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Abstract

The analysis of amplitude parameters of the diaphragm mechanomyographic (MMGdi) signal is a non-invasive technique to
assess respiratory muscle effort and to detect and quantify the severity of respiratory muscle weakness. The amplitude of
the MMGdi signal is usually evaluated using the average rectified value or the root mean square of the signal. However,
these estimations are greatly affected by the presence of cardiac vibration or mechanocardiographic (MCG) noise. In this
study, we present a method for improving the estimation of the respiratory muscle effort from MMGdi signals that is robust
to the presence of MCG. This method is based on the calculation of the sample entropy using fixed tolerance values
(fSampEn), that is, with tolerance values that are not normalized by the local standard deviation of the window analyzed.
The behavior of the fSampEn parameter was tested in synthesized mechanomyographic signals, with different ratios
between the amplitude of the MCG and clean mechanomyographic components. As an example of application of this
technique, the use of fSampEn was explored also in recorded MMGdi signals, with different inspiratory loads. The results
with both synthetic and recorded signals indicate that the entropy parameter is less affected by the MCG noise, especially at
low signal-to-noise ratios. Therefore, we believe that the proposed fSampEn parameter could improve estimates of
respiratory muscle effort from MMGdi signals with the presence of MCG interference.
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Introduction

Mechanomyographic (MMG) signals are used to record and

evaluate the mechanical activity of the skeletal muscles during

contraction. These signals, represent a non-invasive technique for

measuring the low-frequency lateral oscillations of muscle fibers

during contraction. Furthermore, it has been found that in striated

muscle there is a positive correlation between amplitude param-

eters of the MMG signal and the force produced by the muscle [1],

[2], [3], [4].

Like other skeletal muscles, the diaphragm vibrates laterally

during contraction. These muscle vibrations can be recorded using

microphones, piezoelectric sensors or accelerometers placed over

the lower chest wall in the zone of apposition of the diaphragm to

the rib cage [5]: the diaphragm MMG (MMGdi) signal. The main

frequency content of this signal lies between 5 and 25 Hz [6], [7].

During the recording of MMGdi signals several potential sources

of contamination in addition to environmental noise must be

eliminated or controlled, cardiac vibrations, detected in seismo-

cardiograms or mechanocardiograms (MCGs), typically causing

the most interference. MCGs have a deterministic and repetitive

pattern, and contain clearly defined points associated with the

cardiac cycle [8], [9], [10]. The MCG signal can be detected in

both hemidiaphragms, being stronger on the left side [11], and its

frequency content is below 20 Hz [12], [13]. Therefore, there is an

overlap between the frequency content of the MMGdi and MCG

signals, and hence the potential for interference.

Clinically, the measure of respiratory muscle strength is valuable

to detect muscle weakness and to quantify its severity. The strength

of these muscles is commonly assessed by measuring maximal

inspiratory mouth pressure (IP), but values obtained in this way

could be underestimated [14]. Analysis of MMGdi amplitude is a

useful alternative approach for assessing respiratory muscle

strength [6], [7].

Sample entropy (SampEn), developed by Richman and Moor-

man [15], is widely used to estimate complexity and regularity in

biomedical signals, having been found to be useful for the analysis

of this type of signal in many fields [15] [16], [17], [18], [19], [20].

SampEn is an improved measure of regularity to overcome the

inherent bias observed in approximate entropy [21] because of the

self-matching of vectors. Specifically, SampEn does not count self-
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matches and, thereby, removes the bias and is more robust to

noisy and short data series than approximate entropy.

The amplitude of the MMGdi signal is usually estimated by the

average rectified value (ARV) or the root mean square (RMS).

These amplitude estimators are, however, affected by various types

of noise such as: motion artifacts due to breathing, impulsive noise,

spurious spikes, and MCG interference, among others. In [6], [7],

and [22], it was observed that traditional complexity parameters

calculated using a fixed quantization interval and over a moving

window are more closely related to amplitude variations than to

complexity variations of the signal. In particular, the multistate

Lempel-Ziv index [6] and approximate entropy [7] of MMGdi

signals provided a better measure of respiratory effort (i.e.,

respiratory muscle strength) than the traditional amplitude

parameters as the ARV and RMS. On the other hand, it was

observed that multistate Lempel-Ziv index was less affected by

impulsive noise [6] and SampEn was less affected by spurious

spikes [22].

The objective of this study was to overcome the influence of

MCG interference to obtain an accurate amplitude estimation of

MMGdi signals applying the SampEn method over a moving

window and with fixed tolerance values (fSampEn). These

tolerance values are in the range of 0.1–1 times the global

standard deviation of the original signal, and they do not depend

on the standard deviation of each moving window used for the

calculation. In this paper, we describe the behavior of fSampEn

with simulated MMGdi signals with different signal-to-noise ratio

(SNR) distributions. Furthermore, we apply also this technique to

recorded MMGdi signals with different inspiratory loads. We also

assess the feasibility of distinguishing respiratory cycles using

fSampEn method compared to the ARV and RMS parameters.

Finally, we evaluate the robustness of these amplitude estimators in

presence of MCG interference and its relationship with respiratory

muscle strength.

Methods

Sample entropy
SampEn is a measure that depends on the conditional

probability of two sequences that are similar for m samples (where

m is a positive integer) remaining similar within a tolerance r in the

next sample m+1. A data sequence with many repetitive patterns

(i.e., that is predictable or relatively regular) has a small value of

SampEn, while one with few repetitive patterns (i.e., that is less

predictable or more irregular) has a larger value of SampEn.

Given a signal x(n) = x(1), x(2),…, x(N) of length N, and defined r

and m, SampEn (m, r, N) is calculated as follows [15]:

1. Form the m-vector sequences Xm(1)…Xm(N-m+1), which can

be defined by Xm(i) = [x(i), x(i+1),…, x(i+m-1)]; where 1#i#N-

m+1. These vectors represent m consecutive values of x(n).

2. Define the distance between Xm(i) and Xm(j) as the maximum

absolute difference between their respective scalar components:

d Xm(i),Xm(j)½ �~ max
k~0,m{1

x(izk){x(jzk)j jð Þ ð1Þ

3. Define Bi for each Xm(i) as the number of j(1#j#N-m, j?i) such

that d Xm(i),Xm(j)½ �#r, and then define:

Bm
i (r)~

1

N{mz1
Bi ð2Þ

Bm(r)~
1

N{mz1

XN{m

i~1

Bm
i (r) ð3Þ

4. Increase the dimension to m+1, and define Am
i (r) and Am(r) for

each Xm+1(i) such that d Xmz1(i),Xmz1(j)½ �#r:

Am
i (r)~

1

N{mz1
Ai ð4Þ

Am(r)~
1

N{mz1

XN{m

i~1

Am
i (r) ð5Þ

5. Then, estimate SampEn as:

SampEn(m,r,N)~{ln Am(r)=Bm(r)ð Þ ð6Þ

Sample entropy with fixed r values
In this paper, we propose the calculation of SampEn over a

moving window and using fixed r values and m = 1 (fSampEn).

These r values are in the range of 0.1 to 1 times the global standard

deviation of the original signal, and they do not depend on the

standard deviation of each moving window used for the

calculation. Once the fixed r has been determined, the fSampEn

is calculated following the steps and the equations described above.

Synthesized diaphragm MMG signal
The MMG signals are composed of low-amplitude vibrations

generated during muscular contraction. These low-amplitude

vibrations are related to the mechanical activity of the muscle [3].

The MMG amplitude progressively increases with contraction

effort [3], [23], although this increase is not monotonous and it is

muscle dependent. The frequency content of the MMG signal is

mainly in the range between 5 to 50 Hz. In the case of the

MMGdi signal, the frequency content lies mainly between 5 and

25 Hz and the amplitude varies cyclically with a frequency

determined by the respiratory rate [6].

To better understand how fSampEn detects amplitude varia-

tions, we generated a synthesized signal based on experimental

MMGdi data. The synthesized signal describes similar character-

istics to those of the MMGdi signals acquired during an

incremental inspiratory load respiratory test. To the authors’

knowledge, no published models describe the properties of the

MMG signal during voluntary contractions. Other researchers

have developed models to simulate the behavior of the MMG

signal generated during single motor unit contractions [24], [25],

and in contractions evoked by artificial muscle stimulation (during

artificial stimulation several motor units being activated simulta-

neously and behaving as a single large motor unit) [27], [28], [29].

However, the behavior of the MMG signal in such contractions is

completely different from that during voluntary contractions: the

simultaneous contraction of the motor units makes the waveform

of the artificially evoked MMG signal more deterministic than

random [27], [28].

Since most of the frequency content of MMGdi signal lies

between 5 and 25 Hz and the MMG signal is random in nature

SampEn with Fixed Tolerance Values
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[3], we assumed white Gaussian noise filtered using a zero-phase

fourth-order Butterworth filter with a bandpass from 5 to 25 Hz to

simulate the vibratory behavior. In order to simulate the cyclical

behavior of the MMGdi signal, we first generated an amplitude

modulation envelope (Figure 1A). This envelope signal (ENV) was

designed to simulate the IP increments produced when the

inspiratory load increases. Specifically, the ENV amplitude

increments were equivalent to those produced in the MMGdi

signals for the four incremental inspiratory loads studied. Each

inspiratory load consisted of 10 simulated respiratory cycles of the

same duration (3.33 s approximately). The respiratory rate and

total duration of the ENV signal were 18 cycles per minute and

133.33 s, respectively. The simulated inspiratory periods comprise

50% of the total respiratory period. The selected respiratory rate

and inspiratory periods where selected based on data from a study

of breathing patterns in healthy subjects [30]. During inspiration,

the amplitude of the MMGdi signal progressively increases until

reaching a plateau and then gradually decreases to the rest level.

To simulate this behavior, each simulated inspiratory period was

divided into three phases: (1) rise (25%), (2) plateau (50%) and fall

(25%). The rising and falling phases were simulated by means of

half-Hanning windows. Then, multiplying the simulated random

MMGdi signal with constant amplitude by ENV, we obtained a

modulated amplitude signal whose respiratory rate was similar to

the MMGdi signals. Finally, to simulate the non-cardiac biological

noise present in the MMGdi signal at rest we added background

white Gaussian noise filtered through a zero-phase fourth-order

Butterworth filter with a bandpass from 5 to 50 Hz to obtain the

synthesized MMGdi signal (Figure 1B) clean of cardiac noise

(MMGc). The amplitude of this background noise was equivalent

to the amplitude of the MMGdi signal recorded during apnea in

the portion of signal where no heart activity is present.

To generate the synthesized cardiac vibration signal (MCG), we

simultaneously recorded the electrocardiographic and MMGdi

signals during apnea in a healthy subject. During apnea the

respiratory muscle activity is minimal so that this MMGdi signal

mainly contains MCG activity. The MCG has a stable and

repetitive pattern and contains clearly defined points associated

with the cardiac cycle [8], [9],[10]. To obtain a good estimation of

the MCG pattern we generated an MCG signal using a template.

Specifically, we obtained this template by averaging 70 cardiac

cycles extracted from the MMGdi signal, using the position of R-

peaks in the electrocardiographic signal to align the cycles. Next,

we generated an impulse train synchronized with these R-peak

positions. Finally, we obtained the synthesized MCG signal by the

convolution of the MCG template and the impulse train

(Figure 1C).

The complete synthesized signal with noise (MMGn) was

generated by adding the MMGc and MCG signals (Figure 1D).

For each simulated respiratory load, we considered a different

SNR: L1(28.7 dB), L2(21.7 dB), L3(0.6 dB) and L4(3.8 dB). The

sampling frequency used to generate all the signals was 200 Hz.

Recorded biomedical signals
IP signal and MMGdi signal were simultaneously recorded

while increasing the inspiratory load. These measurements were

taken in a healthy subject with his written consent, and with the

approval of the Ethics Committee of Hospital del Mar, Barcelona,

Spain. The subject was required to sit quietly and breathe through

a mouthpiece and a tube, while wearing a nose clip. During

exhalation the tube allowed the air out with no obstruction, but

during inspiration the airflow was restricted by a valve that

allowed the application of different inspiratory loads. Increasing

the load meant that breathing required greater respiratory muscle

effort, and hence, triggered an increase in the intensity of the

MMGdi component of the signal. Moderate to high inspiratory

loads were used to obtain different SNR ratios: 100, 150, 200 and

250 g. A physician instructed the subject to perform the protocol

correctly, guiding him to breathe at a constant rate and depth.

The IP signal was recorded using a pressure transducer (Digima

Premo 355, Special Instruments, Germany) placed in the tube

through which the subject breathed. The MMGdi signal was

recorded using a capacitive accelerometer (8312B2, Kistler,

Switzerland) placed on the chest surface, between the seventh

and eighth intercostal spaces in the right anterior axillary line.

Signals were amplified, analog filtered, digitized with an A/D

system of 12 bits at a sampling frequency of 2 kHz and decimated

at a sampling rate of 200 Hz.

Figures 2A and B show the IP signal and filtered recorded

diaphragm MMG signal (MMGdi). The MMGdi signal was

filtered through a zero-phase fourth-order Butterworth filter with a

bandpass from 5 to 25 Hz. The duration of the signal was 485 s

covering four inspiratory loads: 100 (126 s), 150 (122 s), 200

(115 s) and 250 (122 s) g. Each load was placed for approximately

21 respiratory cycles.

Methods for evaluation of the fSampEn parameter
To evaluate the behavior of fSampEn as an MMGdi signal

amplitude estimator and the effect of cardiac noise on this

amplitude estimation, we used the Pearson’s correlation coefficient

(R) and the mean relative error (MRE).

First, for the synthesized MMGdi signal, we calculated the R

between the ENV signal and the ARV, RMS and fSampEn

parameters over the MMGn signal. In the case of fSampEn, the R

values were investigated as a function of the tolerance value r.

These R values are calculated separately for the four SNRs

analyzed (i.e., for the four simulated loads) and reflect the

capability of the methods to detect the amplitude variations

produced by cyclical nature of breathing for different SNRs (not

considering the amplitude variations due to the load increase).

In addition, the MRE between the synthesized MMGc and

MMGn signals was calculated for every inspiratory cycle in the

three amplitude parameters under investigation (ARV, RMS and

fSampEn). For an inspiratory cycle i of length N, where Xc(n) and

Xn(n) for n = 1,…,N are the amplitude estimations of clean and

noisy signals, respectively, the MRE is given by:

MRE(i)~
1

N

XN

n~1

Xn(n){Xc(n)j j
Xc(n)

ð7Þ

The average and standard deviation of this error, estimated for

every inspiratory cycle, was calculated separately for the inspira-

tory cycles of the four simulated loads, and for different values of r

in the case of fSampEn.

In the case of the recorded signals, similar to the analysis of the

synthesized signals, we calculated the R between the IP signal and

the three parameters under investigation over the MMGdi signal

for the four inspiratory loads. The R for fSampEn was calculated

as a function of r. Unlike for the synthesized signals, however, it is

not possible to compute the MRE since we do not have the clean

MMGdi signal (that is, without MCG activity).

Finally, to evaluate the relationship between the respiratory

muscle force and the amplitude of the recorded MMGdi signal,

the R between the IP signal and the three parameters under

investigation calculated over the MMGdi signal was recalculated

considering the whole signal (without dividing it into portions

corresponding to different loads). In this case, the R mainly reflects

SampEn with Fixed Tolerance Values
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the relationship between the parameters analyzed and amplitude

variations due to changing the inspiratory load (although it is also

influenced by the amplitude variations produced by the breathing

cycle).

Results

Fixed sample entropy as an amplitude estimator
In Figures 1 and 2, we show an example of the waveforms of the

ARV (Figures 1E and 2C), RMS (Figures 1F and 2D) and

fSampEn (Figures 1G and 2E) obtained from the synthesized

(MMGc and MMGn) and recorded MMGdi signals, respectively.

The waveforms were obtained using a 1 s moving window with an

overlap of 90%. The values of fSampEn were calculated using a

tolerance value of 0.3 times the standard deviation of the entire

signal. In this case, we observed that the amplitude variation due

to the respiratory cycles was best defined with fSampEn. That is,

the entropy parameter provides a better amplitude estimation than

the ARV or RMS parameters, especially for low SNR.

Effect of cardiac noise in the synthesized MMG signals
Changes in R between the ENV signal and the ARV, RMS and

fSampEn parameters calculated over the MMGn signal are shown

in Figure 3. The R values are shown for all SNRs analyzed and as

a function of r for fSampEn. Values of r analyzed were in the range

of 0.1 to 1 times the global standard deviation of the entire signal.

For low SNR (Figure 3A), we observe that R is higher for

fSampEn than for either the ARV or RMS parameters. This

means that the entropy parameter performs better for determining

the presence of respiratory cycles (see load L1 in Figure 1). For

high SNRs (Figure 3D), R is high for all amplitude estimators, and

slightly higher for fSampEn for values of r greater than 0.5.

Figures 3E and F show the R between the ENV signal and the

ARV, RMS and fSampEn parameters calculated over the

synthesized MMGc and MMGn signals, respectively. The R

values for fSampEn were calculated using r = 0.3. The values

showed for MMGn signals (Figure 3F) are the values shown in

Figures 3A-D for r = 0.3. As can be observed, when no MCG noise

is present (Figure 3E) the R values are very high, regardless of the

load. However, when the MCG noise is present (Figure 3F), the R

Figure 1. Synthetic signal with different levels of inspiratory load. (A) Envelope signal (ENV), (B) synthesized MMGdi signal clean of cardiac
noise (MMGc), (C) synthesized cardiac vibration signal (MCG), (D) synthesized MMGdi signal with cardiac noise (MMGn), (E) ARV, (F) RMS and (G)
fSampEn(1,0.3,200) determined in both MMGc (blue line) and MMGn (red line) signals using a 1 s moving window.
doi:10.1371/journal.pone.0088902.g001

SampEn with Fixed Tolerance Values
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values fall rapidly as the SNR decreases. This decrease is more

pronounced for the ARV and RMS parameters than for fSampEn.

In Figure 4 we show the average and standard deviation of

MRE between the synthesized MMGc and MMGn signals in the

three parameters under investigation calculated separately for the

four simulated loads. The MRE obtained for fSampEn for values

of r = 0.15, 0.3, 0.45, 0.6 and 1 is shown in Figure 4A. It can be

seen that increasing r, the mean value of the MRE also increases

for fSampEn. In Figure 4B, we compare the means and standard

deviations of the MRE of the ARV and RMS parameters, with

those of the fSampEn calculated with a tolerance value r = 0.3. We

observe that the average value of MRE is considerably smaller in

the entropy parameter, in particular at low SNRs.

Effect of cardiac noise in the recorded signals
Figure 5 shows the change in R between the IP signal and the

three parameters under investigation over the MMGdi signal, for

the four inspiratory loads. The R for fSampEn is shown as a

function of r. Similar to the behavior observed with the synthesized

signals, for a low load (Figure 5A) we observe a stronger

correlation for the entropy parameter than for the ARV and

RMS. In this case, this trend is also observed for a high load

(Figure 5D) for almost all the tolerance values analyzed.

Figure 5E shows the R values presented in Figures 5A–D, with

the fSampEn focused on r = 0.3. In this case, the R values are

shown as a function of inspiratory load. As can be observed, the

correlation values are smaller at low loads (low SNR), but in this

case, unlike in the synthesized signals, the correlation values were

significantly higher for the entropy parameter for all loads (even at

high loads).

Evaluation of respiratory muscle force
To evaluate the relationship between the respiratory muscle

force and the amplitude of the recorded MMGdi signal, we

investigated the R between the IP signal and the three parameters

under investigation over the MMGdi signal this time considering

the whole signal (without dividing it into the portions correspond-

ing to different loads). Figure 6A shows the evolution of the R

between the IP signal and all parameters analyzed calculated over

the MMGdi signal. As before, the correlation for fSampEn is

shown as a function of r. As we can observe, fSampEn is more

strongly correlated with the IP signal than the ARV and RMS

parameters. The maximum R values were obtained for r values

between 0.3 and 0.6.

Figures 6B, C and D are scatter plots of the maximum values of

IP signal and all parameters analyzed (ARV, RMS and fSampEn)

as a function of respiratory load, respectively. Values of fSampEn

were calculated using r = 0.3. It is observed that the fSampEn

behaves more linearly and has a smaller standard deviation than

the ARV and RMS parameters.

Discussion

The analysis of amplitude parameters of the MMGdi signal is a

non-invasive technique to assess respiratory muscle effort [31].

The amplitude content of the MMGdi signal is usually estimated

using the RMS or the ARV of the signal. Nevertheless, as

corroborated in this simulation study, these estimations are greatly

affected by the presence of cardiac vibration interference that

overlaps in frequency with the MMGdi signal. Furthermore, an

increase in respiratory muscle effort results in an increase in the

Figure 2. Recorded signal with different levels of inspiratory load. (A) Inspiratory mouth pressure (IP) signal, (B) filtered MMGdi signal
respiratory (5–25 Hz) recorded during an incremental inspiratory load protocol. The inspiratory load increases from 100 to 250 g. (C) ARV, (D) RMS
and (E) fSampEn(1,0.3,200) determined in MMGdi signal using a 1 s moving window.
doi:10.1371/journal.pone.0088902.g002

SampEn with Fixed Tolerance Values
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Figure 3. Correlation between ENV and MMGn signals. Pearson’s correlation coefficient (R) between ENV signal and the amplitude parameters
(ARV, RMS and fSampEn) estimated in MMGn signal as a function of simulated inspiratory load. fSampEn was determined for r values between 0.1–1
(plots A to D), and for r = 0.3 in MMGc (E) and MMGn (F) signals. Each simulated respiratory load had a different SNR distribution: L1(28.7 dB),
L2(21.7 dB), L3(0.6 dB) and L4(3.8 dB).
doi:10.1371/journal.pone.0088902.g003

Figure 4. Mean relative error between MMGc and MMGn signals. (A) Average and standard deviation of the mean relative error (MRE)
between the synthesized MMGc and MMGn signals for the fSampEn calculated for values of r = 0.15, 0.3, 0.45, 0.6 and 1. (B) MRE between the
synthesized MMGc and MMGn signals for ARV, RMS and fSampEnwith r = 0.3.
doi:10.1371/journal.pone.0088902.g004

SampEn with Fixed Tolerance Values
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intensity of the MMGdi component: that is, the SNR is variable

and increases with respiratory effort.

Various methods can be applied to minimize the effect of heart

vibrations in the analysis of MMGdi signals. The simplest method

would be, similar to a method used in the diaphragm

electromyographic signal [32], the detection and removal of the

parts of the MMGdi signal with cardiac interference [33].

However, this method splits the signal and excludes portions of

the signal that may contain essential information about the

contractile activity of the diaphragm muscle. Adaptive noise

cancelling algorithms have been also applied to reduce cardiac

interference in MMGdi signals, but the operation of the adaptive

canceller is based on an approximate estimation of a cardiac

vibration reference signal and its performance varies considerably

depending on the SNR of the signal [33], [34].

In this study, we present a method for improving the estimation

of respiratory muscle effort from MMGdi signals that is robust

against cardiac vibration interference. This method is based on the

computation of the SampEn using fixed tolerance values

(fSampEn), not dependent on the standard deviation of each

moving window. In this way, the entropy measures are related to

the quantity of information present in the signal: the entropy is

higher if the signal covers a wide range of amplitudes or if it is

highly complex. With signals where the standard deviation of the

signal is not constant, the SampEn also increase with an increase

of amplitude. Thus, the SampEn is not just measuring the

complexity of the signal but also changes in signal amplitude.

Since heart sounds have a deterministic and repetitive pattern

[8],[9],[10] and MMGdi vibrations are random in nature [3], the

fSampEn is less influenced by cardiac vibrations than the ARV

and RMS parameters. Analysis of synthetic MMGdi signals has

allowed us to explore the relationship between the amplitude of

heart vibrations and the amplitude of the MMGdi signal. For low

SNRs, the fSampEn shows considerably better behavior than the

ARV and RMS parameters, and it also shows better behavior

when small values of tolerance are used. For high SNRs, the

fSampEn shows better behavior for large values of tolerance.

However, we observed that increasing the tolerance value

produces higher MRE between the values of fSampEn calculated

over the synthesized MMG signal with and without MCG noise.

This increase is more pronounced at low load (low SNRs). As the r

value increases the fSampEn is less sensitive to the small changes in

amplitude that are produced at low load. This behavior is in

agreement with what is shown in Figure 3a, where it can be

Figure 5. Correlation between IP and MMGdi signals. Pearson’s correlation coefficient (R) between the IP signal and the amplitude parameters
(ARV, RMS and fSampEn) estimated in MMGdi signal as a function of inspiratory load. fSampEn was determined for r values between 0.1–1 (plots A to
D), and for r = 0.3 (plot E).
doi:10.1371/journal.pone.0088902.g005

SampEn with Fixed Tolerance Values

PLOS ONE | www.plosone.org 7 February 2014 | Volume 9 | Issue 2 | e88902



observed that the R between the entropy parameter and the ENV

signal decreases with increasing r (unlike what occurs with high

SNRs). Thus, there is a compromise in the selection of the

tolerance value. It was found that a tolerance value of r = 0.3 was

suitable in the current study for both low and high SNRs.

As an example, the fSampEn method was also applied to

recorded MMGdi signals, obtaining a similar pattern of results to

those with synthetic ones. Further, in this case the performance of

the fSampEn is much better than that of the RMS and ARV for all

the respiratory loads analyzed (for both low and high SNR). For

almost all the tolerance values analyzed, the R values between the

IP signal and the fSampEn were notably greater than the R values

between the IP signal and the ARV and RMS parameters,

indicating that this entropy parameter is a better tool to assess

respiratory effort. Furthermore, in general, the variance of

fSampEn is lower than the variance of the ARV and RMS

parameters. These results are in agreement with a previous study

comparing the approximate entropy using fixed tolerance values

and the RMS of MMGdi signals acquired in an animal model

(dogs) [7].

The major motivation for us for developing this method was the

need to improve the characterization of MMGdi signals with the

Figure 6. Evaluation of respiratory muscle force. (A) Evaluation of the respiratory muscle force by means of the Pearson’s correlation coefficient
(R) between the IP signal and the amplitude parameters (ARV, RMS and fSampEn) estimated considering the whole MMGdi signal. fSampEn was
determined for r values between 0.1–1. Scatter plots of the maximum values of the IP signal and the maximum values of the amplitude parameters:
(B) ARV, (C) RMS, (D) fSampEn determined using r = 0.3, as a function of respiratory load.
doi:10.1371/journal.pone.0088902.g006
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presence of cardiac interference. This is important because the

study of MMGdi signals could be useful in clinical practice as an

alternative non-invasive technique to evaluate respiratory muscle

effort and to detect and quantify the severity of respiratory muscle

weakness. In the current study we have only examined the

SampEn at a single time scale. Costa et al. [19] developed a

method that considers SampEn computed at several time-scales:

multiscale entropy analysis. This method has been shown

beneficial at differentiating between different cardiac diseases

[19] and has allowed to examine the affect of fatigue and

contraction intensity on the short and long-term complexity of

biceps brachii surface electromyography [20]. Such approach can

be useful for further analysis of the respiratory muscle effort by

means of MMGdi signals.

In conclusion, we propose an algorithm for improving the

evaluation of respiratory muscle effort from MMGdi signals that is

robust against cardiac vibration interference.
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attenuation of the cardiac vibration interference in mechanomyographic signals.

Conf Proc IEEE Eng Med Biol Soc: 3400–3403.
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