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Abstract. This paper represents a contribution to the study of
hazard caused by the interaction between landslides and river
courses. The effects of such interferences are often catas-
trophic and could include the formation of upstream lakes,
potential dam failure, river bed dynamics and morphological
alterations. These scenarios could be substantially reduced if
it was possible to predict the eventuality that a moving land-
slide would block the river. This is a complex topic because it
involves composite geomorphic phenomena concerning both
hillslope and river systems and their interpretation, through
model approaches, is still under development and testing. In
this study, a methodology developed in the framework of
European Research Project IMPRINTS (FP7) was adopted
and integrated in order to identify the areas of triggering
and propagation of landslides and to characterize the possi-
ble scenarios of the interaction with river networks. Different
deterministic and probabilistic approaches, calibrated using a
case test in the middle valley of the Noce River in Basilicata
(Italy), were applied and compared at basin scale.

1 Introduction

The interference between landslide and river courses is a
topic of great relevance, because to date many catastrophic
events have occurred in the world as a consequence of
breaching of dams produced by landslides (Schuster and
Costa, 1986; Costa and Schuster, 1988). Damming the river
may cause the formation of upstream backwater, natural dam
evolution, upstream and downstream flooding, initiation of
other landslides and debris flows, river bed dynamics and
channel instability (Swanson et al., 1985; Casagli and Er-
mini, 1999).

The interpretation of these phenomena is a complex topic,
because of the numerous variables involving both hillslope
and river dynamics at the same time. The phenomenon,
though well studied, is still not consolidated into an accred-
ited theory and is particularly suited to the development of
scientific research, especially in the modeling field because
the hydrodynamic interference between landslides and rivers
and the dam creation has not been sufficiently studied.

The main purpose of the literary analysis is to forecast the
main scenarios connected with a damming episode. These
studies take into account the landslide dam inventory that
represents the fundamental tool for the identification of the
role played by hillslope and river systems. Most of them re-
fer to the database of damming episodes that have occurred
worldwide (Costa and Schuster, 1991) and primarily in the
Italian territory (Nicoletti et al., 1993; Casagli and Ermini,
1999; Nicoletti and Parise, 2002; Crosta et al., 2004).

The study of the possibility that a moving landslide could
block a river can be reached starting from quantitative as-
sessments of landslide hazard that usually employ empiri-
cal, heuristic, deterministic, or statistical approaches (Korup,
2005). With reference to the dam creation, several authors,
using a data set of landslide dam phenomena distributed
worldwide, have proposed some geomorphic indexes to fore-
cast landslide dam behavior, which take into account mainly
geomorphic variables characterizing both the landslide and
the river channel. Currently, the geomorphic approach is
widely used also to predict dam evolution from the combi-
nation of variables identifying both dam and river (Swanson
et al., 1986; Costa and Schuster, 1988; Casagli and Ermini,
1999; Ermini and Casagli, 2003; Korup, 2004). Moreover,
the flood hazard related to the failure of natural dams is gen-
erally analyzed through deterministic models that simulate
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Fig. 1. (a)Study catchment and landslide location.(b) 3-D view of the landslide–river interference.

Fig. 2. (a)Landslide body.(b) Backwater lake upstream.(c) Dam-emptying process.

the dam break and estimate the hydrographs resulting from
dam failures (Fread, 1991; Davies et al., 2007).

The objective of this study is to assess a methodology to
predict the possibility that moving landslides could block a
river, using different and more complex methods, from em-
pirical approaches to dynamic ones. The models, calibrated
in a case study on the Noce river in the Basilicata region
(Italy), were applied at the basin scale, allowing one to as-
sess preliminary and final hazard maps of landslide dams in
the study catchment.

2 Case study

The case study is the interaction between a landslide and
a narrow gravel-bed reach in the middle valley of the
Noce River (total catchment area 413 km2), located in the
Trecchina territory in SW Basilicata (Fig. 1a, b). The Zillona
landslide mobilized along the right side slope of the basin
(Fig. 2a) and produced the partial (in July 2007) and, later on

(in November 2007), the total blockage of the water course,
for 120 m of its length, with the formation of a small backwa-
ter lake upstream (Fig. 2b). The floods avoided the landslide
bottom, producing an avulsion with the incision of a bend on
the left floodplain, thus favoring the dam-emptying process
(Fig. 2c).

The combined effects produced a new river morphological
configuration with a progressive lowering of the floodplain
(Fig. 3a, b). This highlighted cyclopean boulders next to the
outside bank of the bend, probably belonging to an ancient
mass movement on the left side of the hillslope (Fig. 3c). The
landslide interference also induced morpho-hydrodynamic
changes in the upstream and downstream reaches, because of
the flow slowdown and deposition of sediments coming from
upstream, forming bar sequences and armoring bed struc-
tures.
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Fig. 3.Floodplain in the 2007 pre-landslide(a) and post-landslide(b) phases.(c) Geomorphological map of the Parrutta area.

2.1 Geological setting

The Zillona landslide is located on the western side of the
Parrutta spring and south of the town of Trecchina. The
study area is characterized by a complex geological and

structural setting. In this area carbonate deposits related to
the M. Bulgheria Verbicaro and Alburno Cervati units and
blackish siliceous marls and argillites from the Liguride unit
(Fig. 3c) crop out. The structural relationship between these
geological formations consists of the overthrusting of the

www.nat-hazards-earth-syst-sci.net/14/557/2014/ Nat. Hazards Earth Syst. Sci., 14, 557–567, 2014



560 S. F. Dal Sasso et al.: Assessment methodology

 19

 1 

 2 

Figure 4. Geomorphological map of the Zillona landslide.3 
Fig. 4.Geomorphological map of the Zillona landslide.

M. Bulgheria Verbicaro unit on the Liguride unit and of the
latter on the Alburno Cervati unit.

The Bulgheria Verbicaro unit (Jurassic) is constituted of a
carbonate succession of dolomitic limestones and dolomites
at the base passing upward into an alternation of limestones,
calcilutites and calcarenites. These lithologies are located in
the western part of the studied area, on the upper part of the
right side of the Noce Valley.

The Alburno Cervati unit (Cretaceous) is also composed
of a carbonate complex similar to the previous one, and is
located on the high slope of the Noce River. All these geo-
logical formations are well stratified and intensely deformed
and fractured.

The Liguride unit (Cretaceous–Lower Eocene) consists
primarily of the clay-marl complex, showing generally a dis-
organized structure due to the intense tectonic processes that
have affected this portion of the chain. This geological for-
mation characterizes primarily the Zillona landslide on the
lower right slope of the Noce River.

The original structural arrangements of the units described
have been modified by strike-slip tectonic movements along
the Pollino line during the Pleistocene. The Parrutta area is
the result of these geomorphic activities and has the charac-
teristics of a small pull-apart type basin, a tectonic depres-
sion oriented in the NS direction, bordered by faults with a
predominantly vertical component.

2.2 Geomorphology of the Zillona landslide

The slope studied is strongly affected by the geomorphologi-
cal effects of an intense morpho-gravitational dynamics char-

acterized by large and complex mass movements and deep
seated gravitational phenomena (DGPV). These phenomena
are located in the upper portion of the slope and consist of
wide and deep lateral spreading involving large blocks of
limestone marl (Bulgheria Verbicaro unit), disarranged and
tilted. The landslide studied involves the southern edge of
this area of deformation.

The Zillona landslide is an ancient, complex and still ac-
tive rototranslational slide that evolved into a large earthflow
in 2007 (Cruden and Varnes, 1996; Di Maio et al., 2009). In-
volving the “Crete Nere” formation from the Liguride unit, it
is approximately 650 m long, 130–160 m wide, and extends
between 275 and 130 m a.s.l. (Noce River), with an average
slope of about 13◦.

Accurate in situ geological and geomorphological survey,
aerial photo analysis and interpretation of geologic data re-
lated to eleven boreholes performed throughout the landslide
body made it possible to define the main geomorphological
features and state of activity of the landslide, particularly in
its three different areas (source area, flow channel and accu-
mulation area). The collected information, together with the
results of the new geomorphological survey, allow us to ob-
tain a better definition of the geological and geomorphologi-
cal features of the landslide; some reconstructions are shown
in Fig. 4.

Along the main body of the landslide there are several sec-
ondary scarps, morphological depressions, and minor surface
landsliding; in addition, a wide counter-sloping landslide ter-
race and creeping evidence can be observed.
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The source area of the large earthflow is a multiple and
retrogressive roto-translational slide, largely emptied and ac-
tually showing a concave shape. The main scarp, at an eleva-
tion of about 300 m a.s.l., is semicircular and is involved in
rockfalls and small rockslides.

The source area is almost entirely covered by debris de-
posits of disjointed limestone and marl blocks immersed in a
fine-grained matrix. In the eastern part of the source zone, a
long and narrow debris flow is currently active, and the same
happens for another debris flow to the east of the source zone.

The flow channel, which is probably placed on a pre-
existing drainage line, extends between 275 and 140 m a.s.l.
and has an average slope of 13◦. It is about 545 m long and
the width varies from 110 m to 140 m. It is delimited by two
evident flanks. The accumulation zone shows a typical fan
shape with an average slope of 6◦. It is about 100 m long and
120 m wide. The landslide toe is located in the bed of the
Noce River.

At present, some evidence of activity is visible in the same
areas involved in the reactivation of 2007.

3 Methodological approach

A methodology, developed in the framework of the project
IMPRINTS – IMproving Preparedness and RIsk maNage-
menT for flash floods and debriS flow events – FP7 (Bregoli
et al., 2010), was integrated in order to identify possible river
network areas affected by landslide dams. This is a multilevel
method, consisting of a basic and an advanced level, that uses
more complex models to identify landslide dams and poten-
tial scenarios through geometrical and dynamic approaches
(Fig. 5). The methodology is composed of three phases of
investigation:

1. estimation of the volume potentially mobilized by a
given value of precipitation with an assigned return pe-
riod (initiation models: deterministic approach);

2. definition of the invasion areas and of the resulting en-
ergy (propagation and deposition models: stochastic
and numerical models);

3. definition of landslide–river interference scenarios (de-
terministic approach: geomorphic indexes).

3.1 Initiation models

In this study, the SHALSTAB method (Montgomery et al.,
1994), resulting from the combination of a slope stability
model and a hydrological model, was applied in each level
of the methodology only to assess shallow-landslide suscep-
tibility in the catchment.

The model is based on the hypothesis that steady-state
conditions are reached after a rainfall having constant inten-
sity and indefinite duration. Assuming completely saturated
material, the relation between rainfall and soil transmissivity

may be derived for every cell of the DEM, as the result of the
following expression:
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in which γs is the specific weight of saturated soil andγw is
the specific weight of water.

In this study, the duration of the rainfall event was fixed
equal to the time necessary for the soil to reach a steady-state
condition through the following relation (Papa et al., 2010):
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in whichn is the basin cell number,τs is the time for satura-
tion andθs is the water content at saturation.

The rainfall intensity, corresponding to the duration time
of rainfall (τs) for the different return periods, can be derived
from the intensity–duration–frequency curves.

3.2 Propagation and deposition models

At the basin scale, the results achieved with the application
of models for stability are needed to delimit landslide runout
areas.

The first level of the methodology is a geometrical ap-
proach, useful for a preliminary evaluation of landslide–river
interaction areas. The dfwalk model (Gamma, 1999; Hurli-
mann et al., 2008), which integrates the D8 flow-routing
method (O’Callaghan and Mark, 1984) with the random-
walk (Monte Carlo) theory and the empirical “reach angle”
model that includes correlations of travel angle and volume
(Corominas, 1996), was adopted. The first is used to deter-
mine the preferential flow path, and the last is used to define
the landslide runout.

The probabilityPxy was computed for each cell of the
DEM using the following equation:

Pxy =
nafect

niter
, (4)

in whichnafect is the number of flow trajectories that invaded
a cell andniter is the flow trajectories calculated.
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Fig. 5. Multilevel methodology to assess landslide dam hazard at basin scale and to identify potential scenarios through geometrical and
dynamic approaches.

The second level, advanced, was assessed to study the pro-
cess of interference in dynamic terms, quantifying the param-
eters of depth and velocity of the mass movement as well as
the hydrodynamic parameters of the river flow.

In the first approach of this level, the dfwalk model was
combined with the rheological model for the propagation of
landslides, estimating the velocity in interaction cells and as-
suming constant thickness.

The rheological approach used in the study for the in-
terpretation of landslide mobility was the Coulomb viscous
model that is widely recognized (Coussot, 1997) as one of
the most well-developed models for describing viscoplastic
material properties in laminar regimes (Johnson, 1970):

τ = τ0 + (σ − u) tanφ + η

(
δv

δz

)n

(5)

in whichσ is the effective normal stress,u is the water pres-
sure,ϕ is the friction angle,η is the dynamic viscosity of
matrix, y is the depth normal to flow surface, andn is the
exponent.

In order to calculate the velocity deposition of the land-
slide, an energy equation was used:

Ecin + Epot = cte − 1E, (6)

in which Ecin is the kinetic energy per unit area,Epot is the
potential energy per unit area,1E is the energy losses per
unit area, andcte is the constant.

The second approach was the most complex method and
was performed by a two-dimensional finite-volume Flat-
Model code (Medina et al., 2008). The model, starting from

Table 1. Main geomorphic indexes of landslide–river interference
in the literature.

Author Formula Condition
of blockage

Swanson et al. (1985, 1986) ACR= Us
Bw

ACR> 100

Ermini and Casagli (2003) DFI= Us·W ·D
QT =5

DFI > 1

Ermini and Casagli (2003) DCI= Us·W ·D·d30
QT =5·Bw

DCI > 0.002

Us, landslide average velocity;W , landslide width;D, landslide depth;Bw, river width;
QT =5, discharge at 5 yr return period;d30, 30◦ percentile of the cumulate grain size
distribution.

an estimate of the rheological properties of the materials in-
volved and using the de Saint-Venant conservation equations
of motion, allowed us to have quantitative information for
velocity and thickness of landslide deposition cells. The nec-
essary information included two raster data sets with a de-
tailed DEM and a raster map defining the initial extension
and volume of the landslide.

3.3 Landslide and river interference approaches

The possibility that a moving landslide could block a river
depends on many geomorphic factors that involve both land-
slide and river dynamics at the same time. The prediction
of these scenarios could be reached through determinis-
tic approaches by the formulation of geomorphic indexes
that mainly take into account geomorphic variables of both
river and landslide (Table 1). These parameters are generally
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Fig. 6. (a) Example of rainfall intensity (Tr = 500 yr). (b) SHAL-
STAB simulation results.

correlated with the landslide velocity and the channel width
(Annual Constriction Ratio, Swanson et al., 1985, 1986),
with the dimension of the moving mass and the river-water
discharge (Dimensionless Flow Index, Ermini and Casagli,
2003), and with the grain size and texture of the block-
age material (Dimensionless Constriction Index, Ermini and
Casagli, 2003).

In this paper, a new geomorphic index, the Dimensionless
Morpho-Invasion Index (DMI), is proposed and applied, as
the result of the following expression:

DMI =
Landslide momentum

River momentum
=

ms · Us

Fw · t
=

2 · ρs · U2
s · Vs

ρw · g · h2 · Bw · W
(7)

in whichρs is the material density of the landslide;Vs is the
landslide volume;ρw is the water density;g is the gravity
acceleration;h is the hydraulic level.

This approach extends the physical parameters to consider
the complex description of the phenomenon, allowing us to
characterize with greater accuracy the possible scenarios due
to the interference between landslide and river network. The
index expression uses the momentum of both landslide and
river, including variables referred to the geometric, kinematic
and dynamic characteristics of two systems at the same time.

In this application, it was assumed that, for values of the
dimensionless parameter DMI >1, there was a phenomenon
of total occlusion with a consequent formation of a landslide
dam. This is a preliminary hypothesis that should be tested
with a database of landslide dam events.

4 Application and results

4.1 Triggering

The methodology described was applied to the Noce River
basin. The catchment (DEM 20× 20 m) was studied in the

Fig. 7.Back analysis of the 1997 earthflow using the dfwalk model
and the rheological approach.

hydrological behavior (Fig. 6a) and discretized into homo-
geneous areas according to the hydro-geological characteris-
tics. The safety factorFs was computed for each return pe-
riod (Tr =10, 100, 500 years) corresponding respectively to
high, medium, and low hazard (Guzzetti et al., 1999; Carrara
et al., 2008). The results (Fig. 6b) were evaluated comparing
the SHALSTAB slope instability map with the location of
landslide areas surveyed on the field (PAI, 2010).

4.2 Back analysis

In the geometrical level of the methodology, the dfwalk
model was applied in combination with the empirical rela-
tionship (Corominas, 1996), calibrating geometrical param-
eters in order to obtain the most correct runout distance
(V = 4.5× 105 m3, H/Lmax = 0.24 rad):

tanβ = H
/
Lmax = 0.97V −0.105 (8)

in whichβ is the reach angle,H is the vertical drop,Lmax is
the horizontal projection of the total runout distance andV is
the landslide volume.

On the dynamic level, numerical models (the dfwalk
model and FlatModel) were implemented adopting, as rhe-
ological properties of material entrainment (clay marls), the
back-analysis results of the landslide that occurred in 1997
in the Noce River basin (Fig. 7). In the Coulomb-Viscous
model, it was assumed that the yield stress isτy = 9 kPa,
the dynamic viscosity isη = 0.7 kPa· s and the unit weight
is γ = 18.0 kN m−3.

www.nat-hazards-earth-syst-sci.net/14/557/2014/ Nat. Hazards Earth Syst. Sci., 14, 557–567, 2014
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Fig. 8. Runout map(a) and Reynolds number calculation(b) using
the dfwalk model.

4.3 Propagation

Geometrical and dynamic approaches were applied at the
basin scale, as part of the clay-marl geological formations,
in order to identify runout areas (Fig. 8a, b; Fig. 9a, b). The
cells of landslide triggering are those classified as high haz-
ard (Tr = 10 yr) with the SHALSTAB model, considering a
thickness of 4 m according to the head of the landslide body.
In order to improve the quality of the DEM in the valley ar-
eas, that is in the zones of possible interaction between water
course and hillslopes, it was modified, for a width of approx-
imately 500 m, through the use of the photogrammetric re-
lief in 1:5000 scale. The results demonstrate that the use of
the dfwalk model overestimates runout areas compared to the
2-D numerical FlatModel, and can be used as a precaution-
ary approach useful for obtaining preliminary hazard maps
(Fig. 10).

4.4 Landslide–river interference

In order to define, along river networks, the areas in which
partial or total blockage of the river was possible, the raster
maps of hydrodynamic (QT = 5years, hT = 5years) and mor-
phological parameters (Bw) were calculated using, respec-
tively, the VAPI method (Gioia et al., 2008) and morpholog-
ical classification. Runout areas of earth flows and river net-
works were overlayed in GIS (Geographic Information Sys-
tem) and the different geomorphic indexes were calculated in
the interaction grid cells.

The application shows that it is possible to define potential
landslide and river interaction areas with more complexity
depending on the method used, from geometrical to dynamic
ones. The spatial localization of the possible landslide dam
in the catchment, evaluated with the different models, was
almost in agreement and was observable mainly where the
river network was narrow and confined. However, the use of
dfwalk, representing the spatial probability that a cell of the
river network will be invaded by a landslide and considering

Fig. 9. Runout map with indication of velocity(a) and max depth
(b) using the FlatModel.

 25

0 2 4 6 81
Kilomete rs

Dfwalk

FLATModel

 1 
 2 

Figure 10. Comparison of runout areas computed by the dfwalk model and the FlatModel. 3 

4 

Fig. 10.Comparison of runout areas computed by the dfwalk model
and the FlatModel.

the hypothesis of invariability of landslide depth along the
distance travelled, can only establish a preliminary evalua-
tion of landslide dam hazard (Figs. 11a, 12a, 13a, 14a). The
maps constructed using 2-D numerical modeling (Fig. 11b,
12b, 13b, 14b) diverge from those created with dfwalk mod-
eling because of the extension of the hazard zone, which is
smaller (Table 2). This method should be applied to estab-
lish a detailed final hazard analysis. In both cases, the re-
sults obtained demonstrate that an accurate digital elevation
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Table 2.Summary of results using different models and methods.

Model Method Runout area Interaction areas
(km2) (km2)

dfwalk

Empirical: 25.7 0.15
Reach-angle
Rheological: 29.3 0.13
Coulomb-Viscous

FlatModel
Rheological: 19.5 0.08
Coulomb-Viscous

model is fundamental to obtaining better runout results. The
topographic information, as well as the rheologic parameters
used in the runout analysis, influence the flow trajectories of
the landslide and significantly affect their deposition in the
valley areas.

The analysis of the landslide dam scenarios, evaluated
with deterministic approaches, can be rational with the
choice of the geomorphic index applied. The results show
that a detailed mapping of landslide dam hazard, with in-
dication of incomplete damming episodes, can be achieved
with an extensive characterization of the landslide and river
systems that take into account additional parameters, such as
the volume and grain characteristics of the landslide and the
stream energy, expressed in terms of the river discharge or
momentum.

Fig. 11. Indication of the possible areas of partial (green) and total
(red) river blockage according to the ACR geomorphic index using
the dfwalk model(a) and the FlatModel(b).

5 Conclusions

Landslide dam hazard is a very complex topic because it in-
volves composite geomorphic phenomena concerning both
landslide and river systems. In this study, a methodology as-

Fig. 12. Indication of the possible areas of partial (green) and total
(red) river blockage according to the DFI geomorphic index using
the dfwalk model(a) and the FlatModel(b).

Fig. 13. Indication of the possible areas of partial (green) and total
(red) river blockage according to the DCI geomorphic index using
the dfwalk model(a) and the FlatModel(b).

sessed in European Research Project IMPRINTS (FP7), ap-
propriately integrated with the use of geomorphic indexes, is
applied in a case study in order to assess preliminary and final
hazard maps of landslide dams in a river basin. The dfwalk
model, calibrated using the empirical and Coulomb viscous
rheological approaches, allowed a more plausible interpreta-
tion of the landslide studied. At the basin scale, the use of the
dfwalk model in the homogeneous geological areas overesti-
mates runout areas compared to the FlatModel 2-D numeri-
cal model, proving to be a precautionary approach useful for
obtaining preliminary hazard maps. However, much work re-
mains in calibrating these models, particularly to facilitate a

www.nat-hazards-earth-syst-sci.net/14/557/2014/ Nat. Hazards Earth Syst. Sci., 14, 557–567, 2014
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Fig. 14. Indication of the possible areas of partial (green) and total
(red) river blockage according to the DMI geomorphic index using
the dfwalk model(a) and the FlatModel(b).

reliable choice of the rheology of material entrainment. Con-
cerning the issue of forecasting the possibilities of a land-
slide to block a river channel, the final results demonstrate
that it is possible to have a prediction of a landslide dam with
a more defined accuracy depending on available data, using
the geometrical or dynamic approaches. The spatial localiza-
tion of the possible landslide dam in the catchment is almost
in agreement, while landslide dam scenarios can be sensi-
tive to the geomorphic index applied. The geomorphic in-
dex DMI proposed, describing the interference between river
network and slopes, interfaces and integrates effectively with
the models used for the identification of areas of propagation
because it includes the kinematic parameters as well as the
geometry of the moving mass. This approach, after a prelim-
inary validation phase using a database of landslide dams,
can be a useful tool in the decision-making process associ-
ated with forecasting of dam formation and management of
emergencies deriving from these events.
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