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Abstract

Recent results in output-feedback controller design make possible an efficient computation of
static output-feedback controllers by solving a single-step LMI optimization problem. This new
design strategy is based on a simple transformation of variables, and it has been applied in the field
of vibration control of large structures with positive results. There are, however, some feasibility
problems that can compromise the effectiveness and applicability of the new approach. In this
paper, we present some relevant properties of the variable transformations that allow devising
an effective procedure to deal with these feasibility issues. The proposed procedure is applied
in designing a static velocity-feedback H∞ controller for the seismic protection of a five-story
building with excellent results.

1. Introduction

Limited access to the state variables information is a common problem in most practical control
applications. In this context, static output-feedback controllers are a very interesting option [1, 2].
To synthesize static output-feedback controllers, a variety of multi-step numerical algorithms have
been proposed, as those based on random search [3], or those consisting in iterative procedures [4–
6]. Typically, these methods require solving complex matrix equations or linear matrix inequality
(LMI) optimization problems at each step. To avoid the high computational cost associated to the
multi-step methods, some single-step strategies have also been proposed [7–10]. These single-
step methods are based on a proper transformation of the state variables and formulate the static
output-feedback controller design in terms of a single LMI optimization problem. Nevertheless,
this second line of solution presents the drawback of being highly problem-dependent, in the sense
that most controller designs require a complete derivation of the associated LMI optimization
problem.

The latest trends in vibration control of large structures consider distributed control systems
formed by a large number of sensors and actuation devices, together with a wide and sophisticated
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communications network [11, 12]. This kind of control systems present particularly challenging
design characteristics, such as high dimensionality, severe information constraints and fast real-
time operation requirements [13–16] . Clearly, static output-feedback strategies can play a major
role in this scenario. However, it also becomes apparent that effective numerical algorithms are of
critical importance for the practical applicability of this approach to large scale control problems.

Following the ideas presented by Zečević and Šiljak [17–19], a new control design strategy
for seismic protection of large structures has been proposed in [20–22]. The new approach allows
computing static output-feedback controllers by solving a single-step LMI optimization problem,
which can be easily derived from the associated state-feedback LMI formulation through simple
transformations of the LMI variables. In all these works, however, the LMI optimization problems
associated to the output-feedback controller designs are initially reported to be infeasible by the
MATLAB LMI optimization tools [23], and a slightly perturbed state matrix has to be used to over-
come this computational difficulty. Recently, more general transformations of the LMI variables
have been proposed in [24]. In the present paper, an effective line of solution to the aforementioned
feasibility issues is obtained by taking advantage of the additional design flexibility provided by
these generalized LMI-variable transformations.

The paper is organized as follows: In Section 2, the fundamental elements of the new output-
feedback controller design strategy are provided. In Section 3, an accurate study of some relevant
properties of the generalized LMI-variable transformations is presented, and a two-step design
procedure is devised to deal with the feasibility issues. In Section 4, the effectiveness of the
proposed two-step procedure is demonstrated by designing a static velocity-feedback H∞ controller
for the seismic protection of a five-story building. Finally, some conclusions and future research
directions are presented in Section 5.

2. Theoretical background

Let us consider a control problem with state vector x(t) ∈ Rn and control vector u(t) ∈ Rm. A
wide variety of advanced state-feedback control designs can be formulated as an LMI optimization
problem of the form

Ps :

{
Minimize h(η)

subject to X > 0, F(X ,Y,η)< 0,
(1)

where X ∈Rn×n is a symmetric positive-definite matrix, Y ∈Rm×n is a general matrix, η ∈Rp is a
vector that collects the free entries not contained in X and Y , h is a real linear function, and F is an
affine map that makes the matrix inequality F(X ,Y,η)< 0 an LMI. In this case, an optimal state-
feedback controller u(t) = Gs x(t) is usually obtained by computing an optimal triplet

(
X̃s,Ỹs, η̃s

)
for the LMI problem in Eq. (1), and by setting Gs = ỸsX̃−1

s .
Let us now assume that the information available for feedback purposes consists in a vector

of observed outputs y(t) ∈ Rq with q < n, which can be expressed as y(t) = Cy x(t) for a given
observed-output matrix Cy ∈Rq×n with full row-rank. To design a static output-feedback controller
u(t) = K y(t), we can consider the state-feedback controller u(t) = GKx(t) with GK = KCy and
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solve the optimization problem

Pof :

{
Minimize h(η)

subject to X > 0, F(X ,Y,η)< 0,(X ,Y ) ∈M ,
(2)

where M is the set of all pairs of matrices (X ,Y ) for which there exists a matrix K ∈ Rm×q that
satisfies Y X−1 = KCy. A suitable LMI formulation for the output-feedback optimization problem
Pof can be obtained by using the following change of variables:

X = QXQQT +RXRRT , Y = YRRT , (3)

where XQ ∈R(n−q)×(n−q) and XR ∈Rq×q are symmetric positive-definite matrices, YR ∈Rm×q is a
general matrix, Q ∈ Rn×(n−q) is a matrix whose columns are a basis of ker(Cy), and R ∈ Rn×q is a
matrix of the form

R =C†
y +QL, (4)

where L ∈R(n−q)×q is a given matrix, and C†
y =CT

y (CyCT
y )
−1 is the Moore-Penrose pseudoinverse

of Cy. According to the results presented in [24], if the LMI optimization problem

Pc :

{
Minimize h(η)

subject to XQ > 0, XR > 0, F(QXQQT +RXRRT ,YRRT ,η)< 0
(5)

attains an optimal solution for the quartet
(
X̃Q, X̃R,ỸR, η̃c

)
then, for the triplet

(
X̃c,Ỹc, η̃c

)
with

X̃c = QX̃QQT +RX̃RRT and Ỹc = ỸRRT , the optimization problem Pof given in Eq. (2) achieves a
suboptimal solution with K = ỸRX̃−1

R . Note that the optimal value h̃of of the problem Pof must
satisfy the inequality

h̃s ≤ h̃of ≤ h̃c, (6)

where h̃s and h̃c denote the optimal values of the problems Ps and Pc given in Eqs. (1) and (5),
respectively.

The following lemmas will be used in obtaining the main results. The proofs of Lemma 1 and
Lemma 2 can be found in [24]. The results presented in Lemma 3 are also used in [24], but without
a detailed proof, which has been included here for completeness. In what follows, we assume that
I and 0 denote, respectively, an identity matrix and a zero matrix of appropriate dimensions.

Lemma 1. For a given n×n symmetric matrix X̂ , the following two conditions are equivalent:

(i) Cy X̂ = 0,

(ii) X̂ = QXQ QT , where XQ is a symmetric matrix with dimensions (n−q)× (n−q).

Moreover, if (i) and (ii) are satisfied, then (ii) holds with XQ = Q† X̂(Q†)T , where Q† is the Moore–
Penrose pseudoinverse of Q, i.e. Q† = (QT Q)−1QT .
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Lemma 2. The matrix inequality QXQQT +RXRRT > 0 is equivalent to XQ > 0 and XR > 0.

Lemma 3. For a given n×q matrix R, the following two conditions are equivalent:

(i) Cy R = I,

(ii) R =C†
y +QL, where L is a matrix with dimensions (n−q)×q.

Moreover, when (i) and (ii) hold, L = Q†R is the unique matrix that satisfies (ii).

PROOF. From CyC†
y = I and Cy Q = 0, we obtain Cy(C†

y +QL) = I and, consequently, (ii) implies
(i). Let us now assume that CyR = I. In this case, we have 0 = CyR− I = Cy(R−C†

y ). As the
columns of Q are a basis of ker(Cy), we can write R−C†

y = QL for a suitable matrix L and,
therefore, (i) implies (ii). Next, by observing that Q†C†

y = 0 and Q†Q = I, we get Q†R = Q†C†
y +

Q†QL = L. Obviously, setting R =C†
y +QL′ and left-multiplying by Q† leads to L = Q†R = L′.

3. Main results

The controller designs for seismic protection of large structures presented in [20–22] are car-
ried out by using the LMI-variable transformations given in Eq. (3) with R = C†

y . This particular
R-matrix can be obtained from the general expression in Eq. (4) by selecting a null matrix L. In all
these works, however, the LMI optimization problem Pc in Eq. (5) is initially infeasible, and it is
necessary to use a slightly perturbed state matrix in order to complete the controller design. In this
section, we will see how the generalized form R =C†

y +QL proposed in [24] introduces additional
design flexibility that can be conveniently used to provide a more effective line of solution to these
feasibility issues.

Let us consider the set Pn = {X ∈ Sn×n : X > 0} of all n× n symmetric positive-definite
matrices. The following theorem states some relevant properties of the variable transformations
defined in Eqs. (3) and (4).

Theorem 1. For any X ∈Pn, there exists a unique matrix L such that X = QXQQT +RXRRT

holds, with R = C†
y +QL, for suitable matrices XQ ∈Pn−q and XR ∈Pq. Moreover, L can be

written in the form L = Q†XCT
y
(
CyXCT

y
)−1.

PROOF. For a given X ∈Pn, let us consider the matrix XR = CyXCT
y . As X is positive-definite

and Cy has full row-rank, the matrix XR is non-singular. Let us also consider the matrix

R = XCT
y (CyXCT

y )
−1, (7)

which satisfies

CyR =CyXCT
y (CyXCT

y )
−1 = I (8)

and

XRRT =CyXCT
y (CyXCT

y )
−1CyX =CyX . (9)
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From (8) and (9), we obtain

Cy
(
X−RXRRT)=CyX−XRRT =CyX−CyX = 0. (10)

Next, by setting X̂ = X −RXRRT in Lemma 1, we can affirm that there exists a symmetric matrix
XQ such that X−RXRRT =QXQQT and, consequently, X can be written in the form X =QXQQT +
RXRRT . Moreover, from Lemma 2, it follows that XQ > 0 and XR > 0. Considering Eq. (8) and
Lemma 3, R can be written in the form R = C†

y +QL. Finally, from Lemma 3 and Eq. (7), the

matrix L admits the expression L = Q†R = Q†XCT
y
(
CyXCT

y
)−1. To prove the unicity of matrix L,

let us suppose that X can be written in the form

X = QX̂QQT + R̂X̂RR̂T , (11)

where R̂ is a matrix that satisfies

R̂ =C†
y +QL̂, (12)

for a suitable matrix L̂ ∈ R(n−q)×q . From Eq. (12), we observe that CyR̂ = I. Right-multiplying
Eq. (11) by CT

y and applying QTCT
y = 0 and R̂TCT

y = I, we obtain

XCT
y = R̂X̂R. (13)

Left-multiplying Eq. (13) by Cy and using that CyR̂= I , we get X̂R =CyXCT
y . Hence, from Eq. (13),

we can now derive

R̂ = XCT
y X̂−1

R = XCT
y (CyXCT

y )
−1, (14)

which matches the expression in Eq. (7) and proves the unicity of matrix R. Finally, from Lemma 3,
the unicity of matrix L also follows.

Now, for a given matrix L ∈ R(n−q)×q, let us consider the set VL of all matrices X that can
be expressed in the form X = QXQQT +RXRRT , where XQ ∈Pn−q, XR ∈Pq, and R = C†

y +QL
is the R-matrix corresponding to this particular choice of L. The following theorem shows that a
classification of Pn is induced by the L matrices.

Theorem 2. The family V = {VL : L ∈ R(n−q)×q} defines a partition of Pn.

PROOF. According to Lemma 2, for any matrix L, we have VL ⊂Pn. Moreover, from Theorem 1,
every matrix X ∈Pn satisfies X ∈ VLX with

LX = Q†XCT
y
(
CyXCT

y
)−1

. (15)

Hence, we have Pn = ∪VL. Also from Theorem 1, we get VL∩VL′ =∅ for L 6= L′.
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In the previous section, we have seen how the variable transformations defined in Eqs. (3)
and (4) can make possible the effective computation of an output-feedback gain matrix in the
form K = ỸRX̃−1

R . However, this strategy also introduces additional constraints in the optimization
problem. More precisely, after selecting a particular matrix L in Eq. (4), the problem Pc in Eq. (5)
is equivalent to the following optimization problem:

PL :

{
Minimize h(η)

subject to X ∈ VL, Y = YRRT , F(X ,Y,η)< 0,
(16)

which constrains the X matrices of the problem Ps to the variety VL, and the matrices Y ∈Rm×n to
the form Y =YRRT with YR ∈Rm×q. Consequently, it becomes now apparent that a suitable choice
of the matrix L can have a significant influence on both the feasibility and the optimality level of
the solutions provided by the associated output-feedback design strategy. The choice R =C†

y , used
in [20–22], corresponds to the case L = 0. Obviously, this election can be fully justified on the
basis of mathematical simplicity, however, it has nothing to do with the specific properties of the
considered control problem.

Using the superior insight of the variable transformations provided by Theorems 1 and 2, a bet-
ter design strategy can be defined by selecting the L-matrix corresponding to the optimal X-matrix
obtained in the state-feedback problem Ps. Based on this choice, we can define the following
two-step design procedure:

Step 1. Solve the state-feedback LMI optimization problem Ps given in Eq. (1).

Step 2. If the problem Ps in Step 1 attains an optimal value h̃s for the triplet
(
X̃s,Ỹs, η̃s

)
, compute

the matrix

L̃ = Q†X̃sCT
y
(
CyX̃sCT

y
)−1

, (17)

and solve the LMI optimization problem Pc given in Eq. (5) using the R-matrix

R̃ =C†
y +QL̃. (18)

Remark 1. The proposed design procedure requires solving the state-feedback optimization prob-
lem Ps and, additionally, a second LMI optimization problem Pc with similar computational com-
plexity. Hence, from a computational point of view, this approach can be potentially applied to
any control design where the state-feedback LMI formulation attains positive results.

Remark 2. Step 1 in the design procedure can also be understood as an exploratory step. In fact,
no further efforts should be invested in obtaining an output-feedback controller when no satisfac-
tory solution is attained by the ideal full-state approach. Moreover, when Step1 produces positive
results, the state-feedback controller can be used as a natural reference to assess the performance
of the output-feedback design.
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Remark 3. For the choice L = L̃, the X matrices of the optimization problem P
L̃

in Eq. (16) are
constrained to the variety VL̃ and, consequently, can take the optimal value X̃s. In contrast, the
additional constraint Y = YRR̃T can produce suboptimal results or even infeasibility. However,
when the optimal state-feedback control matrix Gs can be factored in the form Gs = KCy, we can
write ỸsX̃−1

s = KCy and obtain

Ỹs = KCyX̃s = KCy
(
QXQQT + R̃XRR̃T)= KXRR̃T . (19)

Hence, the matrix Ỹs can be factored in the form Ỹs = YRR̃T with YR = KXR and, in this particular
case, the problem P

L̃
is always feasible and attains the optimal value h̃s.

Remark 4. Heuristic approaches are mainly sustained by successful practical applications. In
this sense, it must be highlighted that the proposed design procedure is currently being applied to
ongoing investigations in the field of vibration control of large structures with excellent results.
An example of this line of work is provided in the next section.

4. Aplication to structural vibration control

In this section, the proposed two-step design procedure is applied to synthesize a velocity-
feedback H∞ controller for seismic protection of a five-story building. In Subsection 4.1, a suitable
state-space model for the building is provided. Next, a state-feedback H∞ controller is designed in
Subsection 4.2. As indicated in Remark 2, this state-feedback controller will be used as a reference
in the performance assessment. In Subsection 4.3, the velocity-feedback controller is computed by
using the transformations of LMI variables defined by the L-matrix proposed in Eq. (17). Finally,
in Subsection 4.4, numerical simulations of the building vibrational response are conducted to
evaluate the effectiveness of the proposed velocity-feedback controller.

4.1. Building model
Let us consider the five-story building schematically depicted in Fig. 1. The building motion

can be described by the second-order differential equation

Mq̈(t)+Cq̇(t)+ K̄q(t) = Tuu(t)+Tww(t), (20)

where M and C denote the mass and damping matrices, respectively. The stiffness matrix has been
represented by K̄ to avoid confusion with the notation used for the output-feedback control gain
matrix K. The vector of displacements relative to the ground is

q(t) = [q1(t),q2(t),q3(t),q4(t),q5(t)]T , (21)

where qi(t), 1 ≤ i ≤ 5, represents the lateral displacement of the ith story si with respect to the
ground level s0. We assume that an actuation device ai has been implemented between the con-
secutive stories si−1 and si, 1 ≤ i ≤ 5. Each control device ai exerts a control action ui(t), which
produces a pair of structural opposite forces as indicated in Fig. 1(b). The vector of control actions
is

u(t) = [u1(t),u2(t),u3(t),u4(t),u5(t)]T , (22)
7
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Figure 1: Five-story building: (a) mechanical model, (b) actuation scheme

Tu is the control location matrix, Tw is the excitation location matrix, and w(t) ∈ R denotes the
seismic ground acceleration. In the controller designs and numerical simulations conducted in the
present paper, the following particular values of the matrices M, C, K̄, Tu, and Tw have been used:

M = 103×

215.2 0 0 0 0
0 209.2 0 0 0
0 0 207.0 0 0
0 0 0 204.8 0
0 0 0 0 266.1

 , C = 103×


650.4 −231.1 0 0 0
−231.1 548.9 −202.5 0 0

0 −202.5 498.6 −182.0 0
0 0 −182.0 466.8 −171.8
0 0 0 −171.8 318.5

 , (23)

K̄ = 106×


260 −113 0 0 0
−113 212 −99 0 0

0 −99 188 −89 0
0 0 −89 173 −84
0 0 0 −84 84

 , Tu =


1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

 , Tw =−M

1
1
1
1
1

 , (24)

where masses are in kg, damping coefficients in Ns/m, and stiffness coefficients in N/m. The mass
and stiffness values used in matrices M and K̄ are similar to those presented in [25]; the damping
matrix C has been computed as a Rayleigh damping matrix with a 5% damping ratio on the first
and fifth modes [26]. Next, we consider the state vector

x(t) =
[

q(t)
q̇(t)

]
, (25)

and derive a first-order state-space model

ẋ(t) = Ax(t)+Bu(t)+Ew(t), (26)
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with the system matrices

A =

[
[0]5×5 I5

−M−1K̄ −M−1C

]
, B =

[
[0]

5×5

M−1Tu

]
, E =

[
[0]

5×1

−[1]5×1

]
, (27)

where [0]n×m represents a zero-matrix of the indicated dimensions, In is the identity matrix of
order n, and [1]n×1 denotes a vector of dimension n with all its entries equal to 1. For the building
matrices in Eq. (23) and Eq. (24), the following first-order system matrices result:

A=103×



0 0 0 0 0 0.0010 0 0 0 0
0 0 0 0 0 0 0.0010 0 0 0
0 0 0 0 0 0 0 0.0010 0 0
0 0 0 0 0 0 0 0 0.0010 0
0 0 0 0 0 0 0 0 0 0.0010

−1.2082 0.5251 0 0 0 −0.0030 0.0011 0 0 0
0.5402 −1.0134 0.4732 0 0 0.0011 −0.0026 0.0010 0 0

0 0.4783 −0.9082 0.4300 0 0 0.0010 −0.0024 0.0009 0
0 0 0.4346 −0.8447 0.4102 0 0 0.0009 −0.0023 0.0008
0 0 0 0.3157 −0.3157 0 0 0 0.0006 −0.0012


(28)

B =10−5×



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.4647 −0.4647 0 0 0
0 0.4780 −0.4780 0 0
0 0 0.4831 −0.4831 0
0 0 0 0.4883 −0.4883
0 0 0 0 0.3758


, E =



0
0
0
0
0
−1
−1
−1
−1
−1


. (29)

4.2. State-feedback H∞ controller
Let us now consider the vector of interstory drifts

r(t) = [r1(t),r2(t),r3(t),r4(t),r5(t)]T , (30)

where ri(t) denotes the relative displacement between the stories si−1 and si, which can be com-
puted as{

r1(t) = q1(t),

ri(t) = qi(t)−qi−1(t), for 1 < i≤ 5.
(31)

Assuming that the objectives in the controller design are minimizing the interstory drift seismic
response and the control efforts, we introduce the vector of controlled outputs

z(t) =Cz x(t)+Dzu(t), (32)

where

Cz =

[
Cr

[0]5×10

]
, Dz = α

[
[0]

5×5

I5

]
, (33)
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Cr =


1 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 0 0 −1 1 0 0 0 0 0

 , (34)

and α > 0 is a suitable coefficient that trades-off the conflicting design objectives. The controlled
output z(t) satisfies

{z(t)}T z(t) =
5

∑
i=1

[ri(t)]
2 +α

2
5

∑
i=1

[ui(t)]
2 (35)

and it can be used to compute a state-feedback H∞ controller

u(t) = Gs x(t). (36)

The H∞ control approach considers the largest energy gain from disturbance to controlled output

γG = sup
‖w‖2 6=0

‖z‖2

‖w‖2

, (37)

where

z(t) = (Cz +DzG)x(t) (38)

is the closed-loop controlled output corresponding to the state-feedback controller u(t) = Gx(t),
w(t) denotes the input disturbance, and ‖ · ‖2 denotes the usual continuous 2-norm

‖ f‖2 =

[∫
∞

0
{ f (t)}T f (t) dt

]1/2

. (39)

Broadly speaking, the controller design consists in obtaining a gain matrix Gs which produces an
asymptotically stable closed-loop system

ẋ(t) = (A+BGs)x(t) (40)

and, simultaneously, attains an optimally small γ-value γGs . It is well known that these objectives
can be achieved by considering the LMI[

AX +XAT +BY +Y T BT +ηEET ∗
CzX +DzY −I

]
< 0, (41)

where ∗ denotes the transpose element in the symmetric position, and solving the following LMI
optimization problem:

P′s :

{
maximize η

subject to X > 0, η > 0 and the LMI in Eq.(41).
(42)
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If an optimal value η̃s is attained for the matrices X̃s and Ỹs, then the state-feedback gain matrix Gs

can be written in the form Gs = ỸsX̃−1
s , and the optimal γ-value can be computed as γGs = η̃

−1/2
s .

By solving the problem P′s with the system matrices A, B, E given in Eqs. (28), (29), and the
matrices Cz, Dz defined in Eqs. (33), (34), with α = 10−7.3, we obtain the following control gain
matrix:

Gs=106×


−2.5816 1.1382 −0.0094 −0.0478 −0.1782 −0.2221 −0.2817 −0.3077 −0.3359 −0.4773

2.3696 −3.4531 1.3062 −0.1324 −0.1595 −0.0699 −0.3251 −0.3937 −0.4238 −0.5987
1.3637 2.5261 −3.8190 1.0653 −0.2166 −0.0283 −0.1034 −0.4073 −0.4608 −0.6427
0.1086 1.2183 2.8212 −3.9680 0.5651 −0.0282 −0.0583 −0.1180 −0.4505 −0.6567
0.1494 0.0625 0.7261 3.1868 −3.6136 −0.0163 −0.0326 −0.0449 −0.0841 −0.6152

 (43)

with an associated γ-value

γGs = 0.06931. (44)

Remark 5. The optimization problem P′s defined in Eq. (42) can be written in the form given in
Eq. (1) by setting h(η) =−η and

F(X ,Y,η) =

AX +XAT +BY +Y T BT +ηEET ∗ ∗
CzX +DzY −I ∗

0 0 −η

 . (45)

4.3. Velocity-feedback H∞ controller
Now, let us assume that the information available for feedback purposes consists in the inter-

story velocities. We define the vector of observed outputs

y(t) = [ṙ1(t), ṙ2(t), ṙ3(t), ṙ4(t), ṙ5(t)]T , (46)

which can be computed in the form y(t) =Cy x(t), with

Cy =

 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 −1 1

 . (47)

Following the design procedure proposed in Section 3, we can compute a velocity-feedback H∞

controller u(t) = K y(t) by considering the matrices

Q =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, R̃ =



0.0025 0.0048 0.0051 0.0041 0.0025
0.0015 0.0018 0.0047 0.0048 0.0030
−0.0035 −0.0029 −0.0020 0.0015 0.0016
−0.0099 −0.0094 −0.0082 −0.0064 −0.0018
−0.0146 −0.0141 −0.0130 −0.0112 −0.0082

1.0000 0.0000 0.0000 0.0000 0.0000
1.0000 1.0000 0.0000 0.0000 0.0000
1.0000 1.0000 1.0000 0.0000 0.0000
1.0000 1.0000 1.0000 1.0000 0.0000
1.0000 1.0000 1.0000 1.0000 1.0000


, (48)
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and the LMI[
AQXQQT +QXQQT AT +AR̃XRR̃T + R̃XRR̃T AT +BYRR̃T + R̃Y T

R BT +ηEET ∗
CzQXQQT +CzR̃XRR̃T +DzYRR̃T −I

]
< 0, (49)

where A, B, E, Cz and Dz are the same matrices used in Subsection 4.2. In this case, the optimiza-
tion problem

P′c :

{
maximize η

subject to XQ > 0, XR > 0, η > 0, and the LMI in Eq. (49),
(50)

produces the following velocity-feedback gain matrix:

K = 106×


−1.3700 −1.3298 −1.2209 −1.0000 −0.6328
−1.5042 −1.5523 −1.5316 −1.3101 −0.8469
−1.3135 −1.4432 −1.5455 −1.3996 −0.9271
−0.9734 −1.1248 −1.3143 −1.3037 −0.9036
−0.5589 −0.6618 −0.8148 −0.8742 −0.6798

 , (51)

with an associated γ-value

γGK ≤ η̃
−1/2
c = 0.06934, (52)

where η̃c denotes the optimal value obtained for the problem P′c and GK = KCy.

Remark 6. No feasibility issues appear when solving the optimization problem P′c with the LMI
optimization tools of the MATLAB Robust Control Toolbox [23]. This fact contrasts with the sit-
uation encountered when using the transformations of LMI variables corresponding to the choice
L = 0 in [20–22]. In this case, it was necessary to use a perturbed state matrix to overcome the
initial unfeasibility of the LMI optimization problem.

Remark 7. As indicated in Eq. (52), the value η̃
−1/2
c only provides an upper bound of the γ-value

attained by the velocity-feedback controller u(t) = Ky(t) (see [22]). This fact, however, is not
relevant in the present problem since the values in Eqs. (44) and (52) indicate that the obtained
velocity-feedback H∞ controller is practically optimal.

4.4. Numerical results
For the five-story building presented in Subsection 4.1, let us consider the following control

configurations: (i) Uncontrolled. No control system is implemented in the building. (ii) State-
feedback. The building is equipped with the actuation system depicted in Fig.1(b), which is driven
by the state-feedback H∞ controller u(t) = Gs x(t) defined by the gain matrix Gs given in Eq. (43).
(iii) Velocity-feedback. The building is equipped with the same actuation system, but in this case
the control actions are computed using the velocity-feedback controller u(t) = Ky(t) defined by
the gain matrix K given in Eq. (51).

12



0 10 20 30 40 50
−4

−2

0

2

4

time (s)

ac
ce

le
ra

tio
n 

(m
/s

2 )

Figure 2: North–South 1940 El Centro seismic record.

For these three control configurations, numerical simulations of the building vibrational re-
sponse have been conducted. Specifically, the full-scale North–South 1940 El Centro seismic
record (see Fig. 2) has been taken as ground acceleration, and the corresponding vectors of inter-
story drifts r(t) and control efforts u(t) have been computed. To compare the performance of the
different control configurations, we have considered the maximum absolute values:

r̂i = max
0≤t≤T

|ri(t)| , ûi = max
0≤t≤T

|ui(t)| , 1≤ i≤ 5, (53)

where [0,T ] is simulation time interval.
The maximum absolute interstory drifts r̂i are displayed in Fig. 3, where it can be clearly

appreciated that a significant reduction in the interstory drifts peak-values are achieved by the
state-feedback configuration (blue line with circles) and the velocity-feedback configuration (red
line with asterisks), when compared with the uncontrolled configuration (black line with squares).
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Figure 3: Maximum absolute interstory drift values: uncontrolled response (black line with squares), controlled
response corresponding to the state-feedback controller (blue line with circles), and controlled response corresponding
to the velocity-feedback controller (red line with asterisks).

The percentages of reduction in the maximum absolute interstory drifts obtained by the con-
trolled configurations with respect to the uncontrolled response are presented in Table 1. The
data in the table show that both controlled configurations provide percentages of reduction in the
range 44%–60%, and that very similar results are obtained by the state-feedback controller and
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Stories 0-1 1-2 2-3 3-4 4-5
State-feedback controller 57.04 59.96 49.48 45.31 45.00

Velocity-feedback controller 57.29 59.67 49.33 46.78 44.52

Table 1: Percentages of reduction in maximum absolute interstory drifts obtained by the state-feedback and velocity-
feedback controllers with respect to the uncontrolled response.

the velocity-feedback controller. The maximum absolute control efforts ûi are collected in Ta-
ble 2, and graphically displayed in Fig. 4. Here, we can see that practically the same maximum
control efforts are required by the controlled configurations.
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Figure 4: Maximum absolute control efforts corresponding to the state-feedback controller (blue line with circles),
and the velocity-feedback controller (red line with asterisks).

Actuation device 1 2 3 4 5
State-feedback controller 0.7302 0.8846 0.8575 0.7075 0.4370

Velocity-feedback controller 0.7315 0.8838 0.8637 0.7230 0.4532

Table 2: Maximum absolute control efforts (×106N) corresponding to the state-feedback and velocity-feedback con-
trollers.

Looking at the graphics in Fig. 3, we can see that the uncontrolled configuration attains the
largest interstory peak-value for r2(t). The data in Table 1 show that the controlled configurations
also obtain the largest percentage of reduction for r2(t). To provide a more complete picture of
the vibrational attenuation achieved by the velocity-feedback controller, the interstory drifts r2(t)
obtained by the uncontrolled configuration (black line) and velocity-feedback controlled configu-
ration (thicker red line) are presented in Fig. 5. It has to be highlighted that the graphic of r2(t)
corresponding to the state-feedback controller has not been included in Fig. 5 because it virtually
overlaps with the velocity-feedback graphic. To supply a clear comparison of the time responses
produced by these controllers, we can compute the difference

d2(t) = r(s)2 (t)− r(v)2 (t), (54)
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where r(s)2 (t) and r(v)2 (t) denote the values of the interstory drifts r2(t) obtained for the state-
feedback and the velocity-feedback controller, respectively. The graphic of the difference d2(t) is
displayed in Fig. 6, where it can be appreciated that this difference is uniformly inferior to 0.1cm
throughout the whole seismic event.

Remark 8. To prevent numerical errors, a relative accuracy of 10−8 has been set in the options of
the MATLAB function mincx() when solving the LMI optimization problems P′s and P′c given in
Eqs. (42) and (50), respectively.
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Figure 5: Interstory drifts for the stories 1–2. Vibrational response corresponding to the uncontrolled building and the
velocity-feedback controlled configuration.
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Figure 6: Differences in the interstory drifts obtained by the state-feedback controller and the output-feedback con-
troller for the stories 1–2.

5. Conclusions and future directions

In this paper, an effective two-step procedure to design static output-feedback controllers has
been presented. The proposed design methodology can be applied to any control problem that
admits a state-feedback LMI formulation. In the first step, a state-feedback controller is computed.
Next, the static output-feedback controller can be obtained by solving a single LMI optimization
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problem, which can be easily derived from the state-feedback LMI formulation. To demonstrate
the effectiveness of the proposed methodology, a static velocity-feedback H∞ controller for the
seismic protection of a five-story building has been designed with excellent results.

The new approach is based on recent results presented in [24], and provides a suitable solution
to the feasibility issues encountered in [20–22]. After having successfully removed this important
limitation, further research effort should be addressed to explore the potential of the proposed de-
sign methodology in more complex control problems, such as networked control [27, 28], switch-
ing systems [29, 30], robust control [31–33], fuzzy systems [34], or simultaneous stabilization
[35].
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[20] J. Rubió-Massegú, F. Palacios-Quiñonero, J. Rossell, Decentralized static output-feedback H∞ controller design

for buildings under seismic excitation, Earthquake Engineering and Structural Dynamics 41 (2012) 1199–1205.
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