the reason of the excitation. For example, these 525 

could be related with some remaining cell crossing noise (Bardenhagen & Kober, 526 

2004) during the motion of the slide. A sudden decrease of the stress level due to 527 

softening can also be a cause of the oscillations. 528 

Another reason that can explain the onset of oscillations is a sudden change of the 529 

stiffness of the soil. If solid grains are incompressible, the bulk modulus of the 530 

unsaturated soil can be written as (Santamarina, 2001):  531 
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where Ks, Kl and Kg are the modulus of the solid skeleton, liquid and gas. 533 

Figure 12 shows the variation of the unsaturated bulk modulus with the degree of 534 

saturation considering the water retention curve and the soil properties of this case. It 535 

is clear that when the soil is almost saturated and the degree of saturation is close to 536 

one, the stiffness of the soil increases abruptly towards the saturated bulk modulus. 537 

This effect can be explained because the stiffness of the gas is several orders of 538 

magnitude lower than the stiffness of water and soil skeleton. Comparing Figures 9 539 

and 10 with Figure 8b it can be noted that these oscillations are mainly originated 540 

when the degree of saturation of the material point is close to one (saturated 541 

material). 542 

A smoothing of results has been introduced in Figures 9 and 10 to facilitate the 543 

plot of stress paths. The superimposed plot of the available Mohr-Coulomb strength 544 

provides an additional insight into the slope behaviour. The material point S1 at the 545 

slope toe is essentially yielding at the start of the simulation (Figure 10a) and it 546 

maintains plastic conditions throughout the sliding process. Point S2, the shallow 547 

point at mid slope plastifies about 12 s after the beginning of rainfall and it remains 548 

in a plastic state. D2, which is located within the shear band, behaves essentially as 549 

S2. Point D1 at the slope toe, at a certain depth, is apparently in an elastic state 550 

throughout the sliding process although it appears to be very close to plastification at 551 

the final stages of sliding (Figure 10b). 552 

Stress paths in a 𝑝̅-q plane, plotted in Figure 11, offer a more precise information 553 

on the evolution of plastic states. Initially, when the wetting starts but the slope is 554 

still stable (from t1 to t2), the stress state for the deeper and more confined points (D1, 555 
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D2) changes slightly. However, shallower points subjected to higher shear stresses 556 

such as the toe of the slope (S1) are subjected to a faster decrease of suction and a 557 

loss of strength is associated with suction softening. S1 is under plastic conditions 558 

from the beginning of the calculation. The material point remains on the yield 559 

surface as it shrinks, due to the rapid loss of suction. The point initially experiences a 560 

decrease in net mean stress, which is later recovered as the slide “flows” over this 561 

point. 562 

The slide motion begins between times t2 and t3. These points located mid-slope, 563 

in the “active” area of the failure (S2 and D2), suffer a small increase of mean and 564 

shear stresses but they remain in the current yield surface. Points located in the 565 

“passive” area experience large stress changes. The shallower S1 point softens 566 

because of the rapid reduction of suction. Beyond t3, those points located at mid-567 

slope (S2 and D2) maintain the stress state rather constant. Confinement increases on 568 

S1 and it is capable of offering higher shear strength. The deeper D1 point is able to 569 

resist the stress changes associated with the change in slope geometry and the overall 570 

softening of the upper part of slope. D1 remains elastic but close to the failure 571 

envelope for saturated states at the advanced stages of wetting.    572 

6.4. Dynamics of the motion 573 

The model provides also information on the overall dynamic behaviour of the 574 

slide. This is a significant improvement over static formulations. The calculated total 575 

displacement, velocity and acceleration of S1, S2, D1 and D2 are shown in Figure 576 

13. Velocities and accelerations represented in Figures 13b and 13c have been 577 

calculated by applying a smoothing on the total displacements. Analyzing these plots 578 

it can be seen that the embankment remains essentially stable during the first 20 579 

seconds after the initiation of wetting. At time t2, the failure mechanism develops and 580 

control points located in the mobilized volume (S1, S2 and D2) start moving. They 581 

accelerate quickly during fifteen additional seconds. Peak velocity is attained at t3 = 582 

35 s. After a peak value, the velocity and the acceleration decrease and the slope 583 

tends to stabilize. The resting period may be divided in two parts: a fast decrease of 584 

velocity and acceleration followed by a progressive reduction of velocity towards a 585 

new state of equilibrium. This reaction cannot be generalized and it will depend 586 

strongly on the slope geometry. The lower horizontal platform contributes, in the 587 

example solved, to arrest the motion after a relatively small displacement. The 588 
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control point S2 moves 4 m, reaches a maximum velocity of 0.1 m/s and achieves an 589 

acceleration of 9 mm/s2. Note that the dynamic variables depend on the position of 590 

the point within the slope. Establishing a slope run-out requires some conventions. 591 

For instance, if it is defined as the distance between the slope toes before and after 592 

failure, a run-out of 2.5 m is calculated, as mentioned before. This is a smaller value 593 

than the distance travelled by the material points located at mid-slope, close to the 594 

surface, but larger than other material points examined in this analysis. 595 

7. CONCLUSIONS 596 

The paper presents a step forward in the application of MPM to multiphase 597 

problems in granular media. The choice selected is to lump soil properties, stresses 598 

and state variables into the material points. Three phases are necessary in an analysis 599 

of unsaturated soils: gas, liquid and solid. Mass balance equations of the species (air, 600 

water, minerals) as well as all constitutive relationships are formulated at a material 601 

point level. Equilibrium is established in dynamic terms for the gas, the liquid and 602 

the mixture. Accelerations are calculated in the computational mesh. Velocities, 603 

displacements and strains are obtained into the material points. Soil properties are 604 

updated and mass balance equations provide the relationships to find water and gas 605 

pressures. The outlined computational cycle is an explicit marching scheme in time. 606 

This approach offers numerical advantages in terms of computing time in problems 607 

which do not require a physical separation (different domains) between the granular 608 

skeleton and fluid phases. This is the case of the application discussed in the paper, 609 

namely the instability of unsaturated slopes induced by rainfall wetting. This is a 610 

relevant practical problem in virtually all climate and soil conditions. The method 611 

handles in a natural way the kinematics of sliding and it provides information on 612 

velocities, accelerations and run-outs, which help to estimate the expected damage in 613 

case of sliding. 614 

The general method, developed in some detail, has been applied to unsaturated 615 

soils described by an elastoplastic suction dependent Mohr-Coulomb model 616 

formulated in terms of two stress fields: net stress and suction. A simple 617 

embankment slope, whose characteristics were taken from a real case involving 618 

surface instability induced by heavy rains, has been analyzed. The model provides an 619 

insight into the coupled flow-stress-strain mechanisms developing in the slope. 620 
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Suction decrease results in a marked strength softening. Deviatoric strain localization 621 

starts at the slope toe and eventually materializes into a full sliding zone. The slope 622 

motion starts when a shallow band of soil reaches a low (but non-zero) suction value 623 

and accelerates in a few seconds. The slide does not displace as a rigid body, 624 

however. Points close to the surface experience a faster and more intense suction 625 

reduction and their strength reaches soon the minimum value (saturated conditions). 626 

They are capable of “flowing” over the more resistant zones at depth. The end result 627 

is a complex motion which makes it difficult to define run-out, velocity and 628 

acceleration in a clear and simple way. In fact, these variables depend on the material 629 

point position within the sliding volume. This is believed to be the case in practice 630 

when observing rain-induced instabilities. 631 

The MPM, as formulated in the paper, is an advanced prediction tool to 632 

investigate the stability of slopes in partially saturated soils. The degree of mesh 633 

dependence of the results has not been evaluated in the paper. Grid density may 634 

affect the computed velocities or displacement. The focus of the paper is to develop a 635 

general MPM formulation for saturated and unsaturated deformable porous media. 636 

Sensitivity analyses regarding the number of material points and nodes have been left 637 

outside of the scope of this paper. 638 

Other large deformation problems, such as wetting induced collapse or swelling 639 

may be analysed by the same method but they will require the consideration of a 640 

different constitutive model. However, the general formulation of the three phase 641 

approach described will remain unchanged. 642 
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APPENDIX I: Development of mass balance equations 770 

In this appendix, the developments of the mass balance equation for the solid, water 771 
and air are presented in detail starting from the equation (14) in the paper. 772 

Mass balance equation of the solid component 773 

Considering that there is no mass exchange between solid and fluid phases, the 774 
general mass balance equation (14) can be particularised for the solid component. It 775 
yields the differential equation (I.1), in which ρs is the solid density, n is the porosity 776 
and 𝐣𝑠𝑠  are the solid fluxes. No external solid mass sources or sinks have been 777 
considered. 778 
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Taking into account the solid flux equal to the advective flux of the solid (I.2), 780 
equation (I.1) yields the expression (I.3). 781 
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Applying the chain rule for all the derivatives, the previous equation can be rewritten 784 
as: 785 
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Regrouping terms considering the definition of the material derivative (I.5), the solid 787 
mass balance is simplified to equation (I.6). 788 
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Rearranging terms, the following expression is obtained: 791 
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Finally, considering that the solid grains are incompressible, the material derivative 793 
of the porosity is derived as: 794 

( ) s
s n

Dt
nD v⋅∇−= 1          (I.8) 795 

Mass balance equation of the water component 796 

Taking into account that exchange of water mass is allowed between the fluid 797 
phases, the water mass balance equation should include the water content within both 798 
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liquid and gas phases. Starting from equation (14), the mass balance equation for 799 
water, without considering external sources or sinks, can be written as: 800 

( ) ( ) 0=+⋅∇++
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∂ w

l
w
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w
lgg

w
g nSnS

t
jjρwρw       (I.9) 801 

where ρg and ρl are the gas and liquid densities; Sg and Sl are the gas and liquid 802 
degree of saturations (Sg =1- Sl); 𝜔𝑔𝑤 and 𝜔𝑙

𝑤 are the mass fractions of water in the 803 
gas and in the liquid respectively; and 𝐣𝑔𝑤 and 𝐣𝑙𝑤 are the fluxes of water in the gas and 804 
in the liquid phases.  805 
Referring to the water fluxes, the flux in the gas phase (I.10) is equal to the sum of a 806 
diffusive term 𝐢𝑔𝑤 and an advective term. On the other hand, the water flux in the 807 
liquid phase can be written as (I.11), in which the diffusive term has been neglected.   808 
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Substituting equations (I.10) and (I.11) in (I.9), the water mass balance can be 811 
written as follows: 812 
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Regrouping terms considering the definition of liquid and gas material derivative, 814 
(I.13) and (I.14) respectively, the water mass balance is rewritten in (I.15). 815 
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Assuming the distribution of porosity is sufficiently smooth and the spatial variations 819 
of water content in the liquid and in the gas are small, the material derivatives of 820 
(I.15) can be simplified according to (I.16). 821 
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Considering the previous assumptions and including equation (I.8) in (I.15), the 823 
water mass balance equation can be rewritten as: 824 
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Finally, taking into account the liquid pressure and the gas pressure (pl and pg) as 826 
state variables of the equation, the time derivative of equation (I.17) can be expanded 827 
as follows: 828 
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where the dot on pl and pg indicates the variation in time of liquid and gas pressure.  830 
 831 
In the calculation, the mass fraction of the water in the liquid, 𝜔𝑙

𝑤, is assumed equal 832 
to one. 833 

Mass balance equation of the air component 834 

Similarly to what has been done with the water mass balance equation, the air mass 835 
balance equation has been developed considering air content in the two fluid phases. 836 
Starting from equation (14), the air mass balance, without considering external 837 
sources or sinks, can be written as: 838 
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where 𝐣𝑔𝑎  and 𝐣𝑙𝑎 are the fluxes of air in the gas and liquid phases. The air flux in the 840 
liquid phase (I.20) is equal to the sum of the diffusive term 𝐢𝑙𝑎 and the advective term. 841 
The air flux in the gas phase can be written as (I.21), in which the diffusive term is 842 
be neglected.  843 
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Substituting equations (I.20) and (I.21) in the (I.19) and arranging terms, the water 846 
mass balance can be written with the following expression: 847 

( ) ( ) ( ) 0=⋅∇+⋅∇+⋅∇++
∂
∂ a

gggg
a
glll

a
lgg

a
gll

a
l nSnSnSnS

t
ivv ρωρωρωρω             (I.22) 848 

Regrouping terms considering the definition of liquid and gas material derivative, 849 
(I.13) and (I.14) respectively, the air mass balance is rewritten in (I.23). 850 
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Assuming the distribution of porosity is sufficiently smooth and the spatial variations 852 
of air content in the liquid and in the gas are small, the material derivatives of (I.23) 853 
can be simplified according to (I.16). Considering these assumptions and including 854 
equation (I.8) in (I.23), the air mass balance equation can be rewritten as: 855 
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Finally, taking into account the liquid pressure and the gas pressure (pl and pg) as 857 
state variables of the equation, the time derivative of (I.24) can be expanded as 858 
follows: 859 
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In the calculation, the mass fraction of the air in the gas, 𝜔𝑔𝑎, is assumed equal to one. 861 
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APPENDIX II: Development the momentum balance equations 863 

In this appendix, the strong forms (differential equation) of the momentum balance 864 
equations for liquid (11), gas (12) and mixture (13), are transformed to the weak 865 
forms (integral equation) using weighted residuals. Then the momentum balance 866 
equations are discretized considering the two MPM frames already described in the 867 
paper: nodes and material points. 868 

Weak form of the momentum balance equation of fluid phases 869 

Momentum balance equation is solved in a boundary value problem for the two fluid 870 
phases. To avoid the repetition of similar equations, in the following, the subscript 871 
“f” indicates the phase that corresponding to liquid and gas. Notice that “s” remains 872 
to indicate the solid phase.  873 
Equation (II.1a) is the strong form of momentum balance equation and (II.1b) and 874 
(II.1c) are the corresponding displacement and pressure boundary conditions. 875 
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µ
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( ) ( )ˆ,f ft t=u x u  on  u f∂Ω               (II.1b) 877 

( ) ( )ttp ff pnx ˆ, =  on  p f∂Ω               (II.1c) 878 

The weak form is derived by multiplying (II.1) by a test function δuf and integrating 879 
over the total domain Ω. In addition, the integration by parts and the divergence 880 
theorem are applied to the term with the fluid pressure gradient. Considering that any 881 
test function can be selected, in particular one that is zero on the boundary where 882 
displacements are prescribed, the momentum balance of a fluid can be written as: 883 
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where ∂Ωpf is the boundary where the fluid pressure is prescribed. 885 
Taking into account equation (37) of the manuscript (particularized for the test 886 
function δuf, fluid velocity vf, solid velocity vs and fluid acceleration af) the integral 887 
form (II.2) can be discretized to the nodes. Using the subscripts i and j to denote the 888 
nodal variables, the equation results in the following expression:  889 

( )

( ) ∫∑∑∫∑

∫∑∫∑∑∫∑

Ω== Ω=

Ω=Ω∂== Ω=

Ω⋅+Ω−⋅−

−Ω⋅∇⋅−Ω∂⋅=Ω⋅

dNdNN
k

nS

dpNdNdNN

if

Nn

i
jf

Nn

j
jsjfji

f

ff
Nn

i
jf

fi

Nn

i
jf

p
fi

Nn

i
jf

Nn

j
jfjif

Nn

i
jf

fp

f

buvvu

mupuau

ρd
m

d

ddρd

111

1111

ˆ

(II.3) 890 

where Ni is the shape function associated to the node i. 891 
Because the components of the test function are arbitrary except at constrained 892 
boundary nodes where the components of displacement are prescribed, the previous 893 
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scalar equation can be expanded into a system of equations. Rearranging terms, it can 894 
be shown that: 895 
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Finally, the spatial discretization is further carried out with the introduction of 897 
equation (33) of the manuscript. It is equivalent to consider a quadrature over the 898 
material points, in which the integrals are approximated by sums. The subscripts or 899 
superscript p is used to denote material point variable. 900 
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In the previous equation Vp corresponds to the volume of the material point p, and 902 
𝑁𝑖
𝑝 is the shape function of the node i evaluated on the corresponding material point 903 

location. 904 

Weak form of the momentum balance equation of the mixture 905 

The boundary value problem for the momentum balance of the mixture is the 906 
following, being (II.6a) the strong form of the equation and (II.6b) and (II.6c) the 907 
corresponding displacement and pressure boundary conditions. 908 

( ) bσaaa mggglllss nSnSn ρρρρ +⋅∇=++−1             (II.6a) 909 

( ) ( )tt ss uxu ˆ, =   on  suΩ∂               (II.6b) 910 

( ) ( )tt tnxσ ˆ, =⋅  on  tΩ∂               (II.6c) 911 

The weak form is derived by multiplying (II.6a) by a test function δu and integrating 912 
over the total domain Ω. In addition, the integration by parts and the divergence 913 
theorem are applied to the term with the total stress gradient. Since test functions are 914 
arbitrary, in particular one that is zero on the boundary where displacements are 915 
prescribed, the above equation can be written as: 916 
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where ∂Ωt is the boundary where the external traction is prescribed. 918 
Considering equation (37) of the manuscript (particularized for the test function δu, 919 
solid acceleration vs, liquid acceleration al and gas acceleration ag) the integral form 920 
(II.7) is discretized to the nodes. The equation results in the following expression:  921 
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Because the components of the test function are arbitrary except at constrained 924 
boundary nodes where the components of displacement are prescribed, the previous 925 
scalar equation can be expanded into a system of equations. Rearranging terms, it can 926 
be shown that: 927 
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Finally, the spatial discretization is further carried out with the consideration of 929 
equations (32) and (34). It is equivalent to consider a quadrature over the material 930 
points, in which the integrals are approximated by sums.  931 
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Final system of momentum balance equations 933 

The discrete momentum balance equations obtained in the previous developments for 934 
the fluid phases (II.5) and for the mixture (II.10) can be written, in the same order, in 935 
a more compact form as follows:  936 
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int
l

ext
lll vvQFFaM −⋅−−=⋅~

              (II.11) 937 
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ggg vvQFFaM −⋅−−=⋅~               (II.12) 938 

intext
ggllss FFaMaMaM −=⋅+⋅+⋅              (II.13) 939 

where as, al, and ag are the nodal acceleration vectors for the solid, liquid and gas; vs, 940 
vl, and vg are the nodal velocity vectors of each phase; 𝐌� 𝐥 is the liquid mass matrix 941 
per unit of liquid volume; 𝐌�𝐠 is the gas mass matrix per unit of gas volume; Ms, Ml 942 
and Mg are the solid, liquid and gas mass matrices per unit of total volume; 𝐅𝐥 𝐞𝐞𝐞, 𝐅𝐠 

𝐞𝐞𝐞 943 
and Fext

 are the external forces of the liquid, gas and mixture; 𝐅𝐥 𝐢𝐢𝐢, 𝐅𝐠𝐢𝐢𝐢 and  Fint are 944 
the internal forces of the liquid, gas and mixture; Ql and Qg are the liquid and gas 945 
dragging matrixes. The mathematical expression for each term is the following: 946 
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The mass matrices written above are consistent-mass matrices. For the numerical 960 
implementation the lumped-mass matrices, which are diagonal, are used instead of 961 
the previous ones. N and B are the matrixes that contain the nodal shape functions 962 
and its gradients respectively. 963 
 964 
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LIST OF TABLES 966 

Table 1. Numerical parameters. 967 
Element type Tetrahedron  
Number of elements 3654  
Number of material points 7593  
Damping factor 𝛼 0.05  
Time step 2·10-4 s 

Table 2. General characteristics of the soil. 968 
Solid density ρs  2700 kg/m3 
Porosity n 0.35  
Poisson ratio ν 0.33  
Liquid density ρl  1000 kg/m3 
Gas density ρg 1 kg/m3 
Liquid bulk modulus Kl  100 MPa 
Gas bulk modulus Kg  0.01 MPa 
Liquid viscosity μl  10-3 kg/m·s 
Gas viscosity μg  10-6 kg/m·s 
Intrinsic permeability liquid kl  10-10 m2 
Intrinsic permeability gas kg  10-11 m2 

Table 3. Constitutive model parameters. Suction dependent Mohr-Coulomb  969 
Young modulus E  10 MPa 
Cohesion c’  1 kPa 
Friction angle φ’  20 º 
Δcmax  15 kPa 
B 0.07  
A 0.01  

Table 4. Retention curve parameters. 970 
Smin  0  
Smax 1  
P0 50 kPa 
λ 0.09  

 971 

  972 
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 974 

Figure 1. Scheme of the different MPM numerical approaches depending on the 975 
number of phases and the number of material point sets. 976 

 977 
Figure 2. Continuum approximation of unsaturated porous media. 978 

 979 
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 980 
Figure 3. Scheme of the spatial discretizations of the domain. 981 

 982 

 983 

 984 

 985 

 986 

 987 
Figure 4. Geometry of the embankment slope, computational mesh and initial 988 

distribution of the material points. 989 
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 990 

Figure 5. Water retention curve considered for the calculation. 991 

 992 
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993 

 994 
Figure 6. Calculated suction and equivalent shear strain contours at 5 different times 995 

(t1, t2, t3, t4 and t5). The paths of 4 control material points (S1, S2, D1 and D2) are 996 
indicated. 997 
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 998 
Figure 7. Suction evolution green field at 5 different times: (a) left boundary and (b) 999 

right boundary. 1000 

  1001 
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 1002 

 

 

Figure 8. Evolution of (a) liquid pressure and (b) degree of saturation evolution of 1003 
material points S1, S2, D1, D2. 1004 
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1005 

 1006 
Figure 9. Calculated net mean stress evolution of (a) shallow points (S1, S2) and (b) 1007 

deep points (D1, D2).  1008 
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1009 

 1010 
Figure 10. Calculated shear stress evolution of (a) shallow control points (S1, S2) 1011 

and (b) deep control points (D1, D2). Evolution of Mohr-Coulomb (MC) yield shear 1012 
stress is also indicated for each point.  1013 
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 1015 
Figure 11. Stress paths of (a) shallow points (S1, S2) and (b) deep points (D1, D2). 1016 

Mohr-Coulomb criterion is represented for three different suctions (800 kPa, 400 kPa 1017 
and 0 kPa). 1018 
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Figure 12. Variation of the unsaturated bulk modulus with the degree of saturation.  1020 
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 1025 
Figure 13. Evolution of (a) total displacement, (b) velocity and (c) acceleration of 1026 

material points S1, S2, D1 and D2.  1027 
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