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Abstract: The theory of Shannon entropy was applied to the Choi-Williams time-frequency 

distribution (CWD) of time series in order to extract entropy information in both time and 

frequency domains. In this way, four novel indexes were defined: (1) partial instantaneous 

entropy, calculated as the entropy of the CWD with respect to time by using the probability 

mass function at each time instant taken independently; (2) partial spectral information 

entropy, calculated as the entropy of the CWD with respect to frequency by using the 

probability mass function of each frequency value taken independently; (3) complete 

instantaneous entropy, calculated as the entropy of the CWD with respect to time by using 

the probability mass function of the entire CWD; (4) complete spectral information entropy, 

calculated as the entropy of the CWD with respect to frequency by using the probability 

mass function of the entire CWD. These indexes were tested on synthetic time series with 

different behavior (periodic, chaotic and random) and on a dataset of electroencephalographic 

(EEG) signals recorded in different states (eyes-open, eyes-closed, ictal and non-ictal 

activity). The results have shown that the values of these indexes tend to decrease, with 

different proportion, when the behavior of the synthetic signals evolved from chaos or 

randomness to periodicity. Statistical differences (p-value < 0.0005) were found between 

values of these measures comparing eyes-open and eyes-closed states and between ictal and 

non-ictal states in the traditional EEG frequency bands. Finally, this paper has demonstrated 
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that the proposed measures can be useful tools to quantify the different periodic, chaotic and 

random components in EEG signals. 

Keywords: entropy; time-frequency representation; electroencephalography; complexity 

 

1. Introduction 

Since the works of Kotelnikov and Shannon [1,2], it has been proved that the information provided by 

an event associated with the inverse of the probability of an event occurrence has been extremely useful 

for its significance and inherent conceptual simplicity. 

The classical Shannon entropy measures the average information provided by a set of events and 

proves its uncertainty. This measure is shown as a natural candidate for quantifying the complexity of a 

signal. Also the level of chaoticity may be measured using entropy; therefore higher entropy represents 

higher uncertainty and a more irregular behavior of the signal. Moreover, if noise is added to an ordered 

signal the uncertainty increases and the entropy is also increased. Entropy can even explain how linked 

complex systems interact and exchange information. The quantification of the magnitude of this information 

becomes a goal in the study of biological signals. 

The entropy estimation consists in calculating the probability of events that occur in time signals and 

in obtaining a reliable average value of the information provided by each of these events. The evolution 

of the entropy of a signal with respect to time, calculated from the instantaneous information of a window 

that slides over the signal, is a smoothing of the sequence of instantaneous information because the entropy 

is the average value of the information in this window. 

The purpose of this paper is both to avoid this low-pass filtering inherent in the calculation of the 

entropy and to obtain instantaneous values of this measure. The time-frequency representation (TFR) 

technique is suited to achieve both aims. TFR generalizes the concept of the time and frequency domains 

to a joint time—frequency function that indicates how the frequency content of a signal changes over  

time [3,4]. Complexity studies based on entropy functional take advantage of the analogy between signal 

energy densities and probability densities [5]. While the instantaneous and spectral amplitudes behave as 

one-dimensional densities of signal energy in time and in frequency, TFR tries to act as 2-dimensional 

energy densities in both time and frequency [6]. 

In this paper, we investigate new measures that quantify the complexity and information content of a 

signal. Selecting time and frequency functions that satisfy marginal properties, one can assume that the 

energy density of a signal in one instant (or instantaneous power of the signal) is given by the entropy 

associated with the frequency components of the signal at this time instant (or instantaneous entropy). 

By similar reasoning, an equivalent measure can be obtained in the frequency domain (spectral 

information entropy). Thus, a different way to calculate the information in the TFR by estimating a 

probability density function of a signal either in time or in frequency domain is proposed in this paper. In 

a similar study, Baraniuk [6] discussed the calculation of the logarithms of Shannon expression with 

negative value of TFR. In this work this problems is avoided since the probability density of the TFR 

always contains positive values. Our proposed methodology is based on the original concept of 
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information defined as the logarithm of the inverse value of a probability. This permits to make a 

comparison with traditional Shannon entropy. 

The Choi-Williams distribution (CWD) [3] is a type of Time-Frequency Representation (TFR) whose 

properties facilitate the purpose of this work. Four novel indexes are defined on the CWD: (1) partial 

instantaneous entropy, calculated as the entropy of the CWD with respect to time by using the probability 

mass function at each time instant taken independently; (2) partial spectral information entropy, calculated 

as the entropy of the CWD with respect to frequency by using the probability mass function of each 

frequency value taken independently; (3) complete instantaneous entropy, calculated as the entropy of 

the CWD with respect to time by using the probability mass function of the entire CWD; (4) complete 

spectral information entropy, calculated as the entropy of the CWD with respect to frequency by using 

the probability mass function of the entire CWD. 

These indexes are tested on synthetic time series that simulate signals in which different behaviors 

(periodic, chaotic and random) are combined and on a dataset of electroencephalographic (EEG) signals 

recorded in different states (eyes-open, eyes-closed, ictal and non-ictal activity). For this analysis, EEG 

signals are selected since they are generated by nonlinear deterministic processes with nonlinear coupling 

interactions between neuronal populations [7]. 

2. Methodology 

2.1. Time-Frequency Representation 

CWD (1) is obtained by convoluting the Wigner distribution (WD) (2) and the Choi-Williams 

exponential (3) [3,8]: 

,ݐሺܦܹܥ ݂ሻ ൌ ඵ݄ሺݐ െ ,ᇱݐ ݂ െ ݂ᇱሻ ݔܦܹ

ஶ

ିஶ

ሺݐ´, ݂´ሻ݀(1) ´݂݀´ݐ

,ݐሺݔܦܹ ݂ሻ ൌ න ݐሺݔ ൅ ߬ 2⁄ ሻ

ஶ

ିஶ

ݐሺ∗ݔ െ ߬ 2⁄ ሻ݁ି௝ଶగ௙ఛ݀߬ (2)

݄ሺݐ, ݂ሻ ൌ ඨ
ߨ4
௖ߪ
݁
ିସగమ

ሺ௧௙ሻమ
ఙ೎  (3)

The spectral power is defined as: 

ሺ݂ሻݓ݋ܲ݌ܵ ൌ න ,ݐሺܦܹܥ ݂ሻ

ஶ

ିஶ

(4) ݐ݀

Choosing an adequate parameter σc, the function (3) is able to reduce WD cross-terms and preserve 

the properties of the WD, such as the marginal properties and instantaneous frequency. In this work,  

σc was set to 0.005 [8]. The ܦܹܥሺݐ, ݂ሻ was normalized by the total power calculated as the area  

under SpPow.  
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2.2. Shannon Entropies 

Entropy can express the mean of information that an event provides when it takes place, the 

uncertainty about the outcome of an event and the dispersion of the probabilities with which the events 

take place. Let X be a discrete random variable which takes a finite number of possible values x1, x2, x3..., 

xn with probabilities P(1), P(2), P(3)..., P(n) respectively, such that P(i) ൒ 0,	 i = 1, 2, 3…n, 

	∑ ܲሺ݅ሻ ൌ 1௡
௜ୀଵ ; Shannon entropy (Entr) is defined as:  

Entr =	െ∑ ܲሺ݅ሻ݈݃݋ଶ൫ܲሺ݅ሻ൯
௡
௜ୀଵ  (5)

where n is the number of analyzed samples.  

2.3. Instantaneous Entropy and Spectral Information Entropy 

The probability mass function (PMF) was defined for a time instant tk with respect to frequency as 

pTPMF ( ௞ݐ , i) = PCWD(ܦܹܥ௜ሺݐ, ݂ሻ	|	ݐ ൌ ሻ	௞ݐ  and for frequency value fk with respect to time as  

pFPMF (i, fk) = PCWD(ܦܹܥ௜ሺݐ, ݂ሻ	|	݂ ൌ ௞݂ሻ, after the quantization of the CWD(tk,f) and CWD(t,fk), 

respectively, in n=32 equidistant levels. In this work, a time range of 0 < t < 200 s and a frequency 

bandwidth of 0 < f < 60 Hz were taken into account. 

The two distributions, quantization-time pTPMF (ݐ, i) and quantization-frequency pFPMF (i, f), were 

obtained for each time instant and frequency value for the entire time 0 < tk < 200 s and bandwidth  

0 < fk < 60 Hz. In this way, the two distributions represent partial distribution of PFM with respect to 

time or to frequency, since in each time instant (tk) and frequency value (fk) the PMF is only related to 

that time instant (tk) or frequency value (fk). In a similar way, the complete PMF distribution 

quantization-time and quantization-frequency were calculated as cTPMF (ݐ, i) = PCWD(ܦܹܥ௜ሺݐ, ݂ሻ	|0 ൏
ݐ ൏ ,ݐ௜ሺܦܹܥ)ሻ and cFPMF (i, f) = PCWD	ݏ	200 ݂ሻ	|0 ൏ ݂ ൏  ሻ, respectively, after the quantizationݖܪ	60

of the CWD(t,f) in n = 32 equidistant levels. 

From this proposed methodology, new indexes were defined: 

 Partial instantaneous entropy: 

ሻݐሺݎݐ݊ܧݐݏ݊ܫ݌ ൌ െ෍݌ ௉ܶெிሺݐ, ݅ሻ݈݃݋ଶ൫݌ ௉ܶெிሺݐ, ݅ሻ൯	

௡

௜ୀଵ

 (6)

 Partial spectral information entropy: 

ሺ݂ሻݎݐ݊ܧ݂݊ܫ݌ܵ݌ ൌ െ෍ܨ݌௉ெிሺ݅, ݂ሻ݈݃݋ଶ൫ܨ݌௉ெிሺ݅, ݂ሻ൯		

௡

௜ୀଵ

 (7)

 Complete instantaneous entropy: 

ሻݐሺݎݐ݊ܧݐݏ݊ܫܿ ൌ െ෍ܿ ௉ܶெிሺݐ, ݅ሻ݈݃݋ଶ൫ܿ ௉ܶெிሺݐ, ݅ሻ൯		

௡

௜ୀଵ

 (8)

 Complete spectral information entropy: 

ሺ݂ሻݎݐ݊ܧ݂݊ܫ݌ܵܿ ൌ െ෍ܿܨ௉ெிሺ݅, ݂ሻ݈݃݋ଶ൫ܿܨ௉ெிሺ݅, ݂ሻ൯		

௡

௜ୀଵ

 (9)
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3. Analyzed Data 

3.1. Synthetic Signals 

In order to study the performances of the pInstEntr, pSpInfEntr, cInstEntr, cSpInfEntr applied to 

different types of signals, a set of simulated signals were designed:  

(1). A periodic signal ݔሺݐሻ ൌ ௦ܣ∑ sinሺ2ܨߨ௜ݐሻ	was generated adding a frequency component (Fi) 

every 25 s, in this way the first 25 s of the signal has 1 frequency component and the  

last 25 s has 8 frequency components. The added frequencies were respectively  

Fi = [0.5;1;2;5;10;20;30;50] Hz. The amplitude of each frequency component was ܣ௦ = 1/NF, 

where 1 ≤ NF ≤  8 is the number of the frequency components. 

(2). A MIX process, used in previous studies [9–11], was defined as MIX = (1 − z)x + zy, where z is a 

random variable that is equal to 1 with probability p and equal to 0 with probability 1−p, x is a 

periodic sequence with a frequency component of 10 Hz, and y is a standard uniformly distributed 

variable on [−√3,√3]. The synthetic signal was based on a MIX process whose parameter p varied 

linearly from 0.9 to 0.1. Hence, this sequence, evolved from randomness to periodicity. 

(3). The same MIX process of 2) using as y the Hx obtained from Henon map [12] with  

chaotic behavior (10), using the canonic values a = 1.4 and b = 0.3, and taking Hx(0) = 0.5 and 

Hy(0) = 0.5 as initial conditions. Hence, this sequence evolved from chaos to periodicity. 

൜
ሺ݊ݔܪ ൅ 1ሻ ൌ 1 െ ܽ ଶሺ݊ሻݔܪ ൅ ሺ݊ሻݕܪ
ሺ݊ݕܪ ൅ 1ሻ ൌ ܾ ሺ݊ሻݔܪ

 (10) 

(4). The same MIX process of (3) using as y a Henon map with chaotic behavior and as x the  

standard uniformly distributed variable on [−√3,√3]. Hence, this sequence evolved from chaos  

to randomness. 

All synthetic signals had a length of 200 s and a sampling frequency of 128 Hz. For each synthetic 

signal, mean (m) of cInstEntr, pInstEntr and the signal entropy Entr were calculated with respect to time 

in windows of 1 s. The cSpInfEntr and pSpInfEntr and the spectral power of the CWD was also 

calculated for each signal. 

3.2. Real EEG Recordings 

A freely available EEG dataset was used for validation [13]. This dataset contains 100 single channel 

EEG segments of 23.6 s recorded with the same amplifier system, using an average common reference 

with a sampling rate of 173.6 Hz. The dataset was divided in five different sets (A, B, C, D, E). Sets A 

and B contain surface EEG signals recorded from five healthy volunteers who were relaxed in an awake 

state. Whereas the subjects had their eyes open during the recording of the EEG in set A, the EEG signals 

of dataset B were acquired with eyes closed. Three sets (C, D and E) of intracranial EEG recordings from 

five epileptic patients, who had achieved complete seizure control after a surgical procedure. Signals in 

set D were recorded within the epileptogenic zone, whereas the EEGs of set C were acquired from the 

opposite brain hemisphere. Sets C and D contained only activity measured during seizure-free intervals. 

On the other hand, set E was only composed of seizure activity recorded from all sites exhibiting ictal 

activity. Additional details can be found in [13]. 
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4. Results and Discussion 

4.1. Synthetic Signals 

Figures 1–4 show the results obtained applying the methodology to all the synthetic signals. 

Figure 1. Signal 1: (a) partial distribution quantization vs. time pT(t,i), (b) partial 

distribution quantization vs. frequency pF(i,f), (c) complete distribution quantization vs. 

time cT(t,i), (d) complete distribution quantization vs. frequency cF(i,f), (e) instantaneous 

complete entropy (cInstEntr), partial entropy (pInstEntr) and traditional entropy (Entr), (f) 

spectral complete information entropy (cSpInfEntr), partial information entropy (pSpInfEntr) 

and spectral power (SpPow). 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 2. Signal 2: (a) partial distribution quantization vs. time pT(t,i), (b) partial 

distribution quantization vs. frequency pF(i,f), (c) complete distribution quantization vs. 

time cT(t,i), (d) complete distribution quantization vs. frequency cF(i,f), (e) instantaneous 

complete entropy (cInstEntr), partial entropy (pInstEntr) and traditional entropy (Entr),  

(f) spectral complete information entropy (cSpInfEntr),partial information entropy 

(pSpInfEntr) and spectral power. 
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Figure 3. Signal 3: (a) partial distribution quantization vs. time pT(t,i), (b) partial 

distribution quantization vs. frequency pF(i,f), (c) complete distribution quantization vs. 

time cT(t,i), (d) complete distribution quantization vs. frequency cF(i,f), (e) instantaneous 

complete entropy (cInstEntr), partial entropy (pInstEntr) and traditional entropy (Entr),  

(f) spectral complete information entropy (cSpInfEntr),partial information entropy 

(pSpInfEntr) and spectral power. 
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Figure 4. Signal 4: (a) partial distribution quantization vs. time pT(t,i), (b) partial 

distribution quantization vs. frequency pF(i,f), (c) complete distribution quantization vs. 

time cT(t,i), (d) complete distribution quantization vs. frequency cF(i,f), (e) instantaneous 

complete entropy (cInstEntr), partial entropy (pInstEntr) and traditional entropy (Entr),  

(f) spectral complete information entropy (cSpInfEntr), partial information entropy 

(pSpInfEntr) and spectral power. 

(a) (b) 

(c) (d) 

(e) (f) 
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of quantization-time is more homogeneous. Similar behavior is followed by pF and cF, as it is shown in 

Figures 1b,d, respectively. As it can be noted in Figure 1e, traditional Entr does not show significant 

changes when signal 1 evolves from one frequency component to the eight simultaneous frequency 

components, while ݎݐ݊ܧݐݏ݊ܫ݌ and ܿݎݐ݊ܧݐݏ݊ܫ increase from one frequency component to the multiple 

components. However, ݎݐ݊ܧݐݏ݊ܫ݌ has a higher increase than ܿݎݐ݊ܧݐݏ݊ܫ. In the frequency domain 

(Figure 1f), ݎݐ݊ܧ݂݊ܫ݌ܵ݌ and ܿܵݎݐ݊ܧ݂݊ܫ݌ have similar behavior to ܵݓ݋ܲ݌, showing the location of 

the frequency components ݂ ൌ ௜ܨ . However ݎݐ݊ܧ݂݊ܫ݌ܵ݌  and ܿܵݎݐ݊ܧ݂݊ܫ݌  decrease in low 

frequency until about 20 Hz and then they maintain stable values for ݂ ്  ௜. The higher values ofܨ

 at low frequencies correspond to the persistent frequency components ݎݐ݊ܧ݂݊ܫ݌ܵܿ and ݎݐ݊ܧ݂݊ܫ݌ܵ݌

along the signal 1. The values of ݎݐ݊ܧ݂݊ܫ݌ܵ݌ are above ܿܵݎݐ݊ܧ݂݊ܫ݌ and approximately equidistant 

for all frequency values, except for the high frequency components (f = 30 Hz and f = 50 Hz) where 

 .assume similar values ݎݐ݊ܧ݂݊ܫ݌ܵܿ and ݎݐ݊ܧ݂݊ܫ݌ܵ݌

Partial and complete distributions quantization vs. time of signal 2 are presented in Figures 2a,c. 

During the transition from randomness to periodicity, the evolution of pT (Figure 2a) presents some 

changes that are less evident in cT (Figure 2c). The evolution of pT tends to be homogenous in the zone 

with more randomness. Observing quantization-frequency distributions in Figures 2b,d, all information 

is more contained in few quantization bins in cF than pF, due to the fact that the quantization takes into 

account the complete CWD in cF. In both pF and cF distributions, the oscillation frequency of the 

sinusoid is observed in 10 Hz. Traditional Entr (Figure 2e) does not show significant changes when the 

signal passes from a random to a periodic behavior. On the contrary, ݎݐ݊ܧݐݏ݊ܫ݌ and ܿݎݐ݊ܧݐݏ݊ܫ 

decrease from randomness to periodicity. During random behavior ݎݐ݊ܧݐݏ݊ܫ݌ is higher than ܿݎݐ݊ܧݐݏ݊ܫ, 

then the two measures approach each other and converge in the zone with more periodicity. In Figure 2f, 

 does. While ݓ݋ܲ݌ܵ show the location of the frequency component as ݎݐ݊ܧ݂݊ܫ݌ܵܿ and ݎݐ݊ܧ݂݊ܫ݌ܵ݌

 presents irregular ݎݐ݊ܧ݂݊ܫ݌ܵ݌ ,maintains stable values for the remaining frequencies ݎݐ݊ܧ݂݊ܫ݌ܵܿ

oscillations in the entire spectrum. Values of ݎݐ݊ܧ݂݊ܫ݌ܵ݌ are higher than ܿܵݎݐ݊ܧ݂݊ܫ݌ except for the 

frequency component of the signal f = 10 Hz. 

Similarly to the evolutions observed in Figure 2a,c, it can be noted in Figure 3a,c that the differences 

in the transition from chaos to periodicity in the evolution of pT (Figure 3a) are less evident in cT (Figure 

2c). It is observed that less homogeneity behavior is preserved in pT in the zone with more chaos (Figure 

3a) compared to the zone with more random (Figure 2a). Also, it can be noted that cT presents more 

heterogeneity along the time than in Figure 2c, due to the differences between chaos and random series. 

Quantization-frequency distributions of signal 3 (Figures 3b,d) have similar behavior to signal 2 (Figure 

2b,d). Also Entr, ݎݐ݊ܧݐݏ݊ܫܿ ,ݎݐ݊ܧݐݏ݊ܫ݌ (Figure 3e), ݎݐ݊ܧ݂݊ܫ݌ܵ݌ and ܿܵݎݐ݊ܧ݂݊ܫ݌ (Figure 3f) exhibit 

similar behavior to signal 2. However, it can be noted when Figures 2f and 3f are compared that 

  has a higher and a more constant base-line for all frequencies in signal 2 (Figure 2f) than ݎݐ݊ܧ݂݊ܫ݌ܵܿ

in signal 3. 

Quantization-time distributions of signal 4 are shown in Figure 4a,c. Certain differences are observed 

in the transition from chaos to randomness in the evolution of both pT and cT. The behavior of both 

distributions appear to be homogeneous. As it was observed in signals 1, 2 and 3, the information 

contained in quantization-frequency distributions of signal 4 (Figure 4b,d) is more concentrated in cF 

than pF. Then, since the complete distribution appears to be always more concentrated in few bins, it can 

be used when more resolution is required. Observing Figure 4e, Entr, ݎݐ݊ܧݐݏ݊ܫ݌ and ܿݎݐ݊ܧݐݏ݊ܫ 
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increase their values from chaos to random behavior of the signal. The entropy ݎݐ݊ܧݐݏ݊ܫ݌ has higher 

values than ܿݎݐ݊ܧݐݏ݊ܫ  for all the time instants. As it can be observed in Figure 4f, SpPow, 

ݎݐ݊ܧ݂݊ܫ݌ܵ݌  and ܿܵݎݐ݊ܧ݂݊ܫ݌  have similar behavior showing oscillations around three different 

constant baselines. Higher values are observed in ݎݐ݊ܧ݂݊ܫ݌ܵ݌ than in ܿܵݎݐ݊ܧ݂݊ܫ݌. 

Comparing the Figures 1e, 2e, 3e, and 4e, it can be deduced that when the signals contain many 

different frequency components, ݎݐ݊ܧݐݏ݊ܫ݌ is higher than ܿݎݐ݊ܧݐݏ݊ܫ. This behavior is observed from 

approximately t = 100 s in Figure 1e, and till t = 60 s in Figures 2e and 3e. This is corroborated in Figure 4e 

where the analyzed signal combines chaos and random features along the time. However, when the 

signals have few frequency components, ݎݐ݊ܧݐݏ݊ܫ݌ and ܿݎݐ݊ܧݐݏ݊ܫ have similar values. Comparing 

Figures 1f, 2f, 3f, and 4f, it is observed that both ݎݐ݊ܧ݂݊ܫ݌ܵ݌ and ܿܵݎݐ݊ܧ݂݊ܫ݌ tend to assume the 

same value where a frequency peak is present in the spectrum. For the remaining frequency components, 

 .ݎݐ݊ܧ݂݊ܫ݌ܵܿ has always higher values than ݎݐ݊ܧ݂݊ܫ݌ܵ݌

4.2. Real EEG Signals 

Figures 5–9 show the averaged evolution of cInstEntr, pInstEntr, Entr, cSpInfEntr,pSpInfEntr 

and	ܵݓ݋ܲ݌ of all EEG signals of each set. It can be observed that entropy pInstEntr has higher values 

than cInstEntr in set A and B for all time instants (Figures 5a and 6a, respectively), however, different 

behavior is seen in sets C, D and E (Figures 7a, 8a and 9a, respectively) where few slightly differences 

are observed between these two indexes. Traditional entropy Entr is always the highest. Observing 

Figures 5b, 6b, 7b, 8b and 9b, it can be noted that pSpInfEntr presents almost constant shape with higher 

values than cSpInfEntr for the entire frequency spectrum. On the contrary, the shape of cSpInfEntr is 

similar to ܵݓ݋ܲ݌, both presenting peaks in correspondence to certain frequency values. Entropies 

pSpInfEntr and cSpInfEntr tend to increase in high frequencies while the ܵݓ݋ܲ݌ is zero. 

Figure 5. Set A (awake state with eyes open): (a) instantaneous complete entropy 

(cInstEntr), partial entropy (pInstEntr) and traditional entropy (Entr), (b) spectral  

complete information entropy (cSpInfEntr), partial information entropy (pSpInfEntr) and 

spectral power. 
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Figure 6. Set B (awake state with eyes closed): (a) instantaneous complete entropy 

(cInstEntr), partial entropy (pInstEntr) and traditional entropy (Entr), (b) spectral  

complete information entropy (cSpInfEntr), partial information entropy (pSpInfEntr) and 

spectral power. 

 
(a) (b) 

Figure 7. Set C (non-ictal activity recorded from the epilogenetic zone): (a) instantaneous 

complete entropy (cInstEntr), partial entropy (pInstEntr) and traditional entropy (Entr), (b) 

spectral complete information entropy (cSpInfEntr), partial information entropy 

(pSpInfEntr) and spectral power. 

 
(a) (b) 

Figure 8. Set D (non-ictal activity recorded from opposed brain hemisphere to set C):  

(a) instantaneous complete entropy (cInstEntr),partial entropy (pInstEntr) and traditional 

entropy (Entr), (b) spectral complete information entropy (cSpInfEntr), partial information 

entropy (pSpInfEntr) and spectral power. 
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Figure 9. Set E (ictal activity): (a) instantaneous complete entropy (cInstEntr), partial 

entropy (pInstEntr) and traditional entropy (Entr), (b) spectral complete information entropy 

(cSpInfEntr), partial information entropy (pSpInfEntr) and spectral power. 

(a) (b) 

Figure 10 shows the boxplot of the mean values of pInstEntr, pSpInfEntr, cInstEntr, cSpInfEntr and 

Entr calculated for each EEG signal of each set (A,B,C,D,E). Table 1 contains the p-values  

(Mann-Whitney U-test) of the analyzed measures obtained by comparing sets: A vs. B, C vs. D, C vs. E 

and D vs. E. 

The fundamental assumption of nonlinear techniques is that EEG signal is generated by nonlinear 

deterministic processes with nonlinear coupling interactions between neuronal populations. Nonlinearity in 

the brain is introduced, even at the neuronal level [13]. In recent years, with the application of the nonlinear 

dynamics to EEG, more evidences have indicated that the brain is a nonlinear dynamic system, and EEG 

signal can be regarded as its output [14]. In this way, it has been assumed that EEG signal is between 

random signal and deterministic signal [15]. 

As it can be seen in Figures 10c,d, higher values of cInstEntr and cSpInfEntr are  

related to eyes-closed state (set B) compared to eyes-open state (set A), with p-value = 0.0059 and  

p-value < 0.0005 (Table 1), respectively. Therefore, it can be inferred that the closing of eyes is 

associated with higher entropy in time and in frequency. Comparing these values with the evolution of 

the synthetic signals, higher entropy in time domain (cInstEntr) is associated with a predominance of 

random behavior respect to chaotic behavior and periodicity. Related to cSpInfEntr, the higher values of 

set B indicate a much more complexity behavior than in set A. It can be observed that cSpInfEntr of a 

random signal mixed with periodicity components (Figure 2f) contains a constant baseline with values 

higher than a chaotic signal mixed with periodicity components (Figure 3f). Therefore, it might be 

assumed that a random signal mixed with periodicity components has higher mean value of cSpInfEntr 

than a chaotic signal mixed with periodicity components. Then, cSpInfEntr of set A seems to have a 

behavior similar to chaos mixed with periodicity (shown in Figure 3f) and cSpInfEntr of set B seems to 

have a behavior similar to random mixed with periodicity (shown in Figure 2f). 

Regarding the sets C, D and E of the EEG database, there are very significant differences between the 

values of pInstEntr, pSpInfEntr, cInstEntr, cSpInfEntr computed for non-ictal (sets C and D) and ictal 

(set E) states, with p-value < 0.0005 (Table 1). In this case, the higher value of these measures in ictal 

activity is associated with more complex behavior in time-frequency domain. Since the literature [16] is 

almost concordance to the fact that epileptic seizure is associated with a decrease of complexity of the 
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EEG signal in time domain, we assume that higher values of pInstEntr, pSpInfEntr, cInstEntr, 

cSpInfEntr in set E seem to indicate a higher complexity in frequency domain. 

Figure 10. EEG signals: (a) partial instantaneous entropy (pInstEntr), (b) partial spectral 

information entropy (pSpInfEntr), (c) complete instantaneous entropy (cInstEntr), (d) complete 

spectral information entropy (cSpInfEntr), (e) traditional entropy (Entr). set A: awake state 

with eyes open; set B: awake state with eyes closed; set C: non-ictal activity recorded from 

the epilogenetic zone; set D: non-ictal activity recorded from opposed brain hemisphere to 

set C; set E: ictal activity. On each box, the central mark is the median, the edges of the box 

are the 25th and 75th percentiles. The whiskers are lines extending from each end of the 

boxes to show the extent of the rest of the data. Values beyond the end of the whiskers are 

considered outliers and marked with a +. 
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Table 1. EEG signals: p-values of the entropy measures obtained by comparing sets.  

Sets pInstEntr pSpInfEntr cInstEntr cSpInfEntr 

A vs. B 0.2360n.s. 0.1547 n.s. 0.0059 0.00003 
C vs. D 0.9861n.s. 0.0147 0.1096n.s. 0.0399 
C vs. E <0.0005 <0.0005 <0.0005 <0.0005 
D vs. E <0.0005 <0.0005 <0.0005 <0.0005 

n.s., non-statistical significant. 

Certain differences are observed between the inter-ictal activity recorded from the epilogenetic zone 

(set C) and from the opposite brain hemisphere (set D) in the frequency domain (pSpInfEntr and cSpInfEntr 

in Figures 10(b,d), respectively), with p-value < 0.05. However, there are not statistical differences 

between the inter-ictal activity recorded from the epilogenetic zone (set C) and from the opposite brain 

hemisphere (set D) in the time domain (pInstEntr and cInstEntr in Figures 10(a,c), respectively). 

Figure 11. EEG signals: (a) partial instantaneous entropy (pInstEntr) in alpha band (b) 

partial instantaneous entropy (pInstEntr) in beta band, (c) complete instantaneous entropy 

(cInstEntr) in delta band (d) complete instantaneous entropy (cInstEntr) in alpha band. Set 

A: awake state with eyes open; set B: awake state with eyes closed; set C: non-ictal activity 

recorded from the epilogenetic zone; set D: non-ictal activity recorded from opposed brain 

hemisphere to set C; set E: ictal activity. On each box, the central mark is the median, the 

edges of the box are the 25th and 75th percentiles. The whiskers are lines extending from 

each end of the boxes to show the extent of the rest of the data. Values beyond the end of the 

whiskers are considered outliers and marked with a +. 
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In contrast to the traditional time domain information measures as the Entr, the CWD permits to 

divide the spectrum in order to isolate specific frequency bands. This property permits to calculate the 

pInstEntr, pSpInfEntr, cInstEntr, cSpInfEntr in the traditional frequency bands of the EEG signal (delta, 

theta, alpha, beta, gamma). Figures 11 and 12 show the boxplot of the distributions of the pInstEntr, 

pSpInfEntr, cInstEntr, cSpInfEntr calculated in the frequency bands that give the best statistical 

significant results. The statistical significance levels are presented in Table 2. 

Figure 12. EEG signals: (a) partial spectral information entropy (pSpInfEntr) in beta band, 

(b) complete spectral information entropy (cSpInfEntr) in beta band. Set A: awake state with 

eyes open; set B: awake state with eyes closed; set C: non-ictal activity recorded from the 

epilogenetic zone; set D: non-ictal activity recorded from opposed brain hemisphere to set C; 

set E: ictal activity. On each box, the central mark is the median, the edges of the box are the 

25th and 75th percentiles. The whiskers are lines extending from each end of the boxes to 

show the extent of the rest of the data. Values beyond the end of the whiskers are considered 

outliers and marked with a +. 

(a) (b) 

Table 2. EEG signals: p-values of the entropy measures obtained by comparing sets. 

Sets pInstEntr  cInstEntr  pSpInfEntr  cSpInfEntr 

 alfa band beta band delta band alfa band beta band beta band 

A vs. B <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 
C vs. D 0.0706n.s. 0.0467 0.2328n.s. 0.9013n.s. 0.8214n.s. 0.0235 
C vs. E 0.9151n.s. <0.0005 <0.0005 <0.0005 <0.0005 0.9249n.s. 
D vs. E 0.1284n.s. <0.0005 <0.0005 <0.0005 <0.0005 0.0341 

n.s., non-statistical significant. 

It is well known that the closed eyes condition produces certain changes in the EEG. One of the 

most remarkable alterations is the rise in the power of the alpha rhythm [13]. Thus, the EEG spectrum 

is modified in comparison to the eyes-open case. These modifications have been also detected by the 

instantaneous and spectral information entropy measures depicted in Figures 11 and 12. 

As it can be seen in Figure 11a–c, lower values of pInstEntr in alpha and beta, and cInstEntr  

in delta are related to the eyes-closed state (set B) compared to eyes-open state (set A),  

with p-value < 0.0005. On the contrary, cInstEntr assumes higher values in set B than set A with  

p-value < 0.0005 when alpha band is studied. Therefore, it can be inferred that the closing of eyes causes 
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transference of information between delta and alpha frequency bands. In addition, the boxplots depicted 

in Figure 11a,d show differences between sets A and B, pInstEntr values decrease from set A to set B 

while cInstEntr values increase. Since the value obtained considering independently each time instant 

(partial distribution pT) has different behavior from the value obtained considering all time instants (total 

distribution ܿܶ) we assume that the information provided by the alpha rhythm presents non-stationary 

behavior. Regarding the subsets C, D and E of the EEG database, there are very significant differences 

between non-ictal (sets C and D) and ictal (set E) states, due to the values of pInstEntr in beta (Figure 11b), 

cInstEntr in delta (Figure 11c) and in alpha frequency bands (Figure 11d), with p-value < 0.0005. In this 

case, higher values of pInstEntr in beta (Figure 11b) and in delta band (Figure 11c) are observed in 

non-ictal activity (sets C and D) while cInstEntr has a reverse behavior (Figure 11d). 

Higher values of pSpInfEntr in beta band (Figure 12a) are related to the eyes-closed state (set B) 

compared to eyes-open state (set A), with p-value < 0.0005. Contrarily, cSpInfEntr (Figure 12(b)) 

assumes lower values in set B than in set A with p-value < 0.0005 when beta band is studied. This 

behavior indicates a high contain of power in beta band for eyes-open state (set A) compared with 

eyes-closed state (set B), as it is observed in cSpInfEntr (Figure 12b). Contrarily, high values of 

pSpInfEntr in eyes-closed state indicate that the beta rhythm is more regularly present along the time of 

the EEG recording. These different behaviors are observed in synthetic signal 1 in which the low frequencies 

are present in all the evolution of the simulated signal (Figure 1f). Regarding the subsets C, D and E of 

the EEG database, there are very significant differences (p-value < 0.0005) between non-ictal (sets C 

and D) versus ictal (set E) states, however only for the values of pSpInfEntr in beta band (Figure 12a). In 

this case, higher values of pSpInfEntr in beta (Figure 12a) are observed in ictal activity (set E).  

Table 3 shows the sensitivity (Sen) and specificity (Spe) calculated with the leaving-one-out method 

and the area under the ROC curve (AUC) of the best measures obtained by comparing EEG sets. It can be 

noted that measures of pInstEntr, cInstEntr and SpInfEntr permitted to obtain Sen > 65%, Spe > 70% 

and AUC > 0.75 in the discrimination between A and B sets. Furthermore, measures of pInstEntr and 

cInstEntr yield Sen > 75%, Spe > 80% and AUC > 0.8 in the discrimination between C, D and E sets. 

Table 3. EEG signals: sensitivity (Sen), specificity (Spe) and area under ROC curve (AUC) 

of the best entropy measures obtained by comparing sets. 

Sets Measure Sen Spe AUC 

A vs. B pInstEntr (alfa) 69.0 90.3 0.896 
 cInstEntr (delta) 67.6 90.3 0.905 
 cSpInfEntr(beta) 66.2 72.2 0.784 
C vs. E cInstEntr 76.8 82.8 0.881 
 cInstEntr (alfa) 

cInstEntr (beta) 
77.8 
73.7 

82.8 
63.6 

0.874 
0.758 

D vs. E cInstEntr 83.8 75.8 0.893 
 pInstEntr (beta) 61.6 96.0 0.853 

5. Conclusions 

A new approach to calculate TFR entropy has been presented and applied to simulated and real 

physiological time series. This approach is based on the definition of Shannon entropy applied to the 
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probability mass function of the TFR in both time and frequency domain. In this way, the smoothing 

inherent in the calculation of the entropy is avoided and instantaneous values of this measure are obtained. 

This methodology takes advantage of the property inherent to TFR that permits to deal with  

non-stationary signals together with the property of Shannon entropy that deals with chaoticity, 

complexity and randomness. 

The results have shown that the values of the proposed measures tend to decrease, with different 

proportion, when the behaviors of the synthetic signals evolve from chaos or randomness to periodicity. 

Finally, this paper has demonstrated that they can be useful tools to quantify the different periodic, 

chaotic and random components in EEG signals. 
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